

Revised: 13 November 1996

Software Development Kit

release 2 for Windows

version

TM

Adobe Premiere 4.2

Adobe Premiere Software Development Kit

2

Adobe Premiere 4.2 Software Development Kit, release 2

Copyright © 1992–96 Adobe Systems Incorporated. All rights reserved.

The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commit-
ment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes
no responsibility or liability for any errors or inaccuracies that may appear in
this document. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such
license.

Adobe, Adobe Premiere, Adobe Photoshop, Adobe Illustrator, Adobe Type
Manager, ATM and PostScript are trademarks of Adobe Systems Incorporated
that may be registered in certain jurisdictions. Macintosh and Apple are
registered trademarks, and Mac OS is a trademark of Apple Computer, Inc.
Microsoft, Windows are registered trademarks of Microsoft Corporation. All
other products or name brands are trademarks of their respective holders.

Most of the material for this document was derived from work by Bryan K.
"Beaker" Ressler, Randy Ubillos, Dave Wise, Nick Schlott, and Matt Foster. It
was then compiled, edited, and reformatted into its current form by Brian
Andrews.

Version History

13 February 1995 Matt Foster, Nick Schlott Version 4.0 - The first Windows
version.

9 February 1996 Brian Andrews Version 4.2 - Reformatted and
updated for Premiere 4.2.

13 November 1996 Brian Andrews Version 4.2r2 - Incremental
updates and bug fixes,
expanded Photoshop section.

Contents

Contents

1 Introduction . 8
Windows vs. Macintosh Plug-Ins . 8

How to Use This Guide . 8

About This Guide . 9

What’s New . 9

Plug-In Overview . 10

Premiere Terminology . 11

Timecode . 11

Things to Remember . 11

Macintosh Conventions. 12

Building Premiere for Windows Plug-ins . 12

Plug-in Resources . 12

TYPE 1000 . 13

TEXT 1000 . 13

??vs 1000 . 13

Using the FPU from Within a Plug-in . 14

2 The Utility Library . 15
Macintosh Memory Management . 15

Graphics . 21

About PWorlds . 21

Data Export Module Utilities . 23

EDL Export Module Utilities . 23

Miscellaneous Routines . 25

3 Bottlenecks . 26
The BottleRec Structure. 26

The Bottleneck Routines . 26

4 Transitions. 32
FXvs 1000 . 33

TYPE 1000 . 33

TEXT 1000 . 33

TEXT 1001 . 33

Fopt 1000 . 33

Fopt—third byte: Valid corners . 34

Fopt—fourth byte: Initial corners . 34

Fopt—fifth byte: Bit flags . 34

Fopt—sixth byte: Exclusive flag . 35

Fopt—seventh byte: Reversible . 35

Fopt—eighth byte: Has edges flag . 35

Fopt—ninth byte: Movable start point flag 36

Fopt—tenth byte: Movable end point flag 36
Adobe Premiere Software Development Kit 3

Contents

FXDF -1 . 36

The Transition Code. 38

esExecute . 38

esSetup . 38

The EffectRecord Structure . 38

specsHandle . 39

source1 . 39

source2 . 39

destination . 39

part . 39

total . 39

previewing . 40

arrowFlags . 40

reverse . 40

source . 40

start . 40

end . 40

center . 40

privateData . 40

callBack . 40

bottleNecks . 41

version . 41

 sizeFlags . 41

flags . 41

fps . 41

Examples. 41

5 Video Filters . 42
FLvs 1000 . 42

TYPE 1000 . 42

TEXT 1000 . 43

FLTD 1 . 43

The Filter Code . 44

fsExecute . 44

fsSetup . 44

fsDisposeData . 45
Adobe Premiere Software Development Kit 4

Contents

The VideoRecord Structure . 45

specsHandle . 45

source . 45

destination . 45

part . 45

total . 45

previewing . 46

privateData . 46

callback . 46

bottleNecks . 46

version . 46

sizeFlags . 46

flags . 46

fps . 47

InstanceData . 47

Examples. 47

Video Noise . 47

6 Audio Filters . 48
FLvs 1000 . 48

TYPE 1000 . 48

TEXT 1000 . 49

FltD 1. 49

The Filter Code . 49

fsExecute . 49

fsSetup . 50

fsDisposeData . 50

The AudioRecord Structure. 50

specsHandle . 50

source . 50

destination . 51

sampleNum . 51

sampleCount . 51

previewing . 51

privateData . 51

callback . 51

totalsamples . 52

flags . 52

rate . 52

bottleNecks . 52

version . 52

extraFlags . 52

fps . 52

InstanceData . 52
Adobe Premiere Software Development Kit 5

Contents

Examples. 52

7 Data Export Modules 53
EXvs 1000 . 53

TYPE 1000 . 54

TEXT 1000 . 54

FLAG 1000. 54

The Export Code. 54

edExecute . 55

The DataExportRec Structure . 55

markers . 55

numframes . 55

framerate . 55

bounds . 55

audflags . 55

audrate . 56

getVideo . 56

getAudio . 56

privateData . 57

specialRate . 57

Examples. 57

8 EDL Export Modules . 58
EXvs 1000 . 58

TYPE 1000 . 58

TEXT 1000 . 59

The Export Code. 59

exExecute . 59

exTrue30fps . 59

The ExportRecord Structure . 59

dataHandle . 60

timeBase . 60

projectName . 60

The EDL Project Data Format . 60

Wipe Code Details . 63

Relevant Routines in the Utility Library. 64

Examples. 64

9 Device Control Modules 65
DVvs 1000. 65

TYPE 1000 . 65

TEXT 1000 . 66
Adobe Premiere Software Development Kit 6

Contents

The Device Control Code. 66

dsInit . 66

dsSetup . 66

dsExecute . 66

dsCleanup . 66

dsRestart . 67

The DeviceRec Structure . 67

deviceData . 67

command . 67

mode . 67

timecode . 67

timeformat . 68

timerate . 68

features . 68

error . 68

preroll . 68

callback . 68

PauseProc . 68

ResumeProc . 69

Commands . 69

cmdGetFeatures . 69

cmdStatus . 70

cmdNewMode . 71

cmdGoto . 71

cmdLocate . 72

cmdShuttle . 72

cmdJogTo . 73

Implementation Tips . 73

Handling dsInit and dsRestart . 73

Putting up error alerts . 74

Examples. 74

10 Other Plug-In Types . 75
Photoshop Filters . 75

Window Handler Modules (‘HDLR’) . 76

Audio/Video Import Modules (‘Draw’). 76

Bottleneck Modules (‘Botl’). 76

How to Get More Information . 76

Index . 77
Adobe Premiere Software Development Kit 7

1

Introduction

1 Introduction

Welcome to the Adobe Premiere™ 4.2 Software Developers Toolkit (SDK) for
Windows!

With this toolkit you can create software, known as plug–in modules, that
expand the capabilities of Adobe Premiere. The Adobe Premiere Plug-In
Toolkit is for developers who wish to write plug-in modules for use with
Adobe Premiere. Premiere plug-ins are called by Premiere to perform specific
functions, such as filtering a frame of video or controlling a tape deck.

This guide assumes that you are proficient in C language programming and
tools. The source code files in this toolkit are written for the Microsoft Visual
C++ 2.2 and 4.2 software development environments.

You should have a working knowledge of Adobe Premiere, and understand
how plug–in modules work from a user’s viewpoint. This guide assumes you
understand Premiere and basic video editing terminology. For more
information, consult the Adobe Premiere Users Guide and/or the Adobe
Premiere Classroom in a Book.

Windows vs. Macintosh Plug-Ins

This document describes only the Windows version of the Premiere SDK, there is
another version of the entire SDK (including this documentation) available for
Macintosh developers. Adobe Premiere 4.2 is available as a Macintosh and a
Windows application. All the basic plug-in module types for Premiere are available
on both platforms with the exception of Zoom modules, which are only available
on Macintosh. The mechanism by which plug-ins operate is quite similar. Adobe
encourages developers of Premiere plug-ins to create them for both platforms.

A key difference is the Macintosh version of Premiere offers a large function library
that can be used for doing interface work, such as controls, that are not available
to Premiere for Windows developers. The reason for the difference is for
compatibility of your plug-ins with later versions of Premiere. The 4.0 version of
Premiere for Windows was written for the Win16 API, the 4.2 version is written for
the Win32 API.

How to Use This Guide

This toolkit documentation starts with information that is common to all the
plug-in types. The rest of the document is broken up into chapters specific to
each type of plug-in.

Chapter 2 describes The Utility Library. This provides Premiere specific calls.

Chapter 3 describes the Bottlenecks, which are a set of procedures and
structures to perform common operations.
Adobe Premiere Software Development Kit 8

Introduction

Chapter 4 on Transitions, is the first chapter on specific plug-in types.
Transitions take two PWorlds and processes them into a single destination
PWorld, usually applying some special transition effect.

Chapter 5 describes Video Filters, which take a single PWorld and processes
into a destination PWorld, usually applying a visual effect.

Chapter 6 describes Audio Filters, which take a single source buffer of audio
and processes it into a destination buffer, usually applying an audio effect.

Chapter 7 describes Data Export Modules. These appear in Premiere’s Export
submenu and export a given clip to some other format.

Chapter 8 describes EDL Export Modules. These also appear in Premiere’s
Export submenu and are used to export the current project into a text edit
decision list.

Chapter 9 describes Device Control Modules. These allow Premiere to control
hardware devices such as tape decks or laser disc players.

Finally, Chapter 10 mentions a few other plug-In types, such as Adobe
Photoshop filters, which are largely beyond the scope of this document.

Perhaps the best way to use this toolkit documentation is to read this
Introduction chapter, then read the chapter specific to the type of plug-in
you’re writing. You should then study and understand the sample plug-ins of
the type you’re writing. While studying the samples, you’ll find function calls
to routines provided in the Adobe Premiere library, a stub library of many
useful routines. When you need documentation on specific library routines,
look in chapter 2, The Utility Library.

About This Guide

This programmer’s guide is designed for readability on screen as well as in
printed form. The page dimensions were chosen with this in mind. The
Frutiger font family is used throughout the manual with Courier used for
code examples.

To print this manual from within Adobe Acrobat Reader, select the “Shrink
to Fit” option on the Print dialog.

What’s New

This version of the Adobe Premiere Software Developers Toolkit contains the
following new features:

• Supports the newest release of Adobe Premiere for Windows, version
4.2. The libraries and headers files have been updated since the last
release with most 4.2 changes commented in the header files.

• Supports development using Microsoft Visual C++ version 2.2 or 4.2
on Windows 95 and Windows/NT.

• Improved documentation. We hope you’ll find this new document
format more readable for both on screen and printed viewing.
Adobe Premiere Software Development Kit 9

Introduction

• An instance handle has been added to the Video and Audio records
which allows Premiere to retain and return state information for a
plug-in. See Video Filters in chapter 5, Audio Filters in chapter 6, and
the header files for information on this.

• In general, PWorld ID’s have been hidden. You’ll only need to deal
with PixMaps from now on. In particular, the following structures
have been modified to hide their PWorld ID’s. See the EffectRecord
structure in chapter 4 and the VideoRecord structure in chapter 5.
You’ll also want to take note of the change in the PPix structure in
chapter 2.

• There has been an addition to Device Control which adds the
command cmdJog, which can be used in lieu of cmdJogTo.

• Premiere can load and apply Adobe Photoshop filters to video clips.
Chapter 10 provides an expand discussion of this capability and the
limitations of Premiere’s support of the Photoshop plug-in API.

Plug-In Overview

Adobe Premiere plug-ins are separate files that are placed in Premiere’s
plug-Ins folder. Plug-in files contain a single-entry-point DLL of a type
specific to the purpose of the plug-in. Each plug-in can have private
resources in its plug-in file.

The file prefixes list are not mandatory, however Adobe recommends you
use them to avoid conflicts with other system libraries. The recommended
prefixes reduce the chance for this happening with non-Premiere libraries.

Adobe Premiere 4.2 for Windows requires Windows 95 or Windows/NT
running on an Intel 486 or greater and Microsoft Video for Windows or
Quicktime for Windows. Your plug-ins can assume the presence of these
software components.

Table 1–1: Basic Plug-In Types

Type File
Prefix Name Description

‘SPFX’ FX- Video transition Create a C video frame from A and B
frames.

‘VFlt’ FL- Video filter Modify (“filter”) one frame of video.

‘AFlt’ FL- Audio filter Modify (“filter”) one audio “blip”.

‘ExpD’ EX- Data export module Export video or audio from a clip.

‘ExpM’ EX- EDL export module Export construction window information.

‘DevC’ X- Device control module Control a hardware device like a tape deck.

’8BFM’ Photoshop filter Apply a Photoshop filter to one frame of
video.
Adobe Premiere Software Development Kit 10

Introduction

Premiere Terminology

In the descriptions of the various types of Premiere plug-in modules, there
are several terms that you’ll see repeatedly. Refer to the Adobe Premiere
User Guide for more information.

Clip
A Clip in Premiere are the pieces of media (movies, graphics, sounds, etc.)
that become a part of an Adobe Premiere project. From a programming
standpoint, Premiere identifies clips by their clip ID. Premiere keeps track of
a variety of information about each clip, such as its type, markers, and in-
and out-points.

File
Each clip in Premiere has an associated file, from which the original data is
drawn. With the exception of Titles, Premiere does not modify the
underlying file associated with a clip. Within Premiere, files are identified by
a file ID.

Marker
Premiere allows movies and animations to have markers associated with
different frames in the clip. There are 10 numbered markers and up to 1000
unnumbered markers. Internally, the in-point and out-point of a clip are just
special markers.

Timecode
Several Premiere structures and callbacks include a timecode field. For the
most part, the meaning of timecode should be apparent from the context in
which it is used. In general, timecode is always a long and simply refers to
the frame count.

Things to Remember

When programming plug-in modules for Adobe Premiere there are a few
handy points of information that will ease your development.

• Strings in the Windows version of Premiere are always C strings (that
is, several byes of text followed by a null character). Cross platform
developers should be aware that the Macintosh API uses a mixture of
Pascal and C strings.

• Premiere plug-ins are usually loaded and called only when needed.
Typically after five seconds of non-use, a plug-in’s code is unloaded
and the plug-in file is closed. This means that for some plug-ins (like
transitions (SPFX) or video (VFlt) and audio (AFlt) filters), you can
leave Premiere running, switch back to your development
environment, make a change, recompile and re-link the plug-in,
switch back into Premiere, and try out your changes! This is a great
time-saver when developing filters and transitions.
Adobe Premiere Software Development Kit 11

Introduction
Macintosh Conventions

The Adobe Premiere for Windows API makes use of several functions and
data types that are derived from the Macintosh API. Premiere was originally
developed on the Macintosh and in porting the code to the Windows
platform, it was convenient to borrow these definitions from the original
platform. For Macintosh programmers, this should make learning or porting
code to the Premiere for Windows API a bit easier. Windows programmers
will have a few structures and conventions with which to familiarize
themselves. Not all of them are discussed in detail in this document, but you
will find reference to them in the header and source code examples.

Some functions are declared of type Pascal. On the Macintosh these routines
are called with variables on the stack according to Pascal calling conventions.
The type Pascal is for source code compatibility only; on the Windows
platform it is empty definition.

Building Premiere for Windows Plug-ins

Premiere for Windows plug-ins are dynamic link libraries (DLLs), so if you are
using a project oriented development environment be sure to specify this
option. See the sample .def files to see examples of the filter functions that
need to be exported. The plug-ins may also rely on a number of functions
that Premiere exports which are accessible through the PREMINFO.LIB. Make
certain that you link to this library; it is found in the LIB directory. The final
target file should have the name extension .prm. Finally, you must include
the required resources discussed next.

Plug-in Resources

Plug-in modules reside in their own file located in Premiere’s Plug-Ins folder.
When a plug-in is called to perform its function, the current file is set to the
plug-in’s file, and it is free to load and use any of the resources in the plug-
in file. In most cases, plug-ins are provided with a facility by which to store
and retrieve whatever parameters might be associated with their function.
For instance, filters can fill out a “settings data record” that gets saved by
Premiere in a Premiere project file, then later that data is handed back to
the filter when it is called upon to perform its function. If a plug-in has extra
state information or defaults, the plug-in can store it in a preferences file.

The resources used by Premiere for Windows are descended from Macintosh
plug-in resources. Because of their heritage, all resources specified by
Premiere for Windows have two zero bytes before any data. Resources not
required by Premiere for Windows, such as dialog records, do not have this
Adobe Premiere Software Development Kit 12

Introduction
prefix. The required resources for all Premiere plug-ins are listed below with
a more complete description following.

