
InterWave™ IC
Am78C201/202
Programmer’s Guide

Rev. 2, 1996
A D V A N C E D M I C R O D E V I C E S

© 1995, 1996 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for

a particular application. AMD® assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD
assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the
information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks

AMD is a registered trademark and InterWave is a trademark of Advanced Micro Devices, Inc.

MS-DOS, Microsoft and Windows are registered trademarks of Microsoft Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

TABLE OF CONTENTS
List of Tables . xiii

List of Figures. xv

Preface. xvii

Part 1 Introducing the InterWave IC

Chapter 1. Introduction
InterWave IC Features . 1-1
General Description . 1-2

Synthesizer . 1-2
Codec. 1-3
Mixer . 1-3
Bus Interface Options. 1-3
Other Sound Card Support . 1-4
Game and MIDI Ports . 1-4

Chapter 2. Software Environment
Software Hierarchy . 2-1
InterWave Game API . 2-1
InterWave Driver Developer’s Kit (DDK) . 2-1
Plug and Play Support . 2-1
InterWave Kernel . 2-2

Supported Compilers . 2-3
SBOS . 2-3
Operating System Support . 2-3

DOS . 2-4
Windows 3.x. 2-5
Windows 95 . 2-5

DRAM versus ROM Local Memory Trade-offs . 2-6
Sizes of Software Modules . 2-8

Chapter 3. Compatibility With Advanced Gravis UltraSound and Enhancements
Frame Expansion . 3-1
Auto-Increment Mode . 3-1
Local Memory Addressing . 3-2
PCM Operation. 3-2
Volume and Frequency LFOs. 3-2
Voice Data in ROM. 3-2
µ-Law Voice Data Format . 3-2
Separate Left And Right Stereo Offset Registers. 3-3
Voice Deactivation . 3-3
Effects Processing . 3-3
DMA Control . 3-3
LLL

AMD
GUS-Compatibility Mode Reset . 3-3

Part 2 Programming the InterWave IC

Chapter 4. Global Programming Topics
Data Paths . 4-1
Accessing InterWave Registers . 4-2

Normal or Internal Decoding . 4-2
External Decoding . 4-4

Reset . 4-6
Power-Up and Hardware Reset . 4-6
Software Reset. 4-6
Suspend Mode . 4-6

Initialization. 4-7
Programmable Power Modes . 4-7
Interrupt Structure. 4-8
Clocks. 4-8

Chapter 5. System Control Functions
System Control Basics . 5-1
System Control Data Paths . 5-2
Register Overview . 5-2
Initialization. 5-7
Interrupt Level Selection. 5-7

Registers for Enabling, Reporting, and Clearing Interrupts 5-7
Interrupt-Mapping Equations . 5-9

DMA Channel Selection . 5-11
Categories of DMA Requests. 5-11
DRQ-Mapping Equations . 5-12
DMA Data Width . 5-12
DMA Transfer Rates . 5-12

System Bus Interface . 5-13
Plug and Play Functions. 5-13

The Purpose of PNP . 5-13
Card Mode versus System Mode. 5-13
PNP Auto-Configuration Ports . 5-14
InterWave Programming in PNP Card Mode . 5-14
InterWave Programming in PNP System Mode . 5-20

Programming Tips and Examples . 5-20
Configuring the PNP Card . 5-20
Isolating the PNP Card. 5-22
Programming the Serial EEPROM. 5-23

Chapter 6. Codec/Mixer
Codec Basics . 6-1
Codec Data Paths . 6-2
Register Overview . 6-3
Initialization. 6-6
Codec Interrupt Structure . 6-6
Operating Modes . 6-8
L

AMD
Data Conversion. 6-8
Data Format . 6-8
Mono Mode . 6-9
Sampling Rates . 6-9
Synthesizer DAC . 6-10

Codec FIFOs . 6-10
Data Order . 6-10
FIFO Thresholds . 6-11
DMA Transfers . 6-11
I/O Transfers . 6-13
ADPCM Issues. 6-13
Sample Counters . 6-14
FIFO Error Conditions . 6-15

Mixer. 6-15
Outputs. 6-16
Inputs . 6-16
Loopback . 6-16
Output Mixer to ADC Path . 6-16
Signal Flow. 6-17

Serial Interface . 6-17
Miscellaneous Functions . 6-19

Codec Timer. 6-19
External Control Outputs . 6-20

Programming Tips and Examples . 6-20
Handling Codec Interrupts . 6-20
Transferring Data to the Codec Playback FIFO Using DMA 6-22
Programming the Codec Timer . 6-23
Selecting Data Format and Sampling Rate . 6-25
Setting the Sample Counters . 6-26

Chapter 7. Synthesizer
Synthesizer Features . 7-2
Synthesizer Basics . 7-3

Signal Voices . 7-4
Effects Processor Voices . 7-5
Alternate Effects Signal Paths . 7-5

Register Overview . 7-5
Initialization. 7-8
Interrupts . 7-8
The Frame/Voice Structure . 7-8
Addressing Wavetable Data . 7-9

Address Control . 7-9
µ-Law Data Decompression. 7-13
Sample Interpolation . 7-13
Vibrato—Varying the Pitch . 7-14

Volume Control . 7-14
The Basic Envelope Segments—VOL(L). 7-16
Computing VOL(L) . 7-16
Ramp Rates—Rate of Volume Change . 7-18
Y

AMD
Envelope Variations . 7-19
Tremolo—VOL(LFO) . 7-19
Stereo Positioning—Offset and Pan . 7-19
Effects Volume—EVOL . 7-21

LFOs for Tremolo and Vibrato . 7-21
Addressing the LFO Parameters . 7-22
Using the LFO Parameters . 7-22
LFO Processing . 7-23

Delay-Based Effects . 7-26
Voice Accumulation . 7-27

Signal Voice Accumulation. 7-27
Effects Accumulation . 7-27

Loading Patches. 7-28
Digital Audio Files and PCM Operation Mode . 7-28
Effects Digital Signal Processor Interface . 7-28

Serial DSP Interface. 7-28
Effects DSP . 7-29

GUS Frame Expansion. 7-29
Programming Tips . 7-29

Programming Voice-Specific Registers . 7-30
Using Signal Voices . 7-32
Using Effects-Processor Voices. 7-33
Playing Digital Audio Files in PCM Operation Mode . 7-34
Processing Volume Envelope Segments . 7-34

Chapter 8. Local Memory Control
Local Memory Control Basics. 8-1

Local Memory Access . 8-1
Frame-Expansion. 8-2

Data Paths . 8-2
Register Overview . 8-2
Initialization. 8-4

What to Initialize. 8-4
Returning from Suspend Mode . 8-5

Interrupts . 8-6
Local Memory Configuration. 8-6

DRAM Banks . 8-6
DRAM Refresh Rates. 8-7
ROM Banks . 8-7

Accessing Local Memory . 8-8
Address Translation . 8-8
Programmed I/O Cycles to Local Memory . 8-9
16-Bit Synthesizer Transfers . 8-9
DMA transfers in GUS-Compatible Mode . 8-9
DMA Transfers in Enhanced Mode . 8-10
Local Memory Management. 8-10
Memory-Access Priorities . 8-10

DMA Data Transfers . 8-11
Normal Mode . 8-11
Interleaved Mode . 8-11

Local Memory Record and Playback FIFOs. 8-13
Y

AMD
Programming Tips and Examples . 8-13
Configuring Local Memory . 8-13
Transferring Data Using I/O Cycles . 8-14
Transferring Data Between System and Local Memory Using DMA 8-14

Chapter 9. Game and MIDI Ports
Game Port Basics. 9-1

Joystick Buttons . 9-2
Joystick X/Y Position . 9-2
Joystick Trim DAC . 9-2

Game Port Register Overview . 9-2
MIDI Port Basics. 9-2

MIDI UART. 9-3
MIDI Receive FIFO and Register . 9-3
MIDI Loop Back . 9-3

MIDI Port Register Overview . 9-3
Programming Tips and Examples . 9-4

Reading the Joystick X/Y Position . 9-4

Chapter 10. Legacy Sound Card Compatibility and Emulation
MPU-401 Emulation Basics . 10-1

General Purpose Registers . 10-1
MPU-401 Status Emulation . 10-2

Legacy Sound Card Emulation. 10-3

Part 3 InterWave Registers Reference

Chapter 11. Register Summary
Register Naming Conventions . 11-1
Registers By I/O Address . 11-2
Registers By Mnemonic . 11-7

Chapter 12. System Control Registers
P2XR Direct Registers . 12-1
URCR[2:0], UHRDP Indexed Registers . 12-8
P3XR Direct Registers . 12-12
IGIDXR, I8DP, and I16DP Indexed Registers . 12-12
PNP Direct Registers . 12-21
PIDXR, PNPWRP, and PNPRDP PNP Indexed Registers 12-22

Chapter 13. Codec/Mixer Registers
Codec Direct Registers. 13-1
Codec CIDXR, CDATAP Indexed Registers . 13-4

Chapter 14. Synthesizer Registers
Direct Register . 14-1
Indirect Registers . 14-1

Global Registers. 14-1
Voice-Specific Registers . 14-4
Y

AMD
Chapter 15. Local Memory Control Registers

Chapter 16. Game Port and MIDI Port Registers
Game Port Registers . 16-1
MIDI Port Registers . 16-2

Part 4 InterWave Game API and
Driver Developer's Kit Reference

Chapter 17. InterWave Game API Reference
Game API Functions . 17-1

The INT 2Fh Specification . 17-1
INT 2Fh Function 0: INT 2Fh ID Install Check . 17-2
INT 2Fh Function 1: Get Number Of InterWave Programs /

Get Installed Program ID Number . 17-3
INT 2Fh Function 2: Get Program Status and Information 17-4
INT 2Fh Function 3: Suspend Program . 17-6
Int 2Fh Function 4: Wake Program . 17-7
INT 2Fh Function 5: Free Resident Device Driver . 17-7
INT 2Fh Function 21h: Game Device Open. 17-7
INT 2Fh Function 22h: Game Device Close . 17-9
INT 2Fh Function 80h: Mixer Settings Changed Broadcast Message 17-9

MIDISIMPLE Functions . 17-9
Game Vector Function 1: MIDI Byte Out. 17-10
Game Vector Function 2: MIDI String Out . 17-10

Chapter 18. Programming With The Driver Developer’s Kit
Supported Compilers . 18-1
DDK Source Files . 18-1
DDK Include Files. 18-2
DDK Data Types. 18-3
Basic Structure of a DDK Program. 18-9

Including Header Files . 18-9
Initializing the DDK and the InterWave Hardware . 18-9
Registering Callback Functions for Interrupt Events . 18-10
Establishing a DMA and IRQ Interface to the InterWave Hardware 18-10
GUS-Compatibility Mode versus Enhanced Mode. 18-11

Creating DDK Libraries For Specific C Compilers . 18-11
Creating DDK Libraries with Borland C . 18-11
Creating DDK Libraries with Microsoft Visual C++. 18-12
Creating DDK Libraries with Watcom C/C++32. 18-12

Creating DDK Libraries with MetaWare High C/C++ . 18-12
Creating DDK Libraries with Symantec C/C++ . 18-13

The Plug and Play Interface . 18-13
Accessing InterWave Registers with the DDK . 18-13

Chapter 19. DDK Quick Reference
System Control Functions . 19-1

Initialization Functions . 19-1
Utility Functions . 19-2
Interrupt Control Functions. 19-3

Codec Functions. 19-4
Synthesizer Functions . 19-5
Y

AMD
Local Memory Functions . 19-6
Memory Management Functions . 19-6
DMA Functions. 19-7

Chapter 20. System Control DDK Functions
GetSamplePosition iwutil.c. 20-1
IwaveAddrTrans iwutil.c. 20-1
IwaveAllocDOS iwutil.c. 20-2
IwaveClose iwinit.c. 20-2
IwaveDefFunc iwirq.c . 20-3
IwaveDelay iwutil.c. 20-3
IwaveFreeDOS iwutil.c. 20-3
IwaveGetAddr iwutil.c. 20-4
IwaveGetVect iwirq.c . 20-4
IwaveGusReset iwinit.c. 20-4
IwaveHandleCodec iwirq.c . 20-5
IwaveHandleDma iwirq.c . 20-5
IwaveHandler iwirq.c . 20-6
IwaveHandleVoice iwirq.c . 20-6
IwaveMaskIrqs iwirq.c . 20-6
IwaveMidiHandler iwirq.c . 20-7
IwaveOpen iwinit.c. 20-7
IwavePeekEEPROM iwutil.c. 20-8
IwavePnpActivate iwpnp.c . 20-9
IwavePnpBIOS iwpnp.c . 20-9
IwavePnpBIOS40 iwpnp.c . 20-10
IwavePnpDevice iwpnp.c . 20-10
IwavePnpGetCfg iwpnp.c . 20-11
IwavePnpIOCheck iwpnp.c . 20-11
IwavePnpIsol iwpnp.c . 20-12
IwavePnpKey iwpnp.c . 20-12
IwavePnpPeek iwpnp.c . 20-13
IwavePnpPing iwpnp.c . 20-13
IwavePnpPower iwpnp.c . 20-14
IwavePnpSerial iwpnp.c . 20-14
IwavePnpSetCfg iwpnp.c . 20-15
IwavePnpWake iwpnp.c . 20-15
IwavePokeEEPROM iwutil.c. 20-15
IwaveRealAddr iwutil.c. 20-16
IwaveRegisterDMA iwinit.c. 20-16
IwaveRegisterIRQ iwinit.c. 20-17
IwaveRegPeek iwutil.c. 20-17
IwaveRegPoke iwutil.c. 20-18
IwaveResetIvt iwirq.c . 20-18
IwaveSetCallback iwirq.c . 20-19
IwaveSetInterface iwinit.c. 20-20
IwaveSetIvt iwirq.c . 20-20
IwaveSetVect iwirq.c . 20-21
IwaveSynthHandler iwirq.c . 20-21
IwaveUmaskIrqs iwirq.c . 20-21
_peek iwutil.c. 20-22
_peekw iwutil.c. 20-22
_poke iwutil.c. 20-22
_pokew iwutil.c. 20-23
ReadOPCode iwutil.c. 20-23
ReadWaveHeader iwutil.c. 20-23
WriteEnable iwutil.c. 20-24
L[

AMD
WriteOPCode iwutil.c. 20-24

Chapter 21. Codec/Mixer DDK Functions
IwaveCodecAccess iwcodec.c . 21-1
IwaveCodecCnt iwcodec.c . 21-1
IwaveCodecIrq iwcodec.c . 21-2
IwaveCodecMode iwcodec.c . 21-2
IwaveCodecStatus iwcodec.c . 21-3
IwaveCodecTrigger iwcodec.c . 21-3
IwaveDacAtten iwcodec.c . 21-4
IwaveDataFormat iwcodec.c . 21-4
IwaveDisableLineIn iwcodec.c . 21-5
IwaveDisableMicIn iwcodec.c . 21-5
IwaveDisableOutput iwcodec.c . 21-6
IwaveEnableLineIn iwcodec.c . 21-6
IwaveEnableMicIn iwcodec.c . 21-6
IwaveEnableOutput iwcodec.c . 21-7
IwaveInputGain iwcodec.c . 21-7
IwaveInputSource iwcodec.c . 21-8
IwaveLineLevel iwcodec.c . 21-8
IwaveLineMute iwcodec.c . 21-9
IwaveMonoAtten iwcodec.c . 21-10
IwaveMonoMute iwcodec.c . 21-10
IwavePlayAccess iwcodec.c . 21-10
IwavePlayData iwcodec.c . 21-11
IwaveRecordAccess iwcodec.c . 21-12
IwaveRecordData iwcodec.c . 21-12
IwaveSetFrequency iwcodec.c . 21-13
IwaveSetTimer iwcodec.c . 21-13
IwaveStopDma iwcodec.c . 21-14
IwaveTimerStart iwcodec.c . 21-14
IwaveTimerStop iwcodec.c . 21-14

Chapter 22. Synthesizer DDK Functions
IwaveRampVolume iwvoice.c. 22-1
IwaveReadVoice iwvoice.c. 22-2
IwaveReadVolume iwvoice.c. 22-2
IwaveReadyVoice iwvoice.c. 22-2
IwaveSetLoopMode iwvoice.c. 22-3
IwaveSetVoiceEnd iwvoice.c. 22-4
IwaveSetVoicePlace iwvoice.c. 22-4
IwaveSetVolume iwvoice.c. 22-5
IwaveStartVoice iwvoice.c. 22-5
IwaveStopVoice iwvoice.c. 22-6
IwaveStopVolume iwvoice.c. 22-6
IwaveSynthGlobal iwvoice.c. 22-7
IwaveSynthMode iwvoice.c. 22-7
IwaveVoiceFreq iwvoice.c. 22-8
IwaveVoicePan iwvoice.c. 22-8
IwaveVoicePitch iwvoice.c. 22-9

Chapter 23. Local Memory Control DDK Functions
IwaveDmaCtrl iwmem.c . 23-1
IwaveDmaIleaved iwmem.c . 23-1
IwaveDmaMalloc iwmem.c . 23-2
IwaveDmaNext iwmem.c . 23-2
IwaveDmaPage iwmem.c . 23-3
[

AMD
IwaveDmaPgm iwmem.c . 23-3
IwaveDmaWait iwmem.c . 23-3
IwaveDmaXfer iwmem.c . 23-4
IwaveGetDmaPos iwmem.c . 23-4
IwaveMaxAlloc iwmem.c . 23-5
IwaveMemAlloc iwmem.c . 23-5
IwaveMemAvail iwmem.c . 23-5
IwaveMemCfg iwmem.c . 23-6
IwaveMemFree iwmem.c . 23-6
IwaveMemInit iwmem.c . 23-7
IwaveMemPeek iwmem.c . 23-7
IwaveMemPeekW iwmem.c . 23-8
IwaveMemPoke iwmem.c . 23-8
IwaveMemPokeW iwmem.c . 23-8
IwaveMemSize iwmem.c . 23-9
IwavePeekBlock iwmem.c . 23-9
IwavePeekBlockW iwmem.c . 23-10
IwavePokeBlock iwmem.c . 23-10
IwavePokeBlockW iwmem.c . 23-10

Appendix A. Packaging and Pin Designations

Am78C201 Pin Designations . A-1
Pin Descriptions by Functional Group . A-2

System Bus Interface Pins . A-2
Codec/Mixer Pins . A-3
Local Memory Controller Pins . A-4
Multiplexed Function Pins . A-5
Game Port and MIDI Port Pins. A-6
Power Supply Pins . A-6

Appendix B. Sample Plug and Play Resource Map

Glossary . G-1

Index . I-1
[L

AMD
[LL

LIST OF TABLES
Table 2-1 Available ROM Patch Sets . 2-6
Table 2-2 TDRAM and ROM Choice Space . 2-7
Table 2-3 Strategies for Loading DRAM Patch Sets . 2-7
Table 2-4 Memory Requirements for Software Modules . 2-8
Table 4-1 InterWave Address Spaces. 4-3
Table 4-2 Direct Addresses . 4-4
Table 4-3 External Decoding Mode I/O Addresses . 4-5
Table 5-1 General Control Functions . 5-3
Table 5-2 PNP Functions . 5-3
Table 5-3 DMA and Non-Emulation IRQ Functions. 5-4
Table 5-4 Emulation IRQ Functions . 5-5
Table 5-5 Emulation and Compatibility Control Functions. 5-6
Table 5-6 Game Port and MIDI Port Functions . 5-7
Table 5-7 Audio I/O Functions. 5-7
Table 5-8 Registers for Interrupt Events . 5-8
Table 5-9 Bit Fields and Variables in IRQ Equations . 5-11
Table 5-10 DMA Requests by Category . 5-11
Table 5-11 PNP Auto-Configuration Ports. 5-14
Table 5-12 Isolation-Phase Registers . 5-16
Table 5-13 PNP Card Control Registers . 5-18
Table 5-14 PCCCI Configuration Commands . 5-19
Table 6-1 Codec General Control and Configuration Functions . 6-3
Table 6-2 Codec Input and Output Control Functions . 6-5
Table 6-3 Codec DMA and IRQ Functions . 6-5
Table 6-4 Codec Interrupt Equation Variables . 6-8
Table 6-5 Variable Frequency Formula and Ranges. 6-10
Table 6-6 FIFO Data Ordering. 6-11
Table 6-7 FIFO Threshold Configurations . 6-11
Table 6-8 Samples and Cycles per DMA Request . 6-12
Table 6-9 Sample Counter Decrement Events . 6-14
Table 6-10 FIFO Error Conditions . 6-15
Table 6-11 Serial Transfer Data Flow and Format . 6-18
Table 6-12 Parallel-to-Serial Converter Data Ordering . 6-19
Table 7-1 Synthesizer General Control and Configuration Functions 7-6
Table 7-2 Synthesizer Voice Wavetable Control Functions . 7-6
Table 7-3 Synthesizer Voice Volume Control Functions . 7-7
Table 7-4 Synthesizer IRQ Functions . 7-7
Table 7-5 Wavetable Addressing Control . 7-12
Table 7-6 Volume Control Combinations. 7-18
Table 7-7 Left and Right Amplitudes for PAN Values . 7-20
Table 7-8 LFO Characteristics. 7-21
xiii

AMD
Table 7-9 The 24-bit LFO Address . 7-22
Table 7-10 Decoding the Data Select Field. 7-22
Table 7-11 Contents of the LFO CONTROL Word . 7-23
Table 7-12 Effects Accumulator Output Links . 7-28
Table 8-1 Local Memory Control Functions. 8-3
Table 8-2 Local Memory DMA and IRQ Functions . 8-4
Table 8-3 DRAM Bank Configurations (values are in bytes) . 8-7
Table 8-4 DRAM Refresh Rates . 8-7
Table 8-5 ROM Bank Configurations (values in bits) . 8-8
Table 8-6 Local Memory Address Translations . 8-8
Table 8-7 Priorities of Access Cycles . 8-11
Table 8-8 Interleaved DMA Transfer Modes . 8-12
Table 9-1 Game Port Functions . 9-2
Table 9-2 MIDI Port Functions. 9-4
Table 10-1 AdLib and Sound Blaster Emulation Registers . 10-3
Table 11-1 Module Mnemonics . 11-1
Table 11-2 InterWave Registers and Ports by I/O Address. 11-2
Table 11-3 InterWave Registers and Ports by Mnemonic . 11-7
Table 12-1 AdLib Data (UADR) Function . 12-4
Table 12-2 Serial Transfer Mode Selection . 12-16
Table 12-3 PNP Address Control Registers . 12-25
Table 12-4 Indexes for PNP IRQ Select Registers . 12-26
Table 12-5 IRQ Number Selection . 12-26
Table 12-6 IRQ Number to Interrupt Event Mapping for IRQ Select Registers 12-26
Table 12-7 Indexes for PNP IRQ Type Registers . 12-27
Table 12-8 Indexes for PNP DMA Select Registers . 12-27
Table 12-9 DMA Request Number Selection . 12-28
Table 13-1 Playback Clock Divider Selections . 13-7
Table 13-2 FIFO Threshold Selections . 13-13
Table 13-3 Record Clock Divider Selections . 13-18
Table 15-1 Refresh Rate Selection . 15-4
Table 15-2 DRAM Configuration Selection . 15-5
Table 16-1 Joystick Trim DAC Level Settings . 16-2
xiv

LIST OF FIGURES
Figure 2-1 Software Hierarchies . 2-1
Figure 2-2 DOS Split Mode TSR . 2-4
Figure 2-3 Windows 3.x . 2-5
Figure 2-4 Windows 95. 2-6
Figure 4-1 InterWave Data Paths . 4-1
Figure 4-2 Interrupt Structure . 4-8
Figure 5-1 InterWave System Control Data Paths . 5-2
Figure 5-2 PNP Auto-Configuration States. 5-15
Figure 5-3 Reading the PNP Serial Identifier . 5-17
Figure 6-1 Codec Data Paths . 6-3
Figure 6-2 Left Half of the InterWave Mixer . 6-17
Figure 6-3 Codec Data Flow. 6-18
Figure 7-1 Basic Synthesizer Data Paths . 7-3
Figure 7-2 Envelope Generation and Effects Paths . 7-4
Figure 7-3 Forward and Reverse Single-Pass Addressing. 7-10
Figure 7-4 Forward and Reverse Looping . 7-10
Figure 7-5 Bidirectional Looping (Zigzag) and PCM Playback . 7-11
Figure 7-6 Graph of Sample Interpolation Process . 7-14
Figure 7-7 Volume Ramp-up and Ramp-down . 7-17
Figure 7-8 Forward and Reverse Volume Looping . 7-17
Figure 7-9 Bidirectional Volume Looping . 7-17
Figure 7-10 The Four Possible LFO Waveforms . 7-25
Figure 7-11 Adding Final LFO Value to FC—Vibrato . 7-26
Figure 7-12 Adding Final LFO Value to Volume—Tremolo . 7-26
Figure 8-1 Local Memory Control Data Paths . 8-2
Figure 8-2 DMA Data Interleaving . 8-12
Figure 8-3 Interleaved DMA Address Generation. 8-12
Figure 9-1 Game Port Connections . 9-1
Figure 10-1 Data Flow Through the General Purpose Registers . 10-1
Figure 10-2 Emulation Control Registers . 10-2
xv

AMD
[YL

PREFACE
The InterWave™ Audio Integrated Circuit (IC) features a stereo synthesizer, a stereo
coder/decoder (codec) and mixer, a processor-controlled interface, and standard game
and Musical Instrument Digital Interface (MIDI) ports. It is designed for the personal
computer (PC) market, and is specifically aimed at systems that are built to run the
MS-DOS® and Microsoft® Windows® operating systems. It is intended to be used on system
boards and add-in sound cards for desktop and portable computers.

This chapter gives an overview of this book and lists the typographical conventions used in it.

How To Use This Book
The purpose of this book is twofold. First, it is a teaching tool—it explains the functions of
the InterWave audio IC and how to program it. Second, this book is a reference tool—it
provides quick access to the facts required for programming the IC.

The best tool for programming applications to use the InterWave IC is the InterWave Game
API, discussed in ###. You can also use custom APIs such as the AIL driver from John
Miles. For educational purposes and for writing simple applications, you can use the
InterWave Driver Developer’s Kit (DDK).

If you are programming in Windows, you do not need this book. However, the information
may still be useful to help you understand how the InterWave IC operates.

To assist the programmer in understanding the InterWave IC, this book includes an ample
supply of code examples taken from the DDK function library. The code examples are
incorporated into the chapters on programming the InterWave found in Part 2. The
descriptions of the functions in the DDK API are in Part , “InterWave Game API and Driver
Developer's Kit Reference.” The DDK source code is available from AMD.

The book is organized as follows:

3DUW����,QWURGXFLQJ�WKH�,QWHU:DYH�,&

Chapter 1, “Introduction,” provides an brief functional description of the InterWave IC.

Chapter 2, “Software Environment,” discusses the software tools available with the
InterWave IC and the programming environment in which the InterWave IC is likely to be
used.

Chapter 3, “Compatibility With Advanced Gravis UltraSound and Enhancements,”
discusses the compatibility of the InterWave IC with respect to the UltraSound products
marketed by Advanced Gravis. InterWave technology is a backward-compatible
enhancement of the technology used in the Gravis UltraSound (GUS) products.

3DUW����3URJUDPPLQJ�WKH�,QWHU:DYH�,&

Chapter 4, “Global Programming Topics,” discusses general programming issues that
relate to all functional areas of the IC.
�[YLL

AMD
Chapter , “Typographical Conventions,” describes the System Bus Interface (SBI) and
other system control functions, including the Plug and Play ISA capabilities of the InterWave
IC.

Chapter 6, “Codec/Mixer,” describes the codec and mixer module and how to program it.

Chapter 7, “Synthesizer,” describes the synthesizer and how to program it.

Chapter 8, “Local Memory Control,” describes the local memory control capabilities and
how to program them.

Chapter 9, “Game and MIDI Ports,” describes the game and MIDI ports and how to
program them.

Chapter 10, “Legacy Sound Card Compatibility and Emulation,” describes how to
program the InterWave to support software written for other sound cards.

3DUW����,QWHU:DYH�5HJLVWHUV�5HIHUHQFH

These chapters provide summary and detailed information about the programmable
registers in the InterWave IC.

Chapter 11, “Register Summary,” describes the register naming conventions and
contains two tables listing all of the user-accessible registers in the InterWave IC, one
ordered sequentially by I/O address and one ordered alphabetically by register mnemonic.

Chapter 12, “System Control Registers,” describes the system control registers, which
includes all registers that deal with the System Bus Interface (SBI), PNP functions, and
compatibility with or emulation of other sound board products.

Chapter 13, “Codec/Mixer Registers,” describes the codec module registers, which
includes all registers that control inputs to and outputs from the codec and the mixer.

Chapter 14, “Synthesizer Registers,” describes the synthesizer registers, which
includes all registers for voice selection and control.

Chapter 15, “Local Memory Control Registers,” describes the local memory control
registers, which includes all registers used to write data to or read data from the InterWave
IC’s local memory.

Chapter 16, “Game Port and MIDI Port Registers,” describes the game and MIDI port
registers.

3DUW����,QWHU:DYH�*DPH�$3,�DQG�'ULYHU�'HYHORSHU
V�.LW�

5HIHUHQFH

These chapters contain information about the InterWave Game API and the InterWave
DDK.

Chapter 17, “InterWave Game API Reference,” discusses the InterWave Game API.

Chapter 18, “Programming With The Driver Developer’s Kit,” discusses general topics
the programmer needs to know when using the InterWave DDK and lists the DDK functions.

Chapter 19, “DDK Quick Reference,” briefly describes and lists all of the DDK functions.

Chapter 20, “System Control DDK Functions,” contains detailed reference information
about the DDK system control functions.
[YLLL

AMD
Chapter 21, “Codec/Mixer DDK Functions,” contains detailed reference information
about the DDK codec/mixer functions.

Chapter 22, “Synthesizer DDK Functions,” contains detailed reference information
about the DDK synthesizer functions.

Chapter 23, “Local Memory Control DDK Functions,” contains detailed reference
information about the DDK local memory control functions.

$SSHQGL[HV

Appendix A, “Packaging and Pin Designations” lists and describes the pins in the
InterWave IC.

Appendix B, “Sample Plug and Play Resource Map” provides a sample resource map
for programming a serial EEPROM for use as a PNP ROM.

Typographical Conventions
To help you locate and interpret information easily, this book uses consistent visual cues
and document conventions.

■ When referring to registers and addresses, this book uses certain conventions when
describing bit values and signals. These conventions are as follows:

— “High” refers to the logical value 1; “Low” refers to the logical value 0.

— When a bit should be a logical 1, the text says “set the bit High” or “if the bit is High.”

— When a bit should be a logical 0, the text says “set the bit Low” or “if the bit is Low.”

— When the text says a bit is set without specifying High or Low, it means the bit is set
to a logical 1.

— When the text says a bit is cleared, it means the bit is set to a logical 0.

■ When a register name appears in text, the name is spelled out with initial caps in the
standard text font and is followed by the register mnemonic in parentheses. Subsequent
references to the register in the same or immediately following paragraphs may use the
register mnemonic only:

Three bits from the PNP Power Mode register (PPWRI) must be set High before
certain paths in the codec module can be used.

■ Individual bits and bit ranges within registers are referred to by bit field name, spelled
out with initial caps and printed in italics. Where necessary to prevent any ambiguity,
the name of the register containing the bit field follows the bit field name. The register
mnemonic, including the bit position for the bit field, follows the bit field name or the
register name:

If the Auto Increment bit of the LMC Control register (LMCI[0]) is set High, then the
I/O address counter value automatically increments by one with each access
through this port.
[[

AMD
■ Register and address bits are numbered from zero starting with the least significant bit.
Bit ranges in register mnemonics appear between brackets. Within the brackets, the bit
position values are separated by a colon, with the most significant bit first. Bit ranges in
text are preceded with the word “bits.” The bit position values are separated by an en
dash, with the most significant bit first:

When SMSI[5] is zero, bits 11–8 of the Synthesizer Right Offset register
(SROI[11:8]) provide a pan value that determines the stereo position of the voice.

■ Programming examples appear in Courier font

...
OUT 279h, 00h ; set PIDXR to 00h to select PSRPAI
OUT 0A79h, 80h ; set address in PSRPAI
...

■ Equations appear in Times font under a numbered caption as referenced in Equation 0-1
on page -xx

Equation 0-1 Audio Channel 1

Channel_1_IRQ = PUACTI[0] • UMCR[3] • IDECI[6] •

(((IDECI[7] • CIRQ) + SIRQ) • UMCR[4]

+ SBIRQ • UICI[7] + MIRQ • UICI[6])

■ In text, function and program names appear in bold type:

The IwaveMemSize function returns the size, in kilobytes, of local DRAM.
[[

Part 1
Introducing the InterWave IC

Part 1 provides a description of the functional areas of the InterWave IC, describes the
naming conventions used for the programmable registers in the IC, and provides a complete
list of those registers. It also discusses the likely programming environment for the IC as
well as compatibility concerns when using it with software intended for the Advanced Gravis
UltraSound card.

AMD

CHAPTER
1
 INTRODUCTION
This chapter lists the features of the InterWave IC and describes the various components
and functional areas of the InterWave IC.

The InterWave IC is available in two versions: The 160-pin Am78C201 has an ISA Plug
and Play interface, while the 144-pin Am78C202 has a non-Plug and Play interface.

InterWave IC Features
Major features of the InterWave audio IC include

■ Support for Sound Blaster, AdLib, and MPU-401 software and compatibility with
Advanced Gravis Ultrasound hardware

■ Glueless, Plug and Play Industry Standard Architecture (PNP ISA) compliant system
bus interface

■ Wavetable-based stereo synthesizer

■ Local memory control support for

— Up to four 4-Mbyte DRAM banks

— Up to four 2Mx16 EPROM banks

— 8-bit linear, 8-bit µ-law, or 16-bit linear, 44.1-kHz samples through the synthesizer

■ Synthesizer support for up to 32 simultaneous voices

■ Envelope control, tremolo, and vibrato for each voice

■ Synthesizer support for up to eight delay-based accumulators which can provide effects
such as echo, reverb, and flange

■ Built-in stereo coder/decoder (codec), designed to be Crystal CS4231 compatible:

— Independent record and playback sample rates

— Sample rates up to 48 kHz

— 8-bit and 16-bit linear, µ-law, A-law, ADPCM, mono and stereo data formats

■ Mixer with the following I/O:

— Four sets of stereo external inputs

— One set of stereo synthesizer inputs

— One set of stereo system-bus-sourced DAC inputs

— One set of stereo destined-for-system-bus ADC outputs

— One set of stereo external outputs

— One external mono input and one external mono output

■ Playback (DAC) and record (ADC) FIFOs in the codec

■ Sample counters and a timer in the codec
,QWURGXFWLRQ ���

AMD
■ Support for DMA transfer between system memory and local memory and between
system memory and the codec record and playback FIFOs

■ MPU-401-compatible MIDI port

■ Game port support for up to two PC industry-standard joysticks or one joystick with four
buttons

■ Operating temperature 0°C–70°C

■ Operating voltages 3.0 V–3.6 V and 4.75 V–5.25 V

■ 160-pin PQFP package

■ 144-pin TQFP package

General Description
The InterWave IC provides a complete audio subsystem that meets all major business and
entertainment audio standards. The Am78C201 and 202 devices integrate a 32-voice
stereo wavetable synthesizer, a 16-bit stereo audiophile codec and audio mixer with MIDI
and game ports, and legacy sound card emulation hardware into a single device.

6\QWKHVL]HU

The wavetable synthesizer offers 32 16-bit stereo voices, all running at a 44.1-kHz frame
rate. Each voice supports frequency interpolation, envelope generation, tremolo, vibrato,
panning, and volume control.

Integrated Effects Processing

An on-chip effects processor provides up to eight channels of delay-based accumulators
to simulate effects such as reverb, echo, chorus, and flange. Effects can be assigned to
individual voices or to any combination of voices.

Wavetable Data in Local Memory

The local memory can be either DRAM or ROM, or a combination. When DRAM is used,
musical instrument patches can be swapped in and out as needed—this allows for a smaller,
lower-cost, local memory. The IC supports up to 16 Mbyte of DRAM and 16 Mbyte of ROM.
The InterWave Game API requires enough local memory to hold a complete patch set.

Digital Mixer

Use any or all of the 32 synthesizer voices to play and mix digital audio files. Additionally,
all of the voice processing power can be applied to modifying signals, including volume,
pan, frequency shift, and reverb.

Low Frequency Oscillators (LFOs)

Sixty-four LFOs provide tremolo and vibrato effects.

