
Imagelib 2.2

Borland Pascal and Delphi Users' Guide

Image Lite DLL /VCL version 2.2 (c)  Copyright 1995 by:

Kevin Adams (CIS) 74742,1444 

Jan Dekkers (CIS) 72130,353

Technical support for C, C++, VB applications: 

Kevin Adams: compuserve 74742,1444  or   
Internet : 74742,1444@compuserve.com

Technical support  for Delphi, Pascal and VB  applications:

Jan Dekkers compuserve 72130,353  or   
Internet : 72130,353@compuserve.com

What is ImageLib DLL/VCL?

The ImageLib VCL'S\DLL is an inexpensive way to add Jpeg, Gif, SCM 
and Pcx to your applications. Yes, there are image libraries supporting 
many more formats than ImageLib, but those libraries are more expensive 
and add more overhead to your applications. In addition it adds DBMultiImage 
and DBMultiMedia to store and display JPEG, BMP, GIF, SCM, PCX , AVI, MOV, 
MID, WAV and RMI multimedia files in/from a TBlobField.  For international 
developers: Strings are displayed in the DLL as a resource file thereby enabling 
the translation into foreign languages.



ImageLib is a enhanced Timage and TDBImage VCL/DLL with the following added features:

* Enables the reading and writing of JPEG images to/from a file or a Tblobfield;
* Jpeg 4, 8 and 24 bit dithering;
* Jpeg 0 to 100% save quality;
* Jpeg 0 to 100% smoothing;
* Enables the reading and writing of Scrolling messages images to/from a   

file or a Tblobfield  (New format in 2.2);
* Enables the reading of GIF images from a file or a TBlobfield;
* Enables the reading of PCX images from a file or a TBlobfield;
* Enables the reading and writing of BMP images to/from a file or a TBlobfield;
* Enables the reading and writing of AVI images to/from TBlobfield;
* Enables the reading and writing of MOV images to/from TBlobfield;
* Enables the reading and writing of WAV images to/from TBlobfield;
* Enables the reading and writing of RMI images to/from TBlobfield;
* Enables the reading and writing of MID images to/from TBlobfield;
* Enables the reading and writing of ICO images to/from a file(Delphi inherited);
* Enables the reading and writing of WMF images to/from a file (Delphi inherited);
* TMultiImage CUT/COPY and Paste to/from the clipboard  (New in 2.2);
* All Multi VCL’s have full Print Support with 1 line of code (New in 2.2);
* Internal scrolling message editor (New in 2.2);
* DLL Callback function, to show  a progress bar and to process Messages;
* No code necessary (VCL) to display all image formats from a TBlobfield;
* Loads/Saves all Tblobfield images to/from file;
* Converts all Tblobfield images to Jpeg/Bmp file;
* Pastes images from Clipboard and stores as a Jpeg/Bmp file/Blob;
* Retrieves File/Blob info without actually opening the file; and
* Foreign error strings. DLL strings are stored in the DLL resource
* Full VCL source code provided without extra charge



Installation Instructions

BACKUP YOUR \DELPHI\BIN\COMPLIB.DCL  Better safe than ;-(

Copy the IMGLIB22.dll to a directory on your path or to the windows\system directory.
IMGLIB22.DLL IS A DISTRIBUTABLE FILE and need to be included with your application.

If you have installed an earlier version of TMultiImage, you must remove the old TMultiImage 
component. Execute Delphi. In Delphi select Options\Install components (select reg_image or 
reg_im20) and remove.  Press OK. Delete reg_image.pas and/or reg_im20.pas from your system.

Unzip the EXAMPLSZIP into a new directory. Copy the following files into a directory containing 
your 3rd party added VCL's:  (If you don't have a directory yet please, make one)

WHEN UNREGISTERED
MULTIREG.PAS, MULITIREG.DCR, TMULTI.PAS, TDBMULTI.PAS, DLL22LIN.DCU
SETSRMSG.DFM and SETSRMSG.DCU

WHEN REGISTERED
MULTIREG.PAS, MULITIREG.DCR, TMULTI.PAS, TDBMULTI.PAS, DLL22LIN.PAS
SETSRMSG.DFM and SETSRMSG.PAS.

Execute Delphi. In Delphi select Options\Install components\ Add and browse your 3rd party 
added VCL's directory. Select MULTIREG and press the OK button.

After the library is rebuilt, you will notice 4 new icons on your Delphi toolbar under images called: 

MultiImage,
DBMultiImage, 
DBMultiMedia,
DBMediaPlayer.

Troubleshooting: 
The Delphi Library searchpath is very short (We assume 256 characters) The more VCL 
components you add the larger your searchpath. Should you get a message MULTIREG.PAS
or MULTIREG.DCU not found than your path is being truncated. The solution is to copy several 
3rd party VCL’s into one directory and delete the freed directories from your searchpath.