TYPE 1000
The TYPE 1000 resource is checked by Premiere at startup and identifies the
plug-in type. In the earlier Plug-In Overview section, there is a TYPE
identifier next to each kind of plug-in. A typical TYPE 1000 resource would
look like:

#define AFlttype 0x41466c74L // This indicates an audio filter
#define VFlttype 0x56466c74L // This indicates an video filter
#define DevCtype 0x44657643L // This is a device control module
#define ExpMtype 0x4578704dL // This is an EDL export module
#define ExpDtype 0x45787044L // This is a data export module
#define SPFXtype 0x53504658L // This indicates a transition

// The TYPE 1000 resource identifies the plug-in type to Premiere.
1000 TYPE DISCARDABLE
BEGIN

0x0000,
AFlttype, // one of the above #defines

END

Premiere for Macintosh developers will recognize this as the plug-in file type
moved to a resource.

TEXT 1000
The TEXT 1000 resource contains the name of the plug-in. This name will be
displayed in a window, a dialog, or a menu, depending on the plug-in type.
It should be kept short but descriptive. Look at other plug-ins for example
plug-in names. An example of a TEXT 1000 resource would be:

// The TEXT 1000 resource plug-in. It will appear in a window or menu.
1000 TEXT DISCARDABLE
BEGIN

0x0000,
"Fill Left\0"

END

??vs 1000
The version resource is used to identify the version of the Premiere for
Windows API to which the plug-in conforms. The current version for all types
of plug-ins is 2. Each of the general kinds of plug-ins has a slightly different
resource identifier, as shown below:

• Filter modules use the resource type FLvs
• Transition modules use the resource type FXvs
• Export modules use the resource type EXvs
• Device control modules use the resource type DVvs

An example of a version resource for an FLvs:

Table 1–2: Required Resources for Premiere Plug-Ins

Type & ID Description

TYPE 1000 The TYPE resource identifies the plug-in type to Premiere during the
loading process.

TEXT 1000 The name of the resource, to be displayed in the by Premiere in a win-
dow or menu.

??vs 1000 A two-byte version number stored as a short integer. The current ver-
sion is 2.
Adobe Premiere Software Development Kit 13

Introduction
// Plug-ins must have a version resource to identify the API expected.
1000 FLvs DISCARDABLE
BEGIN

0x0000,
0x0002

END

If a plug-in does not have a version resource or if the version number is for a
later version of the API than the running Premiere supports, it will not load.

Using the FPU from Within a Plug-in

An important consideration for anyone writing drivers or DLL's that are
called from any Windows application is working with floating point code. If
your DLL uses any floating point code, including floating point code
contained in run-time libraries, your plug-in or driver must be very careful to
leave the FPU in a known state on exit.

The best way to do this is if your code is not math-intensive is to use the
alternate math libraries via the /FPa compiler switch and link to the
LLibCaw.lib library. If you must use the FPU for performance reasons call
_FPInit() and _FPTerm at every DLL entry and exit point.

For more information, please refer to the article titled "Floating-Point in
Microsoft Windows", 8/10/92 by David Long, available on the Microsoft
Developer Network CD. In particular, read the section titled "DLL
Considerations."
Adobe Premiere Software Development Kit 14

2The Utility Library
2 The Utility Library
Many Adobe Premiere plug-ins perform similar functions. To reduce code
size and leverage existing code, Premiere has an extensive utility library that
provides both general Macintosh utility routines as well as Premiere-specific
calls. To use this library, you link your plug-in with a stub library,
PREMINFO.LIB. The actual code for the utility routines is dynamically linked
at run-time by Premiere when you call the library routines.

The documentation for these routines is divided into two major categories:
general Macintosh related routines and Premiere-specific routines. Within
those categories, the routines are divided into functional categories.

Macintosh Memory Management

The Macintosh uses a memory management scheme different from Windows.
The original scheme used the concept of a Handle, a relocatable block of
memory.1 A master list of Handles was kept by the operating system. A
program kept a pointer to a pointer in the master list. Thus Handles are
referenced by double indirection (e.g. **myHandle). A block of memory
allocated as a Handle may move to keep available heap space contiguous.
There are a variety of instances when this will occur, but for the Premiere for
Windows implementation it will occur only when additional memory is
allocated.

Because Handles move, they can be marked as locked to keep them from
moving. To avoid memory fragmentation, a locked Handle is unlocked as
soon as possible. Some Handles, such as those containing user interface
elements, are automatically removed from memory when they are unused
and their memory is need for something else. To insure that a Handle is not
removed from memory. It can be marked as unpurgeable. When the memory
is no longer required, the block is marked as purgeable. For more
information about these calls and the Macintosh memory manager, you
should refer to the Inside Macintosh Series published in several forms by
Addison-Wesley.

To aid in porting the original code base, parts of the original Macintosh
memory manager were duplicated in Premiere for Windows. These routines
are exported and in addition to being necessary in some cases, they should
be of use in making Premiere for Windows and Macintosh plug-in code more
compatible across platforms. Your plug-in is not required to use them for its
own memory management. It must use them when passing a block of
memory to Premiere, such as when using a specsHandle to store parameter
information. It should be noted that for this revision of the Premiere API,
the purgeable state of a Handle are largely ignored.

1.Don’t confuse the term handle. A Macintosh memory Handle is not the same as a Windows
HANDLE. This SDK will use the case sensitive spellings to distinguish between the two.
Adobe Premiere Software Development Kit 15

The Utility Library
The memory management functions use the following type declarations:

typedef char *Ptr;
typedef Ptr *Handle; /* pointer to a master pointer */
typedef long Size; /* size of a block in bytes */

MemError: Returns the error code caused by the last memory
manager function used.

pascal OSErr MemError (void);

This routine is used after a memory manager function is
called. These routines often return a pointer or Handle
directly, so to find the whether and error occurred and
the error code, you would use this call. The routine
returns an variable of type OSErr, which is a long.

HPurge(myHandle);
if (MemError()) {

// process the error
}

The error codes that can be returned are:

#define noErr 0
#define memFullErr -108 // if not enough room for

allocation
#define memWZErr -111 // if a nil handle is passed

// where an existing handle
is expected

BlockMove: BlockMove copies memory from one place to another.

pascal void BlockMove (
const void *srcPtr,
void *destPtr,
Size byteCount);

This routine moves a block of memory. The srcPtr points
to the start of the memory to be moved; the destPtr
points to where the memory should be moved. The
bytecount is a long indicating the number of bytes that
should be moved. The instance where the source and
destination overlap is handled correctly. This call is
provided for code compatibility with the Macintosh.
You may also use any of the memory moving routines
provided by the Windows API.

NewPtr: Allocated a block of memory for direct reference.

pascal Ptr NewPtr (Size byteCount);

This routine allocates a block of memory of bytecount
bytes at the lowest possible point on the application
heap. It is analogous to the malloc() standard C library
call. The pointer returned by the call points directly to
the allocated memory. If the call fails, nil will be
returned. See also DisposPtr(), NewPtrClear(), and
SetPtrSize().

An example of the use of this and related calls follows:
Adobe Premiere Software Development Kit 16

The Utility Library
Ptr myPtr;

myPtr = NewPtr(1024);
.
.
.
SetPtrSize(myPtr, 2048);
if (MemError()) {

// whoops! better do something...
}
.
.
.
DisposePtr(myPtr);

DisposPtr: Free a block of memory.

pascal void DisposPtr (Ptr p);

This routine disposes memory allocated by the NewPtr()
routine and reference by the pointer p. Do not call the
routine with multiple copies of the same pointer. This
routine may also be referred to as DisposePtr().

NewPtrClear: Allocate a cleared block of memory for direct reference.

pascal Ptr NewPtrClear (Size byteCount);

This routine is the same as NewPtr() except that it clears
the block of memory to 0 before returning it.

SetPtrSize: Shrink or expand a memory block reference by a
pointer.

pascal void SetPtrSize (
Ptr FAR *p,
Size newSize);

This routine is used to allocate additional memory to or
free existing memory from a block created by NewPtr()
and reference by p. The new size of the block is newSize.
Reducing the size of a block of memory will always
succeed. Increasing the size of a block of memory may
fail if there is insufficient contiguous free memory.
Using this call will cause the value of the pointer to
change.

GetPtrSize: Obtain the size of a block of memory in bytes.

pascal Size GetPtrSize (Ptr p);

This routine returns the size of a block of memory
referenced by the pointer p.

NewHandle: Allocate a block of memory from the application heap.

pascal Handle NewHandle (Size byteCount);

NewHandle() is used to create a block of indirectly
referenced memory of size byteCount. It returns a
pointer to a pointer to the allocated block of memory.
If the call fails, nil will be returned.

See also DisposHandle(), NewHandleClear(), and
SetHandleSize().

An example of the use of this and related calls follows:
Adobe Premiere Software Development Kit 17

The Utility Library
Handle myHandle;

myHandle = NewHandle(1024);
.
.
.
SetHandleSize(myHandle, 2048);
if (MemError()) {

// whoops! better do something...
}
.
.
.
DisposeHandle(myHandle);

DisposHandle: Free a block of memory allocated using NewHandle().

pascal void DisposHandle (Handle h);

This routine is used to free a block of memory referred
to by the Handle h. It may also be called as
DisposeHandle(). After the call, the Handle variable h
still refers to the master pointer list, though the pointer
to which it refers is invalid and must not be used.

NewHandleClear: Allocate and clear a block of memory from the
application heap.

pascal Handle NewHandleClear (Size byteCount);

This routine is the same as NewHandle() except that it
clears the allocated block of memory before it is
returned.

This routine is used to allocate additional memory to or
free existing memory from a block created by NewPtr()
and reference by p. The new size of the block is newSize.
Reducing the size of a block of memory will always
succeed. Increasing the size of a block of memory may
fail if there is insufficient contiguous free memory.
Using this call will cause the value of the pointer to
change.

GetHandleSize: Obtain the size of an allocated block of memory.

pascal Size GetHandleSize (Handle h);

This routine returns the size of a block of memory
referenced by the Handle h.

SetHandleSize: Given a ID of a PWorld, return the associated data.

pascal void SetHandleSize (
Handle h,
Size newSize);

This routine is used to allocate additional to or free
existing memory from a block created by NewHandle()
and reference by h. The new size of the block is newSize.
Reducing the size of a block of memory will always
succeed. Increasing the size of a block of memory may
fail if there is insufficient free memory.

HLock: Set the locked state of a Handle to true.

pascal void HLock (Handle h);
Adobe Premiere Software Development Kit 18

The Utility Library
When a Handle is locked on the Macintosh , it will not
be moved in the application heap and the data can be
reference directly. To lock memory referenced by a
Handle h, use the call HLock(h). This call is included for
code compatibility with the Macintosh.

HUnlock: Set the locked state of a Handle to false.

pascal void HUnlock (Handle h);

To avoid heap fragmentation on the Macintosh, the
locked Handle h should be unlocked as soon as possible.
This call is included for code compatibility with the
Macintosh.

HNoPurge: Mark a block of memory reference by a Handle as
unpurgeable.

pascal void HNoPurge (Handle h);

When a Handle is marked as unpurgeable on the
Macintosh, it will not be removed from the application
heap to free up memory for some other use. To make
sure that the memory of a Handle h is not freed for
some other use, call HNoPurge(h) This call is included for
code compatibility with the Macintosh, since the current
memory manager ignores the purgeable setting.

HPurge: Mark a block of memory reference by a Handle as
purgeable.

pascal void HPurge (Handle h);

On the Macintosh, after the data in a Handle is no
longer required, an unpurgeable Handle h should be
marked purgeable as soon as possible. This call is
included for code compatibility with the Macintosh,
since the current memory manager ignores the
purgeable setting.

HGetState: Get the locked and purgeable state of memory
reference by a Handle.

pascal char HGetState (Handle h);

This routine is included for compatibility purposes. It
returns the byte storing the locked and purgeable state
of the Handle h. This should be used for information
only. Rather than directly manipulating this byte, you
should use the calls HPurge(), HNoPurge(), HUnlock(),
and HLock().

HSetState: Set the locked and purgeable state of memory reference
by a Handle.

pascal void HSetState (
Handle h,
char flags);

This routine is included for compatibility purposes. It
directly sets the char flags by storing the locked and
purgeable state of the Handle h. Rather than using this
call, you should use the calls HPurge(), HNoPurge(),
HUnlock(), and HLock().
Adobe Premiere Software Development Kit 19

The Utility Library
MoveHHi: Given a ID of a PWorld, return the associated data.

pascal void MoveHHi (Handle h);

Before locking down a Handle on the Macintosh, the
memory should be moved to the top of the application
heap to avoid heap fragmentation. Use MoveHHi() on
the Handle h you want to lock before calling HLock().
This routine is included for compatibility reasons. It
doesn’t do anything in the current version of the API.

HandToHand: Create a Handle and copy an existing Handle to it.

pascal OSErr HandToHand (Handle *theHndl);

HandToHand() creates a new Handle the same size as
the one passed to it. The routine then copies the data of
the original Handle theHndl to the new one. The new
Handle is returned in place of the original. Because of
this, you should make a copy of the original Handle
before calling this function. This call returns the same
error code as a call to MemError().

The HandToHand() routine could be used as follows:

Handle srcHandle, destHandle;

// assume srcHandle is initialized with some data
destHandle = srcHandle;
if (HandToHand(&destHandle)) {

// Something went wrong...
}

PtrToHand: Copy the data from a pointer in to a Handle.

pascal OSErr PtrToHand (
const void *srcPtr,
Handle *dstHndl,
long size);

PtrToHand() creates a Handle dstHndl of size bytes and
copies the memory pointed to by srcPtr to the new
block. The destination Handle should not be created
before passing it to this function. This call will fail if
their is insufficient memory to create the new Handle
and this call returns the same error code as a call to
MemError().

HandAndHand: Append the data referred to by one Handle to another.

pascal OSErr HandAndHand (
Handle hand1,
Handle hand2);

Use HandAndHand() to append the memory referenced
by hand1 to the Handle hand2. The destination Handle
will be automatically sized to hold the new data. This
call will fail if there is insufficient memory to increase
the memory block reference by the Handle and this call
returns the same error code as a call to MemError().
Adobe Premiere Software Development Kit 20

The Utility Library
PtrAndHand: Append a block of memory referred to by a pointer to a
Handle.

pascal OSErr PtrAndHand (
const void *ptr1,
Handle hand2,
long size);

Use PtrAndHand() to append size bytes of data from the
memory pointed to by ptr1 to the Handle hand2. The
Handle will be automatically sized to hold the new data.
This call will fail if there is insufficient memory to
increase the memory block reference by the Handle and
this call returns the same error code as a call to
MemError().

Graphics

About PWorlds
The Macintosh API provides a convenient graphics structure for working with
off screen graphics called a GWorld. Associated with a GWorld is a PixMap,
which contains information about the graphics world like bounds and depth.
These structures and routines to use them have been partially recreated for
the Premiere for Windows API; they are call PWorlds. All PWorlds have an ID
associated with them.

Premiere 4.2 now hides all the PWorlds. The structures which used to contain
PWorlds (EffectRecord and VideoRecord) now return a PPixHand, alleviating
the need to call GetPWorldBits(), still documented below.

A PixMap is defined as follows. Note that this structure has changed in
Premiere 4.2:

// video frame record, 32 bits/pixel
// All internal buffers are in this format
// Pixel buffer pointed to by *pix is the same as a DIB buffer:
// BGRA, origin at lower left.

typedef struct // note changes to Premiere 4.2
{

RECT bounds; // bounds of pixmap
int rowbytes; // rowbytes of data
int bitsperpixel // bits per pixel - in 4.2 or earlier, always 32
int pixelformat // storage format for future expansion - in 4.2 or

// earlier, always 0 (RGB)
char *pix // pointer to pixel buffer
long reserved[4]

} PPix, *PPixPtr, **PPixHand;

typedef short PWorldID;

Note that all pixels are 32 bits deep, with one byte each for blue, green, red,
and the alpha channel in that order. This is the same format as the windows
screen map 32-bit DIB as documented in the Video for Windows SDK
extensions to the DIB format.

The rowbytes variable contains the number of bytes in each row, and the
number of pixels in a row would be rowbytes/4. The maximum number of
pixels in a row is 2000.
Adobe Premiere Software Development Kit 21

The Utility Library
GetPWorldBits: Given a ID of a PWorld, return the associated data.