On-Chip 16-Bit Synthesizer Digital-to-Analog Converters (DACs)

The InterWave IC converts the stereo digital output of the synthesizer into analog form with
on-chip DACs.

Patch Formats

The IC supports wavetable patches in 8-bit PCM, 16-bit PCM, or 8-bit µ-law compressed
formats.
��� ,QWURGXFWLRQ

AMD
&RGHF

The full-duplex 16-bit audiophile stereo codec/filter is a register-compatible superset of the
popular CS4231 device.

Flexible Sample Rates

You can independently select the sample rates for the record and playback paths, which
range up to 44.1 kHz or 48 kHz, depending on the crystals used with the IC. A mode is
provided that allows the playback sample rate to be continuously varied from 3.5 kHz–22
kHz or 5.0 kHz–32 kHz (256 steps).

Data Formats

The codec operates with a variety of data types, including 8-bit and 16-bit linear, 8-bit
A-law and µ-law compressed, and 4-bit IMA ADPCM compressed.

FIFOs

Sixteen-sample record and playback FIFOs move data to and from the DACs and ADCs.
Additionally, in revision C and later ICs, you can allocate very large FIFOs, from 8 bytes to
256 Kbytes, using the local memory (DRAM). These very large FIFOs are useful in non-DMA
applications such as PCMCIA cards.

Serial DSP Port

The serial port allows an external digital signal processor (DSP) to connect directly to the
codec record and playback paths.

0L[HU

The mixer provides four external stereo input pairs, two internal stereo input pairs (codec
DAC and synthesizer DAC), and one external mono input. It also provides separate stereo
and mono outputs.

%XV�,QWHUIDFH�2SWLRQV

The InterWave IC provides several interface options.

ISA Plug and Play Interface

The 160-pin package is a fully ISA-compliant, glueless, Plug and Play version with a
selectable 8-bit or 16-bit data bus interface.

External Device Pass-Through

The InterWave IC supports connecting an external device such as a CD-ROM interface to
the ISA bus through the Plug and Play interface. For applications that do not require a
CD-ROM interface, use this port to supply Plug and Play support for other functions.

Reduced Pin Count ISA Bus Interface

A 144-pin ISA bus version of the device is available for applications such as PCMCIA card
and laptop motherboards where Plug and Play support is not required.
,QWURGXFWLRQ ���

AMD
2WKHU�6RXQG�&DUG�6XSSRUW

The InterWave sound processing technology is compatible with the UltraSound audio board
from Advanced Gravis (commonly referred to as GUS). Through a combination of hardware
and software, the InterWave IC can emulate legacy FM sound cards. The hardware includes
register access traps, status register updates, and timers. Thus, all software written for
legacy sound cards and for native-mode UltraSound can use the InterWave IC as the
hardware target. Native-mode UltraSound is the mode in which independent software
vendors (ISVs) have written software to take advantage of the high-quality UltraSound
synthesis capabilities.

*DPH�DQG�0,',�3RUWV

The InterWave IC includes interfaces for connecting analog game controllers (joysticks)
and MIDI devices. The game port supports two joysticks and offers programmable analog
scaling. The MIDI port is built around a UART with a 16-byte receive FIFO. This UART can
be programmed to behave like a Motorola MC6850 UART or a MPU-401 UART. In addition,
the IC contains MPU-401 emulation registers with interrupt indicators. The IC can be
programmed to generate interrupts when application software writes to the MIDI UART.
These interrupts can be captured by MPU-401 emulation software, which would in turn
read the data written by the application and translate it into commands appropriate for the
InterWave IC.
��� ,QWURGXFWLRQ

CHAPTER
2
 SOFTWARE ENVIRONMENT
The InterWave IC is designed for use in IBM-compatible personal computer systems. A
number of software tools are available to assist the programmer in preparing drivers and
applications for the IC.

Software Hierarchy
Figure 2-1 illustrates the basic hierarchy of an InterWave IC application.

Figure 2-1 Software Hierarchies

InterWave Game API
The InterWave Game API provides a library of functions that allow an application to
communicate with resident or background applications, such as SBOS.

InterWave Driver Developer’s Kit (DDK)
The InterWave DDK is an extensive library of basic functions that perform such tasks as:
allocating local memory, setting mixer volume, or playing digital audio. Use these functions
to build basic applications, or to create low-level device drivers.

Part 4 of this book provides a complete reference to the InterWave Game API and the
InterWave DDK.

Plug and Play Support
The iwinit.exe program provided with the complete InterWave software package, initializes
the InterWave IC-based hardware. As part of the initialization process, in the DOS and
Windows 3.x environments, iwinit.exe configures the PNP facilities of the IC. In Windows
95, the virtual device driver (VxD) handles PNP configuration.

 Application

InterWave
Game API

SBOS

InterWave IC

Application

InterWave IC

Application

Driver DOS
Application

OR

Kernel DDK
6RIWZDUH�(QYLURQPHQW ���

AMD
InterWave Kernel
The InterWave Kernel is a highly optimized set of functions designed to support the full
complement of InterWave hardware functions. These functions reside between the
InterWave IC and the API layer, providing a common, efficient means of supporting both
standard and custom application interfaces. The Kernel functions reside in modules, one
for each of the basic functions of the IC. The modules currently available are:

MIDI Plays MIDI files through the InterWave synthesizer

Digital Audio Provides high-level streaming of digital audio data. The Digital Audio module
is independent of operating system, disk format, or filetypes.

• Synthesizer (playback)

• Codec (playback or record)

Digital Music Provides lower-level access to the synthesizer for sound effects or digital
music. A MOD player application would use these functions.

Mixer Provides information to the application on the content and configuration of
the sound equipment

UART Allows either polling or interrupts on either transmit to or receive from the
MIDI UART.

Init/DeInit Initializes or deinitializes the synthesizer, codec and mixer, and kernel

Local Memory Management
Functions for accessing InterWave local memory

DMA and Programmed I/O
Digital Audio Codec uses DMA. Digital Music and Digital Audio Synthesizer
use Programmed I/O.

Interrupts Functions for allocating and deallocating handlers

Voice Allocation
Management of up to 32 voices. May be allocated in any number up to the
number available

AdLib-Compatible Timers
Allocate and deallocate one 80-microsecond and one 320-microsecond
clock timers.

The Kernel includes the following miscellaneous modules:

■ Delay

■ Error Reporting

■ Configuration

■ PNP

■ Patch library and maintenance
��� 6RIWZDUH�(QYLURQPHQW

AMD
The Kernel also includes the following operating system and compiler dependent modules:

■ DOS Real: Borland C/C++ and Microsoft C

■ DOS Protected: Watcom 10.0

■ OS/2—This module is still in development

■ Windows 3.1 and Windows 95

Although some compiler dependent code is scattered throughout the kernel, the greatest
amount of operating system and compiler dependent code is located in the OS dependent
modules whose functions all begin with the os_ prefix. These functions handle:

■ File I/O

■ DMA

■ Interrupt vector tables

■ IRQs

■ I/O to the InterWave IC

6XSSRUWHG�&RPSLOHUV

The Kernel is written in C and 80x86 assembly language. It can be used with almost all
high-level language compilers, assemblers, and linkers available for the IBM-compatible
PC platform. It has been tested with the following compilers:

■ Borland® C++

■ Microsoft C++

■ Watcom C/C++

For version numbers of the compilers used, see the InterWave Kernel Reference Manual.

SBOS
The Sound Board Operating System (SBOS) is a device driver which emulates the
functionality of legacy sound systems. It contains a Sound Blaster DSP emulator, an AdLib
emulator, and a MPU-401 UART emulator. Because the MIDI sounds are actually played
by the InterWave wavetable synthesizer, rather than a conventional FM synthesizer, the
sound quality may be superior to that of the hardware emulated.

Operating System Support
Although the InterWave Kernel greatly simplifies the interface to the InterWave IC, the
majority of application developers probably want a simpler interface than this for the
following reasons:

■ The complexity of code using the Kernel Interface could be unacceptably large.

■ In DOS mode, static links to Kernel functions are required, necessitating relinking and
redistribution of all software each time the InterWave Kernel is updated. Therefore, the
InterWave Game API or one of the custom APIs should be used, when possible, for
DOS programming.

For these reasons, a driver or wrapper is provided for each of the operating system
environments supported by the InterWave IC:

■ DOS (Real or Protected)
6RIWZDUH�(QYLURQPHQW ���

AMD
■ Win 3.x (V86 and Windows 3.x applications)

■ Win 95, (V86, Windows 3.x, and Windows 95 applications)

The application developer should write exclusively to these layers to insulate code from
changes in the Kernel and the InterWave IC. The remainder of this section describes the
wrappers and drivers provided with the Kernel. The interface to a Windows 3.x or Windows
95 driver is described in the appropriate Microsoft publications.

'26

Figure 2-1 illustrates the relationship between the components of a DOS application, the
Interwave Wrapper, Kernel, and SBOS. The InterWave Kernel contains a robust set of
functions which require large amounts of memory by the standards of DOS conventional
memory. For this reason, the DOS wrapper interface to the kernel is split into two
components:

■ A Real mode stub TSR occupying only 8 Kbytes of conventional memory. This TSR
contains the InterWave Kernel Interface, which is used for relaying calls while making
a mode transition to:

■ The Protected mode TSR occupying 300 Kbytes of extended memory containing all of
the functions of the Kernel and SBOS, which are accessed through static links.

This innovative split mode TSR wrapper allows the InterWave IC to have the best of both
worlds:

■ State-of-the-art audio software requiring large amounts of RAM

■ Operation within DOS using minimal amounts of conventional RAM

Both Real and Protected mode applications are supported by this method. The only
difference is that transitions are made between Protected mode and Real mode when
moving between a Protected mode application and the Real mode stub.

Whether a Protected mode application’s DOS extender uses DPMI or VCPI is transparent
to the InterWave split mode TSR.

Figure 2-2 DOS Split Mode TSR

DOS Application
(Real or Protected

Mode)

Real Mode TSR
Kernel Interface

8 Kbytes

Protected Mode
TRS

300 Kbytes

Statically Linked
Kernel

Statically Linked
SBOS
��� 6RIWZDUH�(QYLURQPHQW

AMD
:LQGRZV���[

Figure 2-3 shows the interaction under Windows 3.x between Windows and DOS
applications, the Windows driver, and the VxD for V86 DOS boxes. The VxD is identical to
the Protected mode TSR portion of the DOS Split Mode TSR Wrapper. In DOS, it functions
as a wrapper. In Windows 3.x, it functions as a VxD capable of entertaining one client V86
DOS box at a time. The kernel portion of the VxD/TSR is non-functional, the kernel functions
being performed by the Windows driver. SBOS is not available to the Windows driver, but
is still a functioning component of the VxD/TSR under Windows 3.x.

The InterWave Kernel’s voice allocation module supports both a Windows 3.X application
and a single DOS application using the InterWave IC at the same time. When a DOS
application wishes to use a device, it communicates to the chip through the VxD, which in
turn makes a request for the device through the Windows 3.x driver. The Windows 3.x
driver then makes a request to the InterWave Kernel for the number of voices needed to
virtualize the device. Similarly, if a Windows 3.x application attempts to use the IC, it makes
a request for the device to the Windows 3.x driver, which then obtains the appropriate
number of voices. The Windows 3.x driver continues to ask the InterWave Kernel for voices
until the Kernel finds that it does not have enough to allocate (a limit of 32 voices). When
not enough voices are available, the Windows 3.x driver tells the requestor—a VxD or
Windows 3.x application—that the requested device is not available.

Figure 2-3 Windows 3.x

:LQGRZV���

Figure 2-4 illustrates the interaction between DOS applications and Windows under
Windows 95. The interaction is nearly identical to that under Windows 3.x. The principal
difference is that the Windows 3.x driver has been replaced with a Windows 95 driver. The
Init section of this driver contains code which recognizes the calling application as either a
Windows 95 application or a Windows 3.x application and configures the driver accordingly.

Note: Only one Windows application, either Windows 95 or Windows 3.x, may use
the InterWave IC at any given time. As before, a DOS application in a V86 box may
use the chip concurrently with a Windows application.

For the purposes of the InterWave IC, the Windows 95 Stand Alone mode is functionally
identical to DOS Real mode and the software functions as illustrated in Figure 2-2.

DOS Application
V86 DOS Box

Windows 3.x
VxD

Statically
Linked Kernel

(non-functional)

Statically Linked
SBOS

Windows 3.x
Application

Windows 3.x
Driver

Statically
Linked Kernel
6RIWZDUH�(QYLURQPHQW ���

AMD
Figure 2-4 Windows 95

DRAM versus ROM Local Memory Trade-offs
When choosing how much DRAM or ROM to put on an InterWave IC-based sound card,
the following questions must be addressed:

■ What sound quality is required? More DRAM and ROM results in potentially better sound
quality.

■ How much time delay is tolerable in loading sound effects or instruments? DRAM must
be loaded with sound patches. ROM, of course, is preloaded.

■ Will new instruments be created? DRAM holds the new instrument patches.

Table 2-1 describes and lists the ROM patch sets available for the InterWave IC.

Table 2-1 Available ROM Patch Sets

Size
(bytes)

Contents
Sample

Size
How Made

Time to
Load
Same

DRAM Set
(seconds)

1M GM Instrument set, SBOS set 8 bits Removal of least significant bits from
16-bit 2M set

2

2M GM Instrument set, SBOS set 16 bits Original recording with shortening of
sustain loops and other methods of
decreasing the data size

4

2M GM Instrument set,
GS percussion set, SBOS set

8 bits Removal of least significant bits from
16-bit 2M set

4

4M GM Instrument set,
GS percussion set, SBOS set

16 bits Original recording 8

Windows 3.x
Static VxD

Statically
Linked Kernel

(non-functional)

Statically Linked
SBOS

DOS Application
V86 DOS Box

Windows 3.x
Application

Windows 95
Application

Statically
Linked Kernel

Init—section for both
Windows 95 and

Windows 3.x

Windows 95
Driver
��� 6RIWZDUH�(QYLURQPHQW

AMD
Table 2-2 lists some suggested DRAM and ROM combinations for an InterWave IC-based
sound system.

There are four strategies for loading DRAM patch sets, each of which has its advantagesand
disadvantages. Table 2-3 explores these methods.

Table 2-2 TDRAM and ROM Choice Space

Price and Quality
ROM

(Bytes)
DRAM
(Bytes)

Comments

Least expensive 1M 256K DRAM for LFO and short, repetitious
sound effects

Less expensive and Ultrasound compatible 1M 512K Supports eight melodic and 20 percussive
instruments

Less expensive and Ultrasound compatible 1M 1M

Expensive 2M 512K GS percussion

Expensive with good quality 4M 512K

Expensive with excellent quality and the best
UltraSound compatibility

4M 1M

Most expensive with excellent quality 4M 2M-4M Useful in all applications

Table 2-3 Strategies for Loading DRAM Patch Sets

Method Advantages Disadvantages

Pre-load the entire General MIDI
set.

All instruments in the patch set are
available immediately.

This method requires the maximum
amount of memory.

Choose an optimal set of
instruments which fit the available
DRAM.

Requires no loading. It is difficult to choose an optimal set.

Load patch sets between songs or
scores.

Loading generally occurs when an
application is getting other
information from the hard disk, so no
degradation is noticeable.

Few applications provide
information about which patch sets
are required for a score.

Load a patch when it is needed. Guarantees correct instrument is
played.

Degradation in performance may be
noticeable—missed notes and
stagger.
6RIWZDUH�(QYLURQPHQW ���

AMD
Sizes of Software Modules
Table 2-4 lists the amount of system memory required by each of the software modules
and drivers mentioned in this chapter.

Table 2-4 Memory Requirements for Software Modules

Module Name Size in Kbytes

DOS Split Mode TSR—conventional memory 8

DOS Split Mode TSR—extended memory 300

Windows 3.x Driver (the interwav.drv file) 140

IWINIT Not resident

MIXER Not resident

Miles Driver—MIDI 4

Miles Driver—Digital Wave 12

HMI Driver—MIDI Real Mode 100 (interwav.com = 0.5)

HMI Driver—Digital Wave Real Mode 190

HMI Driver—MIDI Protected Mode 120 (interwav.com = 0.7)

HMI Driver—Digital Wave Protected Mode 260

SBOS 20

SBOS—IWSB1024 patch set 1,024 (Local Memory)

SBOS—IWSB512 patch set 512 (Local Memory)

Note:

Memory sizes are for system memory unless otherwise noted.
��� 6RIWZDUH�(QYLURQPHQW

CHAPTER
3
 COMPATIBILITY WITH ADVANCED
GRAVIS ULTRASOUND AND ENHANCEMENTS
The InterWave IC is backward compatible with the UltraSound audio board from Advanced
Gravis (commonly referred to as the Gravis UltraSound or GUS) if it has local memory
DRAM available. Backward compatibility means that software written for the GUS will work
with a sound card based on the InterWave IC. However, the InterWave IC also includes
many enhancements to the capabilities of the GUS. To run software written for the GUS,
the InterWave IC must be initialized to operate in GUS-Compatibility mode. When the
InterWave IC is configured to utilize its enhanced capabilities, it is operating in Enhanced
mode. To enable the enhanced features added to GUS operation, set High the Enhanced
Mode bit of the Synthesizer Global Mode register (SGMI[0]). The iwinit.exe program turns
on Enhanced mode operation.

This chapter discusses the GUS-compatibility facilities of the InterWave IC and the
differences between GUS-Compatibility mode and Enhanced mode, including the following
topics:

■ Frame expansion

■ Auto-increment mode

■ Local memory addressing

■ PCM operation

■ Volume and Frequency LFOs

■ Voice data in ROM

■ µ-law voice data format

■ Separate left and right stereo offset registers

■ Voice deactivation

■ Effects processing

■ DMA control

■ GUS-Compatibility mode reset

Frame Expansion
The InterWave IC can handle up to 32 voices at the full 44.1-kHz sampling rate. The GUS
can maintain the 44.1-kHz sampling rate for only up to 14 voices. In GUS-Compatibility
mode, approximately 1.6 µs are added to the sample period for each active voice over 14,
which reduces the sampling rate accordingly. This increase of the sample period is called
frame expansion. For more information, see “GUS Frame Expansion” on page 7-29.

Auto-Increment Mode
To make programming of synthesizer voices easier, the InterWave IC provides a method
of writing to all of the voice-specific registers for a particular voice without having to write
a new index value to the General Index register (IGIDXR) for each register. This mode,
&RPSDWLELOLW\�:LWK�$GYDQFHG�*UDYLV�8OWUD6RXQG�DQG�(QKDQFHPHQWV ���

AMD
called auto-increment mode, is available only in Enhanced mode. For information about
auto-increment mode, see “Programming Voice-Specific Registers” on page 7-30.

Local Memory Addressing
The GUS synthesizer supports up to 1 Mbyte of local memory for storing wavetable data.
The InterWave synthesizer can address up to 4 Mbytes of ROM for wavetable data and up
to 16 Mbytes of DRAM for wavetable data and local memory FIFOs. To maintain
compatibility with software written for the GUS, the two most significant bits of the
synthesizer address in all synthesizer registers (address bits 21–20) and the four most
significant bits of the local memory address in all local memory address registers (address
bits 23–20) are held Low (0) when the InterWave IC is in GUS-Compatibility mode.

For information about how the InterWave synthesizer accesses local memory, see
“Addressing Wavetable Data” on page 7-9. For information about the synthesizer address
registers, see the register reference pages in Chapter 14, “Synthesizer Registers.”

For information about how the InterWave IC accesses local memory for data transfers, see
“Accessing Local Memory” on page 8-8 and “DMA Data Transfers” on page 8-11. For
information about the local memory address registers, see the register reference pages in
Chapter 15, “Local Memory Control Registers.”

PCM Operation
To support the continuous playback of PCM data, the InterWave IC provides a method by
which sample interpolation can take place between the data addressed by the synthesizer
end address registers and the data addressed by the synthesizer start address registers.
This capability is available only in Enhanced mode. For information about PCM operation,
see “Digital Audio Files and PCM Operation Mode” on page 7-28.

Volume and Frequency LFOs
The InterWave IC contains 64 low frequency oscillators (LFOs), two for each of the 32
synthesizer voices. These LFOs can be used to produce tremolo (amplitude modulation)
and vibrato (frequency modulation) effects. Adding LFO values to the synthesizer voice
can be done only when the InterWave IC is in Enhanced mode. For more information about
the LFOs, see “LFOs for Tremolo and Vibrato” on page 7-21.

Voice Data in ROM
The InterWave synthesizer can access voice data from external ROM. Enable the reading
of voice data from ROM by setting high the ROM bit of the Synthesizer Mode Select register
(SMSI[7]) for a particular voice. Features controlled through SMSI are available only in
Enhanced mode.

µ-Law Voice Data Format
The InterWave synthesizer can decompress voice data stored in local memory in µ-law
compressed format. Enable the handling of µ-law compressed voice data by setting high
the µ-Law bit of the Synthesizer Mode Select register (SMSI[6]) for a particular voice.
Features controlled through SMSI are available only in Enhanced mode. For more
information about reading µ-law voice data, see “SMSI—Synthesizer Mode Select” on
page 14-14.
��� &RPSDWLELOLW\�:LWK�$GYDQFHG�*UDYLV�8OWUD6RXQG�DQG�(QKDQFHPHQWV

AMD
Separate Left And Right Stereo Offset Registers
The GUS determines a voice’s position in the stereo field by a single 4-bit pan value, with
0 being full left and 15 being full right. The InterWave IC provides an offset mode that uses
two 12-bit values, one each for the left and right offset, to place a voice more precisely in
the stereo field. The registers that contain these offset values also serve as an additional
volume control because they operate by attenuating the left and right synthesizer outputs.
Enable this offset mode by setting High the Offset Enable bit of the Synthesizer Mode Select
register (SMSI[5]) for a particular voice. Features controlled through SMSI are available
only in Enhanced mode. For more information about the offset mode, see “Synthesizer
Offset Registers” on page 14-12.

Voice Deactivation
The InterWave IC provides the ability to deactivate a voice. When a voice is deactivated,
the voice does not consume memory cycles for processing, thus allowing more local
memory cycles for other activities. Deactivating unused voices also reduces noise.
Deactivate a voice by setting the Deactivate Voice bit of the Synthesizer Mode Select
register (SMSI[5]) High for a particular voice. Features controlled through SMSI are
available only in Enhanced mode.

Effects Processing
The InterWave synthesizer can utilize a voice as an effects processor. The InterWave IC
accomplishes such effects processing by writing the synthesizer output to local memory
and then reading it some number of frames later. Select a voice as an effects processor
by setting the Effects Processor Enable bit of the Synthesizer Mode Select register
(SMSI[0]) High for a particular voice. Features controlled through SMSI are available only
in Enhanced mode. For more information on effects processing, see “Delay-Based Effects”
on page 7-26.

DMA Control
The InterWave IC supports two kinds of DMA transfers between system and local memory:
GUS-compatible DMA and interleaved DMA. Use the LMC DMA Control register (LDMACI)
to control GUS-compatible DMA and the LMC DMA Start Address High and LMC DMA
Start Address Low registers (LDSAHI and LDSALI) to specify the DMA address. For more
information about DMA transfers, see “DMA Data Transfers” on page 8-11. For information
about the DMA registers, see the register reference pages in Chapter 15, “Local Memory
Control Registers.”

GUS-Compatibility Mode Reset
After the InterWave IC has been operating in Enhanced mode, the various
GUS-compatibility features should be reset before attempting to operate the IC in
GUS-Compatibility mode. For information about resetting the GUS features, see
“URSTI—GUS Reset” on page 12-14.
&RPSDWLELOLW\�:LWK�$GYDQFHG�*UDYLV�8OWUD6RXQG�DQG�(QKDQFHPHQWV ���

AMD
��� &RPSDWLELOLW\�:LWK�$GYDQFHG�*UDYLV�8OWUD6RXQG�DQG�(QKDQFHPHQWV

Part 2
Programming the InterWave IC

Programming the InterWave IC consists of writing to and reading from user-accessible
registers. This part first discusses topics that relate to all components of the IC and then
describes how to program each of the major components:

■ System control

■ Codec

■ Synthesizer

■ Local memory control

■ Game and MIDI ports

■ GUS Compatibility

AMD

CHAPTER
4
 GLOBAL PROGRAMMING TOPICS
This chapter deals with programming topics that apply to the InterWave IC as a whole:

■ Data paths

■ Accessing InterWave registers

■ Initialization

■ Power modes

■ Interrupt structure

■ Clocks

Data Paths
Figure 4-1 illustrates the flow of data in the InterWave IC.

Figure 4-1 InterWave Data Paths

L MIC
R MIC

L LINE

R LINE

L AUX1
R AUX1

L AUX2
R AUX2

MONO

L LINE
R LINE

AREF

MIDI /
GAME
PORT

IN/OUT

Stereo
Analog
Interface,
Mixers

Osc. 1 Osc. 2

MIDI and
Game
Ports

Playback Codec
and Filter

Record Codec
and Filter

Emulation
Logic, Timers

Synth.
L/R
DACs

Playback
FIFO

Record
FIFO

Wavetable
Synthesizer

System
Bus
Interface System

Bus

Local
Memory
Interface

DRAM
FIFO
Control

Local Memory
DRAM and/or ROM

Serial DSP Interface
*OREDO�3URJUDPPLQJ�7RSLFV ���

AMD
Accessing InterWave Registers
To control the InterWave IC, software must write to or read from certain I/O addresses
associated with programmable registers in the InterWave IC. Depending on how the
InterWave IC-based hardware is configured, there are two ways to address the InterWave
registers:

■ Normal, or internal, decoding mode

■ External decoding mode

See “Accessing InterWave Registers with the DDK” on page 18-13 for information about
two DDK functions that simplify the process of accessing registers.

1RUPDO�RU�,QWHUQDO�'HFRGLQJ

Internal decoding mode allows software to access InterWave registers using base I/O
addresses programmed into the PNP address registers. Internal decoding mode is further
separated into system mode and card mode.

Note: The following modes are not programmable. The hardware may be set up to
work in a specific mode or to switch between these modes using jumper settings.

System Mode

When InterWave IC-based sound hardware has no Plug and Play serial EEPROM available,
or has one that has not yet been programmed, the Plug and Play isolation protocol must
be bypassed. In this mode, called system mode, software must configure the PNP registers
using the following procedure:

Place the IC into isolation mode.

1. Write the card select number (CSN) to I/O address 201h (fixed).

2. Configure the logical device.

Card Mode

In card mode, a serial EEPROM is available and has been programmed to report the
resource requirements of the InterWave IC-based sound hardware. The IC is fully
PNP-compliant and is expected to participate in the PNP isolation process. Standard PNP
software should be able to configure the hardware. Board-specific (non-PNP) configuration
requires vendor-supplied software (device drivers or boot-time initialization programs).

I/O Address Spaces

The I/O addresses of most of the InterWave IC registers depend on one of several base
address values. Table 4-1 lists the address spaces, along with references to detailed
information about the registers used to set the base addresses. Software can relocate all
of these address spaces except the PNP Index Address (PIDXR) and the PNP Write Data
Port (PNPWRP).

Note: In internal decoding mode, set the base addresses of these address spaces
before attempting to write to or read from any InterWave register.

Each of the relocatable address spaces has one or two registers associated with it for
setting and reading the base address of the space. Access the address-setting registers
for all but two of the relocatable address spaces by first writing an index value to the Plug
and Play Index register (PIDXR) at I/O address 279h, then writing the address value to the
Plug and Play Write Data Port (PNPWRP) at address A79h or reading from the Plug and
��� *OREDO�3URJUDPPLQJ�7RSLFV

AMD
Play Read Data Port (PNPRDP). These address registers are read through PNPRDP,
whose address is set during the PNP isolation process.

The remaining two relocatable addresses, those for the General Purpose Register 1
(UGP1I) and General Purpose Register 2 (UGP2I), get their addresses from a combination
of the Compatibility register (ICMPTI) and either the General Purpose Register 1
Addressregister (UGPA1I) or the General Purpose Register 2 Address register (UGPA2I).

Table 4-1 InterWave Address Spaces

Mnemonic Description Base Address (SA11–SA0) † Ref.
Page

P2XR GUS-Compatibility —A block of ten addresses
within 16 spaces used primarily for compatibility with
existing sound cards. The four least-significant bits
of the address span the 16 spaces, but only P2XR+0,
P2XR+6, and P2XR+8 through F are used.

0*, 0*, P2X0HI[1:0], P2X0LI[7:4], X, X, X, X 12-25

P3XR MIDI and Synthesizer —A block of eight
consecutive addresses used primarily to address the
synthesizer and MIDI functions. The three
least-significant bits span the eight spaces, but
P3XR+6 is not used.

0*, 0*, P3X0HI[1:0], P3X0LI[7:3], X, X, X, X 12-25

PCODAR Codec —A block of four consecutive addresses used
to address the codec function.

0*, 0*, PHCAI[1:0], PLCAI[7:2], X, X 12-25

PCDRAR External Interface —A block of eight consecutive
addresses used for accesses to the external
CD-ROM interface. When this I/O block is decoded,
it causes the EX_CS signal to become active.

0*, 0*, PRAHI[1:0], PRALI[7:3], X, X, X 12-25

PATAAR ATAPI—A block of two consecutive addresses used
in conjunction with PCDRAR to communicate with
an ATAPI CD-ROM. When this I/O block is decoded,
it causes the EX_CS signal to become active.

0*, 0*, PATAHI[1:0], PATALI[7:1], X 12-25

PIDXR Plug and Play Index register —The single-byte
index to all of the standard PNP-ISA registers.

279h 12-21

PNPWRP Plug and Play Write Data Port —The single-byte
data port through which all of the standard PNP-ISA
registers are written.

A79h 12-21

PNPRDP Plug and Play Read Data Port —The single-byte
data port through which all of the standard PNP-ISA
registers are read.

0, 0, PSRPAI[7:0], 1, 1 12-21

UGPA1I,
UGPA2I
(P401AR)

General Purpose Address Registers 1 and
2—The general purpose registers (UGP1I and
UGP2I) are single-byte registers used for
compatibility with legacy sound cards. These
registers are typically placed in two consecutive
locations and pointed to by P401AR, a standard PNP
register that specifies the location of these two
emulation addresses. P401AR is necessary to
communicate to the PNP BIOS and to application
software that these addresses are being used.

12-11,
12-11,
12-25

P201AR Game Control (Joystick) —Points to a single-byte
block that is used for game control (the Game Control
register (GCCR)). This port is typically set to address
201h to match the legacy location of this function.

0*, 0*, P201HI[1:0], P201LI[7:6], 0, 0, 0, 0, 0, 1 12-25

P388AR AdLib Emulation —Points to a two-byte block that
is used to capture activity for legacy AdLib registers;
however, this block has little value unless it is set to
the legacy position of 388h–389h.

0*, 0*, P388HI[1:0], P388LI[7:6], 0, 0, 1, 0, 0, X 12-25
*OREDO�3URJUDPPLQJ�7RSLFV ���

AMD
Notes:

†SA refers to system address pins.

*SA11–SA10 may or may not be decoded based on the state of EX_CS at power up.

Direct Registers

Software can access some of the programmable registers in the InterWave IC directly
through their I/O addresses. Table 4-2 on page 4-4 lists the eight groups of functions in the
IC that contain such direct registers and their associated direct addresses.

The mnemonics for the registers that use these direct addresses end in R for register, or
P for port for easy identification. In the register list tables of Chapter 11, “Register
Summary,” these registers contain no value in the Index column because it is not necessary
to write an index value to some other register before reading from or writing to the register’s
I/O address location.

Indirect Registers

Most of the programmable registers in the InterWave IC must have an index value set
before reading or writing the register’s I/O address location. The register mnemonics for
these indirect registers end in I. In the register list tables of Chapter 11, “Register Summary,”
these registers include a value in the Index column. This value indicates which register
receives the index value and what the value is. Some of the registers have different index
values and even different index registers for reading and writing. To access the indirect
register, write the index value to the appropriate index register, then write to or read from
the register’s I/O address.

([WHUQDO�'HFRGLQJ

External decoding mode allows access to the InterWave registers without first having to
configure the PNP registers. In this mode, the direct registers respond to preset 6-bit I/O
addresses as specified in Table 4-3. In this mode, access the indirect registers by writing
their index values to the appropriate direct register using the information in this table.

Note:

It is not valid for bits 5 and 4 to both be Low at the same time.

Table 4-2 Direct Addresses

Function Direct Addresses

Codec PCODAR+0 through PCODAR+3

Game, MIDI port P201AR, P3XR+0, P3XR+1

System control P3XR+3, P3XR+(4, 5)

Local memory control P3XR+7 (also contains registers in P3XR+(4, 5))

Plug and Play ISA PIDXR, PNPWRP, PNPRDP

CD-ROM PCDRAR+0 through PCDRAR+7, PATAAR+(0, 1)

Synthesizer P3XR+2 (also contains registers in P3XR+(4, 5))

GUS and AdLib–Sound Blaster
emulation

P2XR+0, P2XR+6, P2XR+8 through P2XR+0Fh, P388AR+(0, 1), UGPA1I,
UGPA2I (also contains registers in P3XR+(4, 5))
��� *OREDO�3URJUDPPLQJ�7RSLFV

AMD
Table 4-3 External Decoding Mode I/O Addresses

Bit 5 Bit 4 Bits 3–0 Register
Equivalent Internal-Decoding-Mode

Address
1 0 0h UMCR P2XR + 0h

1 0 1h GGCR, PCSNBR P201AR, 201h (fixed)

1 0 2h PIDXR 279h (12-bit fixed)

1 0 3h PNPWRP, PNPRDP A79h (12-bit fixed), PNPRDP

1 0 4h -

1 0 5h -

1 0 6h UISR, U2X6R P2XR + 6h

1 0 7h -

1 0 8h UACWR, UASRR P2XR + 8h, 388h (fixed)

1 0 9h UADR P2XR + 9h, 389h (fixed)

1 0 Ah UACRR, UASWR P2XR + Ah

1 0 Bh UHRDP P2XR + Bh

1 0 Ch UI2XCR P2XR + Ch

1 0 Dh U2XCR P2XR + Dh

1 0 Eh U2XER P2XR + Eh

1 0 Fh URCR, USRR P2XR + Fh

0 1 0h GMCR, GMSR P3XR + 0h

0 1 1h GMTDR, GMRDR P3XR + 1h

0 1 2h SVSR P3XR + 2h

0 1 3h IGIDXR P3XR + 3h

0 1 4h I16DP (low byte) P3XR + 4h

0 1 5h I16DP (high), I8DP P3XR + (4-5)h, P3XR + 5h

0 1 6h -

0 1 7h LMBDR P3XR + 7h

0 1 8h -

0 1 9h -

0 1 Ah -

0 1 Bh -

0 1 Ch CIDXR PCODAR + 0h

0 1 Dh CDATAP PCODAR + 1h

0 1 Eh CSR1R PCODAR + 2h

0 1 Fh CPDR, CRDR PCODAR + 3h
*OREDO�3URJUDPPLQJ�7RSLFV ���

AMD
Reset
The InterWave IC can be reset by hardware or by software. In addition, the IC can be put
into and brought out of a low-power suspend mode. This section covers the following topics:

■ Power-up and hardware reset

■ Software reset

■ Suspend mode

3RZHU�8S�DQG�+DUGZDUH�5HVHW

After power-up or hardware reset, all InterWave registers default to their initial states.
Software drivers or applications must write appropriate values for the chip’s hardware
environment and software to the programmable registers.

Information about register default states can be found in the following places:

■ The register list tables in Chapter 11, “Register Summary”

■ The initialization section of each of the programming chapters in Part 2, “Programming
the InterWave IC”

■ The register details in Part , “InterWave Registers Reference”

There are no provisions to allow for recovery from power-off. If power is removed from the
IC, it must be completely reinitialized.

6RIWZDUH�5HVHW

When the IC is in the PNP configuration state, setting the Reset bit of the PNP Configuration
Control Command register (PCCCI[0]) to High causes a software reset. The PNP Set
PNPRDP Address register (PSRPAI), the PNP Card Select Number register (PCSNI), and
the PNP state itself are not affected. Therefore, the PNP resources must be reprogrammed
but there is no need to perform PNP isolation again.

Software reset works only when the IC is not in the PNP wait-for-key state. After a software
reset, the software should wait about 10 ms before accessing the IC again.

Note: Software reset resets ALL PNP devices.

For more information about the PCCCI register, see “PCCCI—PNP Configuration Control
Command” on page 12-22.

6XVSHQG�0RGH

A hardware signal can place the InterWave IC in a low-power mode of operation called
suspend mode. Suspend mode isolates, or effectively detaches, the IC from the ISA bus.
Software cannot directly initiate this mode.