If Complib can not find IMGLIB22.DLL you will notice that all Icons are gone from your delphi 
toolbar and you get a message COMPLIB.DCL not found. No Panic, Just copy IMGLIB22.DLL to 
a directory on your path or to the windows\system directory.

Installation Instructions for the Examples

In delphi select Open\Project and open one of the projects in the newly created directory. Select
rebuild. Run the program.



IMPORTANT: IF YOU INSTALLED THE OLD MULTIIMAGE or DBMULTIIMAGE

What to do with your existing programs using the old MultiImage VCL:

Incase of OLD MULTIIMAGE: 

Change the uses clause of your programs from REG_IMAG or REG_IM20 to 

TMULTI,  which is the replacement for REG_IMAG or REG_IM20

Incase of OLD TDBMULTIIMAGE:

Change the uses clause of your programs from REG_IM20 to TDBMULTI.

TDBMULTI,  which is the replacement for REG_IMAG or REG_IM20

(Only for update from version 1.0 to version 2.0)
When you startup your existing programs using the MultiImage VCL you might notice a complain 
(Property JPegSaveSmooh doesn’t exist or Property JPegSaveFileName doesn’t exists) 

Property JPegSaveSmooh is renamed to JPegSaveSmooTh (watch the T)
To fix this, Load the FORM (the *.DFM) file complaining about this and replace 
JPegSaveSmooh with JPegSaveSmooTh  (add the T)

Property JPegSaveFileName is renamed to DefSaveFileName.
To fix this, Load the FORM (the *.DFM) file complaining about this and replace 
JPegSaveFileName with DefSaveFileName 

New added Visual Components

The new VCL objects added to your toolbar are called 

MultiImage, 
DBMultiImage,
DBMultiMedia 
DBMediaPlayer.

TMULTIIMAGE:  JPEG, BMP, GIF, WMF, ICO and PCX. 

Sample projects,   
im_cvrt.dpr     Converting images example
scrollim.dpr Scrolling messages example
simple.dpr 2 lines of code example
viewph.dpr Very extensive example

Mutltimage is derived  from  TCustomControl  while Timage is derived TGraphicsControl. 



However, it has the same properties as Delphi's TImage with the following additions:

Reading and displaying images for all Image formats

property ImageName

Value 
Filename of the image which needs to be displayed.

Purpose
All images are loaded with one single line of code. 

Example
MultiImage1.Imagename:=C:\ CLOWN.JPG’;

JPEG File read and write

property JPegSaveQuality      

Value 
0...100

Purpose
0 is poor and 100 excellent. We  normally use  25 to have a reasonable quality with 1/10 savings 
in size.

Example
MultiImage1.JPegSaveQuality:=25;

property JPegSaveSmooth       

Value   0...100

Purpose
0 is no smoothing  and 100  is full smoothing. Because a the lossy compression of Jpegs, an 
image might be to hard, smoothing can give it a better look. 

Example
MultiImage1.JPegSaveSmooth:=5;

procedure SaveAsJpg(FN : TFilename); 

Value 
Filename of the file saved to

Purpose
Save the displayed image to a jpeg file.



Remark
An active image need to be displayed on the form. If 
no filename is passed it will use the DefSaveFileName

Example
procedure TForm1.SaveButtonClick(Sender: TObject);
begin
   if SaveDialog1.execute then begin

MultiImage1.JPegSaveSmooth:=5;
MultiImage1.JPegSaveQuality:=25;

   MultiImage1.SaveAsJpg(SaveDialog1.FileName);
  end;
end;

property DefSaveFileName      
(Changed from JPGSaveFileName in version 2.0)

Value 
Filename of the BMP or JPG which need to be saved.

Purpose
It can come in handy to store a filename long before the file is actually
saved. You can use this as a filename scratchpad.

Example
procedure TForm1.SaveButtonClick(Sender: TObject);
begin
if SaveDialog1.execute then begin
   MultiImage1.JPegSaveQuality:=25;
   MultiImage1.JPegSaveSmooth:=5;
   MultiImage1.DefSaveFileName:=SaveDialog1.FileName;
   MultiImage1.SaveAsJpg('');
end;
end;

property JPegDither      

Value 
0 :  No dithering 24 bit
1 : One Pass No dither
2 : One Pass dither
3 : Two Pass No dither
4 : Two Pass dither



Purpose
To set dithering methods for various VGA displays. 
16 color display best JpegDither is 2
256 color display best JpegDither is 4
True color display best JpegDither is 0

Example
procedure TForm1.OpenFileClick(Sender: TObject);
begin
 if OpenDialog1.execute then begin

MultiImage1.JPegDither:=4;
MultiImage1.JPegResolution:=8;
MultiImage1.imagename:=OpenDialog1.filename;

  end;
end;

property JPegResolution  

Value 
4 (16 colors)
8 (256 colors)
24 (16 Million colors)

Purpose
To set resolution for various VGA displays. 