PPixHand GetPWorldBits (PWorldID pw);

This routine is used to obtain the pixel data associated
with a PWorldID pw. When the transition and video
effect plug-ins, for instance, are called, the associated
data structure has PWorldIDs for the input and output
buffers. One of the first things a plug-in would do
would be call GetPWorldBits() for any buffer. For
instance, the following code is from the video noise
filter:

case fsExecute:
// Establish pointers to the two pixel buffers. Our
// noise routine will copy from srcPix to destPix while
// affecting the pixels.
srcPix = *GetPWorldBits((*theData)->source);
destPix = *GetPWorldBits((*theData)->destination);
.
.
.

PPixToScreen: Draw a PixMap to the screen.

void PPixToScreen (
PPixHand pix,
HDC dc,
LPRECT drawrect,
LPRECT theRect);

Use PPixToScreen() to move all or part of a PixMap to a
window, perhaps to preview an effect. The PPixHand pix
is the source, containing the pixels you want to move to
the screen. You are responsible for creating the device
control reference, dc. The drawrect is the rectangle
defining the part of the PWorld from which you wish to
draw. The other rectangle, theRect, is the screen
destination relative to the dc. You can also use the
DrawDIBDraw() function documented in the Video for
Windows Toolkit to move the pixels to the screen,
though using the PPixToScreen() call will avoid the ugly
effects of color palette switching.

NewPWorld: Create a new PWorld.

char NewPWorld (
PWorldID *pwID,
LPRECT bounds);

NewPWorld() creates a PWorld with the dimensions you
define in the rectangle bounds. Enough memory is
allocated for all the pixels plus 16 bytes for the PPix
information. If there is insufficient memory to complete
the call, and a non zero error code is return and the
returned PWorldID will be nil. Note that the routine
returns a PWorldID, pwID, so you would need to call
GetPWorldBits() to get a handle to the pixels.
Adobe Premiere Software Development Kit 22

The Utility Library
err = NewPWorld(&thePort, &box);
if(!err)
{

pix = GetPWorldBits(thePort);
...
if (thePort)

DisposePWorld(thePort);

result = 0;
}

DisposePWorld: Free the memory allocated for a PWorld.

void DisposePWorld (PWorldID pw);

This routine is the complement of NewPWorld(). After
you are finished using the PWorld pw you created, you
should call DisposePWorld() with the PWorldID pw. See
the example in NewPWorld().

Data Export Module Utilities

The routine in this section is primarly for use by data export module (ExpD,
Ex-) plug-ins.

GetExportFilePath: Return the file path of a clip.

void GetExportFilePath (
DataExportHandle datahand,
LPSTR path);

Given a DataExportHandle (which is returned as thedata
in a data export module call back), return the full file
path of the clip. This is useful if you wish to play the clip
using your own player.

EDL Export Module Utilities

The routines in this category are meant for use by EDL export (‘ExpM’, ‘EX-’)
plug-ins. The block routines pertain to the project data block list that is
provided to EDL export modules. For more information on the format of this
data, see the chapter EDL Export Modules.

CountTypeBlocks: Return the number of blocks of a given type.

long CountTypeBlocks (
long type,
BlockRec *srcBlock);

This routine returns the number of blocks of type type
starting from srcBlock. If type is -1, CountTypeBlocks()
returns the total number of blocks after srcBlock.
Adobe Premiere Software Development Kit 23

The Utility Library
FindBlock: Find a particular block.

BlockRec *FindBlock (
long type,
long theID,
long index,
BlockRec *srcBlock);

This routine can be used to locate a specific block by
index, type, or ID. The routine starts searching from
srcBlock. The type parameter specifies the block type to
look for, where -1 means “any type.” The theID
parameter allows you to specify a specific block ID of
the given type. The index parameter allows you to
specify a block index. FindBlock() returns a BlockRec
pointer. If the specified block could not be found,
FindBlock()returns nil.

GetBlock: Return a Handle to a copy of a particular block’s data.

BlockRec **GetBlock (
long type,
long theID,
long index,
BlockRec **srcBlock);

This routine calls FindBlock using the type, theID, and
index parameters starting from *srcBlock. See
FindBlock(), above, for details about how those
parameters are used. If the specified block is found,
GetBlock() calls PtrToHand() to copy the block’s data
into a Handle and returns the Handle. If the block is not
found, GetBlock() returns nil. Note that *srcBlock is
never changed (it is essentially a const parameter).

ExtractBlockData: Copy a block’s data to a destination buffer.

void ExtractBlockData (
BlockRec *srcBlock,
void *destination,
long *maxlen);

This routine copies the data for srcBlock (not including
the BlockRec) to the buffer destination up to a
maximum of *maxlen bytes. The actual number of bytes
copied is returned via the reference parameter maxlen.

Table 2–1: FindBlock Parameter Combinations

Type theID Index Action

-1 -1 valid Find the block index blocks from
srcBlock.

valid -1 valid Find the index-th block of type
type from srcBlock.

valid valid -1 Find the block of type type and ID
theID.
Adobe Premiere Software Development Kit 24

The Utility Library
Miscellaneous Routines

GetMainWnd: Get a HANDLE to Premiere’s main window.

HWND GetMainWnd (void);

This routine returns a HANDLE to Premiere’s main
window. Your plug-in will need this when displaying a
parameters dialog to set the proper parent window.

Use GetLastActivePopup(GetMainWnd()) for any plug-in
dialog parents.

case esSetup:
myData = NULL;
result = DialogBoxParam (

resInst,
MAKEINTRESOURCE(1000),
GetLastActivePopup(GetMainWnd()),
(DLGPROC)AskDlogProc,
(LPARAM)theData);

break;
Adobe Premiere Software Development Kit 25

3Bottlenecks
3 Bottlenecks
Adobe Premiere provides a set of bottleneck procedures to its plug-in
modules to perform common operations. This chapter describes the
BottleRec structure that contains the bottleneck function pointers and
describes each bottleneck.

The BottleRec Structure

Bottlenecks are passed to plug-ins through a structure called a BottleRec.

typedef struct {
short count; // Number of routines
short reserved[14];

StretchBitsPtr StretchBits;
DistortPolygonPtr DistortPolygon;
PolyToPolyPtr MapPolygon;
AudStretchPtr AudioStretch;
AudMixPtr AudioMix;
AudSumPtr AudioSum;
AudLimitPtr AudioLimit;
DistortFixedPolygonPtr DistortFixed;
FixedToFixedPtr FixedToFixed;
ImageKeyPtr ImageKey;
long unused[3];

} BottleRec;

The count field specifies how many bottleneck routines follow the reserved
field. As of Adobe Premiere 4.2, count is 10. The reserved and unused fields
are reserved for future use by Adobe Systems and are currently 0.

Most Premiere plug-ins have a standard record associated with the plug-in
type. The transition, video filter, and audio filter records provide a pointer
to the bottleneck record in their records. With that pointer your plug-in can
call the bottleneck routines, as follows:

((*theData)->bottleNecks->StretchBits)(*srcpix, *dstpix, &srcbox, &srcbox,
0, NULL);

The Bottleneck Routines

StretchBits: The StretchBits() routine is based on a Macintosh API
routine call CopyBits(). It can be used to copy an image
in its original aspect ratio, scaled horizontally or
vertically, or clipped by a region. It properly processes
the alpha channel during the copy. When the
destination is larger than the source, it can perform
bilinear interpolation to generate the destination. This
Adobe Premiere Software Development Kit 26

Bottlenecks
feature provides smoothed enlargement of source
material.

void StretchBits (
PPixPtr srcPix,
PPixPtr dstPix,
LPRECT srcRect,
LPRECT dstRect,
short mode,
HANDLE rgn);

StretchBits() only works on 32-bit deep PixMaps, the
srcPix and dstPix, and not on any other bitmaps
structures. The srcRect defines the area of the source
PixMap from which to copy. The dstRect not only
defines the area where the pixels will be copied, but is
used to indicate the scale factor of the copy.

The mode argument determines the manner in which
the source is copied to the destination. The valid modes
are:

// modes for StretchBits bottleneck
#define cbBlend 0x8000
#define cbInterp 0x4000
#define cbMaskHdl 0x2000

cbBlend defines a blend between the source and
destination bitmaps. When this mode is used, the low
byte of the mode defines the amount of blend between
the source and destination in a range of 0-255, e.g. to
blend 30% of the source pixmap with the destination
pixmap, you would use cbBlend | (30*255/100).

cbInterp mode does bilinear interpolation when
resizing a source pixmap to a larger destination,
resulting in a much smoother image. The trade-off is
that this mode is much slower than the normal mode,
while the normal copy mode does pixel replication
when resizing upwards, resulting in a blockier image.

cbMaskHdl tells StretchBits that the HRGN passed in is
actually a GlobalMemory handle pointing to a 1-bit
deep buffer the size of the source and destination
pixmaps that defines the mask to use when copying.
StretchBits currently limits masking operations to
working with a mask and source and destination
pixmaps that are all the same size; masks cannot be used
when copying pixels from a source to a destination
rectangle or pixmap that are different sizes.

Use the Windows API to define the region rgn you want
to use for clipping. If no clipping is desired, pass nil for
the HANDLE rgn. Programmers familiar with the
Premiere for Macintosh API should note that while that
platform’s StretchBits() call passed off region masking
to the CopyBits() call, the Premiere for Windows
StretchBits() routine handles the region masking itself.
This means that while the alpha channel is lost using the
Macintosh StretchBits() function, it is preserved using
the Windows StretchBits() call.
Adobe Premiere Software Development Kit 27

Bottlenecks
DistortPolygon: The DistortPolygon() routine takes a rectangle from a
source PixMap and maps the enclosed image to a four-
point polygon in a destination PixMap.

void DistortPolygon (
PPixHand src,
PPixHand dest,
RECT *srcbox,
Point *dstpts);

The srcBox parameter specifies a rectangular area
within the src PixMap. The dstpts parameter should be
set to point to an array of four Points which describe a
four-point polygon in the destination PixMap. A Point is
a Macintosh API type:

struct Point {
int x;
int y;

};

DistortPolygon() will distort the pixels within srcbox
into the specified polygon in dest. When scaling up,
DistortPolygon() uses bilinear interpolation. When
scaling down, it uses pixel averaging. All 32-bits of the
source (that is, RGB plus the alpha channel) are
transferred to the destination.

MapPolygon: The MapPolygon() routine takes a four-point polygon in
a source PixMap src and maps it into a four-point
polygon (dstpts) in a destination PixMap dest. Here’s the
prototype for MapPolygon():

void MapPolygon (
PPixHand src,
PPixHand dest,
Point *srcpts,
Point *dstpts);

MapPolygon() is just like DistortPolygon() except that its
source is specified as a four-point polygon (srcpts) in src
instead of a rectangle. It also performs pixel averaging
and bilinear interpolation as appropriate, and moves all
32 bits of the source to the destination.

AudioStretch: The AudioStretch() routine performs sample rate,
format (8- or 16- bit), and mono/stereo conversions
between two buffers of audio. The prototype for
AudioStretch() is as follows:

void AudioStretch (
Ptr src,
long srclen,
Ptr dest,
long destlen,
UINT flags);

The src parameter is a pointer to a buffer full of audio
samples, and srclen is its length in bytes. The dest
parameter is a pointer to a buffer for the resampled
audio, and destlen is its length. The flags parameter
provides information about both buffers of audio. The
high byte contains the flags for the source, the low byte
contains the flags for the destination. These bits are of
interest:
Adobe Premiere Software Development Kit 28

Bottlenecks
#define gaStereo 0x01
#define ga16Bit 0x02

For example, to go from an 8-bit stereo source to 16-bit
stereo destination, set flags to (gaStereo << 8) +
(ga16Bit + gaStereo).

Eight-bit audio should be in offset format, and 16-bit
audio should be in signed short format. AudioStretch()
stretches (or squashes) the audio in src to fit in dest,
performing any format conversions according to the
flags.

AudioMix: The AudioMix routine is a vestige of Premiere and is no
longer supported. Use the more powerful AudioSum
routine described next.

AudioSum: The AudioSum routine sums a buffer of audio into a
longword accumulation buffer, providing a mix level.

pascal void AudioSum (
Ptr src,
Ptr dest,
long width,
long scale,
UINT flags,
long part,
long total);

The src parameter is the source buffer that is being
summed, which is regular 8- or 16-bit audio, either
mono or stereo. The size in samples of src is given in
width. The dest parameter points to the accumulation
buffer. It is an array of longs, and must be four times the
size of src. The scale parameter takes a value in 16.16
fixed-point format with a maximum value of
0x00020000, or 2.0. The audio flags are the same as for
AudioMix: use the values gaStereo and ga16Bit to
describe the audio in the src buffer. Part is the buffer
number you’re mixing, which varies from 0 to total - 1.
Total is the total number of buffers you’re mixing into
the accumulation buffer. Note that since AudioSum
adds src to dest, dest must be set to all zeros before the
first call to AudioSum.

A little information on fixed-point math. Fixed-point
math represents a floating point number in 4 bytes. The
high byte is the integer portion (it is signed), and the
low byte is the fractional portion. Fixed-point numbers
can be added and subtract with normal operators, but
multiplication and division will not work without special
routines. The numbers defined below can be added
together to get ratios to use in the fixed-point scale
parameter. For instance, to use a scale factor of 0.6, pass
kFixedHalf+kFixedTenth for the argument.
Adobe Premiere Software Development Kit 29

Bottlenecks
#define FixedOne x00010000L
#define FixedZero x00000000L
#define FixedHundredth x0000028FL
#define FixedSixteenth x00001000L
#define FixedTenth x00001999L
#define FixedEighth x00002000L
#define FixedQuarter x00004000L
#define FixedHalf x00008000L
#define FixedSevenEighths x0000E000L
#define FixedOne1 x0000FFFFL
#define FixedOneThird x00005555L
#define FixedFourThirds x00015555L
#define FixedThreeHalves x00018000L

AudioLimit: The AudioLimit routine clips the source audio buffer
while copying to a destination buffer. The prototype for
AudioLimit is as follows:

void AudioLimit (
Ptr src,
Ptr dest,
long width,
UINT flags,
long total);

The src parameter is a longword accumulation buffer
(usually one you’ve been accumulating into with
AudioSum). The width parameter gives the size of the
output buffer in samples. The dest parameter is the
output buffer, which will contain regular 8- or 16-bit
audio. The flags parameter describes the format of the
audio that should be placed in dest. The total parameter
is the total number of buffers that were mixed (with
AudioSum) to get src.

DistortFixed: The DistortFixed routine is analogous to DistortPolygon
but maps the given rectangular area to a four-point
polygon specified in fixed-point coordinates.

void DistortFixed (
PPixHand src,
PPixHand dest,
Rect *srcbox,
LongPoint *dstpts);

DistortFixed is just like DistortPolygon except that the
destination polygon is specified with LongPoints, which
have their h and v coordinates as 16.16 fixed-point
values.

FixedToFixed: The FixedToFixed routine is analogous to MapPolygon
but maps a four-point polygon specified in fixed-point
coordinates to another fixed-point polygon.

void FixedToFixed (
PPixHand src,
PPixHand dest,
LongPoint *srcpts,
LongPoint *dstpts);

FixedToFixed is just like MapPolygon except that both
the source and destination polygons are specified in
with LongPoints, which have their h and v coordinates
as 16.16 fixed-point values.
Adobe Premiere Software Development Kit 30

Bottlenecks
ImageKey: ImageKey is a private bottleneck and should not be
called by plug-in modules.
Adobe Premiere Software Development Kit 31

4Transitions
4 Transitions
A transition in Adobe Premiere takes two source PixMaps and processes
them into a single destination PixMap.

All three PixMaps are always 32-bits deep. Transitions are almost always
time-variant, and the transition is given the total duration in frames of the
transition and the current frame within that transition. Premiere handles the
overhead involved with retrieving and storing the frames.

The Transitions window in Premiere shows a 9-frame animated preview of
each transition. Premiere automatically generates these preview frames by
calling your SPFX module and then storing the frames in the Premiere
preferences file. If your plug-in changes, Premiere will regenerate and store
the new transition frames.

The file name has an prefix of ‘FX-’ and an extension ‘.prm’. A transition file
will contain several resources, which are listed in the table below. Following
the table is a detailed description of each resource.

Table 4–1: Transition Resources

Type & ID Description

FXvs 1000 A two-byte version number stored as a short integer. The current
version is 2.

TYPE 1000 The TYPE resource identifies the plug-in type to Premiere during the
loading process.

TEXT 1000 The name of the resource, to be displayed in the Transitions win-
dow.

TEXT 1001 A textual description of what the transition does.

Fopt 1000 A resource that describes what options the transition supports.

FXDF -1 A resource used for mapping the transition to one of the standard
SMPTE wipes.