Local memory DRAM refreshing can be maintained during suspend mode. See “Returning
from Suspend Mode” on page 8-5.

After coming back from suspend mode—if DRAM refreshing was maintained during the
suspend—the synthesizer resumes operation with the next frame pointed to by its registers.

For more details about suspend mode, see the InterWave IC Hardware Designer’s Guide,
available from AMD.
��� *OREDO�3URJUDPPLQJ�7RSLFV

AMD
Initialization
Software must initialize the InterWave IC when either of the following events occur:

■ Power-up, or hardware reset

■ Software reset, by way of PCCCI

When the IC is reset, the following process must take place before the IC can be used again:

1. Configure the standard PNP registers.

The PNP registers are common to all PNP-compliant ISA adapters or devices and they
must be programmed by Plug and Play software before the device can operate correctly.
Programming the PNP registers establishes the I/O space, selects DMA channels, and
selects interrupt lines. The software used to program these registers can be in one of
several forms: a Plug and Play BIOS, a Plug and Play manager, a Plug and Play
operating system, or a vendor-supplied driver or program. AMD provides an initialization
program with the InterWave DDK called iwinit.exe that can be used to program these
registers at system boot time. For more information about the PNP initialization process,
see “Plug and Play Functions” on page 5-13.

Note: A software reset does not change the PNP Read Data Port (PNPRDP), the PNP
Read Data Address (PSRPAI), the PNP Card Select Number (PCSNI), or the PNP state
(wait-for-key, isolation, or configuration).

2. Configure InterWave-specific functions.

After the standard PNP registers have been programmed and I/O space, IRQ, and DMA
resources allocated, several InterWave-specific attributes must be initialized. These
attributes include DRAM and ROM configuration, the mixer signal paths, and
GUS-compatibility or enhanced mode operation. The iwinit.exe program takes care of
all necessary InterWave-specific configuration.

Programmable Power Modes
Use the PNP Power Mode register (PPWRI) to reduce the power being consumed by
various blocks of logic within the IC and to place it in shut-down mode. See “PPWRI—PNP
Power Mode” on page 12-29 for details. These power modes differ from the suspend mode
in that they are programmable and they do not detach the IC from the ISA bus.

The PPWRI register can place various sections of the IC in low-power mode and disable
certain clocks. PPWRI controls the power mode for the following functions:

■ 24.576 MHz oscillator

■ Local memory control

■ Synthesizer

■ Codec playback signal path

■ Codec record signal path

■ Codec analog circuitry (inputs and outputs)

■ Game and MIDI ports

The InterWave IC is placed in shut-down mode by putting all of the above functions in
low-power mode.
*OREDO�3URJUDPPLQJ�7RSLFV ���

AMD
Interrupt Structure
Certain functional modules can generate interrupts, which the system control module
encodes into one of three IRQ channels chosen from system IRQs 2/9, 3, 4, 5, 7, 10, 11,
12, and 15.

The software clears InterWave interrupts by reading from or writing to the InterWave
registers associated with the interrupt. The register reference information found in Part ,
“InterWave Registers Reference,” provides details on how to enable, read, and clear
interrupts using the InterWave registers.

Figure 4-2 shows how the interrupt requests link to the ISA bus.

For a more detailed discussion of interrupt events, see “Interrupt Level Selection” on
page 5-7.

Figure 4-2 Interrupt Structure

Clocks
The InterWave IC uses two external crystals: 24.576 MHz and 16.9344 MHz. If the 48-kHz
family of codec sampling rates is not required, the 24.576 MHz crystal is not necessary.
However, the 24.576 MHz crystal is required for GUS compatibility and for the full range
of possible sampling rates.

The chapters in Part , “InterWave Registers Reference.” provide details on selecting clocks,
setting timer load values, and handling clock interrupts using the InterWave registers.

Synthesizer

Codec

System Control

IRQ Encoding

LogicCompatibility

MIDI

IOCHK

EX_IRQ

IRQ

ISA Bus

REQUESTING

CLEARING

Register
I/O Reads

I/O WritesIndexing

NMIs

e.g., CD-ROM

Audio ch. 1, 2
��� *OREDO�3URJUDPPLQJ�7RSLFV

CHAPTER
5
 SYSTEM CONTROL FUNCTIONS
The InterWave system control module contains the interrupt and DMA channel selection
logic, the interfaces to the ISA (system) bus, the Plug and Play (PNP) ISA logic, and the
compatibility logic.

This chapter covers the following topics:

■ System control basics—introduction to the system control concepts

■ Data paths—InterWave signal flow

■ Register overview—lists of system control functions available through the programmable
registers

■ Initialization—start-up procedures after power up, reset, or return from a low-power
mode

■ Interrupt and DMA channel selection—reporting and clearing

■ System bus interface—ISA bus access

■ Plug and Play functions—PNP ISA programming details

■ Compatibility logic—logic and registers for compatibility with existing game-card
software

■ Programming tips and examples

System Control Basics
The following functional areas comprise the system control module:

Initialization: The InterWave circuits can be in various states of inactivity due to initial
power-up, reset, or programmed low-power modes. The chip is initialized
by writing to the proper registers.

Interrupt level selection:
Various InterWave modules request interrupts when service is needed from
the host system. The system control module routes these requests to the
proper IRQ (system-bus interrupt request) level.

DMA channel selection:
System Control combines DMA access requests from other InterWave
modules into one of six DMA access request (DRQ) channels.

Plug and Play functions:
The Plug and Play logic implements the Plug and Play ISA specification.

Compatibility logic:
Compatibility logic provided support for existing game-card software.
6\VWHP�&RQWURO�)XQFWLRQV ���

AMD
System Control Data Paths
Figure 5-1 illustrates the flow of data between InterWave modules.

Figure 5-1 InterWave System Control Data Paths

Register Overview
The following tables outline the system control functions available through the InterWave
programmable registers. For detailed information about a particular register, see the
reference page listed in the last column of the table. These references point to the applicable
section in Chapter 12, “System Control Registers.”

Table 5-1 through Table 5-7 group the system control functions into the following areas:

■ General control functions

■ PNP functions

■ DMA and non-emulation IRQ functions

■ Emulation IRQ functions

■ Emulation and compatibility control functions

■ Game and MIDI port functions

■ Audio I/O functions

Synth DSP Synth DSP
Interface

Synth
Regs

Local
Mem

Control
Regs

LM DMA
RD Latch

LM IO RD
Latch

LM DMA
WR Latch

LM IO WR
Latch

LMPF RD
Latch

System Control
Registers

Ports’
Registers

Codec
Registers

Key:
LMPF = Local Mem Play FIFO

LMRF = Local Mem Record FIFO
RD = Read, WR = Write

To the Local
Memory BusLocal

Memory
Control
(LMC)

MIDI &
Game
Ports Codec

LMC Data Bus16 Bits

System Control

Register Data Bus 16 Bits

Synthesizer

ISA Data Bus

2:1
MUX

LMRF WR
Latch

Codec Play
FIFO

Codec Record
FIFO
��� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
Table 5-1 General Control Functions

Function
Register and

Bit Field
Reference

Enable the synthesizer DAC URSTI[1] 12-14

Select serial transfer mode—switches the codec FIFOs and synthesizer DSP data
into various paths; switches the external-device pins to external serial port pins

ICMPTI[7:5] 12-15

Enable reading and writing of codec registers IDECI[3] 12-16

Enable reading and writing of AdLib command, status, and data registers IDECI[2] 12-16

Enable reading and writing and 2XE registers IDECI[1] 12-16

Enable reading and writing of Sound Blaster 2X8, 2X9, and 2XA registers IDECI[0] 12-16

Retrieve version number of die IVERI[7:4] 12-17

Enable reading of UADR, URCR, and GMCR registers IVERI[3] 12-17

Enable power to internal pull-up resistors IVERI[2] 12-17

Enable MPU-401 emulation IVERI[1] 12-17

Lock out hidden registers IVERI[0] 12-17

Select GPOUT1–GPOUT0 codec flags IEIRQI[7] 12-20

Read status of 16-bit I/O decoding IEIRQI[6] 12-20

Table 5-2 PNP Functions

Function
Register and

Bit Field
Reference

Write card select number to InterWave IC (system mode) PCSNBR 12-21

Write to PNP registers (indexed by PIDXR) PNPWRP 12-21

Read from PNP registers (indexed by PIDXR) PNPRDP 12-21

Set read data port address PSRPAI 12-22

Check PNP isolation state (See “Isolation State” on page 5-16) PISOCI 12-22

Reset card select number PCCCI[2] 12-22

Enter wait-for-key state PCCCI[1] 12-22

Reset InterWave IC (if not in wait-for-key state) PCCCI[0] 12-22

“Wake” the PNP device—enter isolation or configuration state PWAKEI 12-23

Read PNP resource data from the serial EEPROM PRESDI 12-23

Read status of PNP resource data register PRESSI 12-23

Set the card select number (CSN) and enter configuration state PCSNI 12-23

Index the PNP address space into logical devices PLDNI 12-23

Activate audio functions PUACTI 12-24

Activate external device functions PRACTI 12-24

Activate game port functions PGACTI 12-24

Activate AdLib–Sound Blaster functions PSACTI 12-24

Activate MPU-401 functions PMACTI 12-24

Check for audio I/O address conflicts PURCI 12-24

Check for external device I/O address conflicts PRRCI 12-24

Check for game port I/O address conflicts PGRCI 12-24

Check for AdLib–Sound Blaster I/O address conflicts PSRCI 12-24

Check for MPU-401 I/O address conflicts PMRCI 12-24

Set I/O address for various address blocks Table 12-3 12-25
6\VWHP�&RQWURO�)XQFWLRQV ���

AMD
Select audio channel 1 IRQ number PUI1SI 12-25

Select audio channel 1 IRQ type PUI1TI 12-26

Select audio channel 2 IRQ number PUI2SI 12-25

Select audio channel 2 IRQ type PUI2TI 12-26

Select external function IRQ number PRISI 12-25

Select external function IRQ type PRITI 12-26

Select AdLib–Sound Blaster IRQ number PSBISI 12-25

Select AdLib–Sound Blaster IRQ type PSBITI 12-26

Select MPU-401 IRQ number PMISI 12-25

Select MPU-401 IRQ type PMITI 12-26

Select the DMA request number for audio DMA channel 1 PUD1SI 12-27

Select the DMA request number for audio DMA channel 2 PUD2SI 12-27

Select the DMA request number for the external device DMA channel PRDSI 12-27

Specify the output-low drive capability of the ISA data bus PSEENI[1] 12-28

Select the serial EEPROM control mode PSEENI[0] 12-28

Set control parameters for PNP serial EEPROM PSECI 12-28

Set low-power modes, disable clocks PPWRI 12-29

Table 5-3 DMA and Non-Emulation IRQ Functions

Function
Register and

Bit Field
Reference

Select between Interrupt Control register (UICI) and DMA Control register (UDCI) UMCR[6] 12-1

OR all synthesizer and codec IRQs to channel 2 and mask channel 1 UMCR[4] 12-1

Enable audio device IRQ and DMA UMCR[3] 12-1

Read status of DMA terminal count (TC) IRQ UISR[7] 12-2

Read status of volume loop IRQ UISR[6] 12-2

Read status of address loop IRQ UISR[5] 12-2

Read status of IRQ and DMA Enable bit (UMCR[3]) USRR[1] 12-7

Select extra interrupt UDCI[7] 12-8

Combine DMA channels UDCI[6] 12-8

Select DMA channel 1 UDCI[2:0] 12-8

Select DMA channel 2 UDCI[5:3] 12-8

Combine IRQ channels UICI[6] 12-9

Select IRQ channel 1 UICI[2:0] 12-9

Select IRQ channel 2 UICI[5:3] 12-9

Clear all IRQs in USRR UCLRII 12-11

Enable synthesizer IRQs URSTI[2] 12-14

Select codec IRQ channel IDECI[7] 12-16

Enable IRQs on channel 1 or 2 IDECI[6:5] 12-16

Enable NMIs IDECI[4] 12-16

Table 5-2 PNP Functions (Continued)

Function
Register and

Bit Field
Reference
��� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
Table 5-4 Emulation IRQ Functions

Function
Register and

Bit Field
Reference

Enable AdLib timers 1 and 2 IRQs UASBCI[3:2] 12-12

Enable interrupt caused by write to AdLib Data register (UADR) UASBCI[1] 12-12

Enable Sound Blaster 2X6 and 2XC IRQs UASBCI[5] 12-12

OR of AdLib–Sound Blaster register IRQs UISR[4] 12-2

Read status of AdLib timer 1 IRQ UISR[3] 12-2

Read status of AdLib timer 2 IRQ UISR[2] 12-2

Read status of MIDI receive IRQ UISR[1] 12-2

Read status of MIDI transmit IRQ UISR[0] 12-2

Enable IRQs caused by reads of Sound Blaster register 2XE URCR[7] 12-6

Enable IRQs caused by reads and writes of General Purpose registers 1 and 2 URCR[4:3] 12-6

Read status of 2XE IRQ USRR[7] 12-7

Read status of General Purpose registers 1 and 2 read IRQs USRR[4,6] 12-7

Read status of General Purpose registers 1 and 2 write IRQs USRR[3,5] 12-7

Redirect all AdLib–Sound Blaster IRQs to IOCHK (NMI) UICI[7] 12-9

Read status of AdLib timer 1 IRQ (maskable) UASRR[6] 12-3

Read status of AdLib timer 2 IRQ (maskable) UASRR[5] 12-3

Read status of AdLib timer 1 IRQ (non-maskable) UASRR[2] 12-3

Read status of AdLib timer 2 IRQ (non-maskable) UASRR[1] 12-3

OR of AdLib timers 1 and 2 IRQs (maskable) UASRR[7] 12-3

Reset AdLib timers 1 and 2 IRQs (maskable) UADR[7] 12-4

Mask AdLib timers 1 and 2 IRQs (maskable) UADR[6:5] 12-4

Read status of write to 2XC IRQ UASRR[4] 12-3

Read status of write to 2X6 IRQ UASRR[3] 12-3

Read status of write to AdLib Data register (UADR) IRQ UASRR[0] 12-3

Set MPU-401 IRQ IEIRQI[1] 12-20

Set Sound Blaster IRQ IEIRQI[0] 12-20
6\VWHP�&RQWURO�)XQFWLRQV ���

AMD
Note:

* These timers are also enabled by UADR

Table 5-5 Emulation and Compatibility Control Functions

Function Register Reference

Enable General Purpose register access URCR[6] 12-6

Select which register is accessed through GUS Hidden Register Data Port (UHRDP) URCR[2:0] 12-6

Enable toggling of UI2XCR[7] URCR[5] 12-6

Enable compatibility (IRQ and DMA channel selection through UHRDP) ICMPTI[4] 12-15

Read/write data for AdLib–Sound Blaster/MPU-401 compatibility UGP1I 12-10

Read/write data for AdLib–Sound Blaster/MPU-401 compatibility UGP2I 12-10

Specify emulation address for General Purpose Register 1 ICMPTI[1:0]
& UGPA1I

12-15 &
12-11

Specify emulation address for General Purpose Register 2 ICMPTI[3:2]
& UGPA2I

12-15 &
12-11

Enable AdLib timer test UASBCI[4] 12-12

Enable AdLib auto-timer mode UASBCI[0] 12-12

Set Sound Blaster IRQ bit in AdLib Status register (UASRR[3]) U2X6R 12-3

Access Sound Blaster 2XC register and trigger an interrupt UI2XCR 12-5

Access Sound Blaster 2XC register without triggering an interrupt U2XCR 12-6

Access Sound Blaster 2XE register and trigger an interrupt U2XER 12-6

Read from the InterWave synthesizer by AdLib applications UACRR 12-3

Write to the InterWave synthesizer by AdLib applications UACWR 12-3

Start AdLib timers 1 and 2 UADR[1:0] 12-4

Reset GUS-compatibility features URSTI[0] 12-14

Set load values for AdLib timers 1 and 2* UAT1I,
UAT2I

12-13

Enable reading of UART receive buffer IEMUAI[7] 12-18

Enable reading of UART status IEMUAI[6] 12-18

Enable reading of UGP2I through emulation address IEMUAI[5] 12-18

Enable reading of UGP1I through emulation address IEMUAI[4] 12-18

Enable writing to UART transmit buffer IEMUAI[3] 12-18

Enable writing to UART command buffer IEMUAI[2] 12-18

Enable writing to UGP2I through emulation address IEMUAI[1] 12-18

Enable writing to UGP1I through emulation address IEMUAI[0] 12-18

Enable MIDI receive data IEMUBI[7] 12-19

Enable MIDI transmit data IEMUBI[6] 12-19

Select status emulation register bit 7 IEMUBI[5] 12-19

Select status emulation register bit 6 IEMUBI[4] 12-19

Enable emulation register 1 and 2 write IRQs IEMUBI[3:2] 12-19

Enable emulation registers 1 and 2 read IRQs IEMUBI[1:0] 12-19
��� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
Initialization
Generally, the system control registers are set to their default values at reset. See
“Initialization” on page 4-7 for a global discussion of initialization and reset.

When the InterWave IC is configured by its hardware implementation to operate in Plug
and Play mode, the system software performs all PNP operations through registers in the
system control module. The PNP configuration procedure detects each PNP ISA card
installed in the system, identifies it, assigns it the necessary system resources (IRQ lines,
DMA channels, etc.), and activates its logical devices. For a complete discussion of the
PNP initialization sequence, see “Plug and Play Functions” on page 5-13.

Interrupt Level Selection
The system control module receives interrupt requests from other modules. It then uses
mapping data in its own control registers to encode the requests onto the ISA bus.

Software clears interrupts by reading from or writing to the appropriate registers within the
requesting module.

The discussion in this section assumes an understanding of the interrupt structure and the
types of interrupts available (see “Interrupt Structure” on page 4-8). This section outlines
the enabling, requesting, reporting, and mapping of all InterWave interrupts.

5HJLVWHUV�IRU�(QDEOLQJ��5HSRUWLQJ��DQG�&OHDULQJ�,QWHUUXSWV

Table 5-8 provides comprehensive data for all InterWave interrupt events. I/O reads and
writes of the clearing registers are generally indexed. See Part , “InterWave Registers
Reference” for details on indexing the registers.

Table 5-6 Game Port and MIDI Port Functions

Function
Register and

Bit Field
Reference

Enable MIDI loopback UMCR[5] page 12-1

Enable joystick UJMPI[2] page 12-11

Enable MIDI port UJMPI[1] page 12-11

Table 5-7 Audio I/O Functions

Function
Register and

Bit Field
Reference

Enable mono and stereo microphone input UMCR[2] 12-1

Enable line output UMCR[1] 12-1

Enable line input UMCR[0] 12-1
6\VWHP�&RQWURO�)XQFWLRQV ���

AMD
Note:

** When in auto-timer mode and the UACWR has been written to a 04h, then the write to the UADR does not
generate an interrupt.

Table 5-8 Registers for Interrupt Events

Group Event Description IRQ Enables
Reporting

Mechanism
Clear Mechanism

SIRQ Synth voice reaches end of
volume ramp

SVCI[5] &
URSTI[2]

UISR[6], SVCI[7],
SVII[6]

IOR of all volume IRQs from
SVII or a single IOW to SVII

SIRQ Synth voice finishes loop SACI[5] &
URSTI[2]

UISR[5], SACI[7],
SVII[7]

IOR of all loop IRQs from
SVIR or a single IOW to
SVIR

CIRQ Codec record sample
counter rolls past zero

CFIG1I[1], mode 2
or 3

CSR3I[5], CSR1R[0] IOW to CSR1R or
CSR3I[5]=0

CIRQ Codec playback sample
counter rolls past zero

CFIG1I[0] CSR3I[4], CSR1R[0] IOW to CSR1R or
CSR3I[4]=0

CIRQ Codec record FIFO reaches
threshold

CFIG3I[7], mode 3 CSR3I[5], CSR1R[0] IOW to CSR1R or
CSR3I[5]=0

CIRQ Codec playback FIFO
reaches threshold

CFIG3I[6], mode 3 CSR3I[4], CSR1R[0] IOW to CSR1R or
CSR3I[4]=0

CIRQ Codec timer reaches zero CFIG2I[6] CSR3I[6], CSR1R[0] IOW to CSR1R or
CSR3I[6]=0

Extra IRQ: set enables UDCI[7], UICI[6] not reported IOW to UDCI[7] = 0

SBIRQ IOR of general port 1 URCR[6],
URCR[3],
IEMUBI[0]

USRR[4] IOW to UCLRII

SBIRQ IOW to general port 1 URCR[6],
URCR[3],
IEMUBI[2]

USRR[3] IOW to UCLRII

SBIRQ IOR of general port 2 URCR[6],
URCR[4],
IEMUBI[1]

USRR[6] IOW to UCLRII

SBIRQ IOW to general port 2 URCR[6],
URCR[4],
IEMUBI[3]

USRR[5] IOW to UCLRII

SBIRQ IOR of 2xE URCR[7] USRR[7] IOW to UCLRII

SIRQ TC (ISA bus) is reached LDMACI[5] UISR[7] & LDMACI[6] IOR of LDMACI

SBIRQ IOW to AdLib data register
(UADR) **

UASBCI[1] UISR[4] & UASRR[0] IOW of UASBCI[1]=0

SBIRQ IOW to SB U2X6R UASBCI[5] UASRR[3] IOW of UASBCI[5]=0

SBIRQ IOW to SB UI2XCR UASBCI[5] UASRR[4] IOW of UASBCI[5]=0

SBIRQ AdLib timer 1 rolls past FF UASBCI[2] UISR[2], UASRR[2] IOW to UASBCI[2]=0

SBIRQ AdLib timer 2 rolls past FF UASBCI[3] UISR[3], UASRR[1] IOW to UASBCI[3]=0

MIRQ MIDI transmit ready GMCR[6:5] UISR[0] IOW to GMTDR

MIRQ MIDI data received GMCR[7] UISR[1] IOR of GMRDR

EXDIRQ External-device interrupt PRACTI[0] none none

SB_EMU_IRQ Sound Blaster emulation
(IEIRQI[0] = 1)

PSACTI[0] IEIRQI[0] IEIRQI[0] = 0

MPU401_IRQ MPU-401 emulation
(IEIRQI[1] = 1)

PMACTI[0] IEIRQI[1] IEIRQI[1] = 0
��� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
,QWHUUXSW�0DSSLQJ�(TXDWLRQV

Equation 5-1 through Equation 5-5 show how the interrupt events in Table 5-8 map into
the InterWave IRQ channels. For definitions of the bit fields and variables used in the
interrupt equations, see Table 5-9.

Equation 5-1 Audio IRQ Channel 1

Channel_1_IRQ = PUACTI[0] • UMCR[3] • IDECI[6] •

(((IDECI[7] • CIRQ) + SIRQ) • UMCR[4]

+ SBIRQ • UICI[7] + MIRQ • UICI[6])

Equation 5-2 Audio IRQ Channel 2

Channel_2_IRQ = PUACTI[0] • UMCR[3] • IDECI[5] •

(((IDECI[7] • CIRQ) + SIRQ) • UMCR[4] + IDECI[7] • CIRQ

+ UDCI[7] • UICI[6] + MIRQ • UICI[6])

Equation 5-3 CD-ROM IRQ Channel

CD_ROM_IRQ = EXDIRQ• PRACTI[0]

Equation 5-4 Sound Blaster Emulation IRQ Channel

SB_EMU_IRQ = IEIRQI[0] • PSACTI[0];

Equation 5-5 MPU-401 IRQ Channel

MPU401_IRQ = IEIRQI[1] • PMACTI[0];

Equation 5-6 through Equation 5-9 show how the IRQ channel equations map to the IRQ
pins, where x in IRQx specifies the IRQ number (2/9, 3, 4, 5, 7, 10, 11, 12, or 15). The
notation “(UICI[2:0] == IRQx)” should read “UICI[2:0] specifies IRQx.” IRQ10 and IRQ4
have slightly different equations since they are not supported by the Interleave Control
register (UICI). In these equations, the term “(x ≠ 15)” specifies that the rest of the block,
“(PUI1SI[3:0] ≠ 04h, or 0Ah),” is added only for IRQ15. That is, the equation for IRQ15
specifies that it is not enabled if UICI[2:0] points to IRQ15 and PUI1SI[3:0] selects either
IRQ4 or IRQ10. This logic is implemented because IRQ4 and IRQ10 are legitimate
selections for PUI1SI but they cause UICI[2:0] to point to IRQ15.

Equation 5-6 IRQ Selection

IRQx = (Channel_1_IRQ) • (UICI[2:0] == IRQx) • ((x ≠ 15) + (PUI1SI[3:0] ≠ 04h, or 0Ah))

+ (Channel_2_IRQ) • (UICI[5:3] == IRQx)

+ (CD_ROM_IRQ • (PRISI[3:0] == IRQx))

+ (SB_EMU_IRQ) • (PSBISI[3:0] == IRQx)

+ (MPU401_IRQ) • (PMISI[3:0] == IRQx) ;
6\VWHP�&RQWURO�)XQFWLRQV ���

AMD
Equation 5-7 IRQ Enabling

IRQx Enable = SUSPEND • PUACTI[0] • UMCR[3] •

(IDECI[6] • (UICI[2:0] == IRQx) • ((x ≠ 15) + (PUI1SI[3:0] ≠ 04h, or 0Ah))

+ IDECI[5] • (UICI[5:3] == IRQx))

+ SUSPEND • PRACTI[0] • (PRISI[3:0] == IRQx)

+ SUSPEND • PSACTI[0] • (PSBISI[3:0] == IRQx)

+ SUSPEND • PMACTI[0] • (PMISI[3:0] == IRQx) ;

Equation 5-8 IRQ10 and IRQ4 Selection

IRQ[10,4] = Channel_1_IRQ • (PUI1SI == [0Ah, 04h])

+ Channel_2_IRQ • (PUI2SI == [0Ah, 04h])

+ CD_ROM_IRQ • (PRISI[3:0] == IRQ[0Ah, 04h])

+ SB_EMU_IRQ • (PSBISI[3:0] == IRQ[0Ah, 04h])

+ MPU401_IRQ • (PMISI[3:0] == IRQ[0Ah, 04h]) ;

Equation 5-9 IRQ10 and IRQ4 Enabling

IRQ[0Ah,04h] Enable = SUSPEND • PUACTI[0] • UMCR[3] •

(IDECI[6] • (PUI1SI == IRQ[0Ah, 04h])

+ IDECI[5] • (PU21SI == IRQ[0Ah, 04h]))

+ SUSPEND • PRACTI[0] • (PRISI[3:0] == IRQ[0Ah, 04h])

+ SUSPEND • PSACTI[0] • (PSBISI[3:0] == IRQ[0Ah, 04h])

+ SUSPEND • PMACTI[0] • (PMISI[3:0] == IRQ[0Ah, 04h]) ;

The NMI function is controlled as shown in Equation 5-10.

Equation 5-10 NMI Function

IOCHK = / (SUSPEND • PUACTI[0] • UMCR[3] • IDECI[4] •

((UICI[2:0] = 0) • (((IDECI[7] • CIRQ) + SIRQ) • UMCR[4]

+ SBIRQ • UICI[7] + MIRQ• UICI[6])

+ SBIRQ • UICI[7]))

Table 5-9 describes the programmable bit fields and signals associated with Equation 5-1
through Equation 5-10.
���� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
DMA Channel Selection
The system control module processes and encodes DMA requests generated by other
InterWave modules and passes them to the system bus. The topics in this section describe
the types of DMA requests and their mapping to the DRQ lines. For more details on DMA
transfers, see “DMA Data Transfers” on page 8-11.

&DWHJRULHV�RI�'0$�5HTXHVWV

Table 5-10 lists the DMA requests by category.

Table 5-9 Bit Fields and Variables in IRQ Equations

Bit Field Description

IDECI[7] Send codec interrupts to interrupt channel 2 (and remove them from channel 1).

IDECI[6:4] IRQ channel enables for channel 1 (bit 6), channel 2 (bit 5), and NMI (bit 4).

UMCR[4] Send synth volume and loop interrupts to interrupt channel 2 (and remove them
from channel 1).

UMCR[3] Enables all IRQ and DRQ lines from the high-impedance state.

UICI[2:0] Selects the IRQ number for interrupt channel 1.

UICI[5:3] Selects the IRQ number for interrupt channel 2.

UICI[6] Combines MIDI interrupts to interrupt channel 1 (and removes them from
channel 2).

UICI[7] Disables AdLib–Sound Blaster interrupts from channel 1 and generates NMIs
instead.

UDCI[7] Extra interrupt; used to force the channel 2 IRQ line active.

PUACTI[0] AUDIO functions activate bit.

PRACTI[0] External functions (e.g., CD-ROM) activate bit.

SUSPEND Suspend in progress.

SIRQ OR of all synthesizer interrupt events

CIRQ OR of all codec interrupt events

SBIRQ OR of all AdLib–Sound Blaster interrupt events

MIRQ OR of all MIDI interrupt events

SB_EMU_IRQ Sound Blaster emulation interrupt

MPU401_IRQ MPU-401 emulation interrupt

Table 5-10 DMA Requests by Category

Category Description

DRQMEM DMA request for system memory to or from local memory transfers.

DRQPLY DMA request for system memory to codec playback FIFO transfers.

DRQREC DMA request for codec record FIFO to system memory transfers.

DRQEX DMA request from the external function (e.g., CD-ROM) interface.
6\VWHP�&RQWURO�)XQFWLRQV ����

AMD
'54�0DSSLQJ�(TXDWLRQV

Equation 5-11 shows how the DMA requests are combined into the three InterWave DRQ
channel possibilities.

Equation 5-11 DRQ Channel Selection

Channel_1_DRQ = PUACTI[0] • (DRQMEM + DRQREC + (UDCI[6] • DRQPLY));

Channel_2_DRQ = PUACTI[0] • UDCI[6] • DRQPLY;

External_Device_DRQ = PRACTI[0] • DRQEX;

Equation 5-12 shows how the channels described in Equation 5-11 map to the DRQ pins,
where x in DRQx specifies the DRQ number. The DRQ used for each DMA channel is
selected with the DMA Channel Control register (UDCI). The notation “(UDCI[2:0]==DRQx)”
should read “UDCI[2:0] specifies DRQx”.

Equation 5-12 Mapping to the DRQ Pins

DRQx = (Channel_1_DRQ • (UDCI[2:0] == DRQx))

+ (Channel_2_DRQ • (UDCI[5:3] == DRQx))

+ (External_Device_DRQ • (PRDSI[2:0] == DRQx));

Equation 5-13 shows the equations for the signals that enable the DRQ lines.

Equation 5-13 Enabling DMA Requests

DRQx Enable = SUSPEND • PUACTI[0] • UMCR[3] • ((UDCI[2:0] == DRQx)

+ (UDCI[5:3] == DRQx) • (UDCI[6]))

+ SUSPEND • PRACTI[0] • (PRDSI[2:0] == DRQx) ;

'0$�'DWD�:LGWK

For DMA accesses, the DMA request-acknowledge number determines the data width.
DRQs 0, 1, and 3 use 8-bit transfer and DRQs 5, 6, and 7 use 16-bit transfer. Software can
read the data width in the DMA Width bit of the LMC DMA Control register (LDMACI[2]).

'0$�7UDQVIHU�5DWHV

For DMA transfers between local and system memory, the DMA Rate Divider field of the
LMC DMA Control register (LDMACI[4:3]) controls the rate of transfer.
���� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
System Bus Interface
The InterWave IC can connect directly to the ISA bus. Its bus attributes are

■ Compliance with the Plug and Play ISA specification—includes an interface to a serial
EEPROM, where the configuration information is to be stored

■ Compliance with the ISA portion of the EISA bus specification

■ 16-bit data bus

■ 10-bit or 12-bit address bus. The InterWave IC-based sound card may decode the upper
bits for 16-bit addresses.

■ Support for two audio interrupts, one external device (e.g., CD-ROM) interrupt, one
Sound Blaster emulation interrupt, and one MPU-401 emulation interrupt chosen from
nine IRQ lines

■ Support for using the IOCHK signal of the ISA bus to generate NMIs to the CPU

■ Support for three DMA channels: codec play, codec record, and external (CD-ROM).
The synthesizer may share the codec DMA channels for GUS compatibility.

Plug and Play Functions
This section describes the Plug and Play Industry Standard Architecture (PNP ISA)
functions of the InterWave audio IC. It covers the following topics:

■ Purpose of PNP

■ Card mode versus system mode

■ PNP auto-configuration—setting an InterWave IC-based PNP card for the system

■ Programming in PNP card mode—PNP states, registers, and functions

■ PNP resource requirements—system resources required by the InterWave IC

7KH�3XUSRVH�RI�313

Plug and Play is a software and hardware mechanism that allows the optimum allocation
of system resources without user interaction. In a system with only PNP-compliant cards
attached to the ISA bus, fully automatic configuration of the PNP cards is possible. However,
if the system also contains non-PNP ISA cards, user action may be necessary to assure
coexistence of the two types of cards within the system.

To configure a PNP-compliant card, the PNP ISA software performs the following tasks for
each PNP card installed:

■ Isolates the card by assigning a unique handle, the Card Select Number (CSN)

■ Reads from the card the system resources that it requires

■ Assigns conflict-free system resources to be used by the card

&DUG�0RGH�YHUVXV�6\VWHP�0RGH

The InterWave IC can operate in two PNP modes.

In card mode, an on-card serial EEPROM contains the resource requirements for the card.
The system software accesses these requirements and configures the card according to
the PNP protocol. See “InterWave Programming in PNP Card Mode” on page 5-14.
6\VWHP�&RQWURO�)XQFWLRQV ����

AMD
In system mode, the InterWave PNP registers are accessible without going through the
PNP isolation process. There is no serial EEPROM, or the first byte of the serial EEPROM
is A5h. This mode allows integration of the IC onto a system board. See “InterWave
Programming in PNP System Mode” on page 5-20.

313�$XWR�&RQILJXUDWLRQ�3RUWV

The PNP ISA Specification Version 1.0A requires the implementation of three 8-bit ports
used by the PNP system software to issue commands, check status, access resource data,
and configure a PNP card. These ports are defined in Table 5-11.

The ADDRESS and WRITE_DATA ports have fixed addresses as shown in Table 5-11.
Software can assign the READ_DATA register an address in the range 0203h–03FFh. The
ADDRESS port acts as an index register, used to gain access to all PNP registers.

All PNP-compliant cards present in the system share these ports. The ports are used only
during configuration procedures. One card is differentiated from another by a unique
number called the Card Select Number (CSN).

All PNP registers are written to through the WRITE_DATA port. All PNP registers are read
through the READ_DATA port. The contents of the ADDRESS register determines the
destination or source of the data.

Set the I/O address of the READ_DATA port by writing the appropriate value to the PNP
Set Read Data Port Address register (PSRPAI). To access PSRPAI, set PIDXR to 00h and
write the address to PNPWRP (0A79h). The address of this register is set during the PNP
isolation phase (discussed later in this section). See the IwavePnpIsol DDK function.

The PNP software selects the address of the PNP Read Data Port (PNPRDP) during the
isolation phase. If the selected address is in conflict with another device, the software
selects a new address. This selection process may be repeated several times. If there is
no PNP card installed in the system, the isolation process fails.

IwavePnpIsol tries various I/O addresses before concluding that there are no PNP cards
in the system.

,QWHU:DYH�3URJUDPPLQJ�LQ�313�&DUG�0RGH

The InterWave IC enters card mode whenever the output pin PNPCS is latched Low by
the RESET signal at power-up. In this mode, the IC should be on a PNP-compliant card
containing a serial EEPROM. This EEPROM contains resource allocation requirements for
the logical devices contained on the card.

The Auto-Configuration Process

The PNP logic is dormant at power-up and must be enabled by the system software. Each
PNP-compliant card attached to the PNP ISA bus must go through the series of
auto-configuration phases (shown in Figure 5-2) to configure and activate the card.

Table 5-11 PNP Auto-Configuration Ports

PNP Port InterWave Register I/O Address Type

ADDRESS PIDXR—PNP Index Address 279h write only

WRITE_DATA PNPWRP—PNP Write Data Port A79h write only

READ_DATA PNPRDP—PNP Read Data Port Range:
0203h–03FFh

read only
���� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
Figure 5-2 PNP Auto-Configuration States

At power-up, each PNP card enters the wait-for-key state, in which its registers are not
accessible. The system software must send to the card a sequence of 32 bytes known as
the initiation key.

After all cards have been initiated, the system software places each card in the isolation
state. Isolation is the process that identifies each card and assigns it a unique number,
called the card select number (CSN), that is used later during the configuration phase.