Example
procedure TForm1.OpenFileClick(Sender: TObject);
begin
 if OpenDialog1.execute then begin

MultiImage1.JPegDither:=4;
MultiImage1.JPegResolution:=8;
MultiImage1.imagename:=OpenDialog1.filename;

  end;
end;

BMP File read and write

to read/display a BMP image you can use either Imagelib or delphi



Example using the delphi way.

This example uses two picture components. When the form first appears, two bitmaps are loaded 
into the picture components and stretched to fit the size of the components. To try this code, 
substitute names of bitmaps you have available.

procedure TForm1.FormCreate(Sender: TObject);
begin
 MultiImage1.Stretch := True;
 MultiImage2.Stretch := True;
 MultiImage 1.Picture.LoadFromFile('BITMAP1.BMP');
 MultiImage 2.Picture.LoadFromFile('BITMAP2.BMP');
end;

Example using the Imagelib way.

This example uses two picture components. When the form first appears, two bitmaps are loaded 
into the picture components and stretched to fit the size of the components. To try this code, 
substitute names of bitmaps you have available.

procedure TForm1.FormCreate(Sender: TObject);
begin
 MultiImage1.Stretch := True;
 MultiImage2.Stretch := True;
 MultiImage 1.ImageName:='BITMAP1.BMP';
 MultiImage 2.ImageName:='BITMAP2.BMP';
end;

To Save a BMP image you can use either Imagelib or delphi

Example using the delphi way.

This example uses two picture components.

begin
MultiImage1.Picture.SaveToFile('BITMAP1.BMP');
MultiImage2.Picture.SaveToFile('BITMAP2.BMP');

end;

Saving BMP’s the Imagelib way.



procedure SaveAsBMP(FN : TFilename);

Value 
Filename of the file saved to

Purpose
Save the displayed image to a bmp file.

Remark
An active image need to be displayed on the form. If 
no filename is passed it will use the DefSaveFileName

Example
procedure TForm1.SaveButtonClick(Sender: TObject);
begin
{Open save dialog}
if SaveDialog1.execute then begin
   MultiImage1.DefSaveFileName:=SaveDialog1.FileName;
   MultiImage1.SaveAsBMP('');
end;
end;

Or

procedure TForm1.SaveButtonClick(Sender: TObject);
begin
{Open save dialog}
if SaveDialog1.execute then begin
   MultiImage1.SaveAsBMP(SaveDialog1.FileName);
end;
end;

Scrolling Messages  File read and write

Overview

Scrolling messages are TMultiImages created by the VCL on the fly. An average filesize of
an Scrolling message (SCM) is only 200 bytes. Stored in the SCM file are:

MsgText       :  String;   The message text.
MsgFont          :  Tfont; The message font
MsgBkGrnd    :  Tcolor; Background color
MsgSpeed     :  Integer; Scrolling Speed

The VCL does NOT have a moving engine by its self. You “the programmer” must trigger the 
movements. The reason is that an application can have only one Application.OnIdle event.This 
event needs then be subdivided to other events which may need one. Note that other VCL’s could 
also use a Trigger. Make sure that their OnIdle proc. don’t destroy MultiImage’s trigger.

In your application you need to add a procedure to the private clauses called for instance Trigger:



type
 TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);
private

Procedure Trigger(Sender : TObject; Var Done : Boolean);
public

end;

In the form create you will assign Trigger to the onIdle event.

procedure Form1.FormCreate(Sender: TObject);
begin

Application.OnIdle:=Trigger;
end;

The procedure trigger will then trigger the VCL:

Procedure Form1.Trigger(Sender : TObject; Var Done : Boolean);
begin

MultiImage3.Trigger;
   MultiImage2.Trigger;
   MultiImage1.Trigger;
end; 

For an extensive example load the project Scrollim.dpr

Procedure Trigger;

Value 
none

Purpose
Trigger the scrolling message movements.

Example
Procedure TForm1.Trigger(Sender : TObject; Var Done : Boolean);
begin

MultiImage1.Trigger;



end; 

procedure CreateMessage(MessagePath : String;  AutoLoad : Boolean);

Value 
MessagePath   The initial path displayed in the save dialog. 
AutoLoad True or False. If true, message is displayed after saving it. 

Purpose
CreateMessage will open the Message editor.  The user can create their own scrolling message 
and save this message to a file witha SCM extension as default.

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin

MultiImage1.CreateMessage(ExtractFilePath(Application.Exename), True);
end;

procedure SaveCurrentMessage(MessageName : TFileName);

Value 
MessageName   The filename the message is being saved to.

