
EZForm

Delphi Class Library

Version 1.00

Copyright 1995 Classic Software
All Rights Reserved

CLASSIC SOFTWARE LICENCE AGREEMENT

Classic Software grants you, the end user, a non-exclusive licence to use the supplied
software program and all associated materials (the "SOFTWARE"). Your use of the
SOFTWARE indicates your acceptance of the conditions of this agreement.

You can make any number of copies of the SOFTWARE for backup or archival
purposes.

The SOFTWARE can be distributed royalty free provided it is only distributed in a
compiled form as part of an executable program.

All modified versions of the SOFTWARE are also subject to this licence agreement
and shall remain the property of Classic Software.

You may terminate this Licence Agreement at any time by destroying the
SOFTWARE
along with all copies in any form.

COPYRIGHT

The SOFTWARE shall remain the property of Classic Software and is protected by
Australian copyright law and international treaty provisions.

EZForm Version 1.00 Page 2

Contents

Introduction . 4
What is EZForm? . 4
How does EZForm do it? . 4

Installation . 6
Installing EZForm . 6
Installing the EZKeys VCL component 6

Conventions . 7
Overview . 7

TcsEZForm . 7
TcsEZKeys . . . 7
TcsEZFormOptions . 7

Using EZForm . 8
Creating new EZForms . 8
Adding EZForm behaviour to an existing form 8

Specifying the navigation keys for a particular form 9
EZKeys VCL component . 9
NavigationKeys Property . 9

Setting EZForm Options . 10
The EZFormOptions object . 10
csEZFormOptions Function . 10
Enabled Property . 10
DefaultNavigationKeys Property 11

Overriding EZForm behaviour for a specific type of control . . . 12
The Default Button . 12
Contacting Classic Software . 13

EZForm Version 1.00 Page 3

Introduction

What is EZForm?

EZForm is a set of Delphi classes which allow you to create forms which can be
navigated using the Enter, Up/Down Arrow (* see note) and Ctrl+Tab keys in addition
to the standard Tab key navigation. Because neither the Enter or Up/Down Arrow
keys can be consistently used to move between every type of control the Ctrl+Tab
keys are recognised by EZForms for this purpose.

* Note:

EZForms do not attempt to correct the anomalous behaviour already exhibited
by Windows with regards to arrow key usage, e.g. being able to

arrow from a button control (CheckBox, PushButton) into a control
which has no tab-stop or when moving from a CheckBox or PushButton control
into a RadioButton group. Only those keys not already used by the control are
captured by EZForm, e.g. the arrow keys for Memo, ListBox, ComboBox,
Button and Grid controls are not captured, the Enter key for PushButton,
DBGrid and Memo (when WantReturns = True) controls are not captured etc.

How does EZForm do it?

The EZForm class automatically takes care of setting the appropriate Form
properties/events (KeyPreview, OnKeyPress, OnKeyDown) and Component
properties (Default) and calling specialised event handlers to achieve this behaviour.
All you need to do to start using the EZForm capabilities is to specify that your form
is an EZForm descendant, this can be done for a new or existing form. Default values
are used for all properties to simplify use of the class.

With EZForm you do not need a new descendant control class for each different type
of control that should respond to the enhanced navigation keys. EZForm has been
designed to work (within the limitations outlined in the previous note) with all the
existing standard Delphi controls and any descendants created from the standard
controls.

In addition, EZForm has been designed so that it's capabilities can be easily
enabled/disabled at run-time to allow your application to switch between standard and
enhanced navigation keys, e.g. in response to a user changing a system option,
without requiring two sets of forms/controls. Global enabling/disabling of EZForm
enhanced navigation will be reflected immediately in all open EZForms, i.e. any
previously defined Default buttons will be disabled/re-enabled and the form's
behaviour will change immediately. Also, realising that you may not want all the
enhanced
navigation keys to be active on a particular form, you can specify at design-time
(using the EZKeys component) or in source code the navigation keys to allow.

All forms you create which are based on the EZForm class will automatically have
enhanced navigation abilities, you don't need to make changes to each new form you

EZForm Version 1.00 Page 4

create. You can add a blank form based on the EZForm class to your Forms Gallery
which you can then use to easily create new EZForms.

No event handlers are reserved by EZForms; you can still assign your own methods to
the form's OnKeyDown and OnKeyPress events. An EZForm automatically takes
care of calling your event handlers before it's own. If necessary, your event handlers
can override EZForm's event handlers.