Since all PNP cards respond to the same I/O ports described in Table 5-11, the system
requires the CSN to distinguish between cards.

After the isolation phase is completed, the system software places each card in the
configuration state. In this state, the card can respond to all configuration commands—the
PNP system software can read the card's resource information and program the card's
resource selections.

After configuration, the card’s PNP functions enter the sleep state. From there, it can “wake
up” in response to a need to change its configuration.

Auto-Configuration States

The following four subsections detail the functions of the PNP auto-configuration states
introduced above.

Wait-for-Key State
At power-up or reset, the InterWave IC waits to receive a sequence of 32 bytes—the
initiation key. The system software should write this sequence to register PIDXR (0279h).
The exact sequence for the initiation key in hexadecimal notation is:

6A, B5, DA, ED, F6, FB, 7D, BE,
DF, 6F, 37, 1B, 0D, 86, C3, 61,
B0, 58, 2C, 16, 8B, 45, A2, D1,
E8, 74, 3A, 9D, CE, E7, 73, 39

Before writing the above sequence, the software should initialize the PNP initiation-key
logic by writing 00h to register PIDXR two times. For details on generating the sequence,
see the IwavePnpKey DDK function.

After the initiation key has been written, the PNP card enters the sleep state.

Proper KeyIsolation

Wake(x=0) & (CSN=0)

Sleep

Win Isolation and Assign CSN

Wake(x) & (CSN<>x) Wait-for-Key

Wake(x<>0)
& (CSN=x)

Configuration

Wait-for-Key
Command

Reset
Command

Lose Isolation
6\VWHP�&RQWURO�)XQFWLRQV ����

AMD
Isolation State
The isolation phase uses the InterWave registers listed in Table 5-12.

To start the isolation process for each card, the system software must:

Issue the initiation key to the card.

1. Send the Wake command to the card.

2. Set the PNP read data port address in PSRPAI.

The last step implemented in assembly language may look like this:

...
OUT 279h, 00h ; set PIDXR to 00h to select PSRPAI
OUT 0A79h, 80h ; set address in PSRPAI
...

These instructions set the address of the PNP Read Data Port register (PNPRDP) to 203h.
The address of PNPRDP can be set only within the isolation state.

At power-up, each card has its card select number set to 0x00 by default. To issue the
wake command, the system software writes 0x00 to the PNP Wake Command register
(PWAKEI). This command wakes up all cards, but only one card gains the isolation state
in the current iteration.

The isolation process depends on each PNP card having a unique 72-bit serial identifier.
These bits are broken into two 32-bit fields and an 8-bit checksum. The PNP configuration
software reads this identifier as part of the isolation process.

Table 5-12 Isolation-Phase Registers

Register Description I/O Address Type

PISOCI Serial isolation register. PNPRDP,PIDXR=0x01 rd-wr

PCSNI Card select number Reg. PNPRDP,0x0A79 rd-wr

PWAKEI PNP Wake[CSN] command 0x0A79, PIDXR=0x03 write
���� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
Figure 5-3 Reading the PNP Serial Identifier

To read the serial identifier, the system software generates 72 pairs of I/O read cycles to
the PNP Isolate Command register (PISOCI). The software then checks the data received
from each pair of reads. If the software reads 55h followed by AAh, it assumes that the
current serial bit is a 1; otherwise, it assumes a 0. During the first 64 reads, the software
generates a checksum using the received data. This checksum is compared with the last
8 bits of the sequence. Note that reading PISOCI is allowed only in the isolation state.

Note: If the first byte out of the serial EEPROM is the value A5h, then the IC is
automatically forced into PNP system mode. At that point, the card select number
can be assigned through the PNP Card Select Number Back Door register (PCSNBR)
to place the IC in the PNP configuration state.

Two possible situations may arise during each iteration in the isolation process. It is possible
to not ever receive the 0x55 and 0xAA data pair. It is also possible that the checksum may
not match. If either case occurs, the software makes the assumption that the I/O address
assigned to PNPRDP is in conflict and relocates it somewhere else. The software then
repeats the process. Even though the entire range between 0x203 and 0x3FF is available
to try, the software tries only a few locations before it assumes there are no PNP cards
installed and exits.

If the current attempt to read a serial identifier is successful, then the software assigns the
isolated card a unique card select number (CSN). The CSN must be a number in the range
of 1 to 255 (FFh). In the next iteration, only PNP cards whose CSN are still 00h participate
in the isolation process. The software continues this process until the last card is isolated.

See the IwavePnpIsol DDK function for an example of the isolation process.

Enable Write
to CSN

IOW to
PCSNI

PNP
Configuration

State

72 Bits of Serial
ID Read

Get Next Serial
Identifier Bit

Read 55h from
PISOCI

ID Bit = 1?

Reset Serial
Identifier Address

SD[1:0] = (0,1)?

PNP Sleep State

Next Read of
PISOCI

SD(1:0)=(1,0)?

Isolation State
Enter

Yes

No

Yes

No

Yes

No

No

Yes

Read AAh from
PISOCI
6\VWHP�&RQWURO�)XQFWLRQV ����

AMD
Sleep State
From this state, a card can enter either the isolation state or the configuration state. If the
PNP wake command is issued by writing 00h to the PWAKEI register, then all cards with
a CSN = 00h (not yet isolated) enter the isolation state. If the wake command is issued by
writing a non-zero value to PWAKEI, the card whose CSN matches this non-zero value
enters the configuration state.

Configuration State
In this state, the system software can read the card's resource requirements and allocate
them.

Card Control and Logical Device Configuration Registers
Programming the InterWave PNP functions requires a good working knowledge of the PNP
registers. The following subsections introduce these registers in logical order and describe
their functions in detail.

Table 5-13 summarizes the first registers encountered in the PNP configuration phase.

Reading the PNP Resource Data register (PRESDI) returns one byte of resource data from
the InterWave IC while in the configuration state. These data come from the serial EEPROM.
Software must read the PNP Resource Data Status register (PRESSI) to confirm that
resource data are available before reading PRESDI. If PRESSI[0] = 1, then new resource
data are available. Reading PRESDI resets this bit.

The PNP Logical Device Number register (PLDNI) selects an InterWave logical device.
There are five such logical devices:

■ Audio

■ External device (typically a CD-ROM)

■ Game port

■ AdLib–Sound Blaster emulation

■ MPU-401 emulation

The PNP Configuration Control Command register (PCCCI) has three independent
commands associated with it, as described in Table 5-14.

Table 5-13 PNP Card Control Registers

Register Description I/O Address Type

PCCCI PNP Configuration Control
Command

A79h, PIDXR = 02h write

PRESDI PNP Resource Data PNPRDP, PIDXR = 04h read

PRESSI PNP Resource Data Status PNPRDP, PIDXR = 05h read

PLDNI PNP Logical Device Number [PNPRDP, 0A79h]/
PIDXR = 07h

read-write
���� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
The system software should always wait 10 ms after issuing a reset command before
accessing auto-configuration ports.

For information about the registers used to activate the logical devices, see “PUACTI,
PRACTI, PGACTI, PSACTI, PMACTI—PNP Activate Registers” on page 12-24. For
information about the registers used to check for possible I/O conflicts with the logical
devices, see “PURCI, PRRCI, PGRCI, PSRCI, PMRCI—PNP I/O Range Check Registers”
on page 12-24.

To determine whether an I/O range conflict exists, the system software should use the
following procedure:

Generate I/O reads from all ports to be used by a logical device.

1. Verify that the data values 55h and AAh are received.

2. If the data values are incorrect, assume that a conflict exists and relocate the I/O range.

The software initiates this checking mechanism by enabling the I/O range check logic. It
does this by writing 02h to the corresponding I/O range check register. With bit 0 of these
registers set to 1, the logic should return the value 55h from the I/O ports. With bit 0 set to
0, the logic should return the value AAh from the ports. Otherwise, software should assume
a conflict and relocate the I/O address. This operation must be conducted with the
corresponding device in the inactive state.

Bit 0 of the activate registers indicates the state of the corresponding logical device. If this
bit is set, the device is active; otherwise, the device is inactive.

See the IwavePnpIOchk DDK function for an example of I/O-conflict checking.

Resource Requirements
Internally, the InterWave local memory control module reads resource requirements
information from the serial EEPROM. The system control module then makes the resource
data available to the system software one byte at a time through the PNP Read Data Port
register (PNPRDP).

The first byte of each data item contains information indicating the ID of the item and the
number of bytes of data contained in the item. Furthermore, these data items are classified
as small or large item structures. A 0 in the most significant bit of the first byte indicates a
small data item structure (2 to 8 bytes), whereas a 1 indicates a large data item structure.

Table 5-14 PCCCI Configuration Commands

Configuration Command PCCCI Setting Description

Reset command 01h Resets all logical devices. Resets all
configuration registers to their default
values. Preserves PSRPAI, PCSNI, and
the PNP state.

Wait-for-key command 02h Forces all PNP cards to enter the
wait-for-key state. Preserves PCNSI and
does not change any logical device
status.

Reset CSN 04h All PNP cards not in wait-for-key states
reset their CSN to 00h (PCSNI)
6\VWHP�&RQWURO�)XQFWLRQV ����

AMD
For a complete sample resource map, see Appendix B, “Sample Plug and Play Resource
Map.” For more information about PNP resource specification, see the PNP ISA
Specification, Version 1.0A published by the Microsoft Corporation.

Reading Resource Data
Software can read resource data only from cards in the configuration state. During the
isolation process all cards are placed in the sleep state. To place a card in the configuration
state, the software must issue the wake command to that card. All other cards remain in
the sleep state. Because the configuration state is attained from the sleep state, software
must read the 9-byte serial identifier again before reaching the resource data, but it can do
so one byte at a time rather than one bit at a time.

Software reads card resource data by polling the PNP Resource Status register (PRESSI)
and waiting for PRESSI[0] to be set. When this bit is set, one byte of resource data is ready.
Software must repeat this process for each new byte of data. Reading the data from the
PNP Resource Data register (PRESDI) clears PRESSI[0]. When new data becomes
available, the hardware sets PRESSI[0] again.

The resource data describes how many logical devices are on the card as well as the
resource requirements for each logical device. From this information, software can program
the logical device's configuration registers.

The IwavePnpPeek DDK function illustrates the reading of the card’s resource data
requirements.

,QWHU:DYH�3URJUDPPLQJ�LQ�313�6\VWHP�0RGH

If the InterWave IC powers up in PNP-compliant mode, the IC can still be forced into
PNP-system mode. If, after the IC is placed in the PNP isolation state, the first byte that is
read from the serial EEPROM is A5h, then the IC automatically goes into PNP-system
mode and the PNP Card Select Number Back Door register (PCSNBR) becomes available
to assign the CSN. Thus, configuration software can change whether the card is treated
as PNP compliant or legacy (depending on the end user’s system requirements) by writing
to the first byte of the serial EEPROM. According to the PNP-ISA specification, A5h is an
illegal value (not PNP compliant) because the most-significant bit (MSB) of the first byte
should be zero. Therefore, there is no danger that this value would be accidentally used in
a PNP-compliant situation.

Additional information on this topic is being developed.

Programming Tips and Examples
This section provides information about the following system control programming tasks:

■ Configuring the PNP Card

■ Isolating the PNP card

■ Programming the serial EEPROM

&RQILJXULQJ�WKH�313�&DUG

The InterWave DDK includes functions that allow access to the Plug and Play logic built
into the IC. A programmer can use these low-level functions to write a program that isolates
and configures any PNP device present in the system. The program in Sample 5-1
illustrates the use of several DDK functions in configuring the PNP card. For general
information about using the DDK, see Chapter 18, “Programming With The Driver
���� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
Developer’s Kit.” For details about the PNP functions and other system control functions,
see Chapter 20, “System Control DDK Functions.”

Warning: This code should not be shipped to end-users. The iwinit.exe program is
the only approved method for configuring the InterWave IC in DOS.

Sample 5-1 Configuring the PNP Card

//###
//
// FILE: pnpinit.c
//
// PROFILE: Sample code to configure the part once it is in PNP mode. The user
// still has control over what resources get configured in the PNP interface via
// DOS variable IWCFG. IWCFG should be set defined as:
// IWCFG=P2XR, PCODAR, PCDRAR, PATAAR, P401AR, PUI1SI, PUI2SR, PRISI, PMISI,
// PSBISI, PUD1SI, PUD2SR, PRDSI
// If the variable is not defined in the environment then the part is initialized
// as if it were defined as follows:
// IWCFG=220,32C,1F0,3F6,300,11,5,0,0,0,1,1,0
// This program is a good example of how to detect the InterWave hardware.
// Detection depends on the PNP ISA Specification-defined vendor ID. This vendor
// ID is assumed by the program to be 0x0496550A. IwavePnpPing takes this number
// with its bytes written backward as an argument.
//
//###

#include <stdio.h>
#include "iwprotos.h"
#include "iwdefs.h"
#include "iwcore.h"

void main()
{
 WORD reg;
 BYTE csn_max=0, csn=0;

 IwaveInit(); // get IWCFG environment variable
 IwavePnpKey();
 IwaveRegPoke(PCCCI, 0x05); // software reset (CSN and all)
 IwaveDelay(10); // wait for reset to complete
 csn_max = IwavePnpIsol(&iw.pnprdp); // Isolate card(s) if needed
 csn = IwavePnpPing(0x0A559604); // get InterWave's CSN
 if (csn == FALSE) {
 printf("InterWave Card not found\n");
 exit(-1);
 }

 printf("Found %u PnP Card(s) in System\n", csn_max);
 printf("InterWave CSN : %u\n", csn);
 printf("InterWave Vendor ID : %lx\n", iw.vendor);
 printf("PnP READ DATA PORT : %x\n", iw.pnprdp);

 IwavePnpKey();
 IwavePnpWake(csn); // Select the InterWave Board
 IwavePnpSetCfg(); // Configure PnP Interface Registers
 IwavePnpActivate(AUDIO, ON);
 IwaveGusReset(); // place IC in GUS compatible mode
6\VWHP�&RQWURO�)XQFWLRQV ����

AMD
//###
// Configure Memory and enable IRQ/DMA interrupts
//###

 IwaveMemCfg();
 _poke(iw.p2xr, 0x0b);
 if (_peek(iw.p2xr)!=0x0b)
 printf("Failure to write UMCR\n");

//###
// The following instructions apply to the codec and they are
// designed to leave it in a functional state. Remember legacy
// software should be able to run.
//###

 IwaveCodecIrq(CODEC_IRQ_ENABLE); // ensure that codec can IRQ
 IwaveRegPoke(URSTI, 0x07);
 IwaveCodecMode(CODEC_MODE3); // select mode 3
 IwaveRegPoke(CLOAI, 0);
 IwaveRegPoke(CROAI, 0);
 IwaveRegPoke(CLMICI, 0);
 IwaveRegPoke(CRMICI, 0);
 IwaveRegPoke(CLAX1I, 0x08);
 IwaveRegPoke(CRAX1I, 0x08);
 IwaveRegPoke(CFIG3I, 0x02);
 IwaveRegPoke(CLDACI, 0x00);
 IwaveRegPoke(CRDACI, 0x00);
 IwaveRegPoke(ICMPTI, 0x00);

//###
// If both audio DMA channels are the same, combine them
//###

 if(iw.dma1_chan == iw.dma2_chan) {
 reg = IwaveRegPeek(UDCI);
 IwaveRegPoke(UDCI, (reg & 0x07)|0x40);
 }

 if(iw.synth_irq == iw.midi_irq) {
 reg = IwaveRegPeek(UICI);
 IwaveRegPoke(UICI, (reg & 0x07)|0x40);
 }

 printf("InterWave Initialization. Version B0\n");
}

,VRODWLQJ�WKH�313�&DUG

The isolation process relies on the fact that each PNP-compliant device has a serial identifier
consisting of a 72-bit unique, non-zero number. This number has two 32-bit fields and one
8-bit checksum.

On power up, each device automatically sets its card select number (CSN) to 00h and
enters the wait-for-key state. Immediately after the device receives the initiation key sent
by the IwavePnpKey function, it enters the sleep state. In the sleep state, the device listens
���� 6\VWHP�&RQWURO�)XQFWLRQV

AMD
for a PNP wake command to enter isolation. After the device receives this command
(through the PWAKEI register), the I/O address of the PNP Read Data Port (PNPRDP)
must be set. Bits 1 and 0 of this address are always High, so only bits 9–2 need to be
specified. Set the address by writing 00h to the PNP Index register (PIDXR) and then writing
bits 9–2 of the address to PNPRDP. The IwavePnpIsol function performs these steps.

The IwavePnpIsol function checks to make sure the address for PNPRDP is conflict free.
The function starts with location 203h. If it encounters a problem, it tries a different location.
It tries various locations before assuming that no PNP cards are present in the system.

After securing a conflict free address for PNPRDP, IwavePnpIsol starts the isolation
process. For every PNP device in the system, IwavePnpIsol reads the PNP Isolate
Command (PISOCI) register 144 times. If no problems are encountered during the isolation
process, the function writes a card select number to the PNP Card Select Number (PCSNI)
register. The IwavePnpIsol function returns the last CSN assigned (greatest CSN).

3URJUDPPLQJ�WKH�6HULDO�((3520

This section describes how to program the serial EEPROM on the InterWave IC-based
board directly through the InterWave IC. The DDK provides the IwavePokeEEPROM and
IwavePeekEEPROM drivers that allow an application to easily program the serial
EEPROM. These drivers are written for the KM93C66 256x16 serial EEPROM and
compatible units. For a sample program that writes the contents of a file containing a PNP
resource map to the serial EEPROM, see Sample 5-2. For a sample resource map, see
Appendix B, “Sample Plug and Play Resource Map.”

The InterWave IC provides the means to program an on-board PNP serial EEPROM through
the PNP Serial EEPROM Control register (PSECI). Bits 3–0 of the PNP Serial EEPROM
Control register (PSECI) control the EEPROM:

Serial EEPROM Data Out (PSECI[0])
This bit corresponds to signal DO on the KM93C66; software reads data
from the serial EEPROM through this bit.

Serial EEPROM Data In (PSECI[1])
This bit corresponds to signal DI on the KM93C66; software writes data to
the serial EEPROM through this bit.

Serial EEPROM Serial Clock (PSECI[2])
This bit corresponds to signal SK on the KM93C66. This is the serial clock
that drives the data into or out of the serial EEPROM. This signal should not
be driven at a rate higher than 1 MHz.

Serial EEPROM Chip Select (PSECI[3])
This bit corresponds to signal CS on the KM93C66. This is the chip select
flag.

Note: To drive the serial EEPROM directly through PSECI, software must first set
the Serial EEPROM Mode bit of the PNP Serial EEPROM Enable register (PSEENI[0])
and the IC must be in the PNP configuration state.
6\VWHP�&RQWURO�)XQFWLRQV ����

AMD
Sample 5-2 Code to Program the Serial EEPROM

/*///
/ FILE: eewrite.c
/
/ REMARKS: This program reads the contents of a file containing the data to be
/ stored in the serial EEPROM attached to the InterWave IC and programs the
/ EEPROM with it. The reads back the data from the EEPROM and verifies that it
/ was written correctly.
/
///*/

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include "iwdefs.h"
#include "iwprotos.h"
#include "iwcore.h"

void main()
{
 FILE *fp;
 BYTE eeprom1[512];
 BYTE eeprom2[512];
 WORD i, j, k;
 char yorn;

 fp = fopen("plugplay.txt", "r"); /* file where resource map is stored */
 i = 0;
 while(fscanf(fp, "%x\n", &eeprom1[i++]) != EOF);
 for(j = i; j < 512; j++) eeprom1[i] = 0;

 IwaveInit(); /* Initialize global var "iw" */
 printf("Warning! This program will write over the contents of the Serial\n");
 printf(" EEPROM located on the InterWave-based sound card.\n");
 printf(" Proceed? (y,n)\n");
 scanf("%1c", &yorn);

 if(yorn == 'y') {
 IwaveRegPoke(PLDNI,0x00);
 IwaveRegPoke(PUACTI,0x00);
 IwaveRegPoke(PSEENI,0x01); /* Activate EEPROM control mode */
 PokePSECI(0x00);
 IwavePokeEEPROM(eeprom1); /* Program serial EEPROM */
 IwavePeekEEPROM(eeprom2); /* Read back data from serial EEPROM */

 for(i = 0; i < 512; i++) { /* Verify write operation */
 if (eeprom1[i]!=eeprom2[i]) {
 printf("Failed. Expected %x, but found %x\n", eeprom1[i], eeprom2[i]);
 break;
 }
 }
 }
}

���� 6\VWHP�&RQWURO�)XQFWLRQV

CHAPTER
6
 CODEC/MIXER
The InterWave codec module provides a complete audio subsystem for PC multimedia
integration. The codec module includes the codec 16-sample record and playback FIFOs,
the record analog-to-digital converter (ADC), the playback digital-to-analog converter
(DAC), the synthesizer DAC, a stereo mixer, attenuation and gain control for a variety of
mixer inputs and outputs, record and playback sample counters, and a timer.

This chapter covers the following topics:

■ Codec basics—briefly describes the components of the codec module.

■ Data paths—illustrates the flow of data through the codec components.

■ Register overview—lists of codec functions available through the programmable
registers

■ Initialization—discusses what the programmer needs to know about the codec module
when it is powered up or reset.

■ Interrupt structure—discusses the available codec interrupts and shows the equations
that set and clear them.

■ Operating modes—describes the three operating modes of the codec module.

■ Data conversion—the possible data formats, the available sampling rates, and the
variable frequency playback mode.

■ FIFOs—describes the FIFOs and tells how to get sample information into and out of
them.

■ Mixer—describes the analog processing functions of the codec module.

■ Serial interface—describes the serial interface used to send data to and receive data
from an external digital signal processor (DSP).

■ Miscellaneous functions—describes the codec module timer and the general purpose
output pins.

■ Programming tips and examples

Codec Basics
The InterWave codec module contains the following components:

Standard 16-sample FIFOs:
The codec module connects to the system bus interface (SBI) through two
FIFOs, one each for record and playback. These FIFOs have programmable
thresholds and can generate interrupts when the selected threshold is
reached.

Record and playback sample counters:
Two 16-bit sample counters, one for playback and one for record, can be
used either for DMA transfers to the SBI or for transfers to the local memory
record and play FIFOs (LMRF and LMPF: see Chapter 8, “Local Memory
&RGHF�0L[HU ���

AMD
Control”). The record sample counter can also be used to count the number
of samples being passed into the LMRF from the synthesizer DSP.

Record ADC and playback DAC:
The ADC and DAC provide the processing necessary to get information from
the playback FIFO to the mixer and from the mixer to the record FIFO. These
converters are the coder and decoder for which the codec module is named.

Synthesizer DAC:
The stereo digital output of the InterWave synthesizer module is converted
to analog by the codec module.

Stereo mixer: The mixer provides analog input and output, signal routing, and mixing for
audio signals. It also provides attenuation and gain control and muting for
a variety of mixer inputs and outputs.

Serial DSP interface:
The serial interface allows an external general purpose digital signal
processor (DSP) to utilize the codec, mixer, and analog I/O resources of the
InterWave IC.

Timer: The programmable 16-bit timer with 10-µs resolution provides a timed
interrupt signal.

External control outputs:
Two of the IRQ pins (IRQ4, IRQ10) can be programmed to perform as
general purpose, digital control output pins.

Codec Data Paths
Figure 6-1 illustrates the flow of data and signals through the components of the codec
module.
��� &RGHF�0L[HU

AMD
Figure 6-1 Codec Data Paths

Register Overview
The following tables outline the codec and mixer functions that can be accomplished through
the InterWave programmable registers. For detailed information about the registers, see
the reference page listed in the last column of each table. These references point to the
applicable section in Chapter 13, “Codec/Mixer Registers.”

Table 6-1 through Table 6-3 group the codec and mixer functions into the following areas:

■ General control and configuration functions

■ Input and output control functions

■ DMA and IRQ functions

Table 6-1 Codec General Control and Configuration Functions

Function
Register and Bit

Field
Reference

Read codec initialization status CIDXR[7] 13-1

Protect the CPDFI, CRDFI, and CFIG1I registers CIDXR[6] 13-1

Set the indirect I/O address pointer (index) CIDXR[4:0] 13-1

Read and write to codec registers CDATAP 13-2

Determine whether upper or lower byte of 16-bit sample is ready in record FIFO CSR1R[7] 13-2

Determine whether left or right sample is ready in record FIFO CSR1R[6] 13-2

Determine if data is ready to be read from the record FIFO CSR1R[5] 13-2

Determine if sample has been lost due to overrun or underrun CSR1R[4] 13-2

Determine whether to write upper or lower byte of 16-bit sample to playback FIFO CSR1R[3] 13-2

External
Serial

Interface

To System
Bus Interface

(SBI))

From
Register
Data Bus

Synthesizer
Digital to Analog
Converter (DAC)

16-Sample
Playback

FIFO

Playback
Digital to Analog
Converter (DAC)

Record
Analog to Digital
Converter (ADC)

Counters,
Timers, and
Misc. Digital
Functions

Format
Conversion

Format
Conversion

16-Sample
Record
FIFO

Mixing and
Analog

Functions

Serial
Transfer
Control

Analog Input Pins Analog Output Pins

From
Synthesizer

From Register
Data Bus

Serial Data from
Synthesizer

Local Memory
Playback FIFO

(LMPF)

Local Memory
Record FIFO

(LMRF)
&RGHF�0L[HU ���

AMD
Determine whether to write left or right sample to playback FIFO CSR1R[2] 13-2

Determine if data can be written to the playback FIFO CSR1R[1] 13-2

Write data to the playback FIFO CPDR 13-4

Read data from the record FIFO CRDR 13-4

Select playback data format CPDFI[7:5] 13-6

Select stereo or mono playback CPDFI[4] 13-6

Select playback clock divider CPDFI[3:1] 13-6

Select playback crystal CPDFI[0] 13-6

Enable the record codec path CFIG1I[1] 13-7

Enable the playback codec path CFIG1I[0] 13-7

Set or read the state of the GPOUT flags CEXTI[7:6] 13-8

Determine if record FIFO is full CSR2I[7] 13-9

Determine if playback FIFO is empty CSR2I[6] 13-9

Read the revision ID number of the IC CMODEI[7,3:0] 13-10

Select codec operation mode CMODEI[6:5] 13-10

Set the playback sample counter load value CUPCTI, CLPCTI 13-11

Enable codec timer and timer interrupt CFIG2I[6] 13-11

Disable record sample counter CFIG2I[5] 13-11

Disable playback sample counter CFIG2I[4] 13-11

Select variable frequency playback mode CFIG3I[2] 13-12

Set the codec timer load value CUTIMI, CLTIMI 13-14

Determine if attempted read from empty record FIFO (underrun) CSR3I[3] 13-15

Determine if record FIFO is full (overrun) CSR3I[2] 13-15

Determine if attempted write to full playback FIFO (overrun) CSR3I[1] 13-15

Determine if playback FIFO is empty (underrun) CSR3I[0] 13-15

Select record data format CRDFI[7:5] 13-17

Select stereo or mono record CRDFI[4] 13-17

Select record clock divider CRDFI[3:1] 13-17

Select record crystal CRDFI[0] 13-17

Set variable playback frequency CPVFI 13-18

Set the record sample counter load value CURCTI, CLRCTI 13-19

Table 6-1 Codec General Control and Configuration Functions (Continued)

Function
Register and Bit

Field
Reference
��� &RGHF�0L[HU

AMD
Table 6-2 Codec Input and Output Control Functions

Function
Register and Bit

Field
Reference

Determine which input source is fed to the left/right ADC CLICI[7:6], CRICI[7:6] 13-4

Set gain for input to left/right ADC CLICI[3:0], CRICI[3:0] 13-4

Mute the left/right auxiliary 1/synthesizer input CLAX1I[7], CRAX1I[7] 13-5

Set gain for left/right auxiliary 1/synthesizer input CLAX1I[4:0], CRAX1I[4:0] 13-5

Mute the left/right auxiliary 2 input CLAX2I[7], CRAX2I[7] 13-5

Set gain for left/right auxiliary 2 input CLAX2I[4:0], CRAX2I[4:0] 13-5

Mute the left/right DAC output and ADC loopback CLDACI[7], CRDACI[7] 13-6

Set attenuation for left/right DAC output and ADC loopback CLDACI[5:0],
CRDACI[5:0]

13-6

Determine if input to left/right ADC is causing clipping CSR2I[1:0], CSR2I[3:2] 13-9

Specify loopback attenuation CLCI[7:2] 13-10

Enable loopback CLCI[0] 13-10

Select the output full-scale voltage CFIG2I[7] 13-11

Force the output of DACs to center of scale during playback underrun CFIG2I[0] 13-11

Select auxiliary 1 or synthesizer input CFIG3I[1] 13-12

Mute the left/right line input CLLICI[7], CRLICI[7] 13-13

Set gain for left/right line input CLLICI[4:0], CRLICI[4:0] 13-13

Mute the left/right microphone input CLMICI[7], CRMICI[7] 13-14

Set gain for left/right microphone input CLMICI[4:0], CRMICI[4:0] 13-14

Mute the left/right line output CLOAI[7[, CROAI[7] 13-16

Set gain for left/right line output CLOAI[4:0], CROAI[4:0] 13-16

Mute the left/right mono input CMONOI[7] 13-17

Mute the left/right mono output CMONOI[6] 13-17

Place AREF pin in high-impedance mode CMONOI[5] 13-17

Set attenuation for left/right mono input CMONOI[3:0] 13-17

Table 6-3 Codec DMA and IRQ Functions

Function
Register and Bit

Field
Reference

Disable DMA on sample counter interrupt CIDXR[5] 13-1

Read global interrupt status CSR1R[0] 13-2

Select I/O or DMA for record FIFO CFIG1I[7] 13-7

Select I/O or DMA for playback FIFO CFIG1I[6] 13-7

Select 1 or 2 channel DMA operation CFIG1I[2] 13-7

Enable codec interrupts CEXTI[1] 13-8

Determine if a record or playback DMA request is active CSR2I[4] 13-9

Enable record FIFO service request IRQ CFIG3I[7] 13-12

Enable playback FIFO service request IRQ CFIG3I[6] 13-12

Select the FIFO threshold CFIG3I[5:4] 13-12

Read status of codec timer IRQ CSR3I[6] 13-15

Read status of record FIFO IRQ CSR3I[5] 13-15

Read status of playback FIFO IRQ CSR3I[4] 13-15
&RGHF�0L[HU ���

AMD

);
Initialization
Three bits from the PNP Power Mode register (PPWRI[2:0]) must be set High before certain
paths in the codec module can be used. These bits, described below, enable or disable
the record path, the playback path, or the analog circuitry.

PPWRI[1], Codec Record Path Enable
Enables (High) or disables (Low) the record ADC

PPWRI[2], Codec Playback Path Enable
Enables (High) or disables (Low) the playback DAC

PPWRI[0], Codec Analog Circuitry Enable
Setting this bit Low puts the codec analog circuitry into a low-power state
and deactivates all the analog pins. The codec outputs, LINEOUT[L,R] and
MONOOUT, stay at their nominal voltage.

To set these bits, write 80h plus the hex value for the bit to the PPWRI register. For example,
to set PPWRI[1], write 82h to the register. To set all three bits, write 87h. These bits are
High on power-up and reset. When the InterWave IC is in suspend mode, the codec behaves
as if all three of these bits are Low.

Codec Interrupt Structure
The codec module can generate the following interrupts:

■ Playback and record FIFO I/O threshold reached

■ Playback and record sample counters receive an additional sample after the counter
has decremented all the way to zero

■ Codec timer decrements to zero

The codec module combines the result of the module's interrupt logic into one interrupt
signal and passes it to the interrupt selection logic of the system control module. Software
enables the codec interrupts onto the ISA bus by setting the Global Interrupt Enable bit of
the External Control register (CEXTI[1]) to High. Setting CEXTI[1] to Low disables the codec
interrupts. When any one or more of the codec interrupt events occur, the Global Interrupt
Status bit of the Codec Status Register 1 (CSR1R[0]) goes High.

For information about using the DDK to handle codec interrupts, see “Handling Codec
Interrupts” on page 6-20.

Equation 6-1 through Equation 6-8 show the actions required to set (CSET) and clear
(CCLR) all the latches associated with codec interrupts. There is one latch to drive each
of the three interrupt status bits in the Codec Status Register 2 (CSR2I). For a list and
definitions of the variables used in these equations, see Table 6-4.

Equation 6-1 Playback FIFO Interrupt Set

CSET_CSR3I[4] =

(((MODE == 1) + (MODE == 2)) • (Playback sample counter rollover)

+ (MODE == 3) • CFIG3I[6] • CFIG1I[6] • CFIG1I[0] • (Playback sample counter rollover)

+ (MODE == 3) • CFIG3I[6] • CFIG1I[6] • CFIG1I[0] • (Playback FIFO threshold reached)
��� &RGHF�0L[HU

AMD
Equation 6-2 Playback FIFO Interrupt Clear

CCLR_CSR3I[4] =

((IOW to CDATAP) • (RDB[4] • (CIDXR[4:0] == 18h)) + (IOW to CSR1R) ;

Equation 6-3 Record FIFO Interrupt Set

CSET_CSR3I[5] =

((MODE == 2) • (Record sample counter rollover)

+ (MODE == 3) • CFIG3I[7] • CFIG1I[7] • CFIG1I[1] • (Record sample counter rollover)

+ (MODE == 3) • CFIG3I[7] • CFIG1I[7] • CFIG1I[1] • (Record FIFO threshold reached)) ;

Equation 6-4 Record FIFO Interrupt Clear

CCLR_CSR3I[5] =

((IOW to CDATAP) • (RDB[5] • (CIDXR[4:0] == 18h)) + (IOW to CSR1R) ;

Equation 6-5 Codec Timer Interrupt Set

CSET_CSR3I[6] =

(((MODE == 2) + (MODE == 3)) • (Timer reaches zero)) ;

Equation 6-6 Codec Timer Interrupt Clear

CCLR_CSR3I[6] =

((IOW to CDATAP) • (RDB[6] • (CIDXR[4:0] == 18h)) + (IOW to CSR1R) ;

Equation 6-7 Codec Global Interrupt Status

CSR1R[0] =

(CSR3I[4] + CSR3I[5] + CSR3I[6]) • (MODE == 2 + MODE == 3)

+ (CSR3I[4] • (MODE == 1)) ;

Equation 6-8 Codec Interrupt Signal

CIRQ = CSR1R[0] • CEXTI[1] ;
&RGHF�0L[HU ���

AMD
Operating Modes
The codec module has three operating modes. Modes 1 and 2 provide the functionality of
the popular CS4231 codec device. Mode 3 is an AMD-defined mode that provides the
following new features:

■ Independent record and playback rates

■ Variable frequency playback mode, with 256 programmable sampling rates

■ I/O cycle interrupts

■ Record and playback FIFO thresholds

■ Volume controls for the line outputs and mute control for the mono output

Select the codec operating mode with the Mode Select field of the Mode Select, ID register
(CMODEI[6:5]). The values for each mode are:

mode 1 bits 6–5 = 00 (write 00h to CMODEI)

mode 2 bits 6–5 = 10 (write 40h to CMODEI)

mode 3 bits 6–5 = 11 (write 6Ch to CMODEI)

The details of operation for each mode are covered in the relevant sections of this chapter
and in the register reference pages of Chapter 13, “Codec/Mixer Registers.”

Data Conversion
The codec module provides analog-to-digital converters (ADCs) to feed the record FIFO
and digital-to-analog converters (DACs) from the playback FIFO. These functions operate
independently; any combination of ADC data format and sampling rate works with any
independent combination of DAC data format and sampling rate. The format-conversion
function lies between the FIFOs and the data conversion function. The data is 16-bit signed
as it enters the DACs and exits the ADCs.

'DWD�)RUPDW

The Playback Data Format register (CPDFI) and the Record Data Format register (CRDFI)
select the digital data format into the ADCs and out of the DACs. The register to be used
depends on the codec operation mode.

Table 6-4 Codec Interrupt Equation Variables

Variable Definition

CSR3I[6, 5, 4] The timer, record path, and playback path interrupt status bits of the Codec Status Register 3

CFIG3I[7:6] The record and playback path mode 3 interrupt enables

CFIG1I[7:6] The record and playback path DMA-I/O cycle selection bits

CDATAP The codec indexed register data port

CIDXR[4:0] == 18h The codec indexed register index field is set to the Codec Status Register 3

RDB[X] The register data bus, where X is 6, 5, or 4. These bits on the data bus are set Low by
setting Low the corresponding bit in the Codec Status Register 3.