Purpose
Save the message with values of: (This are the values of the current message being displayed)
MultiImage1.MsgText       :  String;   The message text.
MultiImage1.MsgFont          :  Tfont; The message font
MultiImage1.MsgBkGrnd    :  Tcolor; Background color
MultiImage1.MsgSpeed     :  Integer; Scrolling Speed

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin

MultiImage1.MsgText:='ImageLib 2.2  A great tool to create a superb application’;
MultiImage1.MsgFont.Name:='Arial';
MultiImage1.MsgFont.Size:=-40;
MultiImage1.MsgFont.Style:=[fsitalic, fsbold];
MultiImage1.MsgFont.Color:=clWhite;
MultiImage1.MsgBkGrnd:=clNavy;
MultiImage1.MsgSpeed:=1;
if SaveDialog1.Execute then
  MultiImage1.SaveCurrentMessage(SaveDialog1.FileName);

end;



Remark
MsgFont.Name,  MsgFont.Size,  MsgFont.Style and MsgFont.Color  could also be defined using
a fontdialog box e.g. MultiImage1.MsgFont:= FontDialog1.Font;

procedure NewMessage;
Value 
None

Purpose
Initiate a new message. Ideal to show messages created on the fly.

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin

MultiImage1.MsgText:='ImageLib 2.2  A great tool to create a superb application’;
MultiImage1.MsgFont.Name:='Arial';
MultiImage1.MsgFont.Size:=-40;
MultiImage1.MsgFont.Style:=[fsitalic, fsbold];
MultiImage1.MsgFont.Color:=clWhite;
MultiImage1.MsgBkGrnd:=clNavy;
MultiImage1.MsgSpeed:=1;
MultiImage1.NewMessage;

end;

Procedure FreeMsg;
Value 
None

Purpose
Dispose the current message and assign then Picture to Nil

Example
procedure TForm1.BitBtn5Click(Sender: TObject);
begin

MultiImage1.FreeMsg;
end;

CLIPBOARD

procedure CopyToClipboard;
Value None

Purpose
Copy the current displayed image to the clipboard

Example
procedure TForm1.Copy1Click(Sender: TObject);
begin

MultiImage1.CopyToClipboard;



end;

procedure CutToClipboard;
Value None

Purpose
Copy the current displayed image to the clipboard and erases it.

Example
procedure TForm1.Cut1Click(Sender: TObject);
begin

MultiImage1.CutToClipboard
end;

procedure PasteFromClipboard;
Value None

Purpose
Paste an image from the clipboard into the MultiImage.

Example
procedure TForm1. Paste1Click(Sender: TObject);
begin

MultiImage1.PasteFromClipboard;
end;

Printing MultiImage Images

TmultiImage has full printing support to print JPEG, GIF, BMP, PCX, WMF and ICO. It does it with 
one procedure call.

procedure PrintMultiImage(X, Y, pWidth, pHeight: Integer);

Value 
X The Left position of the image on the paper
Y The Top position of the image on the paper
pWidth The Right position of the image on the paper
pHeight The Bottom position of the image on the paper

Purpose
PrintMultiImage will Stretch the image on the Printer.Canvas and print it.



Remark
Icons can’t be stretched and will be printed in their original size. 
If pWidth and/or pHeight are 0 the image will be printed in its original size. 

Example
procedure TForm1.Print1Click(Sender: TObject);
begin
 if PrintDialog1.execute then

MultiImage1.PrintMultiImage(0, 0, 0, 0);
end;

Image Information

Function GetInfoAndType(filename : TFilename) : Boolean;
Value 

Filename of the image

Purpose
GetInfoAndType is a very fast function which retrieves image information 
without actually loading the complete image. 

Returns
True if successfull otherwise False. GetInfoAndType will store the following information:
For all filetypes:
Bfiletype :  String;    Return: JPEG, BMP, GIF, PCX, ICO, WMF, SCM
Bwidth            :  Integer;  Return: Width of the image
BHeight         :  Integer;  Return: Height of the image
BSize           :  Longint   Return: File size in bytes
Bcompression :  String;   Return: Compression method

For JPEG, BMP, GIF, PCX only (ICO, WMF, SCM will return 0)
Bbitspixel      :  Integer;  Return: Bits per Pixel
Bplanes       :  Integer;  Return: Planes
Bnumcolors    :  Integer;  Return: Number of colors

Remark
GetInfoAndType is called automatically by the VCL during an Image load. If no Image is displayed 
you can call this function manually.

Example
procedure TForm1.DisPlayInfo(filename : TFilename);
begin
   if GetInfoAndType(filename) then begin



      Edit1.Text:=IntToStr(MultiImage1.Bwidth);
      Edit2.Text:=IntToStr(MultiImage1.BHeight);
      Edit3.Text:=IntToStr(MultiImage1.Bbitspixel);
      Edit4.Text:=IntToStr(MultiImage1.Bplanes);
      Edit5.Text:=IntToStr(MultiImage1.Bnumcolors);
      Edit6.Text:=MultiImage1.BFileType;
      Edit7.Text:=MultiImage1.Bcompression;
      Edit8.Text:=IntToStr(MultiImage1.BSize)+ bytes’;
    end else begin
      Edit1.Text:='';   
      Edit2.Text:='';
      Edit3.Text:='';
      Edit4.Text:='';
      Edit5.Text:='';
      Edit6.Text:='';
      Edit7.Text:='';
      Edit8.Text:='';
    end;
end;

DLL Image CallBack Procedure

(Changed in version 2.2 from a procedure to a function.)

