

Title Page

Version 4.0 Release 2
November 1996

Software Development Kit

Adobe Photoshop

®

 4.0

Adobe Photoshop Software Development Kit

Copyright © 1991–6 Adobe Systems Incorporated.
All rights reserved.
Portions Copyright © 1990–1, Thomas Knoll.

The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated
assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document. The software described in this document is
furnished under license and may only be used or copied in accordance with
the terms of such license.

Adobe, Adobe After Effects, Adobe PhotoDeluxe, Adobe Premiere, Adobe
Photoshop, Adobe Illustrator, Adobe Type Manager, ATM and PostScript are
trademarks of Adobe Systems Incorporated that may be registered in certain
jurisdictions. Macintosh and Apple are registered trademarks, and Mac OS is
a trademark of Apple Computer, Inc. Microsoft, Windows and Windows95
are registered trademarks of Microsoft Corporation. All other products or
name brands are trademarks of their respective holders.

Most of the material for this document was derived from earlier works by
Thomas Knoll, Mark Hamburg and Zalman Stern. Additional contributions
came from David Corboy, Kevin Johnston, Sean Parent and Seetha
Narayanan. It was then compiled and edited by Dave Wise and Paul
Ferguson. It was later edited for content and updates by Andrew Coven.

Version History

Date Author Status

7 November 1994 David J. Wise First draft

15 January 1995 David J. Wise First release

8 February 1995 Seetharaman Narayanan MS-Windows modifications

16 July 1995 Paul D. Ferguson Reformatted and updated for Photo-
shop 3.0.4

6 February 1996 Andrew Coven Updated for Photoshop 3.0.5, Cross-
application development

20 November 1996 Andrew Coven Information, modules and callbacks
updated for Photoshop 4.0.

Table of Contents

Adobe Photoshop Software Development Kit

3

Table of Contents

Title Page . 1

Version History . 2

Table of Contents . 3

1. Introduction . 10

Audience . 10

About this guide . 10

How to use this guide. 10

Contents of the Photoshop plug–in toolkit 11

GAP SDK tech notes mailing list. 11

2. Plug-in Basics . 12

Plug–in modules and plug–in hosts . 12

A short history lesson . 12

Macintosh and Windows development. 13

Version Information . 13

Types of plug–in modules. 15

Plug–in module files . 16

Plug–in file types and extensions. 16

Basic data types. 17

The plug–in module interface . 18

Error reporting . 18

About boxes . 19

Memory management strategies. 21

maxSpace vs. bufferSpace on the Macintosh 21

Creating plug–in modules for the Mac OS . 23

Hardware and system software configuration 23

Resources in a plug–in module . 23

Global variables. 23

Segmentation . 24

Installing plug–in modules . 25

What’s in this toolkit for the Mac OS? 26

Fat and PPC-only plug-ins and the cfrg resource 26

Building 680x0–only plug-ins . 27

Debugging code resources in Metrowerks CodeWarrior 28

Creating plug–in modules for Windows . 29

Hardware and software configuration 29

Structure packing . 29

Resources . 29

Calling a Windows plug–in. 30

Installing plug–in modules . 30

What’s in this toolkit for Windows? . 31

3. Plug-in Host Callbacks 32

Table of Contents

Adobe Photoshop Software Development Kit

4

Direct callbacks . 33

AdvanceStateProc() . 33

ColorServicesProc() . 34

DisplayPixelsProc() . 34

HostProc() . 35

ProcessEventProc() . 35

SpaceProc() . 35

TestAbortProc() . 35

UpdateProgressProc() . 36

Callback suites . 37

Buffer suite . 38

BufferSpaceProc(). 38

AllocateBufferProc() . 38

FreeBufferProc() . 39

LockBufferProc(). 39

UnlockBufferProc(). 39

Channel Ports suite . 40

ReadPixelsProc() . 40

WriteBasePixelsProc(). 41

ReadPortForWritePortProc() . 41

Descriptor suite . 42

PIDescriptorParameters . 42

ReadDescriptorProcs suite . 42

OpenReadDescriptorProc() . 42

CloseReadDescriptorProc() . 43

GetAliasProc() . 43

GetBooleanProc() . 43

GetClassProc() . 43

GetCountProc(). 43

GetEnumeratedProc() . 43

GetFloatProc() . 43

GetIntegerProc(). 44

GetKeyProc(). 44

GetSimpleReferenceProc() . 44

GetObjectProc() . 45

GetPinnedFloatProc() . 45

GetPinnedIntegerProc() . 45

GetPinnedUnitFloatProc() . 45

GetStringProc() . 45

GetTextProc() . 45

GetUnitFloatProc() . 46

WriteDescriptorProc suite. 46

OpenWriteDescriptorProc() . 46

CloseWriteDescriptorProc() . 46

Table of Contents

Adobe Photoshop Software Development Kit

5

PutAliasProc() . 46

PutBooleanProc() . 46

PutClassProc() . 46

PutCountProc() . 46

PutEnumeratedProc(). 47

PutFloatProc() . 47

PutIntegerProc() . 47

PutSimpleReferenceProc() . 47

PutObjectProc() . 47

PutStringProc() . 47

PutTextProc() . 47

Handle suite. 48

NewPIHandleProc() . 48

DisposePIHandleProc() . 48

GetPIHandleSizeProc() . 48

SetPIHandleSizeProc() . 48

LockPIHandleProc() . 48

UnlockPIHandleProc() . 49

RecoverSpaceProc() . 49

Image Services suite . 50

PIResampleProc() . 50

interpolate1DProc() . 51

interpolate2DProc() . 51

Property suite . 53

GetPropertyProc() . 53

SetPropertyProc() . 53

propInterfaceColor . 53

Pseudo–Resource suite . 57

CountPIResourcesProc() . 57

GetPIResourceProc() . 57

AddPIResourceProc() . 57

DeletePIResourceProc() . 57

4. Color Picker Modules. 58

Examples/ColorPicker/NearestBase . 58

Calling sequence . 59

pickerSelectorPick . 59

Behavior and caveats . 60

PickParms structure . 61

Error return values . 61

The Color Picker parameter block . 62

5. Import Modules . 63

Examples/Import/GradientImport . 63

Calling sequence . 64

Table of Contents

Adobe Photoshop Software Development Kit

6

acquireSelectorPrepare. 64

acquireSelectorStart . 65

acquireSelectorContinue . 65

acquireSelectorFinish . 66

acquireSelectorFinalize. 67

Behavior and caveats . 67

Multiple Acquire . 67

Batch Import . 68

Batch Import versus Multiple Import. 68

Error return values . 68

The Import parameter block. 69

6. Export Modules . 74

Examples/History . 74

Examples/IllustratorExport . 74

Examples/Export/Outbound . 74

Calling sequence . 75

exportSelectorPrepare . 75

exportSelectorStart . 76

exportSelectorContinue . 76

exportSelectorFinish . 76

Error return values . 77

The Export parameter block . 78

7. Filter Modules . 81

Examples/Filter/Dissolve–with–AppleScript 81

Examples/Filter/Dissolve–sans–AppleScript 81

Examples/Filter/Propetizer . 81

Examples/Filter/ColorMunger. 81

Calling sequence . 82

filterSelectorParameters . 82

filterSelectorPrepare. 83

filterSelectorStart . 84

filterSelectorContinue . 84

filterSelectorFinish . 84

Behavior and caveats . 84

Error return values . 85

The Filter parameter block . 86

8. Format Modules. 93

Examples/Format/SimpleFormat. 93

Format module operations . 94

Reading a file (file filtering) . 95

Reading a file (read sequence) . 96

 formatSelectorFilterFile . 96

Table of Contents

Adobe Photoshop Software Development Kit

7

formatSelectorReadPrepare . 96

formatSelectorReadStart . 96

formatSelectorReadContinue. 97

formatSelectorReadFinish . 98

Writing a file . 99

Writing a file (options sequence). 100

formatSelectorOptionsPrepare . 100

formatSelectorOptionsStart . 100

formatSelectorOptionsContinue . 100

formatSelectorOptionsFinish . 101

Writing a file (estimate sequence) . 102

formatSelectorEstimatePrepare . 102

formatSelectorEstimateStart . 102

formatSelectorEstimateContinue. 102

formatSelectorEstimateFinish . 102

Writing a file (write sequence). 103

formatSelectorWritePrepare . 103

formatSelectorWriteStart . 103

formatSelectorWriteContinue . 104

formatSelectorWriteFinish . 104

Image Resources . 105

Error return values . 105

The Format parameter block . 106

9. Selection Modules . 111

Examples/Selection/Selectorama . 111

Examples/Selection/Shape . 111

Calling sequence . 112

selectionSelectorExecute . 112

Behavior and caveats . 113

Channel Ports structures. 113

Treatments and SupportedTreatments 115

Error return values . 115

The Selection parameter block. 116

10. Scripting Plug-ins . 118

Scripting Basics . 119

Implementation order . 119

Scripting caveats . 119

Creating a terminology resource . 120

Nomenclature . 122

Parameter and property flags . 122

Classes and the terminology resource . 122

Inheritance . 123

Enumerated types . 124

Table of Contents

Adobe Photoshop Software Development Kit

8

Lists and the terminology resource . 125

Descriptors . 126

Filter, Selection, and Color Picker events 126

Import, Export, and Format objects. 127

typeObjectReference . 127

Scripting Parameters . 129

PIDescriptorParameters . 129

Recording. 130

Building a descriptor. 130

Recording error handling . 130

Recording classes. 130

Playback . 131

Playback error handling . 131

Common keys and parameters. 133

AppleScript compatibility . 135

Registration and unique name spaces. 135

Ignoring AppleScript. 136

AppleEvents. 137

11. Document File Formats 138

Image resource blocks. 139

Path resource format . 141

Path points . 141

Path records. 141

Photoshop 3.0 files . 143

Photoshop 3.0 files under Windows . 143

Photoshop 3.0 files under Mac OS . 143

Photoshop 3.0 file format. 144

File header section . 144

Color mode data section . 145

Image resources section . 145

Layer and mask information section . 145

Image data section . 146

Layer and mask records . 147

Photoshop 4.0 file format. 150

Photoshop EPS files. 151

Filmstrip files . 152

TIFF files . 154

TIFF files under the Mac OS . 154

12. Load File Formats. 156

Arbitrary Map . 157

Brushes. 158

Color Table. 160

Colors . 161

Table of Contents

Adobe Photoshop Software Development Kit

9

Command Settings File . 163

Curves. 165

Duotone options . 167

Halftone screens . 169

Hue/Saturation . 170

Ink colors setup . 171

Custom kernel . 172

Levels . 173

Monitor setup . 175

Replace color/Color range . 176

Scratch Area. 177

Selective color . 178

Separation setup . 179

Separation tables . 180

Transfer function. 182

A. Data Structures . 183

PSPixelMap . 184

PSPixelMask. 185

ColorServicesInfo. 186

PlugInMonitor . 189

ResolutionInfo . 190

DisplayInfo. 191

B. OLE Automation . 192

Automation basics. 193

Automation objects . 193

Creating OLE Automation with Visual Basic . 195

Creating and destroying an application object 195

Opening and closing documents . 195

Running an action script by name . 196

Iterating through a collection of actions 197

Index . 198

Adobe Photoshop Software Development Kit

10

11. Introduction

Welcome to the Adobe Photoshop® Software Developers Toolkit!

With this toolkit you can create software, known as plug–in modules, that
expand the capabilities of Adobe Photoshop.

Audience
This toolkit is for C programmers who wish to write plug–ins for Adobe
Photoshop on Macintosh and Windows systems.

This guide assumes you are proficient in the C programming language and
its tools. The source code files in this toolkit are written for Metrowerks
CodeWarrior on the Macintosh, and Microsoft Visual C++ on Windows.

You should have a working knowledge of Adobe Photoshop, and understand
how plug–in modules work from a user’s viewpoint. This guide assumes you
understand Photoshop terminology such as paths, layers and masks. For more
information, consult the Adobe Photoshop User Guide.

This guide does not contain information on creating plug–in modules for
Unix versions of Photoshop. The Photoshop Unix SDK is available on the
Photoshop Unix product CD. You must purchase the product CD to obtain
the SDK.

About this guide
This programmer’s guide is designed for readability on screen as well as in
printed form. The page dimensions were chosen with this in mind. The
Frutiger and Minion font families are used throughout the manual.

To print this manual from within Adobe Acrobat Reader, select the “Shrink
to Fit” option in the Print dialog.

How to use this guide
This documentation starts with information common to all the plug–in types.

Chapter 2 provides an overview of writing plug–ins, including specific
information for Mac OS and Windows development.

Chapter 3 discusses callback routines for the Photoshop host.

Chapters 4 through 9 cover the main six types of plug–in modules (Color
Picker, Import, Export, Filter, Format, and Selection) in detail.

Chapter 10 covers all the non-module specific details of Scripting.

Chapters 11 and 12 cover all the different load, save, and document file
formats built into Photoshop.

The appendicies contain specific information about different parameter
structures and scripting with OLE Automation.

1. Introduction

Adobe Photoshop Software Development Kit 11

A new document has been added, Plug-in Resources Guide.pdf, with valuable
tips and tricks for creating Photoshop Plug-ins that function in every major
Adobe graphics application.

The best way to use this guide is to first read chapters 1 through 3. Then
turn to the chapter containing specific information on the type of plug–in
you’re going to write.

If writing plug–ins is new for you, we recommend you take some time
studying the source code for the sample plug-ins. You may choose to use
these source files as the starting point for creating your own plug–in
modules.

Contents of the Photoshop plug–in toolkit
The files included with this toolkit include C language header files
(Common/Headers.h), C language source files (Common/Sources.c) and
Resource files (Common/Rez-files.r) -- these files define the structures,
constants and functions you will need to build plug in modules.

The Examples directory contains complete source code samples for each type
of plug–in.

There is also a directory containing information about the Adobe Developer
Association.

GAP SDK tech notes mailing list
The Adobe Developers Association maintains an area on Adobe’s world-
wide-web site: http://www.adobe.com, which includes the latest SDK public
releases and technical notes. You can also have the technical notes e–mailed
to you directly by joining the Graphics and Publishing SDK tech notes
mailing list. The GAP SDK Tech Notes e-mail list is for Adobe After Effects,
Adobe Illustrator, Adobe PageMaker, Adobe Photoshop, Adobe
PhotoDeluxe, and Adobe Premiere. Send an e-mail to

gap-dse@adobe.com

with the subject:

SUBSCRIBE GAP-SDK-TECH-NOTES

and these fields in your message body:

1. Your full name:

2. Business name:

3. Address:

4. City:

5. State:

6. Country:

7. Country code or Zip:

8. Area code and phone number (business is fine):

9. ADA member number:
“N/A” if not a member; “Info” if want info.

10. CC:
Any other e-mail addresses you want CC:’ed.

Adobe Photoshop Software Development Kit 12

22. Plug-in Basics

This chapter describes what plug–in modules are and provides information
common to all plug–in modules. You should understand this material before
proceeding to the chapters detailing the specific types of plug–in modules.

This chapter also contains information about compiling and testing plug–in
modules under the Mac OS and Microsoft Windows. Additional
compiler–specific information is available in the toolkit header files.

Plug–in modules and plug–in hosts
Adobe Photoshop plug–in modules are software programs developed by
Adobe Systems and third–party vendors with Adobe Systems to extend the
standard Adobe Photoshop program. Plug–in modules can be added or
updated independently by end users to customize Photoshop to their
particular needs.

This guide also frequently refers to plug–in hosts. A plug–in host is responsible
for loading plug–in modules into memory and calling them. Adobe
Photoshop is a plug–in host.

These Adobe applications function as plug-in hosts: Adobe After Effects,
Adobe Premiere, Adobe Illustrator, Adobe PageMaker, and Adobe
PhotoDeluxe. Most of these applications support some, but not all,
Photoshop plug–in modules. Many applications from third–party developers
support the use of Photoshop plug–in modules, as well.

Most plug–in hosts are application programs, but this not a requirement. A
plug–in host may itself be a plug–in module. A good example of this is the
“Photoshop Adapter” which allows Adobe Illustrator 6.0 to host Photoshop
Format and Filter modules.

This toolkit and guide are not designed for developers interested in creating
plug–in hosts; the emphasis and goal for this guide is presenting information
pertinent to creating plug–in modules.

Unless otherwise stated, Adobe Photoshop 4.0 is assumed to be the plug–in
host throughout this manual. Other hosts may or may not support all the
callbacks, properties and functionality described in this guide.

A short history lesson
Plug–ins are not unique to Photoshop. Many Macintosh and Windows
applications support some form of plug–in extensions.

Perhaps the best known example of an application that supports a plug-in
architecture is Apple’s HyperCard, with its support for XCMDs and XFCNs.
One of the first companies to incorporate plug–in modules into their
products was Silicon Beach, in its Digital Darkroom and SuperPaint products.

Silicon Beach spent a lot of time developing a newer, better designed
plug–in implementation. In HyperCard, developers have to paste their plug-
ins into the host application using ResEdit. Silicon Beach’s design for plug–in
modules has the code residing in individual files. This allows the plug-in files
to be placed anywhere, not just in the System Folder. Silicon Beach’s design

2. Plug-in Basics

Adobe Photoshop Software Development Kit 13

also incorporated the concept of version numbering, which allowed for
smooth migration as new functionality was added to the interface.

Adobe Photoshop’s implementation of plug–in modules loosely resembles
that used by Silicon Beach. It uses a similar calling sequence, and the same
version number scheme.

However, the similarity ends there. As Photoshop’s plug–in architecture
evolved, the detailed interface for Photoshop’s plug–in modules became
completely different from that used by Silicon Beach. The differences were
required primarily to support color images and Adobe Photoshop’s virtual
memory scheme.

A great overview of Macintosh programming with code fragments is
provided in A Fragment of Your Imagination, by Joe Zobkiw (1995, Addison-
Wesley, NY, ISBN 0-201-483358-0). Chapter ten of Zobkiw’s book is solely
about writing Photoshop filters.

Macintosh and Windows development
The original plug–in interface was designed when Adobe Photoshop was a
Macintosh-only product. This heritage is still apparent today, and affects
Windows developers building plug–ins. While you can build plug–in modules
for Windows without needing a Macintosh, there are a number of data
structures and Mac toolbox–like calls that will appear in your Windows code.
The good news is that this makes building plug–ins that work across both
Mac OS and Windows easier. The bad news is that if you’re developing only
for the Windows platform, some of the terminology may be unfamiliar.

Another important difference between the Macintosh and Windows is byte
ordering. Motorola and PowerPC processors store pointers, 16–, and 32– bit
numbers in big endian format, while Intel processors use little endian
format. An example of this is the number 65298, which would disassemble as
hex word $FF 12 on a Motorola or PowerPC processor, and $12 FF on an Intel
processor. $12 FF on the Intel could be mistaken by beginning Macintosh
programmers as 4863, when it in fact is 65298.

Because many Photoshop files are designed to work across both platforms,
the Photoshop engineering team chose to standardize on big endian format
(Photoshop’s heritage shows through again). When programming under
Windows, you must be careful to handle byte ordering properly.

Version Information

2.5 & 3.0
The plug–in interface changed significantly with the release of Adobe
Photoshop 3.0. The main difference is the use of 'PiPL' resources to describe
plug–in module information. This replaces the older 'PiMI' resources,
although Photoshop still fully supports PiMI based plug–in modules. PiPL
and PiMI resources are discussed in the document Plug-in Resource Guide.pdf.

The other significant change in version 3.0 is the introduction of the
AdvanceStateProc callback function. This callback provides improved
performance for plug–in modules that handle large images. The
AdvanceStateProc callback is discussed in chapter 3.

3.0.4
In Photoshop version 3.0.4, the plug–in architecture was again enhanced.
You can now set certain properties of a plug–in host using the
SetPropertyProc callback. The GetPropertyProc and SetPropertyProc
callbacks were grouped together to form a new callback suite. See chapter 3
for details.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 14

Version 3.0.4 also adds a new callback suite: the image services suite. The two
callback functions in this suite allow you to resample image data, and are
useful for various types of filter, import, and export modules. See chapter 3
for details.

3.0.5
Version 3.0.5 offers bug fixes and compatibility updates for PowerPC
Macintoshes and Windows 95. There are no new API changes or additions in
3.0.5.

4.0
Version 4.0 expands the API to include two new plug-in module types: color
pickers and selections, and an associated set of callback functions in the new
Channel Ports suite. There is also an added AppleEvent/AppleScript resource,
'aete', which describes your plug-in parameters to the Actions palette.
Accompanying that is a set of callback functions in the new Descriptor suite.
The parameter blocks for Import, Export, Filter, and Format have grown to
include the new callback suites, where appropriate. The module name for
“Acquire” modules was renamed “Import” to be consistent with other
Adobe products. This change is cosmetic—the code parameter and function
names remain the same, such as acquireSelectorContinue.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 15

Types of plug–in modules

Adobe Photoshop plug–in modules are separate files containing code that
extend Photoshop without modifying the base application.

Photoshop supports eight types of plug–in modules:

Color Picker
Color Picker modules provide a plug-in interface for implementation of
different color picker’s in addition to Photoshop’s and the system’s color
pickers. They appear whenever the user requests a unique or custom color
(such as clicking on the foreground or background colors in the tools
palette) and are selected in the Preferences... General dialog. These
modules are documented in chapter 4. Color Picker Modules, on page 58.

Import
Import modules open an image in a new window. Import modules can be
used to interface to scanners or frame grabbers, read images in unsupported
or compressed file formats, or to generate synthetic images. These modules
are accessed through the Import sub–menu. These modules are documented
in chapter 5. Import Modules, on page 63.

Export
Export modules output an existing image. Export modules can be used to
print to Mac OS printers that do not have Chooser–level driver support, or to
save images in unsupported or compressed file formats. These modules are
accessed through the Export sub–menu. These modules are documented in
chapter 6. Export Modules, on page 74.

Extension
Extension modules allow implementation of session-start and session-end
features, such initializing devices. They are called once at application
execution, once at application quit time, and usually have no user interface.
Their interface is not public.

Filter
Filter modules modify a selected area of an existing image. These modules
appear under the Filter menu. Filter modules are the plug-ins that the
majority of Photoshop users are most familiar with. These modules are
documented in chapter 7. Filter Modules, on page 81.

Format
Format modules, also called File Format and Image Format modules, provide
support for reading and writing additional image formats. These appear in
the format pop–up menu in the Open..., Save As... and Save a Copy...
dialogs. These modules are documented in chapter 8. Format Modules, on
page 93.

Parser
Parser modules are similar to Import and Export modules, and provide
support for manipuling data between Photoshop and other (usually vector)
formats such as Adobe Illustrator™ or Adobe® PageMaker™. Their interface
is not public.

Selection
Selection modules modify which pixels are chosen in an existing image and
can return either path or pixel selections. These modules appear under the
Selection menu. These modules are documented in chapter 9. Selection
Modules, on page 111.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 16

Plug–in module files
Plug–in module files must reside in specific directories for Adobe Photoshop
to recognize them. Under the Mac OS, plug–in files must be in:

1. the same folder as the Adobe Photoshop application, or

2. the folder identified in the Photoshop preferences dialog, or

3. a sub–folder of the folder identified in the Photoshop prefs.

Under Windows, plug in files must be in the directory identified by the
PLUGINDIRECTORY profile string in the Photoshop INI file.

Usually, a plug–in module file contains a single plug–in. You can create files
with multiple plug–in modules. This is discouraged, because it reduces the
user’s control of which modules are installed.

There are situations when it may be appropriate to have more than one
module in a single plug–in file. One example is matched import/export
modules, although these are usually implemented as a file format module.
Another example is a set of closely related filters, since the reduction of user
control is offset by the increased ease of plug-in file management.

Plug–in file types and extensions
Plug–in module files should follow the guidelines in table 2-2 for the type
identifier under the Mac OS, and the file extension under Windows. While
these are only recommendations with Adobe Photoshop 3.0, these must be
used if your plug–in module runs with earlier versions of Photoshop.

On the Macintosh, plug-ins with the same creator ID as Adobe Photoshop
('8BIM') will appear with the standard plug–in icons defined in Photoshop.

Table 2-1: Names for the Photoshop INI file

Version Filename

2.x PHOTOSHP.INI

3.x PHOTOS30.INI

4.x PHOTOS40.INI

Table 2-2: Plug–in file types and extensions

Plug–in Type Macintosh
File Type

Windows
File Extension

General (any type of plug–in) 8BPI .8BP

Color Picker 8BCM .8BC

Import 8BAM .8BA

Export 8BEM .8BE

Extension 8BXM .8BX

Filter 8BFM .8BF

File Format 8BIF .8BI

Parser 8BYM .8BY

Selection 8BSM .8BS

2. Plug-in Basics

Adobe Photoshop Software Development Kit 17

Basic data types
The basic types shown in table 2-3 are commonly used in the Photoshop
plug–in API. Most of these are declared in PITypes.h.

Table 2-3: Basic data types

Name Description

int8, int16, int32,
unsigned8,
unsigned16, unsigned32

These are 8, 16 and 32 bit integers respectively.

short Same as int16.

long Same as int32.

Boolean Single byte flag where 0=FALSE; any other value=TRUE.

OSType int32 denoting Mac OS style 4-character code like 'PiPL'.

TypeCreatorPair Two OSTypes denoting filetype then creator code.

FlagSet Array of boolean values where the first entry is contained in the
high order bit of the first byte. The ninth entry would be in the
high–order bit of the second byte, etc.

CString C-style string where the content bytes are terminated by a trail-
ing NULL byte.

PString Pascal style string where the first byte gives the length of the
string and the content bytes follow.

Str255 Pascal style string where the first byte gives the length of the
string and the content bytes follow, with a maximum of 255 con-
tent bytes.

Structures Structures are typically represented the same way they would be
in memory on the target platform. Native padding and align-
ment constraints are observed. Several common structures, such
as RGBtuple, are declared in PITypes.h.

VPoint, VRect Like Mac OS Point and Rect structures, but have 32–bit coordi-
nates.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 18

The plug–in module interface

A plug–in host calls a plug–in module in response to a user action. Generally,
executing a user command results in a series of calls from the plug–in host to
the plug–in module. All calls from the host to the module are done through
a single entry point, the main() routine of the plug–in module. The
prototype for the main entry point is:

#if MSWindows
void ENTRYPOINT (

short selector,

void* pluginParamBlock,

long* pluginData,

short* result);

#else

pascal void main (

short selector,

Ptr pluginParamBlock,

long* pluginData,

short* result);

#endif

selector
The selector parameter indicates the type of operation requested by the
plug–in host. Selector=0 always means display an About box. Other selector
values are discussed in later chapters for each type of plug–in module.

A plug-in’s main function is typically a switch statement that dispatches the
pluginParamBlock, pluginData, and result parameters to different
handlers for each selector that the plug–in module responds to. The example
plug–in modules show one style of dispatching to selector handlers.

pluginParamBlock
The pluginParamBlock parameter points to a large structure that is used to
pass information back and forth between the host and the plug–in module.
The fields of this parameter block changes depending on the type of plug–in
module. Refer to chapters 6 through 9 for descriptions of the parameter
block for each type of plug–in module.

pluginData
The pluginData parameter points to a long integer (32–bit value), which
Photoshop maintains for the plug–in module across invocations.

One standard use for this field is to store a handle to a block of memory
used to reference the plug–in’s “global” data. It will be zero the first time
the plug–in module is called.

result
The result parameter points to a short integer (16–bit value). Each time a
plug–in module is called, it must set result; do not count on the result
parameter containing a valid value when called. Returning a value of zero
indicates that no error occurred within the plug–in module’s code.

Error reporting
Returning a non–zero number in the result field indicates to the plug–in
host that some sort of error occurred. It may also indicate that the user
cancelled the operation somewhere during execution of the plug–in.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 19

Returning a positive value indicates the plug–in encountered an error and an
appropriate error message has already been displayed to the user. If the user
cancels the operation in any way, the plug–in should return a positive value
without reporting an error to the user.

Returning a negative value means that the plug–in encountered an error,
and the plug–in host should display its standard error dialog.

Table 2-4 shows the common error code ranges used by the different types
of plug–in modules, as well as some commonly used examples and their
values. Refer to the header files and specific chapter for the plug-in type
you’re designing for more details.

The plug-in may also return Mac and Windows operating system error codes
to the plug–in host. In PITypes.h, several common Mac OS error codes are
defined for use in Windows, simplifying cross–platform programming.

About boxes
All plug–ins should respond to a selector value of zero, which means display
an About box. The about box may be of any design. To fit in smoothly with
the Adobe Photoshop interface, follow these conventions:

1. The About box should be centered on the main (menu bar) screen, with
1/3 of the remaining space above the dialog, and 2/3 below. Be sure to
take into account the menu bar height. System 7 or later of the Mac OS
has a flag in the 'DLOG' resource that automatically positions the about
box in the window.

2. The window should not have an OK button, but should instead respond
to a click anywhere in its dialog.

3. It should respond to the return and enter keys.

Note: Adobe PhotoDeluxe has very specific dialog design
requirements. A sample About box is available in the
Photoshop–WDEF folder in the Examples folder.

The parameter block at selectorAbout
On the about selector call, the parameter block for the module is not passed.
Instead, in its place, a structure of type AboutRecord is passed. This is

Table 2-4: Error codes

Module Error Range Definitions Value

Color Picker –30800 to –30899 pickerBadParameters -30800

Import –30000 to –30099 acquireBadParameters
acquireNoScanner
acquireScanner

-30000
-30001
-30002

Export –30200 to –30299 exportBadParameters
exportBadMode

-30200
-30201

Filter –30100 to –30199 filterBadParameters
filterBadMode

-30100
-30101

Format –30500 to –30599 formatBadParameters
formatBadMode

-30500
-30501

Selection –30700 to –30799 selectionBadParameters
selectionBadMode

-30700
-30701

General Errors –30900 to –30999 errPlugInHostInsufficient
errPlugInPropertyUndefined
errHostDoesNotSupportColStep
errInvalidsamplePoint

-30900
-30901
-30902
-30903

!!

2. Plug-in Basics

Adobe Photoshop Software Development Kit 20

described in PIAbout.h. Because of this, access to any of the standard
parameters for the module during selectorAbout is unavailable.

Multiple plug-ins and selectorAbout
When Photoshop attempts to bring up the about box for a plug–in module,
it makes the about box selector call to each of the plug–ins in the same file.
If there is more than one plug–in compiled in a file, only one of them should
respond to the call by displaying an about box that describes all the plug-ins.
All other plug–in modules should ignore the call and return to the plug–in
host.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 21

Memory management strategies

In most cases, the first action a plug–in takes is to negotiate with Photoshop
for memory. Other plug–in hosts may not support the same memory options.

The negotiation begins when Photoshop sets the maxData or maxSpace field
of the pluginParamBlock to indicate the maximum number of bytes it
would be able to free up. The plug–in then has the option of reducing this
number. Reserving memory by reducing maxData can speed up most plug-in
operations. Requesting the maximum amount of memory for the plug-in
requires Photoshop to move all current image data out of of RAM and into
its virtual memory file. This allows the plug-in to run from RAM as much as
possible.

If your plug–in’s memory requirements are small—if it can process the image
data in pieces, or if the image size is small—only reduce maxData/maxSpace
to those specific requirements. This permits many plug–in operations to be
performed entirely in RAM with a minimum of swapping. In many cases, your
plug–in only needs a small amount of memory, but will operate faster if
given more. Experiment to find a suitable balance.

One strategy is to divide maxData/maxSpace by 2, thus allocating half the
memory to Photoshop and half to the plug–in. Another good strategy is to
reduce maxData/maxSpace to zero, and then use the Buffer and Handle
suites to allocate memory as needed. Often, this is most efficient from
Photoshop’s viewpoint, but requires additional programming.

If performance is a concern, you may want to perform quantitative tests of
your plug–in module to compare different memory strategies.

maxSpace vs. bufferSpace on the Macintosh
Photoshop has a couple different mechanisms for reserving memory. There
are also mechanisms for reporting available memory. Together, they allow
you to calculate what sort of processing parameters you will need to use,
such as chunk sizes, etc. This section is designed to detail two specific fields
that indicate available space: maxSpace and bufferSpace, from the filter
parameter block.

The amount of free space available in the Macintosh heap is returned in
maxSpace. Photoshop uses its own linear bank code when the available
memory goes over a threshold, generally around 32 mb. This is done because
the Mac Memory manager gets very inefficient with large heaps.

Photoshop sets aside an area of memory, called the linear bank. The Mac OS
sets aside an area of memory for the application, called the heap space.
BufferSpaceProc() in the Buffer suite, and bufferSpace in the
filterParamBlock return the amount of space available in the linear bank,
or the heap space if the linear bank is not present. This memory is available
via the Buffer suite.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 22

bufferSpace and maxSpace will be about the same up to 32 mb (they both
reserve different amounts of padding) and then maxSpace will step back.
bufferSpace will also step back, but grow as memory is available.

Neither maxSpace nor bufferSpace guarantee continguous space.

Table 2-5: Photoshop memory and maxData/maxSpace

Photoshop Memory maxData/maxSpace

1 mb 4 mb

16 mb 6 mb

26 mb 14 mb

31 mb 19 mb

32 mb+ 9 mb

2. Plug-in Basics

Adobe Photoshop Software Development Kit 23

Creating plug–in modules for the Mac OS

Photoshop plug–in modules for the Macintosh can be created using any of
the popular C compilers including Apple MPW, Symantec C++, or Metrowerks
CodeWarrior. The example plug–ins in this toolkit include both MPW
makefiles and CodeWarrior project files.

You can create plug–in modules for 680x0, PowerPC, or both (fat binaries). If
your plug–in module uses floating point arithmetic, you can create plug–in
code that is optimized for Macintosh systems with floating–point units (FPU).
If you desire, you can also provide a version of your code that does not
require an FPU, and Photoshop will execute the proper version depending on
whether an FPU is present.

Plug–in modules use code resources on 680x0 Macs and shared libraries (the
code fragment manager) on PowerPC systems.

When the user performs an action that causes a plug–in module to be called,
Photoshop opens the resource fork of the file the module resides in, loads
the code resource (68k) or shared library (PowerPC) into memory. On 680x0
systems, the entry point is assumed as the first byte of the resource.

Hardware and system software configuration
Adobe Photoshop plug–ins assume that the Macintosh has 128K or larger
ROMs, System 6.0.2 or later. Photoshop 3.0 and later requires System 7.

Many users still work with older versions of Photoshop. If you choose to
support versions of Photoshop prior to 3.0, your plug–in may be called from
machines as old as the Mac Plus. You should use the Gestalt routines to
check for 68020 or 68030 processors, math co–processors, 256K ROMs, and
Color or 32–Bit QuickDraw if they are required.

If your plug-in only runs with Photoshop 3.0, you can assume the features
are present that are requirements of Photoshop 3.0: a 68020 or better, Color
QuickDraw, and 32–Bit QuickDraw.

Resources in a plug–in module
Besides 680x0 code resources, a plug–in module may include a variety of
resources for the plug–in’s user interface, stored preferences, and any other
useful resource.

Every plug–in module must include either a complex data structure stored in
a PiPL resource or a simpler structure in a PiMI resource. These resources
provide information that Adobe Photoshop uses to identify plug–ins when
Photoshop is first launched and when a plug–in is executed by the user. All
the examples in this toolkit build both resources for downward- and cross-
application compatibility.

PiMIs, PiPLs and other resources are discussed in detail in the document
Plug-in Resource Guide.pdf which is included with this kit. Plug-in Resource
Guide.pdf discusses cross-application plug-in development and describes the
different file and code resources recognized by Photoshop and other host
applications.

Global variables
Most Macintosh applications reference global variables as negative offsets
from register A5 on 680x0 processors. If a plug–in module declares any
global variables, their location would overlap Photoshop’s global variable
space. Using them generally results in a quick and spectacular crash.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 24

Often you can end up using them without even realizing it. Explicit literal
string assignments, for instance, take up global space when first initialized.
One way around this is to store strings in a 'STR ' or 'STR#' resource and
access them using the Macintosh toolbox calls GetString() and
GetIndString().

Metrowerks CodeWarrior A4-globals
Code resources can avoid the A5 problem by using the A4 register in place of
the A5 register. The Metrowerks CodeWarrior C compiler contains header
files (SetupA4.h, A4Stuff.h) and pre–compiled libraries designed for A4
register usage. The examples in this toolkit all initialize and set-up the A4
register, so you can refer to them for more detail.

If you are building a plug–in module to run on 680x0 systems you should not
declare any global variables in your plug–in module code unless you
specifically use the A4 support provided with your compiler. Refer to your
compiler documentation for more details.

Plug–in modules that are compiled native for PowerPC systems do not have
this limitation, since they use the code fragment manager (CFM) instead of
code resources. If your plug–in module only runs on PowerPC, you may safely
declare and use global variables. Refer to the appropriate Apple
documentation for more information.

If you need global data in your 680x0 compatible plug–in module, one
alternative to using A4 is to dynamically allocate a new block of memory at
initialization time using the Photoshop Handle or Buffer suite routines, and
return this to Photoshop in the data parameter. Photoshop will save this
reference and return it to your plug–in each time it is called subsequently.
The example plug-ins in this toolkit all use this approach.

Segmentation
Macintosh 680x0 applications have a special code segment called the jump
table. When a routine in one segment calls a routine in another segment, it
actually calls a small glue routine in the jump table segment. This glue
routine loads the routine’s segment into memory if needed, and jumps to its
actual location.

The jump table is accessed using positive offsets from register A5. Since
Photoshop is already using A5 for its jump table, the plug–in cannot use a
jump table in the standard way.

The simplest way to solve this is to link all the plug–in’s code into a single
segment. This usually requires setting optional compilation/link flags in your
development environment if the resultant segment exceeds 32k.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 25

Metrowerks CodeWarrior link flags for plug-ins over 32k
For over 32k length plug-ins under Metrowerks CodeWarrior, enable these
processor preferences: code model: large; far data; far method tables; and far string
constants:

Enable the linker preference link single segment:

Installing plug–in modules
To install a plug–in module, drag the module’s icon to either the same folder
as the Adobe Photoshop application, or the plug–ins folder designated in
your Photoshop preferences file. Photoshop 3.0 searches for plug–ins in the
application folder, and throughout the tree of folders underneath the
designated plug–ins folder. Aliases are followed during the search process.
Folders with names beginning with “¬” (Option–L on the Macintosh
keyboard) are ignored.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 26

What’s in this toolkit for the Mac OS?
This toolkit contains documentation, and literature on the Adobe Developers
Association, and examples specifically written for the Mac OS.

Examples
The plug–ins included with this toolkit can be built using Apple MPW or
Metrowerks CodeWarrior. They have been tested against the latest
Metrowerks CodeWarrior. Version notes are in the SDK Readme file.

Sources.c and Headers.h
PIGeneral.h and PITypes.h contain definitions useful across multiple
plug–ins. PIAbout.h contains the information for the about box call for all
plug–in types. PIActions.h contains the information for the Actions suite
callbacks for all plug–in types. PIAcquire.h, PIExport.h, PIFilter.h,
PIFormat.h, PIPicker.h and PISelection.h are the header files for the
respective types of plug–in modules.

Utilities
DialogUtilities.c and DialogUtilities.h provide general support for
doing things with dialogs including creating movable modal dialogs which
make appropriate calls back to the host to update windows, as well as simple
support for putting data back into the dialog for display, such as
StuffNumber() and StuffText().

PIUtilities.c and PIUtilities.h contain various routines and macros to
make it easier to use the host callbacks. The macros make assumptions about
how global variables are being handled and declared; refer to the example
source code to see how PIUtilities is used.

Documentation
Photoshop SDK Guide.pdf is this guide. Plug-in Resource Guide.pdf is a
reference tool for developing Photoshop plug-ins that work with all of
Adobe’s major graphical applications. It also includes information on host
applications and their use of different code and file resources such as PiMI
and PiPL resources.

Developer Services
The Developer Services directory provides information and an application for
the Adobe Developers Association, which provides not only support for this
and the other Adobe toolkits, but marketing and business resources for third
party developers.

Fat and PPC-only plug-ins and the cfrg resource
Adobe Photoshop 4.0 uses the PiPL resource (see Plug-in Resource Guide.pdf)
to identify the type of processor for which the plug-in module was compiled:
680x0, PowerPC or both. The Macintosh OS uses a different resource, 'cfrg',
to indicate the presence of code for the PowerPC microprocessor. The cfrg
resource is automatically generated by the Metrowerks CodeWarrior
development environment.

Normally, this is not a problem. It could become a problem, however, if you
or a user of your plug–in run an application to reduce a fat binary (680x0
and PowerPC) plug–in to 680x0 only. Fat stripper applications search for
cfrg resources and when found remove any PowerPC code and the cfrg
resource. These applications are not aware of the PiPL resource; the
resulting 680x0–only plug–in will still indicate that it contains PowerPC code.