Total

PartSource 1

Source 2

DestinationSPFX
Adobe Premiere Software Development Kit 32

Transitions
FXvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0002. See the Plug-In Resources section of
the Introduction for an example.

TYPE 1000

The TYPE 1000 resource is checked by Premiere at startup and identifies the
plug-in type. Transition modules have a TYPE of ‘SPFX’. Again, refer to the
Plug-In Resources section of the Introduction.

TEXT 1000

This resource contains the title of the transition resource. It appears in the
Transitions window to identify a transition by name. Look at Premiere’s
standard transitions for examples of how this text should be worded.

TEXT 1001

This resource contains a plain text description of the transition and is
displayed beneath the title of the transition in the Transitions window. Look
at Premiere’s standard transitions for examples of how this text should be
worded.

Fopt 1000

This resource tells Premiere what options your transition supports and
provides a set of initial values for your options. The user can bring up the
standard Premiere transition options dialog for all transitions, including
yours.

The structure of an Fopt resource is shown below, along with some bit
values you will use with the definition:
Adobe Premiere Software Development Kit 33

Transitions
'Fopt'
{
 0x0000, // two zero bytes at the start
 byte; // Byte 3, valid corners mask
 byte; // Byte 4, initial corners
 byte; // Byte 5, has custom, in pairs,

 and time invariant
 byte // No = 0, Yes = 1; // Byte 6, exclusive?
 byte // No = 0, Yes = 1; // Byte 7, reversible?
 byte // No = 0, Yes = 1; // Byte 8, has edges?
 byte // No = 0, Yes = 1; // Byte 9, has start point?
 byte // No = 0, Yes = 1; // Byte 10, has end point?

};

// Effect Corner Bits for byte 4
enum {
 bitTop = 0x01,
 bitRight = 0x02,
 bitBottom = 0x04,
 bitLeft = 0x08,
 bitUpperRight = 0x10,
 bitLowerRight = 0x20,
 bitLowerLeft = 0x40,
 bitUpperLeft = 0x80

};

// Values for byte five
#define bitPairs 0x01 // Opposite corners turn on together
#define bitCustom 0x02 // This SPFX has a custom settings dialog
#define bitInvariant 0x04 // This SPFX does not vary over time
#define bitNo1stCall 0x08 // Don’t do an initial esSetup call
#define bitUsesSource 0x20 // esSetup uses callback

Fopt—third byte: Valid corners
The first byte of the Fopt resource uses the corner bits listed above. It has a
bit set for each valid corner. For instance, if your transition can only operate
top-to-bottom or bottom-to-top, you’d set the first byte of this resource to
bitTop+bitBottom.

Fopt—fourth byte: Initial corners
The second byte of the Fopt resource is the initial corner settings for your
transition. Choose an appropriate default. Be sure to only specify corners
that are allowed according to the first byte of the Fopt.

Fopt—fifth byte: Bit flags
The third byte of the Fopt has four bit flags.

Bit 0: Bit zero should be set (using the bitPairs constant) if opposite corners
are always to be highlighted simultaneously. The figure below shows the
Doors transition, which uses this flag. Clicking the top arrow automatically
selects both the top and bottom arrows.

Bit 1: Bit one should be set (using the bitCustom constant) if the transition
has a custom parameters dialog—that is, it has more parameters than the
standard set given in the Premiere transition options dialog. Setting this bit
has two effects. First, Premiere knows your transition has custom
parameters, so when the user drags your transition into the Construction
window, Premiere automatically calls your transition with an esSetup
message at that time. See the description of bit four if you wish to default
Adobe Premiere Software Development Kit 34

Transitions
your custom parameters instead of getting the initial esSetup call. The
second effect is that an extra button will appear on the bottom of the
transition options dialog:

When the user clicks this button, your SPFX will be called with the esSetup
selector. See the section below on the SPFX resource for details.

Bit 2: Bit two should be set (using the bitInvariant constant) if your
transition is time-invariant—that is, it is really a two-input filter, rather than
a transition. An example would be the Displace transition in Premiere, which
displaces pixels in source two based on the channel values in source one. For
normal transitions, this bit is set to zero.

Bit 3: Bit three should be set (using the bitNo1stCall constant) only if you use
bitCustom and don’t want the initial esSetup call when your transition is
dragged into the Construction window. If there’s a reasonable set of default
values you can use for your custom parameters, set this bit along with
bitCustom so the user is not interrupted with your custom settings dialog.
Premiere’s Pinwheel transition is a good example of a transition that uses
this flag. It has a custom parameter for the number of wedges in the
pinwheel. However, it defaults this number to 8, and doesn’t bother the user
with a custom parameters dialog every time they drag the transition into the
Construction window.

Bit 5: Bit five should be set (using the bitUsesSource constant) if your
transition needs the callback function to work at setup time. For instance, a
“video echo” transition that uses past video frames would get those frames
by calling the callback function, and therefore should set this bit to one. The
callback procedure pointer is invalid at esSetup time if this bit is not set.

Fopt—sixth byte: Exclusive flag
The fourth byte of the Fopt resource is a boolean flag that tells Premiere
whether the corner arrows are to be exclusive. If this flag is set, the arrows
will act like radio buttons. If this flag is clear, the arrows will act like
checkboxes.

Fopt—seventh byte: Reversible
The fifth byte of the Fopt resource is a boolean flag that tells Premiere
whether the transition is reversible, that is the transition can proceed either
from source 1 to source 2, or vice versa. If this flag is set, the transition
direction control will be shown.

Fopt—eighth byte: Has edges flag
The sixth byte of the Fopt resource is a boolean flag that tells Premiere
whether the transition has well-defined edges that can have borders or anti-
aliasing applied to them. Setting this flag will cause the anti-aliasing level

Forward/reverse control
Adobe Premiere Software Development Kit 35

Transitions
control, the border thickness slider, and the border color controls to be
shown.

Fopt—ninth byte: Movable start point flag
The seventh byte of the Fopt resource is a boolean flag that tells Premiere
whether the transition supports a movable start point. Setting this flag will
cause the start point to show up in the start portion of the options dialog.

Fopt—tenth byte: Movable end point flag
The eighth byte of the Fopt resource is a boolean flag that tells Premiere
whether the transition supports a movable end point. Setting this flag will
cause the end point to show up in the end portion of the options dialog.

FXDF -1

This resource provides a four-byte tag that tells Premiere how to map this
transition to one of the standard SMPTE wipes. Below is a table of valid
values for this resource. Premiere uses this information when assigning wipe
codes during the generation of an edit decision list.

Table 4–2: SMPTE Wipe Values

Tag SMPTE wipe description

DISS Cross dissolve

TAKE “Take” or cut

WI00 Vertical wipe from the left edge

Anti-aliasing level control

Border color and thickness control

ColorBorder

None Thick

Movable start point

Start=0%

Movable end point

End=100%
Adobe Premiere Software Development Kit 36

Transitions
There may be one or more FXDF resources for a transition. If there is only
one FXDF, its resource ID must be -1. If the transition maps to different
SMPTE wipe code based on the direction arrows, there may be an FXDF
resource for each of the arrow settings, where the byte value of the arrow
flags is the ID of the associated FXDF resource (up to a theoretical maximum
of 256 FXDF resources). The following figure describes how the example
Wipe SPFX module uses multiple FXDF resources:

WI01 Horizontal wipe from the top edge

WI02 Vertical wipe from the right edge

WI03 Horizontal wipe from the bottom edge

WI04 Diagonal wipe from upper left corner

WI05 Diagonal wipe from upper right corner

WI06 Diagonal wipe from lower right corner

WI07 Diagonal wipe from lower left corner

WI08 Vertical split wipe

WI09 Horizontal split wipe

WI10 Horizontal/vertical split wipe

WI11 Box wipe out from the center

WI12 Circular wipe from the center

WI13 Inset wipe from upper left

WI14 Inset wipe from upper right

WI15 Inset wipe from lower right

WI16 Inset wipe from lower left

Arrows Bits Value FXDF

bitTop 1 ID 1,"WI01"

bitRight 2 ID 2,"WI02"

bitBottom 4 ID 4,"WI03"

bitLeft 8 ID 8,"WI00"

bitUpperRight 16 ID 16,"WI05"

Table 4–2: SMPTE Wipe Values

Tag SMPTE wipe description
Adobe Premiere Software Development Kit 37

Transitions
The Transition Code

The entry point of the code should be declared like this:

int PRMEXPORT xEffect (short selector, EffectHandle theData) {...

The return value should be noErr (0) if the transition completed without
error. Return any non-zero value to indicate an error. In such case, Premiere
will fill in the destination frame with black.

The selector can take the following values:

esExecute
The esExecute selector indicates that you should process the source frames
and generate a destination frame. The specsHandle (described below) will
contain your custom parameters, if any.

esSetup
The esSetup selector indicates that you should display your custom settings
dialog. This call should use the specsHandle to fill the dialog with initial
values, and should place the new values back into specsHandle. If no esSetup
call has ever been made (or stored in a project), specsHandle will be nil. In
such case you should provide reasonable default values, create a properly-
sized Handle with the provided NewHandle() call, and place the handle into
(*theData)->specsHandle, then show your dialog. Note that you will only get
this message if you set bitCustom in your Fopt resource.

The EffectRecord Structure

Your transition is passed a handle to an EffectRecord through parameter
theData. Here’s the structure of an EffectRecord:

bitLowerRight 32 ID 32,"WI06"

bitLowerLeft 64 ID 64,"WI07"

bitUpperLeft 128 ID 128,"WI04"

Table 4–3: Transition Selector Values

Selector name Value Description

esExecute 0 Execute your transition.

esSetup 1 Execute your custom parameter dialog.

Arrows Bits Value FXDF
Adobe Premiere Software Development Kit 38

Transitions
typedef struct {
Handle specsHandle; // The specification handle
PPixHand source1; // Source pixels #1 (note change to 4.2)
PPixHand source2; // Source pixels #2 (note change to 4.2)
PPixHand destination; // Destination pixels (note change to 4.2)
long part; // part / total = % complete
long total;
char previewing; // In preview mode?
unsigned char arrowFlags; // Flags for direction arrows
char reverse; // Is effect being reversed?
char source; // Are sources swapped?
POINT start; // Starting point for effect
POINT end; // Ending point for effect
POINT center; // The reference center point
Handle privateData; // Editor private data handle
FXCallBackProcPtr callBack; // Callback, not valid if nil
BottleRec *bottleNecks; // Bottleneck callback routines
short version; // The version of this record
short sizeFlags; // Frame processing flags
long flags; // Audio flags
short fps; // Frame rate in frames per second

} EffectRecord, **EffectHandle;

The fields are used as follows:

specsHandle
The specsHandle field holds transition-defined data which contains all the
current settings for this transition. The transition normally creates this
Handle when it gets a esSetup call. Premiere saves this Handle in the project
file so that settings are restored when a project is reopened. This field is
only used by transitions that have custom parameters. It must be created
using NewHandle().

source1
The source1 field is the PixMap pointer for source image 1 (normally
corresponding to the A video track). It will always be 32 bits deep.

source2
The source2 field is the PixMap pointer for source image 2 (normally
corresponding to the B video track). It too will always be 32 bits deep, and
the same size as source1.

destination
The destination field is the PixMap pointer for the destination image. This is
where you store the calculated frame on an esExecute call. It will always be
32 bits deep and the same size as source1 and source2. When processing the
two sources into the destination, the alpha channels of the sources may
contain useful data, and should be processed just like the red, green, and
blue channels. If the destination alpha channel is distorted or destroyed,
automatic anti-aliasing and colored bordering may malfunction for your
transition.

part
The part field tells you how far into the transition you are in frames. Part
varies from 0 to total (described next), inclusive.

total
The total field tells you how many frames the transition covers in total. By
dividing part by total, you can calculate the percentage of the transition
that you should perform for a given esExecute call.
Adobe Premiere Software Development Kit 39

Transitions
previewing
The previewing field is a flag that is no longer supported. You may ignore
its value.

arrowFlags
The arrowFlags field gives you the corner flags (using the same bit
definitions described above in the Fopt resource section) as set by the user.

reverse
The reverse field is a flag telling you that Premiere is performing the
transition in reverse. Premiere automatically calls your transition with the
frames in the reverse order. The flag is provided for informational purposes,
normally you don’t need to do anything differently.

source
The source field is a flag telling you the Premiere has swapped the source
PixMaps (that is, you’re doing the transition from video track B-to-A instead
of A-to-B). The flag is provided for informational purposes, normally you
don’t need to do anything differently.

start
The start field is the start point of the transition as specified by the user.
You only look at this field if the “movable start point” flag is turned on in
the Fopt resource for your transition. This point is relative to the center
point described below.

end
The end field is the end point of the transition as specified by the user. You
only look at this field if the “movable end point” flag is turned on in the
Fopt resource for your transition. This point is relative to the center point
described below.

center
The center field is the normal center point for transitions that open and
close. The start and end fields described above are measured relative to
center.

privateData
The privateData field is a Handle of data that is private to Premiere. It is
passed to the frame-retrieval callback (described below) when you need to
get a frame from some other point in time. It should be created with the
NewHandle call.

callBack
The callBack field contains a pointer to a routine you can use to get past or
future frames from the source clips. This field is always available during the
esExecute call but is only valid during the esSetup call when the
bitUsesSource bit is set in the flags byte of the Fopt resource.
FXCallBackProcPtr is defined as follows:

typedef pascal short (*FXCallBackProcPtr)(
long frame,
short track,
PPixHand thePort,
RECT *theBox,
Handle privateData);
Adobe Premiere Software Development Kit 40

Transitions
The frame parameter is the desired frame, from 0 to total inclusive. The
track parameter is 0 for the A video track, 1 for the B video track. The
thePort parameter is the destination for the frame, normally a locally
allocated PWorld. The theBox parameter is the destination rectangle in
thePort. Finally, the privateData parameter is (*theData)->privateData.

bottleNecks
The bottleNecks field is a pointer to a standard Premiere bottleneck record,
as described in the Bottlenecks chapter of this documentation. You may use
these routines to help you perform your transition.

version
The version field tells the version of this EffectRecord. Currently this field is
set to zero.

 sizeFlags
The sizeFlags field gives you some information about the preview or output
options that are in effect. The following bit flags are of interest:

To perform field processing, Premiere splits each frame into even and odd
fields (each image being half-height) and calls your transition once for each
field, then reassembles the two fields into a single frame. This allows
transitions such as wipes to have field-based, 60-position-per-second motion.
Beware that when field processing is turned on, (*theData)->total will be
twice as big, and each frame will be half-height. Many transitions must
special-case this situation in order to have the proper appearance.

flags
The flags field contains audio flags. These are not used by transitions.

fps
The fps field gives the frame rate in frames-per-second, in case your
transition needs to know this information.

Examples

The Adobe Premiere Plug-In SDK comes with source code for a transition
module.

Table 4–4: EffectRecord Size Flags

Flag Description

gvHalfV User has specified half-vertical processing

gvHalfH User has specified half-horizontal processing

gvFieldsEven User has specified field-based processing, even fields first

gvFieldsOdd User has specified field-based processing, odd fields first
Adobe Premiere Software Development Kit 41

5Video Filters
5 Video Filters
A video filter in Adobe Premiere takes a single source PixMap and processes
it into a destination PixMap.

Both PixMaps are always 32-bits deep. Video filters may be time-variant, and
the filter is given the total duration in frames of the filter and the current
frame number. Video filters may present a user interface and store
parameters that specify how they process frames. Premiere handles the
overhead of retrieving and storing frames.

Video filter modules have a file prefix of ‘FL-’ and an extension of .prm.
Video filter files contain several kinds of resources which are listed below.
Following the table is a detailed description of each resource.

FLvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0002. See the Plug-In Resources section in
the Introduction for an example.

TYPE 1000

The TYPE 1000 resource is checked by Premiere at startup and identifies the
plug-in type. Video filter modules have a TYPE of ‘VFlt’. See the Plug-in
Resources section in the Introduction.

Table 5–5: Video Filter Resources

Type & ID Description

FLvs 1000 A two-byte version number stored as a short integer. The current
version is 2.

TYPE 1000 The TYPE resource identifies the plug-in type to Premiere during the
loading process.

TEXT 1000 The name of the resource, to be displayed in the Transitions win-
dow.

FltD 1 An optional time-animation resource describing the format of your
settings data record.

Source DestinationVFlt

Total

Part
Adobe Premiere Software Development Kit 42

Video Filters
TEXT 1000

This resource contains the title of the transition resource. It appears in the
Filter dialog to identify a video filter by name. Look at Premiere’s filter
names for examples of how this text should be worded.