CSR1R The Codec Status Register 1

CEXTI[1] The global codec interrupt enable
��� &RGHF�0L[HU

AMD
Available Data Formats
The InterWave IC supports both mono and stereo in the following formats:

■ 8-bit unsigned linear

■ 8-bit µ-law

■ 8-bit A-law

■ 16-bit signed little endian

■ 16-bit signed big endian

■ 4-bit 4:1 IMA ADPCM

For information about the conversion formulas used for µ-law, A-law, and ADPCM
conversion, see the Proposal for Standardized Audio Interchange Formats, Version 2.12,
published by the Interactive Multimedia Association.

Software must load the sample counters with the correct value, depending on the type of
data selected. For information about calculating the sample counter load value, see
“Selecting Data Format and Sampling Rate” on page 6-25.

Mode 1 Format Control
In mode 1 operation, the Playback Data Format register (CPDFI) controls the data format
for both playback and record. Therefore, both playback and record must be in the same
format.

Mode 2 and 3 Format Control
In modes 2 and 3, the Playback Data Format register (CPDFI) controls the data format for
playback and the Record Data Format register (CRDFI) for record.

0RQR�0RGH

When the playback path is in mono mode (CPDFI[4] set Low), the codec drives both the
left and right DACs with the same data. When the record path is in mono mode (CRDFI[4]
set Low), the codec passes only the state of the left ADC onto the codec FIFO.

6DPSOLQJ�5DWHV

In mode 3 operation, software can specify the sampling rate independently for playback
and record. For playback, two ranges of sampling rates are available: standard or variable
frequency. For information about setting the data format and sampling rate using the DDK,
see “Selecting Data Format and Sampling Rate” on page 6-25.

Standard Mode—Playback and Record
In standard mode, the DACs and ADCs can each operate at one of 14 different sampling
rates ranging from 5.5 kHz to 48 kHz. In modes 1 and 2, set the playback and record
sampling rate in the Playback Data Format (CPDFI) register. In mode 3, set the playback
sampling rate in CPDFI and the record sampling rate in the Record Data Format (CRDFI)
register. For more information about selecting the sampling rate, see “CPDFI—Playback
Data Format” on page 13-6 and “CRDFI—Record Data Format” on page 13-17.
&RGHF�0L[HU ���

AMD
Variable Frequency Playback Mode
In variable frequency playback mode—enabled by setting the Variable Frequency Playback
Mode bit of the Configuration Register 3 (CFIG3I[2]) High—the playback frequency can be
varied continuously. Two ranges are possible, depending on which crystal has been
selected in the Crystal Select bits of the Playback Data Format (CPDFI[0]) or Record Data
Format (CRDFI[0]) registers. Each range has 256 steps, determined by the value stored
in the Playback Variable Frequency register (CPVFI). Table 6-5 lists the available ranges.

6\QWKHVL]HU�'$&

The codec module converts the stereo digital output of the synthesizer module to analog.
It multiplexes the outputs of the left and right synthesizer DACs with the AUX1[L,R] inputs
before passing them, through attenuators, into the main mixer. The InterWave IC presents
the digital data to the synthesizer DACs as stereo, 16-bit signed, 44.1-kHz samples.

Codec FIFOs
The codec module connects to the system bus interface (SBI) through two 16-sample record
and playback FIFOs. As an enhancement to the CS4231, the FIFOs have programmable
thresholds (full, half full, and empty) and can generate interrupts in response to
threshold-reached events.

These FIFOs can be accessed through either DMA cycles or programmed I/O cycles. To
remove data from the record FIFO, read the Record Data register (CRDR). To put data in
the playback FIFO, write to the Playback Data register (CPDR). These direct registers share
the same I/O address (PCODAR + 3).

In addition to the codec FIFOs, the InterWave IC allows local DRAM to be configured as
very large playback and record FIFO buffers. These can be as large as 256 Kbytes each.
See Chapter 8, “Local Memory Control” for information about using local memory as FIFO
buffers.

'DWD�2UGHU

Table 6-6 shows how data is ordered into and out of the FIFOs from the CPU's perspective.
In this table, S stands for sample, which is followed by a number that implies the order;
L stands for left channel; and R stands for right channel.

Table 6-5 Variable Frequency Formula and Ranges

Oscillator Formula for Frequency Range CPDFI[0]

16.9344 MHz 16,934,400/(16 • (48+CPVFI)) 3.5 kHz to 22.05 kHz 1

24.576 MHz 24,576,000/(16 • (48+CPVFI)) 5.0 kHz to 32.00 kHz 0
���� &RGHF�0L[HU

AMD
),)2�7KUHVKROGV

In mode 3 operation, software can set the FIFO thresholds at which DMA or interrupt
requests become active to one of three configurations. Specify the threshold configuration
with the FIFO Threshold Select field of Configuration Register 3 (CFIG3I[5:4]). Table 6-7
shows the possible configurations.

'0$�7UDQVIHUV

The InterWave IC generates separate DMA request signals for the record and playback
FIFOs. In systems that can spare only a single DMA channel, the IC provides a mode that
allows the playback DMA request pin to function as either the record or playback DMA
request pin. In this mode, simultaneous record and playback operation is prohibited; only
playback or record, but not both, will function.

Use Configuration Register 1 (CFIG1I) to select DMA operation for the record and playback
FIFOs and 1-channel or 2-channel DMA operation. Setting the Record FIFO I/O Select bit
(CFIG1I[7]) and the Playback FIFO I/O Select bit (CFIG1I[6]) both Low selects DMA
operation for record and playback respectively. Setting the 1 or 2 channel DMA Operation
Select bit (CFIG1I[2]) High selects single-channel operation and setting it Low selects
2-channel. These bits are protected; to write to these bits, the Mode Change Enable bit of
the Codec Index Address register (CIDXR[6]) must be set High.

If the record or playback paths are disabled—by setting the Record Enable (CFIG1I[1]) or
Playback Enable (CFIG1I[0]) bits Low—after the associated DMA request signal has

Table 6-6 FIFO Data Ordering

Sample Data Format Order (first byte, second byte,...)

4-bit ADPCM mono (S2 in bits 7–4; S1 in bits 3–0), (S4 in bits 7–4; S3 in bits
3–0), . . .

4-bit ADPCM stereo (S1R in bits 7–4; S1L in bits 3–0), (S2R in bits 7–4; S2L in bits
3–0), . . .

8-bit mono (linear, µ-law, A-law) S1, S2, S3, . . .

8-bit stereo (linear, µ-law,
A-law)

S1L, S1R, S2L, ...

16-bit mono little endian S1 [7:0], S1[15:8], S2 [7:0], ...

16-bit mono big endian S1[15:8], S1[7:0], S2[15:8], ...

16-bit stereo little endian S1L[7:0], S1L[15:8], S1R[7:0], S1R[15:8], S2L[7:0], ...

16-bit stereo big endian S1L[15:8], S1L[7:0], S1R[15:8], S1R[7:0], S2L[15:8], ...

Table 6-7 FIFO Threshold Configurations

CFIG3I[5:4] Name Record FIFO State Playback FIFO State

0 0 Minimum Not empty Not full

0 1 Middle Half full Half empty

1 0 Maximum Full Empty

1 1 Reserved
&RGHF�0L[HU ����

AMD
become active, the circuitry continues the sample transfer (waiting for the acknowledge)
as if the path were still enabled. After this final transfer, no other DMA requests occur.

Normally, DMA requests for the playback FIFO occur one after another until that FIFO is
full, and DMA requests for the record FIFO occur one after another until that FIFO is empty.
However, in mode 3 operation, the FIFO thresholds can be set to minimum, middle, and
maximum using CFIG3I as listed in Table 6-7; the threshold configuration specifies the
point at which the DMA request becomes active. Table 6-8 shows the number of samples
transferred per DMA request-acknowledge cycle. The “Samples per DRQ” column is valid
in modes 1 and 2 or in mode 3 when the threshold is set to minimum. In mode 3, when the
threshold is middle or maximum, the IC transfers more data; after DMA acknowledge
becomes active, samples are transferred until the playback FIFO is full or the record FIFO
is empty (depending on which FIFO is being serviced).

Note: Middle and maximum mode can cause the chip to burst DMA data for more
time than the ISA bus was designed to allow. In some ISA systems, use of these
modes cause ISA-bus refresh cycles to be skipped. Some ISA-bus functions, such
as video controllers and additional-system-memory cards, rely on these refresh
cycles to retain DRAM integrity.

When the Record FIFO Is Disabled
If software disables the record FIFO by setting CFIG1I[1] Low (or under the special
circumstance of enabling both the record and playback paths for DMA but selecting
single-channel DMA operation—CFIG1I[2:0] = 1, 1, 1), the codec clears all data still in the
FIFO so that when it is reactivated, no old data is available. The codec subsequently allows
four sample periods to clear the record data path prior to the FIFO (format translation and
filtering); then it disables the record path to minimize power consumption.

When the Playback FIFO Is Disabled
If software disables the playback FIFO by setting CFIG1I[0] Low, the following events occur:

The codec mutes the playback audio immediately.

1. The playback FIFO is immediately cleared (emptied).

2. Four sample periods later the codec disables the playback path to minimize power
consumption.

Table 6-8 Samples and Cycles per DMA Request

8-bit DMA 16-bit DMA

Sample Data
Format

Samples per DRQ Cycles per DRQ Samples per DRQ Cycles per DRQ

4-bit ADPCM mono 8 4 8 2

4-bit ADPCM stereo 4 4 4 2

8-bit mono (linear,
µ-law, A-law)

1 1 2 1

8-bit stereo (linear,
µ-law, A-law)

1 2 1 1

16-bit mono 1 2 1 1

16-bit stereo 1 4 1 2
���� &RGHF�0L[HU

AMD
,�2�7UDQVIHUV

Software can move samples through the FIFOs using I/O cycles instead of DMA. In mode
1 or mode 2 operation, the IC generates interrupts (if not masked) when the sample counter
decrements to zero. In mode 3 operation, the IC generates interrupts (if not masked) when
the FIFOs reach their selected threshold levels. The codec generates the interrupts at the
same point that DMA requests would have gone active had DMA operation been selected.

Status bits are provided for:

■ Record FIFO data available

■ Playback FIFO buffer available

■ Record FIFO overrun and underrun

■ Playback FIFO overrun and underrun

Select I/O operation for the record and playback FIFOs by setting the Record FIFO I/O
Select (CFIG1I[7]) and Playback FIFO I/O Select (CFIG1I[6]) bits High. These bits are
protected; to write to these bits, set the Mode Change Enable bit of the Codec Index Address
register (CIDXR[6]) High.

$'3&0�,VVXHV

When the record or playback paths are in ADPCM mode, there are special requirements.
Each path has an index variable that is used during ADPCM translation. This index is
initialized at the beginning of the translation and changes to a different state after every
sample passes through the compressor or expander. For proper operation, system software
must synchronize initialization of the index with the hardware. For example, if an ADPCM
waveform is being played through the expander and the user pauses the playback in the
middle of the wave file, then the current state of the index must be preserved in case the
user wishes to resume play. However, if playback of the file completes, then the ADPCM
index can be initialized for playback of the next wave file.

For the record path, when the Record Enable bit of Configuration Register 1 (CFIG1I[1]) is
activated (set High), the index is calculated with every sample (assuming the record path
is in ADPCM mode) after starting from its initialized state. Then, when CFIG1I[1] is
deactivated (set Low), the index is placed back into its initialized state. It is also possible
to stop the record FIFO with the ADPCM Record Suspend bit of Configuration Register 3
(CFIG3I[3]). This bit stops the format-conversion compressor from taking samples from the
ADC, but does initialize the ADPCM index. After CFIG3I[3] is set, system software must
empty the remaining samples from the FIFO. When CFIG3I[3] is cleared, record continues
as if no interruption ever occurred. If there is a FIFO overrun during ADPCM record, then
the index used to compress the data loses synchronization with the file that is created; thus,
when the file is played back, distortions will occur.

For the playback path, as with record, the Playback Enable bit of Configuration Register 1
(CFIG1I[0]) controls both the FIFO and the ADPCM index. When CFIG1I[0] is low, the FIFO
is cleared and the ADPCM index in the format conversion’s expander is initialized. Playback
can be paused without initializing the index by discontinuing the data flow to the IC (for
example, disabling the system’s DMA controller from passing any data from system memory
to the IC). Discontinuing the data flow causes a playback-FIFO underrun error which in turn
causes the expander to stop (freezing the index). The underrun is reported as a sample
error; during the underrun condition, the D/A Output Force Enable bit of Configuration
Register 2 (CFIG2I[0]) determines what sample is sent to the DAC. After data flow is
resumed, the expander continues. If any samples are skipped (with a FIFO overrun error),
&RGHF�0L[HU ����

AMD
then the ADPCM index is not synchronized with the data to be played and distortions will
occur.

6DPSOH�&RXQWHUV

The codec contains two 16-bit sample counters, one for playback and one for record. Each
counter decrements one count for each sample loaded into the playback FIFO or unloaded
from the record FIFO through DMA transfer. When the counter decrements to 0, the
InterWave IC generates an interrupt (if not masked) and reloads the counters on the next
sample transfer after the counter has reached zero. Program the load value of the counters
with the Upper/Lower Record Count registers (CURCTI and CLRCTI) and the Upper/Lower
Playback Count registers (CUPCTI and CLPCTI). Reading these registers returns the load
value, not the current state of the counter. Check sample counter status in the Record FIFO
Interrupt Request and Playback FIFO Interrupt Request fields of the Codec Status Register
3 (CSR3I[5] and CSR3I[4]).

Table 6-9 shows the relationship between the data format and the rate at which the sample
counters decrement. To correctly program the counters, software must consider the data
format to determine how many bytes represent a single sample. For example, 16-bit stereo
data uses four bytes per sample and the counters decrement only after four bytes have
been transferred. For information about setting the sample counters and tracking sample
transfers with the DDK, see “Selecting Data Format and Sampling Rate” on page 6-25.

The information in Table 6-9 is adjusted for 16-bit DMA modes such that sample events
depend only on the sample format and the number of bytes transferred and not on the DMA
width. For example, if the codec is in 8-bit mono mode and two samples are transferred
through a 16-bit DMA cycle, then the counter decrements twice. Table 6-9 also applies to
serial transfers to the local memory record and playback FIFOs.

Only playback DMA transfers occur if the codec is in single-channel DMA mode and both
the playback and record paths are enabled for DMA. All codec DMA transfers discontinue
if the DMA Transfer Disable bit of the Codec Index Address register (CIDXR[5]) is High and
an interrupt is set as indicated by the Playback FIFO Interrupt Request bit or the Record
FIFO Interrupt Request bit of the Codec Status Register 3 (CSR3I[4] or CSR3I[5]) being
High. I/O writes to a full playback FIFO and I/O reads from an empty record FIFO do not
cause the sample counter to decrement.

Mode 1
In mode 1, the playback sample counter decrements when the playback path is enabled
(the Playback Enable bit of Configuration Register 1 (CFIG1I[0]) set High) and a sample is
loaded into the playback FIFO from system memory, or when the record path is enabled
(the Record Enable bit of Configuration Register 1 (CFIG1I[1]) set High) and a sample is

Table 6-9 Sample Counter Decrement Events

Sample Data Format Event that causes the counter to decrement (sample event)

4-bit ADPCM mono Every 4 bytes (8 mono samples) transferred through DMA or I/O cycles

4-bit ADPCM stereo Every 4 bytes (4 stereo samples) transferred through DMA or I/O cycles

8-bit mono Every byte (1 mono sample) transferred through DMA or I/O cycles

8-bit stereo Every 2 bytes (1 stereo sample) transferred through DMA or I/O cycles

16-bit mono Every 2 bytes (1 mono sample) transferred through DMA or I/O cycles

16-bit stereo Every 4 bytes (1 stereo sample) transferred through DMA or I/O cycles
���� &RGHF�0L[HU

AMD
unloaded from the record FIFO to system memory. When both playback and record are
enabled, the sample events from both the record and playback paths cause the counter to
decrement. The record sample counter is not available. The setting of the Record FIFO I/O
Select bit or the Playback FIFO I/O Select bit in Configuration Register 1 (CFIG1I[7] or
CFIG1I[6]) do not affect the sample counter’s behavior.

Mode 2
In mode 2, the playback sample counter decrements when the playback path is enabled
(CFIG1I[0] set High) and a sample is loaded into the playback FIFO from system memory.
The record sample counter decrements when the record path is enabled (CFIG1I[1] set
High) and a sample is unloaded from the record FIFO to system memory. The setting of
the Record FIFO I/O Select bit or the Playback FIFO I/O Select bit in Configuration Register
1 (CFIG1I[7] or CFIG1I[6]) do not affect the sample counter’s behavior.

Mode 3
In mode 3, the sample counters behave the same as in mode 2, with two exceptions: If the
Record FIFO I/O Select bit or the Playback FIFO I/O Select bit in Configuration Register 1
(CFIG1I[7] or CFIG1I[6]) are set High, the relevant counter does not count. And the Record
Sample Counter Disable bit or the Playback Sample Counter Disable bit of Configuration
Register 3 (CFIG3I[5] or CFIG3I[4]) must be Low for the counter to operate.

In mode 3, the playback sample counter can be decremented by reading samples from the
local memory playback FIFO or by DMA cycles. The record sample counter can be
decremented by writing samples to the local memory record FIFO, by writes of samples
from the synthesizer DSP to the local memory record FIFO, or by DMA cycles.

),)2�(UURU�&RQGLWLRQV

Error conditions during FIFO operations generate flags. Table 6-10 lists these errors and
their flags.

Mixer
The mixer provides the analog I/O, signal routing, and mixing for the audio signals.
Figure 6-2 on page 6-17 shows the left channel of the mixer.

Table 6-10 FIFO Error Conditions

Error Condition FIFO State Action Result

Playback FIFO
Underrun

Playback FIFO
empty

DAC needs another
sample

In mode 1, the last sample in the FIFO will be
reused; in modes 2 and 3, either the last sample
will be reused or zeros will be used based on the
state of CFIG2I[0]. The condition is reported in
CSR1R[4], CSR2I[6], and CSR3I[0].

Playback FIFO
Overrun

Playback FIFO
full

System bus interface
(SBI) writes another
sample

The sample is thrown out and CSR1R[3:2] are not
updated. The condition is reported in CSR3I[1].

Record FIFO
Underrun

Record FIFO
empty

System bus interface
(SBI) reads another
sample

The data is not valid and CSR1R[7:6] are not
updated. The condition is reported in CSR3I[3].

Record FIFO
Overrun

Record FIFO full ADC gets another
sample

The new sample is thrown out; condition is
reported in CSR1R[4], CSR2I[7], and CSR3R[2].
&RGHF�0L[HU ����

AMD
All inputs to the summing stage as well as the line and mono outputs can be muted under
program control.

2XWSXWV

The IC provides the following outputs:

line Stereo single-ended line drivers.

mono Single-ended line driver provides the sum of the left and right line output
signals. The source for the summation is after the output attenuator volume
control.

,QSXWV

The InterWave IC provides the following inputs:

Stereo Microphone Inputs (MIC)
Software can feed this input pair to the ADC through the analog-to-digital
(A/D) input multiplexer. This signal also sums into the output mixer. Software
can program the attenuation (gain) associated with the output mixer path.
The input can be muted.

Stereo Line Inputs (LINE)
Software can feed this input pair to the ADC through the A/D input
multiplexer. This signal also sums into the output mixer. Software can
program the attenuation (gain) associated with the output mixer path. The
input can be muted.

Stereo Auxiliary 1 Inputs (AUX1)
Software can feed this input pair to the ADC through the A/D input
multiplexer. This signal also sums into the output mixer. Software can
program the attenuation (gain) associated with the output mixer path. The
input can be muted.

Stereo Auxiliary 2 Inputs (AUX2)
This input pair sums into the output mixer path and does not connect to the
ADCs. Software can feed the AUX2 signal into the ADC as part of the
summed output of the output mixer. The attenuation (gain) is programmable.
The input can be muted.

Synthesizer DAC Output (Internal)
The output of the synthesizer DAC pair feeds into the output mixer. The
codec multiplexes this output with the AUX1 input through the Aux 1/Synth
Signal Select bit of the Configuration Register 3 (CFIG3I[1]).

Mono Input The mono input feeds into both the left and right output mixer paths. The
attenuation is programmable.

/RRSEDFN

The codec contains a loopback path from a point at the input to the ADCs to the output
mixer. The attenuation is programmable.

2XWSXW�0L[HU�WR�$'&�3DWK

The output of the output mixer can be fed into the ADCs through the ADC input multiplexer.
���� &RGHF�0L[HU

AMD
6LJQDO�)ORZ

Figure 6-2 shows the left channel of the stereo mixer; the right channel is identical. All the
I/O pins are stereo except MONOIN and MONOOUT. Each of the labeled triangles
represents attenuation (or gain) controls; the controlling register and value ranges are given.
The three encircled sigma characters are signal summations or mixers. The two trapezoids
are signal-selection multiplexers.

Figure 6-2 Left Half of the InterWave Mixer

Serial Interface
The codec module includes a serial interface that allows the following functions:

■ The synthesizer’s digital signal processor (DSP) results can be transferred to an external
serial DAC.

■ An external general purpose DSP can access the codec FIFOs.

■ The output of the record FIFO can be looped back to the playback FIFO.

■ Synthesizer data can be transferred to the codec record and playback FIFOs.

The serial transfer control logic consists of serial-to-parallel converters, parallel-to-serial
converters, bit-stream multiplexers, and state machines for the control signals and clock.
Most of the transfers operate from a 2.1-MHz, 50-percent duty-cycle clock that is derived
by dividing the 16.9344-MHz oscillator by 8. One exception is the transfers from the
synthesizer DSP to an external DAC; these transfers utilize exactly 32 clocks per frame,
based on the synthesizer frame rate. The other exception is the transfer of data between
the codec and the local memory controller; these transfers are clocked at about 8 MHz (the
16.9344-MHz oscillator divided by 2). Figure 6-3 illustrates the flow of data through the
codec.

CLLICI: –34.5 to +12dB

Main Mixer

To Right Main MixerCMONOI: –45 to 0dB

CLAX2I: –34.5 to +12dB

MONOIN

AUX2L

AUX1

MICL

LINEINL

CLMICI: –34.5 to +12dB

CFIG3I[1]
–34.5 to +12dB

CLAX1I:

CLOAI:
–46.5 to 0dB

LINEOUTL

MONOOUT

CMONOI[6]:
Mute

CLICI

CLCI: 0 to +22.5dB

Right Out

Left Out

CFIG2I[7]

Σ

Σ

Σ

Left
Record

ADC

CLCI: –94.5 to 0dB
CLDACI:
–94.5 to 0dB

Left
Synth
DAC

Record Multiplexer

Left
Playback

ADC

UMCR[1]
and
CLOAI[7]:
Mute

UMCR[0]:
Mute

UMCR[2]:
Mute

CMONOI[7]: Mute
&RGHF�0L[HU ����

AMD
Figure 6-3 Codec Data Flow

With the exception of local memory, the serial transfer control block multiplexes three
sources and three destinations. The Serial Transfer Mode field of the Compatibility register
(ICMPTI[7:5]) controls the possible modes, as shown in Table 6-11.

In general, if a codec FIFO is the destination, then software must adjust the format and
sampling rate of that path to match the values in Table 6-11; otherwise, indeterminate data
transfers result. For example, if ICMPTI[7:5] = 2, the playback path must be the same as
the synthesizer (16-bit stereo, 44.1 kHz). Or if ICMPTI[7:5] = 3, the playback path must be
set to match the record path. The modes whereby the synthesizer specifies the sampling
rate can be slower than 44.1 kHz if the Enhanced Mode bit of the Synthesizer Global Mode
register (SGMI[0]) is Low and the number of active voices set in the Synthesizer Active
Voices (SAVI) register is greater than 14. If the synthesizer operates at other than 44.1
kHz, then ICMPTI[7:5] = 1 and ICMPTI[7:5] = 2 do not function properly because the codec
does not support those rates. The modes in the above table cannot operate at the same
time as the local memory record or playback FIFOs.

Multiplexed Pins
Setting ICMPTI[7] High changes the definitions of four pins to be used for the external serial
port. See Appendix A, “Packaging and Pin Designations” for details.

Table 6-11 Serial Transfer Data Flow and Format

ICMPTI[7:5] Source Destination Format
Sampling

Rate

0 Serial transfer mode
not enabled

1 Synth DSP Record FIFO input 16-bit stereo 44.1 kHz

2 Synth DSP Playback FIFO input 16-bit stereo 44.1 kHz

3 Record FIFO output Playback FIFO input CRDFI[3:0] CRDFI[7:4]

4 Synth DSP External serial port out 16-bit stereo 44.1 kHz + ?

5 Record FIFO output External serial port out CRDFI[3:0] CRDFI[7:4]

External serial port in Playback FIFO input

Serial to
Parallel

Serial
Transfer
Control

Register Data Bus

Codec Module

ADC

Synth DSP

Synth DAC

Parallel
to Serial

Parallel
to Serial

Serial to
Parallel

Playback
FIFO

Record
FIFO

External
Serial
Port

Local Memory
Playback FIFO

Local Memory
Record FIFO

Parallel
to Serial

Serial to
Parallel
���� &RGHF�0L[HU

AMD
Parallel-to-Serial Converters
Each parallel-to-serial converter brings in 16 bits of data to be shifted out serially, starting
with bit 15 and ending with bit 0. The number of transfers, the data configuration, and the
order of the data vary with the mode. The parallel-to-serial converters behave as shown in
Table 6-12. For example, in 8-bit mono mode, there is one serial transfer for every two
samples, with the first sample on the least significant bits (LSBs) and the second on the
most significant bits (MSBs). In 16-bit stereo mode, there are two transfers for every sample
received. The parallel-to-serial converters indicate that there is data ready to be transferred
by setting a flag. The serial transfer control block responds by generating a pulse that is
intended to initiate the flow of data, MSB first. After the 16 bits are transferred, a clear pulse
is sent from the serial transfer control block so that new data can be loaded into the
parallel-to-serial converters.

Notes:

1. S stands for sample and is followed by a number that implies the order.

2. L stands for left channel and R stands for right channel.

3. * 16-bit stereo samples are sent left sample first, right sample second.

Serial-to-Parallel Converters
The serial-to-parallel converters are 16-bit slaves to the bit streams that drive them. A pulse
comes followed by the 16 bits of data, MSB first. As with the parallel-to-serial converters,
the data configuration and order is the same as for 16-bit DMA.

Miscellaneous Functions
The codec module contains two miscellaneous functions as part of its compatibility with
the CS4231 device.

&RGHF�7LPHU

A programmable 16-bit timer is available in modes 2 and 3. To enable timer, set the Timer
Enable bit of Configuration Register 2 (CFIG2I[6]) High. This timer has a resolution of
approximately 10 µs.

Specify the 16-bit counter preset with the Upper Timer (CUTIMI) and Lower Timer (CLTIMI)
registers. Writing to CLTIMI causes the combined 16-bit timer load value to be loaded into
the coded timer, so CUTIMI should be written to first. The counter decrements every 10 µs
until it reaches zero. At this point, the codec sets the Timer Interrupt bit in Codec Status
Register 3 (CSR3I[6]) and the Interrupt bit in Codec Status Register 1 (CSR1R[0]) both

Table 6-12 Parallel-to-Serial Converter Data Ordering

Sample Data Format Order (bits 15–0)
Samples Per Serial

Transfer

4-bit ADPCM mono S4, S3, S2, S1 4

4-bit ADPCM stereo S2R, S2L, S1R, S1L 2

8-bit mono (linear, µ-law, A-law) S2, S1 2

8-bit stereo (linear, µ-law, A-law) S1R, S1L 1

16-bit mono little endian S1[15:0] 1

16-bit mono big endian S1[7:0], S1[15:8] 1

16-bit stereo little endian S1L[15:0]* 1/2

16-bit stereo big endian S1L[7:0], S1L[15:8]* 1/2
&RGHF�0L[HU ����

AMD
High and generates an interrupt. The codec reloads the counter with the value CUTIMI and
CLTIMI on the next timer clock. To clear the timer interrupt, write a 0 to CSR3I[6] or write
any value to CSR1R. For more information about clearing the interrupt, see Equation 6-6
on page 6-7.

For a sample codec timer program, see “Programming the Codec Timer” on page 6-23.

([WHUQDO�&RQWURO�2XWSXWV

The codec multiplexes two InterWave pins between general purpose digital control outputs
and digital signals driving the IRQ4 and IRQ10 lines. To select these pins as general outputs,
set the Select GPOUT1–GPOUT0 Codec Flags bit of the Emulation IRQ register (IEIRQI[7])
High. When acting as output pins, the state of the pins reflects the state of the corresponding
control bits in the External Control register (CEXTI[7:6]). For more information about these
pins, see “IEIRQI—Emulation IRQ” on page 12-20.

Programming Tips and Examples
This section provides codec programming tips and examples using functions from the
InterWave Driver Developer’s Kit (DDK). For detailed information about the DDK functions,
see Chapter 21, “Codec/Mixer DDK Functions.”

+DQGOLQJ�&RGHF�,QWHUUXSWV

When any one or more of the codec interrupt events occur, the Global Interrupt Status bit
of Codec Status Register 1 (CSR1R[0]) goes High. Setting the Global Interrupt Enable bit
of the External Control register (CEXTI[1]) High enables codec interrupts onto the ISA bus.
Setting CEXTI[1] Low disables the interrupts. To enable codec interrupt requests onto the
ISA bus, issue the following call to the IwaveCodecIrq DDK function:

IwaveCodecIrq(CODEC_IRQ_ENABLE)

To mask the codec interrupts from the ISA bus, issue the following call:

IwaveCodecIrq(~CODEC_IRQ_ENABLE)

The IwaveHandler DDK function routes interrupt requests from all sections of the
InterWave IC to the appropriate callbacks. The code in Sample 6-1 corresponds to the code
segment within IwaveHandler that routes codec interrupt requests. This segment of code
goes through the following steps:

1. Determine if a codec interrupt has occurred by looking at CSR1R[0].

2. If an interrupt has occurred, determine the source of the interrupt from CSR3I.

3. Issue a call to the appropriate callback.

The callback must be registered by the application and its execution address stored
inside a DDK-defined iw variable. In particular, there are three callbacks whose
addresses should be stored within the following members of the iw variable:

codec_play_func
The address of the callback for interrupts from the playback path. This
function takes one argument, the contents of CSR3I, which contains
important status information other than the interrupt source, such as
FIFO error conditions.

codec_rec_func
The address of the callback for interrupts from the record path. This
function takes the same argument as codec_play_func .
���� &RGHF�0L[HU

AMD
codec_timer_func
The address of the callback for the codec timer. This callback accepts
no arguments and returns nothing to the calling program.

In each of the three cases above, the interrupt reporting bit is always cleared to allow
the reporting of other interrupts.

4. Clear the interrupt reporting bit in CSR3I.

The handler could have written any value to Codec Status Register 1 (CSR1R), which
would clear all interrupt reporting bits.

Sample 6-1 Codec Interrupt Handler

void IwaveHandler (void)
{
 ... /* See DDK source code for complete handler */

 /* step 1 */
 if (_peek(iw.pcodar + 0x02) & CODEC_INT) { /* Codec Interrupts? */
 BYTE source;
 ENTER_CRITICAL;
 _poke(iw.pcodar, _CSR3I);
 source = _peek(iw.cdatap);
 source &= (CODEC_PLAY_IRQ|CODEC_REC_IRQ|CODEC_TIMER_IRQ);

 /* step 2 for codec playback interrupt */
 if (source & CODEC_PLAY_IRQ) {
 /* step 3 */
 iw.codec_play_func(source);
 if ((iw.dma2 != NULL) && (iw.dma2->flags & CODEC_DMA) &&
 (iw.dma2->type == DMA_READ)) {
 iw.dma2->flags &= ~(DMA_BUSY|CODEC_DMA);
 iw.flags &= ~DMA_BUSY;
 iw.dma2->amnt_sent += iw.dma2->cur_size;
 }
 /* step 4 */
 _poke(iw.pcodar, _CSR3I);
 _poke(iw.cdatap, CODEC_REC_IRQ|CODEC_TIMER_IRQ);
 }
 /* step 2 for codec record interrupt */
 if (source & CODEC_REC_IRQ) {
 /* step 3 */
 iw.codec_rec_func(source);
 if ((iw.dma1 != NULL) && (iw.dma1->flags & CODEC_DMA) &&
 (iw.dma1->type == DMA_WRITE)) {
 iw.dma1->flags &= ~(DMA_BUSY|CODEC_DMA);
 iw.flags &= ~DMA_BUSY;
 iw.dma1->amnt_sent += iw.dma1->cur_size;
 }
 /* step 4 */
 _poke(iw.pcodar, _CSR3I);
 _poke(iw.cdatap, CODEC_PLAY_IRQ|CODEC_TIMER_IRQ);
 }

 if (source & CODEC_TIMER_IRQ) {
 iw.codec_timer_func();
&RGHF�0L[HU ����

AMD
 _poke(iw.pcodar, _CSR3I);
 _poke(iw.cdatap, (CODEC_PLAY_IRQ|CODEC_REC_IRQ));
 }
 LEAVE_CRITICAL;
 }
}

7UDQVIHUULQJ�'DWD�WR�WKH�&RGHF�3OD\EDFN�),)2�8VLQJ�'0$

The cplay.c program in Sample 6-2 shows how to transfer data into or out of the codec
using DMA transfer. This application is a .wav file player and recorder for any InterWave
IC-based sound board and illustrates the steps to follow when setting up the InterWave IC
and DMA controller for a transfer. To conduct DMA transfers to or from the codec, the DDK
provides the IwavePlayData function for playback and the IwaveRecordData function for
recording.

Sample 6-2 Servicing the Codec Playback FIFO Through DMA Transfer

/*///
/ FILE: cplay.c
/
/ REMARKS: This program illustrates the steps needed to conduct a DMA
/ transfer to the codec’s playback FIFO. Note how the transfer is described to
/ the DDK, how to register a callback and the DMA and IRQ structure variables.
/
///*/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include "iwdefs.h"
#include "iwprotos.h"
#include "iwcore.h"

BYTE playflag = 0; /* callback flag */

void CodecDma(BYTE source)
{
 if (source & CODEC_PLAY_IRQ)
 playflag++; /* flag completion of DMA xfer */
}

void main()
{
 IRQ irq1;
 DMA dma1;
 BYTE far *ptr, i;

 IwaveOpen(14, GUS_MODE);
 IwaveSetInterface(&dma1, NULL, &irq1, NULL); /* register DMA and IRQ structures */
 IwaveSetCallback(CodecDma, CODEC_PLAY_HANDLER); /* register callback */
 IwaveCodecMode(CODEC_MODE2); /* select codec mode */
 IwaveCodecIrq(CODEC_IRQ_ENABLE); /* make sure codec can IRQ */

 if ((dma1.pc_ram = IwaveDmaMalloc(16)) == NULL) { /* allocate memory for data */
���� &RGHF�0L[HU

AMD
 printf("Failed to allocate DMA buffer\n");
 goto bye;
 }
 ptr = (BYTE far *)dma1.pc_ram;

 for (i = 0; i <= 15; i++) /* load buffer with some data */
 *ptr++ = i;
 IwaveDataFormat(BIT8_ULAW, _CPDFI); /* set up data format */
 IwaveCodecCnt(PLAY, 16); /* load codec's sample counter */
 dma1.flags |= CODEC_DMA; /* this is a codec DMA xfer */
 dma1.type = DMA_READ; /* tell DMA controller this is a download */

 if (IwaveDmaCtrl(&dma1, 16) != DMA_OK) { /* program DMA controller */
 printf("DMA Failure\n");
 goto bye;
 }
 IwaveCodecTrigger(PLAYBACK); /* trigger DMA */
 IwaveDmaWait(); /* block until DMA is done */
 IwaveStopDma(PLAYBACK); /* disable play path and DMA channel*/

bye:
 printf("playflag: %x\n", playflag); /* flag is set by callback */
 farfree(dma1.pc_ram); /* free buffer */
 IwaveClose(); /* close down DDK and board */
}

3URJUDPPLQJ�WKH�&RGHF�7LPHU

The DDK provides the following routines to program and start the codec's 10-µs timer.

IwaveSetTimer
Loads the Upper Timer and Lower Timer registers (CUTIMI and CLTIMI)
with the specified value. For example, to have the timer decrement to zero
in about 0.5 seconds issue the following call:

IwaveSetTimer(50000)

IwaveStartTimer
Starts the timer by setting the Timer Enable bit of Configuration Register 2
(CFIG2I[6]) High. Setting this bit also enables the timer to generate an
interrupt as soon as the counter decrements to zero. If the software enables
the codec interrupts onto the ISA bus by setting the Global Interrupt Enable
bit of the External Control register (CEXTI[2]) High, a timer interrupt handler
(provided by the application) can be entered when the timer decrements to
zero.