After you create a PowerPC plug–in module, you should manually remove
the cfrg resource with a resource editor to prevent someone from
accidently deleting the PowerPC code by stripping.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 27

You should always be sure to specify the correct PiPL code descriptors when
building a plug–in. All of the plug–ins in the examples folder have PiPL
resources with both code descriptors, as follows:

#if Macintosh
Code68K { '8BIF', $$ID },

CodePowerPC { 0, 0, "" },

#endif

If your plug-in module includes code only for the 680x0 or only for the
PowerPC, remove the other code descriptor before compiling the .r file. For
instance, a PowerPC–only plug–in module’s PiPL source file would have
these lines in the PiPL descriptor:

#if Macintosh
CodePowerPC { 0, 0, "" },

#endif

Building your plug-in
Building your plug-ins with CodeWarrior is a two-step process. Open and
build the 680x0 project to create the .rsrc and 68k code for the plug-in.
Then, you must open and build the PowerPC project to create the actual
plug-in module and roll the 68k and PPC resources together in the plug-in.

If you do not build the 680x0 project, the initial .rsrc resource file with the
appropriate dialog and PiPL resources will not be built. If you do not build
the PowerPC project, the actual plug-in file will not be created. To build
from one project file (68k-only) see the following information for
CodeWarrior Bronze users.

Building 680x0–only plug-ins
The sample CodeWarrior project files in this toolkit are designed for
CodeWarrior Gold to create “fat” binaries. If you use CodeWarrior to build
680x0–only plug–in modules, you should make two changes to the sample
files.

First, you should change the Project preferences to output a plug–in file with
the correct file name, creator, and type. (The 68K project files included in
the toolkit output resource files which are then used by the PPC project files,
as explained above.)

For example, the 680x0 project in the Filters sample is set to output a code
resource named “Dissolve.rsrc” with creator 'Doug' and type 'RSRC'. You
should change these to “Dissolve”, '8BIM', and '8BFM' respectively.

Second, you should recompile the PiPL resource after removing the PowerPC
code descriptor. The PiPL statement:

#if Macintosh
Code68K { '8BIF', $$ID },

CodePowerPC { 0, 0, "" },

#endif

should be changed to:

#if Macintosh
Code68K { '8BIF', $$ID },

#endif

See Plug-in Resource Guide.pdf for more information about PiPL resources.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 28

Debugging code resources in Metrowerks CodeWarrior
To use the Metrowerks debugger with Photoshop 680x0 plug-ins:

1. Drag the .SYM file out of the development directory where it is linked
to the .rsrc file. The desktop is fine.

2. Double-click the .SYM file to run the Metrowerks Debugger.

3. When it asks “Where is my resource?” select your plug-in in the Photo-
shop plug-in folder. Even if your plug-in is an alias, select the one that
is in Photoshop’s Plug-ins folder, not the one that may be sitting in
your development directory (next to your .rsrc file).

4. Drag the Photoshop icon on top of the Metrowerks Debugger to link
Photoshop to the debugger.

5. Double-click the Photoshop icon to launch the application.

6. Set your breakpoints in your .SYM window in the debugger.

7. Bring the Photoshop debugger window to the front and choose Run.

8. In Photoshop, run your plug-in. You should hit your break-point and
go back to the debugger automatically.

Note:
Your variables may not read their true values correctly as you step
through your code. They may be valid only at your breakpoints.!!

2. Plug-in Basics

Adobe Photoshop Software Development Kit 29

Creating plug–in modules for Windows

Photoshop plug–ins for Windows can be created using Microsoft ® Visual
C++, version 2.0 or later (which requires Windows NT version 3.5 or later, or
Windows 95). This toolkit has been checked under Visual C++ 4.1 and
Windows 95.

When the user performs an action that causes a plug–in module to be called,
Photoshop does a LoadLibrary call to load the module into memory. For
each PiPL resource found in the file, Photoshop calls
GetProcAddress(routineName) where routineName is the name associated
with the PIWin32X86CodeProperty property to get the routine’s address.

If the file contains only PiMI resources and no PiPLs, Photoshop does a
GetProcAddress for each PiMI resource found in the file looking for the
entry point ENTRYPOINT% where % is the integer nameID of the PiMI
resource to get the routine’s address.

Hardware and software configuration
Adobe Photoshop plug–ins may assume Windows 3.1 in standard or
enhanced mode, Windows NT 3.5 or later, or Windows 95. Adobe Photoshop
requires at least an 80386 processor.

For development, you must have Windows NT or Windows 95. You cannot
create Windows plug–ins with this toolkit under Windows 3.1.

Structure packing
Structure packing for all plug–in parameter blocks, FilterRecord,
FormatRecord, AcquireRecord, ExportRecord, SelectionRecord,
PickerRecord and AboutRecord, should be the default for the target
system. The Info structures such as FilterInfo and FormatInfo must be
packed to byte boundaries. The PiMI resource should be byte aligned.

These packing changes are reflected in the appropriate header files using
#pragma pack(1) to set byte packing and #pragma pack() to restore
default packing. These pragmas work only on Microsoft Visual C++ and
Windows 32 bit SDK environment tools. If you are using a different compiler,
such as Symantec C++ or Borland C++, you must modify the header files with
appropriate pragmas. The Borland #pragmas still appear in the header files
as they did in the 16–bit plug–in kit, but are untested.

Resources
The notion of resources is central to the Macintosh, and this carries through
to Photoshop. The PiPL resource (described in Plug-in Resource Guide.pdf)
introduced with Photoshop 3.0 and the older PiMI resource are declared in
Macintosh Rez format in the file PIGeneral.r.

Windows has a similar notion of resources, although they are not the same
as on the Macintosh.

Creating or modifying PiPL resources in Windows
Even under Windows, you are encouraged to create and edit PiPL resources
in the Macintosh format, and then use the CNVTPIPL.EXE utility. For a
complete discussion of creating or modifying PiPL resources in Windows-
only development environments, refer to the Plug-in Resource Guide.pdf.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 30

Calling a Windows plug–in
You need a DLLInit() function prototyped as

BOOL APIENTRY DLLInit(HANDLE, DWORD, LPVOID);

The actual name of this entry point is provided to the linker by the

PSDLLENTRY=DLLInit@12

assignment in the sample makefiles.

The way that messages are packed into wParam and lParam changed for
Win32. You will need to insure that your window procedures extract the
appropriate information correctly. A new header file WinUtil.h defines all
the Win32 message crackers for cross–compilation or you may simply change
your extractions to the Win32 versions. See the Microsoft document, Win32
Application Programming Interface: An Overview for more information on Win32
message parameter packing.

Be sure that the definitions for your Windows callback functions such as
dialog box functions conform to the Win32 model. A common problem is to
use of WORD wParam for callback functions. The plug–in examples use

BOOL WINAPI MyDlgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

which will work correctly for both 16 and 32 bit compilation.

Installing plug–in modules
To install a plug–in module, copy the .8B* files into the directory referred to
in the Photoshop INI file with the profile string PLUGINDIRECTORY.

When Adobe Photoshop first executes, it searches the files in the
PLUGINDIRECTORY, looking for plug–in modules. When it finds a plug–in, it
checks its version number. If the version is supported, it adds name of the
plug–in to the appropriate menu or to the list of extensions to be executed.

Each kind of plug–in module has its own 4–byte resource type. For example,
acquisition modules have the code 8BAM.

The actual resource type must be specified as _8BAM in your resource files to
avoid a syntax error caused by the first character being a number.

For example, Adobe Photoshop searches for Import modules by examining
the resources of all files in PLUGINDIRECTORY with file extension .8B* for
resource type _8BAM. For each 8BAM, the integer value which uniquely
identifies the resource, nameID,must be consecutively numbered starting at
1.

Finding the plug-in directory in Windows
To find the plug-in directory in Windows:

1. Do a registry search for the Photoshp.exe key.

2. The directory that Photoshop is in will have the folder Prefs which
contains the Photoshop INI file.

3. Open the Photoshop INI file and do a search for the PLUGINDIRECTORY
tag.

4. If the tag exists, it will return the path to the plug-in folder. If the tag
does not exist, you can assume the plug-in folder is the default: in the
same folder with the Photoshop executable under the name Plugins.

2. Plug-in Basics

Adobe Photoshop Software Development Kit 31

What’s in this toolkit for Windows?
This toolkit contains documentation, and literature on the Adobe Developers
Association, and examples specifically written for Windows.

Examples
The sample plug–ins included with this toolkit can be built using Visual C++
2.0 or Visual C++ 4.0. There are project files for both compilers. The Visual
C++ 4.0 project file is the same name as the example with “40” after it (such
as Dissolve40.mdp).

Sources.c and Headers.h
WinUtils.c provides support for some Mac Toolbox functions used in
PIUtilities.c, including memory management functions such as
NewHandle(). The header file PITypes.h contains definitions for common
Mac result codes, data types, and structures. These simplify writing plug–in
modules for both the Mac OS and Windows. PIAbout.h contains the
information for the about box call for all plug–in types. PIActions.h
contains the information for the Actions suite callbacks for all plug–in types.
PIAcquire.h, PIExport.h, PIExtension.h, PIFilter.h, PIFormat.h,
PIPicker.h and PISelection.h are the header files for the respective
types of plug–in modules.

Utilities
WinDialogUtils.c and WinDialogUtils.h provide general support for
doing things with dialogs including creating movable modal dialogs which
make appropriate calls back to the host to update windows, as well as simple
support for putting data back into the dialog for display, such as
StuffNumber() and StuffText().

PIUtilities.c and PIUtilities.h contain various routines and macros to
make it easier to use the host callbacks. The macros make assumptions about
how global variables are being handled and declared; refer to the sample
source code to see how PIUtilities is used.

The Windows version of this toolkit also includes two handy utility
programs: MACTODOS.EXE and CNVTPIPL.EXE.

MACTODOS.EXE converts Macintosh text files into PC text files by changing
the line ending characters.

CNVTPIPL.EXE converts PiPL resources in Macintosh Rez format (ASCII
format which conforms to the PiPL resource template) into the Windows
PiPL format. Refer to Plug-in Resource Guide.pdf for more information about
PiPL resources.

To use CNVTPIPL.EXE, you need to pre–process your plugin.r file using the
standard C pre–processor and pipe the output through CNVTPIPL.EXE. The
example makefiles illustrate the process.

Documentation
Photoshop SDK Guide.pdf is this guide. Plug-in Resource Guide.pdf is a reference
tool for developing Photoshop plug-ins that work with all of Adobe’s major
graphical applications. It also includes information on host applications and
their use of different code and file resources such as PiMI and PiPL
resources.

Developer Services
The Developer Services directory provides information and an application for
the Adobe Developers Association, which provides not only support for this
and the other Adobe toolkits, but marketing and business resources for third
party developers.

Adobe Photoshop Software Development Kit 32

33. Plug-in Host Callbacks

Plug–in hosts execute plug–in modules by calling the module’s main entry
point, passing a selector, parameter block, and pointer to the module’s data.

Plug–in modules can make calls back to the plug–in host by means of
callback function pointers that are provided in the plug–in’s parameter
block. These callbacks provide specific services that your plug–in module may
need. This chapter discusses these callbacks and how to use them.

Callbacks fall into two categories: callback pointers that are hard–coded into
the parameter block structures (direct callbacks), and callbacks that are
accessed through callback suites.

Some of these callback routines are new and may not be provided by other
plug–in hosts, including earlier versions of Photoshop. If a host does not
provide a particular routine or suite, the relevant pointer will be NULL.

Photoshop 3.0 and above includes an error code to indicate that the host
does not supply necessary functionality:

#define errPlugInHostInsufficient -30900

Under the Mac OS, callback functions use Pascal calling conventions;
Windows callbacks use C calling conventions. In the following function
prototypes, this is indicated by the macro “MACPASCAL”.

A complete list of callback function declarations can be found in
PIGeneral.h and PIActions.h.

Note: If a host does not provide a particular routine or suite, the
relevant pointer in the parameter block will be NULL.!!

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 33

Direct callbacks

These callbacks are found directly in the various plug–in parameter block
structures.

AdvanceStateProc()

MACPASCAL OSErr (*AdvanceStateProc) (void);

This callback provides a more efficient way for plug–ins to interact with a
host. The plug–in asks the host to update, “advance the state of,” the various
data structures used for communicating between the host and the plug–in.

Use AdvanceStateProc where you expect your plug–in to be called
repeatedly. An example is a scanner module that scans and delivers images
in chunks. When working with large images (larger than available RAM),
plug–ins should process the image in pieces.

Without AdvanceStateProc, your plug-in is called from, and returns to, the
host for each chunk of data. Each repeated call must go through your
plug–in’s main() entry point.

With AdvanceStateProc, your plug–in can complete its general operation
within a single call from the plug–in host. This does not include setup
interaction with the user, or normal clean-up.

The plug–in host returns noErr if successful and a non–zero error code if
something went wrong. If an error is returned, you should not call
AdvanceStateProc again, but instead return the error code to the plug–in
host back through main().

The precise behavior of this callback varies depending on what type of
plug–in module is executing. Refer to chapters 6–9 on specific plug–in types
for information on how to use this callback.

The AdvanceStateProc callback is available in Adobe Photoshop version 3.0
and later.

AdvanceState, Buffers, Proxies, and DisplayPixels
Proxies really put AdvanceState to work, because if you allow your user to
drag around your image, they’re constantly updating and asking for more
image data. To keep your lag time down, and the update watch from
appearing often in DisplayPixels, keep these items in mind:

1. AdvanceState buffers as much of your image as it can, so make your
first call for your inRect as large as you can. In subsequent calls, as long
as you’re within inRect, the image data will come right out of the
buffer.

2. As soon as you set inRect=0,0,0,0 or you call for one pixel outside of
the buffer area (the first calling rect you passed) AdvanceState will
flush the buffer and load new image data from the VM system.

AdvanceState error codes
If the user cancels by pressing Escape in Windows or Command-period on
Macintosh, AdvanceState will return userCanceledErr (-128) and inData
and outData will both return NULL, no matter what inRect or outRect is
requested.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 34

ColorServicesProc()

MACPASCAL OSErr (*ColorServicesProc) (ColorServicesInfo *info);

This callback provides your plug–in module access to common color services
within Photoshop. It can be used to perform one of four operations:

1. choose a color using the user’s preferred color picker (Photoshop’s, the
Systems, or any Color Picker plug-in module),

2. convert color values from one color space to another,

3. return the current sample point,

4. return either the foreground or background color.

Refer to Appendix A for the ColorServicesInfo structure. Refer to Chapter
4 for the Color Picker plug-in module type.

Note: ColorServices has a bug in versions of Photoshop prior to
3.0.4. When converting from one color space to another they return
error paramErr=-50 and convert the requested color to RGB,
regardless of the target color space.

ColorServices also may have errors converting between any color
space and Lab, XYZ, or HSL. RGB, CMYK, and HSB have been proven
and are correct, but we caution you check the numbers on the
others before relying on them.

DisplayPixelsProc()

MACPASCAL OSErr (*DisplayPixelsProc) (const PSPixelMap *source,
const VRect *srcRect, int32 dstRow, int32 dstCol,

unsigned32 platformContext);

This callback routine is used to display pixels in various image modes. It takes
a structure describing a block of pixels to display.

The routine will do the appropriate color space conversion and copy the
results to the screen with dithering. It will leave the original data intact. If it
is successful, it will return noErr. Non–success is generally due to
unsupported color modes.

To suppress the watch cursor during updates, see propWatchSuspension in
the Properties suite.

source
The source parameter points to a PSPixelMap structure containing the pixels
to be displayed. This structure is documented in Appendix A.

srcRect
The srcRect parameter points to a VRect that indicates the rectangle of the
source pixel map to display.

dstRow / dstCol
The dstRow and dstCol parameters provide the coordinates of the top-left
destination pixel in the current port (i.e., the destination pixel which will
correspond to the top-left pixel in srcRect). The display routines do not
scale the pixels, so specifying the top left corner is sufficient to specify the
destination.

!!

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 35

platformContext
The platformContext parameter is not used under the Mac OS since the display
routines simply assume that the target is the current port. On Windows,
platformContext should be the target hDC, cast to an unsigned32.

HostProc()

MACPASCAL void HostProc(int16 selector, int32 * data);

This callback contains a pointer to a host–defined function. Plug–ins should
verify the host‘s signature (in the parameter block’s hostSig field) before
calling this procedure. This provides a mechanism for hosts to extend the
plug–in interface to support application specific features.

Adobe Photoshop version 3.0.4 and later does not perform any tasks in this
callback. Earlier versions of Photoshop used Host for private communication
between Photoshop and some plug–in modules.

ProcessEventProc()

MACPASCAL void (*ProcessEventProc) (EventRecord *event);

This callback is only useful under the Mac OS; ProcessEvent in the Windows
version of Adobe Photoshop does nothing.

Adobe Photoshop provides this callback function to allow Macintosh plug–in
modules to pass standard EventRecord pointers to Photoshop. For example,
when a plug–in receives a deactivate event for one of Photoshop’s windows,
it should pass this event on to Photoshop.

This routine can also be used to force Photoshop to update its own windows
by passing relevant update and NULL events.

SpaceProc()

MACPASCAL int32 SpaceProc (void);

This callback examines imageMode, imageSize, depth, and planes and
returns the number of bytes of scratch disk space required to hold the
image. Returns -1 if the values are not valid.

This callback is only available to Acquire plug–in modules.

TestAbortProc()

MACPASCAL Boolean (*TestAbortProc) ();

Your plug–in should call this function several times a second during long
operations to allow the user to abort the operation. If the function returns
TRUE, the operations should be aborted. As a side effect, this changes the
cursor to a watch and moves the watch hands periodically.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 36

UpdateProgressProc()

MACPASCAL void (*UpdateProgressProc) (long done, long total);

Your plug–in may call this two–argument procedure periodically to update a
progress indicator. The first parameter is the number of operations
completed; the second is the total number of operations.

This procedure should only be called in the actual main operation of the
plug–in, not while long operations are executing during the preliminary user
interface.

Photoshop automatically suppresses display of the progress bar during short
operations.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 37

Callback suites

The rest of the callback routines are organized into “suites,” collections of
related routines which implement a particular functionality. The suites are
described by a pointer to a record containing:

1. a 2 byte version number for the suite,

2. a 2 byte count of the number of routines in the suite,

3. a series of function pointers for the callback routines.

Before calling a callback defined in the suite, the plug–in needs to check the
following conditions:

1. The suite pointer must not be NULL.

2. The suite version number must match the version number the plug–in
wishes to use. (Adobe does not expect to change suite version numbers
often.)

3. The number of routines defined in the suite must be great enough to
include the routine of interest.

4. The pointer for the routine of interest must not be NULL.

If these conditions are not met, your plug–in module should put up an error
dialog to alert the user and return a positive result code.

The suites that are currently implemented by Adobe Photoshop 4.0 are:

• the Buffer suite

• the Channel Ports suite

• the Descriptor suite

• the Handle suite

• the Image Services suite

• the Property suite

• the Pseudo–Resource suite

These are described next.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 38

Buffer suite

Current version: 2; Adobe Photoshop: 4.0; Routines: 5.

The Buffer suite provides an alternative to the memory management
functions available in previous versions of Photoshop’s plug–in specification.
It provides a set of routines to request that the host allocate and dispose of
memory out of a pool which it manages.

Photoshop 2.5, for example, goes to a fair amount of trouble to balance the
need for buffers of various sizes against the space needed for the tiles in its
virtual memory system. Growing the space needed for buffers will result in
Photoshop shrinking the number of tiles it keeps in memory.

Previous versions of the plug–in specification provide a simple mechanism
for interacting with Photoshop’s virtual memory system by letting a plug–in
specify a certain amount of memory which the host should reserve for the
plug–in.

This approach has two problems. First, the memory is reserved throughout
the execution of the plug–in. Second, the plug–in may still run up against
limitations imposed by the host. For example, Photoshop 2.5 will, in large
memory configurations, allocate most of memory at startup via a NewPtr
call, and this memory will never be available to the plug–in other than
through the Buffer suite. Under Windows, Photoshop’s memory scheme is
designed so that it allocates just enough memory to prevent Windows’
virtual memory manager from kicking in.

If a plug–in module allocates lots of memory using GlobalAlloc (Windows)
or NewPtr (Mac OS), this scheme will be defeated and Photoshop will begin
double–swapping, thereby degrading performance. Using the Buffer suite, a
plug–in can avoid some of the memory accounting. This simplifies the
prepare phase for Acquire, Filter, and Format plug–ins.

For most types of plug–ins, buffer allocations can be delayed until they are
actually needed. Unfortunately, Export modules must track the buffer for
the data requested from the host even though the host allocates the buffer.
This means that the Buffer suite routines do not provide much help for
Export modules.

BufferSpaceProc()

MACPASCAL int32 (*BufferSpaceProc) (void);

This routine returns the amount of space available for buffers. This space
may be fragmented so an attempt to allocate all of the space as a single
buffer may fail.

AllocateBufferProc()

MACPASCAL OSErr (*AllocateBufferProc) (int32 size, BufferID *buffer);

Buffers are identified by pointers to an opaque type called BufferID.

This routine sets buffer to be the ID for a buffer of the requested size. It
returns noErr if allocation is successful, and an error code if allocation is
unsuccessful. Buffer allocation is more likely to fail during phases where
other blocks of memory are locked down for the plug–in’s benefit, such as
the continue calls to Filter and Export plug–ins.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 39

FreeBufferProc()

MACPASCAL void (*FreeBufferProc) (BufferID buffer);

This routine releases the storage associated with a buffer. Use of the buffer’s
ID after calling FreeBufferProc will probably result in glorious crashes.

LockBufferProc()

MACPASCAL Ptr (*LockBufferProc) (BufferID buffer, Boolean moveHigh);

This locks the buffer so that it won’t move in memory and returns a pointer
to the beginning of the buffer. Under the Mac OS, the moveHigh flag
indicates whether you want the memory blocked moved to the high end of
memory to avoid fragmentation. The moveHigh flag has no effect with
Windows.

UnlockBufferProc()

MACPASCAL void (*UnlockBufferProc) (BufferID buffer);

This is the corresponding routine to unlock a buffer. Buffer locking uses a
reference counting scheme; a buffer may be locked multiple times and only
the final balancing unlock call will actually unlock it.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 40

Channel Ports suite

Current version: 1; Adobe Photoshop: 4.0; Routines: 3.

Channel Ports are access points for reading and writing data from
Photoshop’s internal selection data structures. There are two types of ports:
read ports and write ports. You can retrieve a read port corresponding to a
write port, but you cannot retrieve a write port from a read port. The API
does allow for write-only ports, although none exist as of this version of the
suite.

These structures are used to get at merged pixel information, such as
iterating through the merged data of the current layer or entire document,
to be able to return a selection or use for a preview proxy.

For more information, refer to chapter 9. Selection Modules, on page 32.

ReadPixelsProc()

MACPASCAL OSErr (*ReadPixelsProc) (ChannelReadPort port, const PSScaling
*scaling, const VRect *writeRect, const PixelMemoryDesc *destination, VRect
*wroteRect);

This routine takes a read port, a scaling, a destination rectangle, a
description of the memory to be written, and a pointer to another rectangle.

PSScaling
typedef struct PSScaling

{

VRect sourceRect;

VRect destinationRect;

}

PSScaling;

PSScaling is a rectangle in source space and a corresponding rectangle in
destination space. Equal rectangles result in direct mapping. Unequal
rectangles can be used to up- or down-sample. First, the destination space
rectangle is projected back to the source space. Then the overlap with the
given channel is copied to the specified memory.

PixelMemoryDesc
Memory is described using PixelMemoryDesc.

typedef struct PixelMemoryDesc
{

void * data;

int32 rowBits;

int32 colBits;

int32 bitOffset;

int32 depth;

} PixelMemoryDesc;

Table 3–1: PixelMemoryDesc structure

Type Field Description

void * data Coordinate of the first byte of the first pixel.

int32 rowBits Number of bits per row. Should be multiple of depth (and generally
should be a multiple of 8).

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 41

wroteRect
The last parameter to ReadPixels is a pointer to a rectangle that will be
filled in by the host with the rectangle in the destination space that was
actually written. If the plug-in reads an area that fits entirely within the
channel, this will match the destination rectangle. If the plug-in reads an
area that doesn’t fit entirely within the channel, the destination pixels
without corresponding source pixels won’t be written and wroteRect won’t
include them.

WriteBasePixelsProc()

MACPASCAL OSErr (*WriteBasePixelsProc) (ChannelWritePort port, const VRect
*writeRect, const PixelMemoryDesc *source);

This routine requires a write port, a rectangle to write, and a memory
descriptor indicating the source. It does not support scaling. Any pixels in
the rectangle that are beyond the bounds of the port won’t be written.

ReadPortForWritePortProc()

MACPASCAL OSErr (*ReadPortForWritePortProc) (ChannelReadPort *readPort,
ChannelWritePort writePort);

This routine returns the read port corresponding to a write port.

int32 colBits Number of bits per column. Should be multiple of depth. If depth=1
then set colBits=1.

int32 bitOffset Bit offset from the pointer value.

int32 depth Pixel depth.

Table 3–1: PixelMemoryDesc structure

Type Field Description

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 42

Descriptor suite

Current version: 1; Adobe Photoshop 4.0; Routines: 3.

The Descriptor suite provides all the callbacks related to scripting. It is
divided into two sub-suites located in its parameter block.

For more information, refer to chapter 10. Scripting Plug-ins, on page 118.

PIDescriptorParameters
typedef struct PIDescriptorParameters

{

int16 descriptorParametersVersion;

int16 playInfo;

int16 recordInfo;

PIDescriptorHandle descriptor;

WriteDescriptorProcs* writeDescriptorProcs;

ReadDescriptorProcs* readDescriptorProcs;

} PIDescriptorParameters;

ReadDescriptorProcs suite

Current version: 1; Adobe Photoshop: 4.0; Routines: 18.

The ReadDescriptorProcs suite is a sub-suite of the Descriptor suite that
handles all the Get functionality for scripting. Make sure to check its version
number and number of routines for compatibility before using its callbacks.

OpenReadDescriptorProc()

MACPASCAL PIReadDescriptor (*OpenReadDescriptorProc) (PIDescriptorHandle,
DescriptorKeyIDArray);

This routine creates a PIReadDescriptor structure from a
PIDescriptorParameters structure pointed to by PIDescriptorHandle. It
returns NULL if unable to allocate the memory for the new handle.

Table 3–2: PIDescriptorParameters structure

Type Field Description

int16 descriptorParametersVersion Minimum version required to process struc-
ture.

int16 playInfo Flags for playback:
0=plugInDialogOptional
1=plugInDialogRequired
2=plugInDialogNone

int16 recordInfo Flags for recording:
0=plugInDialogDontDisplay
1=plugInDialogDisplay
2=plugInDialogSilent

PIDescriptorHandle descriptor Handle to actual descriptor key/value pairs.

WriteDescriptorProcs* writeDescriptorProcs WriteDescriptorProcs sub-suite.

ReadDescriptorProcs* readDescriptorProcs ReadDescriptorProcs sub-suite.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 43

DescriptorKeyIDArray is a NULL-terminated array you may provide to
automatically track which keys have been returned. As each key is returned
(via GetKeyProc) it will be changed to null-string (“\0”) in the array. If you
get to CloseReadDescriptorProc and your array is not empty, that
indicates any keys you expected but were not given. You can subsequently
coerce missing information or request it in a dialog from the user (as long as
playInfo ≠ plugInDialogSilent).

CloseReadDescriptorProc()

MACPASCAL OSErr (*CloseReadDescriptorProc) (PIReadDescriptor);

This routine closes the PIReadDescriptor handle. It returns the most major
error that occurred during reading, if any.

GetAliasProc()

MACPASCAL OSErr (*GetAliasProc) (PIReadDescriptor descriptor, AliasHandle
*data);

This routine returns an alias from a descriptor structure.

GetBooleanProc()

MACPASCAL OSErr (*GetBooleanProc) (PIReadDescriptor descriptor, Boolean
*data);

This routine returns a Boolean value from a descriptor structure.

GetClassProc()

MACPASCAL OSErr (*GetClassProc) (PIReadDescriptor descriptor, DescType *type);

This routine returns a class description type from a descriptor structure.

GetCountProc()

MACPASCAL OSErr (*GetCountProc) (PIReadDescriptor descriptor, uint32 *count);

This routine returns an unsigned long integer with the number of descriptors
(the count) from a descriptor structure.

GetEnumeratedProc()

MACPASCAL OSErr (*GetFloatProc) (PIReadDescriptor descriptor, DescType *type);

This routine returns an enumerated description type from a descriptor
structure.

GetFloatProc()

MACPASCAL OSErr (*GetFloatProc) (PIReadDescriptor descriptor, double *data);

This routine returns a floating point number from a descriptor structure.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 44

GetIntegerProc()

MACPASCAL OSErr (*GetIntegerProc) (PIReadDescriptor descriptor, int32 *data);

This routine returns a long integer from a descriptor structure.

GetKeyProc()

MACPASCAL Boolean (*GetKeyProc) (PIReadDescriptor descriptor, DescriptorKeyID
*key, DescType *type, int16 *flags);

This routine returns a key ID, description type, and flags from a descriptor
structure.

GetSimpleReferenceProc()

MACPASCAL OSErr (*GetSimpleReferenceProc) (PIReadDescriptor descriptor,
PIDescriptorSimpleReference *ref);

This routine returns a basic reference from a descriptor structure:

PIDescriptorSimpleReference
typedef struct PIDescriptorSimpleReference

{

DescType desiredClass;

DescType keyForm;

struct _keyData

{

Str255 name;

uint32 index;

} keyData;

} PIDescriptorSimpleReference;

Table 3–3: Flags returned by GetKey

Name Value

actionSimpleParameter 0x00000000L

actionEnumeratedParameter 0x00002000L

actionListParameter 0x00004000L

actionOptionalParameter 0x00008000L

actionObjectParameter 0x80000000L

actionScopedParameter 0x40000000L

actionStringIDParameter 0x20000000L

Table 3–4: PIDescriptorSimpleReference structure

Type Field Description

DescType desiredClass Desired target class.

DescType keyForm Form for key ID.

_keyData keyData Key information. See table 3–5.

Table 3–5: _keyData structure

Type Field Description

Str255 name Key name.

uint32 index Unsigned long integer, index number.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 45

GetObjectProc()

MACPASCAL OSErr (*GetObjectProc) (PIReadDescriptor descriptor, DescType *type,
PIDescriptorHandle *data);

This routine returns a descriptor type and handle to corresponding object
from a descriptor structure.

GetPinnedFloatProc()

MACPASCAL OSErr (*GetPinnedFloatProc) (PIReadDescriptor descriptor, const
double *min, const double *max, double *floatNumber);

This routine returns a floating point number from a descriptor structure. If
the value is out of range, it returns coercedParam and stores either the
minimum or maximum value in floatNumber, whichever is closer.

GetPinnedIntegerProc()

MACPASCAL OSErr (*GetPinnedIntegerProc) (PIReadDescriptor descriptor, int32
min, int32 max, int32 *intNumber);

This routine returns a long integer from a descriptor structure. If the value is
out of range, it returns coercedParam and stores either the minimum or
maximum value in intNumber, whichever is closer.

GetPinnedUnitFloatProc()

MACPASCAL OSErr (*GetPinnedUnitFloatProc) (PIReadDescriptor descriptor, const
double *min, const double *max, DescriptorUnitID *units, double *floatNumber);

This routine returns a floating point unit-specified number from a descriptor
structure. If the value is out of range, it returns coercedParam and stores
either the minimum or maximum value in floatNumber, whichever is closer.

GetStringProc()

MACPASCAL OSErr (*GetStringProc) (PIReadDescriptor descriptor, Str255 *data);

This routine returns a string from a descriptor structure.

GetTextProc()

MACPASCAL OSErr (*GetTextProc) (PIReadDescriptor descriptor, Handle *data);

This routine returns a handle to text from a descriptor structure.

Table 3–6: Predefined units

Name Value

unitDistance '#Rlt'

unitAngle '#Ang'

unitDensity '#Rsl'

unitPixels '#Pxl'

unitPercent '#Prc'

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 46

GetUnitFloatProc()

MACPASCAL OSErr (*GetUnitFloatProc) (PIReadDescriptor descriptor,
DescriptorUnitID *units, double *floatNumber);

This routine returns a unit-based floating point number from a descriptor
structure.

WriteDescriptorProc suite

Current version: 1; Adobe Photoshop 4.0; Routines: 16.

The WriteDescriptorProc suite is a sub-suite of the Descriptor suite that handles
all the Put functionality for scripting. Make sure to check its version number
and number of routines for compatibility before using its callbacks.

OpenWriteDescriptorProc()

MACPASCAL PIWriteDescriptor (*OpenWriteDescriptorProc) (void);

This routine opens PIWriteDescriptor handle for access to its descriptor
array, or NULL if unable to allocate the memory for the handle.

CloseWriteDescriptorProc()

MACPASCAL OSErr (*CloseWriteDescriptorProc) (PIWriteDescriptor descriptor,
PIDescriptorHandle *newDescriptor);

This routine creates a new PIDescriptorHandle and closes the
PIWriteDescriptor handle. Return the PIDescriptorHandle to the host
in PIDescriptorParameters. If the routine returns NULL then it was unable
to allocate the memory for the new handle.

PutAliasProc()

MACPASCAL OSErr (*PutAliasProc) (PIWriteDescriptor descriptor, DescriptorKeyID
key, AliasHandle data);

This routine stores an ID and corresponding alias into a descriptor structure.

PutBooleanProc()

MACPASCAL OSErr (*PutBooleanProc) (PIWriteDescriptor descriptor,
DescriptorKeyID key, Boolean data);

This routine stores an ID and corresponding Boolean value into a descriptor
structure.

PutClassProc()

MACPASCAL OSErr (*PutClassProc) (PIWriteDescriptor descriptor, DescriptorKeyID
key, DescType type);

This routine stores an ID and corresponding class description type into a
descriptor structure.

PutCountProc()

MACPASCAL OSErr (*PutCountProc) (PIWriteDescriptor descriptor, DescriptorKeyID

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 47

key, uint32 count);

This routine stores an ID and corresponding unsigned long integer into a
descriptor structure.

PutEnumeratedProc()

MACPASCAL OSErr (*PutFloatProc) (PIWriteDescriptor descriptor, DescriptorKeyID
key, DescType type, DescType value);

This routine stores an ID and corresponding type and enumeration into a
descriptor structure.

PutFloatProc()

MACPASCAL OSErr (*PutFloatProc) (PIWriteDescriptor descriptor, DescriptorKeyID
key, const double *data);

This routine stores an ID and corresponding floating point number into a
descriptor structure.

PutIntegerProc()

MACPASCAL OSErr (*PutIntegerProc) (PIWriteDescriptor descriptor,
DescriptorKeyID key, int32 data);

This routine stores an ID and corresponding integer into a descriptor
structure.

PutSimpleReferenceProc()

MACPASCAL OSErr (*PutSimpleReferenceProc) (PIWriteDescriptor descriptor,
DescriptorKeyID key, const PIDescriptorSimpleReference *ref);

This routine stores a basic reference class, type, name, and index into a
descriptor structure. See table 3–4.

PutObjectProc()

MACPASCAL OSErr (*PutObjectProc) (PIWriteDescriptor descriptor,
DescriptorKeyID key, PIDescriptorHandle data);

This routine stores an ID and corresponding object into a descriptor
structure.

PutStringProc()

MACPASCAL OSErr (*PutStringProc) (PIWriteDescriptor descriptor,
DescriptorKeyID key, ConstStr255Param data);

This routine stores an ID and corresponding string into a descriptor
structure.

PutTextProc()

MACPASCAL OSErr (*PutTextProc) (PIWriteDescriptor descriptor, DescriptorKeyID
key, Handle data);

This routine stores an ID and corresponding text into a descriptor structure.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 48

Handle suite

Current version: 1; Adobe Photoshop: 4.0; Routines: 7.

The use of handles in the Pseudo–Resource suite poses a problem under
Windows, where a direct equivalent does not exist. In this situation,
Photoshop implements a handle model which is very similar to handles under
the Mac OS.

The following suite of routines is used primarily for cross–platform support.
Although you can allocate handles directly using the Macintosh Toolbox,
these callbacks are recommended, instead. When you use these callbacks,
Photoshop will account for these handles in its virtual memory space
calculations.

If your plug–in is intended to run only with Photoshop 3.0 or later, the
Buffer suite routines are more effective for memory allocation than the
Handle suite. The Buffer suite may have access to memory unavailable to the
Handle suite. You should use the Handle suite, however, if the data you are
managing is a Mac OS handle.

NewPIHandleProc()

MACPASCAL Handle (*NewPIHandleProc) (int32 size);

This routine allocates a handle of the indicated size. It returns NULL if the
handle could not be allocated.

DisposePIHandleProc()

MACPASCAL void (*DisposePIHandleProc) (Handle h);

This routine disposes of the indicated handle.

GetPIHandleSizeProc()

MACPASCAL int32 (*GetPIHandleSizeProc) (Handle h);

This routine returns the size of the indicated handle.

SetPIHandleSizeProc()

MACPASCAL OSErr (*SetPIHandleSizeProc) (Handle h, int32 newSize);

This routine attempts to resize the indicated handle. It returns noErr if
successful and an error code if unsuccessful.

LockPIHandleProc()

MACPASCAL Ptr (*LockPIHandleProc) (Handle h, Boolean moveHigh);

This routine locks and dereferences the handle. Optionally, the routine will
move the handle to the high end of memory before locking it.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 49

UnlockPIHandleProc()

MACPASCAL void (*UnlockPIHandleProc) (Handle h);

This routine unlocks the handle. Unlike the routines for buffers, the lock and
unlock calls for handles do not nest. A single unlock call unlocks the handle
no matter how many times it has been locked.

RecoverSpaceProc()

MACPASCAL void (*RecoverSpaceProc) (int32 size);

All handles allocated through the Handle suite have their space accounted
for in Photoshop’s estimates of how much image data it can make resident
at one time.

If you obtain a handle via the Handle suite or some other mechanism in
Photoshop, you should dispose of it using the DisposePIHandle callback. If
you dispose of in some other way (e.g., use the handle as the parameter to
AddResource and then close the resource file), then you can use this call to
tell Photoshop to decrease its handle memory pool estimate.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 50

Image Services suite

Current version: 1; Adobe Photoshop: 4.0; Routines: 1.

The Image Services suite is available in Adobe Photoshop version 3.0.4 and
later. It provides access to some image procession routines inside Photoshop.
Currently it includes two resampling routines; future versions may provide
access to other functions. Acquire, Export, and Filter plug–in modules have
access to these callbacks.

These routines are used in the distortion filters that ship with Adobe
Photoshop 4.0

The PSImagePlane structure describes the 8–bit plane of pixel data used by
the image services callback functions.

typedef struct PSImagePlane
{

void * data;

Rect bounds;

int32 rowBytes;

int32 colBytes;

} PSImagePlane;

To calculate a point’s address, use the algorithm:

unsigned8 * GetPixelAddress(PSImagePlane * plane, Point pt)
{

// should do some bounds checking here!

return (unsigned8 *) (((long) plane->data +

(pt.v - plane->bounds.top) * plane->rowBytes +

(pt.h - plane->bounds.left) * plane->colBytes);

}

PIResampleProc()

MACPASCAL OSErr (*PIResampleProc) (PSImagePlane *source,

PIImagePlane *destination,

Rect *area,

Fixed *coords,

int16 method);

The image services suite contains two callbacks with this function type:
interpolate1D and interpolate2D. These are explained in detail below.

source / destination
The source and destination parameters point to the source and destination
images, respectively.

Table 3–7: PSImagePlane structure

Type Field Description

void * data Pointer to the byte containing the value of the top left pixel.

Rect bounds Coordinate systems for the pixels.

int32 rowBytes Step values to access individual pixels.

int32 colBytes

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 51

area
The area parameter points to an area in the destination image plane that you
wish to modify. The area rectangle must be contained within
destination–>bounds.

coords
The coords parameter points to an array you create that controls the image
resampling. The array will contain either one or two fixed point numbers for
each pixel in the area rectangle (see below).

method
The method parameter indicates the sampling method to use. method=0
indicates point sampling, method=1 indicates linear interpolation.

For a source coordinate <fv, fh>, Photoshop will write to the destination
plane if and only if:

source->bounds.top <= fv <= source.bounds.bottom - 1

and

source->bounds.left <= fh <= source.bounds.right - 1

If fv and/or fh are not integers, using point sampling, method=0, Photoshop
rounds to the nearest integer. Interpolation, method=1, performs the
appropriate bilinear interpolation using up to four source pixels.

The two PIResampleProc callback functions differ in how they generate the
sample coordinates for each pixel in the target area.

interpolate1DProc()
This routine uses a coordinate list that contains one fixed point value for
each pixel in the target plane, in top to bottom, left to right order. The
sample coordinate is formed by taking the vertical coordinate of the
destination pixel and the horizontal coordinate from the list. Thus

SampleLoc1D(v, h) = <v, coords[(h – area–>left) +
(v – area–>top) * (area–>right – area–>left)]>

interpolate2DProc()
This routine uses a coordinate list that contains a pair of fixed point values
for each pixel in the area containing the vertical and horizontal sample
coordinate.