FLTD 1

This optional resource is used to cause Premiere to automatically add time
based effects to a filter. You would use it if your filter code does not
explicitly handle time based effects, such as converted Photoshop or other
imaging code. It contains a variable length description of your filter’s
parameters (that is, the format of the data you choose to store in the
specsHandle field of the VideoRecord structure described below).

If your filter does not directly support variability over time but such
functionality is meaningful, you can include a FltD resource in your filter’s
resource file. The presence of this type of resource makes Premiere enable
the Filter dialog box “Start” and “End” settings buttons and save a copy of
the specsHandle for each endpoint. When the execute message is sent to
your filter, Premiere uses the information in your FLTD to interpolate
between the values in the two specsHandles over time and pass the plug-in a
single specsHandle with those calculated values.

Let’s look at an example specsHandle data structure and the associated FLTD
resource:

typedef struct
{

long randomSeed; // Random number seed for my filter
short horiz; // The horizontal offset (user setting)
short vert; // The vertical offset (user setting)
float scale; // The scale factor (user setting)
long magicNumber; // The magic number that my filter uses

} MyFilterSpecs;

The randomSeed value is calculated once and stored, and we don’t want
Premiere to change it. The horiz, vert and scale fields are settings values that
the user sets with the filter’s settings dialog. We want Premiere to
interpolate those. The magicNumber field contains a magic number we use
in our filter calculation, which we don’t want Premiere to interpolate. So
here’s what the FLTD resource would look like:

1 FLTD DISCARDABLE
BEGIN

0x0000,
pdOpaque, 4, // Don’t interpolate the random number seed
pdShort, 0, // Interpolate the short horiz value
pdShort, 0, // Interpolate the short vert value
pdFloat, 0, // Interpolate the float scale value
pdOpaque, 4, // Don’t interpolate the magic number

END

Each FLTD element is a type followed by a repeat count. The repeat count is
only valid for the pdOpaque type and should be zero for all other types. To
keep Premiere from interpolating the variable randomSeed, we specified
that the first four bytes of our data structure are opaque by specifying
“pdOpaque, 4,”. For the other fields we’ve simply informed Premiere of the
data types. Note that the FLTD must describe each parameter in the filter
data structure.
Adobe Premiere Software Development Kit 43

Video Filters
The valid type identifiers for the resource are:

//--
// Descriptor for allowing filters to animate over time. A structure of
// this type can be added to a 'VFlt', an 'AFlt', or a PhotoShop filter to
// describe the data structure of its parameters. Specify pdOpaque for any
// non-scalar data in the record, or data that you don't want Premiere to
// interpolate for you. Make the FLTD describe all the bytes of the
// parameter block. Use ID 1.
//--
// Specifies the type of the data
#define pdOpaque 0x0000 // Opaque - don't interpolate this

// Followed by count of bytes to skip
// with pdOpaque, eg, pdOpaque, 4

#define pdChar 0x0001 // Interpolate as signed byte
#define pdShort 0x0002 // Interpolate as signed short
#define pdLong 0x0003 // Interpolate as signed long
#define pdUnsignedChar 0x0004 // Interpolate as unsigned byte
#define pdUnsignedShort 0x0005 // Interpolate as unsigned short
#define pdUnsignedLong 0x0006 // Interpolate as unsigned long
#define pdExtended 0x0007 // Interpolate as a double

// Note-This is different from the Mac
#define pdDouble 0x0008 // Interpolate as a double
#define pdFloat 0x0009 // Interpolate as a float

The Filter Code

The entry point of the code should be declared like this:

int PRMEXPORT xFilter (short selector, VideoHandle theData) {...

The return value should be noErr (0) if the filter completed without error.
Return any non-zero value to indicate an error. In such case Premiere will fill
the destination frame with black.

The selector can take the following values:

fsExecute
The fsExecute selector indicates that you should process the source frame
and generate a destination frame. The specsHandle (described below) will
contain all of your filter settings so you know how the source frame should
be processed to generate the destination frame.

fsSetup
The fsSetup selector indicates that you should display your filter settings
dialog box. You should use the information in the specsHandle to fill the
dialog with initial values, and should place the new values back into
specsHandle. If no fsSetup call has ever been made (or stored in a project),
specsHandle will be nil. In such case you should provide reasonable default
values, create a properly-sized handle with the NewHandle() call, place that
handle into specsHandle, then show your dialog.

Table 5–6: Video Filter Selector Values

Selector name Value Description

fsExecute 0 Execute your video filter.

fsSetup 1 Execute your settings dialog, if any.

fsDisposeData 2 Dispose of any instance data you may have created.
Adobe Premiere Software Development Kit 44

Video Filters
fsDisposeData
The fsDisposeData selector was added in Premiere 4.2. Premiere will send
this selector when it is time to dispose of any instance data you have have
created. See the new InstanceData member of the VideoRecord structure for
further information.

The VideoRecord Structure

Your video filter is passed a handle to a VideoRecord through the parameter
theData. Here’s the structure of a VideoRecord:

typedef struct
{

Handle specsHandle; // The specification handle
PPixHand source; // The source PixMap
PPixHand destination; // The destination PixMap
long part; // part/total = %complete
long total;
char previewing; // In preview mode?
Handle privateData; // Private data handle
VFilterCallBackProcPtr callBack; // Callback, invalid if nil
BottleRec *bottleNecks; // Bottleneck callbacks
short version; // Version of this record
short sizeFlags; // Frame processing flags
long flags; // Audio flags
short fps; // Frame rate in frames/sec
Handle InstanceData // New in 4.2 - Private data for filter

} VideoRecord, **VideoHandle;

The fields are used as follows:

specsHandle
The specsHandle field holds filter-defined data which contain all the current
settings for this filter. The filter normally creates this handle when it gets an
fsSetup call. Premiere saves this handle in the project file so that settings are
restored when a project is reopened. It must be created using NewHandle().

source
The source field is the PixMap pointer for the source image. It will always be
32 bits deep.

destination
The destination field is the PixMap pointer for the destination image. This is
where you store the calculated frame on an fsExecute call. It will always be
32 bits deep and the same size as source. When processing the source into
the destination, the alpha channel of the source may contain useful data,
and should be processed just like the red, green, and blue channels.

part
The part field tells you how far into the filter you are in frames. Part varies
from 0 to total (described next) inclusive.

total
The total field tells you how many frames the filter covers in total. By
dividing part by total, you can calculate the percentage of a time-variant
filter that you should perform for a given fsExecute call. Time-invariant
filters can ignore part and total.
Adobe Premiere Software Development Kit 45

Video Filters
previewing
The previewing field is a flag that is no longer supported. You may ignore
its value.

privateData
The privateData field is a handle of data that is private to Premiere. It is
passed to the frame-retrieval callback (described below) when you need to
get a frame from some other point in time.

callback
The callBack field contains a pointer to a routine you can use to get past or
future frames from the source clip. The VFilterCallBackProcPtr is defined as
follows:

typedef short (CALLBACK *VFilterCallBackProcPtr) (
long frame,
PPixHand thePort,
RECT *theBox,
Handle privateData);

The frame parameter is the desired frame, from 0 to total inclusive. The
thePort parameter is the PixMap pointer to the destination for the frame.
Use the NewPWorld() call to create this if necessary. The theBox parameter is
the destination rectangle in thePort. Finally, the privateData parameter is
the parameter described above. Use (*theData)->privateData to pass it.

bottleNecks
The bottleNecks field is a pointer to a standard Premiere bottleneck record,
as described in the Bottlenecks chapter of this documentation. You may use
these routines to help you perform your video filter.

version
The version field tells the version of this VideoRecord. In previous versions of
Premiere this should have been set to 0. For Premiere 4.2 this should be set
to 2.

sizeFlags
The sizeFlags field gives you some information about the preview or output
options that are in effect. The following bit flags are of interest:

Beware that when field processing is turned on, (*theData)->total will be
twice as big, and each frame will be half-height. Some video filters must
special-case this situation in order to have the proper appearance. See the
description of this field in the Transitions chapter for more information.

flags
The flags field contains audio flags. These are not used by video filters.

Table 5–1: VideoRecord Size Flags

Flag Description

gvHalfV User has specified half-vertical processing

gvHalfH User has specified half-horizontal processing

gvFieldsEven User has specified field-based processing, even fields first

gvFieldsOdd User has specified field-based processing, odd fields first
Adobe Premiere Software Development Kit 46

Video Filters
fps
The fps field gives the frame rate in frames-per-second, in case your filter
needs to know this information.

InstanceData
New in Premiere 4.2, this field allows a plug-in to have Premiere save and
return some private data between invocations. You are responsible for
allocating and freeing any memory used with this field. You would probably
allocate memory for this field when getting an fsSetup selector, but you
must deallocated it when getting an fsDisposeData. To utilize this new field,
the version field above must be set to 2.

Examples

The Adobe Premiere Plug-In SDK comes with source code for a video filter
module that you can use as an example of how to write your own.

Video Noise
This is the source code for the Video Noise filter that ships with Adobe
Premiere. It is a good example of a basic video filter with no settings dialog.
Adobe Premiere Software Development Kit 47

6Audio Filters
6 Audio Filters
An audio filter in Adobe Premiere takes a source buffer of audio and
processes it into a destination buffer.

Both buffers will be the same size. Audio filters may be time-variant, and
the filter is given the total duration in samples of the filter and the sample
number of the first sample in the source buffer. Audio filters may present a
user interface and store parameters that specify how they process the audio.
Premiere handles the overhead of retrieving and storing sound data.

Audio filter modules have a file prefix of ‘FL-’ and an extension of .prm.
Audio filter files contain several kinds of resources which are listed below.
Following the table is a detailed description of each resource.

FLvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0002. See the Plug-In Resources section in
the Introduction for an example.

TYPE 1000

The TYPE 1000 resource is checked by Premiere at startup and identifies the
plug-in type. Audio filter modules have a TYPE of ‘AFlt’. See the Plug-in
Resources section of the Introduction.

Table 6–1: Audio Filter Resources

Type & ID Description

FLvs 1000 A two-byte version number stored as a short integer. The current
version is 2.

TYPE 1000 The TYPE resource identifies the plug-in type to Premiere during the
loading process.

TEXT 1000 The name of the resource, to be displayed in the Transitions win-
dow.

FltD 1 An optional time-animation resource describing the format of your
settings data record.

Source
AFlt

Total samples

Sample number

Destination
Adobe Premiere Software Development Kit 48

Audio Filters
TEXT 1000

This resource contains the title of the audio filter resource. It appears in the
Filter dialog to identify a transition by name. Look at Premiere’s filter names
for examples of how this text should be worded.

FltD 1

This optional resource is used to cause Premiere to automatically add time
based effects to a filter. You would use it if your audio filter code does not
explicitly handle time based effects. It contains a variable length description
of your filter’s parameters (that is, the format of the data you choose to
store in the specsHandle field of the AudioRecord structure described
below).

If your filter does not directly support variability over time but such
functionality is meaningful, you can include a FltD resource in your filter’s
resource file. The presence of this type of resource makes Premiere enable
the Filter dialog box “Start” and “End” settings buttons and save a copy of
the specsHandle for each endpoint. When the execute message is sent to
your filter, Premiere uses the information in your FltD to interpolate
between the values in the two specsHandles over time and pass the plug-in a
single specsHandle with those calculated values.

For more information about FltD resources, see the description in the
chapter Video Filters.

The Filter Code

The entry point of the code should be declared like this:

int PRMEXPORT xFilter(short selector, AudioFilter theData) {...

The return value should be noErr (0) if the filter completed without error.
Return any non-zero value to indicate an error. In such case Premiere will fill
the destination frame with the original data.

The selector can take the following values:

fsExecute
The fsExecute selector indicates that you should process the source buffer
and generate a destination buffer. The specsHandle (described below) will
contain all of your filter settings so you know how the audio data should be
processed to generate the destination data.

Table 6–2: Audio Filter Selector Values

Selector name Value Description

fsExecute 0 Execute your audio filter.

fsSetup 1 Execute your settings dialog, if any.

fsDisposeData 2 Dispose of any instance data you may have created.
Adobe Premiere Software Development Kit 49

Audio Filters
fsSetup
The fsSetup selector indicates that you should display your filter settings
dialog box. You should use the information in the specsHandle to fill the
dialog with initial values, and should place the new values back into
specsHandle. If no fsSetup call has ever been made (or stored in a project),
specsHandle will be nil. In such case you should provide reasonable default
values, create a properly-sized handle with the NewHandle() call, place that
handle into specsHandle, then show your dialog.

fsDisposeData
The fsDisposeData selector was added in Premiere 4.2. Premiere will send
this selector when it is time to dispose of any instance data you have have
created. See the new InstanceData member of the AudioRecord structure for
further information.

The AudioRecord Structure

Your audio filter is passed a handle to an AudioRecord through the
parameter theData. Here’s the structure of an AudioRecord:

typedef struct
{

Handle specsHandle; // The specification handle
Ptr source; // The source buffer
Ptr destination; // The destination buffer
long samplenum; // First sample number
long samplecount; // Num of samples in source
char previewing; // In preview mode?
Handle privateData; // Private data handle
AFilterCallBackProcPtr callBack; // Callback, invalid if nil
long totalsamples; // Total samples in clip
short flags; // Audio flags
long rate; // Sample rate, 16.16 Fixed
BottleRec *bottleNecks; // Bottleneck callbacks
short version; // Version of this record
long extraFlags; // Other flags
short fps; // Frame rate in frames/sec
Handle InstanceData // New in 4.2 - private data for filter

} AudioRecord, **AudioFilter;

The fields are used as follows:

specsHandle
The specsHandle field holds filter-defined data which contain all the current
settings for this filter. The filter normally creates this handle when it gets an
fsSetup call. Premiere saves this handle in the project file so that settings are
restored when a project is reopened. This must be allocated with
NewHandle().

source
The source field points to the source audio buffer. This buffer contains
sampleCount samples, starting at sampleNum in the clip being processed.
During an fsSetup call, this will be nil. At esExecute time, this buffer
contains the data you are to filter.
Adobe Premiere Software Development Kit 50

Audio Filters
destination
The destination field points to the destination audio buffer. This is where
you store the calculated audio data on an fsExecute call. It will always be the
same size as source. At esSetup time this buffer is nil.

sampleNum
The sampleNum field tells you the sample number of the first sample in the
source buffer.

IMPORTANT! This value is in bytes, so you need to divide by the “bytes-per-sample”
value to determine an actual sample number.

The table below shows the possible number of bytes-per-sample based on
the value of two bits in the flags field (described below):

sampleCount
The sampleCount field tells you how many bytes are in source and
destination. Note that, like sampleNum, you need to divide by bytes-per-
sample to determine the actual sample count in samples.

previewing
The previewing field is a flag that is no longer supported. You may ignore
its value.

privateData
The privateData field is a handle of data that is private to Premiere. It is
passed to the audio-retrieval callback (described below) when you need to
get audio from some other point in time.

callback
The callBack field contains a pointer to a routine you can use to get past or
future audio data from the source clip. The AFilterCallBackProcPtr is defined
as follows:

typedef short (CALLBACK *AFilterCallBackProcPtr) (
long sample,
long count,
Ptr buffer,
Handle privateData);

The sample parameter is the desired starting sample number, from 0 to
totalsamples - 1 inclusive, in bytes. The count parameter specifies the
number of bytes you wish to retrieve. The buffer parameter is the
destination buffer for the audio data, which is usually a locally allocated.
Finally, the privateData argument is the field described above, passed as
(*theData)->privateData.

Table 6–3: Audio Sampling Rate

Flags bits Bytes per sample

0 1 (8-bit mono)

gaStereo 2 (8-bit stereo)

ga16Bit 2 (16-bit mono)

ga16Bit | gaStereo 4 (16-bit stereo)
Adobe Premiere Software Development Kit 51

Audio Filters
totalsamples
The totalsamples field tells you the total number of bytes in the filtered clip.
Divide by bytes-per-sample to determine the total number of samples.

flags
The flags field describes the audio data in the source buffer. It may have
either of the following two flags set:

#define gaStereo 0x0100
#define ga16Bit 0x0200

Using these flags you can tell the number of bytes in the buffer. Your output
should be in the same format.

rate
The rate field provides the sample rate as a integer value in samples per
second. For instance, if a clip contained sound data at the standard sample
rate 22 kHz, rate would contain 22050. This is for informational purposes in
case your filter needs it. Note that it is different from the Premiere for
Macintosh API.

bottleNecks
The bottleNecks field is a pointer to a standard Premiere bottleneck record,
as described in the Bottlenecks chapter of this documentation. You may use
these routines to help you perform your audio filter.

version
The version field tells the version of this VideoRecord. In previous versions of
Premiere this should have been set to 0. For Premiere 4.2 this should be set
to 2.

extraFlags
The extraFlags field is a flags field for future use by Adobe. Currently it is set
to zero.

fps
The fps field gives the frame rate in frames-per-second, in case your filter
needs to know this information.