EZForm Version 1.00 Page 5

Installation

Installing EZForm

To install EZForm you should make a new directory and copy all the files on the
diskette into that directory. For example if you keep all your 3rd party libraries in
subdirectories below the c:\delphi\libs directory then:

c:
md\delphi\libs\ezform
copy a:*.* c:\delphi\libs\ezform

Note: If you have received EZForm in zipped format (via e-mail) then use PKUNZIP
to unzip the files into the appropriate directory.

If you keep your 3rd party library files elsewhere then substitute the appropriate drive
and/or directory path.

It is recommended that with EZForm, and indeed with any other 3rd party libraries
you may use, that you never change the supplied source code but instead create
descendant classes if you need to alter the standard behaviour. In doing this you make
it easier to apply any updates which may be supplied in the future. If you change the
supplied source code you may be preventing yourself from using any future updates.

Installing the EZKeys VCL component

The EZForm library contains only one visual VCL component, the EZKeys VCL
component. Note that it's use with EZForm is optional. Use the Options | Install
Components command to install the CSEZForm unit, this will result in the EZKeys
component being added to the Samples page. You can then use the Options |
Environment | Palette command to move the EZKeys component to a different palette
page if desired.

EZForm Version 1.00 Page 6

Conventions

By convention, all EZForm class types and public functions are given a prefix to
prevent conflicts with other libraries or with your own source code. Types are given
the prefix "Tcs", e.g. TcsEZForm, and functions are given the prefix "cs", e.g.
csEZFormOptions.

Overview

The EZForm library consists of the following classes:

TcsEZForm

This class allows you to create forms which exhibit enhanced navigation
behaviour using the Enter, Up/Down Arrows or Ctrl+Tab keys. The
NavigationKeys property allows the set of recognised enhanced navigation keys
to be changed.

TcsEZKeys

This class defines the EZKeys VCL component which allows the set of
recognised enhanced navigation keys to be changed at design-time using the
Object Inspector.

TcsEZFormOptions

An object of this class is created automatically and is used to store the EZForm
Options that apply to all TcsEZForm objects. It has two properties; Enabled and
DefaultNavigationKeys. You do not need to create any objects of this class. It
is referenced using the function csEZFormOptions.

EZForm Version 1.00 Page 7

Using EZForm

Creating new EZForms

To allow easy creation of new EZForms it is recommended that you create a blank
EZForm and add it to the Form Templates page of the Gallery. This can be done by
following these steps:

1. Create a new blank form.
2. Add CSEZForm to the uses section.
3. Change the form's class from TForm to TcsEZForm.
4. Choose Save As Template from the form SpeedMenu.
5. Specify the appropriate information (File Name, Title, Description), for example

"EZFORM", "EZForm" and "A blank EZForm".
6. Choose OK.

Now, assuming you have "Gallery: Use on New Form" checked on Environment
Options | Preferences, to create a new EZForm all you need to do is to select the blank
EZForm from the Gallery when you choose File | New Unit.

Adding EZForm behaviour to an existing form

Assuming that your existing form's class is TForm, all you need to do to add EZForm
capabilities to the form is to add CSEZForm to the unit's uses section and change the
form's class from TForm to TcsEZForm.

Alternatively, if your existing forms are based on a descendant of TForm you will
need to change your base form class so it is a descendant of TcsEZForm instead of
TForm.

For example if you have:

TMyBaseForm = class(TForm) |
... | Base Form Class

and also:

TForm1 = class(TMyBaseForm)
...
TForm2 = class(TMyBaseForm)
...

Then you will need to change your base class definition to:

TMyBaseForm = class(TcsEZForm) |
... | Base Form Class

All your forms will then have EZForm capabilities.

EZForm Version 1.00 Page 8

Specifying the navigation keys for a particular form

If necessary, you can specify the set of enhanced navigation keys to be recognised by
a particular instance of an EZForm by using an EZKeys component on the form or by
using source code to change the NavigationKeys property of the form.

Note: Unless the enhanced navigation keys to be recognised by the form are different
to the default set (see DefaultNavigationKeys) you do not need to use either the
EZKeys component or the NavigationKeys property.

EZKeys VCL component

The EZKeys VCL component can be used to specify at design-time which enhanced
navigation keys are to be supported by the form. It is provided because there is a
limitation in the current version of Delphi which prevents new properties of TForm
descendants (as is TcsEZForm) from being visible/editable at design-time using the
Object Inspector. Note that the EZKeys component is only of use on an TcsEZForm,
it will have no effect on a normal TForm.