SampleLoc2D(v, h) =
<coords[2*((h – area–>left) +

(v – area–>top) * (area–>right – area–>left))],

 coords[2*((h – area–>left) +

(v – area–>top) * (area–>right – area–>left)) + 1]>

You can build a destination using relatively small input buffers by passing in
a series of input buffers, since these callbacks will leave any pixels whose
sample coordinates are out of bounds untouched.

Make sure that you have appropriate overlap between the source buffers so
that sample coordinates don’t “fall through the cracks.” This matters even
when point sampling, since the coordinate test is applied without regard to
the method parameter. This is done so that you get consistent results when
switching between point sampling and linear interpolation. If Photoshop
didn’t do this, you could end up modifying pixels using point sampling that
wouldn’t get modified when using linear interpolation.

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 52

You also want to pin coordinates to the overall source bounds so that you
will manage to write everything in the destination.

To determine whether you should use point sampling or linear interpolation,
you may want to check what the user has set in their Photoshop preferences.
This is set in the General Preferences dialog, under the Interpolation
pop–up menu. You can retrieve this value using the GetProperty callback
with the propInterpolationMethod key.

Note:
This version of the resampling callback does not support the bicubic
interpolation method.!!

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 53

Property suite

Current version: 1; Adobe Photoshop: 4.0; Routines: 2.

The Property suite allows your plug–in module to get and set certain values
in the plug–in host. The property suite is available to all plug-ins.

Note: The term property is used with two different meanings in this
toolkit. Besides its use in the Property suite, the term is also a part of
the PiPL data structure, documented in Plug-in Resource Guide.pdf.
There is no connection between PiPL properties and the Property
suite.

Properties are returned as a 32 bit integer, simpleProperty, or a handle,
complexProperty. In the case of a complex, handle based property, your
plug–in is responsible for disposing the handle. Use the
DisposePIHandleProc callback defined in the Handle suite.

Properties involving strings—such as channel names and path names—are
returned in a Photoshop handle. The length of the handle and size of the
string is obtained with PIGetHandleSizeProc. There is no length byte, nor
is the string zero terminated.

Properties are identified by a signature and key, which form a pair to
identify the property of interest. Some properties, like channel names and
path names, are also indexed; you must supply the signature, key, and index
(zero–based) to access or update these properties.

Adobe Photoshop’s signature is always '8BIM' (0x3842494D).

GetPropertyProc()

MACPASCAL OSErr (*GetPropertyProc) (OSType signature, OSType key, int32 index,
int32 * simpleProperty, Handle * complexProperty);

This routine allows you to get information about the document currently
being processed.

Note: This callback replaces the direct callback, which has been
renamed “getPropertyObsolete”. The obsolete callback pointer is
still correct, and is maintained for backwards compatibility.

SetPropertyProc()

MACPASCAL OSErr (*SetPropertyProc) (OSType signature, OSType key, int32 index,
int32 simpleProperty, Handle complexProperty);

This routine allows you to update information in the plug–in host about the
document currently being processed.

propInterfaceColor
Adobe Photoshop 4.0 includes a new property, propInterfaceColor, which
allows your interface to mimic system colors. Currently, user-selected system
colors are supported on Windows; when they are available on Macintosh,
they will likely be supported in future versions of Photoshop through this
same mechanism.

!!

!!

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 54

The propInterfaceColor properties pass the user-selected interface color
scheme to your plug-in according to the following diagram:

Constants get remapped to create the system look.

Use table 3–8 to draw PICTs using the index values.

Note: Until the Macintosh provides user-selected
interface colors, use the file ColorScheme-CLUT in the
propInterfaceColor folder in Examples/Resources
to look-up the color values.

See the illustration above for details on each of these values.

Table 3–8: propInterfaceColor index

Name Value

kInterfaceWhite 0

kInterfaceButtonUpFill 1

kInterfaceBevelShadow 2

kInterfaceIconFillActive 3

kInterfaceIconFillDimmed 4

kInterfacePaletteFill 5

kInterfaceIconFrameDimmed 6

kInterfaceIconFrameActive 7

kInterfaceBevelHighlight 8

kInterfaceButtonDownFill 9

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 55

Property Keys
Properties marked “mod” in table 3–9 are modifiable and can be altered with
SetProperty.

kInterfaceIconFillSelected 10

kInterfaceBorder 11

kInterfaceButtonDarkShadow 12

kInterfaceIconFrameSelected 13

kInterfaceBlack 14

kInterfaceRed 15

Table 3–9: Property keys recognized by Property Suite callbacks

Property Name ID Type Description

propNumberOfChannels nuch simple Number of channels in the document. This
count will include the transparency mask and
the layer mask for the target layer if these are
present.

propChannelName nmch complex
string

Name of the channel. The channels are
indexed from zero and consist of the compos-
ite channels, the transpareny mask, the layer
mask, and the alpha channels.

propImageMode mode simple Mode of the image.

propNumberOfPaths nupa simple Number of paths in the document.

propPathName nmpa complex
string

Name of the indexed path. The paths are
indexed starting with zero.

propPathContents path complex
data
structure

Contents of the indexed path in the format
documented in the path resources documenta-
tion. The data is stored in big endian form.
Refer to chapter 10 for more information on
path data.

propWorkPathIndex wkpa simple Index of the work path. –1=no path.

propClippingPathIndex clpa simple Index of the clipping path. –1=no path.

propTargetPathIndex tgpa simple Index of the target path. –1=no path.

propCaption capt complex
mod

File meta information in a IPTC-NAA record.
For more information, see chapter 11. Docu-
ment File Formats.

propBigNudgeH bndH simple
mod

Horizonal component of the nudge distance,
represented as a 16.16 value. This is the value
used when moving around using the shift key.
The default value is ten pixels.

propBigNudgeV bndV simple
mod

Vertical component of the nudge distance,
represented as a 16.16 value. This is the value
used when moving around using the shift key.
The default value is ten pixels.

propInterpolationMethod intp simple Current interpolation method: 1=point sample,
2=bilinear, 3=bicubic.

propRulerUnits rulr simple Current ruler units.

propRulerOriginH rorH simple
mod

Horizontal component of the current ruler ori-
gin, represented as a 16.16 value.

propRulerOriginV rorV simple
mod

Vertical component of the current ruler origin,
represented as a 16.16 value.

Table 3–8: propInterfaceColor index (Continued)

Name Value

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 56

propGridMajor grmj simple
mod

The current major grid rules, in inches, unless
propRulerUnits is pixels, and then pixels.
Represented as a 16.16 value.

propGridMinor grmn simple
mod

The current number of grid subdivisions per
major rule.

propSerialString sstr complex
string

Serial number of the plug–in host as a string.
You can use this to implement copy protection
for your plug–in module.

propHardwareGammaTable hgam complex Hardware gamma table (Windows only).

propInterfaceColor iclr complex Property interface color. See above.

propWatchSuspension wtch simple
mod

The watch suspension level. When non-zero,
you can make callbacks to the host without
fear that the watch will start spinning. It is
reset to zero at the beginning of each call
from the host to the plug-in.

propCopyright cpyr simple
mod

Whether the current image is considered copy-
written.

propURL URL complex
mod

The URL for the current image.

propTitle titl complex The title of the current image.

Table 3–9: Property keys recognized by Property Suite callbacks (Continued)

Property Name ID Type Description

3. Plug-in Host Callbacks

Adobe Photoshop Software Development Kit 57

Pseudo–Resource suite

Current version: 3; Adobe Photoshop: 4.0; Routines: 4.

This suite of callback routines provides support for storing and retrieving
data from a document. These routines provide pseudo–resources which
plug–in modules can attach to documents and use to communicate with each
other.

Each resource is a handle of data and is identified by a 4 character code
ResType and a one–based index. The maximum number of pseudo-resources
in a document for Photoshop is 1000.

CountPIResourcesProc()

MACPASCAL int16 (*CountPIResourcesProc) (ResType ofType);

This routine returns a count of the number of resources of a given type.

GetPIResourceProc()

MACPASCAL Handle (*GetPIResourceProc) (ResType ofType, int16 index);

This routine returns the indicated resource for the current document or NULL
if no resource exists with that type and index. The plug-in host owns the
returned handle. The handle should be treated as read-only.

AddPIResourceProc()

MACPASCAL OSErr (*AddPIResourceProc) (ResType ofType, Handle data);

This routine adds a resource of the given type at the end of the list for that
type. The contents of data are duplicated so that the plug–in retains control
over the original handle. If there is not enough memory or the document
already has too many plug–in resources, this routine will return memFullErr.

DeletePIResourceProc()

MACPASCAL void (*DeletePIResourceProc) (ResType ofType, int16 index);

This routine deletes the indicated resource in the current document. Note
that since resources are identified by index rather than ID, this will cause
subsequent resources to be renumbered.

Adobe Photoshop Software Development Kit 58

44. Color Picker Modules

Color Picker plug-in modules return a selected color, allowing a plug-in to be
used as a method for the user to pick colors. They are accessed under the
File menu, Preferences..., General dialog.

Examples/ColorPicker/NearestBase
NearestBase is a sample color picker plug–in which demonstrates simple
returning of colors with no user interface.

Table 4–1: Color Picker file types

OS Filetype/extension

Mac OS 8BCM

Windows .8BC

4. Color Picker Modules

Adobe Photoshop Software Development Kit 59

Calling sequence

When the user invokes a Color Picker plug–in by selecting its name in the
Preferences... General dialog and then trying to pick a custom color (such
as clicking on the foreground or background colors in the tools palette),
Adobe Photoshop calls your plug-in once with pickerSelectorExecute.
The recommended sequence of actions for your plug-in to take is described
next.

pickerSelectorPick
Unlike other plug-ins, a Color Picker Module only gets one execute call, and
is expected to do all the work during that call. However, it’s recommended
you follow this order:

1. Prompt for parameters
If the plug–in has any parameters that the user can set, it should prompt the
user and save the values through the recording parameters for the scriptable
handle accessed through the parameters structure. Photoshop initializes the
parameters field to NULL when starting up.

Adobe Photoshop’s scripting routines save the information pointed to by the
recording parameters field, so that it can operate the selection without user
input during play back.

Your plug–in should validate the contents of its playback parameters when it
starts processing if there is a danger of it crashing from bad parameters.

You may wish to design your plug-in so that you store default values or the
last used set of values in the plug-in’s Mac OS resource fork or a Windows
external file. This way, you can save preference settings for your plug–in that
will be consistent every time the host application runs.

2. Allocate memory
Use the buffer and handle suites to allocate any extra memory needed for
your computations. See chapter 2 and 3 for a discussion on maxData and
bufferSpace.

3. Compute your color space based on the user input
Compute whatever color conversions are required to return the user input to
the host in the proper form.

Request to
pick a color

pickerSelectorPick

Calculate memory require-
ments; display user interface
for picker parameters; allocate
memory.

Clean up and return color
selected..

Done.

Process user selected color.

Adobe Photoshop® 4.0 ColorPicker Plug-in

4. Color Picker Modules

Adobe Photoshop Software Development Kit 60

4. Finish, clean up, and hand back your results
Clean up after your operation. Dispose any handles you created, etc., then
hand back your color to the host for use.

Behavior and caveats

Color Pickers and Macintosh resource forks

Color Pickers are very special plug-ins because they can be called by other
plug-ins. This means that you must be extra careful to make sure you’re
reading the correct resources, when you ask for them, since multiple
resource forks may be available.

For instance, a Filter module uses the Color Services callback suite and
requests it pop the “Choose a color” interface. The user has selected your
Color Picker module as the chosen Color Picker. Now, the host’s resource
fork is open, the Filter module’s resource fork is open, and then, once your
Color Picker module is loaded, its resource fork is open.

If you need a resource in your Color Picker’s resource fork, make sure to use
the Macintosh toolbox call Get1Resource, which will look only at the most
recent open resource fork, as opposed to GetResource, which will walk all
the resource forks.

4. Color Picker Modules

Adobe Photoshop Software Development Kit 61

PickParms structure

This structure is used by the Color Picker plug-in to return the color selected
by the user.

typedef struct PickParms
{

int16 sourceSpace;

int16 resultSpace;

unsigned16 colorComponents[4];

Str255 *pickerPrompt;

} PickParms;

Error return values
The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer. These
errors and more detail is available in PISelection.h.

#define pickerBadParameters –30800 // a problem with the interface

Table 4–2: PickParms structure

Type Field Description

int16 sourceSpace The colorspace the original color is in. See
ColorServicesInfo in Appendix A.

int16 resultSpace The colorspace of the returned result. See
ColorServicesInfo in Appendix A. (Can be
plugInColorServicesChosenSpace.)

unsigned16 colorComponents[4] On selectorPick, the initial color. When
exiting, set this to the color you wish to
return.

Str255 * pickerPrompt Prompt string, supplied by ColorServices suite.
See Chapter 2.

4. Color Picker Modules

Adobe Photoshop Software Development Kit 62

The Color Picker parameter block

The pluginParamBlock parameter passed to your plug–in module’s entry
point contains a pointer to a PIPickerParams structure with the following
fields. This structure is declared in PIPicker.h.

Table 4–3: PIPickerParams structure

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s serial
number. Your plug–in module can use this
value for copy protection, if desired.

TestAbortProc abortProc TestAbort callback. See chapter 3.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback documented in
chapter 3. This procedure should only be
called during the actual main operation of
the plug–in, not during long operations dur-
ing the preliminary user interface such as
building a preview.

OSType hostSig The plug–in host provides its signature to
your plug–in module in this field. Photo-
shop’s signature is 8BIM.

HostProc hostProc If not NULL, this field contains a pointer to a
host–defined callback procedure that can do
anything the host wishes. Plug–ins should
verify hostSig before calling this procedure.
This provides a mechanism for hosts to
extend the plug–in interface to support
application specific features.

BufferProcs * bufferProcs Buffer callback suite. See chapter 3.

ResourceProcs * resourceProcs Pseudo–Resource callback suite. See chapter
3.

ProcessEventProc processEvent ProcessEvent callback. See chapter 3.

DisplayPixelsProc displayPixels DisplayPixels callback. See chapter 3.

HandleProcs * handleProcs Handle callback suite. See chapter 3.

ColorServicesProc colorServices Color Services callback suite. See chapter 3.

ImageServicesProcs * imageServicesProcs Image Services callback suite. See chapter 3.

ChannelPortProcs * channelPortProcs Channel Ports callback suite. See chapter 3.

PropertyProcs * propertyProcs Property callback suite. See chapter 3.

PIDescriptorParameters * descriptorParameters Descriptor callback suite. See chapter 3.

Str255 errorString Error string.

PlugInMonitor monitor Monitor setup info. See appendix A.

void * platformData Pointer to platform specific data. Not used in
Mac OS.

Boolean hostSupportsPaths Check this flag before returning a path. All
host will clean up newPath.

char[3] reserved Reserved for future use. Set to zero.

PickParms pickParms Picker incoming and outgoing parameters.
See table 4–2.

char[260] reservedBlock Reserved for future use. Set to zero.

Adobe Photoshop Software Development Kit 63

55. Import Modules

Import plug–in modules are used to capture images from add–on hardware,
such as scanners or video cameras, and put these images into new Photoshop
document windows.

Import modules can also be used to read images from unsupported file
formats, although file format modules often are better suited for this
purpose. File format modules are accessed directly from the Open...
command, while Import modules use the Import sub–menu.

Prior to Photoshop version 4.0 these modules were called Acquire modules.
Most of the internal nomenclature and function calls reflect the old naming
conventions, to stay compatible with previous versions.

Examples/Import/GradientImport
GradientImport is a sample import module. This version of GradientImport
requires at least Photoshop 3.0, since it uses the advanceState callback and
the improved multiple import design. It is also updated for scripting and has
a detailed example of exporting scripting information for multiple import
structures.

Table 5–1: Import file types

OS Filetype/extension

Mac OS 8BAM

Windows .8BA

5. Import Modules

Adobe Photoshop Software Development Kit 64

Calling sequence

The calling sequence for Import modules is a little more complex than other
types of plug–in modules. In a single invocation, Import modules may be
capable of capturing multiple images and creating multiple new Photoshop
document windows. Because captured images may be large, each capture
may require multiple exchanges between the host and the module.

When the user invokes an Import plug–in module by selecting its name from
the Import submenu, Photoshop calls it with the sequence of selector values
shown in the figure above. The actions for these selectors is discussed next.

acquireSelectorPrepare
The acquireSelectorPrepare calls allow your plug–in to adjust Photoshop’s
memory allocation algorithm. Photoshop sets maxData to the maximum
number of bytes it can allocate to your plug–in. For Import modules to
perform efficiently, you should reduce maxData to permit Photoshop to
process the imported image in RAM. Refer to chapter 3 for details on
memory management strategies.

Note: Your plug–in should validate the contents of its globals and
parameters whenever it starts processing if there is a danger of it
crashing from bad parameters.

*

Import

Command

acquireSelectorFinalize

acquireSelectorContinue

acquireSelectorPrepare

Loop for next image.

See notes below.

Calculate memory needs. Dis-
play user interface if multiple
imports. Prepare to read from
scripting system..

acquireSelectorStart

Read from scripting system. Dis-
play user interface if single im-
port and UI is requested.

Configure new image’s size/
depth information.

Import and return a portion of
an image.

Loop until error
or data = NULL.

acquireSelectorFinish

Clean up after end of image
import.

Indicate to host whether to
import another image.

If done, return scripting pa-
rameters.

Perform any final cleanup
needed. Return scripting pa-
rameters.

Done.

If supported by host and requested by plug-in.

*

Adobe Photoshop® 4.0 Import Plug-in

!!

5. Import Modules

Adobe Photoshop Software Development Kit 65

Globals and scripting
The scripting system passes its parameters at every selector call. While it is
possible to use the scripting system to store all your parameters, for
backwards compatibility, it is recommended you track your parameters with
your own globals. Once your globals are initialized, you should read your
scripting-passed parameters and override your globals with them.

The most effective way to do this is:

1. First call a ValidateMyParameters routine to validate (and initialize if
necessary) your global parameters.

2. Then call a ReadScriptingParameters routine to read the scripting parame-
ters and then write them to your global structure.

This way, the scripting system overrides your parameters, but you can use
the initial values if the scripting system is unavailable or has parameter
errors, and you can use your globals to pass between your functions.

acquireSelectorStart
This call lets you indicate to the plug–in host the mode, size and resolution
of the image being returned, so it can allocate and initialize its data
structures. Here you can update your parameters based on the passed
scripting parameters, and show your user interface, if requested.

During this call, your plug–in module should set imageMode, imageSize,
depth, planes, imageHRes and imageVRes. If an indexed color image is
being returned, you should also set redLUT, greenLUT and blueLUT. If a
duotone mode image is being returned, you should also set duotoneInfo.
See the descriptions of these fields later in this chapter.

acquireSelectorContinue
This call returns an area of the image to the plug–in host. Photoshop will
continue to call this routine until it either returns an error, or your plug–in
module sets the data field to NULL.

theRect, loPlane & hiPlane
The area of the image being returned is specified by theRect, loPlane and
hiPlane.

The portion of the image being returned is specified by theRect. If the
resolution of the imported image is always going to be very small (for
example, NTSC frame grabbers), your plug–in can simply set theRect to the
entire image area. However, if you are working with large images, your
plug–in must use the theRect field to return the image in several pieces.

There are no restrictions on how the pieces tile the image; horizontal and
vertical strips are allowed as are a grid of tiles. Each piece should contain no
more than maxData bytes, less the size of any large tables or scratch areas
allocated by the plug–in. These restrictions don’t apply if the buffer for the
image data was allocated using the Buffer or Handle suites.

data, colBytes, rowBytes & planeBytes
The data field should point to the actual data being returned. The fields
colBytes, rowBytes and planeBytes specify the organization of the data.

5. Import Modules

Adobe Photoshop Software Development Kit 66

The data field contains a pointer to the data being returned. You can
allocate a buffer for the data via:

1. the Mac OS NewPtr trap,

2. the Windows GlobalAlloc function, or

3. via the Buffer suite.

Your plug–in module is responsible for freeing this buffer in its
acquireSelectorFinish handler.

Photoshop is very flexible in the format in which image data can be
returned. For example, to return just the red plane of an RGB color image,
use the parameter values in Table 5–2.

If you wish to return the RGB data in interleaved form (RGBRGB...), use the
values shown in Table 5–3.

acquireSelectorFinish
This call allows your plug–in to clean up after an image import. This call is
made if and only if the acquireSelectorStart routine returns without
error, even if the acquireSelectorContinue routine returns an error.

Most plug–ins will at least need to free the buffer used to return the image
data.

If Photoshop detects Command–period in the Mac OS or Escape in Windows
while processing the results of an acquireSelectorContinue call, it will
call acquireSelectorFinish.

Note: Be careful processing user-cancel events during
acquireSelectorContinue. Normally your plug-in would be
expecting another acquireSelectorContinue call. If the user
cancels, the next call will be acquireSelectorFinish, not
acquireSelectorContinue!

Table 5–2: Return red plane of RGB

Parameter Value

loPlane 0

hiPlane 0

colBytes 1

rowBytes width of the area being returned

planeBytes ignored, since loPlane=hiPlane.

Table 5–3: Return RGB data in interleaved form

Parameter Value

loPlane 0

hiPlane 2

colBytes 3

rowBytes 3 * width of the area being returned

planeBytes 1

!!

5. Import Modules

Adobe Photoshop Software Development Kit 67

Scripting at acquireSelectorFinish
If your plug-in is scripting-aware and you’ve changed any initial parameters,
you should pass a complete descriptor back to the scripting system in the
PIDescriptorParameters structure.

acquireSelectorFinalize
If your plug–in is using finalization—the host set canFinalize and your
plug–in set wantFinalize—then this call will be made after all possible
looping is complete. This can be used to do any final clean–up, and is
typically used in the case where a plug–in module is acquiring multiple
images during a single invocation.

Scripting at acquireSelectorFinalize
If your plug-in is scripting-aware and you’ve changed any initial parameters,
you should pass a complete descriptor back to the scripting system in the
PIDescriptorParameters structure.

Behavior and caveats
If acquireSelectorPrepare succeeds—the result value is zero—and
wantFinalize=TRUE, then Photoshop guarantees that
acquireSelectorFinalize will be called.

If acquireSelectorStart succeeds then Photoshop guarantees that
acquireSelectorFinish will be called.

In the event of any error during import, the document being imported is
discarded.

Plug–in hosts may choose to treat acquireAgain as FALSE.

Your plug–in module can tell whether the host understands finalization by
checking the canFinalize flag.

The advanceState callback allows your plug–in module to drive the
interaction through the inner acquireSelectorContinue loop without
actually returning to the plug–in host. If the host returns an error, then you
should treat this as an error condition and return the error code when
returning from your acquireSelectorContinue handler.

Multiple Acquire
The plug-in host can loop back to acquireSelectorStart to begin
importing another image for multi-image importing if the following
conditions are true:

1. the plug–in host supports multiple imports (Photoshop version 3.0 and
later)

2. your plug–in module has set acquireAgain=TRUE, and

3. the acquireSelectorContinue loop finished normally, meaning no
error was returned and the loop ended with data=NULL.

5. Import Modules

Adobe Photoshop Software Development Kit 68

The plug-in host can also loop back to acquireSelectorstart to begin
acquiring another image if these alternate conditions are true:

1. the plug–in host supports multiple imports,

2. the plug–in host set canFinalize=TRUE,

3. your plug–in module set wantFinalize=TRUE and
acquireAgain=TRUE, and

4. the acquireSelectorContinue loop finished with a result code >= 0
or a result code of userCanceledErr.

Batch Import
Batch Importing is a feature of the scripting system that automatically
processes multiple files through your scripting-aware Import module. If your
Import module is scriptable, Batch Importing is handled completely by the
host, which passes parameters and control to your Import plug-in as part of
a script. Batch Import is available from the Actions palette.

Batch Import versus Multiple Import
While Multiple Import is an internal feature available in the Import module,
Batch Import is based on the host scripting mechanism. Here are some issues
that should help you determine whether to implement Multiple Import or
Batch Import:

1. Batch Import is transparent if your plug-in is scripting-aware. This
means you need only export your parameters to the scripting system
and read them in at call-time to be able to be controlled by Batch
Import. Batch Import of single imports would be the most appropriate
for single-sheet scanners, for instance. Batch Import triggers when your
user interface is closed. This means if you do a multiple acquire and
leave your user interface up, the scripting system will not take control
until after your multiple acquire is done.

2. Multiple Acquire is always controlled by the plug-in. It allows you to
return multiple images with one invocation, versus Batch Import which
calls your plug-in new for every image. The scripting system will only
take control after your user interface is closed. You may hide your user
interface during your Multiple Acquire loop, between the
acquireSelectorFinish and next acquireSelectorStart call, for
the scripting system to process that image and return to your control.

If you decide to implement Multiple Import but still want your plug-in to be
scripting aware, then we recommend you follow the GradientImport
example from the SDK, and export your Multiple Import commands as a
single scripting event. Batch Import of a module that does Multiple Import
would be the most appropriate for digital cameras, for instance, where the
user wants to grab every other image in the cameras’ buffer.

Error return values
The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer. These
errors and more detail is available in PIAcquire.h.

#define acquireBadParameters -30000 // an error with the interface
#define acquireNoScanner –30001 // no scanner installed

#define acquireScannerProblem –30002 // a problem with the scanner

5. Import Modules

Adobe Photoshop Software Development Kit 69

The Import parameter block

The pluginParameterBlock parameter passed to your plug–in module’s
entry point contains a pointer to an AcquireRecord structure with the
following fields. This structure is declared in PIAcquire.h.

Table 5–4: AcquireRecord fields

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s serial
number. Your plug–in module can use this
value for copy protection, if desired.

TestAbortProc abortProc This field contains a pointer to the TestAbort
callback documented in chapter 3.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback documented in
chapter 3. You should only call this during the
actual main operation of the plug–in, not dur-
ing long operations during the preliminary user
interface. For example, it should not be used
during a preview operation that computes a
low resolution proxy image. It should be used
during the main, high–resolution scan.

int32 maxData Photoshop initializes this field to the maximum
number of bytes it can free up. Your plug–in
may reduce this value during the
acquireSelectorPrepare routine. The
acquireSelectorContinue routine should
return the image in strips no larger than max-
Data, less the size of any large tables or scratch
areas it has allocated unless it uses the Buffer
or Handle suites to allocate the memory.

int16 imageMode Your acquireSelectorStart handler should
set this field to inform the plug–in host what
mode image is being imported (grayscale, RGB
Color, etc.). See PIGeneral.h for valid image
mode constants.

Point imageSize Your acquireSelectorStart handler should
set this field to inform the plug–in host of the
image’s width, imageSize.h, and height,
imageSize.v in pixels.

int16 depth Your acquireSelectorStart handler should
set this field to inform the plug–in host of the
image’s resolution in bits per pixel per plane.
The only valid values are 1 for bitmap mode
images, 8 for all other modes; grayscale and
RGB also allow 16.

int16 planes Your acquireSelectorStart handler should
set this field to inform the plug–in host of the
number of channels in the image. For example,
if an RGB image without alpha channels is
being returned, this field should be set to 3.
Even though Import modules can create docu-
ments with up to 24 channels, because of the
implementation of the plane map, Import and
Format modules should never try to work with
more than 16 planes at a time.

5. Import Modules

Adobe Photoshop Software Development Kit 70

Fixed imageHRes Your acquireSelectorStart handler should
set these fields to inform the plug–in host of
the image’s horizontal and vertical resolution
in pixels per inch. This is a fixed point, 16
binary digit-number. Photoshop initializes
these fields to 72 pixels per inch.

The current version of Photoshop only supports
square pixels, so it ignores the imageVRes
field. Plug–ins should set both fields anyway in
case future versions of Photoshop support non–
square pixels.

Fixed imageVRes

LookUpTable redLUT If an indexed color mode image is being
returned, your acquireSelectorStart han-
dler should return the image’s color table in
these fields.

LookUpTable greenLUT

LookUpTable blueLUT

void * data Your acquireSelectorContinue handler
should return a pointer to the image’s data in
this field. After all of the image has been
returned, set this pointer to NULL.

Note that your plug–in is responsible for free-
ing any memory pointed to by this field. This is
a change from previous versions of Photoshop’s
Import plug–in interface.

Rect theRect Your acquireSelectorContinue handler
should set this field to the area being returned.

int16 loPlane Your acquireSelectorContinue handler
should set these fields to the first and last
planes being returned. For example, if inter-
leaved RGB data is being returned, they should
be set to 0 and 2, respectively.

int16 hiPlane

int16 colBytes Your acquireSelectorContinue handler
should set this field to the offset in bytes
between columns of returned data. This is usu-
ally 1 for non–interleaved data, or hiPlane–
loPlane+1 for interleaved data.

int32 rowBytes Your acquireSelectorContinue handler
should set this field to the offset in bytes
between rows of returned data.

int32 planeBytes Your acquireSelectorContinue handler
should set this field to the offset in bytes
between planes of returned data. This field is
ignored if loPlane=hiPlane. It should be set
to 1 for interleaved data.

Str255 fileName By default, Photoshop opens newly imported
images as “Untitled–...” . For file-importing
Import modules, set this field to the filename
in the acquireSelectorStart routine. Photo-
shop will display the correct window title.
Scanning modules should ignore this field.

int16 vRefNum If your plug–in module sets fileName, and
you’re in the Mac OS, set vRefNum to the file’s
volume reference number. This is ignored in
Windows.

Boolean dirty By default, newly imported images are marked
as dirty, meaning that the user will be
prompted to save the image when closing the
window. Set this field to FALSE to prevent this.
This does not reflect whether there are unsaved
changes in the current document.

Table 5–4: AcquireRecord fields (Continued)

Type Field Description

5. Import Modules

Adobe Photoshop Software Development Kit 71

OSType hostSig The plug–in host provides its signature to your
plug–in module in this field. Photoshop’s signa-
ture is 8BIM.

HostProc hostProc If not NULL, this field contains a pointer to a
host–defined callback procedure that can do
anything the host wishes. Plug–ins should ver-
ify hostSig before calling this procedure. This
provides a mechanism for hosts to extend the
plug–in interface to support application spe-
cific features.

int32 hostModes This field is used by the host to inform your
plug–in module which imageMode values it
supports. If the corresponding bit is 1 (LSB = bit
0), the mode is supported. This field can be
used by plug–ins to disable features such as
color scanning if not supported by the host.

PlaneMap planeMap This is initialized by the plug–in host to a linear
map, planeMap[i]=i. This is used to map
plane (channel) numbers between the plug–in
and the host. For example, Photoshop stores
RGB images with an alpha channel in the order
RGBA, whereas most frame buffers store the
data in ARGB order. To return the data in this
order, set planeMap[0]=3, planeMap[1]=0,
planeMap[2]=1, and planeMap[3]=2.
Attempts to index past the end of a planeMap
will result in the identity map being used for
the indexing.

Boolean canTranspose If the host supports transposing images during
or after scanning, it sets this field to TRUE.
Photoshop always sets this field to TRUE.

Boolean needTranspose This field is initialized by the host to FALSE. If
your plug–in wishes to have the image
transposed, and canTranspose=TRUE, you
should set this field to TRUE in your
acquireSelectorStart handler.

The logical effect is to transpose the image
after scanning is complete, although some
hosts may find it more efficient to transpose
the data during scanning.

This feature was added to the plug–in specifi-
cation because versions of Photoshop prior to
Photoshop 2.5 had a strong bias toward hori-
zontal strips. Using this routine, a plug–in
could import an image in vertical strips by pass-
ing Photoshop horizontal strips and then hav-
ing Photoshop transpose the data when it was
done.

Handle duotoneInfo If your plug–in module is acquiring a duotone
mode image, you should allocate a handle and
return the duotone information here. The for-
mat of the information is the same as that pro-
vided by export modules.

Your plug–in is responsible for freeing the han-
dle in its acquireSelectorFinish handler.

int32 diskSpace This field contains the number of free bytes on
the plug–in host’s scratch disk or disks. If the
plug–in host does not use a scratch disk, this
will be –1.

SpaceProc spaceProc If not NULL, this field contains a pointer to the
SpaceProc callback. See chapter 3.

Table 5–4: AcquireRecord fields (Continued)

Type Field Description

5. Import Modules

Adobe Photoshop Software Development Kit 72

PlugInMonitor monitor This field contains the monitor setup informa-
tion for the host. Refer to Appendix A.

void * platformData This field contains a pointer to platform spe-
cific data. Not used under the Mac OS.

BufferProcs * bufferProcs This field contains a pointer to the Buffer suite
if it is supported by the plug–in host, otherwise
NULL. See chapter 3.

ResourceProcs * resourceProcs This field contains a pointer to the Pseudo–
Resource suite if it is supported by the plug–in
host, otherwise NULL. See chapter 3.

ProcessEventProc processEvent This field contains a pointer to the Pro-
cessEvent callback documented in chapter 3.
It contains NULL if the callback is not sup-
ported. This function is not useful on Windows.

Boolean canReadBack If the plug–in host supports reading back
image data for further processing, it should set
this field to TRUE. Photoshop always sets this
field to TRUE.

Boolean wantReadBack If your plug–in module sets this flag and the
host supports image read back, then the host
will ignore the contents of the buffer it is
passed and will instead fill the buffer with the
image data. It will store the data in the format
described by loPlane, hiPlane, colBytes,
rowBytes, planeBytes, and planeMap. If
theRect exceeds the bounds of the image,
those portions of the buffer will be left
untouched.

Boolean acquireAgain If you want your plug–in to be called again to
import another image, set this flag in the
acquireSelectorFinish handler. Plug–in
hosts that support multiple image imports
should start the import process again with a
call to acquireSelectorStart.

If you do not want to put up a user interface
for each import, you should display your inter-
face during the acquireSelectorPrepare
call. With the addition acquireSelectorFi-
nalize, import plug–in modules can now put
up an interface that remains active across mul-
tiple imports.

Your plug–in module should not count on
being called again just because it sets this flag;
acquireSelectorFinish should still do all of
the necessary clean–up.

Boolean canFinalize If the host can make the finalize call, it should
set this field to TRUE.

DisplayPixelsProc displayPixels This field contains a pointer to the
DisplayPixels callback. It contains NULL if
the callback is not supported. See chapter 3.

HandleProcs * handleProcs This field contains a pointer to the Handle suite
if it is supported by the host, otherwise NULL.
See chapter 3.

These fields are new since version 3.0 of Adobe Photoshop.

Boolean wantFinalize This flag requests an
acquireSelectorFinalize call if the host
provides the newer protocol. See also
canFinalize.

Table 5–4: AcquireRecord fields (Continued)

Type Field Description

5. Import Modules

Adobe Photoshop Software Development Kit 73

char[3] reserved This 3 byte field is used for alignment to a
four–byte boundary.

ColorServicesProc colorServices This field contains a pointer to the
ColorServices callback. It contains NULL if
the callback is not supported.

AdvanceStateProc advanceState The advanceState callback allows your plug–
in module to drive the interaction through the
inner acquireSelectorContinue loop with-
out actually returning to the plug–in host. If
the advanceState call returns an error, you
should treat this as a continue error and return
the error code back to the plug–in host.

These fields are new since version 3.0.4 of Adobe Photoshop.

ImageServicesProcs * imageServicesProcs This is a pointer to the Image Services callback
suite. See chapter 3.

int16 tileWidth The host reports the width and height of a tile,
which would be the best unit to work in, if pos-
sible.int16 tileHeight

Point tileOrigin The origin of the tiling system.

PropertyProcs * propertyProcs A pointer to the Property callback suite. See
chapter 3.

These fields are new since version 4.0 of Adobe Photoshop.

PIDescriptorParameters * descriptorParameters Descriptor callback suite. See chapter 3.

Str255 * errorString If you return with result=errReportString
then whatever string you store here will be dis-
played as: “Cannot complete operation because
string” .

char[192] reserved Reserved for future use. Set to zero.

Table 5–4: AcquireRecord fields (Continued)

Type Field Description

Adobe Photoshop Software Development Kit 74

66. Export Modules

Export plug–in modules are used to output an image from an open
Photoshop document. They can be used to print to printers that do not have
Mac OS Chooser–level driver support.

Export modules can also be used to save images in unsupported or
compressed file formats, although File Format modules (see chapter 6) often
are better suited for this purpose. File Format modules are accessed directly
from the Save and Save As... commands, while Export modules use the
Export sub–menu.

Examples/History
History is a sample Export module primarily concerned with demonstrating
the Pseudo–Resource callbacks. It works in conjunction with the Propetizer
plug–in to maintain a series of history strings for a file.

Examples/IllustratorExport
IllustratorExport demonstrates using the getProperties callback and
exporting pen path information. The sample only works on Macintosh
platforms. Borrowing the porting concepts from the other examples, it is
fairly straightforward port IllustratorExport to Windows. Please read the
comments inside the sample source for important information regarding pen
paths and byte ordering.

Examples/Export/Outbound
Outbound is a sample export module that writes a very basic image file from
the data passed to it by the host.

Table 6–1: Export file types

OS Filetype/extension

Mac OS 8BEM

Windows .8BE

6. Export Modules

Adobe Photoshop Software Development Kit 75

Calling sequence

When the user invokes an Export plug–in by selecting its name from the
Export submenu, Photoshop calls it with the sequence of selector values
shown in the figure above. The actions for these selectors are discussed next.

exportSelectorPrepare
The exportSelectorPrepare selector calls allow your plug–in module to adjust
Photoshop’s memory allocation algorithm. Photoshop sets maxData to the
maximum number of bytes it can allocate to your plug–in. You may want to
reduce maxData for increased efficiency. Refer to chapter 3 for details on
memory management strategies.

Note: Your plug–in should validate the contents of its globals and
parameters whenever it starts processing if there is a danger of it
crashing from bad parameters.

Globals and scripting
The scripting system passes its parameters at every selector call. While it is
possible to use the scripting system to store all your parameters, for
backwards compatibility, it is recommended you track your parameters with
your own globals. Once your globals are initialized, you should read your
scripting-passed parameters and override your globals with them.

The most effective way to do this is:

1. First call a ValidateMyParameters routine to validate (and initialize if
necessary) your global parameters.

2. Then call a ReadScriptingParameters routine to read the scripting parame-
ters and then write them to your global structure.

Loop until error or
empty rectangle.

Export

Command

exportSelectorContinue

exportSelectorPrepare

Calculate memory require-
ments.

exportSelectorStart

Display user dialog.

Set initial image rectangle
to process.

Export portion of image.

Indicate next rectangle to
process.

exportSelectorFinish

Clean up.

Done.

Adobe Photoshop® 4.0 Export Plug-in

!!

6. Export Modules

Adobe Photoshop Software Development Kit 76

This way, the scripting system overrides your parameters, but you can use
the initial values if the scripting system is unavailable or has parameter
errors, and you can use your globals to pass between your functions.

exportSelectorStart
Most plug–ins will display their dialog box, if any, during this call.

theRect, loPlane & hiPlane
During this call, your plug–in module should set theRect, loPlane and hiPlane to
let Photoshop know what area of the image it wishes to process first.

The total number of bytes requested should be less than maxData. If the
image is larger than maxData, the plug–in must process the image in pieces.
There are no restrictions on how the pieces tile the image: horizontal strips,
vertical strips, or a grid of tiles.

exportSelectorContinue
During this routine, your plug–in module should process the image data
pointed to by data. You should then adjust theRect, loPlane and hiPlane
to let Photoshop know what area of the image you wish to process next. If
the entire image has been processed, set theRect to an empty rectangle.

The requested image data is pointed to by data. If more than one plane has
been requested (loPlane≠hiPlane), the data is interleaved. The offset from
one row to the next is indicated by rowBytes. This is not necessarily equal to
the width of theRect; there may be additional pad bytes at the end of each
row.

exportSelectorFinish
This call allows your plug–in module to clean up after an image export. This
call is made if and only if the exportSelectorStart routine returns
without error, even if the exportSelectorContinue routine returns an
error.

If Photoshop detects Command–period in the Mac OS or Escape in Windows
between calls to the exportSelectorContinue routine, it will call the
exportSelectorFinish routine.

Note: Be careful processing user-cancel events during
exportSelectorContinue. Normally your plug-in would be expecting
another exportSelectorContinue call. If the user cancels, the next
call will be exportSelectorFinish, not exportSelectorContinue!

Scripting at exportSelectorFinish
If your plug-in is scripting-aware and you’ve changed any initial parameters,
you should pass a complete descriptor back to the scripting system in the
PIDescriptorParameters structure.

Behavior and caveats
If exportSelectorStart succeeds then Photoshop guarantees that
exportSelectorFinish will be called.

Photoshop may call exportSelectorFinish instead of
exportSelectorContinue if it detects a need to terminate while building
the requested buffer.

advanceState can be called from either exportSelectorStart or
exportSelectorContinue and will drive Photoshop through the process of
allocating and loading the requested buffer. Termination is reported as

!!

6. Export Modules

Adobe Photoshop Software Development Kit 77

userCanceledErr in the result from the advanceState call. Calling
advanceState when theRect is empty will result in nothing.

Error return values
The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer. These
errors and more detail is available in Examples/CIncludes/PIExport.h.