InstanceData
New in Premiere 4.2, this field allows a plug-in to have Premiere save and
return some private data between invocations. You are responsible for
allocating and freeing any memory used with this field. You would probably
allocate memory for this field when getting an fsSetup selector, but you
must deallocated it when getting an fsDisposeData. To utilize this new field,
the version field above must be set to 2.

Examples

The Adobe Premiere Plug-In SDK comes with source code for an audio filter
module that you can use as an example of how to write your own.
Adobe Premiere Software Development Kit 52

7Data Export Modules
7 Data Export Modules
A data export module in Adobe Premiere is called when the user opens some
kind of clip window and chooses an item from the Export submenu of the
File menu. The export module’s job is to export the given clip to some other
format.

The export module tells Premiere whether it can export audio, video, or
both. It is provided with information about the source clip and two callback
routines to allow it to retrieve audio and video from the clip. Export
modules normally put up a modal dialog asking the user for appropriate
export parameters, then put up a file dialog to request a destination file.
They then export the source clip into another file format.

Adobe Premiere export modules are not limited to file-format-conversion
type export operations. Premiere’s “Print To Video” export module is a good
example of a different kind of module, where the output is to the screen
rather than to a file.

Data export modules have a file prefix of ‘EX-’ and an extension of .prm.
Data export files contain several kinds of resources which are listed below.
Following the table is a detailed description of each resource.

EXvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0002. See the Plug-In Resources section in
the Introduction for an example.

Table 7–1: Data Export Resources

Type & ID Description

EXvs 1000 A two-byte version number stored as a short integer. The current
version is 2.

TYPE 1000 The TYPE resource identifies the plug-in type to Premiere during the
loading process.

TEXT 1000 The name of the resource, to be displayed in the Export menu.

FLAG 1000 A two-byte flags word that tells the capabilities of the data export
module.

DestinationSource ExpD
Adobe Premiere Software Development Kit 53

Data Export Modules
TYPE 1000

The TYPE 1000 resource is checked by Premiere at startup and identifies the
plug-in type. Data export modules have a TYPE of ‘ExpD. See the Plug-In
Resources section in the Introduction.

TEXT 1000

This resource contains the title of the data export module. It appears in the
Export menu to identify a export method by name. Look at Premiere’s
export menu commands for examples of how this text should be worded.

FLAG 1000

This resource tells Premiere whether the data export module can export
video, audio, or both. Premiere uses this information to dim or undim the
export module’s menu item in the Export submenu based on the type of clip
that is in the front window. The structure of a FLAG resource is shown
below, along with some bit values you’ll use with the definition:

// This identifies the type of data the exporter can handle
// Valid values are:
#define mExpVid 0x8000 // Can export video/still image data
#define mExpAud 0x4000 // Can export audio data

1000 FLAG DISCARDABLE
BEGIN

0x0000,
0x??00 // the export capabilities go here

END

For example, if your export module can export both audio and video, you’d
make a FLAG resource containing mExpVid + mExpAud.

The Export Code

The entry point of your code should be declared like this:

int PRMEXPORT xExport (short selector, DataExportHandle theData) {...

The return value is currently ignored, but you should return noErr (0) for
future compatibility.

The selector can take the following values:

Table 7–2: Data Export Selector Values

Selector name Value Description

edExecute 0 Execute your data export process.
Adobe Premiere Software Development Kit 54

Data Export Modules
edExecute
The edExecute selector indicates that you should perform your data export
function. You may use the information in the DataExportRec (described
below) to help you.

The DataExportRec Structure

Your data export module is passed a handle to a DataExportRec through the
parameter theData. Here’s the structure of a DataExportRec:

typedef struct {
long markers[12]; // Clip markers (0 = in, 1 = out)
long numframes; // Number of frames in the clip
short framerate; // Frames/second of source material
RECT bounds; // Video bounds box, empty if no video
short audflags; // Audio flags, zero if no audio
long audrate; // The audio rate in Hz
GetVidCallBack getVideo; // Video reader callback
GetAudCallBack getAudio; // Audio reader callback
Handle privateData; // Private data for above routines
long specialRate; // Special rate

} DataExportRec, **DataExportHandle;

The fields are used as follows:

markers
The markers field is an array of twelve clip markers. The value of markers[0]
is the clip’s in-point, markers[1] its out-point. Entries 2-11 are the numbered
markers 0-9. The marker values are in the time units specified by the
framerate field (described below).

Note: On the Macintosh platform, the markers array is vestigial since its
API supports access to unnumbered markers. Developers writing a
cross-platform export plug-in should be aware of this.

numframes
The numframes field specifies the duration of the source material in the
units specified by the framerate field.

framerate
The framerate field gives the frame rate in frames per second at which this
export operation is being performed. It corresponds to the Time Base
preference setting for clip windows.

bounds
The bounds field specifies bounds for the video portion of the source clip’s
data. If it is an empty rectangle, there source clip contains no video.

audflags
The audflags field describes the audio data in the source clip. It may have
either of the following two flags set:

#define gaStereo 0x0100
#define ga16Bit 0x0200

These flags are the same as are used in audio filters and with the audio
bottleneck routines.
Adobe Premiere Software Development Kit 55

Data Export Modules
audrate
The rate field provides the sample rate as a integer value in samples per
second. For instance, if a clip contained sound data at the standard sample
rate 22 kHz, audrate would contain 22050. If audrate is 0, the source clip
contains no audio.

getVideo
The getVideo field contains a pointer to a routine you can use to get video
data from the source clip. GetVidCallBack is defined as follows:

// Callback to get one frame of video
typedef short (CALLBACK *GetVidCallBack) (

long frame,
PWorldID thePort,
LPRECT *theBox,
LPVOID privateData);

The frame parameter is the desired frame in the units defined by the
framerate field documented above. For example, you would use (*theData)-
>markers[0] to retrieve the frame at the in-point. The thePort parameter is
the PWorldID of the destination buffer for the frame. You can use
NewHandle() to allocate a local PWorld. The theBox parameter is the
destination rectangle in thePort. Finally, the privateData parameter is the
record field discussed below and accessed as (*theData)->privateData.

getAudio
The getAudio field contains a pointer to a routine you can use to get audio
data from the source clip. The GetAudCallBack is defined as follows:

// Callback to get one second of audio
typedef short (CALLBACK *GetAudCallBack) (

long second,
short formatFlags,
LPSTR buffer,
LPVOID privateData);

The second parameter is the desired second (such as second #0, second #1,
etc.). The formatFlags parameter is ignored by the Windows version of
Premiere. The buffer parameter is the destination buffer for the audio data.
Following is a table showing you how big your buffer should be based on
the flag values:

Note: The values in this table are different than those for the Premiere for
Macintosh API.

Finally, the privateData parameter is a field of the DataExportRec accessed
as (*theData)->privateData.

Table 7–3: Audio Buffer Sizes

Sample rate flags 8-bit mono 8-bit
stereo

16-bit
mono

16-bit
stereo

aflag11KHz 11025 22050 22050 44100

aflag11KHz + aflagDropFrame 11014 22028 22028 44056

aflag22KHz 22050 44100 44100 88200

aflag22KHz + aflagDropFrame 22028 44056 44056 88112

aflag44KHz 44100 88200 88200 176400

aflag44KHz + aflagDropFrame 44056 88112 88112 176224
Adobe Premiere Software Development Kit 56

Data Export Modules
privateData
The privateData field is a handle of data that is private to Premiere. It is
passed to the getVideo and getAudio callbacks.

specialRate
This field is ignored by the Windows version of Premiere.

Examples

The Adobe Premiere Plug-In SDK comes with source code for a data export
module that you can use as an example of how to write your own.
Adobe Premiere Software Development Kit 57

8EDL Export Modules
8 EDL Export Modules
An EDL export module in Adobe Premiere is called when the user chooses an
EDL export item from the Export submenu of the File menu. The export
module’s job is to export the current project into a text edit decision list
(EDL) format. Usually these EDL text files are used to drive a hardware
device, such as a video switcher like the CMX 3600.

The EDL export module is provided with a nested, block-formatted data
structure that describes the project that the user has assembled in Premiere’s
Construction window. Export modules normally unroll this data structure
and generate a text file. It is also possible for an EDL module to directly
control a hardware device to perform autoassembly of the project from
source tapes.

EDL export modules have a file prefix of ‘EX-’ and an extension of .prm. EDL
export module files contain several kinds of resources which are listed
below. Following the table is a detailed description of each resource:

EXvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0002. See the Plug-in Resources section of
the Introduction for an example.

TYPE 1000

The TYPE 1000 resource is checked by Premiere at startup and identifies the
plug-in type. Data export modules have a TYPE of ‘ExpM’. See the Plug-in
Resources section of the Introduction.

Table 8–4: EDL Export Module Resources

Type & ID Description

EXvs 1000 A two-byte version number stored as a short integer. The current
version is 2.

TYPE 1000 The TYPE resource identifies the plug-in type to Premiere during the
loading process.

TEXT 1000 The name of the resource, to be displayed in the Export menu.

Edit Decision List
Project

ExpM
Adobe Premiere Software Development Kit 58

EDL Export Modules
TEXT 1000

This resource contains the title of the EDL export module. It appears in the
Export menu to identify a export method by name. Look at Premiere’s
export menu commands for examples of how this text should be worded.

The Export Code

The entry point of the code should be declared like this:

int PRMEXPORT xExport (short selector, ExportHandle theData) {...

The return value is currently ignored for the exExecute message but is used
with the exTrue30fps message. In order to ensure future compatibility, you
should return noErr (0) from your exExecute message.

The selector can take the following values:

exExecute
The exExecute selector indicates that you should perform your EDL export
function. You will use the information in the ExportRecord (described
below) to generate your list.

exTrue30fps
The exTrue30fps selector is made just before the exExecute call. If you return
a result code of 1, Premiere passes all of the data in the project at 30 frames
per second. If you return 0, Premiere converts all of the times to 29.97
frames per second, which is the frame rate at which color video actually
runs. Normally an EDL export module should defer such time conversion to
Premiere rather than attempting it within the module.

The ExportRecord Structure

Your EDL export module is passed a handle to a ExportRecord through the
parameter theData. Here’s the structure of a ExportRecord:

typedef struct
{

Handle dataHandle; // The project data handle
short timeBase; // The current default timebase
Ptr projectName; // A pointer to current project name

} ExportRecord, **ExportHandle;

The fields are used as follows:

Table 8–5: EDL Selector Values

Selector name Value Description

exExecute 0 Execute your EDL export process.

exTrue30fps 1 Tell Premiere whether you want edits in 29.97 or 30 fps.
Adobe Premiere Software Development Kit 59

EDL Export Modules
dataHandle
The dataHandle field contains a hierarchical block of data which describes
everything about an Adobe Premiere project. This format is described in
detail below in the section entitled The EDL Project Data Format.

timeBase
The timeBase field tells your EDL export module the basic frame rate. It will
be 24, 25, or 30. When timebase is 30, the actual time base depends on your
response to the exTrue30fps message. If you returned 0 in response to the
exTrue30fps message, the actual rate is 29.97; if you returned 1, the rate is
30.00.

projectName
The projectName field gives you with the name of the project. This is usually
used as the basis of the default name of an output EDL text file.

The EDL Project Data Format

When your EDL export module gets an exExecute message, the entire current
Premiere project will be handed to your plug-in via the dataHandle field of
the ExportRecord. The data is in a hierarchical, block-structured format. Each
block has the following structure:

typedef struct
{

long size; // Total block size, w/static data & sub-blocks
long dataSize; // The static data size for this block
long type; // The block type (basically an OSType)
long theID; // Block ID or 0 for blocks that don’t need an ID

} BlockRec;

Following the header is a block of local static data owned by this block of
the size given in the dataSize field of the BlockRec. Following the local static
data is a series of zero or more sub-blocks, each with their own block
headers (and potentially their own data chunks and sub-blocks). The types
and IDs for the currently defined blocks are listed in the following table. The
types are already #defined in the Premiere header file by using the format
bTYPE, where TYPE is the four character Type in the table, e.g. use bTRKB
for the block type ‘TRKB’, use bRATE for the block type ‘RATE’.

Table 8–6: EDL Types and IDs

Type ID Parent Data Description

'BLOK' 0 none L-wrk strt, L-
wrk end, sub-
blks

Container for everything

'TRKB' 0 BLOK track blocks Container for all of the tracks

'TRAK' ID BLOK S-flags, TREC
blocks

Contains all of the blocks for an entire track

'FVID' 0 TRAK none Flag: track contains video records

'FSUP' 0 TRAK none Flag: track contains superimpose records

'FAUD' 0 TRAK none Flag: track contains audio records

'AMAP' 0 FAUD S-audio map-
ping bits

Bits indicate target audio tracks

'FF_X' 0 TRAK none Flag: track contains F/X records
Adobe Premiere Software Development Kit 60

EDL Export Modules
'TREC' n TRAK S-clipID, L-strt,
L-end, sub-blks

Contains the blocks for a single track item

'RBND' 0 TREC S-max, RPNT
blocks

[The rubber band info for a track item]

'RPNT' 0-n RBND L-h, S-v Rubber band point

'FXOP' 0 TREC C-crnr, C-dir, S-
strt, S-end, blks

[The options controlling F/X options]

'FXDF' 0 FXOP OSType The base type of the effect

'EDGE' 0 FXOP S-thickness,
COLR block

[Describes edge thickness]

'MPNT' 0 FXOP Point [Reference point for next two types]

'SPNT' 0 FXOP Point [User specified open point]

'EPNT' 0 FXOP Point [User specified close point]

'OVER' 0 TREC S-type, info
blocks

[The parameters for an overlay item]

'COLR' 0 OVER,
FILE

RGBColor [Key or fill color]

'SIMI' 0 OVER S-similarity [Similarity value]

'BLND' 0 OVER S-blend [Blend value]

'THRS' 0 OVER S-threshold [Threshold value]

'CUTO' 0 OVER S-cutoff [Cutoff value]

'ALIA' 0 OVER S-level [Anti-aliasing level]

'SHAD' 0 OVER none [Flag: shadowing is on]

'RVRS' 0 OVER none [Flag: key is reversed]

'GARB' 0 OVER R-ref rect,
point blocks

Garbage matte points

'PONT' 0-n GARB,
RBND

Point

'MATI'' 0 OVER S-clipID [The ID of the clip describing an overlay
Matte]

'VFLT' 0 TREC sub-blocks [Followed by individual filter blocks]

'AFLT' 0 TREC sub-blocks [Followed by individual filter blocks]

'FILT' 0-n VFLT,
AFLT

S-fileID, data
block

File ID followed by an opaque data block

'MOTN' 0 TREC R-ref rect, sub
blocks

[Record giving motion path for a track item]

'SMTH' 0 MOTN none Flag: motion path is smoothed

'MREC' 0-n MOTN S-zoom, P-spot,
P-dest[4]

Describes each motion point

'DATA' 0 any data block [Generic block for storing parm handles]

'CLPB' 0 BLOK clip blocks Contains all of the clip blocks

'CLIP' ID CLPB S-fileID, L-in, L-
out

The descriptive info for a clip

'MARK' 0-9 CLIP L-location [For set markers, defines the markers]

'LOCK' 0 CLIP none [Flag: clip has locked aspect]

'RATE' 0 CLIP S-rate * 100 [Defines a rate other than 1.00]

Table 8–6: EDL Types and IDs

Type ID Parent Data Description
Adobe Premiere Software Development Kit 61

EDL Export Modules
'FILB' 0 BLOK file blocks Contains all of the file blocks

'FILE' ID FILB info blocks The descriptive blocks for a file

'MACS' 0 FILE FSSpec The Mac file spec

'MACP' 0 FILE string The full Mac pathname

'FRMS' 0 FILE L-#frames [Number of frames for a file w/content]

'VIDI' 0 FILE L-video frame,
S-depth

[Describes the video portion of the file]

'AUDI' 0 FILE S-aud flags, L-
aud rate

[Describes the audio portion of the file]

'TIMC' 0 FILE timecode [Gives the timecode for the first file frame]

'TIMB' 0 FILE L-frame, C-
dropframe, C-
fmt

[Specifies the binary timecode, as above]

'REEL' 0 FILE Str-reel name [String giving the source reel for the file]

Abbreviation Description
C- char
S- short
L- long
P- Point
R- Rect
Flag: If block is present, condition is true
[…] Optional block

Table 8–6: EDL Types and IDs

Type ID Parent Data Description
Adobe Premiere Software Development Kit 62

EDL Export Modules
Many of the blocks have an associated structure that describes their
contents. Those are listed below:

typedef struct
{

long start; // Starting position for the work area
long end; // Ending position for the work area

} Rec_BLOK;

typedef struct
{

short fileID; // The dependent file ID
long in; // The IN point within the source material
long out; // The OUT point within the source material minus 1

} Rec_CLIP;

typedef struct
{

short clipID; // The dependent clip ID
long start; // The clip starting position
long end; // The clip ending position

} Rec_TREC;

typedef struct
{

short zoom; // Zoom factor 1 to 400, 100 is normal
short time; // Time location 1 to 1000
short rotation; // Rotation factor -360 to 360, 0 is normal
short delay; // Delay factor 0 to 100, 0 is normal
Point spot; // The center point for the image at this point

} Rec_MREC;

typedef struct
{

unsigned char corners;// User direction flags, one bit each
char direction; // Direction flag, 0 = A->B, 1 = B->A
short startPercent; // Starting percentage times 100
short endPercent; // Ending percentage times 100

} Rec_FXOP;

typedef struct
{

long h; // Horiz (time) loc of band point
short v; // Vertical (amplitude/level) loc of band point

} Rec_RPNT;

typedef struct
{

Rect frame; // Bounding frame for video data
short depth; // Bit depth for video data

} Rec_VIDI;

typedef struct
{

long frames; // Binary frame count
char dropframe; // true = DF, false = NDF
char format; // true=NTSC(30), false=PAL(25), 2=Film(24)

} Rec_TIMB;

Wipe Code Details

The EDL export modules that ship with Adobe Premiere allow the user to set
up wipe codes for use in their EDL text files. The user can edit these wipe
codes using the Wipe Code editor dialog, which is accessible from the dialog
used to get the file name and other information.
Adobe Premiere Software Development Kit 63

EDL Export Modules
You may want to provide a similar mechanism for obtaining a list of wipe
codes to which you can map Premiere transition information. The Premiere
for Macintosh API provides routines to facilitate collecting this information,
but these are not provided by the Premiere for Windows API.