IwaveStopTimer
Stops the timer. The timer counter continues to be reloaded with the contents
of CUTIMI and CLTIMI and continues to decrement unless explicitly
stopped. To disable the timer, issue a call to IwaveStopTimer with no
arguments.

Programming the timer is a simple process. The ctimer.exe program in Sample 6-3 sets
the timer to run for about 5 seconds. The counter is set up to generate an interrupt every
half second and the interrupt handler updates a count flag that allows the main program to
&RGHF�0L[HU ����

AMD
determine the number of seconds already elapsed. This program can be used to test codec
timer operation.

The important steps of the program are as follows:

1. Initialize the InterWave IC and sound board.

2. Register a callback routine for the timer interrupt event.

A call to the IwaveSetCallback function associates the CodecTimer function, defined
in the program, with the CODEC_TIMER_HANDLER message.

3. Register an IRQ variable.

4. Ensure that the codec interrupt request is passed on to the ISA bus with a call
to the IwaveCodecIrq function.

5. Load the timer counter through a call to IwaveSetTimer.

This function loads the Upper Timer (CUTIMI) and Lower Timer (CLTIMI) registers with
a value of 25,000. This setting causes the timer to run for 0.25 seconds before generating
an interrupt.

6. After the timer is loaded and the timer interrupt enabled, start the timer with a
call to IwaveStartTimer.

7. After 5 seconds, stop the timer with a call to the IwaveTimerStop function.

This step is necessary because the timer continues to run if it is not explicitly stopped.

During execution, the program monitors the contents of Codec Status Register 1 (CSR1R)
and Codec Status Register 3 (CSR3I). A codec interrupt request sets CSR1R[0] High and
the timer interrupt request sets CSR3I[6] High. Both of these bits should be zero at the end
of the program.

Sample 6-3 Codec Timer Program

/*///
/ FILE: ctimer.c
/
/ REMARKS: This program runs the codec's timer for 5 seconds. It programs the
/ timer to generate 2 interrupts per second. A callback is defined and registered.
/
///*/

#include <stdio.h>
#include <conio.h>
#include "iwdefs.h"
#include "iwprotos.h"
#include "iwcore.h"

BYTE ticks = 0x00;
BYTE ctimer = 0x00;

void CodecTimer(void) /* Codec Timer callback */
{
 if (++ctimer == 4) {
 ticks++;
 ctimer = 0x00;
���� &RGHF�0L[HU

AMD
 }
}

void main()
{
 IRQ irq1;

 /* step 1 */
 IwaveOpen(14, GUS_MODE); /* Initialize card and DDK */

 /* step 2 */
 IwaveSetCallback(CodecTimer, CODEC_TIMER_HANDLER); /* register timer callback */

 /* step 3 */
 IwaveRegisterIRQ(&irq1, NULL); /* register IRQ variable */
 IwaveCodecMode(CODEC_MODE3);

 /* step 4 */
 IwaveCodecIrq(CODEC_IRQ_ENABLE); /* make sure codec can IRQ */

 /* step 5 */
 IwaveSetTimer(25000); /* .25 seconds to interrupt */

 /* step 6 */
 IwaveTimerStart(); /* set timer off */

 while(!kbhit() && ticks<5) /* wait for 5 seconds to pass */
 { };

 /* step 7 */
 IwaveTimerStop();

 /* step 8 */
 IwaveClose(); /* close down DDK and sound board */
}

6HOHFWLQJ�'DWD�)RUPDW�DQG�6DPSOLQJ�5DWH

The IwaveDataFormat DDK function allows the calling program to select the data format.
For example, to set the record data format to stereo, 8-bit µ-law, issue the following call:

IwaveDataFormat(BIT8_ULAW|STEREO, REC_DFORMAT)

To select mono instead of stereo, do not include the STEREO symbolic constant.

The IwaveSetFrequency DDK function allows the calling program to specify the sampling
rate. For example, to set the playback sampling rate to 5.5 kHz, issue the following call:

IwaveSetFrequency(_CPDFI, 5500)
&RGHF�0L[HU ����

AMD
6HWWLQJ�WKH�6DPSOH�&RXQWHUV

Typically, programmers do not think in terms of samples but rather in terms of bytes of data.
The IwaveCodecCnt DDK function takes this into account and allows a calling program to
load the codec sample counters with the correct value by simply specifying the codec path,
the data format, and the total number of bytes of data. For example, to load the playback
counter with the appropriate value (512) for 2048 bytes of 16-bit big endian stereo data,
use the following call:

IwaveCodecCnt(PLAY, 2048)

IwaveCodecCnt takes the relationships in Table 6-9 on page 6-14 into account when
loading the sample counters. Therefore, the data format should be set first, perhaps using
a call to IwaveDataFormat .
���� &RGHF�0L[HU

CHAPTER
7
 SYNTHESIZER
The InterWave synthesizer uses data stored in off-chip DRAM or ROM, called local memory,
to generate a digital output. The synthesizer sends its output to a dedicated synthesizer
digital-to-analog converter (DAC) for conversion to analog audio signals.

This chapter covers the following topics:

■ Synthesizer features—a brief description of the programmable functions

■ Synthesizer basics—a brief description of the InterWave synthesizer’s operation

■ Register overview—an outline of the synthesizer programmable function

■ Initialization—the states of the programmable registers after reset or power-up

■ Interrupts—marking the boundaries between address ranges and volume segments

■ Addressing wavetable data—looping, pitch control

■ Envelope generation—volume segments

■ Envelope variations—tremolo, panning, effects volume

■ Low-frequency oscillators (LFOs) for tremolo and vibrato

■ Delay-based effects—echo, reverb, chorus, flange

■ Voice accumulation—combining all voices into the frame’s output

■ Loading patches

■ Playing digital audio files—ENPCM mode

■ Advanced Gravis UltraSound (GUS) compatibility mode
6\QWKHVL]HU ���

AMD
Synthesizer Features
The synthesizer offers the following programmable functions:

32 16-bit voices
The wavetable synthesizer offers 32 16-bit voices, all running at a 44.1-kHz
frame rate. Each voice supports sample interpolation (for pitch control),
envelope generation and volume control, tremolo, vibrato, and panning
(stereo positioning). Up to eight of the voices can be designated as effects
processors to handle special effects processing. A voice not designated as
an effects processor is called a signal voice.

Wavetable data in local memory
The InterWave synthesizer accomplishes voice generation and processing
by manipulating wavetable data, which is stored in local memory. The
InterWave IC supports up to 16 MB of DRAM and 16 MB of ROM for local
memory.

pitch control The address increment during playback of wavetable data determines the
playback rate. A process of linear interpolation between wavetable data
points smooths the output, filling in missing data values, especially when
the data is played back at a rate different than its recorded rate. Playing
back digital sound data at a rate different than the recording rate has the
effect of changing the overall pitch of the sound, much like speeding up or
slowing down a tape recorder during playback.

Volume The amplitude of a voice has three components: the volume envelope, the
left and right amplitude (panning, or stereo positioning), and LFO effects
(tremolo).

Low-frequency oscillators (LFOs) for tremolo, vibrato, and special effects
There are 64 LFOs—two associated with each of the 32 voices—that can
cause pitch and volume variation. When used with signal voices, the LFOs
produce tremolo (volume variation) and vibrato (pitch variation). Special
effects such as chorus and flange result when the LFOs are used with
effects-processor voices. Each LFO has programmable frequency, depth,
and ramp-rate parameters. The LFOs require local memory for storing the
programmable parameters and, therefore, do not operate in a ROM-only
hardware application.

Delay-based effects
Voices can be programmed to provide delay-based effects. Effects can be
assigned to individual voices or to any combination of voices.

Digital mixer with file playback
The synthesizer can serve as a digital mixer for playing back multiple digital
audio files, such as .wav files. Feeding each file through a separate signal
voice not only provides mixing, but also makes all the power of the
synthesizer available to control each signal, such as LFOs and special
effects.

UltraSound compatibility
The InterWave synthesizer is backward compatible with the synthesizer
used in the Advanced Gravis UltraSound (GUS) products.
��� 6\QWKHVL]HU

AMD
Synthesizer Basics
The diagram in Figure 7-1 shows the synthesizer module's interfaces to the local memory
control module, the system bus interface module and the codec module. It also shows the
internal signal flow of logic contained within the synthesizer module.

Figure 7-1 Basic Synthesizer Data Paths

The synthesizer processes voices in frames. A sample frame produces one left and right
digital output to the Synthesizer DAC. In each sample frame there are 32 slots, one for
each voice. During each slot, one voice is individually processed through the signal paths
shown in Figure 7-1.

At the beginning of processing for each voice, two samples are read from wavetable data,
S1 and S2. The wavetable address contains an integer and a fractional portion. The integer
portion addresses S1 data and is incremented by 1 to address S2 data. The interpolation
process uses the fractional portion when interpolating the sample, S data, from S1 and S2.
Wavetable data can be µ-law compressed, in which case S1 and S2 are expanded before
interpolation. The µ-Law bit of the Synthesizer Mode Select register (SMSI[6]) enables
µ-law decompression of wavetable data.

S data is then multiplied by volume values that add envelope, low-frequency oscillator (LFO)
variation, left and right stereo offset, and effects volume to produce three outputs: left
(LOUT), right (ROUT), and effects (EOUT).

Address
Control LFO Generator

External Memory

X X X

Left
Accumulator

Local Memory Control

System Bus
Interface

Synthesizer

Codec

Right
Accumulator

8 Effects
Accumulators

Parallel to Serial

Volume
Control

Local
Memory

Data,
Address

Registers

Interpolate
(µ-Law)

Serial Transfer
Control

Synthesizer
DAC

Serial Out

LOUT ROUT EOUT

S Data

Analog
Left

Analog
Right

DMA PIO

Address
Fraction

Data,
Address

S1, S2 Data
Wavetable Addresses
Effects Data

LFO Data, LFO Address
6\QWKHVL]HU ���

AMD
LOUT and ROUT connect to the left and right accumulators. EOUT sums into any, all, or
none of the eight effects accumulators if effects are enabled. The left and right accumulators'
data are output serially to the synthesizer DAC after processing all voices. Each effects
accumulator can accumulate any, all, or none of the other voices during a sample frame.
The outputs of the effects accumulators are written to local memory as wavetable data for
an effects processor voice to read. By having the effects processor voice read the data at
a later time, the InterWave IC can produce delay-based effects. A serial output to the codec
module is also available.

The diagram in Figure 7-2 shows signal flow from one voice to another voice. In this figure,
two of the 32 voices available are linked as a signal generator and an effects processor.

Figure 7-2 Envelope Generation and Effects Paths

6LJQDO�9RLFHV

When the Effects Processor Enable bit of the Synthesizer Mode Select register (SMSI[0])
is Low for a particular voice, that voice acts as a signal generator and is called a signal
voice. A signal voice plays back recorded data. A signal voice's input is wavetable data
contained in off-chip ROM or DRAM. The addressing rate of the wavetable data, set with
the Synthesizer Frequency Control (SFCI) register, controls the apparent pitch of the output.
The address rate can be modified by a frequency LFO (FC(LFO)) to add vibrato to a tone.
After interpolation, the sample data passes through three volume multiplying paths. The
volume multiplying paths in Figure 7-2 are broken down to show the individual components
of each volume multiply. The looping volume component (VOL(L)) can be looped and

X ΣX X

X

X

Σ

Σ

X

X

Left Acc

Right AccWT Data

FC(LFO) VOL(L) VOL(LFO) PAN ROFF

LOFF

EVOL

LOFF

Up to 30 Other Right Voice Inputs

Up to 30 Other Left Voice Inputs

Up to 30 Other Voice Inputs

To Synth DAC Right

To Synth DAC Left

FC(LFO)

EVOL

Write Read

Voice
(Signal

Generator)
AEP=0

Voice
(Effects

Processor)
AEP=1

8

X X XWT Data

FC(LFO) VOL(L) VOL(LFO) PAN ROFF

Address Address
Registers

Read
Address
��� 6\QWKHVL]HU

AMD
ramped under register control and provides a mechanism for volume envelope generation.
The volume LFO component VOL(LFO) adds LFO variations in volume resulting in tremolo.
Then the signal path splits three ways. The top two paths generate right and left data outputs
for the voice. The stereo positioning of a voice can be controlled in one of two ways:

■ In GUS-compatibility mode, a single PAN value can be programmed, placing the signal
in one of 16 pan positions from left to right.

■ In Enhanced mode, separate left and right offset values (LOFF and ROFF) can be
programmed to place the voice anywhere in the stereo field.

LOFF and ROFF can also be used to affect the total volume output. Left and right volume
outputs for the voice are then summed with all other voices' left and right outputs and the
summed output is converted to analog signals by the synthesizer DAC.

The effects volume (VOL(EVOL)) component controls the third signal path's volume. This
output can go to any, all, or none of the effects accumulators. An effects accumulator sums
all voice outputs assigned to it.

(IIHFWV�3URFHVVRU�9RLFHV

When the Effects Processor Enable bit of the Synthesizer Mode Select register (SMSI[0])
is High for a particular voice, that voice acts as an effects processor. An effects processor
adds delay-based effects to voices. When a voice is performing effects processing, it writes
one of the effects accumulators' outputs to local memory using the value in the Synthesizer
Effects Address High/Low registers (SEAHI and SEALI) as the current write address. The
current read address, as with all voices, is the value in the Synthesizer Address High/Low
registers (SAHI and SALI). The difference between write and read addresses provides a
delay for delay-based effects. The write address always increments by 1. The read address
increments an average of 1, but can have variations in time added by an LFO. These
variations in time generate chorus and flange effects. The volume components in the left
and right path determine how much of the effect is heard and the stereo position of the
effects processor's output.

$OWHUQDWH�(IIHFWV�6LJQDO�3DWKV

The effects signal path for a voice can take one of two routes, as determined by the Alternate
Effects Path bit of the Synthesizer Mode Select register (SMSI[4]). When SMSI[4] is High,
the interpolated data is only affected by the effects volume component (EVOL) before it is
fed back to the effects accumulators. If the effects path is fed back to the same effects
accumulator, EVOL controls the decay of echoes heard. When SMSI[4] is Low, the
interpolated data is affected by the looping volume component (VOL(L)), the LFO volume
component (VOL(LFO)), and EVOL.

Register Overview
The following tables outline the synthesizer control functions that can be accomplished
through the InterWave programmable registers. For detailed information about the
registers, see the reference page listed in the last column of each table. These references
point to the applicable section in Chapter 14, “Synthesizer Registers.”

Table 7-1 through Table 7-4 group the synthesizer functions into the following areas:

■ General control and configuration functions

■ Voice wavetable control functions

■ Voice volume control functions
6\QWKHVL]HU ���

AMD
■ IRQ functions

Table 7-1 Synthesizer General Control and Configuration Functions

Function
Register and

Bit Field
Reference

Specify the number of active voices SAVI[4:0] 14-1

Turn on auto-incrementing of IGIDXR (enhanced mode only) SVSR[7] 14-1

Enable all LFOs SGMI[1] 14-3

Enable enhanced mode operation SGMI[0] 14-3

Specify bits 23–10 of the local memory base address for voice LFO parameters SLFOBI[13:0] 14-3

Select the voice to be programmed SVSR[4:0] 14-1

Table 7-2 Synthesizer Voice Wavetable Control Functions

Function
Register and

Bit Field
Reference

Specify bits 23–22 of a voice’s local memory address SUAI[1:0] 14-4

Specify the starting address of a voice’s wavetable data SASHI, SASLI 14-4

Specify the ending address of a voice’s wavetable data SAEHI, SAELI 14-5

Specify the current address of a voice’s wavetable data SAHI, SALI 14-6

Specify the address where a voice’s effects data is being written SEAHI, SEALI 14-7

Specify the voice’s frequency control value SFCI 14-7

Read or specify the voice’s frequency LFO value (vibrato) SFLFOI 14-8

Specify the direction in which wavetable data is read SACI[6] 14-8

Enable wavetable bidirectional looping (direction changes at start and end boundary
addresses)

SACI[4] 14-8

Enable wavetable data looping SACI[3] 14-8

Specify the data width for wavetable data SACI[2] 14-8

Start and stop voice activity SACI[1:0] 14-8

Read state of wavetable address looping SACI[0] 14-8

Enable PCM operation SVCI[2] 14-10

Select voice input data from DRAM or ROM SMSI[7] 14-14

Enable µ-law decompression of voice input data SMSI[6] 14-14

Deactivate a voice SMSI[1] 14-14

Enable the alternate effects signal path SMSI[4] 14-14

Enable the voice as an effects processor SMSI[0] 14-14
��� 6\QWKHVL]HU

AMD
Table 7-3 Synthesizer Voice Volume Control Functions

Function
Register and

Bit Field
Reference

Specify the starting volume value (the low point of the volume ramp) SVSI page 14-9

Specify the ending volume value (the high point of the volume ramp) SVEI 14-9

Specify the current volume level SVLI 14-10

Specify the volume rate (how often the volume is incremented) SVRI[7:6] 14-10

Specify the volume increment SVRI[5:0] 14-10

Specify the direction of volume ramping SVCI[6] 14-10

Enable volume ramp bidirectional looping (direction changes at start and end
volumes)

SVCI[4] 14-10

Enable volume ramp looping SVCI[3] 14-10

Start and stop volume looping SVCI[1:0] 14-10

Read state of volume looping SVCI[0] 14-10

Read or specify the voice’s volume LFO value (tremolo) SVLFOI 14-11

Specify the voice’s pan value (if not in offset mode) SROI[11:8] 14-12

Read or specify the voice’s current right offset value (in offset mode) SROI[15:4] 14-12

Specify the voice’s target right offset value (in offset mode) SROFI[15:4] 14-12

Read or specify the voice’s current left offset value (in offset mode) SLOI[15:4] 14-13

Specify the voice’s target left offset value (in offset mode) SLOFI[15:4] 14-13

Read or specify the voice’s current effects volume value SEVI[15:4] 14-13

Specify the voice’s target effects volume value SEVFI[15:4] 14-14

Select which effects accumulator receives the voice’s effects output SEASI 14-14

Enable offset mode SMSI[5] 14-14

Table 7-4 Synthesizer IRQ Functions

Function
Register and

Bit Field
Reference

Determine which voice has generated an interrupt SVII[4:0] 14-2

Read the status of the wavetable address boundary IRQ for the specified voice SVII[7] 14-2

Read the status of the volume boundary IRQ for the specified voice SVII[6] 14-2

Determine which voice has generated an interrupt without clearing IRQs SVIRI[4:0] 14-2

Read the status of the wavetable address boundary IRQ w/o clearing SVIRI[7] 14-2

Read the status of the volume boundary IRQ w/o clearing SVIRI[6] 14-2

Read, clear, or set the wavetable address boundary IRQ SACI[7] 14-8

Enable or clear the wavetable address boundary IRQ SACI[5] 14-8

Read, clear, or set the status of the volume boundary IRQ SVCI[7] 14-10

Enable or clear the volume boundary IRQ SVCI[5] 14-10
6\QWKHVL]HU ���

AMD
Initialization
All registers are initialized to their default settings at power-up time or by a hardware reset.
The default settings are defined in Chapter 14, “Synthesizer Registers.” The global
registers are initialized by a hardware reset and the register array containing the
voice-specific registers is initialized with a 128-clock sequence following the hardware reset.
For more information about the voice-specific register array, see “Programming
Voice-Specific Registers” on page 7-30.

Setting the Reset GUS bit of the GUS Reset register (URSTI[0]) Low resets several of the
synthesizer registers. For a complete list of registers and events reset through URSTI[0],
see “URSTI—GUS Reset” on page 12-14.

After a return from suspend mode, the synthesizer registers are in the states they were in
before SUSPEND became active, provided that suspend-mode DRAM refreshing took
place—see Chapter 8, “Local Memory Control.”

Interrupts
Each active synthesizer voice can generate address and volume boundary interrupts. Both
address and volume interrupts are handled identically by internal hardware in terms of
reporting and clearing. There are three levels of reporting for these two types of interrupts.
When a boundary is crossed during voice processing, depending on the boundary, either
the voice-specific Wavetable IRQ bit of the Synthesizer Address Control register (SACI[7])
or the voice-specific Volume IRQ bit of the Synthesizer Volume Control register (SVCI[7])
indicates the type of interrupt and the global Wavetable IRQ bit or Volume IRQ bit of the
Synthesizer Voices IRQ register (SVII[7] or SVII[6]) is set Low. SVII also contains the
number of the voice that caused the interrupt (SVII[4:0]). SVII[7] and SVII[6] are mirrored
in the Volume Loop IRQ and Address Loop IRQ bits of the IRQ Status register (UISR[6]
and UISR[5]). A program should read UISR to determine the source of the interrupt. Then,
when the program writes a value of 8Fh to the General Index register (IGIDXR) to index
SVII, the contents of SVII are latched and the process of clearing all three levels of reporting
begins. UISR[6] and UISR[5] are cleared shortly after the write of 8Fh to IGIDXR. When
the voice that caused the interrupt is next processed, SACI[7] and SVCI[7] are cleared.

Multiple voice interrupts can be “stacked” by the voice interrupt reporting logic. If another
voice reaches a boundary during processing and SVII already contains an active interrupt,
the voice-specific SACI[7] or SVCI[7] holds the new interrupt until the active interrupt has
been cleared from SVII. SVII is then updated with the new interrupt during processing of
the new interrupting voice.

SVII[7:6] and the number of the voice that caused an interrupt can be observed by reading
the Synthesizer Voices IRQ Read register (SVIRI). Reading SVIRI does not clear any stored
interrupt reporting bits. Reading this register allows a program to check the interrupt
reporting bits and change the boundary condition that caused the interrupt before clearing
the interrupt reporting bits. If only SVII is read, it is possible to have multiple interrupts
reported for the same boundary condition.

The Frame/Voice Structure
The InterWave synthesizer can process up to 32 voices continuously. A frame is the basic
time unit in the synthesizer. During one frame, all 32 voices can be processed and their
outputs summed. Thus, the output of one frame is the sum of all voices that were active
during that frame. At the end of each frame, one right and one left output is passed to the
synthesizer DAC (located in the codec module).
��� 6\QWKHVL]HU

AMD
The frame rate is 44.1 kHz; that is, all 32 voices are processed 44,100 times each second.

Note: For compatibility with the GUS, the frame rate can be adjusted downward,
with a trade-off in performance. See “GUS Frame Expansion” on page 7-29.

Certain components of a sound—for example, a gradually increasing volume—can carry
over to the next frame. These components are retained in the appropriate registers as the
starting point for the next frame.

Addressing Wavetable Data
This section discusses the addressing of wavetable data in local memory DRAM or ROM.
Chapter 8, “Local Memory Control,” contains additional information about local memory
addressing.

$GGUHVV�&RQWURO

Voice generation starts with the wavetable data in local memory addressed by the value
in the Synthesizer Address High and Synthesizer Address Low registers (SALI and SAHI).
Computation of the next value to be stored in the synthesizer address registers is controlled
by the following bits:

■ Enable PCM Operation bit of the Synthesizer Volume Control register (SVCI[2])

■ Loop Enable bit of the Synthesizer Address Control register (SACI[3])

■ Bidirectional Loop Enable bit of the Synthesizer Address Control register (SACI[4])

■ Direction bit of the Synthesizer Address Control register (SACI[6])

Address Looping

As the synthesis process takes place, the synthesizer steps through the wavetable data
stored in local memory. Depending on the nature of the stored signal, the synthesizer may
step directly through the stored data, or it may be programmed to loop through some range
of data. For example, to imitate a key of an organ being held down for some period of time,
the synthesizer may repeat one stored cycle over and over. Looping can reduce the amount
of local memory needed for repetitive wavetable data. The synthesizer addresses local
memory in the following patterns, as shown in Figure 7-3 through Figure 7-5.

■ Single pass

■ Forward loop—start at any point (lower address), step up through memory to an end
boundary, then return to a start boundary to start stepping up again

■ Reverse loop—start at any point (higher address), step down through memory to a start
boundary, then return to an end boundary to start stepping down again

■ Bidirectional loop or Zigzag—start at any point, step up through memory to an end
boundary, and then step back down to the start boundary

■ Play back digital files

As the synthesizer steps through the wavetable data, it uses a process of interpolation to
smooth out the voice, especially when processing data at a frequency different than the
original recording rate. See “Sample Interpolation” on page 7-13.

Figure 7-3 through Figure 7-5 shows six graphs of address looping control possibilities. An
interrupt, if enabled, is generated each time an address boundary is crossed. The
Synthesizer Address Start High and Synthesizer Address Start Low registers (SASHI and
SASLI) hold the starting address boundary, and the Synthesizer Address End High and
6\QWKHVL]HU ���

AMD
Synthesizer Address End Low registers (SAEHI and SAELI) hold the ending address
boundary.

Figure 7-3 Forward and Reverse Single-Pass Addressing

Figure 7-4 Forward and Reverse Looping

End

Forward Single Pass

A
dd

re
ss

Time

Initial Address

SACI[7]

Loop Enable=0
Direction=0

Initial Address

Reverse Single Pass

A
dd

re
ss

Time

Start

SACI[7]

Loop Enable=0
Direction=1

End

Forward Looping

A
dd

re
ss

Time

Initial Address

SACI[7]

Loop Enable=1
Bidirectional Loop Enable=0
Direction=0

End

Reverse Looping

A
dd

re
ss

Time

Start

SACI[7]

Loop Enable=0
Bidirectional Loop Enable=0
Direction=1

Start

Initial Address
���� 6\QWKHVL]HU

AMD
Figure 7-5 Bidirectional Looping (Zigzag) and PCM Playback

The address control logic also controls the write address for delay-based effects
processing—see “Delay-Based Effects” on page 7-26.

Frequency Control

The FC(LFO) component (see Figure 7-2 on page 7-4) controls the rate at which the
Synthesizer Address register pair (SAHI and SALI) is incremented or decremented.
FC(LFO) is made up of the subcomponents FC and FLFO. FC is the value programmed
into the Synthesizer Frequency Control register (SFCI). FLFO, the value in the Synthesizer
Frequency LFO register (SFLFOI), is added to FC before the address calculations are done.
FLFO is a signed value. If FLFO is negative, the pitch of the voice is lowered. If FLFO is
positive, the pitch of the voice is raised.

Computing Next Address

Table 7-5 shows how all combinations of wavetable addressing control, along with the
boundary crossed (BC) internal flag, affect the next wavetable address. BC becomes a 1
when (END – (ADD + FC(LFO))) is negative and the Direction bit of the Synthesizer Address
Control register (SACI[6]) is low or when (ADD – FC(LFO)) – START) is negative and
SACI[6] is high. If BC is high, an interrupt is generated if enabled by the Wavetable IRQ
Enable bit (SACI[7]). The Next Address column indicates the expressions used to compute
the next address value using ADD (the current address value), FC(LFO), START, and END.
The current address value is contained in the Synthesizer Address High and Synthesizer
Address Low registers (SAHI and SALI). START and END are the address boundaries for
address looping contained in the Synthesizer Address Start High and Synthesizer Address
Start Low registers (SASHI and SASLI) and the Synthesizer Address End High and
Synthesizer Address End Low registers (SAEHI and SAELI).

End

Bidirectional Looping (Zigzag)

A
dd

re
ss

Time

Initial Address

SACI[7]

Loop Enable=1
Bidirectional Loop Enable=1
Direction Toggles

End2

PCM Playback

A
dd

re
ss

Time

Start

SACI[7]

Direction=0
Enable PCM Operation=1

Start

End1

DIR=0* DIR=1* DIR=0* LPE=0**LPE=1**LPE=0**LPE=1**

* indicates self-modification
** indicates program modification
6\QWKHVL]HU ����

AMD
END to START Interpolation

Discontinuities in a voice's signal can be caused when the Enhanced Mode bit of the
Synthesizer Global Mode register (SGMI[0]) is Low, the Loop Enable bit of the Synthesizer
Address Control register (SACI[3]) is High, and the Bidirectional Loop Enable bit (SACI[4])
is Low if the data at the END and START addresses are not the same. The discontinuity
occurs because with SGMI[0] = 0, there is no way to interpolate between data at the END
address and data at the START address.

Setting SGMI[0], the Enable PCM Operation bit (SVCI[2]), and the Loop Enable bit
(SACI[3]) all High and the Bidirectional Loop Enable bit (SACI[4]) and the Direction bit
(SACI[6]) both Low enables the synthesizer module to interpolate between data at the END
address and data at the START address. This mode of interpolation should be used during
digital file playback and when a voice is being used as an effects processor. In this mode,
the interrupt normally generated when the END address is crossed is not generated until
the data at the END address is no longer needed for interpolation. For more details about
interpolation, see “Sample Interpolation” on page 7-13.

DRAM and ROM Access

When the ROM bit of the Synthesizer Mode Select register (SMSI[7]) is set Low, a voice
uses 8-bit-wide DRAM to obtain both 8-bit and 16-bit data samples. For voices that use
8-bit data, all the addresses in the address registers represent actual local memory
addresses. For voices that use 16-bit data, a translation is done from the addresses in the
address registers to the real address space. The translation allows the synthesizer module
to generate addresses for 8-bit and 16-bit data in the same way and for the local memory
control module to use DRAM fast page mode to access two 8-bit values to provide a 16-bit
sample. Address translation is explained in “Accessing Local Memory” on page 8-8.

When the ROM bit of the Synthesizer Mode Select register (SMSI[7]) is set High, a voice
uses 16-bit wide ROM to obtain both 8-bit and 16-bit data samples. For voices that use
8-bit data, the least significant bit (LSB) of the address is kept for internal use only to
determine which byte of the 16-bit wide ROM word is used. If the LSB is 0, the lower byte
of the word is used as sample data; if the LSB is 1, the upper byte of the word is used. For
voices that use 16-bit data, the address directly addresses the ROM.

Table 7-5 Wavetable Addressing Control

Enable PCM
Operation
(SVCI[2])

Loop Enable
(SACI[3])

Bidirectional
Loop Enable

(SACI[4])

Direction
(SACI[6])

Boundary
Crossed

(BC)
Next Address

X X X 0 0 ADD + FC(LFO)

X X X 1 0 ADD – FC(LFO)

0 0 X X 1 ADD

X 1 0 0 1 START – (END – (ADD + FC(LFO)))

X 1 0 1 1 END + ((ADD – FC(LFO)) – START)

X 1 1 0 1 END + (END – (ADD + FC(LFO)))

X 1 1 1 1 START – ((ADD – FC(LFO)) –
START)

1 0 X 0 X ADD + FC(LFO)

1 0 X 1 X ADD – FC(LFO)
���� 6\QWKHVL]HU

AMD
��/DZ�'DWD�'HFRPSUHVVLRQ

To conserve memory space, µ-law compressed wavetable data may be stored in local
memory. When µ-law decompression is selected, the data is automatically decompressed
by the synthesizer when it is read from local memory. The µ-law compression algorithm
converts 14-bit linear data to an 8-bit format. Decompression restores the data to 14-bit
linear form and aligns it in the 16-bit linear format used by the synthesizer.

To select µ-law decompression, set the µ-Law bit of the Synthesizer Mode Select register
(SMSI[6]) High.

6DPSOH�,QWHUSRODWLRQ

During voice generation, the synthesizer fetches sample 1 (S1) from the wavetable data
in DRAM using the integer portion of the current Synthesizer Address High/Low registers
(SAHI and SALI), then increments the integer portion by 1 and uses it to fetch sample 2
(S2). The synthesizer then obtains the interpolated sample (S) by plugging S1, S2, and the
fractional portion (ADDfr) of the synthesizer address into Equation 7-1.

Equation 7-1 S Data Interpolation

Software specifies the10-bit fractional portion of the synthesizer address in the Synthesizer
Frequency Control register (SFCI[9:0]). However, the Synthesizer Address Low register
(SALI) contains only the 9 most significant bits of that fractional portion. The 1024 divisor
in Equation 7-1 is needed to correctly multiply by a 10-bit fractional number.

The synthesizer interpolates 8-bit and 16-bit samples in the same fashion, padding the 8-bit
samples with zeros in the least significant bits.

Figure 7-6 illustrates the interpolation process.

S S1 S2 S1–()
ADDfr
1024-----------------⋅+=
6\QWKHVL]HU ����

AMD
Figure 7-6 Graph of Sample Interpolation Process

9LEUDWR³9DU\LQJ�WKH�3LWFK

One of the two LFOs assigned to each voice can continuously vary the wavetable address
increment, thus adding vibrato to the voice.

For details on programming a voice’s LFO for vibrato, see “LFOs for Tremolo and Vibrato”
on page 7-21.

Volume Control
The InterWave IC uses three volume-multiplying signal paths—left, right, and effects—to
process each voice. Each path’s volume multiplier is made up of several components. After
each component is calculated, the components are summed and used to control the volume
of the three signal paths. Equation 7-2 through Equation 7-5 shows the equations for each
of the three signal paths and the alternate effects path. Programming the terms of these
equations is covered in the sections that follow.

S1

S2

S

S1, S2 = Stored Data Samples
Original Sampled Waveform

A
m

pl
itu

de

TimeTI

T

New (Interpolated) Data Point

S = S1 + (S2 – S1) *
ADDfr
1024
���� 6\QWKHVL]HU

AMD
Equation 7-2 Volume Multiplying Components For Left Path

Equation 7-3 Volume Multiplying Components For Right Path

Equation 7-4 Volume Multiplying Components For Effects Path (SMSI[4] = 0)

Equation 7-5 Volume Multiplying Components For Alternate Effects Path (SMSI[4] = 1)

After all the volume components are generated, they are summed for each signal path's
volume multiply. The theoretical equation for volume multiplication is shown in Equation 7-6.

Equation 7-6 Volume Multiplication

In Equation 7-6, O is the output data, V is the value of volume and S is the interpolated
sample value. An increment of 1 in the value of V causes about 0.0235 dB of change in O.
This equation is difficult to implement directly in digital logic because of the exponential
term, but a piecewise linear approximation is relatively easy to implement. The sum of each
volume is a 12-bit value. The synthesizer splits the 12-bit value into two bit fields, V[11:8]
and V[7:0], and uses those fields to implement an approximation, as shown in Equation 7-7.

Equation 7-7 Implemented Volume Multiplication

The synthesizer uses Equation 7-7 to generate each of the outputs: a right voice output, a
left voice output, and an effects output. The error introduced by the approximation for
0 ≤ V ≤ 4095 ranges from 0 dB–0.52 dB with an average of 0.34 dB. Differences in power
of less than 1 dB are not perceptible to the human ear, so there is no perceived error in the
output power introduced by the implementation.

Volume Left VOL L() VOL LFO() LOFF–+=

Volume Right VOL L() VOL LFO() ROFF–+=

Volume Effects VOL L() VOL LFO() EVOL–+=

Volume Effects EVOL=

O S 2 V 256⁄() 16–⋅=

O S
256 V[7:0]+

224 V[11:8]–------------------------------- 
 ⋅=
6\QWKHVL]HU ����

AMD
7KH�%DVLF�(QYHORSH�6HJPHQWV³92/�/�

The looping volume (VOL(L)) component adds the basic volume envelope segments to a
voice.

Every sound has its own volume envelope. For example, a plucked guitar string has the
following envelop segments:

■ attack, which is the rapid initial increase in volume when the string is first plucked

■ decay, a fall-off in volume from the high initial level

■ sustain, a fairly constant volume level while the string is vibrating, and

■ release, the quick down-ramp of volume when the player damps the string with a finger.

The synthesizer generates envelope segments individually. A note may have more or fewer
segments than in the above example; the synthesizer can generate as many as necessary.

Each segment can be a ramp up, a ramp down, a forward loop, a reverse loop, or a
bi-directional loop between two volume levels.The ramp rate is programmable in terms of
the starting point, the amount of change per frame time, and the end boundary. When the
volume reaches a segment boundary, a maskable interrupt is generated. The envelope
generation mechanism operates similarly to the address generation mechanism, allowing
the generation of bidirectional looping segments; that is, the synthesizer can be
programmed to ramp up to a volume boundary and then ramp down to a second boundary
(in actuality, the ramp up starts at zero, or wherever the envelope happens to be, and ramps
to a point specified as the end boundary, then it ramps down to a point specified as the
start boundary).

For step-by-step instructions on how to process volume envelope segments, see
“Processing Volume Envelope Segments” on page 7-34.