#define exportBadParameters –30200 // an error with the parameters
#define exportBadMode –30201 // module does not support <mode> images

6. Export Modules

Adobe Photoshop Software Development Kit 78

The Export parameter block

The pluginParamBlock parameter passed to your plug–in module’s entry
point contains a pointer to an ExportRecord structure with the following
fields. This structure is declared in PIExport.h.

Table 6–2: ExportRecord structure

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s serial
number. Plug–in modules can use this value for
copy protection, if desired.

TestAbortProc abortProc This field contains a pointer to the TestAbort
callback.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback. This procedure
should only be called during the actual main
operation of the plug–in, not during long
operations during the preliminary user inter-
face.

int32 maxData Photoshop initializes this field to the maxi-
mum of number of bytes it can free up. You
may reduce this value during in your
exportSelectorPrepare handler. The
exportSelectorContinue handler should
process the image in pieces no larger than
maxData, less the size of any large tables or
scratch areas it has allocated.

int16 imageMode The mode of the image being exported (gray-
scale, RGB Color, etc.). See PIExport.h for
values. Your exportSelectorStart handler
should return an exportBadMode error if it is
unable to process this mode of image.

Point imageSize The image’s width, imageSize.h, and height,
imageSize.v, in pixels.

int16 depth The image’s resolution in bits per pixel per
plane. The only possible settings are 1 for bit-
map mode images, and 8 for all other modes.

int16 planes The number of channels in the image. For
example, if an RGB image without alpha chan-
nels is being processed, this field will be set to
3.

Fixed imageHRes The image’s horizontal and vertical resolution
in terms of pixels per inch. These are fixed
point 16-binary digit numbers.Fixed imageVRes

LookUpTable redLUT If an indexed color or duotone mode image is
being processed, these fields will contain its
color table.LookUpTable greenLUT

LookUpTable blueLUT

Rect theRect Your exportSelectorStart and
exportSelectorContinue handlers should
set this field to request a piece of the image
for processing. It should be set to an empty
rectangle when complete.

int16 loPlane Your exportSelectorStart and
exportSelectorContinue handlers should
set these fields to the first and last planes to
process next.

int16 hiPlane

6. Export Modules

Adobe Photoshop Software Development Kit 79

void * data This field contains a pointer to the requested
image data. If more than one plane has been
requested (loPlane≠hiPlane), the data is
interleaved.

int32 rowBytes The offset between rows for the requested
image data.

Str255 fileName The name of the file the image was read from.
File-exporting modules should use this field as
the default name for saving.

int16 vRefNum The volume reference number of the file the
image was read from.

Boolean dirty If your plug–in is used to save an image into a
file, you should set this field to TRUE to
prompt the user to save any unsaved changes
when the image is eventually closed. If your
module outputs to a printer or other hardware
device, you should set this to FALSE. This is
initialized as TRUE. It does not reflect whether
other unsaved changes have been made.

Rect selectBBox The bounding box of the current selection. If
there is no current selection, this is an empty
rectangle.

OSType hostSig The plug–in host provides its signature to your
plug–in module in this field. Photoshop’s sig-
nature is 8BIM.

HostProc hostProc If not NULL, this field contains a pointer to a
host–defined callback procedure that can do
anything the host wishes. Plug–ins should ver-
ify hostSig before calling this procedure. This
provides a mechanism for hosts to extend the
plug–in interface to support application spe-
cific features.

Handle duotoneInfo When exporting a duotone mode image, the
host allocates a handle and fills it with the
duotone information. The format of the infor-
mation is the same as that required by Import
modules, and should be treated as a black box
by plug–ins.

int16 thePlane Either: Currently selected channel; –1 if a com-
posite color channel; –2 if some other combi-
nation of channels.

PlugInMonitor monitor This field contains the monitor setup informa-
tion for the host. See Appendix A.

void * platformData This field contains a pointer to platform spe-
cific data. Not used under the Mac OS.

BufferProcs * bufferProcs Buffer callback suite. See chapter 3.

ResourceProcs * resourceProcs Pseudo–Resource callback suite. See chapter 3.

ProcessEventProc processEvent ProcessEvent callback. See chapter 3.

DisplayPixelsProc displayPixels DisplayPixels callback. See chapter 3.

HandleProcs * handleProcs Handle callback suite. See chapter 3.

ColorServicesProc colorServices ColorServices callback suite. See chapter 3..

GetPropertyProc getProperty Obsolete Property suite.

This direct callback has been replaced by
PropertyProcs (see below), but is main-
tained here for backwards compatibility.

Table 6–2: ExportRecord structure (Continued)

Type Field Description

6. Export Modules

Adobe Photoshop Software Development Kit 80

AdvanceStateProc advanceState The advanceState callback allows you to
drive the interaction through the inner
exportSelectorContinue loop without
actually returning from the plug–in. If it
returns an error, then the plug–in generally
should treat this as a continue error and pass
it on when it returns.

For documents with transparency, the Export module is passed the merged data together with the
layer mask for the current target layer. This information is contained in the following fields:

int16 layerPlanes This field contains the number of planes of
data possibly governed by a transparency
mask.

int16 transparencyMask This field contains 1 or 0 indicating whether
the data is governed by a transparency mask.

int16 layerMasks This field contains the number of layers masks
(currently 1 or 0) for which 255 = fully opaque.
In Photoshop 3.0.4+, layer masks are not visi-
ble to Export modules since they are layer
properties rather than document properties.

int16 invertedLayerMasks This field contains the number of layers masks
(currently 1 or 0) for which 255 = fully trans-
parent. In Photoshop 3.0.4+, layer masks are
not visible to Export modules since they are
layer properties rather than document proper-
ties.

int16 nonLayerPlanes This field contains the number of planes of
non–layer data, e.g., flat data or alpha chan-
nels.

The planes are arranged in that order. Thus,
an RGB image with an alpha channel and a
layer mask on the current target layer would
appear as: red, green, blue, transparency, layer
mask, alpha channel

These fields are new since version 3.0.4 of Adobe Photoshop.

ImageServicesProcs * imageServicesProcs Image Services callback suite. See chapter 3.

int16 tileWidth The host sets the width and height of the tiles.
Best size for you to work in, if possible.

int16 tileHeight

Point tileOrigin The origin point of the tiling system.

PropertyProcs * propertyProcs Property callback suite. See chapter 3.

These fields are new since version 4.0 of Adobe Photoshop.

PIDescriptorParameters * descriptorParameters Descriptor suite. See chapter 3.

Str255 * errorString If you return with result=errReportString
then whatever string you store here will be
displayed as: “Cannot complete operation
because string”.

ChannelPortProcs * channelPortProcs Channel Ports callback suite. See chapter 3.

ReadImageDocumentDesc documentInfo The Channel Ports document information.

char[178] reserved Reserved for future use. Set to zero.

Table 6–2: ExportRecord structure (Continued)

Type Field Description

Adobe Photoshop Software Development Kit 81

77. Filter Modules

Filter plug-in modules modify a selected area of an image, and are accessed
under the Filter menu. Filter actions range from subtle shifts of hue or
brightness, to wild changes that create stunning visual effects.

Examples/Filter/Dissolve–with–AppleScript
Dissolve–with–AppleScript is a sample filter plug–in which also demonstrates
how to manipulate layers. It’s terminology and scripting is built for
AppleScript compatibility.

Examples/Filter/Dissolve–sans–AppleScript
Dissolve–sans–AppleScript is exactly the same filter as Dissolve– with–AppleScript,
except its terminology and scripting is built for host scripting only and is not
AppleScript compliant. It is an example of how to quickly build a Filter plug-
in module for host-scripting compliance without having to delve into the
caveats for AppleScript compatibility issues. An 'aete' resource is still
required so that parameters are displayed correctly in the Actions palette.

Examples/Filter/Propetizer
Propetizer is a utility filter that demonstrates different properties.

Examples/Filter/ColorMunger
ColorMunger is a utility filter that exercises the Color Services callback suite.

Table 7–1: Filter file types

OS Filetype/extension

Mac OS 8BFM

Windows .8BF

7. Filter Modules

Adobe Photoshop Software Development Kit 82

Calling sequence

When the user invokes a Filter plug–in by selecting its name from the Filter
menu, Adobe Photoshop calls it with the sequence of selector values shown
in the figure above. The actions for these selectors is discussed next.

filterSelectorParameters
If the plug–in filter has any parameters that the user can set, it should
prompt the user and save the parameters in a relocatable memory block
whose handle is stored in the parameters field. Photoshop initializes the
parameters field to NULL when starting up.

This routine may or may not be called depending on how the user invokes
the filter. After a filter has been invoked once, the user may re–apply that
same filter with the same parameters. This is the “Last Filter” command in
the Filter menu. When Last Filter is selected, the plug–in host does not call
filterSelectorParameters, and the user will not be shown any dialogs to
enter new parameters. Due to this, always check, validate, and initialize if
necessary, your parameters handle in filterSelectorStart before using it.

Note: Your plug–in should validate the contents of its parameter
handle whenever it starts processing if there is a danger of it
crashing from bad parameters.

Since the same parameters can be used on different size images, the
parameters should not depend on the size or mode of the image, or the size
of the filtered area (these fields are not even defined at this point).

Filter

Command

filterSelectorContinue

filterSelectorParameters

Initialize parameters. Set flag
to display user interface.

filterSelectorStart

Check scripting parameters ver-
sus our parameters. Update if
necessary. Show UI if flagged/
needed.

Set initial image rectangles to
process.

Filter a portion of the image.

Update image rectangles for
next pass.

Loop until error or
empty rectangle.

filterSelectorFinish

Clean up. Pass back scripting
parameters.

Done.

“Last Filter”

Command

Adobe Photoshop® 4.0 Dissolve Filter Plug-in

filterSelectorPrepare

Calculate memory require-
ments and allocate memory
needed.

If using
AdvanceState, filter
image and loop
until error or empty
rectangle.

!!

7. Filter Modules

Adobe Photoshop Software Development Kit 83

The parameter block should contain the following information:

1. A signature so that the plug–in can do a quick confirmation that this is,
in fact, one of its parameter blocks.

2. A version number so that the plug–in can evolve without requiring a new
signature.

3. A convention regarding byte–order for cross–platform support (or a
flag to indicate what byte order is being used).

You may wish to design your filter so that you store default values or the
last used set of values in the filter plug-in’s Mac OS resource fork or a
Windows external file. This way, you can save preference settings for your
plug–in that will be consistent every time the host application runs.

Parameter block and scripting
The scripting system passes its parameters at every selector call. While it is
possible to use the scripting system to store all your parameters, for
backwards compatibility, it is recommended you track your parameters with
your own parameter block. Once your parameter structure is validated, you
should read your scripting-passed parameters and override your structure
with them.

The most effective way to do this is:

1. First call a ValidateMyParameters routine to validate (and initialize if
necessary) your global parameters.

2. Then call a ReadScriptingParameters routine to read the scripting parame-
ters and then write them to your global parameters structure.

This way, the scripting system overrides your parameters, but you can use
the initial values if the scripting system is unavailable or has parameter
errors, and you can use your global parameters to pass between your
functions.

filterSelectorPrepare
The filterSelectorPrepare selector calls allow your plug–in module to adjust
Photoshop’s memory allocation algorithm. The “Last Filter” command
initially executes this selector call first.

Photoshop sets maxSpace to the maximum number of bytes it can allocate to
your plug–in. You may want to reduce maxSpace for increased efficiency.
Refer to chapter 3 for details on memory management strategies.

imageSize, planes & filterRect
The fields such as imageSize, planes, and filterRect, have now been defined, and
can be used in computing your buffer size requirements. Refer to table 8-1
for more detail.

bufferSpace
If your plug–in filter module is planning on allocating any large buffers or
tables over 32k, you should set the bufferSpace field to the number of bytes
you are planning to allocate. Photoshop will then try to free up that amount
of memory before calling the plug–in’s filterSelectorStart handler.

Alternatively, you can set this field to zero and use the buffer and handle
suites if they are available. See chapter 2 and 3 for a discussion on maxSpace
and bufferSpace.

7. Filter Modules

Adobe Photoshop Software Development Kit 84

filterSelectorStart
At filterSelectorStart you should validate your parameters block, update
your parameters based on the passed scripting parameters, and show your
user interface, if requested. Then drop into your processing routine.

advanceState and filterSelectorStart
If you’re using AdvanceState, the core of your filter may occur in this
routine. Once done processing, set inRect=outRect=maskRect=NULL.

If you are not using AdvanceState, then you should initialize your
processing and set-up the first chunk of image to be manipulated in
filterSelectorContinue.

inRect, outRect & maskRect
Your plug–in should set inRect and outRect (and maskRect, if it is using the
selection mask) to request the first areas of the image to work on.

If at all possible, you should process the image in pieces to minimize memory
requirements. Unless there is a lot of startup/shutdown overhead on each
call (for example, communicating with an external DSP), tiling the image
with rectangles measuring 64x64 to 128x128 seems to work fairly well.

Tiling, as opposed to row-oriented or column-oriented processing, also
seems to be more operable for multi-processors. Multi-processors take well
to spawning multiple separate threads, each processing a tile, but have a
hard time (if at all) with rows or columns.

filterSelectorContinue
Your filterSelectorContinue handler is called repeatedly as long as at least one
of the inRect, outRect, or maskRect fields is not empty.

inData, outData & maskData
Your handler should process the data pointed by inData and outData (and
possibly maskData) and then update inRect and outRect (and maskRect, if
using the selection mask) to request the next area of the image to process.

filterSelectorFinish
This call allows the plug–in to clean up after a filtering operation. This call is
made if and only if the filterSelectorStart handler returns without
error, even if the filterSelectorContinue routine returns an error.

If Photoshop detects Command–period in the Mac OS or Escape in Windows
between calls to the filterSelectorContinue routine, it will call the
filterSelectorFinish routine.

Note: Be careful processing user-cancel events during
filterSelectorContinue. Normally your plug-in would be
expecting another filterSelectorContinue call. If the user cancels,
the next call will be filterSelectorFinish, not
filterSelectorContinue!

Scripting at filterSelectorFinish
If your plug-in is scripting-aware and you’ve changed any initial parameters,
you should pass a complete descriptor back to the scripting system in the
PIDescriptorParameters structure.

Behavior and caveats
If filterSelectorStart succeeds, then Photoshop guarantees that
filterSelectorFinish will be called.

!!

7. Filter Modules

Adobe Photoshop Software Development Kit 85

Photoshop may call filterSelectorFinish instead of
filterSelectorContinue if it detects a need to terminate while fulfilling a
request.

advanceState may be called from either filterSelectorStart or
filterSelectorContinue and will drive Photoshop through the buffer set
up code. If the rectangles are empty, the buffers will simply be cleared.
Termination is reported as userCanceledErr in the result from the
advanceState call.

Error return values
The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer. These
errors and more detail is available in Examples/CIncludes/PIFilter.h.

#define filterBadParameters –30100 // a problem with the interface
#define filterBadMode –30101 // module doesn’t support <mode> images

7. Filter Modules

Adobe Photoshop Software Development Kit 86

The Filter parameter block

The pluginParamBlock parameter passed to your plug–in module’s entry
point contains a pointer to a FilterRecord structure with the following
fields. This structure is declared in PIFilter.h.

Table 7–2: FilterRecord structure

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s
serial number. Your plug–in module can
use this value for copy protection, if
desired.

TestAbortProc abortProc This field contains a pointer to the Test-
Abort callback documented in chapter 3.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback documented
in chapter 3. This procedure should only
be called during the actual main opera-
tion of the plug–in, not during long
operations during the preliminary user
interface such as building a preview.

Handle parameters Photoshop initializes this handle to NULL
at startup. If your plug–in filter has any
parameters that the user can set, you
should allocate a relocatable block in
your
filterSelectorParameters handler,
store the parameters in the block, and
store the block’s handle in this field.

Point imageSize The image’s width, imageSize.h, and
height, imageSize.v, in pixels. If the
selection is floating, this field instead
holds the size of the floating selection.

int16 planes For version 4+ filters, this field contains
the total number of active planes in the
image, including alpha channels. The
image mode should be determined by
looking at imageMode. For version 0-3
filters, this field will be equal to 3 if fil-
tering the RGB channel of an RGB color
image, or 4 if filtering the CMYK channel
of a CMYK color image. Otherwise it will
be equal to 1.

Rect filterRect The area of the image to be filtered. This
is the bounding box of the selection, or
if there is no selection, the bounding box
of the image. If the selection is not a per-
fect rectangle, Photoshop automatically
masks the changes to the area actually
selected (unless the plug–in turns off this
feature using autoMask). This allows
most filters to ignore the selection mask,
and still operate correctly.

RGBColor background The current background and foreground
colors. If planes is equal to 1, these will
have already been converted to mono-
chrome. (Obsolete: Use backColor and
foreColor.)

RGBColor foreground

int32 maxSpace This lets the plug–in know the maximum
number of bytes of information it can
expect to be able to access at once (input
area size + output area size + mask area
size + bufferSpace).

7. Filter Modules

Adobe Photoshop Software Development Kit 87

int32 bufferSpace If the plug–in is planning on allocating
any large internal buffers or tables, it
should set this field during the
filterSelectorPrepare call to the
number of bytes it is planning to allo-
cate. Photoshop will then try to free up
the requested amount of space before
calling the
filterSelectorStart routine.

Rect inRect Set this field in your filterSelector-
Start and filterSelectorContinue
handlers to request access to an area of
the input image. The area requested
must be a subset of the image’s bound-
ing rectangle. After the entire filter-
Rect has been filtered, this field should
be set to an empty rectangle.

int16 inLoPlane Your filterSelectorStart and
filterSelectorContinue handlers
should set these fields to the first and
last input planes to process next.

int16 inHiPlane

Rect outRect Your plug–in should set this field in its
filterSelectorStart and
filterSelectorContinue handlers to
request access to an area of the output
image. The area requested must be a
subset of filterRect. After the entire
filterRect has been filtered, this field
should be set to an empty rectangle.

int16 outLoPlane Your filterSelectorStart and
filterSelectorContinue handlers
should set these fields to the first and
last output planes to process next.

int16 outHiPlane

void * inData This field contains a pointer to the
requested input image data. If more than
one plane has been requested
(inLoPlane≠inHiPlane), the data is
interleaved.

int32 inRowBytes The offset between rows of the input
image data. There may or may not be
pad bytes at the end of each row.

void * outData This field contains a pointer to the
requested output image data. If more
than one plane has been requested
(outLoPlane≠outHiPlane), the data is
interleaved.

int32 outRowBytes The offset between rows of the output
image data. There may or may not be
pad bytes at the end of each row.

Boolean isFloating This field is set TRUE if and only if the
selection is floating.

Boolean haveMask This field is set TRUE if and only if a non–
rectangular area has been selected.

Boolean autoMask By default, Photoshop automatically
masks any changes to the area actually
selected. If isFloating=FALSE, and
haveMask=TRUE, your plug–in can turn
off this feature by setting this field to
FALSE. It can then perform its own mask-
ing.

Table 7–2: FilterRecord structure (Continued)

Type Field Description

7. Filter Modules

Adobe Photoshop Software Development Kit 88

Rect maskRect If haveMask=TRUE, and your plug–in
needs access to the selection mask, your
should set this field in your filterSe-
lectorStart and filterSelector-
Continue handlers to request access to
an area of the selection mask. The
requested area must be a subset of fil-
terRect. This field is ignored if there is
no selection mask.

void * maskData A pointer to the requested mask data.
The data is in the form of an array of
bytes, one byte per pixel of the selected
area. The bytes range from (0...255),
where 0=no mask (selected) and
255=masked (not selected). Use
maskRowBytes to iterate over the scan
lines of the mask.

int32 maskRowBytes The offset between rows of the mask
data.

FilterColor backColor The current background and foreground
colors, in the color space native to the
image.FilterColor foreColor

OSType hostSig The plug–in host provides its signature to
your plug–in module in this field. Photo-
shop’s signature is 8BIM.

HostProc hostProc If not NULL, this field contains a pointer
to a host–defined callback procedure
that can do anything the host wishes.
Plug–ins should verify hostSig before
calling this procedure. This provides a
mechanism for hosts to extend the plug–
in interface to support application spe-
cific features.

int16 imageMode The mode of the image being filtered
(Gray Scale, RGB Color, etc.). See PIFil-
ter.h for values. Your filterSelec-
torStart handler should return
filterBadMode if it is unable to process
this mode of image.

Fixed imageHRes The image’s horizontal and vertical reso-
lution in terms of pixels per inch. These
are fixed point numbers (16.16).Fixed imageVRes

Point floatCoord The coordinate of the top–left corner of
the selection in the main image’s coordi-
nate space.

Point wholeSize The size in pixels of the entire main
image.

PlugInMonitor monitor This field contains the monitor setup
information for the host. See Appendix
A.

void * platformData This field contains a pointer to platform
specific data. Not used under Mac OS.

BufferProcs * bufferProcs This field contains a pointer to the Buffer
suite if it is supported by the host, other-
wise NULL. See chapter 3.

ResourceProcs * resourceProcs This field contains a pointer to the
Pseudo–Resource suite if it is supported
by the host, otherwise NULL. See chapter
3.

Table 7–2: FilterRecord structure (Continued)

Type Field Description

7. Filter Modules

Adobe Photoshop Software Development Kit 89

ProcessEventProc processEvent This field contains a pointer to the
ProcessEvent callback. It contains NULL
if not supported. See chapter 3.

DisplayPixelsProc displayPixels This field contains a pointer to the Dis-
playPixels callback. It contains NULL
not supported. See chapter 3.

HandleProcs * handleProcs This field contains a pointer to the Han-
dle callback suite if it is supported by the
host, otherwise NULL. See chapter 3.

These fields are new since version 3.0 of Adobe Photoshop.

Boolean supportsDummyPlanes Does the host support the plug–in
requesting non–existent planes? (see
dummyplane fields, below) This field is
set by the host to indicate whether it
respects the dummy planes fields.

Boolean supportsAlternateLayouts Does the host support data layouts other
than rows of columns of planes? This
field is set by the plug–in host to indicate
whether it respects the wantLayout
field.

int16 wantLayout The desired layout for the data. See
PIGeneral.h. The plug–in host only
looks at this field if it has also set
supportsAlternateLayouts.

int16 filterCase The type of data being filtered. Flat,
floating, layer with editable transpar-
ency, layer with preserved transparency,
with and without a selection. A zero
indicates that the host did not set this
field, and the plug-in should look at
haveMask and isFloating.

int16 dummyPlaneValue The value to store into any dummy
planes. 0..255 = specific value. –1 = leave
undefined.

void * premiereHook At one time was used for Adobe Pre-
miere plug-in accessibility. Obsolete.

AdvanceStateProc advanceState The AdvanceState callback. See chapter
3.

Boolean supportsAbsolute Does the host support absolute channel
indexing? Absolute channel indexing
ignores visiblity concerns and numbers
the channels from zero starting with the
first composite channel. If existing, trans-
parency follows, followed by any layer
masks, then alpha channels.

Boolean wantsAbsolute Enable absolute channel indexing for the
input. This is only useful if
supportsAbsolute=TRUE. Absolute
indexing is useful for things like access-
ing alpha channels.

GetPropertyProc getProperty The GetProperty callback.

This direct callback pointer has been
superceded by the Property callback
suite, but is maintained here for back-
wards compatibility. See chapter 3.

Table 7–2: FilterRecord structure (Continued)

Type Field Description

7. Filter Modules

Adobe Photoshop Software Development Kit 90

Boolean cannotUndo If the filter makes a non–undoable
change, then setting this field will pre-
vent Photoshop from offering undo for
the filter. This is rarely needed and usu-
ally frustrates users.

Boolean supportsPadding Does the host support requests outside
the image area? If so, see padding fields
below.

int16 inputPadding The input, output, and mask can be
padded when loaded. The options for
padding include specifying a specific
value (0...255), specifying
plugInWantsEdgeReplication,
specifying that the data be left random
(plugInDoesNotWantPadding), or
requesting that an error be signaled for
an out of bounds request
(plugInWantsErrorOnBoundsExceptio
n). The error case is the default since
previous versions would have errored out
in this event.

int16 outputPadding

int16 maskPadding

char samplingSupport Does the host support non–1:1 sampling
of the input and mask? Photoshop 3.0.1+
supports integral sampling steps (it will
round up to get there). This is indicated
by the value
hostSupportsIntegralSampling. Futu
re versions may support non–integral
sampling steps. This will be indicated
with
hostSupportsFractionalSampling.

char reservedByte (for alignment)

Fixed inputRate The sampling rate for the input. The
effective input rectangle in normal sam-
pling coordinates is inRect * inpu-
tRate. For example, (inRect.top *
inputRate, inRect.left * inpu-
tRate, inRect.bottom * inputRate,
inRect.right * inputRate). inpu-
tRate is rounded to the nearest integer
in Photoshop 3.0.1+. Since the scaled
rectangle may exceed the real source
data, it is a good idea to set some sort of
padding for the input as well.

Fixed maskRate Like inputRate, but as applied to the
mask data.

ColorServicesProc colorServices Function pointer to access color services
routines. See chapter 3.

int16 inLayerPlanes The number of planes (channels) in each
category for the input data. This is the
order in which the planes are presented
to the plug–in and as such gives the
structure of the input data. The inverted
layer masks are ones where 0 = fully visi-
ble and 255 = completely hidden. If these
are all zero, then the plug–in should
assume the host has not set them.

int16 inTransparencyMask

int16 inLayerMasks

int16 inInvertedLayerMasks

int16 inNonLayerPlanes

Table 7–2: FilterRecord structure (Continued)

Type Field Description

7. Filter Modules

Adobe Photoshop Software Development Kit 91

int16 outLayerPlanes The structure of the output data. This
will be a prefix of the input planes. For
example, in the protected transparency
case, the input can contain a transpar-
ency mask and a layer mask while the
output will contain just the layerPlanes.

int16 outTransparencyMask

int16 outLayerMasks

int16 outInvertedLayerMasks

int16 outNonLayerPlanes

int16 absLayerPlanes The host sets these as the structure of
the input data when wantsAbso-
lute=TRUE.int16 absTransparencyMask

int16 absLayerMasks

int16 absInvertedLayerMasks

int16 absNonLayerPlanes

int16 inPreDummyPlanes The number of extra planes before and
after the input data. This is only avail-
able if supportsDummyChannels=TRUE.
This is used for things like forcing RGB
data to appear as RGBA.

int16 inPostDummyPlanes

int16 outPreDummyPlanes Like inPreDummyPlanes and
inPostDummyPlanes, except it applies
to the output data.int16 outPostDummyPlanes

int32 inColumnBytes The step from column to column in the
input. If using the layout options, this
value may change from being equal to
the number of planes. If zero, assume the
host has not set it.

int32 inPlaneBytes The step from plane to plane in the
input. Normally 1, but this changes if the
plug–in uses the layout options. If zero,
assume the host has not set it.

int32 outColumnBytes The output equivalent of inColumn-
Bytes and inPlaneBytes.

int32 outPlaneBytes

These fields are new since version 3.0.4 of Adobe Photoshop.

ImageServicesProcs * imageServicesProcs This is a pointer to the Image Services
callback suite. See chapter 3.

int16 inTileHeight The host will set the tiling for the input.
Best to work at this size, if possible.

int16 inTileWidth

Point inTileOrigin

int16 absTileHeight The host will set the tiling for the abso-
lute data. Best to work at this size, if
possible.int16 absTileWidth

Point absTileOrigin

int16 outTileHeight The host will set the tiling for the out-
put. Best to work at this size, if possible.

int16 outTileWidth

Point outTileOrigin

int16 maskTileHeight The host will set the tiling for the mask.
Best to work at this size, if possible.

int16 maskTileWidth

Point maskTileOrigin

These fields are new since version 4.0 of Adobe Photoshop.

PIDescriptorParameters * descriptorParameters Descriptor callback suite. See chapter 3.

Table 7–2: FilterRecord structure (Continued)

Type Field Description

7. Filter Modules

Adobe Photoshop Software Development Kit 92

Str 255 * errorString If you return with result=errReportS-
tring then whatever string you store
here will be displayed as: “Cannot com-
plete operation because string”.

ChannelPortProcs * channelPortProcs Channel Ports callback suite. See chapter
3.

ReadImageDocumentDesc * documentInfo Suite for passing pixels through channel
ports.

char[78] reserved Reserved for future use. Set to zero.

Table 7–2: FilterRecord structure (Continued)

Type Field Description

Adobe Photoshop Software Development Kit 93

88. Format Modules

Format plug–in modules, sometimes referred to as Image Format, or File
Format modules, are used to add new file types to the Open..., Save, and
Save As... commands. Adobe Photoshop ships with several file format
modules including GIF, MacPaint, and BMP.

Import and Export modules may also be used to read and write files. You
should create a Format module if you want your users to treat your files in
the same fashion as native Photoshop files. Use a Format module if:

1. You want users to be able to create, modify, save, and re–open files in
your format. If your format uses a lossy compression algorithm, you
may want to consider image degradation issues for this situation.

2. You want users to be able to double–click a document to launch Photo-
shop or associate your file extension with the Photoshop application.

You may not want to use a Format module if:

1. With respect to Photoshop, your file format is read–only or write–only.

2. The image compression and/or color space conversion on multiple
reading and writing would result in unacceptable image degradation.

Examples/Format/SimpleFormat
SimpleFormat is a sample Format module. This module is written to use the
AdvanceStateProc callback, introduced in Photoshop 3.0.

Table 8–1: Format file types

OS Filetype/extension

Mac OS 8BIF

Windows .8BI

8. Format Modules

Adobe Photoshop Software Development Kit 94

Format module operations

File Format plug–in modules have two main functions: reading an image
from a file, and writing an image to a file.

Reading a file is a two step process:

1. formatSelectorFilterFile is used to determine whether a Format module
can read a particular file. This selector is called when the user performs
an Open... command, and is described in more detail on the next page.

2. The read sequence is used to read image files.

Writing a file consists of three sequences:

1. The options sequence is used to request save options from the user. It
will only be used when first saving a document in a particular format.

2. The estimate sequence estimates the file size so that the host can decide
whether there is enough disk space available.

3. The write sequence actually writes the file.

Note: Your plug–in should validate the contents of its globals and
parameters whenever it starts processing if there is a danger of it
crashing from bad parameters.

Globals and scripting
The scripting system passes its parameters at every selector call. While it is
possible to use the scripting system to store all your parameters, for
backwards compatibility, it is recommended you track your parameters with
your own globals. Once your globals are initialized, you should read your
scripting-passed parameters and override your globals with them.

The most effective way to do this is:

1. First call a ValidateMyParameters routine to validate (and initialize if
necessary) your global parameters.

2. Then call a ReadScriptingParameters routine to read the scripting parame-
ters and then write them to your global structure.

This way, the scripting system overrides your parameters, but you can use
the initial values if the scripting system is unavailable or has parameter
errors, and you can use your globals to pass between your functions.

!!

8. Format Modules

Adobe Photoshop Software Development Kit 95

Reading a file (file filtering)

When the user selects a file with the Open... command from the file menu,
there may be one or more Format modules that list the Mac OS file type or
Windows file extension as a supported format. For each such plug–in
module, Photoshop will call the plug–in with formatSelectorFilterFile.
The plug–in module should then examine the file to determine whether the
file is one that it can process, and indicate this in its result parameter:

if (module can read this file)
*result = noErr;

else

*result = formatCannotRead;

If more than one format module can read the file, Photoshop uses the
following priority scheme to determine which plug–in module to use:

1. The module with the first PICategoryProperty string (sorted alpha-
betically) will be used. Modules with no PICategoryProperty will
default to their PINameProperty for this comparison.

2. If two or more modules have matching category names, the module
with the highest PIPriorityProperty value will be used.

3. If two or more modules have matching category and priority, which
module will be selected is undefined.

Choose format plug–in
to use (see below), and
read the file (see next
page).

Open

Command

formatSelectorFilterFile

Indicate whether this module
can read the file.

formatSelectorFilterFile

Indicate whether this module
can read the file.

BarneyFormat

BettyFormat
formatSelectorFilterFile

Indicate whether this module
can read the file.

•
•
•
etc.

Adobe Photoshop® 4.0 File Format Plug-in

8. Format Modules

Adobe Photoshop Software Development Kit 96

Reading a file (read sequence)

formatSelectorFilterFile
This selector is discussed in more detail on the previous page. The rest of this
sequence will be called only if your plug–in module returns noErr from this
call, and your module is selected by the plug–in host to process the file.

formatSelectorReadPrepare
This selector allows your plug–in module to adjust Photoshop’s memory
allocation algorithm. Photoshop sets maxData to the maximum number of
bytes it can allocate to your plug–in. You may want to reduce maxData for
increased efficiency. Refer to chapter 3 for details on memory management
strategies.

formatSelectorReadStart
This selector allows the plug–in module to begin its interaction with the
host.

Scripting at formatSelectorReadStart
If you are supporting scripting, read any scripting parameters here to
override any default parameters. The scripting system will also return
whether to show your dialog or not.

Loop until error or
data = NULL.

Open

Command

formatSelectorReadContinue

formatSelectorReadPrepare

Calculate memory require-
ments.

formatSelectorReadStart

Allocate buffers for reading and
processing image file.

Read any file header informa-
tion.

Read file, process and return first
portion of image data.

Read file, process, and re-
turn next portion of image.

formatSelectorReadFinish

Read any file trailer infor-
mation.

Clean up.
Done.

formatSelectorFilterFile

(See previous page.)

Adobe Photoshop® 4.0 File Format Plug-in

8. Format Modules

Adobe Photoshop Software Development Kit 97

imageMode & imageSize
You should initialize imageMode, imageSize, depth, planes, imageHRes and
imageVRes.

Reading an indexed color image (redLut, greenLut & blueLUT)
If an indexed color image is being opened, you should also set redLUT,
greenLUT and blueLUT.

imageRsrcData
If your plug–in has a block of image resources you wish to have processed,
you should read it in from the file and set imageRsrcData to be a handle to
the resource data. For more information about Photoshop image resources,
see chapter 11. Document File Formats.

theRect, loPlane & hiPlane
Your plug–in should allocate and read the first pixel image data buffer as
appropriate. The area of the image being returned to the plug–in host is
specified by theRect, loPlane, and hiPlane.

data, colBytes, rowBytes, planeBytes & planeMap
The actual pixel data is pointed by data. The colBytes, rowBytes, planeBytes, and
planeMap fields must specify the organization of the data.

Photoshop is very flexible in the format in which image data can be read. For
example, to read just the red plane of an RGB color image, use the
parameter values in Table 8–2.

If you wish to read the RGB data in interleaved form (RGBRGB...), use the
values shown in Table 8–3.

formatSelectorReadContinue
This selector may be used to process a sequence of areas within the image.
Your handler should process any incoming data and then, just as with the
start call, set up theRect, loPlane, hiPlane, planeMap, data, colBytes,
rowBytes, and planeBytes to describe the next chunk of the image being
returned. The host will keep calling with formatSelectorReadContinue
until you set data=NULL.

Table 8–2: Read red plane of RGB

Parameter Value

loPlane 0

hiPlane 0

colBytes 1

rowBytes width of the area being read

planeBytes ignored, since loPlane=hiPlane.

Table 8–3: Read RGB data in interleaved form

Parameter Value

loPlane 0

hiPlane 2

colBytes 3

rowBytes 3 * width of the area being read

planeBytes 1

8. Format Modules

Adobe Photoshop Software Development Kit 98

formatSelectorReadFinish
The formatSelectorReadFinish selector allows you to clean–up from the
read operation just performed. This call is made by the plug–in host if and
only if formatSelectorReadStart returned without error, even if one of
the formatSelectorReadContinue calls results in an error.

Most plug–ins will at least need to free the buffer used to return pixel data
if this has not been done previously.

If Photoshop detects Command–period in the Mac OS or Escape in Windows
while processing the results of a formatSelectorReadContinue call, it will
call formatSelectorReadFinish.

Note: Be careful processing user-cancel events during
formatSelectorReadContinue. Normally your plug-in would be
expecting another formatSelectorReadContinue call. If the user
cancels, the next call will be formatSelectorReadFinish, not
formatSelectorReadContinue!

Scripting at formatSelectorReadFinish
If your plug-in is scripting-aware and you’ve changed any initial parameters,
you should pass a complete descriptor back to the scripting system in the
PIDescriptorParameters structure.

!!

8. Format Modules

Adobe Photoshop Software Development Kit 99

Writing a file

Writing a file involves either two or three distinct sequences, each similar in
structure. The details of these sequences are described on the following
pages.

When a document is first saved, Photoshop calls your Format plug–in in this
order:

1. the options sequence,

2. the estimate sequence,

3. the write sequence.

After a document has been saved once, each time the user saves the file
again, the plug-in is called without the options sequence:

1. the estimate sequence,

2. the write sequence.

Initial Save

Command

format write sequence

format options sequence

Ask user for any file specific in-
formation needed when the
file is created.

format estimate sequence

Calculate the amount of disk
space needed to save the file.

Write image data to the file.

Done.

Subsequent Save

Commands

Adobe Photoshop® 4.0 File Format Plug-in

8. Format Modules

Adobe Photoshop Software Development Kit 100

Writing a file (options sequence)

formatSelectorOptionsPrepare
formatSelectorOptionsPrepare allows your plug–in module to adjust Photoshop’s
memory allocation algorithm. Photoshop sets maxData to the maximum
number of bytes it can allocate to your plug–in. You may want to reduce
maxData for increased efficiency. Refer to chapter 3 for details on memory
management strategies.

formatSelectorOptionsStart
formatSelectorOptionsStart allows you to determine whether the current
document can be saved in your file format, and if necessary, get any file
options from the user.

Scripting at formatSelectorOptionsStart
If you are supporting scripting, read any scripting parameters here to
override any default parameters. The scripting system will also return
whether to show your dialog or not.

If you need to examine the image to compute the file size, you can iterate
through the image data in formatSelectorOptionsContinue in the same fashion
as is done when writing the file to request sections of the image.

formatSelectorOptionsContinue
If the data field in the FormatRecord is set to NULL in the
formatSelectorOptionsStart call, this selector will not be called at all.
Otherwise, your plug–in can request parts of the image from which you
determine whether your plug–in module can store the file. Refer to
formatSelectorWriteStart and formatSelectorWriteContinue on the
following page for details.

You may also use the AdvanceStateProc to iterate through the image.

Initial Save

Command

formatSelectorOptionsContinue

formatSelectorOptionsPrepare

Set memory management
strategy.

formatSelectorOptionsStart

Present dialog to user to get any
file specific information needed
when file is first created.

Examine portion of image to cal-
culate disk space needed. (This
selector may be skipped.)

formatSelectorOptionsFinish

Clean up, if necessary.

Continue to estimate
sequence.

Loop until error or
theRect is empty.

Adobe Photoshop® 4.0 File Format Plug-in

8. Format Modules

Adobe Photoshop Software Development Kit 101

formatSelectorOptionsFinish
Perform any clean up, if necessary.

8. Format Modules

Adobe Photoshop Software Development Kit 102

Writing a file (estimate sequence)

formatSelectorEstimatePrepare
formatSelectorWritePrepare allows your plug–in module to adjust Photoshop’s
memory allocation algorithm. Photoshop sets maxData to the maximum
number of bytes it can allocate to your plug–in. You may want to reduce
maxData for increased efficiency. Refer to chapter 3 for details on memory
management strategies.

formatSelectorEstimateStart
Calculate the disk space needed to save the file. If you can calculate the file
size without examining the image data, you can set the minDataBytes and
maxDataBytes fields in the FormatRecord to the approximate size of your file
(due to compression, you may not be able to exactly calculate the final size),
and set data=NULL.

If you need to examine the image to compute the file size, you can iterate
through the image data in formatSelectorEstimateContinue in the same fashion
as is done when writing the file to request sections of the image.

formatSelectorEstimateContinue
If the data field in the FormatRecord is set to NULL in the
formatSelectorEstimateStart call, this selector will not be called at all.
Otherwise, your plug–in can request parts of the image from which you can
compute the minimum and maximum bytes to store the file. Refer to
formatSelectorWriteStart and formatSelectorWriteContinue on the
following page for details.

You may also use the AdvanceStateProc to iterate through the image.

formatSelectorEstimateFinish
Perform any clean up, if necessary.

Subsequent Save

Command

or continued
from options se-

formatSelectorEstimateContinue

formatSelectorEstimatePrepare

Calculate memory require-
ments.

formatSelectorEstimateStart

Calculate disk space needed
to save the file, or set up to
examine file.

Examine portion of image to cal-
culate disk space needed. (This
selector may be skipped.)

formatSelectorEstimateFinish

Clean up, if necessary.Continue to write
sequence.

Loop until error or
theRect is empty.

Adobe Photoshop® 4.0 File Format Plug-in

8. Format Modules

Adobe Photoshop Software Development Kit 103

Writing a file (write sequence)

formatSelectorWritePrepare
formatSelectorWritePrepare allows your plug–in module to adjust Photoshop’s
memory allocation algorithm. Photoshop sets maxData to the maximum
number of bytes it can allocate to your plug–in. You may want to reduce
maxData for increased efficiency. Refer to chapter 3 for details on memory
management strategies.

formatSelectorWriteStart
The formatSelectorReadStart selector call allows your plug–in module to
begin writing the file. On entry, the file to be written is open, and the file
pointer is positioned at the start of the file. You should write any file header
information, such as image resources, to the file.