Relevant Routines in the Utility Library

There are a few routines exported by Premiere that will make writing an EDL
export module easier. See the definitions of the block routines in the
Premiere Specific Routines section of the Utility Library chapter for details.

Examples

The Adobe Premiere Plug-In SDK comes with source code for an EDL export
module that you can use as an example of how to write your own. It
contains code to recursively unroll the project data handle and parse the
blocks.
Adobe Premiere Software Development Kit 64

9Device Control Modules
9 Device Control Modules
A device control module allows Adobe Premiere to control hardware devices
such as tape decks or laser disc players.

Device control modules are called by parts of Premiere that take video input,
like the Movie Capture window and the Waveform Monitor. A device control
module’s most important functions are to set hardware operating modes,
tell Premiere what mode the hardware is in, and provide Premiere with
timecode from the hardware.

Device control modules have a file prefix of ‘X-’ and an extension of .prm.
Device control files contain several kinds of resources which are listed below.
Following the table is a detailed description of each resource:

Note: Any other resources contained in an device control module’s
resource file should have IDs in the range 600 to 999.

DVvs 1000

This resource is two bytes in length and gives the version of the module
interface. The current version is $0002. See the Plug-In Resources section in
the Introduction for an example.

TYPE 1000

The TYPE 1000 resource is checked by Premiere at startup and identifies the
plug-in type. Data export modules have a TYPE of ‘DevC’. See the Plug-In
Resources section in the Introduction for an example.

Table 9–7: Device Control Module Resources

Type & ID Description

DVvs 1000 A two-byte version number stored as a short integer. The current
version is 2.

TYPE 1000 The TYPE resource identifies the plug-in type to Premiere during the
loading process.

TEXT 1000 The name of the resource, to be displayed in the Export menu.

DevC
Adobe Premiere Software Development Kit 65

Device Control Modules
TEXT 1000

This resource contains the name of the device controller. The name is what
appears in the popup menu in the Device Control dialog box.

The Device Control Code

The entry point of the code should be declared like this:

int PRMEXPORT xDevice (short selector, DeviceHand theData) {...

The return value should be noErr (0) if no error occurs during the execution
of your device control module, or any non-zero value if an error occurs.
The selector can have the following values:

dsInit
The dsInit selector tells your device control module to create its local data
structure and store its handle in the deviceData field provided in the
DeviceRec structure passed to you in the call. You should choose a default
operating mode if more than one are available. If necessary, a dialog can be
presented during this call to prompt the user for settings. If you need to
open drivers or make serial connections to your hardware, you also do this
here. See the Implementation Tips section below for more information
about the dsInit selector.

dsSetup
The dsSetup selector tells your device control module to put up a custom
settings dialog box, if any. This might include choosing between several
device control methods or selecting a serial port. If your device control
module doesn’t require any additional parameters from the user, calls with
the dsSetup selector can be safely ignored (but should return noErr).

dsExecute
The dsExecute selector tells your device control module to perform a device
control operation based on (*theData)->command. See the Commands
section below for a detailed description of the different commands and the
actions you should take.

dsCleanup
The dsCleanup selector tells your device control module to disconnect from
any hardware and dispose of its local data handle (that is, the data you may
have stored in (*theData)->deviceData).

Table 9–8: Device Control Selector Values

Selector name Value Description

dsInit 0 Create data structures, choose an operating mode.

dsSetup 1 Put user settings dialog, if any.

dsExecute 2 Perform a specified device control command.

dsCleanup 3 Dispose data structures.

dsRestart 4 Restart module—used at startup to reconnect to a
device.
Adobe Premiere Software Development Kit 66

Device Control Modules
dsRestart
The dsRestart selector is just like dsInit, except that (*theData)->deviceData
handle has already been set up. Premiere stores this information in the
preferences file so that when Premiere is started up, connections to
hardware devices can be reestablished. See the Implementation Tips section
below for more information about the dsInit and dsRestart selectors.

The DeviceRec Structure

Your device control module is passed a handle to a DeviceRec through the
parameter theData. Here’s the structure of a DeviceRec:

typedef struct
{

Handle deviceData; // Local data which plug-in creates
short command; // The command to perform
short mode; // New mode (in) or current mode (out)
long timecode; // New timecode (in) or current (out)
short timeformat; // Format: 0=non-drop, 1=drop-frame
short timerate; // Frames/second for timecode above
long features; // Features (out) for cmdGetFeatures
short error; // Error code (out) from any routine
short preroll; // Pre-roll time (secs) for cmdLocate
CallBackPtr callback; // Abort-check proc for cmdLocate
ProcPtr PauseProc; // Pause-current-operations proc
ProcPtr ResumeProc; // Resume-current-operations proc
char reserved[256]; // Reserved;

} DeviceRec, **DeviceHand;

The fields are as follows:

deviceData
The deviceData field is where you should store a handle to your local data at
dsInit time. Premiere stores this data in the Premiere preferences file for
later retrieval (after which it is passed to a dsRestart handler). The value of
this field is retained across calls.

command
The command field tells you what command is being executed when you get
a call with the dsExecute selector. See the Commands section below for
detailed information about this field’s possible values.

mode
The mode field is used three ways. For dsExecute/cmdNewMode calls, mode
contains the new mode into which Premiere is instructing you to put a
device. For dsExecute/cmdStatus calls, mode is where you store the current
mode of the device. The last mode you reported will still be there. For
dsExecute/cmdShuttle calls, mode contains the shuttle rate, which may have
the value -100 to 100. Negative values indicate you should shuttle
backwards, positive values indicate that you should shuttle forward.

timecode
The timecode field is used three ways. For dsExecute/cmdGoto and
dsExecute/cmdLocate commands, the timecode field tells you the timecode
to which Premiere wants you to move the deck. For dsExecute/cmdStatus
calls, you return the deck’s current timecode via the timecode field, where -1
will display “N/A” (not available), -2 will blank the timecode display, and -3
Adobe Premiere Software Development Kit 67

Device Control Modules
will display “Searching…”. For dsExecute/cmdJogTo calls, timecode specifies
the location to which you should jog the deck.

timeformat
The timeformat field is used to report the format of timecode for a
dsExecute/cmdStatus call. The field should be set to 0 for non-drop frame, or
1 for drop-frame.

timerate
The timerate field is used to report the frames-per-second rate of timecode
for a dsExecute/cmdStatus call. The field should be set to 24, 25, or 30.

features
The features field is used to report the features that a device and/or device
control module is capable of in response to a dsExecute/cmdGetFeatures call.
See cmdGetFeatures in the Commands section below for more details.

error
The error field is used to report errors that occur within your device control
module. Whenever an error occurs, set (*theData)->error to the appropriate
error code and return a non-zero value from your device control module.

preroll
The preroll field is used when you get a dsExecute/cmdLocate call. The
preroll amount is how far before (smaller timecode) the time specified in
timecode you should seek the deck. The preroll value is the product of a
calibration sequence the user can perform. See cmdLocate in the Commands
section below for more details on how to use the preroll value.

callback
The callback field contains a pointer to a routine that you can call during
dsExecute/cmdLocate calls to determine if the user is attempting to abort
the locate operation (by hitting ESC for instance). The prototype for the
abort callback routine is:

typedef long (*CallBackPtr)();

A non-zero result indicates that the user has attempted to terminate the
locate operation.

PauseProc
The PauseProc field contains a pointer to a routine that you can call to
temporarily pause any Video for Windows sequence grabber operations in a
device-controlled window. Normally you would call this routine before
putting up an error alert, for instance:

(*(*theData)->PauseProc)();
myPoseAlert(kErrors, kMemFailure, 0, 0); // your error handler
(*(*theData)->ResumeProc)();

Important! If you don’t call the PauseProc before putting up an error alert (or any
other kind of window), video may be played through over your window. That is the
purpose of the PauseProc.
Adobe Premiere Software Development Kit 68

Device Control Modules
ResumeProc
The ResumeProc field contains a pointer to a routine that you should call to
resume sequence grabbing after calling the PauseProc. It is important that
every call to PauseProc be matched by a call to ResumeProc.

Commands

When you receive a call with the dsExecute selector, the command field of
the DeviceHand tells you what device control command to execute. Here’s a
list of the commands and their basic functions. A detailed description of
each command follows the list:

cmdGetFeatures
The cmdGetFeatures command tells you to fill out (*theData)->features with
the features of your deck (or of your device control module, if the module
can only control a subset of the deck’s capabilities). The value you set should
be made up of the following bit flags:

enum {
fHasJogMode // New in 4.2 - device has jog capabilities
fStepFwd = 0x8000, // Can step forward one frame
fStepBack = 0x4000, // Can step back one frame
fRecord = 0x2000, // Can record
fPositionInfo = 0x1000, // Returns position (timecode) info
fGoto = 0x0800, // Can seek to a specific frame
f1_5 = 0x0400, // Can play at 1/5 speed
f1_10 = 0x0200, // Can play at 1/10 speed
fBasic = 0x0100, // Supports Stop, Play, Pause, FF, Rew
fHasOptions = 0x0080, // Plug-in puts up an options dialog
fReversePlay = 0x0040, // Supports reverse play
fCanLocate = 0x0020, // Can locate a specific timecode
fStillFrame = 0x0010, // Frame addr-able device like laser disc
fCanShuttle = 0x0008, // Supports the Shuttle command
fCanJog = 0x0004, // Supports the JogTo command

};

New in Premiere 4.2 is the fHasJogMode bit. When set, Premiere will use
cmdJog with a rate modifier rather than sending a new timecode to
cmdJogTo each time.

The fStepFwd bit indicates that you can step your deck forward one frame. If
you set this bit, Premiere will make available a step-forward button, and you
may get called to change your mode to modeStepFwd.

Table 9–9: Device Control Commands

Command name Value Function

cmdGetFeatures 0 Fill in the features field with the device’s features.

cmdStatus 1 Return the deck mode and current timecode.

cmdNewMode 2 Change the deck’s mode to a new mode.

cmdGoto 3 Go to a particular time code.

cmdLocate 4 Go to a particular time code and return when you’re
there.

cmdShuttle 5 Shuttle the deck at a specified rate.

cmdJogTo 6 Position the deck quickly to the location in timecode.

cmdJog 7 New in 4.2 – Jog at rate specified in ’mode’, from -15 to +25.
Adobe Premiere Software Development Kit 69

Device Control Modules
The fStepBack bit indicates that you can step your deck backward one frame.
If you set this bit, Premiere will make available a step-backward button, and
you may get called to change your mode to modeStepBack.

The fRecord bit indicates that your deck can record. If you set this bit, you
may get called to change your mode to modeRecord.

The fPositionInfo bit indicates that your deck and device control module can
retrieve position information and pass it back to Premiere.

The fGoto bit indicates that your device can seek to a particular frame. If
you set this bit, you must also set fPositionInfo, and you must be prepared to
get cmdGoto calls.

The f1_5 bit indicates that your device can play at one-fifth speed. If you set
this bit Premiere makes available the 1/5 speed playback option and you may
get called to change your mode to modePlay1_5.

The f1_10 bit indicates that your device can play at one-tenth speed. If you
set this bit Premiere makes available the 1/10 speed playback option and you
may get called to change your mode to modePlay1_10.

The fBasic bit indicates your deck and perform the basic five deck control
operations: stop, play, pause, fast-forward, and rewind. If you set this bit,
Premiere makes available controls for these functions and you must be
prepared to get called to change your mode to modeStop, modePlay,
modePause, modeFastFwd, and modeRewind, respectively.

The fHasOptions bit indicates that your device control module has an
options dialog, and that you support the dsSetup message. If you set this bit,
Premiere makes available the “Options…” button in the Device Control
Preferences dialog box. If the user clicks this button, your device control
module will get a dsSetup call.

The fReversePlay bit indicates that your deck can play in reverse. If you set
this bit, you may bet calls to change your mode to modePlayRev, (and also
modePlayRev1_5 and modePlayRev1_10 if you set the f1_5 or f1_10 bits).

The fCanLocate bit indicates that your deck can accurately locate a particular
timecode and supports the cmdLocate command. Adobe encourages
developers of device control modules to support cmdLocate, which is
typically more accurate than cmdGoto.

The fStillFrame bit indicates that your device is frame-addressable, like a
laser disk player, and that it is capable of very clean still-frame output. This
bit is currently not used by the Movie Capture, Step Capture, or Waveform
Monitor windows.

The fCanShuttle bit indicates that your device is capable of variable-speed
shuttle operations, both forward and backwards. If you set this bit, Premiere
may make cmdShuttle calls to your device control module.

The fCanJog bit indicates that your device can quickly move to a nearby
timecode location. If you set this bit, Premiere may make cmdJogTo calls to
your module.

cmdStatus
The cmdStatus command is Premiere’s way of finding out what’s going on
with your device. It wants two pieces of information: the deck’s current
mode (like play, pause, etc.) and the timecode currently rolling under the
deck’s head.
Adobe Premiere Software Development Kit 70

Device Control Modules
You should store the device’s current mode into (*theData)->mode, and
store the current timecode value into (*theData)->timecode. Be sure to set
(*theData)->timerate and (*theData)->timeformat as described in The
DeviceRec Structure above.

The values of mode and timecode persist from one cmdStatus call to the
next. So, if you only know one of the two pieces of information, store the
one you know, and leave the other alone. For instance, it may be that your
device control module has to make two separate driver calls to determine
these two pieces of information. In that case, you should alternately request
one and return the other, as shown in the figure below:

cmdNewMode
The cmdNewMode command tells you to put your device into a new
operating mode, as specified in (*theData)->mode. The modes you may be
asked to go into (depending upon your features) follow. They have
corresponding meanings to the features described above.

enum
{

modeStop = 0,
modePlay,
modePlay1_5,
modePlay1_10,
modePause,
modeFastFwd,
modeRewind,
modeRecord,
modeGoto,
modeStepFwd,
modeStepBack,
modePlayRev,
modePlayRev1_5,
modePlayRev1_10

};

cmdGoto
The cmdGoto command tells you to seek your device to the timecode
specified by (*theData)->timecode. Subsequently you should place the device
in pause mode (if you were able to complete the seek) or stop mode (if there
was an error). Typically you will set up some kind of asynchronous seek and
return immediately.