NavigationKeys Property

The NavigationKeys property of TcsEZForm can be used to specify the enhanced
navigation keys for a particular EZForm instance. You would normally do this in the
form's OnCreate event method by setting the NavigationKeys property. For example:

procedure TForm1.FormCreate(Sender: TObject)
begin
 NavigationKeys := [nkEnter]; { Enhanced navigation for Enter key only }
end;

EZForm Version 1.00 Page 9

Setting EZForm Options

The EZFormOptions object

There is one EZFormOptions object that applies to all current and future EZForm
object instances. This object is created automatically by the CSEZForm unit and
cannot be directly referenced outside this unit. It should be accessed using the
csEZFromOptions function. The EZFormOptions object has the following properties:

Enabled
DefaultNavigationKeys

csEZFormOptions Function

This function allows the EZFormOptions object to be accessed outside the
CSEZForm unit, it returns a reference to the existing EZFormOptions object. To use
the function you should include CSEZForm in the uses clause of the unit in which it is
being called.

Enabled Property

The boolean Enabled property can be used to change the enabled status of all current
and future EZForms. By default this property is True. For example to immediately
disable EZForm capabilities in all existing EZForms you would execute the following
statement:

csEZFormOptions.Enabled := False;

Any EZForms created after executing this statement will also be "disabled", i.e. the
enhanced navigation capabilties will be disabled but the forms themselves will still
work but with standard form navigation.

EZForm Version 1.00 Page 10

DefaultNavigationKeys Property

The DefaultNavigationKeys property allows you to specify the default set of
enhanced navigation keys (selected from Enter, Up/Down Arrows and Ctrl+Tab) to
use if a form does not contain an EZKeys component and has not had specific
enhanced navigation keys assigned in it's OnCreate event method. The property is a
set type and requires (one or more) values from the set: [nkEnter, nkUpDnArrows,
nkCtrlTab]. Specifying nkCtrlTab will allow both Ctrl+Tab (forward movement) and
Ctrl+Shift+Tab (backward movement). By default, the value of this property is
[nkEnter, nkUpDnArrows, nkCtrlTab]. You can use this property to limit the set of
recognised enhanced navigation keys. For example if you want to only allow
enhanced navigation for the Enter key for all your forms, you would execute the
following statement when your application starts (before any EZForms are created):

csEZFormOptions.DefaultNavigationKeys := [nkEnter];

Changing this property will only be reflected in forms subsequently created, it has no
effect on existing EZForms.

Note: To specify different enhanced navigation keys for a specific form instance you
should use the NavigationKeys property of the TcsEZForm class, or the EZKeys
component, rather than changing the DefaultNavigationKeys property.

EZForm Version 1.00 Page 11

Overriding EZForm behaviour for a specific type of control

If you have a particular type (class) of control for which you want to disable EZForm
behaviour, this can easily be done. For example if you have a specialised Date Edit
control, of class TMyDateEdit say, that uses the arrow keys to increment/decrement
the date text, you can disable EZForm behaviour for this type of control by writing a
new CanIntercept function in the form's class and having it override the function in
TcsEZForm. Where you define the overridden function --- in your base class or in a
particular form class --- will determine the extent of the overridden behaviour.

If we assume you have a base form class as discussed earlier then you could define:

type
TMyBaseForm = class(TcsEZForm)
...
public
 function CanIntercept(KeyType: TNavigationKey; Ctrl: TControl): Boolean;

override;
end;

function TMyBaseForm.CanIntercept(KeyType: TNavigationKey; Ctrl: TControl):
Boolean;
begin
 if (Ctrl is TMyDateEdit) and (KeyType = nkUpDnArrows) then
 Result := False { don't intercept arrows }
 else
 Result := inherited CanIntercept(KeyType, Ctrl);
end;

The Default Button

If your application will allow users to switch between standard (TForm) and enhanced
(TcsEZForm) form navigation you can still specify a Default button when designing
your forms. EZForms will take care of disabling the Default button status -- which is
necessary to allow EZForm to intercept the Enter key -- when the form is created.

EZForm Version 1.00 Page 12

Contacting Classic Software

Classic Software can be contacted via CompuServe (preferred), telephone, fax and
post.

CompuServe: 100033,1230

Internet: 100033.1230@compuserve.com

Telephone/Fax: +61 9 271 5407

Mail: Classic Software
Unit 2/19A Wood Street
INGLEWOOD WA 6052
AUSTRALIA

EZForm Version 1.00 Page 13