Your plug–in should then indicate which portion of the image data to
provide for the first formatSelectorWriteContinue call.

theRect, loPlane & hiPlane
The area of the image being requested from the plug–in host is specified by
theRect, loPlane, and hiPlane.

data
The actual pixel data is pointed by data.

colBytes, rowBytes, planeBytes & planeMap
You must specify the organization of the data to be returned by the plug–in
host in the colBytes, rowBytes, planeBytes, and planeMap fields.

Loop until error or
theRect is empty.

formatSelectorWriteContinue

formatSelectorWritePrepare

Calculate memory require-
ments.

formatSelectorWriteStart

Allocate buffers for processing
image file.

Write any file header informa-
tion.

Set up request for first portion of
the image.

Write a portion of image.

Set up next request for portion
of image, or at end, write any file
trailer information.

formatSelectorWriteFinish

Clean up.

Done.

Continued from esti-
mate sequence.

Adobe Photoshop® 4.0 File Format Plug-in

8. Format Modules

Adobe Photoshop Software Development Kit 104

Photoshop is very flexible in the format in which image data can be
delivered to the plug–in. For example, to return just the red plane of an RGB
color image, use the parameter values in Table 7-3.

If you wish to return the RGB data in interleaved form (RGBRGB...), use the
values shown in Table 7-4.

formatSelectorWriteContinue
This selector is call repeatedly by the plug–in host to provide your plug–in
module some or all of the image data; your plug–in module should write this
data to file. If successful, set up theRect, loPlane, hiPlane, planeMap,
data, colBytes, rowBytes, and planeBytes to describe the next chunk of
the image being requested.

The host will keep calling your formatSelectorReadContinue handler until
you set theRect to an empty rectangle. Before returning after the last
image data has been written, write any file trailer information to the file.

formatSelectorWriteFinish
formatSelectorWriteFinish allows you to clean–up from the write operation just
performed. This call is made by the plug–in host if and only if
formatSelectorWriteStart returned without error, even if one of the
formatSelectorWriteContinue calls results in an error.

Most plug–ins will at least need to free the buffer used to hold pixel data if
this has not been done previously.

If Photoshop detects Command–period in the Mac OS or Escape in Windows
while processing the results of a formatSelectorWriteContinue call, it will
call the formatSelectorWriteFinish routine.

Note: Be careful processing user-cancel events during
formatSelectorWriteContinue. Normally your plug-in would be
expecting another formatSelectorWriteContinue call. If the user
cancels, the next call will be formatSelectorWriteFinish, not
formatSelectorWriteContinue!

Table 8–4: Return red plane of RGB

Parameter Value

loPlane 0

hiPlane 0

colBytes 1

rowBytes width of the area being returned

planeBytes ignored, since loPlane=hiPlane.

Table 8–5: Return RGB data in interleaved form

Parameter Value

loPlane 0

hiPlane 2

colBytes 3

rowBytes 3 * width of the area being read

planeBytes 1

!!

8. Format Modules

Adobe Photoshop Software Development Kit 105

Scripting at formatSelectorWriteFinish
If your plug-in is scripting-aware and you’ve changed any initial parameters,
you should pass a complete descriptor back to the scripting system in the
PIDescriptorParameters structure.

Image Resources
Photoshop documents can have other properties associated with them
besides pixel data. For example, documents typically contain page setup
information and pen tool paths.

Photoshop supports the concept of a block of data known as the image
resources for a file. Format plug–in modules can store and retrieve this
information if the file format definition allows for a place to put such an
arbitrary block of data (e.g., a TIFF tag or a PicComment).

Error return values
The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer. These
errors and more detail is available in PIFormat.h.

#define formatBadParameters -30500 // an error with the interface
#define formatCannotRead –30501 // no scanner installed

Note: When writing a file, if your plug–in module sets result to any
non–zero value, then no subsequent selector calls will be made by
Photoshop. For example, if in your formatSelectorOptionsStart
handler, you determine that the file cannot be saved, then none of
the remaining selectors will be called: options, estimate, nor write.

!!

8. Format Modules

Adobe Photoshop Software Development Kit 106

The Format parameter block

The pluginParamBlock parameter passed to your plug–in module’s entry
point contains a pointer to a FormatRecord structure with the following
fields. This structure is declared in PIFormat.h.

Table 8–6: FormatRecord structure

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s serial
number. Plug–in modules can use this value for
copy protection, if desired.

TestAbortProc abortProc This field contains a pointer to the TestAbort
callback. See chapter 3.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback. This procedure
should only be called during the actual main
operation of the plug–in, not during long oper-
ations during the preliminary user interface.
See chapter 3.

int32 maxData Photoshop initializes this field to the maximum
of number of bytes it can free up. The plug–in
may reduce this value during the prepare rou-
tines. The continue routines should process the
image in pieces no larger than maxData less
the size of any large tables or scratch areas it
has allocated.

int32 minDataBytes These fields give the limits on the data fork
space needed to write the file. The plug–in
should set these during the estimate sequence
of selector calls.

int32 maxDataBytes

int32 minRsrcBytes These fields give the limits on the resource fork
space needed to write the file. The plug–in
should set these during the estimate sequence
of selector calls.

int32 maxRsrcBytes

int32 dataFork The reference number for the data fork of the
file to be read during the read sequence or
written during the write sequence. During the
options and estimate sequences, this field is
undefined. In Windows, this is the file handle
of the file returned by OpenFile().

int32 rsrcFork The reference number for the resource fork of
the file to be read during the read sequence or
written during the write sequence. During the
options and estimate sequences, this field is
undefined. In Windows, this field is undefined.

int16 imageMode The formatSelectorReadStart routine
should set this field to inform Photoshop what
mode image is being imported (grayscale, RGB
Color, etc.). See the header file for possible
values. Photoshop will set this field before it
calls formatSelectorOptionsStart,
formatSelectorEstimateStart, or
formatSelectorWriteStart.

Point imageSize The formatSelectorReadStart routine
should set this field to inform Photoshop of the
image’s width, imageSize.h and height,
imageSize.v in pixels. Photoshop will set this
field before it calls
formatSelectorOptionsStart,
formatSelectorEstimateStart, or
formatSelectorWriteStart.

8. Format Modules

Adobe Photoshop Software Development Kit 107

int16 depth The formatSelectorReadStart routine
should set this field to inform Photoshop of the
image’s resolution in bits per pixel per plane.
The only valid settings are 1 for bitmap mode
images, and 8 for all other modes. Photoshop
will set this field before it calls
formatSelectorOptionsStart,
formatSelectorEstimateStart, or
formatSelectorWriteStart.

int16 planes The formatSelectorReadStart routine
should set this field to inform Photoshop of the
number of channels in the image. For example,
if an RGB image without alpha channels is
being returned, this field should be set to 3.
Photoshop will set this field before it calls
formatSelectorOptionsStart,
formatSelectorEstimateStart, or
formatSelectorWriteStart. Because of the
implementation of the plane map, Format and
Import modules should never try to work with
more than 16 planes at a time. The results
would be unpredictable.

Fixed imageHRes The formatSelectorReadStart routine
should set these fields to inform Photoshop of
the image’s horizontal and vertical resolution
in terms of pixels per inch. This is a fixed point
number (16 binary digits). Photoshop initializes
these fields to 72 pixels per inch. Photoshop
will set these fields before it calls
formatSelectorOptionsStart,
formatSelectorEstimateStart, or
formatSelectorWriteStart. The current
version of Photoshop only supports square
pixels, so it ignores the imageVRes field. Plug–
ins should set both fields anyway in case future
versions of Photoshop support non–square
pixels.

Fixed imageVRes

LookUpTable redLUT If an indexed color mode image is being
returned, the formatSelectorReadStart
routine should return the image’s color table in
these fields. If an indexed color document is
being written, Photoshop will set these fields
before it calls
formatSelectorOptionsStart,
formatSelectorEstimateStart, or
formatSelectorWriteStart.

LookUpTable greenLUT

LookUpTable blueLUT

void * data The start and continue routines should return a
pointer to the buffer where image data is or is
to be stored in this field. After the entire
image has been processed, the continue selec-
tors should set this field to NULL. Note that the
plug–in is responsible for freeing any memory
pointed to by this field.

Rect theRect The plug–in should set this to the area of the
image covered by the buffer specified in data.

int16 loPlane The start and continue routines should set this
to the first and last planes covered by the
buffer specified in data. For example, if inter-
leaved RGB data is being used, they should be
set to 0 and 2.

int16 hiPlane

Table 8–6: FormatRecord structure (Continued)

Type Field Description

8. Format Modules

Adobe Photoshop Software Development Kit 108

int16 colBytes The start and continue routines should set this
field to the offset in bytes between columns of
data in the buffer. This is usually 1 for non–
interleaved data, or hiPlane–loPlane+1 for
interleaved data.

int32 rowBytes The start and continue routines should set this
field to the offset in bytes between rows of
data in the buffer.

int32 planeBytes The start and continue routines should set this
field to the offset in bytes between planes of
data in the buffers. This field is ignored if
loPlane=hiPlane. It should be set to 1 for
interleaved data.

PlaneMap

(array of 16 int16’s)

planeMap This is initialized by the host to a linear map
planeMap[i]=i. This is used to map plane
(channel) numbers between the plug–in and
the host. For example, Photoshop stores RGB
images with an alpha channel in the order
RGBA, whereas most frame buffers store the
data in ARGB order. To work with the data in
this order, the plug–in should set
planeMap[0]=3, planeMap[1]=0,
planeMap[2]=1, and planeMap[3]=2.

Boolean canTranspose If the host supports transposing images during
or after reading or before or during writing, it
should set this field to TRUE. Photoshop always
sets this field to TRUE.

Boolean needTranspose Initialized by the host to FALSE. If the plug–in
wishes to have the image transposed, and
canTranspose=TRUE, it should set this field to
TRUE during the start call.

OSType hostSig The plug–in host provides its signature to your
plug–in module in this field. Photoshop’s signa-
ture is 8BIM.

HostProc hostProc If not NULL, this field contains a pointer to a
host–defined callback procedure that can do
anything the host wishes. Plug–ins should ver-
ify hostSig before calling this procedure. This
provides a mechanism for hosts to extend the
plug–in interface to support application spe-
cific features.

int16 hostModes This field is used by the host to inform the
plug–in which imageMode values it supports. If
the corresponding bit is 1, LSB = bit 0, the
mode is supported. This field can be used by
plug–ins to disable reading unsupported file
formats.

Table 8–6: FormatRecord structure (Continued)

Type Field Description

8. Format Modules

Adobe Photoshop Software Development Kit 109

Handle revertInfo This field is set to NULL by Photoshop when a
format for a file is first created. If this field is
defined on a formatSelectorReadStart call,
then treat the call as a revert and don’t query
the user. If it is NULL on the formatSelector-
ReadStart call, then query the user as appro-
priate and set up this field to store a handle
containing the information necessary to read
the file without querying the user for addi-
tional parameters (essential for reverting the
file) and if possible to write the file without
querying the user. The contents of this field are
sticky to a document and will be duplicated
when we duplicate the image format informa-
tion for a document. On all formatSelector-
Options calls, leave revertInfo containing
enough information to revert the document.

Photoshop will dispose of this field when it dis-
poses of the document, hence, the plug–in
must call on Photoshop to allocate the data as
well using the following callbacks or the call-
backs provided in the Handle suite.

NewPIHandleProc hostNewHdl This is the same as the NewPIHandle callback
described in chapter 3. This field existed before
the Handle suite was defined.

DisposePIHandleProc hostDisposeHdl This is the same as the DisposePIHandle call-
back described in chapter 3. This field existed
before the handle suite was defined.

Handle imageRsrcData During calls to the write sequence, this field
contains a handle to a block of data to be
stored in the file as image resource data. Since
this handle is allocated before the write
sequence begins, plug–ins must add any
resources they want saved to the document
during the options or estimate sequence. Since
options is not always called, the best time is
during the estimate sequence. This field is
checked after each call to
formatSelectorRead and
formatSelectorContinue and as soon as it is
not NULL Photoshop parses the handle as a
block of image resource data for the current
document.

int32 imageRsrcSize This is the size of the handle imageRsrcData.
It is really only relevant during the estimate
sequence when it is provided instead of the
actual resource data.

PlugInMonitor monitor This field contains the monitor setup informa-
tion for the host. See Appendix A.

void * platformData This field contains a pointer to platform spe-
cific data. Not used on the Macintosh.

BufferProcs * bufferProcs This field contains a pointer to the Buffer suite
if it is supported by the host, otherwise NULL.

ResourceProcs * resourceProcs This field contains a pointer to the Pseudo–
Resource suite if it is supported by the host,
otherwise NULL.

ProcessEventProc processEvent This field contains a pointer to the Pro-
cessEvent callback documented in chapter 3.
It contains NULL if the callback is not sup-
ported.

Table 8–6: FormatRecord structure (Continued)

Type Field Description

8. Format Modules

Adobe Photoshop Software Development Kit 110

DisplayPixelsProc displayPixels This field contains a pointer to the DisplayPix-
els callback documented in chapter 3. It con-
tains NULL if the callback is not supported.

HandleProcs handleProcs This field contains a pointer to the Handle suite
if it is supported by the host, otherwise NULL.

These fields are new since version 3.0 of Adobe Photoshop.

OSType fileType This field contains the file type for filtering.

ColorServicesProc colorServices This field contains a pointer to the ColorSer-
vices callback documented in chapter 3. It
contains NULL if the callback is not supported.

AdvanceStateProc advanceState The advanceState callback allows you to drive
the interaction through the inner
formatSelectorOptionsContinue loop with-
out actually returning from the plug–in. If it
returns an error, then the plug–in generally
should treat this as an error formatSelector-
OptionsContinue and pass it on when it
returns. See chapter 3.

These fields are new since version 3.0.4 of Adobe Photoshop.

PropertyProcs * propertyProcs A pointer to the Property callback suite. See
chapter 3.

int16 tileWidth The host reports the width and height of a tile,
which would be the best unit to work in, if pos-
sible.int16 tileHeight

int16 tileOrigin The origin of the tiling system.

These fields are new since version 4.0 of Adobe Photoshop.

PIDescriptorParameters * descriptorParameters Descriptor callback suite. See chapter 3.

Str255 * errorString If you return with result=errReportString
then whatever string you store here will be dis-
played as: “Cannot complete operation because
string”.

char[212] reserved Reserved for future use. Set to zero.

Table 8–6: FormatRecord structure (Continued)

Type Field Description

Adobe Photoshop Software Development Kit 111

99. Selection Modules

Selection plug-in modules modify the pixels and paths selected, and are
accessed under the Selection menu.

Examples/Selection/Selectorama
Selectorama is a sample selection plug–in which demonstrates pixel selection
based on certain criteria.

Examples/Selection/Shape
Shape is a sample selection plug–in which demonstrates creating paths.

Table 9–1: Selection file types

OS Filetype/extension

Mac OS 8BSM

Windows .8BS

9. Selection Modules

Adobe Photoshop Software Development Kit 112

Calling sequence

When the user invokes a Selection plug–in by selecting its name from the
Plug-ins sub-menu of the Selection menu, Adobe Photoshop calls it once
with selectionSelectorExecute. The recommended sequence of actions
for your plug-in to take is described next.

selectionSelectorExecute
Unlike other plug-ins, a Selection Module only gets one execute call, and is
expected to do all the work during that call. However, it’s recommended you
use a similar process model:

1. Prompt for parameters
If the plug–in has any parameters that the user can set, it should prompt the
user and save the values.

Your plug–in should validate the contents of its playback parameters when it
starts processing if there is a danger of it crashing from bad parameters.

You may wish to design your plug-in so that you store default values or the
last used set of values in the plug-in’s Mac OS resource fork or a Windows
external file. This way, you can save preference settings for your plug–in that
will be consistent every time the host application runs. You may also use the
scripting system as a way to store your parameters. They will be passed to
you at selectionSelectorExecute, whether recording, playing back, or
neither.

2. Allocate memory
Use the Buffer and Handle Suites to allocate any extra memory needed for
your computations. See chapter 2 and 3 for a discussion on maxData and
bufferSpace.

3. Begin your main loop
Your plug–in should call readPixels to request the first areas of the image to
work on.

If at all possible, you should process the image in pieces to minimize memory
requirements. Unless there is a lot of startup/shutdown overhead on each
call (for example, communicating with an external DSP), tiling the image
with rectangles measuring 64x64 to 128x128 seems to work fairly well.

Selection

Command

selectionSelectorExecute

Calculate memory require-
ments; display user interface
for selection parameters (if
needed); allocate memory.

Loop until error or
data=NULL..

Clean up.Done.

Process selection requirements
through channel ports.

Adobe Photoshop® 4.0 Selection Plug-in

9. Selection Modules

Adobe Photoshop Software Development Kit 113

4. Modify, write the results, continue until done.
Make your adjustments then call WriteBasePixels. Then continue looping until
you’ve implemented your entire selection or path.

5. Finish and clean up
Clean up after your operation. Dispose any handles you created, etc.

Behavior and caveats
No behavior or caveats to note as of suite version 1.

Channel Ports structures
These structures are used by the Channel Ports callback suite and Selection
modules.

Table 9–2: ReadImageDocumentDesc structure

Type Field Description

int32 minVersion Minimum and maximum version required to
interpret this record. Current min=max=0.

int32 maxVersion

int32 imageMode Color mode. See appendix A for valid image
modes.

int32 depth Default bit depth.

VRect bounds Document bounds.

Fixed hResolution Horizontal and vertical resolution.

Fixed vResolution

LookUpTable redLUT Color table for indexed color and duotone.

LookUpTable greenLUT

LookUpTable blueLUT

ReadChannelDesc * targetCompositeChannels Composite channels in the target layer. See
table 9–3.

ReadChannelDesc * targetTransparency Transparency channel for the target layer.

ReadChannelDesc * targetLayerMask Layer mask for the target layer.

ReadChannelDesc * mergedCompositeChannels Composite channels in the merged data.
Merged data is either merged layer data or
merged document data.

ReadChannelDesc * mergedTransparency Transparency channel for the merged data.

ReadChannelDesc * alphaChannels Alpha channels for masks.

ReadChannelDesc * selection Selection mask, if any.

Table 9–3: ReadChannelDesc structure

Type Field Description

int32 minVersion Minimum and maximum version required to interpret
this record. Current min=max=0.

int32 maxVersion

ReadChannelDesc * next Next descriptor in the list.

ChannelReadPort port Port to use for reading.

VRect bounds Channel data bounds.

int32 depth Horizontal and vertical resolution.

VPoint tileSize Size of the tiles set by the host. Use this if you can to
optimize to match the host’s memory scheme.

VPoint tileOrigin Origin of the tiles, set by the host.

9. Selection Modules

Adobe Photoshop Software Development Kit 114

Boolean target =TRUE if this is a target channel.

Boolean shown =TRUE if this channel is visible.

int16 channelType The channel type. See table 9–5.

void * contextInfo Pointer to additional info dependent on context.

const char * name Name of the channel.

Table 9–4: WriteChannelDesc structure

Type Field Description

int32 minVersion Minimum and maximum version required to interpret
this record. Current min=max=0.

int32 maxVersion

WriteChannelDesc * next Next descriptor in the list.

ChannelWritePort port Port to write to.

VRect bounds Channel data bounds.

int32 depth Horizontal and vertical resolution.

VPoint tileSize Size of the tiles.

VPoint tileOrigin Origin of the tiles.

int16 channelType The channel type. See table 9–5.

int16 padding Reserved. Defaults to zero.

void * contextInfo Pointer to additional info dependent on context.

const char * name Name of the channel.

Table 9–5: Channel types

Field Description

0=ctUnspecified Unspecified channel.

1=ctRed Red of RGB.

2=ctGreen Green of RGB.

3=ctBlue Blue of RGB.

4=ctCyan Cyan of CMYK.

5=ctMagenta Magenta of CMYK.

6=ctYellow Yellow of CMYK.

7=ctBlack Black of CMYK.

8=ctL L of LAB.

9=ctA A of LAB.

10=ctB B of LAB.

11=ctDuotone Duotone.

12=ctIndex Index.

13=ctBitmap Bitmap.

14=ctColorSelected Selected color.

15=ctColorProtected Protected color.

16=ctTransparency Transparent color.

Table 9–3: ReadChannelDesc structure (Continued)

Type Field Description

9. Selection Modules

Adobe Photoshop Software Development Kit 115

Treatments and SupportedTreatments
The treatment field indicates what a selection module is returnning. The
supportedTreatments field is a mask indicating what the host supports.

Error return values
The plug–in module may return standard operating system error codes, or
report its own errors, in which case it can return any positive integer. These
errors and more detail is available in PISelection.h.

#define selectionBadParameters –30700 // a problem with the interface
#define selectionBadMode -30701 // module doesn’t support <mode> images

17=ctLayerMask Layer mask (alpha channel). White = transparent, Black = mask.

18=ctInvertedLayerMask Inverted layer mask (inverted alpha channel).

19=ctSelectionMask Mask/alpha for selection.

Table 9–6: Treatments and SupportedTreatments

Name Value

piSelMakeMask 0

piSelMakeWorkPath 1

piSelMakeLayer 2

Table 9–5: Channel types (Continued)

Field Description

9. Selection Modules

Adobe Photoshop Software Development Kit 116

The Selection parameter block

The pluginParamBlock parameter passed to your plug–in module’s entry
point contains a pointer to a PISelectionParams structure with the
following fields. This structure is declared in PISelections.h.

Table 9–7: PISelectionParams structure

Type Field Description

int32 serialNumber This field contains Adobe Photoshop’s serial
number. Your plug–in module can use this
value for copy protection, if desired.

TestAbortProc abortProc This field contains a pointer to the
TestAbort callback in chapter 3.

ProgressProc progressProc This field contains a pointer to the
UpdateProgress callback documented in
chapter 3. This procedure should only be
called during the actual main operation of
the plug–in, not during long operations dur-
ing the preliminary user interface such as
building a preview.

OSType hostSig The plug–in host provides its signature to
your plug–in module in this field. Photo-
shop’s signature is 8BIM.

HostProc hostProc If not NULL, this field contains a pointer to a
host–defined callback procedure that can do
anything the host wishes. Plug–ins should
verify hostSig before calling this procedure.
This provides a mechanism for hosts to
extend the plug–in interface to support
application specific features.

BufferProcs * bufferProcs This field contains a pointer to the Buffer
suite if it is supported by the host, otherwise
NULL. See chapter 3.

ResourceProcs * resourceProcs This field contains a pointer to the Pseudo–
Resource suite if it is supported by the host,
otherwise NULL. See chapter 3.

ProcessEventProc processEvent This field contains a pointer to the
ProcessEvent callback. It contains NULL if
not supported. See chapter 3.

DisplayPixelsProc displayPixels This field contains a pointer to the Display-
Pixels callback. It contains NULL not sup-
ported. See chapter 3.

HandleProcs * handleProcs This field contains a pointer to the Handle
callback suite if it is supported by the host,
otherwise NULL. See chapter 3.

ColorServicesProc colorServices Color services suite. See chapter 3.

ImageServicesProcs * imageServicesProcs Image Services suite. See chapter 3.

PropertyProcs * propertyProcs Property suite. See chapter 3.

ChannelPortProcs * channelPortProcs Channel ports suite. See chapter 3.

PIDescriptorParameters * descriptorParameters Descriptor suite. See chapter 3.

Str255 errorString If you return with result=errReportString
then whatever string you store here will be
displayed as: “Cannot complete operation
because string”.

PlugInMonitor monitor Monitor setup info. See appendix A.

void * platformData Pointer to platform specific data. Not used in
Mac OS.

9. Selection Modules

Adobe Photoshop Software Development Kit 117

Boolean hostSupportsPaths Check this flag before returning a path. All
host will clean up newPath.

char[3] reserved Reserved for future use. Set to zero.

ReadImageDocumentDesc * documentInfo The document for the selection. See table 9–
2.

WriteChannelDesc * newSelection Output for new selection. See table 9–4.

Handle newPath If non-NULL then newSelection is ignored
and the path described by this handle
becomes the work path. Handle is disposed
by host.

int32 treatment Treatment for returned pixels/mask. See table
9–6.

int32 supportedTreatments Mask indicating host supported treatments.
See table 9–6.

char[256] reservedBlock Reserved for future use. Set to zero.

Table 9–7: PISelectionParams structure (Continued)

Type Field Description

Adobe Photoshop Software Development Kit 118

1010. Scripting Plug-ins

Adobe Photoshop 4.0 introduces a new palette and subsequent set of
commands and callbacks: the Actions palette, and the Descriptor callback suite.
The Actions palette is the user-interface and hub for the scripting system for
Adobe Photoshop.

Actions allow commands in Photoshop to be recorded in a form that is easy
for an end user to read and edit. Actions are similar to AppleScript and
AppleEvents but are cross platform and designed to support both
AppleScript on the Macintosh and OLE Automation on Windows.

Actions extend the plug-in API to allow Import, Export, Filter, Format and
Selection plug-in modules to be fully recordable and automated.

Scripting on Windows with OLE
While the scripting system operates consistently across both Windows and
Macintosh platforms, in Photoshop 4.0, additional OLE automation has been
added. Refer to Appendix B, Adobe Photoshop 4.0 OLE Automation Programming
Guide.

AppleScript and AppleEvents recommended reading
Since Actions are based on AppleScript and AppleEvents, we recommend the
following materials for preliminary reading:

Inside Macintosh: Interapplication Communication (Addison-Wesley, 1993); “Apple
Event Objects and You” (Richard Clark, develop, issue 10); “Better Apple Event
Coding Through Objects” (Eric M. Berdahl, develop, issue 11); “Designing
Scriptability” (Cal Simone, develop, issue 21); Series: “According to Script” (Cal
Simone, develop, issues 22-25).

Issues of develop can be found online at:
http://dev.info.apple.com/develop/developtoc.html.

All the plug-in module examples that support scripting have been updated.
Detailed code-related information is available in each separate module
example and in PIActions.h.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 119

Scripting Basics

For a plug-in to be scripting-aware, or able to record scripting parameters and
be automated by them, it requires the addition of two basic mechanisms:

1. Terminology resource. A terminology resource maps the keys to human
readible text, providing additional type information for values. For
instance, key keyLuminance ('Lmnc') and its value typeInteger may
be mapped to the human readible text “luminance value”. This is
accompanied by the HasTerminology PiPL property, which points the
scripting system to the terminology resource.

2. Descriptors. A descriptor is a pair of data in the form of [<key> <value>]
that describes the property of an object or the parameter of an event.

Implementation order
We recommend you convert existing plug-ins to scripting-aware plug-ins by
following this scripting implementation order:

1. Look at your user interfaces and describe the parameters as human-
readable text;

2. Create a terminology resource for your plug-in;

3. Add the HasTerminology PiPL property;

4. Update your plug-in code to record scripting events and objects;

5. Update your plug-in code to be automated by (play back) scripting
events and objects.

Scripting caveats
The scripting system has been designed specifically to drive plug-ins in a way
that is transparent to the existing operation of the host. This means that
there is no way to know whether your plug-in is being driven by the
scripting system or an end-user. You should treat all operations as
consistently as possible.

The scripting system always hands you a descriptor at every selector call.

If you use a descriptor that was handed to you by the host, and you hand
back a new descriptor, you are responsible for deleting the old descriptor.
All the examples do this through the set of utility routines in PIUtilities.

If you don’t use the descriptor handed to you by the host, you may hand it
back and it will be deleted automatically.

if you don’t use the descriptor handed to you by the host, but you hand back
NULL, then you are responsible for deleting the descriptor the host handed
you.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 120

Creating a terminology resource

A terminology resource is used to specify the mapping from a descriptor to
human readable text. The format of the terminology resource is identical to
an AppleEvent terminology resource. CNVTPIPL.EXE on Windows
understands this resource and converts it accordingly. All the example plug-
ins have a rez entry in the plugInName.r file for an 'aete' resource.

To let Photoshop know that the terminology resource is present, a PiPL
property is added, HasTerminology ('hstm'), which contains the class ID,
event ID, and terminology resource ID for your plug-in. Refer to the Plug-in
Resource Guide.pdf for information on Scripting-specific properties.

The terminology resource is a complex structure designed by Apple to cover
numerous scripting situations that are not required by Photoshop. By that
nature, the structure is more complicated than it needs to be to describe
plug-ins. However, it was chosen because Apple plans to support it both now
and in the future, and it allows you to increase the scope of your plug-in by
being AppleEvent- and AppleScript-savvy. See the last section of this chapter
for information on AppleScript.

Basic terminology resource
resource 'aete' (0)

{ // aete version and language specifiers

{ /* suite descriptor */

{ /* filter/selection/color picker descriptor */

{ /* any parameters */

/ * additional parameters */
}

},

{ /* import/export/format descriptors */

{ /* properties. First property defines inheritance. */

/* any properties */
},

{ /* elements. Not supported for plug-ins. */
},

/* class descriptions for other classes used as parameters or properties */
},

{ /* comparison ops. Not currently supported. */
},

{ /* any enumerations */
{

/* additional values for enumeration */
},

/* any additional enumerations */

/* variant types are a special enumeration: */
{

/* additional types for variant */
},

/* any additional variants */

/* class and reference types are a special enumeration: */
{

},

/* any additional class or reference types */
}

}

}

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 121

Whether your plug-in is a filter, or one of the others, each section of the
terminology resource must be present (even if it’s blank “{},”).

Detailed terminology resource
resource 'aete' (0)
{

1, 0, english, roman, // aete version and language specifiers

{ /* suite descriptor below */

"suite name", // name of suite

"description", // optional description of suite

'stID', // suite ID, must be unique 4-char code

1, // suite code, must be 1

1, // suite level, must be 1

{ /* filter/selection/color picker descriptor below */

"plug-in name", // name of plug-in, must be unique

"description", // optional description of filter

'clID', // class ID, must be unique 4-char code or suite ID

'evID', // event ID, must be unique 4-char code within class

(may be suite ID)

NO_REPLY, // never a reply

IMAGE_DIRECT_PARAMETER // direct parameter

{ /* any parameters below */

"parameter name", // name of parameter

'kyID', // parameter key ID. See table 10–14.

'tyID', // parameter type ID. See table 10–4.

flagsTypeParameter, // parameter flags. See table .

/ * additional parameters here */
}

},

{ /* import/export/format descriptors below */

"plug-in name", // name of plug-in, must be unique

'clID', // class ID, must be unique 4-char code or suite ID

"description", // optional description of plug-in

{ /* properties below. First property defines inheritance. */

"<Inheritance>", // required

keyInherits, // required

classInherited, // parent class: Format, Import, or Export
"",

flagsSingleParameter,

/* any properties below */

"property name", // name of property

'kyID', // property key ID. See table 10–14.

'tyID', // property type ID. See table 10–4.

"description", // optional description

flagsTypeParameter, // property flags. See table .
},

{ /* elements. Not supported for plug-ins. */
},

/* class descriptions for other classes used as parameters or properties */
},

{ /* comparison ops. Not currently supported. */
},

{ /* any enumerations below */

'enID', // enumeration ID
{

"enumerated name", // first value name

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 122

'e1ID', // first value ID

"description", // optional description of first value

/* additional values for this enumeration */
},

/* any additional enumerations */

/* variant types are a special enumeration: */

'#vID', // variant ID (must begin with “#”)
{

"type name", // first type name

'v1ID', // first type ID
"",

/* additional types for variant */
},

/* any additional variants */

/* class and reference types are a special enumeration: */

'#tID', // enumeration ID (must begin with “#”)
{

"type name", // name of type

't1ID', // type ID. Either typeClass or typeObjectReference.
""

},

/* any additional class or reference types */
}

}

}

Nomenclature
The user terms in the terminology resource should be all lower case with the
exception of proper names and acronyms. Photoshop will capitalize terms
appropriately.

Parameter and property flags
The AppleScript Editor doesn’t display parameter type list correctly. In
order for the dictionary to read correctly, the description field for the
type should begin with the word “list”.

The flags for properties are the same for parameters, except there is no flag
for optional. Properties can be optional by putting “optional” at the
beginning of the description field.

Classes and the terminology resource
For Import, Export, and Format plug-ins, one of the classes must be the base
class for the plug-in. Additional classes may be defined as templates for
parameters or properties.

Table 10–1: Valid terminology resource parameter and property flags

Name Alternates Description

flagsSingleParameter
flagsSingleProperty

flagsOptionalSingleParameter Key and value type is single
value.

flagsListParameter
flagsListProperty

flagsOptionalListParameter
flagsEnumeratedListParameter
flagsEnumeratedListProperty
flagsOptionalEnumeratedListParameter

Key and value type is for a list.

flagsEnumeratedParameter
flagsEnumeratedProperty

flagsOptionalEnumeratedParameter Key and value type is for enu-
merated list.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 123

Inheritance
Inheritance can also be used to specify a hierarchy of types. Inheritance is
used by defining a base class with the first property configured with:

1. Name = the name of the class;

2. Type = class type.

Class types are defined by creating a special enumeration. If the class color is
specified as a parameter or property type, then any of its sub-classes are
acceptable. The class color is defined:

{ /* suite descriptor below */

"color", // class name

classColor, // class ID for Color 'Clr '

"", // no description

{
"color", // color property (special for base class)

keyColor, // property ID for Color 'Clr '

typeClassColor, // type this class

"", // no description

flagsEnumeratedParameter // “type” is special enumeration
},

{ /* no elements */
}

The class RGB color is defined:
"RGB color", // class name

classRGBColor, // class ID 'RGBC'

"", // no description

{
"<Inheritance>", // define inheritance

keyInherits, // property ID for inheritance 'Clr '

classColor, // from parent class “color”

"", // no description

flagsSingleParameter // single parameter

"red", // red property

Table 10–2: Predefined classes

Name Code Description/keys

classImport 'Impr' Class for Import modules.

classExport 'Expr' Class for Export modules.

classFormat 'Fmt ' Class for Format modules.

classColor 'Clr ' Class for color classes.

classRGBColor 'RGBC' keyRed, keyGreen, keyBlue

classCMYKColor 'CMYC' keyCyan, keyMagenta, keyYellow, keyBlack.

classUnspecifiedColor 'UnsC' Unspecified.

classGrayscale 'Grsc' keyGray

classBookColor 'BkCl' Book color.

classLabColor 'LbCl' keyLuminance, keyA, keyB.

classHSBColor 'HSBC' keyHue, keySaturation, keyBrightness.

classPoint 'Pnt ' keyHorizontal, keyVertical.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 124

keyRed, // property ID for Red 'Rd '

typeFloat, // value type “float”

"", // no description

flagsSingleParameter // single parameter

"green", // green property

keyGreen, // property ID for Green 'Grn '

typeFloat, // value type “float”

"", // no description

flagsSingleParameter // single parameter

"blue", // blue property

keyBlue, // property ID for Blue 'Bl '

typeFloat, // value type “float”

"", // no description

flagsSingleParameter // single parameter
},

{ /* no elements */
}

Enumerated types
Enumerated types are used in the standard fashion to create a type that can
have one or a set of values.

Note:
For the enumerated value IDs, as tempting as it may be, don’t use
simple indexes, use four-character types.

An enumerated type for quality with the values of low, medium, high, and
maximum is defined:

typeQuality, // type ID for Quality 'Qlty'

{
"low", // “low” value

enumLow,

"",

"medium", // “medium” value

enumMedium,

"",

"high", // “high” value

enumHigh,

"",

"maximum", // “maximum” value

enumMaximum,

"",

}

!!

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 125

Variant types
Enumerated types are also used to specify variant types for parameters and
properties.

Note:
The first character of a variant type ID must be “#”.

If you have a parameter that can take text or an integer, it is defined:
"specifier", // parameter name

keySpecifier, // parameter ID

typeTextInteger, // text or integer

"index or name", // short description

flagsEnumeratedParameter

The type typeTextInteger is an enumeration:
typeTextInteger, // type ID (variant types must begin with “#”)

{
"string", // name of first type (AppleScript name)
typeText,

"",

"integer", // name of second type
typeInteger,

""

}

Enumerations and object reference types
Enumeration variants can also be used to specify object reference types and
class types. From the example of the class color, typeClassColor is
defined:

typeClassColor, // type ID (variant types must begin with “#”)

{
"type color", // name of type

typeClass, // generic type reference
"",

}

Lists and the terminology resource
All types can be used as lists for parameters and properties. All items in a list
must be of the same type. To specify a list in the terminology resource use
the flagsListParameter or flagsListProperty from table .

!!

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 126

Descriptors

Because the Actions palette provides an alternate, text-based user interface
to Adobe Photoshop, textual script commands need to map intuitively to the
graphical user interface. The way to start developing a scripting interface for
your plug-in is to look carefully at the options provided in your dialogs, and
then describe them in writing.

For some options, such as checkboxes and popup menus, this is fairly
straight-forward. For others, such as showing placement of an object
graphically, this is more difficult.

All scripting commands are described with the following form:
event [target] [<key> <value>]

Filter, Selection, and Color Picker events
Filter, Selection, and Color Picker scripting is described as “scripting events”:

filter [target] [<key> <value>]

Such as:
gaussian blur layer 1 radius 5

Table 10–3: Scripting command syntax

Name Description

event Command being executed.

target Item being acted upon.

key Parameter key. See table 10–14.

value Parameter value type. See table 10–4.

Table 10–4: Basic value types

Name Code Description

typeInteger 'long' int32.

typeFloat 'doub' IEEE 64 bit double

typeBoolean 'bool' TRUE or FALSE.

typeText 'TEXT' Block of any number of readable characters.

typeAlias 'alis' Macintosh file system path.

typePaths 'Pth ' Windows file system path.

typePlatformFilePath 'alis'
or
'Pth '

typeAlias for Macintosh, typePath for Windows.

Table 10–5: Special value types

Name Code Description

typeEnumeration Enumeration declared in the terminology resource.

typeClass 'char' Used in terminology resource for class type specifier.

typeObjectReference 'indx' Refers to Photoshop object, such as channel or layer.
See below.

classClass Enumerated class. See table 10–2.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 127

Import, Export, and Format objects
Import, Export, and Format scripting is described as “scripting objects”:

command [target] [as type | object | string] [in file | folder]

Such as:
save document “bright banana” as “Shareware”
save document 1 as Photoshop EPS
save as Photoshop EPS { preview 8 bit TIFF }

In the example “save as Photoshop EPS { preview 8 bit TIFF }” the
target document is being saved with the “Photoshop EPS” format with the
parameter: key “preview”, value “8 bit TIFF”.

Note: This form is a little different then AppleScript. In AppleScript,
the “save as Photoshop EPS” example would appear as:

save as {format: Photoshop EPS, preview: 8 bit TIFF}

In Photoshop the object’s class is implied by the object passed since
the scripting mechanism has a stronger type system than AppleScript.

Save as object
To save as an object, the nomenclature is save as classFormat, where
classFormat, is generally a class type with parameters, such as JPEG, PDF, or
EPS:

save as { class: JPEG, quality: 3 }

save as JPEG with properties { quality: 5 }

Save as type
Saving as a type takes the form of save as typeClassFormat, which is always a
specific type, with no parameters:

save as JPEG

save as EPS

typeObjectReference
The type typeObjectReference is used to refer to an external object, such
as a channel or layer. Plug-ins cannot access these objects directly but can
use object references to refer to elements that are accessible through other
means.

Table 10–6: Scripting event command syntax

Name Description

filter Menu name of the filter plug-in, or similar. (“gaussian blur”)

target Portion of the document to apply filter. (“layer 1”)

key Parameter key. (“radius”)

value Parameter value. (“5”)

Table 10–7: Script object command syntax

Name Description

command Operation: “save” or “open”. (“save”)

target Document. (“document 1”)

as type = type of class (“TIFF”)
object = object of class (“Photoshop EPS”)
string = name of non-scriptable format (“Shareware”)

in Location to save/load the file.

!!

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 128

An object reference can refer to an object which is either an element or a
property of another object. Elements may be referred to by name or index.
Plug-ins can only refer to elements or properties of the immediate target,
due to the one-dimensional nature of PIDescriptorSimpleReference. For
example, your plug-in may specify:

channel 1

But it cannot specify:

channel 1 of layer 2

PIDescriptorSimpleReference
typedef struct PIDescriptorSimpleReference

{

DescriptorTypeID desiredType;

DescriptorFormID keyForm;

struct _keyData

{

Str255 name;

uint32 index;

DescriptorTypeID type;

DescriptorEnumID value;

} keyData;

} PIDescriptorSimpleReference;

If a plug-in attempts to read a complex object reference (for instance, one
containing other references) the host will attempt to simplify the reference;
if it can’t, it will return an error.

Table 10–8: PIDescriptorSimpleReference structure

Type Field Description

DescriptorTypeID desiredType typeInteger, typeFloat, etc. See table 10–4.

