
MAPI Component for Borland Delphi 1.0

Release Notes

Version 0.99

This version of the MAPI component for Delphi was developed and has been tested under Windows 95 test
release build 490, the mail client, MSN and the fax service using LAN and RAS connections.

Introduction

The MAPI component is an easy-to-use, yet powerful piece of software that capsulates the set of unhandy
SIMPLE MAPI API functions into a friendly set of Delphi-style methods and properties.

The MAPI component allows you to easily mail-enable your applications without requiring any VBX or OCX.
It supports up to 255 recipients as well as 255 CC’s (carbon copies) and 255 BCC’s (blind carbon copies). You
may attach up to 255 files as well.

A main target for development was to expose a fault tolerant interface. This means, for example, that you can
call any method at any time; if a connection could be established, the component intelligently decides which
steps have to be done to complete the requested task. If you call the send method, for example, the component
first checks, if a session has been established and opens one, if necessary. It then looks into the recipient list to
find out if you supplied any recipients. If so, it validates all entries and calls common dialogs to resolve
unknown names; otherwise, it opens the address book to let the user select recipients. If you didn’t supply a
subject, the component opens the common dialog for creating a message.

Using the MAPI component

Visual Properties

KeepConnection (Boolean)

If this property is true, the component holds a connection until you close it or the component is destroyed. This
might be handy if your application wants to send more than one message. If false, the component shuts down the
active MAPI session after a message has been sent.

MarkRead (Boolean)

This property controls if fetched messages should be marked as read or not.

NewMessagesOnly (Boolean)

This property tells the component, if calls to FirstMessage or NextMessage should return all messages in the
inbox or only new (unread) messages.

WizardMode (Boolean)

If this property is true, the component intelligently opens common dialogs to complete the information
necessary to send a message. If false, the component raises errors if the information for the requested task is
incomplete.

Runtime Properties

MessageClass (String)

This property sets a message class filter for sending and receiving custom messages. If you wish to process
normal (interpersonal) mail, leave this property blank.

Originator (String)

This property contains the originator’s name after you fetched a specific message using NextMessage. It has no
effect when sending mails.

Subject (String)

Subject (header) of the message. This property is used when sending and reading mail. If this property is blank
when you call the Send method and wizard mode is active , a common “new mail”-dialog will be presented,
because a mail without subject is bad style.

DateReceived (String)

This property contains the date and time of a received message when a specific message has been fetched by
FirstMessage or NextMessage. It is ignored when sending a message.

Text (TStringList)

This property holds the message text (body) of a message, that has been read or is to be sent. Please note that
for performance reasons the methods FirstMessage and NextMessage do not retrieve the message body.
You must call the GetMessage method in order to have access to the message body.

RecipientList (TStringList)

This dynamic string array contains the names of all recipients of a retrieved or prepared message. You may fill
in names code-driven into this property or call the AddressBook method to define recipients. If you supply the
recipients by code the component verifies each entry before sending the message.

CCList (TStringList)

Same as recipient list for carbon copy recipients.

BCCList (TStringList)

Same as recipient list for blind carbon copy recipients.

hasFiles (Boolean)

Indicates if a fetched message contains attached files. This property is ignored when sending messages.

FileList (TStringList)

This list holds the full path names of all attached files of a retrieved or prepared message. Please note that for
performance reasons the methods FirstMessage and NextMessage do not retrieve the list of attached files.
You must call the GetMessage method in order to have access to the attached files.

EOF

This property indicates that the last message has been fetched using the method NextMessage and allows you to
control a fetch loop like this:

    FirstMessage;
    while not MAPI1.EOF do begin
        <assing msg properties to visual controls or variables>
        NextMessage;
    end;

Please note that the call to NextMessage that sets EOF to true does not deliver a valid message anymore.

Methods

Open

Logs you on to the mail postoffice. It is not necessary to call this method because the component calls it by itself
when necessary.

Close

Shuts down an active mail session. You do not have to call this method explicitly because the    component calls
it when your application exits.

AddressBook

Opens the common address book dialog.

Send

Sends a prepared mail. If WizardMode is active, you do not have to supply all necessary information for sending
a message. The component will ask you for the missing information automatically. Otherwise, exceptions are
generated for each missing item.

Clear

Clears all message properties.    You typically call this method before preparing a new message.

FirstMessage

Reads the header information of the first message. The property NewMessagesOnly decides if all or only new
(unread) messages are fetched. Please note that this function is relatively slow. This is not due to poor
implementation (this method calls MAPIFindNext straightforward); in fact, mail clients like MS Mail
buffer retrieved messages locally and fetch only new messages. It is recommended to use it the same way,
if you intend to write your own mail client.

NextMessage

Reads the header information of the next message. The property NewMessagesOnly decides, if all or only new
(unread) messages are fetched. You may use the methods FirstMessage and NextMessage the following way:

FirstMessage;
    while not MAPI1.EOF do begin
        <assing msg properties to visual controls or variables>
        NextMessage;
    end;

Please note that the call to NextMessage that sets EOF to true does not deliver a valid message anymore
and that this function is relatively slow. This is not due to poor implementation (this method calls
MAPIFindNext straightforward); in fact, mail clients like MS mail buffer retrieved messages locally and
fetch only new messages. It is recommended to use it the same way, if you intend to write your own mail
client.

GetMessage(iMessage: Integer)

This message gets the full information of a previously fetched message. After this call, all properties, including
Text and FileList (if hasFiles is True) are available. You must pass the index of a retrieved message (i.e.using
FirstMessage or NextMessage) to this method in order to identify a specific message. If you fill all message
headers into a list box, for example, a call to this method could look like this:

procedure Tform1.ListBox1DblClick(Sender: TObject);
begin
    MAPI1.GetMessage(ListBox1.ItemIndex);
    <Assign MAPI properties to controls or variables>
end;

DeleteMessage(iMessage: Integer)

This message deletesa message permanently from the message store. You must pass the index of a retrieved
message (i.e.using FirstMessage or NextMessage) to this method in order to identify a specific message.

This component is still in beta stadium. I intend to release it for about 15 US$ as soon as
it is stable enough. I would be pleased to hear your comments, critics and bug reports.
Currently, I’m reachable    through the Microsoft Network as Christian Salzmann.