&RPSXWLQJ�92/�/�

Computation of the next value stored in the Synthesizer Volume Level register (SVLI) is
controlled by the following 3 bits in the Synthesizer Volume Control register (SVCI):

■ Loop Enable (SVCI[3])

■ Bidirectional Loop Enable (SVCI[4])

■ Direction (SVCI[6])

The following graphs show five volume looping possibilities. If enabled, an interrupt is
generated each time the volume crosses a boundary. Volume boundaries are held in the
Synthesizer Volume Start register (SVSI) and the Synthesizer Volume End register (SVEI).
���� 6\QWKHVL]HU

AMD
Figure 7-7 Volume Ramp-up and Ramp-down

Figure 7-8 Forward and Reverse Volume Looping

Figure 7-9 Bidirectional Volume Looping

End

Ramp-up

V
ol

um
e

Time

Initial Volume

SVCI[7]

Loop Enable=0
Direction=0

Initial Volume

Ramp-down

V
ol

um
e

Time

Start

SVCI[7]

Loop Enable=0
Direction=1

End

Forward Looping

V
ol

um
e

Time

Initial Volume

SVCI[7]

Loop Enable=1
Bidirectional Loop Enable=0
Direction=0

End

Reverse Looping

V
ol

um
e

Time

Start

SVCI[7]

Loop Enable=1
Bidirectional Loop Enable=0
Direction=1

Start

Initial Volume

End

Bidirectional Looping

V
ol

um
e

Time

Initial Volume

SVCI[7]

Loop Enable=1
Bidirectional Loop Enable=1
Direction Toggles

Start

DIR=0* DIR=1* DIR=0*

* indicates self-modification
6\QWKHVL]HU ����

AMD
Table 7-6 shows how all combinations of volume control along with the input update volume
(UVOL) and boundary crossed (BC) internal flag affect the equation for the next VOL(L).
UVOL is an internal flag that controls the rate at which VOL(L) is modified. Volume rate
bits in the Synthesizer Volume Rate register (SVRI) set the rate of VOL(L) modification.
UVOL remains at 0 until the voice has been processed the number of times set by the
volume rate bits. When UVOL becomes a 1, VOL(L) increments under the control of the
Loop Enable (SVCI[3]), Bidirectional Loop Enable (SVCI[4]), and Direction (SVCI[6]) bits.
BC becomes a 1 when volume boundaries are crossed. BC generates an interrupt if enabled
by the Volume IRQ Enable bit in the Synthesizer Volume Control register (SVCI). The Next
VOL(L) column indicates the expressions used to compute the next value of VOL(L) using
VOL(L), the volume increment (VINC), the start volume (START), and the end volume
(END). VINC is held in the Synthesizer Volume rate register. START and END are the
volume boundaries for volume looping contained in the Synthesizer Volume Start register
(SVSI) and the Synthesizer Volume End register (SVEI), respectively.

5DPS�5DWHV³5DWH�RI�9ROXPH�&KDQJH

VOL(L) can be updated once per frame (44,100 updates per second). An increase of one
in VOL(L) changes the volume by 0.0235 dB.

Ramp rates have four programmable ranges. Two ranges cause the envelope to be
modified every frame time, one modifies the envelope every eighth frame time, and one
modifies the envelope every sixty-fourth frame time.

The ramp rate is programmed by writing two values to the Synthesizer Volume Rate register
(SVRI):

■ Volume Increment (SVRI[5:0])—the amount of volume increment

■ Volume Rate (SVRI[7:6])—one of four ramp rates:

— 0 = add increment value every frame

— 1 = add (increment value)/8 every frame

— 2 = add (increment value)/8 every 8th frame

— 3 = add (increment value)/8 every 64th frame

Table 7-6 Volume Control Combinations

Update
Volume
(UVOL)

Loop Enable
(SVCI[3])

Bidirectional
Loop Enable

(SVCI[4])

Direction
(SVCI[6])

Boundary
Cross (BC)

Next VOL(L)

0 X X X X VOL(L)

1 X X 0 0 VOL(L) + VINC

1 X X 1 0 VOL(L) – VINC

1 0 X X 1 VOL(L)

1 1 0 0 1 START – (END - (VOL(L) + VINC))

1 1 0 1 1 END + ((VOL(L) – VINC) – START)

1 1 1 0 1 END + (END – (VOL(L) + VINC))

1 1 1 1 1 START – ((VOL(L) – VINC) – START)
���� 6\QWKHVL]HU

AMD
Envelope Variations
The InterWave IC supports three types of variations in the volume envelope of a voice:

■ Tremolo

■ Stereo positioning, or panning

■ Effects

7UHPROR³92/�/)2�

The synthesizer can use a low-frequency oscillator (LF0) to continuously modify a voice's
volume, which creates a tremolo effect. The Synthesizer Volume LFO register (SVLFOI)
contains the value of VOL(LFO), which is the final result of LFO calculations.

For details on using the LFOs, see “LFOs for Tremolo and Vibrato” on page 7-21.

6WHUHR�3RVLWLRQLQJ³2IIVHW�DQG�3DQ

The synthesizer controls stereo positioning of a voice in one of two ways. In offset mode,
left and right offsets can place the voice anywhere in the stereo field. In pan mode, a single
pan value places the voice in one of 16 pan positions. The Offset Enable bit of the
Synthesizer Mode Select register (SMSI[5]) controls the two different modes of stereo
positioning.

Offset Mode

When SMSI[5] is set High, the offset values allow independent attenuation of the left and
right channels. To calculate left and right offset values with constant total power, use
Equation 7-8 and Equation 7-9. Equation 7-10 calculates the attenuation resulting from an
given offset value.

Equation 7-8 Left Offset Value

Equation 7-9 Right Offset Value

Equation 7-10 Attenuation by Offset Values

PanMax +1 is the total number of pan positions desired. Pan is the stereo position desired
between 0 and PanMax.

The left and right offsets allow very accurate stereo positioning. They also provide a
separate volume control from all the other volume components. Writing all bits high to the

LeftOffset 128
2

PanMax Pan–
PanMax-------------------------------------- 

 log⋅=

RightOffset 128
2

Pan
PanMax---------------------- 

 log⋅=

Attenuation 20 10 2

offset
256---------------–

 
 
 

dBlog⋅=
6\QWKHVL]HU ����

AMD
left or right offset turns off the respective output because, if the volume sum of the left or
right component becomes negative, the volume multiplier is set to maximum attenuation
for that path. Software can control the total volume output of a voice by considering the left
and right offsets to be made up of two components. One component controls stereo position
and is unique to the left or the right offset and the other component is common to both
offsets and controls the overall volume. By combining the two components in software,
writing the appropriate values to the Synthesizer Offset registers can control both overall
volume and the stereo position.

In offset mode, two registers control the value of each offset. The Synthesizer Right Offset
(SROI) and Synthesizer Left Offset (SLOI) registers contain the current values of right offset
(ROFF) and left offset (LOFF). The Synthesizer Right Offset Final (SROFI) and Synthesizer
Left Offset Final (SLOFI) registers contain the final values of ROFF and LOFF. The
synthesizer increments or decrements the values in SROI and SLOI by 1 each sample
frame until they reach the values contained in SROFI and SLOFI. These sets of registers
allow a smooth offset change with only one write operation. Software can cause an
instantaneous offset change by writing the same value to both registers (SROI and SROFI,
or SLOI and SLOFI).

PAN Mode

When SMSI[5] is zero, bits 11–8 of the Synthesizer Right Offset register (SROI[11:8])
provide a pan value that determines the stereo position of the voice (left offset is not used
in this mode). Table 7-7 shows the 16 pan positions and the corresponding left and right
offsets. The table values were calculated using Equation 7-8 and Equation 7-9 to keep total
power constant in all pan positions.

Table 7-7 Left and Right Amplitudes for PAN Values

Pan Value
(SROI[11:8])

Left Offset
Value

Left
Attenuation (dB)

Right Offset Value
Right Attenuation

(dB)

0 0 0 4095 – ∝
1 13 –0.31 500 –11.76

2 26 –0.61 372 –8.75

3 41 –0.96 297 –6.98

4 57 –1.34 244 –5.74

5 75 –1.76 203 –4.77

6 94 –2.21 169 –3.97

7 116 –2.73 141 –3.32

8 141 –3.32 116 –2.73

9 169 –3.97 94 –2.21

10 203 –4.77 75 –1.76

11 244 –5.74 57 –1.34

12 297 –6.98 41 –0.96

13 372 –8.75 26 –0.61

14 500 –11.76 13 –0.31

15 4095 – ∝ 0 0
���� 6\QWKHVL]HU

AMD
(IIHFWV�9ROXPH³(92/

Whether a voice acts as an effects processor or as a signal generator, a mono effects
output signal splits off from the signal path of the voice at one of two places, depending on
the state of the Alternate Effects Path bit of the Synthesizer Mode Select register (SMSI[4]).
If SMSI[4] is Low, the effects output splits off after the VOL(L) and VOL(LFO) attenuators.
If SMSI[4] is High, the output splits off before those attenuators. For an illustration of these
two paths, see Figure 7-2 on page 7-4.

The effects volume (EVOL) component attenuates the output volume of the effects signal
path before the effects signal is fed to the effects accumulators. Two registers control the
value of EVOL. The Synthesizer Effects Volume register (SEVI) contains the current value
of EVOL and the Synthesizer Effects Volume Final (SEVFI) register contains the final value
of EVOL. The value in SEVI is incremented or decremented by 1 each sample frame until
it reaches the value contained in SEVFI. This register combination allows a smooth change
in effects volume with only one write operation. Software can produce an instantaneous
effects volume change by writing the same value to both registers.

A voice’s effects output can be sent to any, all, or none of the eight possible effects
accumulators as selected in the Synthesizer Effects Output Accumulator Select register
(SEASI). For more details, see “Effects Accumulation” on page 7-27.

LFOs for Tremolo and Vibrato
The InterWave IC contains two triangle-wave low-frequency oscillators (LFOs) assigned
to each voice. One controls vibrato (frequency modulation) and the other controls tremolo
(amplitude modulation). Setting the Global LFO Enable bit of the Synthesizer Global Mode
register (SGMI[1]) High enables all LFOs.

Note: To use the LFOs, an InterWave IC-based sound board must utilize RAM for
local memory. The LFOs do not function in a ROM-only hardware application.

Before an LFO can be used, its operational parameters must be written to local memory
by the application software. Then, during operation, the synthesizer reads and writes those
parameter values. Software can control the following aspects of LFO operation:

■ Frequency—the speed at which the volume or pitch is varied

■ Depth—the amount of the effect

■ Ramp in/out—the gradual application or removal of an effect

Table 7-8 summarizes the characteristics of the LFOs.

Table 7-8 LFO Characteristics

Characteristic Requirements or Capabilities

Number of LFOs per voice 2 (one for tremolo and one for vibrato)

Total number of LFOs 64

Local DRAM needed 1K bytes total for 64 LFOs

Register array space needed 64 bytes (2 LFOs x 32 voices x 1 byte per LFO)

LFO update rate 689 Hz

LFO frequency range 21.5 Hz to 95 seconds

Vibrato Maximum Depth (FC=1) 12.4 percent or 215 cents (more than two half-steps)

Vibrato Resolution (FC=1) 0.098 percent or 1.69 cents
6\QWKHVL]HU ����

AMD
$GGUHVVLQJ�WKH�/)2�3DUDPHWHUV

The LFO parameters are stored in local memory in a 1024-byte block that contains the data
for all 64 LFOs.

Each LFO’s data is addressed using the Synthesizer LFO Base Address register (SLFOBI)
as the starting point. The most-significant 14 bits of the base address should be written to
SFLOBI when memory is allocated for the LFOs (see Chapter 8, “Local Memory Control”).

To completely address the individual parameters for a voice, the SFLOBI address is
combined with three other bit fields, producing a 24-bit address, as shown in Table 7-9.

The three lower bit fields have the following functions:

Voice The number of the voice associated with the LFO

V/T Selects between the LFO for vibrato (High) and tremolo (Low). This bit
completes the selection of a specific LFO.

Data Select Selects the data for the addressed LFO

8VLQJ�WKH�/)2�3DUDPHWHUV

Table 7-10 and Table 7-11 depict the locations of the programmable LFO parameters
accessible through SLFOBI, followed by a discussion of the parameters.

Tremolo Maximum Depth 12 dB

Tremolo Resolution .094 dB

LFO ramp update rate 86.13 Hz

Ramp range (for maximum depth) 0.37 to 95 seconds

Table 7-9 The 24-bit LFO Address

LFO address bits 23:10 bits 9:5 bit 4 bits 3:0

Base Address Register (SLFOBI[13:0]) Voice V/T Data Select

Table 7-10 Decoding the Data Select Field

LFO
Address
Bits 3–0

Name
Width
(bits)

Synth.
Access

Description

0 0 0 x CONTROL 16 read LFO frequency (11 bits) and control bits

0 0 1 0 DEPTHFINAL 8 read final depth value

0 0 1 1 DEPTHINC 8 read depth addition (ramp rate)

0 1 x x n/a not used

1 0 0 x TWAVE[0] 16 read/write LFO current waveform value

1 0 1 x DEPTH[0] 13 read/write LFO depth (must write bits 15:13 = 0)

1 1 0 x TWAVE[1] 16 read/write LFO current waveform value

1 1 1 x DEPTH[1] 13 read/write LFO depth (must write bits 15:13 = 0)

Table 7-8 LFO Characteristics (Continued)

Characteristic Requirements or Capabilities
���� 6\QWKHVL]HU

AMD
There are two DEPTH values and two TWAVE values per LFO. The Wave Select bit (bit
14) of the CONTROL word determines which of the values a particular LFO uses. The
Wave Select feature allows an LFO to be modified during operation. For example, while
an LFO is using TWAVE[0] and DEPTH[0], software can write new values to TWAVE[1]
and DEPTH[1] without concern for the synthesizer overwriting the values. After writing the
new values, software can change the Wave Select bit to select the new values.

The CONTROL word contains the data shown in Table 7-11.

Bit 15: LFO Enable . If High, then the LFO is enabled. If Low, then no further accesses
take place to process the LFO.

Bit 14: Wave Select . Selects between the two sets of waveform and depth values:
Low for TWAVE[0] and DEPTH[0], High for TWAVE[1] and DEPTH[1].

Bit 13: Shift . If High, shifts the waveform up and to the right so that it starts at 0 and
rises to 7FFFh.

Bit 12: Invert . If High, flips the waveform about the x axis.

Bit 11: Reserved.

Bits 10–0: Waveform Increment . The waveform increment (TWAVEINC) of the LFO.
The LFO frequency can range from 21.5 Hz for 7FFh to 95 seconds for 001h.
The synthesizer uses Equation 7-11 to determine the LFO frequency.

Equation 7-11 Specifying the LFO Frequency

/)2�3URFHVVLQJ

The synthesizer processes the LFO parameters in local memory within the InterWave frame
structure to update those parameters and to produce a final LFO value.

Frames and LFO Processing

The synthesizer updates one LFO every frame. Therefore, it takes 64 frames, or one LFO
frame, to update all of the LFOs.

Every 8 frames, the synthesizer updates the current position for the depth of one LFO.
Therefore, during one LFO frame, the synthesizer updates the depth position for 8 LFOs.
It takes 8 LFO frames, or one ramp frame, to update the depth of all 64 LFOs.

Table 7-11 Contents of the LFO CONTROL Word

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11
Bit
 10

Bit
 9

Bit
 8

Bit
 7

Bit
 6

Bit
 5

Bit
 4

Bit
 3

Bit
 2

Bit
 1

Bit
 0

LFO
Enable

Wave
Select

Shift Invert Res. Waveform Increment

FLFO Hz()
44100

64 2
16⋅

------------------ TWAVEINC 0.010514 TWAVEINC⋅≅⋅=
6\QWKHVL]HU ����

AMD
Processing an LFO requires four accesses to local memory if not updating the depth
position. The first three accesses read the CONTROL word, the currently selected DEPTH
word, and the currently selected TWAVE word. The fourth access writes back a newly
calculated TWAVE value.

When updating the current position for the depth, an additional read access obtains
DEPTHFINAL and DEPTHINC and an additional write access writes back a new value for
DEPTH.

Ramp Updates

For any given LFO, once each ramp frame the synthesizer compares the DEPTH value to
DEPTHFINAL * 32. If the two values are equal, no ramping occurs.

If DEPTH is less than DEPTHFINAL * 32, then the synthesizer calculates DEPTH +
DEPTHINC and compares that sum to DEPTHFINAL * 32. If the sum is less than
DEPTHFINAL * 32, the synthesizer writes the sum to DEPTH. If the sum is greater than
DEPTHFINAL * 32, the synthesizer writes DEPTHFINAL * 32 to DEPTH.

If DEPTH is greater than DEPTHFINAL * 32, then the synthesizer calculates DEPTH –
DEPTHINC and compares the difference to DEPTHFINAL * 32. If the difference is greater
than DEPTHFINAL * 32, the synthesizer writes the difference to DEPTH. If the difference
is less than DEPTHFINAL * 32, the synthesizer writes DEPTHFINAL * 32 to DEPTH.

Use Equation 7-12 to calculate the time required for a ramp.

Equation 7-12 Calculating Ramp Time

The Final LFO Value

The final LFO value modifies either the frequency or the volume of the voice. The
synthesizer stores the final value in the Synthesizer Frequency LFO register (SFLFOI) for
frequency LFOs and the Synthesizer Volume LFO register (SVLFOI) for volume LFOs. The
InterWave IC uses the following procedure to create the final LFO value. The action in step
3 depends on the value of the Shift bit (bit 13) of the LFO CONTROL word.

Obtains the current waveform position (TWAVE) from local memory.

1. Adds TWAVEINC to TWAVE and writes the result back to TWAVE in local memory.

2. If Shift is Low:

If TWAVE bit 14 is High, it inverts TWAVE bits 13–0 to create the LFO waveform
magnitude. Otherwise, it uses TWAVE bits 14–0 as the waveform magnitude. In either
case, TWAVE bit 15 is exclusive or’d with the Invert bit (bit 12) of the CONTROL word
to determine the sign bit (bit 15).

Ramptime
DEPTHFINAL 32⋅ DEPTH–

DEPTHINC 86.13⋅---sec=
���� 6\QWKHVL]HU

AMD
If Shift is High:

If TWAVE bit 15 is High, it inverts TWAVE bits 14–0 to create the LFO waveform
magnitude. Otherwise, it uses TWAVE bits 14–0 as the waveform magnitude. In either
case, the Invert bit (bit 12) of the CONTROL word is used as the sign bit (bit 15).

3. Multiplies the 14-bit LFO waveform magnitude value by DEPTH, then combines the 7
most-significant bits of the result with the LFO waveform magnitude sign bit (bit 15) to
create the two’s-complement final LFO value.

4. Writes the final LFO to the appropriate register.

The synthesizer adds TWAVEINC to TWAVE every LFO frame. The magnitude of the LFO
waveform is multiplied by the DEPTH to become the final LFO value. The Shift and Invert
bits of the LFO CONTROL word determine which of the four possible waveforms are used.
The waveforms are illustrated in Figure 7-10.

Figure 7-10 The Four Possible LFO Waveforms

The synthesizer stores the final LFO value as an 8-bit two’s-complement value in the
appropriate voice-specific register for adding to the frequency or volume controls for the
voice. For vibrato, the synthesizer adds the final LFO value to FC as shown in Figure 7-11.
This addition allows for a maximum vibrato depth of 12.4 percent (if FC is 1).

0 TWAVE

3FFF

-3FFF

Invert = 0
Shift = 0

4000 8000 C000 0000

0 TWAVE

3FFF

-3FFF

Invert = 1
Shift = 0

4000 8000 C000 0000

0 TWAVE

7FFF

Invert = 0
Shift = 1

4000 8000 C000 0000

0 TWAVE

-7FFF

Invert = 1
Shift = 1

4000 8000 C000 0000
6\QWKHVL]HU ����

AMD
Figure 7-11 Adding Final LFO Value to FC—Vibrato

For tremolo, the synthesizer adds the final LFO value to Volume as shown in Figure 7-12.
This addition allows for a maximum tremolo depth of 12 dB.

Figure 7-12 Adding Final LFO Value to Volume—Tremolo

Delay-Based Effects
Software can program up to 8 of the 32 synthesizer voices for effects processing, producing
such effects as reverb, echo, chorus, and flanging. To specify a voice as an effects
processor, set the Effects Processor Enable bit of the Synthesizer Mode Select register
(SMSI[0]) High. When programmed as an effects processor, the input for the voice comes
from the effects accumulator specified in Table 7-12, “Effects Accumulator Output Links,”
on page 7-28.

When a voice performs effects processing, it writes the output from one of the effects
accumulators to local memory as wavetable data and then reads that data back some
number of frame times later, creating a delay. The Synthesizer Effects Address High/Low
registers (SEAHI and SEALI) hold the current write address, which loops between the same
START and END address boundaries as the read address (only forward looping is allowed).
As with all voices, the Synthesizer Address High/Low registers (SAHI and SALI) hold the
current read address. The difference between the write and read addresses defines the
amount of delay in the effects processor. Each integer delta between the read and write
addresses of 1 introduces a time delay of 1 frame, or 1/44,100 seconds—the reciprocal of
the frame rate. The distance between the START and END address boundaries defines
the maximum delay available. For more details, see “Address Control” on page 7-9.

The write address always increments by 1. The read increments by an average of 1 but
can have variations in time added by an LFO. These variations in time generate chorus

+

FC

Final LFO

Integer Fraction

Magnitude

Sign Extension 06 5 4 3 2 1

06 5 4 3 2 19 8 705 4 3 2 1

Magnitude

Sign Ext. 06 5 4 3 2 1

06 5 4 3 2 19 8 71011

+
Final LFO

Volume

* *

*These bits buffered with zeros.
���� 6\QWKHVL]HU

AMD
and flange effects. The volume components in the left and right path determine how much
of the effect is heard and the stereo position of the effects processor's output.

Three bits in the Synthesizer Address Control register (SACI) and the FC value set in the
Synthesizer Frequency Control register (SFCI) control the looping mode for write
addressing:

■ Loop Enable bit (SACI[3]) High

■ Bidirectional Loop Enable bit (SACI[4]) Low

■ Direction bit (SACI[6]) Low

■ FC = 1.0 (SFCI = 0400h)

The mode of looping for read addressing must be the same as for write addressing, plus
the Enable PCM Operation bit of the Synthesizer Volume Control register (SVCI[2]) must
be set high.

The Alternate Effects Path bit of the Synthesizer Mode Select register (SMSI[4]) determines
which of two split-off points are used for the effects signal path. When SMSI[4] is Low, the
effects signal splits off after interpolation and before the VOL(L) and VOL(LFO) attenuators.
When SMSI[4] is High, the effects signal splits off after the VOL(L) and VOL(LFO)
attenuators. In either case, the effects signal goes through the effects volume attenuator
(EVOL) before being fed back to the effects accumulators.

Voice Accumulation
Each active voice sums into the left and right accumulators and into selected effects
accumulators once during each frame, so that the accumulators represent the combined
activity of all voices in a frame. See Figure 7-1 and Figure 7-2 for diagrams of the
accumulation paths.

6LJQDO�9RLFH�$FFXPXODWLRQ

Summing into the left and right output accumulators takes place automatically—no action
is necessary by the programmer. This is the final step before a voice’s output is sent to the
dedicated synthesizer DAC in the codec module for conversion to analog audio signals.

(IIHFWV�$FFXPXODWLRQ

To send a voice’s output through delay-based effects, enable its EVOL output to any or all
of the eight effects accumulators. Choose the accumulators in the Synthesizer Effects
Output Accumulator Select (SEASI) register. Every voice can direct its effects path to any,
all, or none of the effects accumulators.

When a voice acts as an effects processor, its input comes only from the accumulator
specified in Table 7-12. For example, if software programs voice 12 to act as an effects
processor voice, the voice is linked to effects accumulator 4. Any voice can direct its effects
path to be processed by voice 12 by setting its Synthesizer Effects Output Accumulator
Select register (SEASI) to 10h, which directs the voice’s effects path to effects
accumulator 4.
6\QWKHVL]HU ����

AMD
Loading Patches
When a program uses DRAM to store wavetable data, musical instrument patches can be
swapped in and out as needed.

For details of loading data into local memory, see Chapter 8, “Local Memory Control.”

Digital Audio Files and PCM Operation Mode
To play back a long piece of digitally recorded sound while using only a small block of
memory, set the Enable PCM Operation bit of the Synthesizer Volume Control register
(SVCI[2]) High. PCM operation allows the address control logic to cause an interrupt at an
address boundary, but to continue moving the address in the same direction unaffected by
the address boundary.

Figure 7-5 illustrates the looping technique for playing back digitally recorded sound. Store
the START, END1, and END2 address in the Synthesizer Address Start High/Low registers
(SASHI and SASLI) and Synthesizer Address End High/Low registers (SAEHI and SAELI).

For the step-by-step procedure to play back files in PCM mode, see “Playing Digital Audio
Files in PCM Operation Mode” on page 7-34.

Effects Digital Signal Processor Interface
Some applications may need to perform audio functions in addition to those provided by
the InterWave IC. Two examples of such additional functions are combining the codec with
a digital signal processor (DSP) IC to perform high fidelity audio compression or speech
recognition, and adding more complex effects processing to the synthesizer. In the first
case, the data flows between the DSP and the codec. In the second case, the data flows
between the DSP and the synthesizer. Two separate data paths are provided for these
applications.

6HULDO�'63�,QWHUIDFH

The InterWave IC provides a serial port that allows data transfers between the codec and
an external DSP IC or between the synthesizer and the DSP IC. For details of this interface,
see Chapter 6, “Codec/Mixer.”

Table 7-12 Effects Accumulator Output Links

Effects Accumulator Effects Processor Voice Number

0 0 8 16 24

1 1 9 17 25

2 2 10 18 26

3 3 11 19 27

4 4 12 20 28

5 5 13 21 29

6 6 14 22 30

7 7 15 23 31
���� 6\QWKHVL]HU

AMD
(IIHFWV�'63

The InterWave IC provides a parallel path that allows the output of the effects accumulators
to be written as wavetable data to local memory in the normal manner, except that an
external DSP intercepts the writes, returning processed data to local memory as wavetable
data for the synthesizer. The local memory interface generates timing strobes to facilitate
this process.

Since the InterWave local memory controller operates as the timing master, the logic
connecting the DSP IC to the local memory bus must provide synchronization for the DSP's
internal timing.

GUS Frame Expansion
The synthesizer register set is a superset of that used in the Advanced Gravis UltraSound
(GUS) synthesizer. The GUS synthesizer processes up to 14 voices at 44.1 kHz, after
which the frame rate slows by 1.6 µs per added voice. Because the InterWave synthesizer
runs at 44.1 kHz even when all 32 voices are being used, the GUS-compatible mode allows
matching the frame timing to that of the GUS synthesizer.

When GUS-compatibility mode is enabled (Enhanced Mode bit of the Synthesizer Global
Mode register (SGMI[0]) set Low), a 44.1-kHz sampling rate is maintained only for 14 or
fewer active voices. If a 15th voice is active, 1.6 µs is added to the sample period, resulting
in a sampling rate of 41.2 kHz. This same process continues up to a maximum number of
32 voices, resulting in a minimum sampling rate of 19.4 kHz. Use Equation 7-13 to
determine the sampling rate when the InterWave IC is in GUS-compatible mode.

Equation 7-13 GUS-Compatible Sample Period

AV is equal to the number of active voices, which is controlled by the Synthesizer Active
Voices (SAVI) register. AV can range in value from 14 to 32.

When the sampling rate changes, all voice frequency control values must be adjusted to
maintain the true pitch of a tone. Slower sampling rates also degrade the audio quality of
the tone.

Programming Tips
Software performs synthesizer programming by writing to various registers, which control
all aspects of voice processing. The register data bus links the registers to the other modules
in the IC.

This section discusses the following fundamentals of programming the synthesizer:

■ Accessing voice-specific registers

■ Using signal voices to play a note

■ Using effects-processor voices

■ Playing a digital audio file

■ Processing volume envelope segments

Sample period AV1.6µsec⋅≅
6\QWKHVL]HU ����

AMD
3URJUDPPLQJ�9RLFH�6SHFLILF�5HJLVWHUV

The synthesizer module has two types of indirect registers: global and voice-specific. Global
registers affect the operation of all voices; voice-specific registers affect the operation of
only one voice. Access to global registers is identical to other indirect registers. Access to
the voice-specific registers requires special considerations.

The Register Array

Voice-specific register values within the synthesizer module reside in a dual-port RAM
called the register array. One side of the register array is available to the SBI module for
voice programming and the other side is available to the synthesizer engine for voice
processing.

When the synthesizer begins to generate a voice, the synthesizer module reads the voice's
programmed values from the register array. At the end of voice generation, the synthesizer
module writes back the self-modifying register values to the register array. When the SBI
module attempts to read the register array, it must wait until the synthesizer module is not
reading or writing the register array. To speed the read access of the register array, the
read indexes of the synthesizer indirect registers are different from the write indexes. The
separate read and write indexes allow the InterWave IC to start fetching the data to be read
before software actually reads the general data port. In the case of fast bus accesses, the
synthesizer uses IOCHRDY during the read of the data port registers to hold the bus until
the register array can respond.

In the case of a write to the register array, the write must wait until the synthesizer is not
reading or writing any voice and the voice that is being modified by the write is not being
processed by the synthesizer module. The second condition insures that data written to a
self-modifying register is not changed when the synthesizer module writes to the register
array at the end of voice processing. Writes to the register array are buffered. The
synthesizer uses IOCHRDY to hold the bus only if the register array has not taken the
buffered data before the next write to the Synthesizer Voice Select register (SVSR).

Special care must be taken when writing to paired registers for an active voice. If the
synthesizer reads the register array between writes of pairs of voice-specific registers, an
unwanted action may be taken by the synthesizer module. The voice-specific register pairs
include:

■ Synthesizer Address Start High/Low registers (SASHI and SASLI)

■ Synthesizer Address End High/Low registers (SAEHI and SAELI)

■ Synthesizer Address High/Low registers (SAHI and SALI)

■ Synthesizer Effects Address High/Low registers (SEAHI and SEALI)

■ Synthesizer Left/Right Offset registers (SLOI and SROI)

Accessing Voice-Specific Registers

To gain access to a voice-specific register, the voice number must be written to the
Synthesizer Voice Select register (SVSR). Software triggers a read of a voice-specific
register by writing a read address to the General Index register (IGIDXR). When the write
to IGIDXR occurs, the InterWave IC starts to fetch the data from the specified index and
may actually have the data waiting in the general data port before the port is read. Software
triggers a write to a voice-specific register by writing to the General 16-Bit I/O Data Port
(I16DP) or the General 8-Bit Data Port (I8DP) after writing the necessary values to SVSR
and IGIDXR.
���� 6\QWKHVL]HU

AMD
To ease the number of accesses needed to program a voice, set the Auto Increment bit of
the Synthesizer Voice Select register (SVSR[7]) High to allow the value in IGIDXR to
auto-increment with every write to I8DP or I16DP.

These I/O addressing features provide several different ways of accessing voice-specific
registers.

Standard Access for Writing and Reading
Use this procedure for writing to or reading from a single register for a specific voice.

1. Write the voice number to the Synthesizer Voice Select register (SVSR).

2. Write the register index value to the General Index register (IGIDXR).

3. Write to or read from the General 16-Bit Data Port (I16DP) or the General 8-Bit
Data Port.

Row Access for Writing and Reading
Use this procedure for writing to or reading from several registers for a specific voice.

1. Write the voice number to the Synthesizer Voice Select register (SVSR).

2. Write the register index value to the General Index register (IGIDXR).

3. Write to or read from the General 16-Bit Data Port (I16DP) or the General 8-Bit
Data Port.

4. Repeat steps 2 through 3 for each required register for the selected voice.

Column Access for Writing
Use this procedure for writing to the same register for several voices.

1. Write the voice number to the Synthesizer Voice Select register (SVSR).

2. Write the register index value to the General Index register (IGIDXR).

3. Write to or read from the General 16-Bit Data Port (I16DP) or the General 8-Bit
Data Port.

4. Write a new voice number to the Synthesizer Voice Select register (SVSR).

5. Write to the General 16-Bit Data Port (I16DP) or the General 8-Bit Data Port.

6. Repeat steps 4 through 5 for each voice.

Auto-Increment Access for Writing
Use this procedure for writing to all of the registers for a specific voice.

1. Write the voice number to the Synthesizer Voice Select register (SVSR).

2. Set the Auto Increment bit (SVSR[7]) high.

(Steps 1 and 2 can be performed by the same write action.)

3. Write the register index value for the register with the lowest index value to the
General Index register (IGIDXR).

4. Write to the General 16-Bit Data Port (I16DP) or the General 8-Bit Data Port.

5. Repeat step 4 for each successive register for the selected voice.
6\QWKHVL]HU ����

AMD
8VLQJ�6LJQDO�9RLFHV

The top section of Figure 7-2 illustrates the data paths for a signal voice.

Repeat the following steps for each active voice:

1. Decide how many voices are needed to produce the desired sound, and whether
its output is to be used for effects.

2. Load the wavetable data for the sound into local memory.

See Chapter 8, “Local Memory Control.”

3. Write the value of the voice to be programmed to the Synthesizer Voice Select
(SVSR) register.

4. Write the starting and ending addresses of the data to the Synthesizer Address
Start High/Low registers (SASHI and SASLI) and the Synthesizer Address End
High/Low registers (SAEHI and SAELI).

Software can read wavetable data from local memory in loops, which decreases the
amount of memory required for a sustained, unchanging note. Control looping with the
Synthesizer Volume Control (SVCI) and Synthesizer Address Control (SACI) registers.

5. Write the address where the voice should start (i.e., the current address) to the
Synthesizer Address High/Low registers (SAHI and SALI).

Typically, a voice starts at the beginning of its wavetable data. If this is the case, write
the same values to the Synthesizer Address Start registers and to the Synthesizer
Address registers.

Software can also loop through the wavetable data in various ways, allowing, for
example, long stretches of repetitive data to be played from only a small block of local
memory. See “Address Looping” on page 7-9.

6. Determine the sampling rate for the voice. Write the appropriate data to the
Synthesizer Frequency Control register (SFCI).

SFCI determines the rate (FC) at which the wavetable data is accessed. An FC value
of 1.0 indicates the data is to be accessed at the same rate as it was recorded.

7. Add the volume envelope to the voice.

For information about processing a volume envelope segment, see “Processing Volume
Envelope Segments” on page 7-34.

The results of the envelope segment are put into the Synthesizer Volume Level register.
This is the VOL(L) component referred to in Figure 7-2.

8. Add tremolo to the voice if desired.

The synthesizer adds the tremolo component, VOL(LFO), by continuously varying the
value in the Synthesizer Volume Level register (SVLI). The Synthesizer Volume LFO
register (SVLFOI) contains the tremolo value, which is the output of a programmable
LFO.

9. Position the voice in the stereo field with PAN, or with LOFF and ROFF.

For details, see “Stereo Positioning—Offset and Pan” on page 7-19.
���� 6\QWKHVL]HU

AMD
10. If the voice’s output is to be used for delay-based effects, set the effects v olume
(EVOL) in the Synthesizer Effects Volume register (SEVI).

Because the value is played back some delay later by an effects-processor voice and
summed with the other voices in that later frame, choose the EVOL level for the amount
of the delayed effect to be heard at that later time.

11. Determine the accumulator paths.

Finally, the synthesizer sums a signal voice’s output with all other active voices in the
frame. There are three voice accumulators:

• Left and Right Accumulators: Summing into these output accumulators takes place
automatically—no action is necessary by the programmer. This is the final step
before the synthesizer sends a voice’s output to the synthesizer DAC in the codec
module for conversion to analog audio signals.

• Effects Accumulator: Choose the receiving effects accumulators, if any, in the
Synthesizer Effects Output Accumulator Select register (SEASI).

Note: Each effects accumulator’s output is hardware-linked to four specific voices,
so choose an accumulator linked to a voice known to be available during effects
processing. See Figure 7-12 for a map of the links.

12. Flag the voice as the active voice in the Synthesizer Mode Select register (SMSI).

8VLQJ�(IIHFWV�3URFHVVRU�9RLFHV

To use a voice as an effects processor, use the following procedure:

1. Determine in advance which voices are to be used as effects processors.

The outputs of the effects accumulators are linked in hardware to specific voices. See
Table 7-12 for the mapping.

2. Clear the local memory locations to be used for the effects processing.

See Chapter 8, “Local Memory Control.”

3. Flag the voice as an effects processor by setting the Effects Processor Enable
bit in the Synthesizer Mode Select register (SMSI [0]).

4. Select the effects signal path by setting the Alternate Effects Path bit (SMSI[4]).

This step determines which volume components affect the effects signal path—see
Figure 7-2. Steps 3 and 4 can be performed by the same write operation.