DescriptorFormID keyForm Item type=formIndex, formName, or formProperty.

struct _keyData keyForm specific info. See table 10–9.

Table 10–9: keyData structure

Type Field Description

Str255 name if keyForm=formName, the name of the key.

uint32 index if keyForm=formIndex, the index of the key.

DescriptorTypeID type if keyForm=formEnumerated the type and
enumeration of the key.

DescriptorEnumID value

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 129

Scripting Parameters

Once you’ve added a terminology resource and you’ve edited the
HasResource PiPL property (see the Plug-in Resource Guide.pdf file), your plug-
in is considered scripting-aware. At every selector a structure is passed in the
Descriptor Suite portion of the parameter block: PIDescriptorParameters.
The suite of routines for Getting and Putting values from and to this
structure is described in the chapter 3. You will access this data structure for
Recording and Playback.

PIDescriptorParameters
typedef struct PIDescriptorParameters

{

int16 descriptorParametersVersion;

int16 playInfo;

int16 recordInfo;

PIDescriptorHandle descriptor;

WriteDescriptorProcs* writeDescriptorProcs;

ReadDescriptorProcs* readDescriptorProcs;

} PIDescriptorParameters;

Table 10–10: PIDescriptorParameters structure

Type Field Description

int16 descriptorParametersVersion Minimum version required to process.

int16 playInfo Flags for playback:
0=plugInDialogDontDisplay
1=plugInDialogDisplay
2=plugInDialogSilent

int16 recordInfo Flags for recording:
0=plugInDialogOptional
1=plugInDialogRequired
2=plugInDialogNone

PIDescriptorHandle descriptor Handle to actual descriptor key/value pairs.

WriteDescriptorProcs* writeDescriptorProcs WriteDescriptorProcs sub-suite.

ReadDescriptorProcs* readDescriptorProcs ReadDescriptorProcs sub-suite.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 130

Recording

Building a descriptor
If your plug-in has no options, descriptor may be set to NULL.

To build a descriptor:

1. Call openWriteDescriptorProc which will return a
PIWriteDescriptor token, such as writeToken.

2. Call various Put routines such as PutIntegerProc, PutFloatProc, etc.,
to add key/value pairs to writeToken. The keys and value types must
correspond to those in your terminology resource.

3. Call CloseWriteDescriptorProc with writeToken, which will create
a PIDescriptorHandle.

4. Place the PIDescriptorHandle into the descriptor field. The host
will dispose of it when finished.

5. Store your recordInfo. See table 10–11.

Recording error handling
If an error occurs during or after PIWriteDescriptor, then writeToken
and the new PIDescriptorHandle should be disposed of using
DisposePIHandleProc from the Handle Suite.

Recording classes
Classes may be declared by plug-ins to be used as templates for structures.
Classes delcared by plug-ins may not contain elements, but may use
inheritance. Objects of a particular class are created by defining a descriptor
and adding the key/value pairs for the properties. The root property of the
base class is not added to the descriptor.

Table 10–11: recordInfo

Name Description

plugInDialogOptional Display dialog only if necessary or requested by user.

plugInDialogRequired Always display dialog.

plugInDialogNone No dialog.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 131

Playback

Reading a descriptor
If a plug-in has no options, or is not scripting-aware, descriptor will be
NULL.

To read a descriptor:

1. Call openReadDescriptorProc with two parameters: the
PIDescriptorHandle in descriptor, and a NULL-terminated array of
expected key IDs. It will return a PIReadDescriptor token, such as
readToken.

Note: descriptorKeyIDArray must be NULL-terminated, or the
automatic array processor will start to read and write past the array,
tromping on your other data and likely crashing the host.

2. Make repeated calls to GetKeyProc, which will return information
about the current key in the readToken. GetKeyProc will return FALSE
when there are no more keys.

3. Make the appropriate call to the Get routine responding to the key
and type, such as GetIntegerProc, GetFloatProc, etc.

4. Call closeReadDescriptorProc with readToken, which will dispose
of readToken and return any errors that occurred during GetKeyProc.
(See “Sticky errors”, below.)

5. Dispose of the PIDescriptorHandle pointed to in descriptor by
calling DisposePIHandleProc with it. You may keep the descriptor for
use, such as a parameter handle, but the descriptor field should still
be set to NULL.

6. Set the descriptor field to NULL.

7. Check for and manage any errors (see “Playback error handling”
below.)

8. Update your parameters and show your dialog, depending on
playInfo. See table 10–12.

Playback error handling

Because a descriptor can be built by other software, don’t assume that your
keys will come in order, be of the proper type, or all be present.

Coerced parameters
If a Get call is made for the wrong type, paramErr will be returned unless
the type could be coerced, in which case the value will be returned with the
coercedParam error.

Table 10–12: playInfo

Name Description

plugInDialogDontDisplay Display dialog only if necessary due to missing parameters or
error.

plugInDialogDisplay Present your dialog using the descriptor information.

plugInSilent Never present a dialog. Use only descriptor information. If the
information in insufficient then you should return the error in
the errorString field. See below.

!!

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 132

If an error occurs and not plugInDialogSilent, then the plug-in may:

1. Present a dialog and return a positive error value, or

2. Return a negative error value and the host will display a standard
message.

DescriptorKeyIDArray
During the repeated calls to GetKeyProc, DescriptorKeyIDArray, passed
to openReadDescriptorProc, is updated automatically. As each key is
found in GetKeyProc, the corresponding key in descriptorKeyIDArray is
set to typeNull='null'. Keys still in the array after you’re done reading all
the data indicate keys that were not passed in the descriptor and you will
need to coerce them or request them from the user (if not
plugInDialogSilent).

Sticky errors
Errors that occur in Get routines and GetKeyProc are sticky, meaning an
error will keep getting returned until another more drastic error supercedes
it. This way you can check for any major errors after you’ve read all your
data.

Table 10–13: Playback errors returned

Name Description

NULL No error.

coercedParam Coerced data to requested type.

paramErr Error with parameters passed or data does not match
requesting proc.

errWrongPlatformFilePath Mismatch between typeAlias (Macintosh) and typePath
(Windows) request.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 133

Common keys and parameters

Table 10–14: Predefined common keys and parameters

Name Code Title/description

keyA 'A ' Alpha channel, A in LAB.

keyAmount 'Amnt' Amount.

keyAngle 'Angl' Angle.

keyAs 'As ' Angles, alphas.

keyB 'B ' B in LAB.

keyBlack 'Blck' Black, K in CMYK.

keyBlue 'Bl ' B in RGB.

keyBook 'Bk ' Book.

keyBrightness 'Brgh' Brightness, B in HSB.

keyCenter 'Cntr' Center.

keyColor 'Clr ' Color.

keyCyan 'Cyn ' Cyan, C in CMYK.

keyDepth 'Dpth' Depth, bitdepth.

keyDistance 'Dstn' Distance.

keyDistribution 'Dstr' Distribution.

keyDither 'Dthr' Dithering.

keyEdge 'Edg ' Edge.

keyEncoding 'Encd' Encoding.

keyFill 'Fl ' Fill.

keyFlatness 'Fltn' Flatness.

keyFrequency 'Frqn' Frequency.

keyGray 'Gry ' Gray, grayscale.

keyGreen 'Grn ' Green, G in RGB.

keyHalftoneScreen 'HlfS' Halftone screen.

keyHeight 'Hght' Height.

keyHorizontal 'Hrzn' Horizontal, pixels.

keyHue 'H ' Hue, H in HSB.

keyIn 'In ' In, inData.

keyKind 'Knd ' Kind, type kind.

keyLevel 'Lvl ' Level, level height.

keyLocation 'Lctn' Location.

keyLuminance 'Lmnc' Luminance.

keyMagenta 'Mgnt' Magenta, M in CMYK.

keyMatrix 'Mtrx' Matrix.

keyMethod 'Mthd' Method.

keyMode 'Md ' Mode, color mode.

keyMonochromatic 'Mnch' Monochrome, bitmap, grayscale.

keyName 'Name' Name, channel name, filename.

keyNew 'Nw ' New.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 134

keyOffset 'Ofst' Offset.

keyPalette 'Plt ' Palette, palette name/number.

keyPosition 'Pstn' Position.

keyPreview 'Prvw' Preview.

keyOrientation 'Ornt' Orientation, landscape, portrait.

keyQuality 'Qlty' Quality, low, medium, high, max.

keyRadius 'Rds ' Radius.

keyRatio 'Rt ' Ratio.

keyRed 'Rd ' Red, R in RGB.

keyResolution 'Rslt' Resolution, pixel depth.

keyResponse 'Rspn' Response.

keySaturation 'Strt' Saturation, S in HSB.

keyScale 'Scl ' Scale, enlarge/reduce value.

keyShape 'Shp ' Shape.

keyThreshold 'Thsh' Threshold.

keyTitle 'Ttl ' Title.

keyTo 'To ' To, from-to destination.

keyUsing 'Usng' Using.

keyValue 'Vl ' Value, generic.

keyVertical 'Vrtc' Vertical.

keyWidth 'Wdth' Width.

keyYellow 'Ylw ' Yellow, Y in CMYK.

Table 10–14: Predefined common keys and parameters (Continued)

Name Code Title/description

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 135

AppleScript compatibility

Even though version 4.0 of Photoshop does not support much more than
basic calls from AppleScript back into the host, the scripting system was
made with AppleScript compatibility as one of its primary goals. This
explains the reliance on some of the more (seemlingly needless) complex
structures such as the dictionary resource. The reliance on the dictionary
resource, and the structure of the key name and ID pairs, maps directly to
AppleScript. There are some important details to watch out for.

AppleScript maintains a global name space, which means if your plug-in is
going to be AppleScript compatible, your key name and ID pairs must be
completely unique. For example, if you defined:

"red", // red property

myRed, // my unique property ID for Red

typeFloat, // value type “float”

"", // no description

flagsSingleParameter // single parameter

"green", // green property

myGreen, // my unique property ID for Green

typeFloat, // value type “float”

"", // no description

flagsSingleParameter // single parameter

"blue", // blue property

myBlue, // my unique property ID for Blue

typeFloat, // value type “float”

"", // no description

flagsSingleParameter // single parameter

You would ruin “red”, “green”, and “blue” for anyone else who attempted
to use it, as it would now map to your unique keys (or whoever got their
dictionary registered before yours.)

In this case, you must use unique textual names as well, such as:
"AdobeSDK red", // unique red property name

myRed, // my unique property ID for Red

typeFloat, // value type “float”

"", // no description

flagsSingleParameter // single parameter

In that case, future requests would take the form of:

tell “Adobe SDK dissolve”
set AdobeSDK red of AdobeSDK Dissolve to 65535, 0, 0

end tell

This way is safe and makes sure you don’t conflict with anything else. When
in doubt, make the name and ID unique, or use the predefined values. Those
are always available and will be mapped to your plug-in through your
dictionary resource automatically.

Registration and unique name spaces
When trying to determine unique key name and ID spaces, you must follow
these rules:

1. All ID’s starting with an uppercase letter are reserved by Adobe.

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 136

2. All ID’s that are all uppercase are reserved by Apple.

3. All ID’s that are all lowercase are reserved by Apple.

4. This leaves all ID’s that begin with a lowercase letter and have at least
one uppercase letter for you and other plug-in developers.

Since the scripting system is based on unique IDs and AppleScript, and works
the same between Macintosh and Windows, this means that if you wish to
register a unique ID you must still use the Apple filename ID registration
web page, whether Windows or Macintosh based. The web page is at:

http://dev.info.apple.com/cftype/main.html

Common Adobe plug-in ID good will format
For all plug-in developers wishing to allocate a block of IDs (as often is want
to do, for sets of plug-ins needing unique variables, etc.) register your plug-
in type as a varient, with the first three characters following the basic rules
for ID creation, and a last character of “#”. This will register all 255
permutations of your ID. Such as:

'sdK#' will reserve sdKx, where x is any character, allowing keys such as
'sdK*', 'sdK0', 'sdKA', or 'sdKz'.

'gAr#' will reserve gArx, where x is any character, allowing keys such as
'gAr$', 'gAr8', 'gArG', or 'gArr'.

Remember, if you’re registering a block of name space, that the first three
characters must follow the ID rules: they must start with a lowercase
character, and at least one character must be uppercase.

Note: This registration method is not supported by Apple. As a
matter of fact, Apple explicitly states that one cannot reserve more
than one ID at a time. If we all follow the same rule, however, it will
work just fine until another solution becomes apparent.

When you log onto the registration web page to check your unique
ID, you must check for 'nam#' where nam is your three-digit ID. If
you check and register any four digit ID, without searching for your
three-digit ID + “#”, then you will probably stomp someone elses
name space.

This name space registration method is only useful if we all agree do
follow it.

Ignoring AppleScript
If you’ve decided that forward compatibility with future AppleScript
features is not a major concern, you can disable any AppleScript-savvy
features and make your plug-in only Photoshop-specific. By doing this, you
may ignore any requirements for unique key name and ID pairs. To do this,
add a unique ID string to your HasTerminology resource. Information on
doing this is in the Plug-in Resource Guide.pdf in the Photoshop PiPL section
under “Scripting-specific properties.”

!!

10. Scripting Plug-ins

Adobe Photoshop Software Development Kit 137

AppleEvents
In Photoshop 4.0, besides the standard AppleEvents, there is one additional
AppleEvent call that is supported by the host: do script.

You may call into Photoshop with the do script command to have it play
any currently loaded script in the Actions palette.

tell application "Photoshop 4.0"
do script “MyAction”

end tell

Adobe Photoshop Software Development Kit 138

1111. Document File Formats

Adobe Photoshop saves a user’s document in one of several formats, which
are listed under the pop–up menu in the Save dialog. This chapter
documents these standard formats.

The formats discussed in this chapter include Photoshop 3.0 native format,
Photoshop 4.0 additions to the 3.0 file format, Photoshop EPS format,
Filmstrip format, and TIFF format.

For more information about file formats, you may wish to consult the
Encyclopedia of Graphics File Formats by James D. Murray & William vanRyper
(1994, O’Reilly & Associates, Inc., Sebastopol, CA, ISBN 1–56592–058–9).

11. Document File Formats

Adobe Photoshop Software Development Kit 139

Image resource blocks

Image resource blocks are the basic building unit of several file formats,
including Photoshop’s native file format, JPEG, and TIFF. Image resources are
used to store non–pixel data associated with an image, such as pen tool
paths. (They are referred to as resource data because they hold data that
was stored in the Macintosh’s resource fork in early versions of Photoshop.)

The basic structure of Image Resource Blocks is shown in table .

Image resources use several standard ID numbers, as shown in table 11–2.
Not all file formats use all ID’s. Some information may be stored in other
sections of the file.

Table 11–1: Image resource block

Type Name Description

OSType Type Photoshop always uses its signature, 8BIM.

int16 ID Unique identifier (see table 10–2).

PString Name A pascal string, padded to make size even (a null name
consists of two bytes of 0)

int32 Size Actual size of resource data. This does not include the
Type, ID, Name, or Size fields.

Variable Data Resource data, padded to make size even

Table 11–2: Image resource IDs

ID
Description

Hex Dec

0x03E8 1000 Obsolete—Photoshop 2.0 only. Contains five int16 values: number
of channels, rows, columns, depth, and mode.

0x03E9 1001 Optional. Macintosh print manager print info record.

0x03EB 1003 Obsolete—Photoshop 2.0 only. Contains the indexed color table.

0x03ED 1005 ResolutionInfo structure. See Appendix A.

0x03EE 1006 Names of the alpha channels as a series of Pascal strings.

0x03EF 1007 DisplayInfo structure. See Appendix A .

0x03F0 1008 Optional. The caption as a Pascal string.

0x03F1 1009 Border information. Contains a fixed-number for the border width,
and an int16 for border units (1=inches, 2=cm, 3=points, 4=picas,
5=columns).

0x03F2 1010 Background color. See the Colors file information in chapter 9.

0x03F3 1011 Print flags. A series of one byte boolean values (see Page Setup dia-
log): labels, crop marks, color bars, registration marks, negative, flip,
interpolate, caption.

0x03F4 1012 Grayscale and multichannel halftoning information.

0x03F5 1013 Color halftoning information.

0x03F6 1014 Duotone halftoning information.

0x03F7 1015 Grayscale and multichannel transfer function.

0x03F8 1016 Color transfer functions.

0x03F9 1017 Duotone transfer functions.

0x03FA 1018 Duotone image information.

0x03FB 1019 Two bytes for the effective black and white values for the dot range.

11. Document File Formats

Adobe Photoshop Software Development Kit 140

0x03FC 1020 Obsolete.

0x03FD 1021 EPS options.

0x03FE 1022 Quick Mask information. 2 bytes containing Quick Mask channel ID,
1 byte boolean indicating whether the mask was initially empty.

0x03FF 1023 Obsolete.

0x0400 1024 Layer state information. 2 bytes containing the index of target layer.
0=bottom layer.

0x0401 1025 Working path (not saved). See path resource format later in this
chapter.

0x0402 1026 Layers group information. 2 bytes per layer containing a group ID
for the dragging groups. Layers in a group have the same group ID.

0x0403 1027 Obsolete.

0x0404 1028 IPTC-NAA record. This contains the File Info... information.

0x0405 1029 Image mode for raw format files.

0x0406 1030 JPEG quality. Private.

0x07D0-
0x0BB6

2000-
2998

Path Information (saved paths)

0x0BB7 2999 Name of clipping path

0x2710 10000 Print flags information. 2 bytes version (=1), 1 byte center crop
marks, 1 byte (=0), 4 bytes bleed width value, 2 bytes bleed width
scale.

Table 11–2: Image resource IDs (Continued)

ID
Description

Hex Dec

11. Document File Formats

Adobe Photoshop Software Development Kit 141

Path resource format

Photoshop stores the paths saved with an image in an image resource block.
These resource blocks consist of a series of 26 byte path point records, and so
the resource length should always be a multiple of 26.

Photoshop stores its paths as resources of type 8BIM with IDs in the range
2000 through 2999. These numbers should be reserved for Photoshop. The
name of the resource is the name given to the path when it was saved.

If the file contains a resource of type 8BIM with an ID of 2999, then this
resource contains a Pascal–style string containing the name of the clipping
path to use with this image when saving it as an EPS file.

The path format returned by GetProperty() call is identical to what is
described below. Refer to the IllustratorExport sample plug–in code to
see how this resource data is constructed.

Path points
All points used in defining a path are stored in eight bytes as a pair of 32–bit
components, vertical component first.

The two components are signed, fixed point numbers with 8 bits before the
binary point and 24 bits after the binary point. Three guard bits are reserved
in the points to eliminate most concerns over arithmetic overflow. Hence,
the range for each component is 0xF0000000 to 0x0FFFFFFF representing a
range of –16 to 16. The lower bound is included, but not the upper bound.

This limited range is used because the points are expressed relative to the
image size. The vertical component is given with respect to the image
height, and the horizontal component is given with respect to the image
width. [0,0] represents the top–left corner of the image; [1,1]
([0x01000000,0x01000000]) represents the bottom–right.

In Windows, the byte order of the path point components are reversed; you
should swap the bytes when accessing each 32–bit value.

Path records
The data in a path resource consists of one or more 26-byte records. The first
two bytes of each record is a selector to indicate what kind of path it is. For
Windows, you should swap the bytes before accessing it as a short (int16).

The first 26-byte path record contains a selector value of 6, path fill rule
record. The remaining 24 bytes of the first record are zeroes. Paths use even/

Table 11–3: Path data record types

Selector Description

0 Closed subpath length record

1 Closed subpath Bezier knot, linked

2 Closed subpath Bezier knot, unlinked

3 Open subpath length record

4 Open subpath Bezier knot, linked

5 Open subpath Bezier knot, unlinked

6 Path fill rule record

7 Clipboard record

11. Document File Formats

Adobe Photoshop Software Development Kit 142

odd ruling. Subpath length records, selector value 0 or 3, contain the
number of Bezier knot records in bytes 2 and 3. The remaining 22 bytes are
unused, and should be zeroes. Each length record is then immediately
followed by the Bezier knot records describing the knots of the subpath.

In Bezier knot records, the 24 bytes following the selector field contain three
path points (described above) for:

1. the control point for the Bezier segment preceding the knot,

2. the anchor point for the knot, and

3. the control point for the Bezier segment leaving the knot.

Linked knots have their control points linked. Editing one point modifies the
other to preserve collinearity. Knots should only be marked as having linked
controls if their control points are collinear with their anchor. The control
points on unlinked knots are independent of each other. Refer to the Adobe
Photoshop User Guide for more information.

Clipboard records, selector=7, contain four fixed-point numbers for the
bounding rectangle (top, left, bottom, right), and a single fixed-point
number indicating the resolution.

11. Document File Formats

Adobe Photoshop Software Development Kit 143

Photoshop 3.0 files

This is the native file format for Adobe Photoshop 3.0. It supports storing all
layer information.

Photoshop 3.0 files under Windows
All data is stored in big endian byte order; under Windows you must byte
swap short and long integers when reading or writing.

Photoshop 3.0 files under Mac OS
For cross–platform compatibility, all information needed by Adobe
Photoshop 3.0 is stored in the data fork. For interoperability with other
Macintosh applications, however, some information is duplicated in
resources stored in the resource fork of the file.

For compatibility with image cataloging applications, the pnot resource id 0
contains references to thumbnail, keywords, and caption information stored
in other resources. The thumbnail picture is stored in a 'PICT' resource, the
keywords are stored in 'STR#' resource 128 and the caption text is stored in
'TEXT' resource 128. For more information on the format of these resources
see Inside Macintosh: QuickTime Components and the Extensis Fetch Awareness
Developer’s Toolkit.

Photoshop also creates 'icl8' –16455 and 'ICN#' –16455 resources containing
thumbnail images which will be shown in the Mac OS Finder.

All of the data from Photoshop’s File Info dialog is stored in 'ANPA' resource
10000. The data in this resource is stored as an IPTC–NAA record 2 and
should be readable by various tools from Iron Mike. For more information on
the format of this resource contact:

IPTC–NAA Digital Newsphoto Parameter Record
Newspaper Association of America
The Newspaper Center
11600 Sunrise Valley Drive
Reston VA 20091

Table 11–4: Photoshop 3.0 file types

OS Filetype/extension

Mac OS 8BPS

Windows .PSD

11. Document File Formats

Adobe Photoshop Software Development Kit 144

Photoshop 3.0 file format

The file format for Photoshop 3.0 is divided into five major parts.

The file header is fixed length, the other four sections are variable in length.

When writing one of these sections, you should write all fields in the section,
as Photoshop may try to read the entire section. Whenever writing a file and
skipping bytes, you should explicitly write zeros for the skipped fields.

When reading one of the length delimited sections, use the length field to
decide when you should stop reading. In most cases, the length field
indicates the number of bytes, not records, following.

File header section
The file header contains the basic properties of the image.

Table 11–5: File header

Length Name Description

4 bytes Signature Always equal to 8BPS. Do not try to read the file if the signature
does not match this value.

2 bytes Version Always equal to 1. Do not try to read the file if the version does
not match this value.

6 bytes Reserved Must be zero.

2 bytes Channels The number of channels in the image, including any alpha chan-
nels. Supported range is 1 to 24.

4 bytes Rows The height of the image in pixels. Supported range is 1 to 30,000.

4 bytes Columns The width of the image in pixels. Supported range is 1 to 30,000.

2 bytes Depth The number of bits per channel. Supported values are 1, 8, and 16.

2 bytes Mode The color mode of the file. Supported values are: Bitmap=0;
Grayscale=1; Indexed=2; RGB=3; CMYK=4; Multichannel=7;
Duotone=8; Lab=9.

File Header

Color Mode Data

Image Resources

Layer and Mask

Image Data

Information

11. Document File Formats

Adobe Photoshop Software Development Kit 145

Color mode data section
Only indexed color and duotone have color mode data. For all other modes,
this section is just 4 bytes: the length field, which is set to zero.

For indexed color images, the length will be equal to 768, and the color data
will contain the color table for the image, in non–interleaved order.

For duotone images, the color data will contain the duotone specification,
the format of which is not documented. Other applications that read
Photoshop files can treat a duotone image as a grayscale image, and just
preserve the contents of the duotone information when reading and writing
the file.

Image resources section
The third section of the file contains image resources. As with the color
mode data, the section is indicated by a length field followed by the data.
The image resources in this data area are described in detail earlier in this
chapter.

Layer and mask information section
The fourth section contains information about Photoshop 3.0 layers and
masks. The formats of these records are discussed later in this chapter. If
there are no layers or masks, this section is just 4 bytes: the length field,
which is set to zero.

Table 11–6: Color mode data

Length Name Description

4 bytes Length The length of the following color data.

Variable Color data The color data.

Table 11–7: Image resources

Length Name Description

4 bytes Length Length of image resource section.

Variable Resources Image resources.

Table 11–8: Layer and mask information

Length Name Description

4 bytes Length Length of the miscellaneous information section.

Variable Layers Layer info. See table 11–11.

Variable Masks One or more layer mask info structures. See table 11–14.

11. Document File Formats

Adobe Photoshop Software Development Kit 146

Image data section
The image pixel data is the last section of a Photoshop 3.0 file. Image data is
stored in planar order, first all the red data, then all the green data, etc.
Each plane is stored in scanline order, with no pad bytes.

If the compression code is 0, the image data is just the raw image data.

If the compression code is 1, the image data starts with the byte counts for
all the scan lines (rows * channels), with each count stored as a two–byte
value. The RLE compressed data follows, with each scan line compressed
separately. The RLE compression is the same compression algorithm used by
the Macintosh ROM routine PackBits, and the TIFF standard.

Table 11–9: Image data

Length Name Description

2 bytes Compression Compression method.

Raw data = 0, RLE compressed = 1.

Variable Data The image data.

Planar order = RRR GGG BBB, etc.

11. Document File Formats

Adobe Photoshop Software Development Kit 147

Layer and mask records

Information about each layer and mask in a document is stored in the fourth
section of the file. The complete, merged image data is not stored here; it
resides in the last section of the file.

The first part of this section of the file contains layer information, which is
divided into layer structures and layer pixel data, as shown in table 11–10.
The second part of this section contains layer mask data, which is described
in table 11–17.

Table 11–10: Layer info section

Length Name Description

4 bytes Length Length of the layers info section, rounded up to a multiple of 2.

Variable Layers
structure

Data about each layer in the document. See table 11–11.

Variable Pixel data Channel image data for each channel in the order listed in the
layers structure section. See table 11–16.

Table 11–11: Layer structure

Length Name Description

2 bytes Count Number of layers. If <0, then number of layers is absolute value,
and the first alpha channel contains the transparency data for
the merged result.

Variable Layer Information about each layer (table 11–16).

Table 11–12: Layer records

Length Name Description

4 bytes Layer top The rectangle containing the contents of
the layer.

4 bytes Layer left

4 bytes Layer bottom

4 bytes Layer right

2 bytes Number channels The number of channels in the layer.

Variable Channel length info Channel information. This contains a six
byte record for each channel. See table 11–
13.

4 bytes Blend mode signature Always 8BIM.

4 bytes Blend mode key 'norm' = normal
'dark' = darken
'lite' = lighten
'hue ' = hue
'sat ' = saturation
'colr' = color
'lum ' = luminosity
'mul ' = multiply
'scrn' = screen
'diss' = dissolve
'over' = overlay
'hLit' = hard light
'sLit' = soft light
'diff' = difference

1 byte Opacity 0 = transparent ... 255 = opaque

1 byte Clipping 0 = base, 1 = non–base

11. Document File Formats

Adobe Photoshop Software Development Kit 148

1 byte Flags bit 0 = transparency protected

bit 1 = visible

1 byte (filler) (zero)

4 bytes Extra data size Length of the extra data field. This is the
total length of the next five fields.

24 bytes, or 4
bytes if no layer
mask.

Layer mask data See table 11–14.

Variable Layer blending ranges See table 11–15.

Variable Layer name Pascal string, padded to a multiple of 4
bytes.

Table 11–13: Channel length info

Length Name Description

2 bytes Channel ID 0 = red, 1 = green, etc.
–1 = transparency mask
–2 = user supplied layer mask

4 bytes Length Length of following channel data.

Table 11–14: Layer mask data

Length Name Description

4 bytes Size Size of layer mask data. This will be either 0x14, or zero (in which
case the following fields are not present).

4 bytes Top Rectangle enclosing layer mask.

4 bytes Left

4 bytes Bottom

4 bytes Right

1 byte Default
color

0 or 255

1 byte Flags bit 0 = position relative to layer

bit 1 = layer mask disabled

bit 2 = invert layer mask when blending

2 bytes Padding Zeros

Table 11–15: Layer blending ranges data

Length Name Description

4 bytes Length Length of layer blending ranges data

4 bytes Composite
gray blend
source

Contains 2 black values followed by 2 white values.

Present but irrelevant for Lab & Grayscale.

4 bytes Composite
gray blend
destination

Destination Range

4 bytes First channel
source range

First channel source

4 bytes First channel
destination
range

First channel destination

Table 11–12: Layer records (Continued)

Length Name Description

11. Document File Formats

Adobe Photoshop Software Development Kit 149

4 bytes Second chan-
nel source
range

Second channel source

4 bytes Second chan-
nel destina-
tion range

Second channel destination

...

4 bytes Nth channel
source range

Nth channel source

4 bytes Nth channel
destination ra
nge

Nth channel destination

Table 11–16: Channel image data

Length Name Description

2 bytes Compression 0 = Raw Data, 1 = RLE compressed.

Variable Image data If the compression code is 0, the image data is just the raw image
data calculated as ((LayerBottom–LayerTop)*(LayerRight–
LayerLeft)). If the compression code is 1, the image data
starts with the byte counts for all the scan lines in the channel
(LayerBottom–LayerTop), with each count stored as a two–
byte value. The RLE compressed data follows, with each scan line
compressed separately. The RLE compression is the same compres-
sion algorithm used by the Macintosh ROM routine PackBits, and
the TIFF standard.

If the Layer’s Size, and therefore the data, is odd, a pad byte will
be inserted at the end of the row.

Table 11–17: Layer mask data

Length Name Description

2 bytes Overlay
color space

Overlay color space (undocumented).

8 bytes Color
components

4 * 2 byte color components

2 bytes Opacity 0 = transparent, 100 = opaque.

1 byte Kind 0=Color selected—i.e. inverted; 1=Color protected;128=use value
stored per layer. This value is preferred. The others are for back-
ward compatibility with beta versions.

1 byte (filler) (zero)

Table 11–15: Layer blending ranges data (Continued)

Length Name Description

11. Document File Formats

Adobe Photoshop Software Development Kit 150

Photoshop 4.0 file format

The Photoshop 4.0 file format is an extension of the Photoshop 3.0 file
format. It is essentially the same, with some additional image resources and
resource blocks. Listed below are additional resources, each of which is
stored in a separate image resource block.

An additional image resource block type has been added for Adjustment
Layers. That, blending and mode differences, and more extensive
documentation on the above additional resources will be forthcoming in the
next revision of this SDK.

Table 11–18: Photoshop 4.0 additional image resources

Length Name Description

1 byte kCopyrightID Boolean. Indicates whether image is copywritten or not.

Variable kURLID String with a URL for the document.

8 bytes kGuidesID int32 fVersion = 1; // version
VPoint fGridCycle; // ignored for now
int32 fGuideCount; // number of guides, can be zero

6 bytes fGuideCountX int32 fLocation; // location of guide
VHSelect fDirection; // direction of guide (horizontal/
vertical)

11. Document File Formats

Adobe Photoshop Software Development Kit 151

Photoshop EPS files

Photoshop 3.0 and later writes a high–resolution bounding box comment to
the EPS file immediately following the traditional EPS bounding box
comment. The comment begins with “%%HiResBoundingBox” and is
followed by four numbers identical to those given for the bounding box
except that they can have fractional components (i.e., a decimal point and
digits after it). The traditional bounding box is written as the rounded
version of the high resolution bounding box for compatibility.

Photoshop writes its image resources out to a block of data stored as
follows:

%BeginPhotoshop: <length> <hex data>

Photoshop includes a comment in the EPS files it writes so that it is able to
read them back in again. Third party programs that write pixel–based EPS
files may want to include this comment in their EPS files, so Photoshop can
read their files.

The comment must follow immediately after the %% comment block at the
start of the file. The comment is:

%ImageData: <columns> <rows> <depth> <mode> <pad channels> <block size>
<binary/hex> "<data start>"

Table 11–19: EPS parameters for BeginPhotoshop

Field Definition

length Length of the image resource data.

hex data Image resource data in hexadecimal.

Table 11–20: EPS parameters for ImageData

Field Definition

columns Width of the image in pixels.

rows Height of the image in pixels.

depth Number of bits per channel. Must be 1 or 8.

mode Image mode. Bitmap/grayscale=1; Lab=2; RGB=3; CMYK=4.

pad channels Number of other channels store in the file. Ignored when reading. Photo-
shop uses this to include a grayscale image that is printed on non-color
PostScript printers.

block size Number of bytes per row per channel. Will be either 1 or formula (below):

1=Data is interleaved.

(columns*depth+7)/8=Data is stored in line-interleaved format, or there
is only one channel.

binary/ascii 1=Data is in binary format.

2=Data is in hex ascii format.

data start Entire PostScript line immediately preceding the image data. This entire line
should not occur elsewhere in the PostScript header code, butit may occur
at part of a line.

11. Document File Formats

Adobe Photoshop Software Development Kit 152

Filmstrip files

Adobe Premiere 2.0 and later supports the filmstrip file format. Premiere
users can export any video clip as a filmstrip. Refer to the Adobe Premiere User
Guide for more information.

Adobe Photoshop 3.0 supports the filmstrip file type to allow each frame to
be individually painted. The filmstrip file format is fairly simple, and is
described in this section.

A filmstrip consists of a sequence of equal sized 32–bit images, known as
frames. The channel order in the file is Red, Green, Blue, Alpha.

After each frame is an arbitrarily sized leader area, in which any type of
information may be embedded. Adobe Premiere puts the timecode and
frame number for the frame in this area. This area is ignored by Photoshop
when the file is read.

Following all the frames is a 16 row trailer frame (it has the same width as
the other frames). Adobe Premiere writes a yellow and black diagonal
pattern in this area. The lower right corner of this area is actually an
information record that exists at the very end of the file. This record is
located by seeking to the end of the file minus the size of the record, then
reading the record and verifying the signature field that it contains.

// Definition for filmstrip info record

typedef struct {

long signature; // 'Rand'

long numFrames; // number of frames in file

short packing; // packing method

short reserved; // reserved, should be 0

short width; // image width

short height; // image height

short leading; // horiz gap between frames

short framesPerSec;// frame rate

char spare[16]; // some spare data.

} FilmStripRec, **FilmStripHand;

To locate the filmstrip info record, seek to the end of the file minus
(sizeof(FilmStripRec)), then read in the FilmStrip record. Check the
signature field for the code Rand to test for validity.

Table 11–21: FilmStripRec structure

Type Field Description

long signature This field must be set to the code Rand and is used to verify the
validity of the record.

long numFrames This is the total number of frames in the file.

short packing This is the packing method used, currently only a value of 0 is
defined, for no packing.

short width The width of each image, in pixels.

short height The height of each image, in pixels.

short leading The height of the leading areas, in pixels.

short framesPerSec The rate at which the frames should be played.

11. Document File Formats

Adobe Photoshop Software Development Kit 153

To locate the data for a particular frame, seek to

(frame * width * (height+leading) * 4)

then read the number of bytes in

(width * height * 4).

If the data is being placed into a Mac OS GWorld, the channels must be re–
arranged from Red–Green–Blue–Alpha to Alpha–Red–Green–Blue.

To write a FilmStrip file, write each frame sequentially into the file,
including the leading areas.

Then write this block of bytes:

((width * (height+leading) * 4) – sizeof(FilmStripRec)).

Finally, fill in and write the FilmStrip record to the file.

Note: The packing field should currently be zero. In the future
packing methods may be defined for filmstrips, so any software
which reads filmstrips should examine this field before opening the
file.

!!

11. Document File Formats

Adobe Photoshop Software Development Kit 154

TIFF files

The same image resources information found in Photoshop 3.0 files are
stored in TIFF files under tag number 34377 (see Image Resource Blocks and
Image Resources earlier in this chapter).

For TIFF files the caption data is stored in an image description tag 270 and
all the information is stored as an IPTC–NAA record 2 in tag 33723. The tag
number was chosen by inspecting files written by Iron Mike software, and is
supposed to be defined in a Rich TIFF specification. The tag is also specified
in:

NSK TIFF
The Japan Newspaper Publishers & Editors Association
Nippon Press Center Building
2–2–1 Uchlsaiwai–cho
Chiyoda–ku, Tokyo 100

For more information about the TIFF format see:

TIFF Revision 6.0
http: //www.adobe.com/supportservice/devrelations/

resources.html#tiff

In reading the files, the following order is used with information read lower
on the list replacing information read higher:

Image Description Tag (TIFF only)
IPTC–NAA Tag (TIFF only)

Note: It is a bug that the TIFF information comes prior to the image
resource information on this list. This means that an edit to the TIFF
info will not be recognized unless the image resource information is
removed. The TIFF data may be moved to after the image resource
information in a future version of Photoshop.

Table 11–22 describes the standard TIFF tags and tag values that Photoshop
3.0 and later is able to read and write.

TIFF files under the Mac OS
For cross–platform compatibility, all TIFF information is stored in the data
fork. For interoperability with other Macintosh applications, however, some
information is duplicated in resources stored in the resource fork of the file.

For compatibility with image cataloging applications, the pnot resource id 0
contains references to thumbnail, keywords, and caption information stored
in other resources. The thumbnail picture is stored in a 'PICT' resource, the
keywords are stored in 'STR#' resource 128 and the caption text is stored in
'TEXT' resource 128. For more information on the format of these resources
see Inside Macintosh: QuickTime Components and the Extensis Fetch Awareness
Developer’s Toolkit.

All of the data from Photoshop’s File Info dialog is stored in 'ANPA' resource
10000. The TIFF file also contains 'STR ' resource -16396 indicating the
application that created the TIFF file. The string is “Adobe Photoshop™ 3.0”
for Photoshop 3.0 and “Adobe Photoshop® 4.0” for Photoshop 4.0.

Photoshop also creates 'icl8' –16455 and 'ICN#' –16455 resources containing
thumbnail images which will be shown in the Mac OS Finder.

!!

11. Document File Formats

Adobe Photoshop Software Development Kit 155

Table 11–22: TIFF Tags

Tag Photoshop reads Photoshop writes

IFD First IFD in file Only one IFD per file

NewSubFileType Ignored 0

ImageWidth 1 to 30000 1 to 30000

ImageLength 1 to 30000 1 to 30000

BitsPerSample 1, 2, 4, 8, 16 (all same) 1, 8, 16

Compression 1, 2, 5, 32773 1, 5

PhotometricInterpretation 0, 1, 2, 3, 5, 8 0 (1–bit), 1 (8–bit), 2, 3,5,8

FillOrder 1 No

ImageDescription Printing Caption Printing Caption

StripOffsets Yes Yes

SamplesPerPixel 1 to 24 1 to 24

RowsPerStrip Any Single strip if not com-
pressed, multiple strips if
compressed.

StripByteCounts Required if compressed Yes

XResolution Yes Yes

YResolution Ignored (square pixels
assumed)

Yes

PlanarConfiguration 1 or 2 1

ResolutionUnit 2 or 3 2

Predictor 1 or 2 1 or 2

ColorMap Yes Yes

TileWidth Yes No

TileLength Yes No

TileOffsets Yes No

TileByteCounts Required if compressed No

InkSet 1 No

DotRange Yes, if CMYK Yes

ExtraSamples Ignored (except for count) 0

Adobe Photoshop Software Development Kit 156

1212. Load File Formats

Besides documents that the user creates in Adobe Photoshop (discussed in
the previous chapter), there are a number of other files used by Photoshop
to store information about colors, brushes, etc. These can be saved to files
and loaded into Photoshop for use at a later time or with different images.
These are referred to generically as “load files”.

Each load file has a unique file type and file extension associated with it.
Photoshop for Macintosh will recognize either, but does not require the use
of the extension. Photoshop for Windows will look for the given file
extension automatically; this can be overridden.

Many of the files, but not all, have version numbers written as short integers
in the first two bytes of the file.

Under the Mac OS, all information is stored in the data forks of Photoshop’s
load files. The files are completely interchangable with Windows or any
other platform.

Note: Consistent byte ordering is required across platforms when
reading and writing load files. Photoshop stores multi–byte values
with the high–order bytes first, big–endian, like on 680x0 systems
with the Mac OS. This is opposite of the way it is done on Intel
systems with Windows. For more information, see “Macintosh and
Windows development” in chapter 2.

!!

12. Load File Formats

Adobe Photoshop Software Development Kit 157

Arbitrary Map

Arbitrary Map files are loaded and saved in Photoshop’s “Curves” dialog.