Overview

The callback procedure is generated by the DLL and has 3 main goals:

1:   To show a progress bar to the user
2:   To process windows messages to give other windows programs the 
     chance to do what they have to do.
3:   To inform the DLL that either everything is OK or to cancel the operation

It's up to you, the application developer, to process the application's messageloop. You can do 
this by adding APPLICATION.PROCESSMESSAGES in the callback procedure.

The Dll expects a callback function being registered of the following type:

TCallBackFunction = function (I : Integer) : Integer;

Value 
You need to pass a 1 if ok or a 0  if you want to cancel

Returns
a value between 1 and 100 which is the progress of the image being loaded.

Remarks and Example
There are two things you MUST do to add a callback to your app:

1: You need to declare a function of the type above with the EXPORT clause:

Function ImageLibCallBack(i : integer) : integer; export;
begin



if Application.Terminated then
Result:=0

else begin
Application.ProcessMessages;
Form1.Gauge1.Progress:=i;
Result:=1;

  end;
end;

2: You need to register the callback to the VCL. The best place to do that
  is in the FormCreate function:

procedure TForm1.FormCreate(Sender: TObject);
begin
    TMultiImageCallBack:= ImageLibCallBack;
end;

TDBMULTIIMAGE:    Sample project Blob.dpr  

Displays and stores JPEG, BMP, GIF, SCM and PCX from/to a TBLOBField.

TDBMutltimage is the data-aware VCL version of TMultiImage. DBMutltimage is derived  from 
TCustomControl.  It has the same properties as Delphi's TDBImage with the following additions:

property JPegSaveQuality      

Value 
0...100

Purpose
0 is poor and 100 excellent. We  normally use  25 to have a reasonable quality with 1/10 savings 
in size.

Example
DBMultiImage1.JPegSaveQuality:=25;

property JPegSaveSmooth       

Value 
0...100

Purpose
0 is no smoothing  and 100  is full smoothing. Because of  the lossy compression of Jpegs, an 
image might be to hard, smoothing can give it a better look. 

Example
DBMultiImage1.JPegSaveSmooth:=5;

procedure SaveToFileAsJpg(FN : TFilename); 
Value 
The filename of the jpeg being saved to

Purpose



To saves the Image displayed as a Jpeg file.

Remark
Image must be displayed

Example
procedure TForm1.BitBtn8Click(Sender: TObject);

begin
DBMultiImage1.JPegSaveQuality:=25;

 DBMultiImage1.JPegSaveSmooth:=5;
 If SaveDialog2.Execute then

DBMultiImage1.SaveToFileAsJpeg(SaveDialog2.Filename);
end;

property JPegDither      

Value 
0 :  No dithering 24 bit
1 : One Pass No dither
2 : One Pass dither
3 : Two Pass No dither
4 : Two Pass dither

Purpose
To set dithering methods for various VGA displays. 
16 color display best JpegDither is 2
256 color display best JpegDither is 4
True color display best JpegDither is 0

Example
procedure TForm1.RefreshClick (Sender: TObject);
begin

DBMultiImage1.JPegDither:=4;
DBMultiImage1.JPegResolution:=8;
DBMultiImage1.Refresh;

end;

property JPegResolution  

Value 
4 (16 colors)
8 (256 colors)
24 (16 Million colors)

Purpose
To set resolution for various VGA displays. 

Example
procedure TForm1.RefreshClick (Sender: TObject);



begin
DBMultiImage1.JPegDither:=4;
DBMultiImage1.JPegResolution:=8;
DBMultiImage1.Refresh;

end;

procedure SaveToFileAsBMP(FN : TFilename); 
Value 
The filename of the bmp being saved to

Purpose
To saves the Image displayed as a bmp file.