Premiere will continue sending cmdStatus requests until the mode changes
to cmdPause or cmdStop. While you are seeking you should place the value
modeGoto in (*theData)->mode. This will cause Premiere to put
“Searching…” in the time code display of the supervising window. Once
you’ve completed the seek, store the new mode (modePause or modeStop)
in (*theData)->mode. Note that Premiere prefers cmdLocate (described

dsStatus #2
DevC

mode: play
time: 00.00

dsStatus #1
DevC

mode: stop
time: 00.00

dsStatus #3
DevC

mode: play
time: 00.01

dsStatus #4
DevC

mode: pause
time: 00.01

Driver

Ask for
mode

mode
play

Ask for
time

Driver Driver Driver

time:
00:01

Ask for
mode

mode:
pause

Ask for
time
Adobe Premiere Software Development Kit 71

Device Control Modules
below) to cmdGoto, and often cmdLocate is easier to implement anyway
(because it is synchronous).

cmdLocate
The cmdLocate command tells you to seek you device to an exact frame
location and return immediately with the device in modePlay. This is to be
done as a synchronous operation (your device control module should not
return until the operation is complete or an error occurs).

The value in (*theData)->preroll tells you how far before the time specified
in (*theData)->timecode you should actually seek to. In other words,
subtract (*theData)->preroll from (*theData)->timecode and seek there. The
preroll value can be set by the user and is generally determined through a
calibration process that takes into account the various latencies of the
computer, deck, and device control I/O channel.

During the execution of this command, you can use the abort-check routine
(*theData)->callback to determine if the user has attempted to abort the
operation (with ESC, for instance).

cmdShuttle
The cmdShuttle command is sent when the user grabs the shuttle control on
the screen. The farther the user drags the control from the center, the
higher speed he wants the deck to shuttle.

When you receive a cmdShuttle command, (*theData)->mode is the shuttle
speed:

If the deck can handle intermediate speeds, you should use them. The idea is
to simulate a shuttle control on the front panel of a deck. You may need to
map speed values to speeds differently than shown above to get the right
feel. If your deck doesn't support continuously variable speeds (which many
don't), then quantize the speed. For example, here's how a device control
for a Visca device control module might quantize the speed value into the
set of available deck play speeds:

if (speed <= -90) pb->csParam[4] = kRevScan;
else if (speed <= -70) pb->csParam[4] = kRevFast2;
else if (speed <= -50) pb->csParam[4] = kRevFast1;
else if (speed <= -20) pb->csParam[4] = kRevPlay;
else if (speed <= -12) pb->csParam[4] = kRevSlow1;
else if (speed <= -5) pb->csParam[4] = kRevSlow2;
else if (speed < 5) pb->csParam[4] = kPause;
else if (speed < 12) pb->csParam[4] = kSlow2;
else if (speed < 20) pb->csParam[4] = kSlow1;
else if (speed < 50) pb->csParam[4] = kPlay;
else if (speed < 70) pb->csParam[4] = kFast1;
else if (speed < 90) pb->csParam[4] = kFast2;
else pb->csParam[4] = kScan;

To get the right feel, the Visca module places kRevPlay at -20 rather than -
50.

If a device control module does not implement shuttling but supports
multiple play speeds, Premiere will simulate shuttling by telling the module
to play at different rates depending upon the shuttle control position. Of

-100 -50 0 50 100

Reverse Reverse Pause Play Play fast
play fast play
Adobe Premiere Software Development Kit 72

Device Control Modules
course, better results can be obtained by directly supporting shuttling with
the cmdShuttle command.

cmdJogTo
The cmdJogTo command is sent when the user grabs the tractor tread
control on the screen. Premiere calculates a new target timecode based on
the current time and the distance the user has dragged the tread.

When you receive a cmdJogTo command (*theData)->timecode is the target
time code. You should attempt to jog the deck to this location as quickly as
possible. (*theData)->timecode will never be far from the current time. How
exactly you choose to get the deck to the desired time is up to you—you may
choose to step the deck, shuttle, seek, or whatever.

If a device control module does not implement jogging but supports
stepping, Premiere will simulate jogging by stepping forward or backward.
This does not take into account the distance the user dragged the tractor
tread—only the direction. Therefore, better results can be achieved by
implementing the cmdJogTo command.

Implementation Tips

Handling dsInit and dsRestart
The dsInit and dsRestart selectors are nearly the same, except that dsInit
needs to allocate a new (*theData)->deviceData handle and dsRestart uses
one that is provided. Because of this, a handy way of handling these
selectors is to let the dsInit selector fall into the dsRestart case, as the code
extract from Premiere’s Visca module below shows:

switch (selector)
{

case dsInit: // INIT
 if (!((*theData)->deviceData = NewHandleClear(sizeof(LocalRec))))
 {
 // Allocation failed
 result = kMemFailure;
 (*(**theData).PauseProc)();
 myPoseAlert(kErrors, kMemFailure, 0, 0); // your error handler
 (*(**theData).ResumeProc)();
 break;
 }

 // Allocation succeeded so fall through...

case dsRestart: // RESTART
 // Same as dsInit, except the local data handle has already been
 // allocated and filled in with its contents from the last time.
 // For development purposes, we do a SetHandleSize, in case the
 // definition of the local data has changed.
 if ((*theData)->deviceData &&
 GetHandleSize((Handle)(*theData)->deviceData) != sizeof(LocalRec))
 {
 SafeSetHandleSize((Handle)(*theData)->deviceData, sizeof(LocalRec));
 FillMem(*(*theData)->deviceData, sizeof(LocalRec), 0x00);
 }
 if ((*theData)->deviceData == nil || MemError())
 {
 result = kMemFailure;
 (*(**theData).PauseProc)();
 myPoseAlert(kErrors, kMemFailure, 0, 0); // your error handler
 (*(**theData).ResumeProc)();
 break;
 }
Adobe Premiere Software Development Kit 73

Device Control Modules
 // Open the driver
 if (result = OpenDriver((StringPtr)"\p.ViSCA",
 &(*(LocalRec **)(*theData)->deviceData)->dRefNum))
 {

Notice thatthe code checks whether the (*theData)->deviceData is the same
size as LocalRec, the device control module’s parameter record. The device
control data record is stored by Premiere in the preferences file. If you
change the size or layout of your parameter record during development and
re-run Premiere, Premiere will kindly pass you a now-invalid deviceData
record. That’s why the check is there—if the size isn’t right, it just
reallocates it and zeros the handle.

Putting up error alerts
Remember to frame any error alert routine calls with calls to PauseProc and
ResumeProc so that Premiere can suspend any video that might be playing
through the supervising window, as shown below:

(*(**theData).PauseProc)();
myPoseAlert(kErrors, kMemFailure, 0, 0); // your error handler
(*(**theData).ResumeProc)();

Examples

The Adobe Premiere Plug-In SDK comes with source code for a skeleton
device control module that you can use as the basis for your own.
Adobe Premiere Software Development Kit 74

10Other Plug-In Types
10Other Plug-In Types
Premiere supports several more plug-in types whose descriptions are beyond
the scope of this document, they are briefly listed below.

Photoshop Filters

Premiere can load and apply Adobe Photoshop filters to video clips, but
there are a few limitations to this. Unlike the Mac version of Premiere 4.2
(which only supports the Photoshop 2.5 API), the Windows version supports
the Photoshop 3.0 API. However, there are 2 major, known bugs in
Premiere’s Photoshop interface.

The first problem is when queried, using AdvanceStateAvailable(), Premiere
reports that it supports AdvancedState. However, upon receiving the Start
selector, any use of AdvancedState can cause Premiere to crash. A work
around is to query the host program, using IsWindows(HostIsPremiere()), and
avoid the use of AdvancedState.

The second problem is Premiere reverses the blue and red planes. Again, the
work around is to query the host program and if it’s Premiere on Windows,
reverse the order of the color planes.

It should also be noted that because Photoshop can work with images
exceeding the capacity of memory, image data is parceled out to Photoshop
filters in a less efficient manner than native Premiere video filters (‘VFlt’
modules). If you are writing a video-specific filter you will find it is generally
easier to write a VFlt than to write a Photoshop filter.

If you do choose to ship Premiere-compatible Photoshop filters (which we
certainly encourage), Premiere supports the inclusion of the FltD resource in
the Photoshop filter’s resource fork. This optional resource describes the
filter’s data structure such that Premiere can interpolate the filter’s settings
over time. For more information about the FltD resource, see the FltD
section of the Video Filters chapter.

For information on writing Photoshop filters, please refer to the Adobe
Photoshop Plug-Ins Software Development Kit. It is available from the Adobe
Developers Association and is included on the Adobe Graphics and
Publishing SDK CD-ROM and is also available on the Adobe Web site
(www.adobe.com).

The DissolveSans filter included in the Photoshop 4.0 SDK is a good example
of a truly cross-application Photoshop filter. It is fully functional in current
and older versions of Photoshop and Premiere 4.2, and it includes an FltD
resource. It also demonstrates the work arounds to the problems noted
above.
Adobe Premiere Software Development Kit 75

Other Plug-In Types
Window Handler Modules (‘HDLR’)

Window handler modules are how all the windows in Adobe Premiere are
implemented. Most of the windows you see are serviced by handlers in the
Adobe Premiere resource file. Others, like Movie Capture and Title are
stored in plug-ins. Handlers are first-class entities in Premiere, receiving
events and Premiere’s drag-and-drop functionality.

Audio/Video Import Modules (‘Draw’)

Audio/video import modules handle file-format conversion for Adobe
Premiere. Draw modules make all types of video and audio media look the
same to Premiere internally. New file formats can be supported through the
implementation of Draw modules.

Bottleneck Modules (‘Botl’)

Bottleneck modules are like ‘INIT’s for Adobe Premiere. They are loaded and
run once at application startup. The main use for a Botl module is the
replacement of one of Premiere’s basic bottleneck routines. It is possible to
provide hardware acceleration of Premiere through Botl modules.

How to Get More Information

These plug-in types (HDLR, Draw, Botl) are more complex and development
requires the disclosure of Adobe proprietary information to the developer.
The Adobe Premiere Advanced Plug-In Supplement is available from Adobe
only under non-disclosure and by special arrangement. Contact Adobe
Developer Relations for more information.
Adobe Premiere Software Development Kit 76

Index
Index
Audio Buffer Sizes . 56
Audio Filter Resources . 48
Audio Filter Selector Values . 49
Audio Sampling Rate . 51
AudioLimit . 30
AudioMix . 29
AudioStretch . 28
AudioSum . 29
Basic Plug-In Types. 10
BlockMove . 16
CountTypeBlocks . 23
Data Export Resources . 53
Data Export Selector Values . 54
Device Control Commands . 69
Device Control Module Resources . 65
Device Control Selector Values. 66
DisposePWorld . 23
DisposHandle . 18
DisposPtr . 17
DistortFixed . 30
DistortPolygon . 28
EDL Export Module Resources . 58
EDL Selector Values . 59
EDL Types and IDs . 60
EffectRecord Size Flags . 41
ExtractBlockData . 24
FindBlock . 24
FindBlock Parameter Combinations . 24
FixedToFixed . 30
GetBlock . 24
GetExportFilePath . 23
GetHandleSize . 18
GetMainWnd . 25
GetPtrSize . 17
GetPWorldBits . 22
HandAndHand . 20
HandToHand . 20
HGetState . 19
HLock . 18
HNoPurge . 19
HPurge . 19
HSetState . 19
HUnlock . 19
ImageKey . 31
MapPolygon . 28
MemError . 16
MoveHHi . 20
NewHandle . 17
NewHandleClear . 18
NewPtr . 16
NewPtrClear . 17
NewPWorld . 22
PPixToScreen . 22
PtrAndHand . 21
PtrToHand . 20
SetHandleSize . 18
SetPtrSize . 17
SMPTE Wipe Values . 36
StretchBits . 26
Transition Resources . 32
Transition Selector Values . 38
Video Filter Resources . 42
Adobe Premiere Software Development Kit 77

Index
Video Filter Selector Values . 44
VideoRecord Size Flags . 46
Adobe Premiere Software Development Kit 78

	Contents
	1 Introduction
	Windows vs. Macintosh Plug-Ins
	How to Use This Guide
	About This Guide
	What’s New
	Plug-In Overview
	Premiere Terminology
	Timecode

	Things to Remember
	Macintosh Conventions
	Building Premiere for Windows Plug-ins
	Plug-in Resources
	TYPE 1000
	TEXT 1000
	??vs 1000

	Using the FPU from Within a Plug-in

	2 The Utility Library
	Macintosh Memory Management
	MemError
	BlockMove
	NewPtr
	DisposPtr
	NewPtrClear
	SetPtrSize
	GetPtrSize
	NewHandle
	DisposHandle
	NewHandleClear
	GetHandleSize
	SetHandleSize
	HLock
	HUnlock
	HNoPurge
	HPurge
	HGetState
	HSetState
	MoveHHi
	HandToHand
	PtrToHand
	HandAndHand
	PtrAndHand

	Graphics
	About PWorlds
	GetPWorldBits
	PPixToScreen
	NewPWorld
	DisposePWorld

	Data Export Module Utilities
	GetExportFilePath

	EDL Export Module Utilities
	CountTypeBlocks
	FindBlock
	GetBlock
	ExtractBlockData

	Miscellaneous Routines
	GetMainWnd

	3 Bottlenecks
	The BottleRec Structure
	The Bottleneck Routines
	StretchBits
	DistortPolygon
	MapPolygon
	AudioStretch
	AudioMix
	AudioSum
	AudioLimit
	DistortFixed
	FixedToFixed
	ImageKey

	4 Transitions
	FXvs 1000
	TYPE 1000
	TEXT 1000
	TEXT 1001
	Fopt 1000
	Fopt—third byte: Valid corners
	Fopt—fourth byte: Initial corners
	Fopt—fifth byte: Bit flags
	Fopt—sixth byte: Exclusive flag
	Fopt—seventh byte: Reversible
	Fopt—eighth byte: Has edges flag
	Fopt—ninth byte: Movable start point flag
	Fopt—tenth byte: Movable end point flag

	FXDF -1
	The Transition Code
	esExecute
	esSetup

	The EffectRecord Structure
	specsHandle
	source1
	source2
	destination
	part
	total
	previewing
	arrowFlags
	reverse
	source
	start
	end
	center
	privateData
	callBack
	bottleNecks
	version
	sizeFlags
	flags
	fps

	Examples

	5 Video Filters
	FLvs 1000
	TYPE 1000
	TEXT 1000
	FLTD 1
	The Filter Code
	fsExecute
	fsSetup
	fsDisposeData

	The VideoRecord Structure
	specsHandle
	source
	destination
	part
	total
	previewing
	privateData
	callback
	bottleNecks
	version
	sizeFlags
	flags
	fps
	InstanceData

	Examples
	Video Noise

	6 Audio Filters
	FLvs 1000
	TYPE 1000
	TEXT 1000
	FltD 1
	The Filter Code
	fsExecute
	fsSetup
	fsDisposeData

	The AudioRecord Structure
	specsHandle
	source
	destination
	sampleNum
	sampleCount
	previewing
	privateData
	callback
	totalsamples
	flags
	rate
	bottleNecks
	version
	extraFlags
	fps
	InstanceData

	Examples

	7 Data Export Modules
	EXvs 1000
	TYPE 1000
	TEXT 1000
	FLAG 1000
	The Export Code
	edExecute

	The DataExportRec Structure
	markers
	numframes
	framerate
	bounds
	audflags
	audrate
	getVideo
	getAudio
	privateData
	specialRate

	Examples

	8 EDL Export Modules
	EXvs 1000
	TYPE 1000
	TEXT 1000
	The Export Code
	exExecute
	exTrue30fps

	The ExportRecord Structure
	dataHandle
	timeBase
	projectName

	The EDL Project Data Format
	Wipe Code Details
	Relevant Routines in the Utility Library
	Examples

	9 Device Control Modules
	DVvs 1000
	TYPE 1000
	TEXT 1000
	The Device Control Code
	dsInit
	dsSetup
	dsExecute
	dsCleanup
	dsRestart

	The DeviceRec Structure
	deviceData
	command
	mode
	timecode
	timeformat
	timerate
	features
	error
	preroll
	callback
	PauseProc
	ResumeProc

	Commands
	cmdGetFeatures
	cmdStatus
	cmdNewMode
	cmdGoto
	cmdLocate
	cmdShuttle
	cmdJogTo

	Implementation Tips
	Handling dsInit and dsRestart
	Putting up error alerts

	Examples

	10 Other Plug-In Types
	Photoshop Filters
	Window Handler Modules (‘HDLR’)
	Audio/Video Import Modules (‘Draw’)
	Bottleneck Modules (‘Botl’)
	How to Get More Information

	Index