There is no version number written in the file, and the file must be an even
multiple of 256 bytes long. Each 256 bytes is a lookup table, where:

1. The first byte of the table corresponds to byte zero of the image.

2. The last byte of the table corresponds to byte 255 of the image.

3. A NULL table that has no effect on an image is a linear table of bytes
from 0 to 255.

If the file has one table, it is applied to the image’s channels according to
these priorities:

1. If the image has a master composite channel, the table is applied to it.
If not, then:

2. If the image has a single active channel, the table is applied to it. If
not, then:

3. If the image has no composite channel and more than one active
channel, the table is not applied.

If the file has exactly three tables, it is applied to the image’s channels
according to these priorities:

1. The tables are assumped to represent RGB lookups. They are applied to
the first three channels in the image, leaving the master composite
untouched. Or:

2. If the image has a single active channel, the tables are converted to
grayscale and the result is applied to the active channel. Or:

3. The first table is treated as a master. The remaining tables are applied
to the image channels in turn (second table is applied to first channel,
third table is applied to second channel, etc.).

Single active channels
Photoshop handles single active channels in a special fashion. When saving a
map applied to a single channel, only one table is written to the file.
Similarly, when reading a file for application to a single active channel, the
master table is the one that will be used on that channel. This allows easy
application of a single file to both composite and grayscale images.

Table 12-1: Arbitrary map file types

OS Filetype/extension

Mac OS 8BLT

Windows .AMP

12. Load File Formats

Adobe Photoshop Software Development Kit 158

Brushes

Brushes settings files are loaded and saved in Photoshop’s “Brushes” palette.
These are typically stored in the Goodies/Brushes & Patterns sub–folder
in the Mac OS, or the Brushes sub–directory in Windows.

Table 12-2: Brushes file types

OS Filetype/extension

Mac OS 8BBR

Windows .ABR

Table 12-3: Brushes file format

Length Name Description

2 bytes version =1. Short integer.

2 bytes count A short integer indicating how many brushes are in the remain-
der of the file.

Variable brushes Two types of brushes are currently supported: elliptical, com-
puted brushes and sampled brushes. Computed brushes are cre-
ated with the “New Brush” command; sampled brushes are
created from selected image data using the “Define Brush” com-
mand. See table 12-4.

Table 12-4: Brush components

Length Name Description

2 bytes type A short integer indicating the type of brush. 1=Computed brush;
2=Sampled brush. Other values are currently undefined.

4 bytes size A long integer indicating the number of bytes in the remainder
of the brush definition. Photoshop uses this information to skip
over brush types that it doesn’t understand.

size
bytes

data The contents depend on the type of brush. Computed brush data
is always 14 bytes; sampled brush data varies in size depending
on the image data that makes up the brush tip.

Table 12-5: Computed brush parameters

Length Name Description

4 bytes miscellaneous Long integer. Ignored.

2 bytes spacing Short integer from 0...999 where 0=no spacing.

2 bytes diameter Short integer from 1...999.

2 bytes roundness Short integer from 0...100.

2 bytes angle Short integer from -180...180.

2 bytes hardness Short integer from 0...100.

Table 12-6: Sampled brush parameters

Length Name Description

4 bytes miscellaneous Long. Ignored.

2 bytes spacing Short integer from 0...999 where 0=no spacing.

1 byte anti-aliasing 0=no anti-aliasing when applied; 1=anti-alias when applied.
Brushes with sampled data taller or wider than 32 pixels will
never be anti-aliased.

12. Load File Formats

Adobe Photoshop Software Development Kit 159

8 bytes bounds Rectangle: Four short integers giving the bounds of the sampled
data in the order top, left, bottom, right.

16 bytes bounds-long Rectangle, same as Bounds, but in four long integers.

2 bytes depth Depth of the sample data. Always 8.

Variable image data If the bounds are taller than 16384 pixels, the data is broken into
16384-line chunks. Each chunk is streamed as shown in table 12-
7.

Table 12-7: Sampled brush image data structure

Length Name Description

2 bytes compression 0=Raw data, 1=RLE compressed.

Variable data The brush tip image data is a single plane of grayscale data,
stored in scanline order, with no pad bytes.

If compression=0, the data is just the raw image data.

If compression=1, the data starts with the byte counts for all the
scan lines (equal to the number of rows, as described by the
bounds), with each count stored as a two–byte value. The RLE
compressed data follows, with each scan line compressed sepa-
rately. The RLE compression is the same compression algorithm
used by the Macintosh ROM routine PackBits, and the TIFF
standard.

Table 12-6: Sampled brush parameters (Continued)

Length Name Description

12. Load File Formats

Adobe Photoshop Software Development Kit 160

Color Table

Color Table files are loaded and saved in Photoshop’s “Color Table” dialog
(used with Indexed Color images), and can also be loaded into the “Colors”
palette.

There is no version number written in the file. The file is exactly 768 bytes
long, and contains 256 RGB colors:

1. The first color in the table is index zero.

2. There are three bytes per color in the order Red, Green, Blue.

If loaded into the “Colors” palette, the colors will be installed in the color
swatch list as RGB colors.

Table 12-8: Color table file types

OS Filetype/extension

Mac OS 8BCT

Windows .ACT

12. Load File Formats

Adobe Photoshop Software Development Kit 161

Colors

Colors files are loaded and saved in Photoshop’s “Colors” palette. These are
typically stored in the Palettes sub–directory in Windows.

Photoshop allows the specification of custom colors, such as those colors that
are defined in a set of custom inks provided by a printing ink manufacturer.
These colors can be stored in the “Colors” palette and streamed to and from
load files. The details of a custom color’s color data fields are not public and
should be treated as a black box.

Table 12-9: Colors file types

OS Filetype/extension

Mac OS 8BCO

Windows .ACO

Table 12-10: Colors file format

Length Name Description

2 bytes version =1. Short integer.

2 bytes count Short integer indicating how many colors are in the file.

count*10
bytes

colors Each color is 10 bytes composed of a space byte and data.
Described in table 12-11.

Table 12-11: Color structure

Length Name Description

2 bytes space A short integer indicated the color space the color belongs to as
shown in table 12-12.

8 bytes data Four short unsigned integers with the actual color data. if the
color does not require four values to specify, the extra values are
undefined and should be written as zeros. See table 12-12.

Table 12-12: Color space IDs

Color ID Name Description

0 RGB The first three values in the color data are red, green, and blue.
They are full unsigned 16–bit values as in Apple’s RGBColor data
structure. Pure red=65535,0,0.

1 HSB The first three values in the color data are hue, saturation, and
brightness. They are full unsigned 16–bit values as in Apple’s HSV-
Color data structure. Pure red=0,65535, 65535.

2 CMYK The four values in the color data are cyan, magenta, yellow, and
black. They are full unsigned 16–bit values. 0=100% ink. Pure
cyan=0,65535,65535,65535.

7 Lab The first three values in the color data are lightness, a chromi-
nance, and b chrominance.

Lightness is a 16–bit value from 0...10000. The chromanance com-
ponents are each 16–bit values from –12800...12700. Gray values
are represented by chrominance components of 0. Pure
white=10000,0,0.

8 grayscale The first value in the color data is the gray value, from 0...10000.

12. Load File Formats

Adobe Photoshop Software Development Kit 162

Table 12-13 gives the color space IDs currently defined by Photoshop for
some custom color spaces.

Table 12-13: Custom color spaces

Color ID Name

3 Pantone matching system

4 Focoltone colour system

5 Trumatch color

6 Toyo 88 colorfinder 1050

10 HKS colors (European Photoshop only)

12. Load File Formats

Adobe Photoshop Software Development Kit 163

Command Settings File

Commands settings files are loaded and saved in Photoshop 3.0’s
“Commands” palette. This feature supplants the Function Key feature of
Photoshop 2.5. The Commands palette buttons are simple mappings to
Photoshop menu items, with optional function key shortcut and colorization.

Note: The Commands palette does not exist in Photoshop 4.0. Its
functionality has been absorbed into the “Actions” palette. This
section is provided for backwards compatibility and reference only.

Table 12-14: Command settings file types

OS Filetype/extension

Mac OS 8BFK

Windows .ACM

Table 12-15: Command settings file format

Length Name Description

2 bytes version =2. Short integer.

2 bytes count Number of command records in the file. There are no pad
bytes between records.

Variable records Command records, one after the other. Described in table 12-
16.

Table 12-16: Command record structure

Length Name Description

4 bytes command ID Command ID. Must be zero. Obsolete.

2 bytes function
key ID

Integer from –15...15. Positive numbers map directly onto the
numbered function keys (F1, F2, etc.). Negative numbers indi-
cate that the shift key must be used for the shortcut
(Shift–F1, Shift–F2, etc.). Zero means the button has no key-
board shortcut. On Windows systems, values outside of –12 to
12 will be ignored as standard Windows systems have 12 func-
tion keys on the keyboard. Windows systems will also map 1
to 0, as the F1 key is reserved for Help. These numbers should
be unique across all entries in a Commands file. Photoshop
will ignore duplicates.

2 bytes color index Each command button can be assigned a color with which its
background will be tinted when drawn. There are eight pre-
defined colors: 0=None; 1=Red; 2=Orange; 3=Yellow;
4=Green; 5=Blue; 6=Purple; 7=Gray.

!!

12. Load File Formats

Adobe Photoshop Software Development Kit 164

1 byte title
matching
flag

Boolean flag indicating button title updating off/on. For
example, a button assigned to the “Layers” palette would
change text from “Show Layers” to “Hide Layers” automati-
cally as the state of the palette and the actual menu item
changes.

0=Don’t update. Button title has been changed from the
menu item text by the user and shouldn’t change unless by
user.

1=Update. Button title should automatically be updated to
match the command’s current menu item text.

Variable button title Pascal-style string, with no pad bytes. This is the title of the
button that will be drawn on the Command palette. Usually
matches menu item text.

Variable command
key

Pascal–style string, with no pad bytes. This is the key for find-
ing the menu item in Photoshop’s menus. To distinguish menu
items which could be duplicated on different menus, a key
may include the title of the menu itself followed by a colon
(“Mode:RGB Color”). This text is displayed in the options dia-
log for the button, but not on the Commands palette itself.
Even if TitleMatching=1, the button text never contains the
menu title qualifier.

Table 12-16: Command record structure

Length Name Description

12. Load File Formats

Adobe Photoshop Software Development Kit 165

Curves

Curves settings files are loaded and saved in Photoshop’s “Curves” dialog
and “Black Generation” curve dialog (from within Separation Setup
Preferences). Curves files can also be loaded into any of Photoshop’s transfer
function dialogs, such as the Duotone Curve dialog from within Duotone
Options.

Note: When loaded into a transfer function dialog, only the first
curve in a Curves file is used.

Null curves
A NULL curve (no change to image data) is represented by the following
five–number, ten–byte sequence in a file:

2 0 0 255 255.

Displaying ink percentages
Photoshop allows the option of displaying ink percentages instead of pixel
values; this is a display option only and the internal data is unchanged, with
100% ink equal to image data of 0 and 0% ink equal to image data of 255.

Curves data order

1. The first curve is a master curve that applies to all the composite chan-
nels (RGB) when in composite image mode.

2. The remaining curves apply to the active channels in order: curve two
applies to channel one, curve three applies to channel two, etc., up
until curve 17, which applies to channel 16.

Indexed color
The exception to the normal order, and the reason there are up to 19 curves,
is when the mode is Indexed color. In this case:

Table 12-17: Curves file types

OS Filetype/extension

Mac OS 8BSC

Windows .CRV

Table 12-18: Curves file format

Length Name Description

2 bytes version =1. Short integer.

2 bytes count Short integer indicating how many curves are in the file.

Variable curves Curves data, one after the other. Described in table 12-19.

Table 12-19: Curves data structure

Length Name Description

2 bytes point
count

Short integer from 2...19 indicating how many points are in the
curve.

point count *
4 bytes

curve
points

Each curve point is a pair of short integers where the first num-
ber is the output value (vertical coordinate on the Curves dialog
graph) and the second is the input value. All coordinates have
range 0 to 255. See also Null curves, below.

!!

12. Load File Formats

Adobe Photoshop Software Development Kit 166

1. The first curve is a master curve.

2. The next three curves are created for the Red, Green, and Blue portions
of the image’s color table, and they are applied to the first channel.

3. The remaining curves apply to any remaining alpha channel that is
active: for instance, if channel two is active, curve five applies to it; if
channel three is active, curve six applies to it, etc., up until curve 19,
which applies to channel 16.

Single active channels
Photoshop handles single active channels in a special fashion. When saving
the curves applied to a single channel, the settings are stored into the
master curve, at the beginning of the file. Similarly, when reading a curves
file for application to a single active channel, the master curve is the one
that will be used on that channel. This allows easy application of a single file
to both RGB and grayscale images.

Photoshop 3.0 and later Curves files and Photoshop 2.0
Photoshop 3.0 and later can write Curves files that Photoshop 2.0 will not be
able to read, because version 3.0 and later of Photoshop’s active channel
support is different from Photoshop 2.0’s. There could be more active
channels in a Curves dialog than 2.0 supported.

For maximum compatability with version 2.0, Photoshop 3.0 and later will
pad the file with NULL curves to always write at least five curves. The
presence of extraneous NULL curves will not affect a load operation.

Photoshop 3.0 and later Curves files and Photoshop 2.5
It is possible, however rare, to create a Curves load file with Photoshop 3.0
or later that cannot be read by Photoshop 2.5. Version 3.0 and later of
Photoshop allows a maximum of 24 channels per document, Photoshop 2.5
allows 16.

12. Load File Formats

Adobe Photoshop Software Development Kit 167

Duotone options

Duotone settings files are loaded and saved in Photoshop’s “Duotone
Options” dialog.

Table 12-20: Duotone file types

OS Filetype/extension

Mac OS 8BDT

Windows .ADO

Table 12-21: Duotone file format

Length Name Description

2 bytes version =1. Short integer.

2 bytes count Short integer from 1...4 indicating how many plates are in the
duotone spec. 1=Monotone; 2=Duotone; 3=Tritone; 4=Quadtone.

4*10 bytes ink
colors

Four ink colors, regardless of the number of plates. The contents
of the colors beyond the last plate specified by Count are unde-
fined. Each color is 10 bytes and described in table 12-22. It is
identical to the format in a Colors load file.

4*64 bytes ink
names

Four ink names, regardless of the number of plates. Each name is
streamed as a Pascal-style string with a length byte followed by
the string name. Names may not be more than 63 characters.
Each name is padded to occupy 64 bytes, including the length
byte. Any names beyond the last plate specified by Count should
be empty, size=0.

4*28 bytes ink
curves

Four ink curves, regardless of the number of plates. Described in
table 12-24.

2 bytes dot
gain

=20. Short integer. Kept for compatability with Photoshop 2.0.
Ignored.

11*10 bytes overprint
colors

Eleven ink colors, regardless of the number of plates. The num-
ber of defined overprints depends on Count.

Monotones=no overprint colors. Duotones=one overprint color.
Tritones=four overprint colors. Quadtones=11 overprint colors.
The contents of the colors beyond the last defined overprint are
undefined. Each color is 10 bytes and described in table 12-22. It
is identical to the format in a Colors load file.

Table 12-22: Duotone color structure

Length Name Description

2 bytes space A short integer indicated the color space the color belongs to as
shown in table 12-23.

8 bytes data Four short unsigned integers with the actual color data. if the
color does not require four values to specify, the extra values are
undefined and should be written as zeros. See table 12-23.

12. Load File Formats

Adobe Photoshop Software Development Kit 168

Null transfer curve
Any curves beyond the last plate specified by Count should be equal to the
NULL curve. A NULL transfer curve looks like this:

0, –1, –1, –1, –1, –1, –1, –1, –1, –1, –1, –1, 1000.

Table 12-23: Duotone color space IDs

Color ID Name Description

0 RGB The first three values in the color data are red, green, and blue.
They are full unsigned 16–bit values as in Apple’s RGBColor data
structure. Pure red=65535,0,0.

1 HSB The first three values in the color data are hue, saturation, and
brightness. They are full unsigned 16–bit values as in Apple’s
HSVColor data structure. Pure red=0,65535, 65535.

2 CMYK The four values in the color data are cyan, magenta, yellow, and
black. They are full unsigned 16–bit values. 0=100% ink. Pure
cyan=0,65535,65535,65535.

7 Lab The first three values in the color data are lightness, a chromi-
nance, and b chrominance.

Lightness is a 16–bit value from 0...10000. The chromanance com-
ponents are each 16–bit values from –12800...12700. Gray values
are represented by chrominance components of 0. Pure
white=10000,0,0.

8 grayscale The first value in the color data is the gray value, from 0...10000.

Table 12-24: Ink curves structure

Length Name Description

26 bytes transfer
curve

Array of 13 short integers from 0...1000 representing 0.0...100.0.
All but the first and last value may be –1, representing no point
on the curve. See Null transfer curve below.

2 bytes override =0. Short integer for compatibility. Ignored by Photoshop 3.0.

12. Load File Formats

Adobe Photoshop Software Development Kit 169

Halftone screens

Halftone Screens settings files are loaded and saved in Photoshop’s Halftone
Screens dialog (from within Page Setup).

Table 12-25: Halftone screen file types

OS Filetype/extension

Mac OS 8BHS

Windows .AHS

Table 12-26: Halftone screens file format

Length Name Description

2 bytes version =5. Short integer.

4*18 bytes screens Four screen descriptions. See table 12-27.

variable
(see
description)

curves For every screen which has a custom spot function, the text of
the PostScript function is written here. The functions are writ-
ten one after the other with no header information, in the
same order as the screen settings. The size of each custom
spot is the absolute value of its negative shape code.

Table 12-27: Halftone screen parameter structure

Length Name Description

4 bytes frequency
value

Ink’s screen frequency, in lines per inch. Binary fixed point
value with 16 bits representing the integer and fractional
parts from 1.0...999.999.

2 bytes frequency
scale

Units for the screen frequency. Lines per inch = 1; lines per
centimeter = 2. Only affects display, not Frequency Value.

4 bytes angle Angle for screen. Binary fixed point value with 16 bits repre-
senting the integer and fractional parts from -180.0000 ...
180.0000, measured in degrees.

2 bytes shape code Code representing the shape of the halftone dots. 0=Round;
1=Ellipse; 2=Line; 3=Square; 4=Cross; 6=Diamond. Custom
shapres are represented by a negative number. The absolute
value of the negative number is the size in bytes of the cus-
tom spot function described in table 12-26.

4 bytes miscellaneous =0. Not currently used by Photoshop.

1 byte accurate
screens

Boolean. 1=Use accurate screens; 0=Use other.

1 byte default
screens

Boolean. 1=Use printer’s default screens; 0=Use other.

12. Load File Formats

Adobe Photoshop Software Development Kit 170

Hue/Saturation

Hue/Saturation settings files are loaded and saved in Photoshop’s “Hue/
Saturation” dialog.

Table 12-28: Hue/saturation file types

OS Filetype/extension

Mac OS 8BHA

Windows .HSS

Table 12-29: Hue/saturation file format

Length Name Description

2 bytes version =1. Short integer.

1 byte mode Boolean. 0=Use settings for hue-adjustment; 1=Use settings
for colorization.

1 byte padding Padding byte must be present but is ignored by Photoshop.

6 bytes colorization Three short integers Hue, Saturation, and Lightness from
–100...100. The user interface represents hue as –180...180, as
the traditional HSB color wheel, with red=0.

42 bytes hue-
saturation
settings

Three sets of seven short integers, from –100...100. Described
in table 12-30.

Table 12-30: Hue-saturation settings

Length Name Description

14 bytes hue
settings

Seven short integers. The first value is the master hue change,
followed by six values.

For RGB and CMYK, those values apply to each of the six hex-
tants in the HSB color wheel: those image pixels nearest to
red, yellow, green, cyan, blue, or magenta. These numbers
appear in the user interface from –60...60, however the slider
will reflect each of the possible 201 values from –100...100.

For Lab, the first four of the six values are applied to image
pixels in the four Lab color quadrants, yellow, green, blue,
and magenta. The other two values are ignored (=0). The val-
ues appear in the user interface from –90 to 90.

14 bytes saturation
settings

Seven short integers. The first is a master saturation value.
The other six are applied to pixels exactly the same as the hue
settings.

14 bytes lightness
settings

Seven short integers. The first is a master lightness value. The
other six are applied to pixels exactly the same as the hue
settings.

12. Load File Formats

Adobe Photoshop Software Development Kit 171

Ink colors setup

Ink Colors settings files are loaded and saved in Photoshop 3.0’s “Ink Colors
Setup” dialog, via the “Preferences” sub-menu.

Table 12-31: Ink colors file types

OS Filetype/extension

Mac OS 8BIC

Windows .API

Table 12-32: Ink colors setup file format

Length Name Description

2 bytes version =4. Short integer.

27*2 bytes ink colors Nine sets of three short integers specifying the xyY (CIE) val-
ues for the inks and their combinations. The inks are specified
in the order cyan, magenta, yellow, magenta–yellow (red),
cyan–yellow (green), cyan–magenta (blue),
cyan–magenta–yellow, followed by the white and black
points. Each set is written in the order xyY where:

x=0...10000, representing 0.0...1.0000. y=1...10000, represent-
ing 0.0001...1.0000. Y=0...20000, representing 0.00...200.00.

4*2 bytes gray
balance

Four short integers from 50...200, representing 0.5 to 2.00.
Specifies the gray color balance for CMYK.

2 bytes dot gain Short integer from -10...40, representing –10%...40%.

12. Load File Formats

Adobe Photoshop Software Development Kit 172

Custom kernel

Kernel settings files are loaded and saved in Photoshop’s “Custom filter”
dialog.

Format:

1. There is no version number written in the file.

2. The file is expected to be exactly 54 bytes long, representing 27 short
integers, described in table 12-34.

Weight offset progression
This is sample matrix for the weight offset progression:

{[-2,-2],[-1,-2],[0,-2],[1,-2],[2,-2],
 [-2,-1],[-1,-1],[0,-1],[1,-1],[2,-1],

 [-2, 0],[-1, 0],[0, 0],[1, 0],[2, 0],

 [-2, 1],[-1, 1],[0, 1],[1, 1],[2, 1],

 [-2, 2],[-1, 2],[0, 2],[1, 2],[2, 2]}

Table 12-33: Custom kernel file types

OS Filetype/extension

Mac OS 8BCK

Windows .ACF

Table 12-34: Custom filter structure

Length Name Description

50 bytes weights The first 25 values are the custom weights from –999...999,
applied to pixels offset from each pixel by [-2,-2] to [2,2]. The
values progress through horizontal offsets first. See Weight
offset progression below.

27*2 bytes ink colors Nine sets of three short integers specifying the xyY (CIE) val-
ues for the inks and their combinations. The inks are specified
in the order cyan, magenta, yellow, magenta–yellow (red),
cyan–yellow (green), cyan–magenta (blue),
cyan–magenta–yellow, followed by the white and black
points. Each set is written in the order xyY where:

x=0...10000, representing 0.0...1.0000. y=1...10000, represent-
ing 0.0001...1.0000. Y=0...20000, representing 0.00...200.00.

2 bytes scale Short integer from 1...9999.

2 bytes offset Short integer from –9999...9999.

12. Load File Formats

Adobe Photoshop Software Development Kit 173

Levels

Levels settings files are loaded and saved in Photoshop’s “Levels” dialog.

Level record sets order

1. The first set of levels is the master set that applies to all of the
composite channels (RGB) when in composite image mode.

2. The remaining sets apply to the active channels individually; set two
applies to channel one, the set three to channel two, etc., up until set
25, which applies to channel 24.

3. Sets 28 and 29 are reserved and should be set to zeros.

Indexed color
The exception to the normal order is when the mode is Indexed:

1. The first set is a master set.

2. The next three sets are created for the Red, Green, and Blue portions
of the image’s color table, and they are applied to the first channel.

3. The remaining sets apply to any remaining alpha channels that are
active: for instance, if channel two is active, set five applies to it; if
channel three is active, set six applies to it, etc., up until channel 27,
which applies to channel 24.

4. Sets 28 and 29 are reserved and should be set to zeros.

Single active channels
Photoshop handles single active channels in a special fashion. When saving
the levels applied to a single channel, the settings are stored into the master
set, at the beginning of the file. Similarly, when reading a levels file for
application to a single active channel, the master levels are the ones that
will be used on that channel. This allows easy application of a single file to
both RGB and grayscale images.

Table 12-35: Levels file types

OS Filetype/extension

Mac OS 8BLS

Windows .ALV

Table 12-36: Levels file format

Length Name Description

2 bytes version =2. Short integer.

290 bytes levels
records

29 sets of levels, each level contains 10 bytes of five short
integers. Described in table 12-37.

Table 12-37: Level record structure

Length Name Description

2 bytes input floor Short integer from 0...253.

2 bytes input ceiling Short integer from 2...255.

2 bytes output floor Short integer from 0...255. Matched to input floor.

2 bytes output ceiling Short integer from 0...255.

2 bytes gamma Short integer from 10...999 representing 0.1...9.99. Applied to
all image data.

12. Load File Formats

Adobe Photoshop Software Development Kit 174

Photoshop 3.0 and later Levels files and Photoshop 2.5
There are two versions of the Levels file format. Photoshop 3.0 and later
reads both but only writes version 2. Because the maximum number of
channels was increased in Photoshop 3.0 from 16 to 24, Photoshop 3.0 and
later actually writes a longer Levels file than Photoshop 2.5. Photoshop 2.5 is
still capable of reading these files and ignores the extra data.

12. Load File Formats

Adobe Photoshop Software Development Kit 175

Monitor setup

Monitor settings files are loaded and saved in Photoshop’s “Monitor Setup”
dialog, via the “Preferences” sub-menu in Photoshop 3.0, and under the File
menu in Photoshop 4.0.

Table 12-38: Monitor setup file types

OS Filetype/extension

Mac OS 8BMS

Windows .AMS

Table 12-39: Monitor setup file format

Length Name Description

2 bytes version =2. Short integer.

2 bytes gamma Short integer from 75...300 representing 0.75...3.00.

2*2 bytes white point Two short integers as CIE chromaticity coordinates: x,y.
x=0...10000 representing 0.0...1.0000. y=1...10000 represent-
ing 0.0001...1.0000.

6*2 bytes phosphors Three sets of two integers giving x,y coordinates of the red,
green, and blue phosphors. x=0...10000 representing
0.0...1.0000. y=1...10000 representing 0.0001...1.0000. In the
order red x, red y; green x, green y; blue x, blue y.

12. Load File Formats

Adobe Photoshop Software Development Kit 176

Replace color/Color range

Replace Color settings files are loaded and saved in Photoshop’s “Replace
Color” dialog. They are also used to load and save settings from the “Color
Range” dialog.

Table 12-40: Replace color/Color range file types

OS Filetype/extension

Mac OS 8BXT

Windows .AXT

Table 12-41: Replace color/Color range file format

Length Name Description

2 bytes version =1. Short integer.

2 bytes color space Short integer indicating what space the color components are in.
7=Lab color, 8=grayscale. No other values are supported.

6 bytes component
ranges

Six unsigned byte values representing the range of colors within
which a pixel’s color must fall to be considered selected for color
replacement, or color range selecting. Described in table 12-42.

2 bytes fuzziness Short integer from 0...200 controlling how colors close to
selected colors are affected.

6 bytes transform
settings

When used with Replace Color: Three short integers from
–100...100. Described in table 12-43.

When used with Color Range: Writes zeros into the three short
integers and ignores.

Table 12-42: Component range structure

Length Name Description

1 byte low
endpoint 1

if Lab (color space=7): low endpoint of L value

if grayscale (color space=8): low endpoint of gray range

1 byte high
endpoint 1

if Lab: high endpoint of L value

if grayscale: 0

1 byte low
endpoint 2

if Lab: low endpoint of a chromanance value

if grayscale: 0

1 byte high
endpoint 2

if Lab: high endpoint of a chromanance value

if grayscale: 0

1 byte low
endpoint 3

if Lab: low endpoint of b chromanance value

if grayscale: low endpoint of gray range

1 byte high
endpoint 3

if Lab: high endpoint of b chromanance value

if grayscale: high endpoint of gray range

Table 12-43: Replace color transform settings

Length Name Description

2 bytes hue Short integer from –100...100. Hue change.

2 bytes saturation Short integer from –100...100. Saturation change.

2 bytes lightness Short integer from –100...100. Lightness change.

12. Load File Formats

Adobe Photoshop Software Development Kit 177

Scratch Area

Scratch Area settings files are loaded and saved in Photoshop’s Scratch
palette.

Table 12-44: Scratch area file types

OS Filetype/extension

Mac OS 8BSR

Windows .ASR

Table 12-45: Scratch area file format

Length Name Description

2 bytes version =1. Short integer.

Variable data Scratch area data in the form of RGB image data. The three
planes are written one after the other in the order red, green,
blue. Described in table 12-46.

Table 12-46: Scratch area data structure

Length Name Description

16 bytes bounds Four long integers giving the bounds of the scratch data rectan-
gle in the order top, left, bottom, right. Photoshop 3.0 has a fixed
Scratch palette size and this will always be [0,0,89,200]

2 bytes depth Depth of the current data plane. Always 8.

Variable image data Image data. Described in table 12-47.

Table 12-47: Scratch area image data structure

Length Name Description

2 bytes compression 0=Raw data, 1=RLE compressed.

Variable data Each plane of the image data is stored in scanline order, with no
pad bytes.

If compression=0, the data = raw data.

If compression=1, the data starts with the byte counts for all
the scan lines (equal to the number of rows, as described by the
bounds), with each count stored as a two–byte value. The RLE
compressed data follows, with each scan line compressed sepa-
rately. The RLE compression is the same compression algorithm
used by the Macintosh ROM routine PackBits, and the TIFF
standard.

12. Load File Formats

Adobe Photoshop Software Development Kit 178

Selective color

Selective Color settings files are loaded and saved in Photoshop’s “Selective
Color” dialog.

Record order

1. The first record is ignored by Photoshop 3.0 and is reserved for future
use. It should be set to all zeroes.

2...10. The rest of the records apply to specific areas of colors or lightness
values in the image, in the following order: reds, yellows, greens,
cyans, blues, magentas, whites, neutrals, blacks.

Table 12-48: Selective color file types

OS Filetype/extension

Mac OS 8BSV

Windows .ASV

Table 12-49: Selective color file format

Length Name Description

2 bytes version =1. Short integer.

2 bytes correction
method

Short integer. 0=Apply color correction in relative mode; 1=Apply
color correction in absolute mode.

80 bytes plate
corrections

Ten eight-byte correction records, described in table 931.

Table 12-50: Plate correction structure

Length Name Description

2 bytes cyan Short integer from –100...100. Amount of cyan correction.

2 bytes magenta Short integer from –100...100. Amount of magenta correction.

2 bytes yellow Short integer from –100...100. Amount of yellow correction.

2 bytes black Short integer from –100...100. Amount of black correction.

12. Load File Formats

Adobe Photoshop Software Development Kit 179

Separation setup

Separation settings files are loaded and saved in Photoshop’s “Separation
Setup” dialog, via the “Preferences” sub-menu.

Null curves
A NULL curve (no change to image data) is represented by the following
five–number, ten–byte sequence in a file:

2 0 0 255 255.

Note:
The black generation curve and the UCA limit must both be
present even if the separation type is set to UCR (=0).

Table 12-51: Separation file types

OS Filetype/extension

Mac OS 8BSS

Windows .ASP

Table 12-52: Separation file format

Length Name Description

2 bytes version =300. Short integer.

2 bytes separation type Boolean. 0=UCR separations; 1=GCR separations.

2 bytes black limit Short integer from 0...100 giving the black ink limit.

2 bytes total limit Short integer from 200...400 giving the total ink limit.

2 bytes UCA amount Short integer from 0...100 giving the undercolor addition
for GCR separations.

Variable black generation
curve

Spline curve detailed in table 12-53. Identical to the
Curves data format in table 12-19.

Table 12-53: Black generation curve data structure

Length Name Description

2 bytes point count Short integer from 2...19 indicating how many points are
in the curve.

2* point
count
bytes

curve points Each curve point is a pair of short integers where the first
number is the output value (vertical coordinate on the
Black Generation dialog graph) and the second is the
input value. All coordinates have range 0 to 255. See Null
curves.

!!

12. Load File Formats

Adobe Photoshop Software Development Kit 180

Separation tables

Separation Table files are loaded and saved in Photoshop’s “Separation
Tables” dialog.

Format:

1. If the size of the file is 33 * 33 * 33 * 4, then the file consists only
of an Lab–>CMYK table as currently documented.

2. If the size of the file is 33 * 33 * 33 + 256 * 3, then the file
consists only of a CMYK–>Lab table as currently documented.

3. Otherwise, the file has the format listed in table 12-55.

Table 12-54: Separation tables file types

OS Filetype/extension

Mac OS 8BST

Windows .AST

Table 12-55: Separation table file format

Length Name Description

2 bytes version =300. Short integer.

1 byte has Lab to CMYK Boolean. 0=No; 1=Contains Lab–>CMYK table.

1 byte has CMYK to Lab Boolean. 0=No; 1=Contains CMYK–>Lab table.

33*33*33*4 bytes Lab to CMYK table If hasLabtoCMYK=1 then this section contains
CMYK colors for 33*33*33 Lab colors. The
CMYK colors are written in interleaved order,
one byte each ink. 0=100%, 255=0%. See Gen-
erating Lab source colors below.

(33*33*33 +256)*3
bytes

CMYK to Lab table If hasCMYKtoLab=1 then this section contains
Lab colors for 33*33*33+256 CMYK colors. The
Lab colors are written in interleaved order, one
byte per component. See Generating CMYK
source colors below.

1 byte has gamut table Boolean. 0=No; 1=gamut table follows.

1 byte filler If hasGamutTable=0 then this byte will not be
present.

If hasGamutTable=1 then this byte should be
set to 1 for compatibility.

(((33*33*33L)+7)>>3)
 bytes

gamut table If hasGamutTable=0 then this field will not be
present.

If hasGamutTable=1 then this is the gamut
table. The gamut table is a bit table indexed in
the same way as the Lab->CMYK table with the
high bit of the first byte at index 0. See Testing
for bits in the gamut table, below.

12. Load File Formats

Adobe Photoshop Software Development Kit 181

Generating Lab source colors
The Lab colors that are the source colors can be generated from the
Lab–>CMYK table with the following routine:

for (i = 0; i< 33; i++)
for (j = 0; j < 33; j++)

for (n = 0; n < 33; n++)

{

L = Min (i * 8, 255);

a = Min (j * 8, 255);

b = Min (n * 8, 255);

}

Generating CMYK source colors
The CMYK colors that are the source colors can be generated from the
CMYK–>Lab table with the following routine:

for (i = 0; i< 33; i++)
for (j = 0; j < 33; j++)

for (n = 0; n < 33; n++)

{

c = Min (i * 8, 255);

m = Min (j * 8, 255);

y = Min (n * 8, 255);

k = 255;

}

for (i = 0; i < 256; i++)
{

c = 255;

m = 255;

y = 255;

k = i;

}

Testing for bits in the gamut table
To test the bit at bitIndex, use table:

[bitIndex >> 3] & (0x0080 >> (bitIndex & 0x07))) != 0.

bitIndex itself is calculated in the same way you would calculate an index
into the Lab–>CMYK table.

A result of 1 indicates that the color is in gamut and 0 indicates that it is out
of gamut.

12. Load File Formats

Adobe Photoshop Software Development Kit 182

Transfer function

Transfer Function settings files are loaded and saved in Photoshop’s
“Duotone Curve” dialog from within “Duotone Options” and “Transfer
Function” dialogs from within Page Setup. Transfer Function files can also
be loaded into any of Photoshop’s curves dialogs, such as the Curves color
adjustment dialog.

Null transfer curve
Any curves beyond the last plate specified by Count should be equal to the
NULL curve. A NULL transfer curve looks like this:

0, –1, –1, –1, –1, –1, –1, –1, –1, –1, –1, –1, 1000.

Note: The file always contains four functions. When writing the
printer transfer functions for grayscale images, for instance,
Photoshop writes four copies of the single transfer function specified
in the user interface.

Table 12-56: Transfer function file types

OS Filetype/extension

Mac OS 8BTF

Windows .ATF

Table 12-57: Transfer function file format

Length Name Description

2 bytes version =4. Short integer.

112 bytes functions There are four transfer functions in the file, described in
table 12-58.

Table 12-58: Transfer function structure

Length Name Description

26 bytes curve Array of 13 short integers from 0...1000 representing
0.0...100.0. All but the first and last value may be –1, repre-
senting no point on the curve. See Null transfer curve below.

2 bytes override Boolean. 0=Let printer supply curve; 1=Override printer’s
default transfer curve.

!!

Adobe Photoshop Software Development Kit 183

AA. Data Structures

This appendix provides information about various data structures used by
plug–in modules.

Information about the PiPL and PiMI data structures is contained in the
document Plug-in Resource Guide.pdf. The different plug–in parameter blocks
are described in their respective chapters.

A. Data Structures

Adobe Photoshop Software Development Kit 184

PSPixelMap

typedef struct PSPixelMap
{

int32 version;

VRect bounds;

int32 imageMode;

int32 rowBytes;

int32 colBytes;

int32 planeBytes;

void *baseAddr;

/* Fields new in version 1. */

PSPixelMask *mat;

PSPixelMask *masks;

int32 maskPhaseRow;

int32 maskPhaseCol;

} PSPixelMap;

Table A-1: PSPixelMap structure

Type Field Description

int32 version =1. Future versions of Photoshop may support additional
parameters and will support higher version numbers for
PSPixelMap’s.

VRect bounds The bounds for the pixel map.

int32 imageMode The mode for the image data. The supported modes are
grayscale, RGB, CMYK, and Lab. Additionally, if the mode
of the document being processed is DuotoneMode or
IndexedColorMode, you can pass plugInModeDuotone or
plugInModeIndexedColor.

int32 rowBytes The offset from one row to the next of pixels.

int32 colBytes The offset from one column to the next of pixels.

int32 planeBytes The offset from one plane of pixels to the next. In RGB, the
planes are ordered red, green, blue; in CMYK, the planes
are ordered cyan, magenta, yellow, black; in Lab, the
planes are ordered L, a, b.

void * baseAddr The address of the byte value for the first plane of the top
left pixel.

PSPixelMask * mat For all modes except indexed color, you can specify a mask
to be used for matting correction. For example, if you have
white matted data to display, you can specify a mask in this
field which will be used to remove the white fringe. This
field points to a PSPixelMask structure (see below) with a
maskDescription indicating what type of matting needs
to be compensated for. If this field is NULL, Photoshop per-
forms no matting compensation. If the masks are chained,
only the first mask in the chain is used.

PSPixelMask * masks This points to a chain of PSPixelMasks which are multi-
plied together (with the possibility of inversion) to estab-
lish which areas of the image are transparent and should
have the checkerboard displayed. kSimplePSMask,
kBlackMatPSMask, kWhiteMatPSMask, and
kGrayMatPSMask all operate such that 255=opaque and
0=transparent. kInvertPSMask has 255=transparent and
0=opaque.

int32 maskPhaseRow The phase of the checkerboard with respect to the top left
corner of the PSPixelMap.

int32 maskPhaseCol

A. Data Structures

Adobe Photoshop Software Development Kit 185

PSPixelMask

typedef struct PSPixelMask
{

struct PSPixelMask * next

void * maskData;

int32 rowBytes;

int32 colBytes;

int32 maskDescription;

} PSPixelMask;

Table A-2: PSPixelMask structure

Type Field Description

PSPixelMask * next A pointer to the next mask in the chain

void * maskData A pointer to the mask data.

int32 rowBytes The row step for the mask.

int32 colBytes The column step for the mask.

int32 maskDescription The mask description value, which is one of the
following:

0=kSimplePSMask
1=kBlackMatPSMask

2=kGrayMatPSMask

3=kWhiteMatPSMask

4=kInvertPSMask

A. Data Structures

Adobe Photoshop Software Development Kit 186

ColorServicesInfo

This data structure is used in the ColorServices callback function. See
chapter 3 and the notes following table A-3 for more details.

typedef struct ColorServicesInfo
{

int32 infoSize;

int16 selector;

int16 sourceSpace;

int16 resultSpace;

Boolean resultGamutInfoValid;

Boolean resultInGamut;

void *reservedSourceSpaceInfo;

void *reservedResultSpaceInfo;

int16 colorComponents[4];

void *reserved;

union

{

Str255 *pickerPrompt;

Point *globalSamplePoint;

int32 specialColorID;

} selectorParameter;

}

ColorServicesInfo;

Table A-3: ColorServicesInfo structure

Type Field Description

int32 infoSize Size of the ColorServicesInfo record in bytes. The
value is used as a version identifier in case this record is
expanded in the future. It can be filled in like so:

ColorServicesInfo requestInfo;
requestInfo.infoSize = sizeof(requestInfo);

int16 selector Operation performed by the ColorServices callback.

0=plugIncolorServicesChooseColor
1=plugIncolorServicesConvertColor

2=plugIncolorServicesSamplePoint

3=plugIncolorServicesGetSpecialColor

int16 sourceSpace Indicates the color space of the input color contained in
colorComponents.

For plugIncolorServicesChooseColor the input
color is used as an initial value for the picker.