Remark
Image must be displayed

Example
procedure TForm1.BitBtn8Click(Sender: TObject);
begin

If SaveDialog2.Execute then
DBMultiImage1. SaveToFileAsBMP(SaveDialog2.Filename);

end;

procedure SaveToFile(filename : TFilename);
Value 
The filename of the file being saved to

Purpose
Saves the current blob to a file AS Stored (No conversion)

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
var temp : string;
begin
 temp:=DBMultiImage1.GetInfoAndType;
 if temp = 'GIF' then begin

SaveDialog1.filter:='GIF files|*.GIF';
SaveDialog1.DefaultExt:='GIF';

 end else if temp = 'PCX' then begin
SaveDialog1.filter:='PCX files|*.PCX';
SaveDialog1.DefaultExt:='PCX';

end else if temp = 'JPG' then begin
SaveDialog1.filter:='Jpeg files|*.JPG';
SaveDialog1.DefaultExt:='JPG';

end else if temp = 'BMP' then begin
SaveDialog1.filter:='BMP files|*.BMP';



SaveDialog1.DefaultExt:='BMP';
end else if temp = SCM' then begin

SaveDialog1.filter:='SCM files|*. SCM’;
SaveDialog1.DefaultExt:=' SCM ';

end;

 If SaveDialog1.Execute Then
   DBMultiImage1.SaveToFile(SaveDialog1.FileName);
end;

Image Information

Function GetInfoAndType(filename : TFilename) : STRING
Value 

Filename of the image

Purpose
GetInfoAndType is a very fast function which retrieves image information 
without actually loading the complete image. 

Returns
Extension format of the file stored in the blobfield. GetInfoAndType will store the following 
information:

For all filetypes:
Bfiletype :  String;    Return: JPEG, BMP, GIF, PCX, ICO, WMF, SCM
Bwidth            :  Integer;  Return: Width of the image
BHeight         :  Integer;  Return: Height of the image
BSize           :  Longint   Return: File size in bytes
Bcompression :  String;   Return: Compression method

For JPEG, BMP, GIF, PCX only (ICO, WMF, SCM will return 0)
Bbitspixel      :  Integer;  Return: Bits per Pixel
Bplanes       :  Integer;  Return: Planes
Bnumcolors    :  Integer;  Return: Number of colors

Remark
GetInfoAndType is called automatically by the VCL during an Image load (if autodisplay is  
true). If no Image is displayed or autodisplay is false you can call this function manually.

Example
procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
 If not DBMultiImage1.autodisplay then DBMultiImage1.GetInfoAndType;

 Edit1.text:='This blob image is a '+TDBMultiImage1.BFiletype;
 Edit2.text:=IntToStr(DBMultiImage1.Bwidth);
 Edit3.text:=IntToStr(DBMultiImage1.BHeight);
 Edit4.text:=IntToStr(DBMultiImage1.Bbitspixel);
 Edit5.text:=IntToStr(DBMultiImage1.Bplanes);
 Edit6.text:=IntToStr(DBMultiImage1.Bnumcolors);
 Edit7.text:=TDBMultiImage1.Bcompression;



 Edit8.text:=IntToStr(DBMultiImage1.BSize);
end;

property UpDateBlobAsJpeg : boolean
Value 
True or  False

Purpose
To store the image displayed either as a JPEG or as a BMP If True then the Blob Image will be 
updated to a Jpeg Blob. If False then the Blob Image will be updated to a BMP Blob.

Remark
Image must be displayed

Example
procedure TForm1.UpdateAsJpeg(Sender: TObject);
begin
  DBMultiImage1.UpdateBlobAsJpeg:=True;
  DBMultiImage1.PastefromClipboard;
  Table1.Post;
end;

procedure TForm1.UpdateAsBMP(Sender: TObject);
begin
  DBMultiImage1.UpdateBlobAsJpeg:=False;
  DBMultiImage1.PastefromClipboard;
  Table1.Post;
end;

Printing DBMultiImage Images

TDBmultiImage has full printing support to print JPEG, GIF, BMP, PCX,. It does it with one 
procedure call.

procedure PrintMultiImage(X, Y, pWidth, pHeight: Integer);

Value 
X The Left position of the image on the paper
Y The Top position of the image on the paper
pWidth The Right position of the image on the paper
pHeight The Bottom position of the image on the paper

Purpose
PrintMultiImage will Stretch the image on the Printer.Canvas and print it.

Remark
Icons can’t be stretched and will be printed in their original size. 
If pWidth and/or pHeight are 0 the image will be printed in its original size. 

Example



procedure TForm1.Print1Click(Sender: TObject);
begin
 if PrintDialog1.execute then

DBMultiImage1.PrintMultiImage(0, 0, 0, 0);
end;

CLIPBOARD

procedure CopyToClipboard;
Value None

Purpose
Copy the current displayed image to the clipboard

Remark
CRTL INSERT and CRTL C does  the same

Example
procedure TForm1.Copy1Click(Sender: TObject);
begin

DBMultiImage1.CopyToClipboard;
end;

procedure CutToClipboard;
Value None

Purpose
Copy the current displayed image to the clipboard and erases it.

Remark
SHIFT DELETE and CRTL X does  the same

Example
procedure TForm1.Cut1Click(Sender: TObject);
begin

DBMultiImage1.CutToClipboard
end;

procedure PasteFromClipboard;
Value None

Purpose
Paste an image from the clipboard into the MultiImage.

Remark
SHIFT INSERT and CRTL V does the same

Example
procedure TForm1. Paste1Click(Sender: TObject);
begin

DBMultiImage1.PasteFromClipboard;
end;



Scrolling TBobField Messages

Overview

Scrolling messages are TDBMultiImages created by the VCL on the fly. An average blob of
an Scrolling message is only 200 bytes. Stored in the blob are:

MsgText       :  String;   The message text.
MsgFont          :  Tfont; The message font
MsgBkGrnd    :  Tcolor; Background color
MsgSpeed     :  Integer; Scrolling Speed

The VCL does NOT have a moving engine by its self. You “the programmer” must trigger the 
movements. The reason is that an application can have only one Application.OnIdle event.This 
event needs then be subdived to other events which may need one. Note that other VCL’s could 
also use a Trigger. Make sure that their OnIdle proc. don’t destroy MultiImage’s trigger.

In your application you need to add a procedure to the private clauses called e.g. Trigger:

type
 TForm1 = class(TForm)
private

Procedure Trigger(Sender : TObject; Var Done : Boolean);
public

In the form create you will assign Trigger to the onIdle event.

procedure Form1.FormCreate(Sender: TObject);
begin

Application.OnIdle:=Trigger;
end;

The procedure trigger will then trigger the VCL:

Procedure TForm1.Trigger(Sender : TObject; Var Done : Boolean);
begin

DBMultiImage1.Trigger;
end; 

Procedure Trigger;
Value none

Purpose
Trigger the scrolling message movements.

Example
Procedure TForm1.Trigger(Sender : TObject; Var Done : Boolean);
begin

DBMultiImage1.Trigger;
end; 



Function CreateMessage : boolean;
Value none

Purpose
CreateMessage will open the Message editor.  The user can create their own scrolling message 
and store these in the blobfield.

Returns
True if successfull otherwise false

Example
procedure TForm1.BitBtn13Click(Sender: TObject);
begin

Table1.Append;
If DBMultiImage1.CreateMessage then

Table1.Post
           else
     Table1.Cancel;
end;

Note: To save current blob message to a file use SaveToFile.

procedure NewMessage;
Value None

Purpose
Initiate a new message. Ideal to show messages created on the fly.

Example
procedure TForm1.BitBtn2Click(Sender: TObject);
begin

DBMultiImage1.MsgText:='ImageLib 2.2  A great tool to create a superb application’;
DBMultiImage1.MsgFont.Name:='Arial';
DBMultiImage1.MsgFont.Size:=-40;
DBMultiImage1.MsgFont.Style:=[fsitalic, fsbold];
DBMultiImage1.MsgFont.Color:=clWhite;
DBMultiImage1.MsgBkGrnd:=clNavy;
DBMultiImage1.MsgSpeed:=1;
DBMultiImage1.NewMessage;

end;

Procedure FreeMsg;
Value None

Purpose
Dispose the current message and assign then Picture to Nil

Example
procedure TForm1.BitBtn5Click(Sender: TObject);
begin

DBMultiImage1.FreeMsg;
end;



TDBMULTIMEDIA and TDBMEDIAPLAYER:   Sample project:  MMBLOB.dpr  

Overview
DBMultiMedia has all the same properties and functions as DBMultiImage. However, besides the 
storing and displaying of JPEG, BMP, GIF, SCM and PCX from a TBLOBField it does also store 
and play AVI, MOV, MID, WAV and RMI multimedia files. 

DBMediaPlayer is a derived Delphi MediaPlayer and has exact all the same functions and 
properties. Using the DBMediaPlayer you don’t need to assign anything to DBMediaPlayer 
directly, DBMultiMedia will take care of it.

TDBMULTIMEDIA will automatically enable/disable the playback of

 AVI: If video for windows isn't installed;
 MOV: If quicktime for windows isn't installed;
 WAV: If no soundsupport is installed;
 RMI: If no midi playback drivers are installed;
 MID: If no midi playback drivers are installed.

Thus you don’t need to be afraid that your program chrashes when no soundcard is installed or 
Video for windows isn’t present.

Again, all the properties from DBMultiImage are there and we added the following:

function GetMultiMediaExtensions : String;
Value  none

Purpose
This function will return all multimedia extensions from the computer running your application and 
those supported by DBMultiMedia in the filedialog filter format.

Remark
Run the example file MMBLOB.DPR. You will notice that the Append MM dialogbox contains all 
the Multimedia supported by the VCL and your PC.

Example
procedure TBtnBottomDlg.BitBtn1Click(Sender: TObject);
begin
   OpenDialog1.filter:=DBMultiMedia1.GetMultiMediaExtensions;

if OpenDialog1.Execute then begin
              Table1.Append;

    DBMultiMedia1.LoadfromFile(OpenDialog1.FileName);
    Table1.Post;

            end;
end;

property PathForTempFile : string
Value
PathName



Purpose
TDBMULTIMEDIA saves its AVI, MOV, WAV, MID and RMI blobs first to a temporary file before it 
is being played and then deletes the temporary file. The reason is that average multimedia blobs 
are too large in size to be played from memory. Your application might be distributed and 
executed from a CD. In order to write a temporary file you need the supply a directory and drive.