For plugIncolorServicesConvertColor the input
color will be converted from the color space indicated by
sourceSpace to the one indicated by resultSpace.

0=plugIncolorServicesRGBSpace
1=plugIncolorServicesHSBSpace

2=plugIncolorServicesCMYKSpace

3=plugIncolorServicesLabSpace

4=plugIncolorServicesGraySpace

5=plugIncolorServicesHSLSpace

6=plugIncolorServicesXYZSpace

A. Data Structures

Adobe Photoshop Software Development Kit 187

int16 resultSpace Desired color space of the result color. The result will be
contained in the colorComponents field.

For the plugIncolorServicesChooseColor selector,
resultSpace can be set to
–1=plugIncolorServicesChosenSpace to return the
color in whichever color space the user chose. In that
case, resultSpace will contain the chosen color space
on output.

Boolean resultGamutInfoValid This output only field indicates whether the
resultInGamut field has been set. In Photoshop 3.0 and
later, this will only be true for colors returned in the
plugIncolorServicesCMYKSpace color space.

Boolean resultInGamut Boolean. Indicates whether the returned color is in
gamut for the currently selected printing setup. Only
meaningful if resultGamutInfoValid=TRUE.

void * reservedSourceSpaceInfo =NULL, otherwise returns parameter error .

void * reservedResultSpaceInfo =NULL, otherwise returns parameter error .

int16 colorComponents[4] Actual color components of the input or output color.
See table A-4.

void * reserved =NULL, otherwise returns parameter error .

union selectorParameter This union is used for providing different information
based on the selector field: pickerPrompt,
globalSamplePoint, or specialColorID.

The pickerPrompt variant contains a pointer to a
Pascal string which will be used as a prompt in the color
picker for the plugIncolorServicesChooseColor call.
NULL can be passed to indicate no prompt.

globalSamplePoint points to a Point record that is
the current sample point.

specialColorID should be either:
0=plugIncolorServicesForegroundColor or
1=plugIncolorServicesBackgroundColor.

Table A-4: colorComponents array structure

Color
space

color
Components[0]

color
Components[1]

color
Components[2]

color
Components[3]

RGB red from 0...255 green from 0...255 blue from 0...255 undefined

HSB hue from 0...359
degrees

saturation from
0...255
representing
0%...100%

brightness from
0...255
representing
0%...100%

undefined

CMYK cyan from 0...255
representing
100%...0%

magenta from
0...255
representing
100%...0%

yellow from
0...255
representing
100%...0%

black from 0...255
representing
100%...0%

HSL hue from 0...359
degrees

saturation from
0...255
representing
0%...100%

luminance from
0...255
representing
0%...100%

undefined

Table A-3: ColorServicesInfo structure (Continued)

Type Field Description

A. Data Structures

Adobe Photoshop Software Development Kit 188

Lab luminance value
from 0...255
representing
0...100

a chromanance
from 0...255
representing
–128...127

b chromanance
from 0...255
representing
–128...127

undefined

Gray
scale

gray value from
0...255

undefined undefined undefined

XYZ X value from
0...255

Y value from
0...255

Z value from
0...255

undefined

Table A-4: colorComponents array structure (Continued)

Color
space

color
Components[0]

color
Components[1]

color
Components[2]

color
Components[3]

A. Data Structures

Adobe Photoshop Software Development Kit 189

PlugInMonitor

A number of the plug–in module types get passed monitor descriptions via
the PlugInMonitor structure. These descriptions basically detail the
information recorded in Photoshop’s “Monitor Setup” dialog and are passed
in a structure of the following type:

typedef struct PlugInMonitor
{

Fixed gamma;
Fixed redX;
Fixed redY;
Fixed greenX;
Fixed greenY;
Fixed blueX;
Fixed blueY;
Fixed whiteX;
Fixed whiteY;
Fixed ambient;

} PlugInMonitor;

Table A-5: PlugInMonitor structure

Type Field Description

Fixed gamma This field contains the monitor’s gamma value or zero if
the whole record is invalid.

Fixed redX These fields specify the chromaticity coordinates of the
monitor’s phosphors.

Fixed redY

Fixed greenX

Fixed greenY

Fixed blueX

Fixed blueY

Fixed whiteX These fields specify the chromaticity coordinates of the
monitor’s white point.

Fixed whiteY

Fixed ambient This field specifies the relative amount of ambient light in
the room. Zero means a relatively dark room, 0.5 means
an average room, and 1.0 means a bright room.

A. Data Structures

Adobe Photoshop Software Development Kit 190

ResolutionInfo

This structure contains information about the resolution of an image. It is
written as an image resource. See the Document file formats chapter for more
details.

struct ResolutionInfo
{

Fixed hRes;

int16 hResUnit;

int16 widthUnit;

Fixed vRes;

int16 vResUnit;

int16 heightUnit;

};

Table A-6: ResolutionInfo structure

Type Field Description

Fixed hRes Horizontal resolution in pixels per inch.

int16 hResUnit 1=display horitzontal resolution in pixels per inch; 2=dis-
play horitzontal resolution in pixels per cm.

int16 widthUnit Display width as 1=inches; 2=cm; 3=points; 4=picas; 5=col-
umns.

Fixed vRes Vertial resolution in pixels per inch.

int16 vResUnit 1=display vertical resolution in pixels per inch; 2=display
vertical resolution in pixels per cm.

int16 heightUnit Display height as 1=inches; 2=cm; 3=points; 4=picas; 5=col-
umns.

A. Data Structures

Adobe Photoshop Software Development Kit 191

DisplayInfo

This structure contains display information about each channel. It is written
as an image resource. See the Document file formats chapter for more details.

struct DisplayInfo
{

int16 colorSpace;

int16 color[4];

int16 opacity; // 0..100

char kind; // selected = 0, protected = 1

char padding; // should be zero

};

The table is identical to the Colors load file format Color space ID, table 12-12.

Table A-7: DisplayInfo Color spaces

Color ID Name Description

0 RGB The first three values in the color data are red, green, and blue.
They are full unsigned 16–bit values as in Apple’s RGBColor data
structure. Pure red=65535,0,0.

1 HSB The first three values in the color data are hue, saturation, and
brightness. They are full unsigned 16–bit values as in Apple’s
HSVColor data structure. Pure red=0,65535, 65535.

2 CMYK The four values in the color data are cyan, magenta, yellow, and
black. They are full unsigned 16–bit values. 0=100% ink. Pure
cyan=0,65535,65535,65535.

7 Lab The first three values in the color data are lightness, a chromi-
nance, and b chrominance.

Lightness is a 16–bit value from 0...10000. The chromanance com-
ponents are each 16–bit values from –12800...12700. Gray values
are represented by chrominance components of 0. Pure
white=10000,0,0.

8 grayscale The first value in the color data is the gray value, from 0...10000.

Adobe Photoshop Software Development Kit 192

BB. OLE Automation

by Robert A. Swirsky, Photoshop Engineering

Adobe Photoshop 4.0 supports OLE automation. With an OLE automation
controller, like Microsoft’s Visual Basic, Visual Basic for Applications, or
Borland’s Delphi, Adobe Photoshop 4.0 can open and close documents and
execute Action scripts.

OLE automation is only available on Windows 95 and Windows NT
platforms. It is not available on Windows 3.1 or Macintosh. A similar
external automation mechanism exists on the Macintosh using
AppleScript.

!!

B. OLE Automation

Adobe Photoshop Software Development Kit 193

Automation basics

Photoshop 4.0 implements the “Actions” palette, permitting a user to record
a sequence of actions and play them back. See the chapter on Scripting for
more information.

The actions in the actions palette are exposed via OLE Automation. Once an
Action has been recorded, it can be played back using OLE Automation in
addition to interactively by pressing the play button in the Actions palette.

Automation objects
Several Adobe Photoshop automation objects can be instantiated from an OLE
automation controller. By accessing properties and methods associated with
different objects, you can make Photoshop open, close, and save documents,
as well as run pre-recorded scripts. The Automation Objects are:

1. Application

2. Document

3. Actions Collection

4. Action

Application objects
Use an application object to start or quit the host; create a document object, or
run a script by name.

Document objects
Document objects are instantiated by calling Open from the application object.

Table B-1: Application object attributes

Name Type Parameters Description

Actions Property n/a Returns an Actions Collection, which con-
tains all the actions int he currently
loaded Actions palette.

FullName Property n/a The full name of the application.

Open Method BSTR Opens a new document and returns a doc-
ument object.

PlayAction Method BSTR Plays an action by name on the current
document.

Quit Method none Exits the host.

Table B-2: Document object attributes

Name Type Parameters Description

Activate Method None Make this document the active document
and default target.

Close Method None Save changes and close document.

SaveTo Method BSTR Save the document under a different
name.

Title Property n/a The title (filename) of this document.

B. OLE Automation

Adobe Photoshop Software Development Kit 194

Actions collection object
The actions collection object represents all the scripts currently loaded in the
Actions palette. In addition to the attributes in table B-3, it also supports the
For Each construct in Visual Basic automation controllers.

Action objects
Action objects are the individual scripts in the Actions palette.

Table B-3: Actions collection object attributes

Name Type Parameters Description

Count Method None Returns the number of scripts in the
Actions palette.

Item Method Integer Returns a particular action object.

Table B-4: Action object attributes

Name Type Parameters Description

Name Property n/a The name (title) of this script.

Play Method None Play this script.

B. OLE Automation

Adobe Photoshop Software Development Kit 195

Creating OLE Automation with Visual Basic

This section contains programming examples that show how to use Microsoft
Visual Basic to access the OLE automation objects for Photoshop 4.0.

Creating and destroying an application object
Use Visual Basic’s CreateObject procedure to instantiate a Photoshop
application object. The object can be destroyed with the application object’s
Quit method, or by setting the object to Nothing, causing the reference
count to decrement to zero.

Dim App as Object
Set App = CreateObject("Photoshop.Application")

App.Quit

Photoshop’s automation class factory is a single use object that can only be
used by one automation controller at a time. You’ll get a message that the
Photoshop object can’t be created if it is already in use by another
application.

Opening and closing documents
The application object’s Open method creates a new document object. it
takes a file name (with path) as a parameter and returns a document object.
Exceptions are raised:

1. If the file can’t be opened because it doesn’t exist;

2. If the file is in an unrecognized format;

3. If Photoshop is in a modal state and can’t process requests at this time.

These exceptions can be caught with Visual Basic’s On Error statement.

To close a document and save any changes that have been made, use the
document object’s Close method.

Dim App as Object
Dim PhotoDoc as Object

Set App = CreateOjbject("Photoshop.Application")

Set PhotoDoc = App.Open("C:\files\photoshop\MyPicture.PSD")

PhotoDoc.Close

App.Quit

B. OLE Automation

Adobe Photoshop Software Development Kit 196

Running an action script by name
Typically, you’ll want to perform an action on the current document by
executing a script from the palette. You can run a script by specifying its
name, or you can iterate among all the currently loaded scripts and run any
or all of them.

To run an action by name, use the PlayAction method from the Application
object. Adding to our previous example, we’ll run an action called “BlurMe”
on the active document. If you have more than one document object
instantiated, target one of them by calling its Activate method.

Dim App as Object
Dim PhotoDoc as Object

Set App = CreateOjbject("Photoshop.Application")

Set PhotoDoc = App.Open("C:\files\photoshop\MyPicture.PSD")

App.PlayAction("BlurMe")

PhotoDoc.Close

App.Quit

PlayAction returns a Boolean value that indicates whether the action was
found and played or not. If the action doesn’t exist, PlayAction will return
FALSE. If the action cannot be played because the host is in a modal state,
this method will raise an exception that can be handled with Visual Basic’s
On Error statement.

Saving under a different name
To save the file under a different name, use the document object’s SaveTo
method to specify a name.

Dim App as Object
Dim PhotoDoc as Object

Set App = CreateOjbject("Photoshop.Application")

Set PhotoDoc = App.Open("C:\files\photoshop\MyPicture.PSD")

App.PlayAction("BlurMe")

PhotoDoc.SaveTo("MyNewPicture.PSD"

PhotoDoc.Close

App.Quit

If you don’t specify a fully qualified path name, the file will be saved relative
to the directory of the original file. Fully qualified path names beginning
with a backslash or a drive letter are used as-is. If the file cannot be saved to
the specified path, the host will raise a “Can’t open file” exception.

B. OLE Automation

Adobe Photoshop Software Development Kit 197

Iterating through a collection of actions
The applciation object’s Actions method returns a collection object that can
be used to step through all the action objects currently loaded in the
palette. The following example steps through all the available actions,
asking the user to run a particular script. The name of an individual action in
the collection is obtained through the action object’s Name method.

If an action’s Play method cannot play the script, it raises an “Unexpected”
exception that can be caught with Visual Basic’s On Error statement.

Dim App as Object
Dim PhotoDoc as Object

Set App = CreateOjbject("Photoshop.Application")

Set PhotoDoc = App.Open("C:\files\photoshop\MyPicture.PSD")

For Each Action in App.Actions

response = MsgBox(Action.Name, vbYesNo, "Run this Action?")

if response = vbYes then

Action.Play

End If

PhotoDoc.SaveTo("MyNewPicture.PSD"

PhotoDoc.Close

App.Quit

Index

Adobe Photoshop Software Development Kit 198

Index
Symbols
.8B* 30
.ABR 158
.ACF 172
.ACM 163
.ACO 161
.ACT 160
.ADO 167
.AHS 169
.ALV 173
.AMP 157
.AMS 175
.API 171
.ASP 179
.ASR 177
.AST 180
.ASV 178
.ATF 182
.AXT 176
.CRV 165
.HSS 170

Numerics
680x0 23
8BAM 30
8BBR 158
8BCK 172
8BCO 161
8BCT 160
8BDT 167
8BFK 163
8BHA 170
8BHS 169
8BIC 171
8BIM 139
8BLS 173
8BLT 157
8BMS 175
8BPS 144
8BSC 165
8BSR 177
8BSS 179
8BST 180
8BSV 178
8BTF 182
8BXT 176

A
A4Stuff.h 24
A5 register (680x0) 24
abortProc 62, 69, 78, 86, 106, 116
absdTileOrigin 91
absInvertedLayerMasks 91
absLayerMasks 91
absLayerPlanes 91
absNonLayerPlanes 91
absTileHeight 91
absTileWidth 91
absTransparencyMask 91
accurate screens 169
acquire modules

Index

Adobe Photoshop Software Development Kit 199

AcquireRecord parameter block 69
acquireSelectorContinue 65
acquireSelectorFinish 66
acquireSelectorPrepare 64
acquireSelectorStart 65

acquireAgain 72
AddPIResourceProc 57
Adobe Premiere 152
advanceState 73, 80, 89, 110
AdvanceStateProc 33
AllocateBufferProc 38
ambient 189
angle 158, 169
ANPA 143, 154
anti-aliasing 158
autoMask 87

B
backColor 88
background 86
Background color 139
baseAddr 184
binary/ascii 151
BitsPerSample 155
black 178
black generation curve 179
black limit 179
Blend mode key 147
Blend mode signature 147
block size 151
blueLUT 70, 78, 107
blueX 189
blueY 189
BMP 93
Boolean 17
Border information 139
Borland C++ 29
bounds 159, 177, 184
bounds-long 159
brushes 158
buffer suite 38
bufferProcs 62, 72, 79, 88, 109, 116
bufferSpace 87
BufferSpaceProc 21, 38
button title 164

C
callback suites 32
Callback suites description 37
callbacks

AddPIResourceProc 57
AdvanceStateProc 33
AllocateBufferProc 38
BufferSpaceProc 38
CountPIResourcesProc 57
DeletePIResourceProc 57
DisplayPixelsProc 34
DisposePIHandleProc 48
FreeBufferProc 39
GetPIHandleSizeProc 48
GetPIResourceProc 57
GetPropertyProc 53

Index

Adobe Photoshop Software Development Kit 200

HostProc 35
LockBufferProc 39
LockPIHandleProc 48
NewPIHandleProc 48
PIResampleProc 50
ProcessEventProc 35
RecoverSpaceProc 49
SetPIHandleSizeProc 48
SetPropertyProc 53
SpaceProc 35
TestAbortProc 35
UnlockBufferProc 39
UnlockPIHandleProc 49
UpdateProgressProc 36

canFinalize 72
cannotUndo 90
canReadBack 72
canTranspose 71, 108
CFM 24
Channel destination range 148
Channel ID 148
Channel length info 147
Channel Ports suite 40
Channel source range 148
Channels 144
Clipping 147
CMYK 161, 168, 191
CMYK to Lab table 180
CMYK–>Lab 181
CNVTPIPL.EXE 29, 31
code fragment manage 24
code fragment manager (Macintosh) 23
Code68K 27
CodePowerPC 27
CodeWarrior, See Metrowerks
colBytes 66, 70, 97, 104, 108, 184, 185
Color components 149
Color data 145
color index 163
color space 176
Color transfer functions 139
colorComponents 187
colorization 170
ColorMap 155
ColorMunger 81
colors 161
colorServices 62, 73, 79, 90, 110, 116
ColorServicesInfo 186
ColorServicesProc () 34
Columns 144
columns 151
command ID 163
command key 164
complexProperty 53
component ranges 176
Composite gray blend destination 148
Composite gray blend source 148
Compression 146, 149, 155
compression 159, 177
correction method 178
count 158, 161, 163, 165, 167
CountPIResourcesProc 57

Index

Adobe Photoshop Software Development Kit 201

CString 17
curve 182
curve points 165, 179
curves 165, 169
cyan 178

D
data 107, 158
dataFork 106
default screens 169
DeletePIResourceProc 57
Depth 144
depth 69, 78, 107, 151, 159, 177
diameter 158
direct callbacks 32
dirty 70, 79
diskSpace 71
DisplayInfo 139
displayPixels 62, 72, 79, 89, 110, 116
DisplayPixelsProc 34
DisposePIHandleProc 48

disposing complex properties 53
Dissolve-sans-AppleScript 81
Dissolve-with-AppleScript 81
dot gain 167, 171
DotRange 155
dummyPlaneValue 89
Duotone 139
Duotone transfer functions 139
duotoneInfo 71, 79

E
encapsulated PostScript files 150
EPS 140
estimate sequence 94, 99
Export modules 15
export modules 74

ExportRecord parameter block 78
exportSelectorFinish 76
exportSelectorPrepare 75
exportSelectorStart 76

Extra data size 148
ExtraSamples 155

F
fat plug-ins 23
fat plug–ins (Macintosh) 23
fileName 70, 79
fileType 110
filler 180
FillOrder 155
filter modules 81

FilterRecord parameter block 86
filterSelectorContinue 84
filterSelectorFinish 84
filterSelectorParameters 82
filterSelectorPrepare 83
filterSelectorStart 84

filterCase 89
filterRect 86
filterSelectorContinue 85

Index

Adobe Photoshop Software Development Kit 202

filterSelectorFinish 85
filterSelectorStart 84
FlagSet 17
floatCoord 88
Focoltone 162
foreColor 88
foreground 86
format modules 93

estimate sequence 102
file filtering 95
FormatRecord parameter block 106
formatSelectorEstimateContinue 102
formatSelectorEstimateFinish 102
formatSelectorEstimatePrepare 102
formatSelectorEstimateStart 102
formatSelectorOptionsContinue 100
formatSelectorOptionsFinish 101
formatSelectorOptionsPrepare 100
formatSelectorOptionsStart 100
formatSelectorReadContinue 97
formatSelectorReadFinish 98
formatSelectorReadPrepare 96
formatSelectorReadStart 96
formatSelectorWriteContinue 104
formatSelectorWriteFinish 104
formatSelectorWritePrepare 103
formatSelectorWriteStart 103
options sequence 100
read sequence 96
write sequence 103
writing a file 99

formatSelectorEstimateContinue 102
formatSelectorFilterFile 94
formatSelectorOptionsStart 105
formatSelectorWriteContinue 103
framesPerSec 152
FreeBufferProc 39
frequency scale 169
frequency value 169
function key ID 163
functions 182
fuzziness 176

G
gamma 173, 175, 189
gamut table 180
GAP SDK tech notes mailing list 11
GetIndString() 24
GetPIHandleSizeProc 48
GetPIResourceProc 57
getProperty 79, 89
GetProperty() 141
getPropertyObsolete 53
GetPropertyProc 13, 53
GetString() 24
GIF 93
GradientImport 63
gray balance 171
Grayscale 139
grayscale 161, 168, 191
greenLUT 70, 78, 107
greenX 189

Index

Adobe Photoshop Software Development Kit 203

greenY 189

H
halftoning 139
handle suite 48
handleProcs 62, 72, 79, 89, 110, 116
hardness 158
has CMYK to Lab 180
has gamut table 180
has Lab to CMYK 180
haveMask 87
heap space 21
height 152
heightUnit 190
high endpoint 176
hiPlane 66, 70, 78, 97, 104, 107
History 74
HKS colors 162
hostDisposeHdl 109
hostModes 71, 108
hostNewHdl 109
HostProc 35
hostProc 62, 71, 79, 88, 108, 116
hostSig 62, 71, 79, 88, 108, 116
hRes 190
hResUnit 190
HSB 161, 168, 191
hue 176
hue settings 170
hue-saturation settings 170
HyperCard 12

I
icl8 143, 154
ICN# 143, 154
IFD 155
IllustratorExport 74
image data 159, 177
image resources 105
image services 14
image services suite 50
ImageDescription 155
imageHRes 70, 78, 88, 107
ImageLength 155
imageMode 69, 78, 88, 106, 184
imageRsrcData 109
imageRsrcSize 109
imageServicesProcs 62, 73, 80, 91, 116
imageSize 69, 78, 86, 106
imageVRes 70, 78, 88, 107
ImageWidth 155
inColumnBytes 91
inData 87
infoSize 186
inHiPlane 87
inInvertedLayerMasks 90
ink colors 167, 171, 172
ink curves 167
ink names 167
InkSet 155
inLayerMasks 90
inLayerPlanes 90

Index

Adobe Photoshop Software Development Kit 204

inLoPlane 87
inNonLayerPlanes 90
inPlaneBytes 91
inPostDummyPlanes 91
inPreDummyPlanes 91
input ceiling 173
input floor 173
inputPadding 90
inputRate 90
inRect 87
inRowBytes 87
interpolate1D 50
interpolate2D 50
inTileHeight 91
inTileOrigin 91
inTileWidth 91
inTransparencyMask 90
invertedLayerMasks 80
IPTC-NAA 140
IPTC–NAA 154
isFloating 87

J
JPEG 140

K
kBlackMatPSMask 185
kGrayMatPSMask 185
Kind 149
kInvertPSMask 185
kSimplePSMask 185
kWhiteMatPSMask 185

L
Lab 161, 168, 191
Lab to CMYK table 180
Lab–>CMYK 181
Layer 147
Layer blending ranges 148
Layer mask data 148
Layer name 148
Layer top 147
layerMasks 80
layerPlanes 80
Layers 145
Layers structure 147
leading 152
Length 145
levels records 173
lightness 176
lightness settings 170
linear bank 21
load files

Arbitrary Map 157
Brushes 158
Color Table 160
Colors 161
Command Settings File 163
Curves 165
Custom kernel 172
Duotone options 167

Index

Adobe Photoshop Software Development Kit 205

Halftone screens 169
Hue/Saturation 170
Ink colors setup 171
Levels 173
Monitor setup 175
Replace color/Color range 176
Scratch Area 177
Selective color 178
Separation setup 179
Separation tables 180
Transfer function 182

load files, description 156
LockBufferProc 39
LockPIHandleProc 48
Long 17
loPlane 66, 70, 78, 97, 104, 107
low endpoint 176

M
Macintosh

code fragment manager 23
fat plug–ins 23
PowerMac native plug–ins 23

MacPaint 93
MACTODOS.EXE 31
magenta 178
maskData 88, 185
maskDescription 185
maskPadding 90
maskPhaseCol 184
maskPhaseRow 184
maskRate 90
maskRect 88
maskRowBytes 88
Masks 145
masks 184
maskTileHeight 91
maskTileOrigin 91
maskTileWidth 91
mat 184
maxData 69, 78, 106
maxDataBytes 106
maxRsrcBytes 106
maxSpace 86
memory management strategies

setting maxData 21
Metrowerks CodeWarrior 26

notes for CodeWarrior Bronze users 27
minDataBytes 106
minRsrcBytes 106
Mode 144
mode 151, 170
monitor 72, 79, 88, 109
Motorola 13

N
NearestBase 58
needTranspose 71, 108
NewPIHandleProc 48
NewSubFileType 155
next 185
nonLayerPlanes 80

Index

Adobe Photoshop Software Development Kit 206

numFrames 152

O
offset 172
Opacity 147, 149
options sequence 94, 99
OSType 17
Outbound 74
outColumnBytes 91
outData 87
outHiPlane 87
outInvertedLayerMasks 91
outLayerMasks 91
outLayerPlanes 91
outLoPlane 87
outNonLayerPlanes 91
outPlaneBytes 91
outPostDummyPlanes 91
outPreDummyPlanes 91
output ceiling 173
output floor 173
outputPadding 90
outRect 87
outRowBytes 87
outTileHeight 91
outTileOrigin 91
outTileWidth 91
outTransparencyMask 91
Overlay color space 149
overprint colors 167
override 168, 182

P
packing 152
pad channels 151
padding 170
Pantone 162
phosphors 175
PhotometricInterpretation 155
Photoshop EPS files 150
PICategoryProperty 95
PicComment 105
PICT 143, 154
PiMI 13, 23
PINameProperty 95
PiPL 13, 23, 26
PIPriorityProperty 95
PIResampleProc 50
PIWin32X86CodeProperty 29
Pixel data 147
PlanarConfiguration 155
planeBytes 66, 70, 97, 104, 108, 184
planeMap 71, 108
planes 69, 78, 86, 107
plate corrections 178
platformData 72, 79, 88, 109
plug–in hosts 12
plug–in modules 12
Plug–in Property List See PiPL
plugIncolorServicesBackgroundColor 187
plugIncolorServicesChooseColor 186
plugIncolorServicesCMYKSpace 186

Index

Adobe Photoshop Software Development Kit 207

plugIncolorServicesConvertColor 186
plugIncolorServicesForegroundColor 187
plugIncolorServicesGetSpecialColor 186
plugIncolorServicesGraySpace 186
plugIncolorServicesHSBSpace 186
plugIncolorServicesHSLSpace 186
plugIncolorServicesLabSpace 186
plugIncolorServicesRGBSpace 186
plugIncolorServicesSamplePoint 186
plugIncolorServicesXYZSpace 186
PLUGINDIRECTORY 16, 30
PlugInMonitor 189
point count 165, 179
PowerPC 13
Predictor 155
Premiere 152
premiereHook 89
Print flags 139
processEvent 62, 72, 79, 89, 109, 116
ProcessEventProc 35
progressProc 62, 69, 78, 86, 106, 116
propCopyright 56
property suite 53

propBigNudgeH 55
propBigNudgeV 55
propCaption 55
propChannelName 55
propClippingPathIndex 55
propHardwareGammaTable 56
propImageMode 55
propInterpolationMethod 55
propNumberOfChannels 55
propNumberOfPaths 55
propPathContents 55
propPathName 55
propRulerUnits 55
propSerialString 56
propTargetPathIndex 55
propWorkPathIndex 55

propertyProcs 73, 80, 110
Propetizer 74, 81
propGridMajor 56
propGridMinor 56
propInterfaceColor 53, 56
propRulerOriginH 55
propRulerOriginV 55
propTitle 56
propURL 56
propWatchSuspension 56
pseudo–resource suite 57
PSImagePlane structure 50
PSPixelMap 184
PSPixelMask 185
PString 17

Q
Quick Mask 140

R
RecoverSpaceProc 49
redLUT 70, 78, 107
redX 189

Index

Adobe Photoshop Software Development Kit 208

redY 189
ResEdit 12
reservedResultSpaceInfo 187
reservedSourceSpaceInfo 187
ResolutionInfo 139
ResolutionUnit 155
resourceProcs 62, 72, 79, 88, 109, 116
Resources 145
resultGamutInfoValid 187
resultInGamut 187
resultSpace 187
revertInfo 109
RGB 161, 168, 191
roundness 158
rowBytes 66, 70, 79, 97, 104, 108, 184, 185
Rows 144
rows 151
RowsPerStrip 155
rsrcFork 106

S
SamplesPerPixel 155
samplingSupport 90
saturation 176
saturation settings 170
scale 172
screens 169
selectBBox 79
selector 186
Selectorama 111
selectorParameter 187
separation type 179
SetPIHandleSizeProc 48
SetPropertyProc 13, 53
SetupA4.h 24
Shape 111
shape code 169
Short 17
Signature 144
SimpleFormat 93
simpleProperty 53
size 158
sourceSpace 186
space 161, 167
SpaceProc 35
spaceProc 71
spacing 158
STR 24, 154
STR# 24, 143, 154
Str255 17
StripByteCounts 155
StripOffsets 155
supportsAbsolute 89
supportsAlternateLayouts 89
supportsDummyPlanes 89
supportsPadding 90
SYM files 28
Symantec C++ (Windows) 29

T
TestAbortProc 35
TEXT 143, 154

Index

Adobe Photoshop Software Development Kit 209

thePlane 79
theRect 70, 78, 107
TIFF 105
TileByteCounts 155
tileHeight 73, 80, 110
TileLength 155
TileOffsets 155
tileOrigin 73, 80, 110
TileWidth 155
tileWidth 73, 80, 110
title matching flag 164
total limit 179
Toyo 88 colorfinder 162
transfer curve 168
transform settings 176
transparencyMask 80
Trumatch 162
type 158
TypeCreatorPair 17

U
UCA amount 179
UnlockBufferProc 39
UnlockPIHandleProc 49
UpdateProgressProc 36

V
Version 144
version 158, 161, 163, 165, 167, 169, 170, 171, 173, 175, 176, 178, 179, 180, 182, 184
VPoint 17
VRect 17
vRefNum 70, 79
vRes 190
vResUnit 190

W
wantFinalize 72
wantLayout 89
wantReadBack 72
wantsAbsolute 89
weights 172
white point 175
whiteX 189
whiteY 189
wholeSize 88
width 152
widthUnit 190
write sequence 94, 99
Writing 102

X
XResolution 155

Y
yellow 178
YResolution 155

	Title Page
	Version History

	Table of Contents
	1. Introduction
	Audience
	About this guide
	How to use this guide
	Contents of the Photoshop plug–in toolkit
	GAP SDK tech notes mailing list

	2. Plug-in Basics
	Plug–in modules and plug–in hosts
	A short history lesson
	Macintosh and Windows development
	Version Information
	2.5 & 3.0
	3.0.4
	3.0.5
	4.0

	Types of plug–in modules
	Color Picker
	Import
	Export
	Extension
	Filter
	Format
	Parser
	Selection
	Plug–in module files
	Plug–in file types and extensions
	Basic data types

	The plug–in module interface
	selector
	pluginParamBlock
	pluginData
	result
	Error reporting
	About boxes
	The parameter block at selectorAbout
	Multiple plug-ins and selectorAbout

	Memory management strategies
	maxSpace vs. bufferSpace on the Macintosh

	Creating plug–in modules for the Mac OS
	Hardware and system software configuration
	Resources in a plug–in module
	Global variables
	Metrowerks CodeWarrior A4-globals

	Segmentation
	Metrowerks CodeWarrior link flags for plug-ins ove...

	Installing plug–in modules
	What’s in this toolkit for the Mac OS?
	Examples
	Sources.c and Headers.h
	Utilities
	Documentation
	Developer Services

	Fat and PPC-only plug-ins and the cfrg resource
	Building your plug-in

	Building 680x0–only plug-ins
	Debugging code resources in Metrowerks CodeWarrior...

	Creating plug–in modules for Windows
	Hardware and software configuration
	Structure packing
	Resources
	Creating or modifying PiPL resources in Windows

	Calling a Windows plug–in
	Installing plug–in modules
	Finding the plug-in directory in Windows

	What’s in this toolkit for Windows?
	Examples
	Sources.c and Headers.h
	Utilities
	Documentation
	Developer Services

	3. Plug-in Host Callbacks
	Direct callbacks
	AdvanceStateProc()
	AdvanceState, Buffers, Proxies, and DisplayPixels
	AdvanceState error codes

	ColorServicesProc()
	DisplayPixelsProc()
	source
	srcRect
	dstRow / dstCol
	platformContext

	HostProc()
	ProcessEventProc()
	SpaceProc()
	TestAbortProc()
	UpdateProgressProc()

	Callback suites
	Buffer suite
	BufferSpaceProc()
	AllocateBufferProc()
	FreeBufferProc()
	LockBufferProc()
	UnlockBufferProc()

	Channel Ports suite
	ReadPixelsProc()
	PSScaling
	PixelMemoryDesc
	wroteRect

	WriteBasePixelsProc()
	ReadPortForWritePortProc()

	Descriptor suite
	PIDescriptorParameters
	ReadDescriptorProcs suite
	OpenReadDescriptorProc()
	CloseReadDescriptorProc()
	GetAliasProc()
	GetBooleanProc()
	GetClassProc()
	GetCountProc()
	GetEnumeratedProc()
	GetFloatProc()
	GetIntegerProc()
	GetKeyProc()
	GetSimpleReferenceProc()
	PIDescriptorSimpleReference

	GetObjectProc()
	GetPinnedFloatProc()
	GetPinnedIntegerProc()
	GetPinnedUnitFloatProc()
	GetStringProc()
	GetTextProc()
	GetUnitFloatProc()
	WriteDescriptorProc suite
	OpenWriteDescriptorProc()
	CloseWriteDescriptorProc()
	PutAliasProc()
	PutBooleanProc()
	PutClassProc()
	PutCountProc()
	PutEnumeratedProc()
	PutFloatProc()
	PutIntegerProc()
	PutSimpleReferenceProc()
	PutObjectProc()
	PutStringProc()
	PutTextProc()

	Handle suite
	NewPIHandleProc()
	DisposePIHandleProc()
	GetPIHandleSizeProc()
	SetPIHandleSizeProc()
	LockPIHandleProc()
	UnlockPIHandleProc()
	RecoverSpaceProc()

	Image Services suite
	PIResampleProc()
	source / destination
	area
	coords
	method

	interpolate1DProc()
	interpolate2DProc()

	Property suite
	GetPropertyProc()
	SetPropertyProc()
	propInterfaceColor
	Property Keys

	Pseudo–Resource suite
	CountPIResourcesProc()
	GetPIResourceProc()
	AddPIResourceProc()
	DeletePIResourceProc()

	4. Color Picker Modules
	Examples/ColorPicker/NearestBase
	Calling sequence
	pickerSelectorPick
	1. Prompt for parameters
	2. Allocate memory
	3. Compute your color space based on the user inpu...
	4. Finish, clean up, and hand back your results

	Behavior and caveats
	Color Pickers and Macintosh resource forks

	PickParms structure
	Error return values

	The Color Picker parameter block

	5. Import Modules
	Examples/Import/GradientImport
	Calling sequence
	acquireSelectorPrepare
	Globals and scripting

	acquireSelectorStart
	acquireSelectorContinue
	theRect, loPlane & hiPlane
	data, colBytes, rowBytes & planeBytes

	acquireSelectorFinish
	Scripting at acquireSelectorFinish

	acquireSelectorFinalize
	Scripting at acquireSelectorFinalize

	Behavior and caveats
	Multiple Acquire
	Batch Import
	Batch Import versus Multiple Import
	Error return values

	The Import parameter block

	6. Export Modules
	Examples/History
	Examples/IllustratorExport
	Examples/Export/Outbound
	Calling sequence
	exportSelectorPrepare
	Globals and scripting

	exportSelectorStart
	theRect, loPlane & hiPlane

	exportSelectorContinue
	exportSelectorFinish
	Scripting at exportSelectorFinish

	Error return values

	The Export parameter block

	7. Filter Modules
	Examples/Filter/Dissolve–with–AppleScript
	Examples/Filter/Dissolve–sans–AppleScript
	Examples/Filter/Propetizer
	Examples/Filter/ColorMunger
	Calling sequence
	filterSelectorParameters
	Parameter block and scripting

	filterSelectorPrepare
	imageSize, planes & filterRect
	bufferSpace

	filterSelectorStart
	advanceState and filterSelectorStart
	inRect, outRect & maskRect

	filterSelectorContinue
	inData, outData & maskData

	filterSelectorFinish
	Scripting at filterSelectorFinish

	Behavior and caveats
	Error return values

	The Filter parameter block

	8. Format Modules
	Examples/Format/SimpleFormat
	Format module operations
	Globals and scripting

	Reading a file (file filtering)
	Reading a file (read sequence)
	formatSelectorFilterFile
	formatSelectorReadPrepare
	formatSelectorReadStart
	Scripting at formatSelectorReadStart
	imageMode & imageSize
	Reading an indexed color image (redLut, greenLut &...
	imageRsrcData
	theRect, loPlane & hiPlane
	data, colBytes, rowBytes, planeBytes & planeMap

	formatSelectorReadContinue
	formatSelectorReadFinish
	Scripting at formatSelectorReadFinish

	Writing a file
	Writing a file (options sequence)
	formatSelectorOptionsPrepare
	formatSelectorOptionsStart
	Scripting at formatSelectorOptionsStart

	formatSelectorOptionsContinue
	formatSelectorOptionsFinish

	Writing a file (estimate sequence)
	formatSelectorEstimatePrepare
	formatSelectorEstimateStart
	formatSelectorEstimateContinue
	formatSelectorEstimateFinish

	Writing a file (write sequence)
	formatSelectorWritePrepare
	formatSelectorWriteStart
	theRect, loPlane & hiPlane
	data
	colBytes, rowBytes, planeBytes & planeMap

	formatSelectorWriteContinue
	formatSelectorWriteFinish
	Scripting at formatSelectorWriteFinish

	Image Resources
	Error return values

	The Format parameter block

	9. Selection Modules
	Examples/Selection/Selectorama
	Examples/Selection/Shape
	Calling sequence
	selectionSelectorExecute
	1. Prompt for parameters
	2. Allocate memory
	3. Begin your main loop
	4. Modify, write the results, continue until done....
	5. Finish and clean up

	Behavior and caveats
	Channel Ports structures
	Treatments and SupportedTreatments
	Error return values

	The Selection parameter block

	10. Scripting Plug-ins
	Scripting on Windows with OLE
	AppleScript and AppleEvents recommended reading
	Scripting Basics
	Implementation order
	Scripting caveats

	Creating a terminology resource
	Basic terminology resource
	Detailed terminology resource
	Nomenclature
	Parameter and property flags
	Classes and the terminology resource
	Inheritance
	Enumerated types
	Variant types
	Enumerations and object reference types

	Lists and the terminology resource

	Descriptors
	Filter, Selection, and Color Picker events
	Import, Export, and Format objects
	Save as object
	Save as type

	typeObjectReference
	PIDescriptorSimpleReference

	Scripting Parameters
	PIDescriptorParameters

	Recording
	Building a descriptor
	Recording error handling
	Recording classes

	Playback
	Playback error handling
	Coerced parameters
	DescriptorKeyIDArray
	Sticky errors

	Common keys and parameters
	AppleScript compatibility
	Registration and unique name spaces
	Common Adobe plug-in ID good will format

	Ignoring AppleScript
	AppleEvents

	11. Document File Formats
	Image resource blocks
	Path resource format
	Path points
	Path records

	Photoshop 3.0 files
	Photoshop 3.0 files under Windows
	Photoshop 3.0 files under Mac OS

	Photoshop 3.0 file format
	File header section
	Color mode data section
	Image resources section
	Layer and mask information section
	Image data section

	Layer and mask records
	Photoshop 4.0 file format
	Photoshop EPS files
	Filmstrip files
	TIFF files
	NSK TIFF
	TIFF Revision 6.0
	TIFF files under the Mac OS

	12. Load File Formats
	Arbitrary Map
	Single active channels

	Brushes
	Color Table
	Colors
	Command Settings File
	Curves
	Null curves
	Displaying ink percentages
	Curves data order
	Indexed color
	Single active channels
	Photoshop 3.0 and later Curves files and Photoshop...
	Photoshop 3.0 and later Curves files and Photoshop...

	Duotone options
	Null transfer curve

	Halftone screens
	Hue/Saturation
	Ink colors setup
	Custom kernel
	Format:
	Weight offset progression

	Levels
	Level record sets order
	Indexed color
	Single active channels
	Photoshop 3.0 and later Levels files and Photoshop...

	Monitor setup
	Replace color/Color range
	Scratch Area
	Selective color
	Record order

	Separation setup
	Null curves

	Separation tables
	Format:
	Generating Lab source colors
	Generating CMYK source colors
	Testing for bits in the gamut table

	Transfer function
	Null transfer curve

	A. Data Structures
	PSPixelMap
	PSPixelMask
	ColorServicesInfo
	PlugInMonitor
	ResolutionInfo
	DisplayInfo

	B. OLE Automation
	Automation basics
	Automation objects
	Application objects
	Document objects
	Actions collection object
	Action objects

	Creating OLE Automation with Visual Basic
	Creating and destroying an application object
	Opening and closing documents
	Running an action script by name
	Saving under a different name

	Iterating through a collection of actions

	Index