Remark
JPG, PCX, GIF and BMP Blobs are Not written to a temporary file but expanded directly into 
memory. If directory or drive doesn't exists it defaults to C:\

Example
procedure TBtnBottomDlg.FormCreate(Sender: TObject);
begin

 DBMultiMedia1.PathForTempFile:='C:\TEMP';

end;

property AutoPlayMultiMedia : Boolean;
Value
True or False

Purpose
If AutoPlayMultiMedia and  AutoDisplay are  True, the control automatically displays new data 
when the underlying BLOB field changes (such as when moving to a new record).If 
AutoPlayMultiMedia and  AutoDisplay are False, the control clears whenever the underlying 
BLOB field changes. To display the data, the user can double-click on the control or select it and 
press Enter. 

Example
procedure TBtnBottomDlg.FormCreate(Sender: TObject);
begin
 DBMultiMedia1.AutoPlayMultiMedia:=true;
end;

property AutoRePlayMultiMedia : Boolean
Value
True or False

Purpose
If AutoDisplay and AutoPlayMultiMedia are true then the multimedia is replayed automatically;

Example
procedure TBtnBottomDlg.FormCreate(Sender: TObject);
begin
 DBMultiMedia1.AutoRePlayMultiMedia:=true;
end;

property AutoHideMediaPlayer : Boolean;
Value
True or False

Purpose
If the blobfield doesn't contains multimedia it will hide the attached MediaPlayer automatically.



Example
procedure TBtnBottomDlg.FormCreate(Sender: TObject);
begin
 DBMultiMedia1.AutoHideMediaPlayer:=true;
end;

property MediaPlayer:
Value
DbMediaPlayer

Purpose
The ImageLib comes with its own DBmediaplayer directly derived from Tmediaplayer. You need 
to drop one on your form and set the property MediaPlayer to for instance: DBmediaplayer1.

Remark
There is no need to attach a filename to DbMediaPlayer. AutoOpen must be false since  
DBMultiMedia will take care of opening and closing the DbMediaPlayer.

Example
procedure TForm1.FormCreate(Sender: TObject);
begin

DBMultiMedia1.MediaPlayer:=DBMediaPlayer1;
end;

DBMediaPlayer1.Display  and DisplayRect.

Remark
In order to display the video in the exact retangle of your DBMultiMedia you'll need to supply a 
display and rect to the DBMediaPlayer.

Example
procedure TBtnBottomDlg.DataSource1DataChange(Sender: TObject;
 Field: TField);
begin

DBMediaPlayer1.DisplayRect:=Rect(0,0,DBMultiMedia1.Width,DBMultiMedia1.Height);
DBMediaPlayer1.Display:=DBMultiMedia1;

end;

PASCAL AND DELPHI DLL Calls and Scrolling messages File/Stream calls

You might never have a need to make calls directly to the DLL. But incase you have a need for it 
we listed all the pascal interface call with the DLL. You can find all the calls in DLL22LIN.INT.

Incase you find the supplied VCL’s usefull we would like you to register. How to register:

On CompuServe GO SWREG.  The SWREG ID = 6791. 

The registration fee using SWREG is $69.-.  

To register by mail send a check or moneyorder of $65.- to :



Jan Dekkers
11956 Riverside Drive, 206
North Hollywood CA 91607

You will receive the DLL22LIN.PAS, SetSrMsg.PAS and a password to access the DLL.
This will eliminate the shareware messages.

-----------------------------------------------------------------------------------------------------------------------------

I just would like to say a few words about Turbopower. I've used Turbopowers' products for over 4 
years now and am very impressed with their state of the art development libraries. Their technical 
support is the best I have ever experienced. They provide a good example for Kevin and me of 
how to do business and how to treat customers.

Turbopower's products:

Async Professional, 
B-Tree Filer, 
Object Professional, 
TSRs and more,
Turbo Analyst, 
Turbo Professional, 
Data Entry Workshop,
Win/Sys Library, and their latest great Delphi product, 
Orpheus.

on CompuServe, Go PCVENB to download their free trial libraries.

Contacting TurboPower Sales

Telephone   : 800-333-4160 (sales in the U.S. & Canada)
               719-260-9136 (international sales)
               719-260-7151 (fax)
CompuServe  : 76004,2611
Internet    :  76004.2611@compuserve.com
Postal mail :  TurboPower Software
               P.O. Box 49009
               Colorado Springs, CO 80949-9009

_________________________________________________________________________

Gif and Tiff uses LZW compression which is patented by Unisys. On CompuServe
GO PICS to obtain information about the Unisys patents. This work "jpeg file
i/o" is based in part on the Independent JPEG Group