5. Write the starting and ending addresses of the voice’s local memory area to the
Synthesizer Address Start High/Low registers (SASHI and SASLI) and the
Synthesizer Address End High/Low registers (SAEHI and SAELI).

1. Write the address where the voice should start (i.e., the current address) to the
Synthesizer Address High/Low registers (SAHI and SALI).

As with a signal voice, this address is often the same value that is in the Synthesizer
Address Start High/Low registers (SASHI and SASLI).
6\QWKHVL]HU ����

AMD
2. Determine the amount of delay to be added by this effects processor.

Determine the difference between the read address and the write address to achieve
the desired delay (each increment equals 1/44,100 seconds). Write the higher address
(the write address) to the Synthesizer Effects Address High/Low registers (SEAHI and
SEALI).

3. Determine how much of the effect is to be heard.

Volume segments, tremolo, and panning are added just as with a signal voice. This path,
with full envelope generation, sums into the left and right accumulators with all other
active voices in the frame.

4. Set the effects volume (EVOL) to be fed back to the effects accumulators.

As with a signal voice, set EVOL with the Synthesizer Effects Volume (SEVI) register.
The value used in this step allows an effect to build up or decay with time.

5. Flag the voice as the active voice in the Synthesizer Voice Select (SVSR) register.

3OD\LQJ�'LJLWDO�$XGLR�)LOHV�LQ�3&0�2SHUDWLRQ�0RGH

Software can use any or all of the 32 synthesizer voices to play back and mix multiple digital
audio files, such as .wav files.

For more background on playing back files in this mode, see “Digital Audio Files and PCM
Operation Mode” on page 7-28. For a graph of the addressing used in PCM operation, see
Figure 7-5.

The following steps illustrate playing back an audio file:

1. Using DMA or Programmed I/O (PIO), store the first block of recorded data in
local memory from address START to END1.

2. Set START and END1 as address boundaries with SVCI[2]=1, SACI[3]=0,
SACI[4]=0, and SACI[6]=0 and start the voice.

3. Using DMA or PIO, store the next block of recorded data in local memory from
address END1 to END2.

4. When the voice causes an interrupt for crossing END1, change the address
boundary from END1 to END2 and set SACI[3]=1.

5. Using DMA or PIO, store the next block of recorded data in local memory from
address START to END1.

6. When the voice causes an interrupt for crossing END2, change the address
boundary from END2 to END1 and set SACI[3]=0.

7. Repeat steps 3 through 6 until the recorded data has completed playing.

3URFHVVLQJ�9ROXPH�(QYHORSH�6HJPHQWV

To set up the initial envelope segment (typically done from the main program), use the
following procedure. This procedure assumes the Stop 1 bit (SVCI[1]) is already set to 1.

1. If the target volume is greater than the current volume, set the end volume equal
to the target volume.
If the target volume is less than or equal to the current volume, set the start
volume equal to the target volume.
���� 6\QWKHVL]HU

AMD
2. Set the volume rate and increment.

3. Set SVCI as follows:

Volume IRQ (bit 7) = 0
Direction (bit 6) = 0, if target volume > current volume

= 1, if target volume <= current volume
Volume IRQ Enable (bit 5) = 1
Bidirectional Loop Enable (bit 4) = don't care
Loop Enable (bit 3) = 0
Enable PCM Operation (bit 2) = do not change
Stop 1 (bit 1) = 0
Stop 0 (bit 0) = 0

For each subsequent volume envelope segment, use the following procedure (step 2
through step 7 are typically done from a volume interrupt handler):

1. Poll SVlRI to determine if a volume interrupt for this voice has been triggered. If
so, proceed with step 2.

2. Follow step 2 through step 4 for an initial segment.

3. Read SVlI to clear the interrupt.
6\QWKHVL]HU ����

AMD
���� 6\QWKHVL]HU

CHAPTER
8
 LOCAL MEMORY CONTROL
The InterWave local memory control module (also called the local memory controller or
LMC) transfers data between local memory and the synthesizer, system bus interface (SBI),
or codec module. Local memory can include DRAM and ROM.

This chapter covers the following topics:

■ Local memory control basics

■ Data paths

■ Register overview

■ Initialization

■ Interrupts

■ Local memory configuration

■ Accessing local memory

■ DMA data transfers

■ Local memory record and playback FIFOs

■ Programming tips and examples

Local Memory Control Basics
The InterWave IC supports up to 16 Mbytes of DRAM and 16 Mbytes of ROM. InterWave
local memory control provides the following capabilities:

■ Specifying the type and size of local memory, as described in “Local Memory
Configuration” on page 8-6

■ Storing of wavetable information in local memory for use with the InterWave synthesizer

■ Storing of digitized special effects information from the synthesizer’s digital signal
processor (DSP) interface

■ Establishing and controlling large FIFOs in local memory for record and playback
functions

■ Supporting DMA transfers to and from system memory for wave file recording and
playback, and for accessing the external device (e.g., CD-ROM)

As with the other functional areas of the InterWave IC, programmable registers provide
configuration of and access to local memory. The “Register Overview” on page 8-2 outlines
the programmable register functions of the local memory control module.

/RFDO�0HPRU\�$FFHVV

A priority encoder and state machine determine which of the possible sources of local
memory cycles are granted access to local memory (detailed in “Accessing Local Memory”
on page 8-8). The possible sources are the synthesizer, the system bus interface (SBI),
/RFDO�0HPRU\�&RQWURO ���

AMD
and the codec, with the synthesizer as the highest-priority user. The priority encoder also
controls the DRAM refreshing, both during normal and suspend-mode operation.

)UDPH�([SDQVLRQ

Frame-expansion mode allows compatibility with the UltraSound sound board (GUS) by
adjusting the memory-access frame rate when more than 14 synthesizer voices are active
at the same time. For more information, see “GUS Frame Expansion” on page 7-29.

Data Paths
Figure 8-1 shows the data flow between local memory DRAM and ROM, the local memory
controller, the system bus, and the other InterWave modules.

Figure 8-1 Local Memory Control Data Paths

Register Overview
The following tables outline the local memory control functions available through the
InterWave programmable registers. For detailed information about the registers, see the
reference page listed in the last column of each table. These references point to the
applicable section in Chapter 15, “Local Memory Control Registers.” For information about
how to program the registers, see “Accessing InterWave Registers” on page 4-2.

Local Memory
– DRAM
– ROM

LOCAL
MEMORY
CONTROL

LMC Bus

Local Memory
Registers and
Data Latches

Synthesizer
DSP

Synthesizer
Registers

Playback
FIFO

Record
FIFO

Codec
Registers

SYNTHESIZER CODEC

Register Data Bus

Plug and Play
ISA System Bus
–I/O Cycles
–DMA Cycles

SYSTEM CONTROL

System Bus
Interface

System Control Registers
–Plug and Play ISA
–AdLib, Sound Blaster, GUS
 Compatibility
–New Features

Dashed lines enclose InterWave modules.
��� /RFDO�0HPRU\�&RQWURO

AMD
Table 8-1 through Table 8-2 groups the local memory control functions into the following
areas:

■ Control functions

■ DMA and IRQ functions

Table 8-1 Local Memory Control Functions

Function
Register and

Bit Field
Reference

Set the I/O transfer local memory address pointer LMAHI, LMALI 15-3

Read a 16-bit value from local memory (I/O transfer) LMSBAI 15-4

Set the suspend mode DRAM refresh rate LMCFI[11:10] 15-4

Set the normal mode DRAM refresh rate LMCFI[9:8] 15-4

Specify the ROM configuration LMCFI[7:5] 15-4

Specify the DRAM configuration LMCFI[3:0] 15-4

Invert the most significant bit of I/O transfer data from system to local memory LMCI[3] 15-5

Set data width for system to local memory I/O transfer to 16 bits LMCI[2] 15-5

Select DRAM or ROM for I/O transfer LMCI[1] 15-5

Specify auto-increment mode for I/O transfers LMCI[0] 15-5

Specify the record FIFO base local memory address LMRFAI 15-6

Specify the playback FIFO base local memory address LMPFAI 15-6

Enable the local memory record FIFO (LMRF) LMFSI[12] 15-6

Specify the local memory record FIFO (LMRF) size LMFSI[11:8] 15-6

Enable the local memory playback FIFO (LMPF) LMFSI[4] 15-6

Specify the local memory playback FIFO (LMPF) size LMFSI[3:0] 15-6
/RFDO�0HPRU\�&RQWURO ���

AMD
Initialization
This section discusses what steps software must take to prepare the local memory control
module for use. After the InterWave IC is reset, the local memory controller begins operation
with its registers in their default states. First, software must configure the InterWave IC for
Plug and Play (PNP) operation, which is discussed in Chapter 5, “System Control
Functions.” Next, software may need to set some of the local memory registers with
non-default values. Some settings, such as DRAM and ROM bank configuration, need to
be set only once, if at all. These configuration settings are typically set by a driver or
initialization program.

Other settings, such as auto incrementing of the local memory address and whether to use
ROM or DRAM, can change, possibly several times, during the progress of an application
program.

For more information on the LMC module’s power-up default modes, see Chapter 15,
“Local Memory Control Registers.”

:KDW�WR�,QLWLDOL]H

The local memory initialization process should check the default reset state of every register
being used, changing the register settings where necessary. The following settings are
important in every program.

Refresh Timing

Specify refresh rates in the LMC Configuration register (LMCFI).

Table 8-2 Local Memory DMA and IRQ Functions

Function
Register and

Bit Field
Reference

Invert the most significant bit of GUS-compatible DMA data from system to local
memory

LDMACI[7] 15-1

Read status of DMA terminal count (TC) IRQ LDMACI[6] 15-1

Set data width to 16 bits for GUS-compatible DMA between system and local
memory

LDMACI[6] 15-1

Enable DMA TC IRQ LDMACI[5] 15-1

Select DMA transfer rate LDMACI[4:3] 15-1

Determine data width of DMA transfers between system and local memory LDMACI[2] or
LMCI[6]

15-1, 15-5

Select direction of DMA transfers between system and local memory LDMACI[1] 15-1

Enable GUS-compatible DMA transfers LDMACI[0] 15-1

Set the GUS-compatible DMA transfer local memory address counter LDSAHI[7:4],
LDSALI,
LDSAHI[3:0]

15-2

Invert the most significant bit of interleaved DMA data from system to local memory LDICI[10] 15-7

Enable interleaved DMA transfer between system and local memory LDICI[9] 15-7

Set data width to 16 bits for interleaved DMA between system and local memory LDICI[8] 15-7

Specify the number of interleaved DMA tracks LDICI[7:3] 15-7

Specify the size on interleaved DMA tracks LDICI[2:0] 15-7

Specify the base local memory address for interleaved DMA transfers LDIBI 15-7
��� /RFDO�0HPRU\�&RQWURO

AMD
Normal Operating Mode
The default refresh rate for DRAM is 15 µs. Change this value only if the
DRAM used permits longer refresh periods.

Suspend Mode
The default is no refresh during suspend mode.

For complete details on the refresh modes available, see “DRAM Refresh Rates” on
page 8-7.

Memory Configuration

Specify the sizes of the four DRAM and four ROM memory banks in the LMC Configuration
register (LMCFI). If necessary, change the settings to match the local memory hardware
being used.

DRAM The default is one bank of 256 Kbytes.

ROM The default is four banks, 128K by 16 bits each.

See “Local Memory Configuration” on page 8-6 for complete details.

Address Registers

The InterWave IC sets all memory address registers to zero on power up or reset. For this
reason, always write the starting and ending addresses to the appropriate registers for the
operation being programmed. Table 8-1 and Table 8-2 summarize the address registers
used by the LMC module.

Follow this procedure with registers in all modules. Thus, when the LMC provides data for
a synthesizer operation, the applicable operation-specific address registers are:

■ Synthesizer Address Start High (SASHI)

■ Synthesizer Address Start Low (SASLI)

■ Synthesizer Address End High (SAEHI)

■ Synthesizer Address End Low (SAELI)

Address Auto-Increment Mode

Software can set the local-memory address to increment automatically after each access
through the LMC Byte Data (LMBDR) and LMC 16-Bit Access (LMSBAI) registers. Set
auto-increment in the LMC Control (LMCI) register.

The IwavePokeBlock and IwavePeekBlock DDK functions turn on auto-increment mode
to read or write entire blocks of data to or from local memory.

5HWXUQLQJ�IURP�6XVSHQG�0RGH

If the InterWave IC might be placed in suspend mode while the program is running, initialize
the suspend mode refresh rate (the default is no refresh during suspend mode).

When ordered to suspend, the LMC completes the current frame. Then, it leaves the
memory-access logic in a state that does not interfere with refresh cycles while suspended.
When suspend is released, operation resumes automatically with the next frame.

It is not possible to access the InterWave IC from the ISA bus while the hardware is in
suspend mode. Therefore, software must delay access to the IC by about 10 ms after
returning from suspend mode.
/RFDO�0HPRU\�&RQWURO ���

AMD
Interrupts
The LMC module does not generate or process interrupts. For an overview of the InterWave
interrupt structure, see “Interrupt Structure” on page 4-8.

Local Memory Configuration
The InterWave LMC can address up to 16 Mbytes of local memory in four banks of 4 Mbytes
each. Local memory can consist of DRAM, ROM, or a combination of both.

This capacity allows the storage of large amounts of sound data (i.e., wavetable data). It
greatly reduces the usage of system RAM and alleviates the need for repeated,
time-consuming file I/O transfers.

The InterWave IC does not detect the amount or type of memory attached to it. Thus, the
memory configuration must be loaded into the LMC Configuration Register (LMCFI) by
vendor software during initialization. Different fields within this register specify DRAM and
ROM configurations.

'5$0�%DQNV

Table 8-3 lists the valid configurations for DRAM. Specify the configuration in the DRAM
Configuration field of the LMC Configuration register (LMCFI[3:0]). The default value of
LMCFI is 0000h and therefore the IC powers up configured for one bank of 256 Kbytes of
DRAM. For memory configurations other than the default, the correct values must be written
to LMCFI[3:0].

The InterWave DDK provides two functions that assist in determining and setting the
memory configuration for DRAM:

■ IwaveMemSize —returns the size of local DRAM, in kilobytes

■ IwaveMemCfg —determines the DRAM configuration and sets up LMCFI accordingly

These functions work only with DRAM. ROM must always be configured explicitly in LMCFI.

Note: Vendors of InterWave-based sound hardware may have to incorporate some
form of IwaveMemCfg into device drivers or initialization programs because they
may support more than one possible memory configuration in their hardware.
��� /RFDO�0HPRU\�&RQWURO

AMD
'5$0�5HIUHVK�5DWHV

Set the DRAM refresh rates in the Suspend Mode Refresh Rate and Normal Mode Refresh
Rate fields of the LMC Configuration register (LMCFI[11:10] and LMCFI[9:8]). Table 8-4
lists the refresh rates available during suspend and normal modes. The DRAM refresh rate
should be set by a driver or initialization program.

520�%DQNV

If present, each of the four 16-bit-wide banks of ROM must be the same size.

Table 8-5 lists the allowable configurations for ROM. Set the configuration in the ROM
Configuration field of the LMC Configuration register (LMCFI[7:5]).

Table 8-3 DRAM Bank Configurations (values are in bytes)

LMCFI[3:0] Bank 3 Bank 2 Bank 1 Bank 0 Total

0 — — — 256K 256K

1 — — 256K 256K 512K

2 256K 256K 256K 256K 1M

3 — — 1M 256K 1.25M

4 1M 1M 1M 256K 3.25M

5 — 1M 256K 256K 1.5M

6 1M 1M 256K 256K 2.5M

7 — — — 1M 1M

8 — — 1M 1M 2M

9 1M 1M 1M 1M 4M

10 — — — 4M 4M

11 — — 4M 4M 8M

12 4M 4M 4M 4M 16M

13–15 reserved

Table 8-4 DRAM Refresh Rates

Value LMCFI[11:10]—Suspend Mode LMCFI[9:8]—Normal Mode

0 0 No refresh 15 µs refresh rate

0 1 62 µs refresh rate 62 µs refresh rate

1 0 125 µs refresh rate 125 µs refresh rate

1 1 Self-timed refresh No refresh
/RFDO�0HPRU\�&RQWURO ���

AMD
Accessing Local Memory
This section explains several important aspects of accessing local memory.

$GGUHVV�7UDQVODWLRQ

Table 8-6 shows how the InterWave IC translates address values written to the bit fields
of the various synthesizer and local memory address registers (logical addresses, indicated
by A[23:0]) into actual, or real, local memory addresses (indicated by RLA[23:0]). For more
information, see the appropriate sections in Part , “InterWave Registers Reference.”

Table 8-6 clearly indicates which registers are affected by the address translations that
take place within the InterWave IC. Accesses to local memory are carried out either by the
synthesizer or by the software through DMA or programmed I/O transfers. For DMA
transfers, the selected DMA channel determines the access width. DMA channels 4, 5, 6,
or 7 carry out 16-bit accesses. All other available DMA channels use 8-bit access. For
synthesizer accesses, SACI[2] determines the access width. When accessing local memory
through programmed I/O (using the LMAHI and LMALI address registers), no translations
are necessary.

Note: It is imperative to observe the address translations shown in Table 8-6.
Software must always perform a translation opposite to that done by the InterWave
IC for 16-bit accesses.

The IwaveAddrTrans DDK function provides details for obtaining the correct logical
addresses to be written to the registers for 16-bit accesses. I/O memory-transfer cycles are
not affected.

Table 8-5 ROM Bank Configurations (values in bits)

LMCFI[7:5] Bank Size Possible Total

0 128K x 16 512K x 16

1 256K x 16 1M x16

2 512K x 16 2M x 16

3 1M x 16 4M x 16

4 2M x 16 8M x 16

5–7 reserved

Table 8-6 Local Memory Address Translations

Enhanced Mode
Bit (SGMI[0])

Access Width
SUAI, SASHI, SASLI, SAHI, SALI, SAEHI,
SAELI, SEAHI, SEALI, LDSALI, LDSAHI

LDIBI, LMRFAI,
LMPFAI, LMALI,
LMAHI, SLFOBI

0 8-bit RLA[23:0]=(0,0,0,0,A[19:0] RLA[23:0]=A[23:0]

0 16-bit RLA[23:0]=(0,0,0,0,A[19:18],(A[16:0]*2)) RLA[23:0]=A[23:0]

1 8-bit RLA[23:0]=A[23:0] RLA[23:0]=A[23:0]

1 16-bit RLA[23:0]=(A[22:0]*2) RLA[23:0]=A[23:0]
��� /RFDO�0HPRU\�&RQWURO

AMD
3URJUDPPHG�,�2�&\FOHV�WR�/RFDO�0HPRU\

Programmed I/O cycles to local DRAM are independent of data type and mode of operation;
no address translations are required. The LMC maps the address specified in the LMAHI
and LMALI registers directly to that local memory address.

Downloading or uploading blocks of data through I/O cycles is straightforward with the
IwavePokeBlock and IwavePeekBlock DDK functions for bytes or IwavePokeBlockW
and IwavePeekBlockW for words (16 bits). These functions use the auto-increment mode
set in the Auto Increment bit of the LMC Control register (LMCI[0]) for efficient data
transfers.

���%LW�6\QWKHVL]HU�7UDQVIHUV

The InterWave IC can operate in either GUS-compatibility or enhanced mode. The 16-bit
synthesizer accesses to DRAM must take the internal address translations into account,
as follows:

■ GUS-compatibility mode
Only address bits 19–0 are used, allowing access to only 1 Mbyte of local memory.
Table 8-6 shows that for a 16-bit synthesizer access, bits 16–0 written to the address
registers are shifted left by one, bit 17 is dropped, and bits 19–18 remain unchanged.
Therefore, software must carry out the inverse translation before writing the address to
any register that points to a location in local memory. For instance, if location 601E0h
is to be accessed, the software must write 500F0h or 700F0h to the address registers
(both values translate to the same memory location). Because GUS-compatibility mode
shifts bits16–0 and drops bit 17, transfers cannot cross 256-Kbyte boundaries.

■ Enhanced mode
The IC performs a simple left shift of address bits 22–0. This shift must be anticipated
by software before writing address values to any register that points to a location in local
memory.

As a result of the address translation performed by the LMC, 16-bit accesses to DRAM are
always aligned to an even byte.

'0$�WUDQVIHUV�LQ�*86�&RPSDWLEOH�0RGH

For 16-bit accesses of local memory, the application software should specify only address
bits 19–4 when writing to the LMC DMA Start Address Low register (LDSALI), because bits
3–0 are set to 0000 binary automatically. Therefore, if the application needs to start a
transfer at location 601E0h, it should write 500Fh to LDSALI. The LMC translates this value
as shown in Table 8-6.

The address translation imposes the following restrictions:

■ 16-bit DMA transfers must always start at an address aligned to a 32-byte boundary.

■ 8-bit DMA transfers always start at an address aligned to a 16-byte boundary.

8-bit DMA transfers require no address translation. For example, to start a transfer at
601E0h, just write 601Eh to the LMC DMA Start Address register (LDSALI). The four least
significant bits of the address are automatically set to 0000 binary.

In GUS-compatibility mode, a 16-bit DMA transfer can not cross a 256-Kbyte boundary
because of the address translation mechanism.
/RFDO�0HPRU\�&RQWURO ���

AMD
'0$�7UDQVIHUV�LQ�(QKDQFHG�0RGH

In enhanced mode, the address translation of the register address values requires software
to shift the desired DMA starting address right by one bit before writing the address to the
registers. The address translation forces 16-bit DMA transfers to be aligned to even byte
boundaries. For example, to start a transfer at 0601E0h, load 0300F0h into the LMC DMA
Start Address Low (LDSALI) and LMC DMA Start Address High (LDSAHI) registers.

8-bit transfers are byte aligned and require no reverse translation by the software.
Therefore, to start a transfer at 060130h, load that value without change into LDSALI and
LDSAHI.

The size of a DMA transfer in enhanced mode is limited only by the amount of DRAM
present. A 24-bit address can access up to 16M one-byte data samples for 8-bit transfers
and up to 8M two-byte (word) data samples for 16-bit transfers.

The IwaveDmaXfer DDK function details all the steps necessary to perform DMA transfers.

/RFDO�0HPRU\�0DQDJHPHQW

Management of local memory differs between GUS-compatibility and enhanced modes.

GUS-Compatible Mode

In the GUS-compatibility mode, the maximum amount of local memory available to an
application is 1 Mbyte. Because 16-bit accesses are restricted to 256K boundaries, the
LMC breaks the available local memory into, at most, four pools of 256K each. For a
demonstration of local memory management in GUS-compatibility mode, examine the DDK
local memory functions. The DDK routines always allocate blocks of memory that are
aligned to 32-bit boundaries. This alignment serves for both 8-bit and 16-bit DMA transfers,
because 8-bit transfers require 16-byte alignment and 16-bit DMA transfers require 32-byte
alignment. An address aligned to a 32-bit boundary is also aligned to a 16-bit boundary.

Enhanced Mode

In the enhanced mode, all installed local memory, up to 16 Mbytes, is available to an
application. Local memory can be managed in a single pool because the limitations imposed
by address translations in GUS-compatibility mode do not apply in enhanced mode.

DDK Local Memory Management Functions

The DDK memory-management functions always return addresses aligned to even bytes,
and always round sizes up to the next even byte. See the following DDK functions:

■ IwaveMemAlloc —allocate memory

■ IwaveMemFree —deallocate memory

■ IwaveMaxAlloc —determine the maximum allocatable block size

0HPRU\�$FFHVV�3ULRULWLHV

The InterWave IC does not track local memory usage. The DDK provides a set of
memory-management functions that keep track of memory usage by an application.

The LMC generates access cycles to local memory based on a priority mechanism that
arbitrates between the various requests for memory access. Software cannot control these
priorities. The synthesizer’s memory access requests have high priority and processing
many active voices may slow other memory accesses (i.e., codec record and playback,
system bus I/O). For details, see “Accessing Local Memory” on page 8-8.
���� /RFDO�0HPRU\�&RQWURO

AMD
The prioritizing of memory access requests is different depending upon which cycle type
—SYNTH, EVEN, or ODD—is being executed. The LMC grants access requests as shown
in Table 8-7.

For more information on memory access cycles and priorities, see the InterWave IC
Hardware Designer’s Guide available from AMD.

DMA Data Transfers
The InterWave IC is capable of two kinds of DMA transfer: normal and interleaved.

1RUPDO�0RGH

Specify a DMA transfer between local memory and system memory with the LMC DMA
Control register (LDMACI). Specify the beginning address of the transfer in local memory
in the LMC DMA Start Address High (LDSAHI) and LMC DMA Start Address Low
(LMDSALI) registers.

The DMA request signal generated by the LMC goes to the DMA logic described in
Chapter 5, “System Control Functions” to become a DMA request signal out to the ISA
bus. Similarly, the DMA logic receives the DMA acknowledge signal from the ISA bus and
passes it to the LMC.

,QWHUOHDYHG�0RGH

Figure 8-2 shows how it is possible to separate data into tracks during an interleaved DMA
transfer into local memory. Assume that n tracks of interleaved audio data are stored in
system memory, where n can be from 1 to 32, as programmed in the Number of Interleaved
Tracks field of the LMC DMA Interleave Control register (LDICI[7:3]). Specify the size of
each track in the Size of Interleaved Tracks field (LDICI[2:0]), where the number of bytes
in each track is 2^(9 + LDICI[2:0]) (ranging from 512 to 64K). The way in which data is
transferred varies, based on the DMA channel width and the sample width, as shown in
Table 8-8.

Table 8-7 Priorities of Access Cycles

Priority SYNTH EVEN ODD

1 Synth patch access Effects access Synth LFO access

2 Refresh request Codec playback FIFO DMA cycle

3 DMA cycle Codec record FIFO SBI I/O cycle

4 SBI I/O cycle Refresh request Codec playback FIFO

5 Codec playback FIFO DMA cycle Codec record FIFO

6 Codec record FIFO SBI I/O cycle Refresh request
/RFDO�0HPRU\�&RQWURO ����

AMD
Figure 8-2 DMA Data Interleaving

The local memory address for the interleaved DMA function is implemented by ORing the
LMC DMA Interleave Base register (LDIBI) and an offset counter, as shown in Figure 8-3.
The address generated is real regardless of the DMA channel width. It points to a byte in
local DRAM.

Figure 8-3 Interleaved DMA Address Generation

Table 8-8 Interleaved DMA Transfer Modes

DMA
Channel

Sample
Size

Description

8-bit 8-bit Each DMA request-acknowledge cycle transfers one byte that is
placed in the current track number. The track number increments with
each byte transferred.

8-bit 16-bit Each DMA request-acknowledge cycle transfers two bytes that are
placed at the current track number. The track number increments
with each 16-bit value transferred.

16-bit 8-bit Each DMA request-acknowledge cycle transfers two bytes. The lower
byte is placed in the current track number, the track number is
incremented, and the upper byte is placed in the new track number.
The track number then increments again.

16-bit 16-bit Each DMA request-acknowledge cycle transfers one 16-bit value that
is placed in the current track number. The track number increments
with each 16-bit value transferred.

Sample 1, Track 1
Sample 1, Track 2
Sample 1, Track 3

•
•
•

Sample 1, Track n

Sample 2, Track 1
Sample 2, Track 2
Sample 2, Track 3

•
•
•

Sample 2, Track n

•
•
•

Sample 1, Track 1
Sample 2,
Sample 3, . . .

•
•
•

Sample 1, Track 2
Sample 2,
Sample 3, . . .

Sample 1, Track 3
Sample 2,
Sample 3, . . .

Sample 1, Track n
Sample 2,
Sample 3, . . .

System Memory Local Memory

Offset counter

00000000LMC DMA Interleave Base (LDIBI) address bits 23–8

8–020–17 16 15 14 13 12 11 10 9

+

���� /RFDO�0HPRU\�&RQWURO

AMD
The LMC clears each offset counter with each write to LDIBI. The most significant bits,
starting at the bit defined by the Size of Interleaved Tracks field of the LMC DMA Interleave
Control register (LDICI[2:0]), increment with each sample transferred. After transferring the
number of samples specified by the Number of Interleaved Tracks field (LDICI[7:3]), the
LMC increments the least significant bits and clears the most significant bits. If LDICI[7:3]
is set to zero, then this DMA function operates like a single track transfer with a roll-over
point specified by LDICI[2:0].

To execute an interleaved DMA transfer, do the following steps:

Specify the number and the size of the tracks, the data width, and whether to invert the
most significant bit of each sample with a single I/O write to the LMC DMA Interleave
Control register (LDICI).

1. Write bits 23–8 of the base address for the transfer to the LMC Interleave Base Address
register (LDIBI). Notice that the 8 lower bits of this address are zero.

2. Trigger the DMA transfer by setting the Interleaved DMA Enable bit (LDICI[9]) High.
The LMC automatically clears this bit after the transfer is complete.

The IwaveDmaIleaved DDK function implements these steps.

Local Memory Record and Playback FIFOs
The local memory record and playback FIFOs (LMRF and LMPF) are large first-in-first-out
buffers allocated in local DRAM. Use the LMPF to automatically transfer data from DRAM
to the codec playback FIFO. Use the LMRF to automatically transfer data from the codec
record FIFO to local DRAM. In addition, software can move data from the synthesizer,
through the LMRF and out to the system bus interface (SBI). The local memory FIFO sizes
can range from 8 bytes to 256 Kbytes. The CPU writes the LMPF data to DRAM and reads
the LMRF data from DRAM through normal I/O accesses.

Programming Tips and Examples
This section provides information about how to accomplish the following LMC tasks in an
application program:

■ Configuring local memory

■ Transferring data using I/O cycles

■ Transferring data from playback FIFO to codec using DMA

■ Transferring data between system and local memory using DMA

&RQILJXULQJ�/RFDO�0HPRU\

To ensure proper access to local memory, the software must tell the InterWave IC how
much local memory is installed and how that memory is distributed across all four banks.
Normally, this configuration process occurs once during device initialization performed by
a device driver and the IC retains the configuration until reset or power down time.

To configure local memory according to the options listed in Table 15-2, “DRAM
Configuration Selection,” on page 15-5, the DDK provides the IwaveMemCfg function. This
function performs the following three steps:

Determines the size of local memory in a non-destructive fashion (the contents of local
memory is left intact) and stores the size in kilobytes in the size_mem member of the
global iw variable.
/RFDO�0HPRU\�&RQWURO ����

AMD
3. Determines the amount of memory present within each of the four memory banks and
from that information determines the configuration as indicated in Table 15-2.

4. Updates the contents of the DRAM Configuration field of the LMC Configuration register
(LMCFI[3:0]).

IwaveMemCfg determines the configuration of DRAM attached to the InterWave. Because
ROM can not be probed reliably like DRAM, the configuration of ROM must be hard coded
into the initialization device driver for the particular sound card.

The IwaveMemSize function performs the same sizing of local memory as IwaveMemCfg ,
but it does not update LMCFI.

For more information about local memory configuration, see “Initialization” on page 8-4.

7UDQVIHUULQJ�'DWD�8VLQJ�,�2�&\FOHV

The following steps describe how to use programmed I/O to transfer a patch from the system
bus to local memory. In this example, the patch is to be used by the synthesizer.

1. Set Auto Increment in the LMC Control register (LMCI[0]=1).

This setting causes the address in the LMC Address registers to increment automatically
after every access.

2. Write the starting local memory address to the LMC Address High (LMAHI) and
LMC Address Low (LMALI) registers.

3. Write the series of data bytes to the LMC Byte Data register (LMBDR) or 16-bit
words to the LMC 16-Bit Access register (LMSBAI).

If using 8-bit access through LMBDR, the address in the registers increments by one
after each write, leaving the LMC pointing to the next address and ready for the next
data byte into LMBDR.

If using 16-bit access through LMSBAI, the address in the registers increments by two
after each write.

The IwavePokeBlock and IwavePeekBlock DDK functions can greatly simplify
downloading and uploading data with programmed I/O cycles.

4. Write the beginning address of the loaded data to the Synthesizer Address Start
High (SASHI) and Synthesizer Address Start Low (SASLI) registers.

See Chapter 7, “Synthesizer,” for details.

7UDQVIHUULQJ�'DWD�%HWZHHQ�6\VWHP�DQG�/RFDO�0HPRU\�8VLQJ�

'0$

When performing DMA transfers between the system memory and local memory, the
software must take into account the address translations that occur before the programmed
addresses become real local-memory addresses. As shown in Table 8-6 on page 8-8, these
translations occur for 16-bit data access. The data-access width is determined by the DMA
channel in use, whether in enhanced mode or GUS-compatibility mode. The DDK
IwaveAddrTrans function performs this address translation.

An application that uses DMA transfers to move data to and from local memory must first
define a structure of type DMA to hold information about the DMA channel to be used. After
the structure has been defined, it must be registered so that DDK functions can access it.
If the application needs to do any special processing when the DMA terminal count interrupt
���� /RFDO�0HPRU\�&RQWURO

AMD
occurs, the application must also register an IRQ structure and a callback. The
IwaveSetInterface function registers DMA and IRQ structures. The IwaveSetCallback
function registers callbacks.

The process of registering a DMA or IRQ structure consists of setting a pointer to the
particular structure inside the iw variable, which is defined in the iwcore.h DDK header
file. This iw variable is required in all DDK-based application programs.

The application must reserve an adequate amount of system memory to write to (uploading)
or read from (downloading) during the transfer. This RAM must be reserved in DOS
conventional memory as the DMA controller requires it. If the application is a protected
mode program then it must make special arrangements to reserve conventional memory.

The program in Sample 8-1 illustrates the execution of a DMA transfer using the DDK
IwaveDmaXfer function, as well as several aspects of any program using the DDK. The
program downloads 16 bytes of data to InterWave local memory starting at location 00h.
The program registers a callback function called DmaCallback whose only purpose is to
set a flag indicating the completion of the transfer.

The program in Sample 8-1 performs the following steps:

1. Defines a callback function (DmaCallback).

It is not necessary for an application to have a callback but one is shown here as an
example. The callback function is called by the actual interrupt handler when the transfer
is completed. The callback in this program only sets a flag when called; however, a
callback can be defined by the application to perform any necessary task.

2. Opens the DDK by issuing a call to IwaveOpen.

This important step must be carried out before any communication with the sound card
is attempted.

3. Registers a DMA structure and an IRQ structure by calling IwaveInitStructs.

After initializing the DDK and InterWave board, the program registers the DMA as well
as the IRQ structures through a call to the IwaveSetInterface function. This call is the
only means by which the DDK knows about these structures.

The following items must be specified to execute a transfer to or from local memory:

DMA Buffer Allocate a DMA buffer and store the pointer in the pc_ram member of
the DMA structure variable. This is the address to be used by the DMA
controller.

Local Address
Specify the local memory address where the data are to be stored in the
local member of the DMA structure variable. This is the base address
for the data inside the InterWave IC.

DMA Type Specify the direction of transfer in the type member of the DMA structure
variable. Set this member to DMA_READ to download data to the
InterWave local memory or set it to DMA_WRITE to upload data from
local memory to the system. This member is a specification for the DMA
controller and not the InterWave IC. If the DMA controller is to operate
in auto-initialization mode, use the AUTO_READ and AUTO_WRITE
symbolic constants.
/RFDO�0HPRU\�&RQWURO ����

AMD
Control Information
Specify the direction of transfer for the InterWave IC and whether to
invert the most significant bit (MSB) of each sample for local memory
DMA. To specify a DMA transfer to local memory (download), use the
DMA_DOWN symbolic constant. To specify a DMA transfer from local
memory (upload), use the DMA_UP symbolic constant. To specify the
inversion of the MSB of each sample, use the DMA_INV symbolic
constant. This information must be specified in the cur_control
member of the DMA structure variable.

4. Register the DmaCallback function to be called when the DMA transfer is
completed and the terminal count interrupt is reflected in LDMACI[6].

This callback function sets a global flag to indicate DMA completion.

Note that two of the arguments in the call to IwaveSetCallback are set to NULL because
the program has no need for the second DMA channel or the MIDI interrupt.

IwaveOpen installs a default callback function called IwaveDefFunc for all possible
callbacks within the IWAVE variable. Therefore, if an application does not define a
callback for a particular interrupt event and the interrupt occurs, IwaveDefFunc is called.
This function simply executes a return.

5. Reserve space in system memory for the data and then fill it with value 0 through
value 15 in descending order.

6. Specify certain members of the DMA structure.

The pointer to system memory is specified in the structure member pc_ram . The type
of DMA operation is specified in member type . The cur_control member contains
the direction of the DMA transfer. The cur_control member affects the setting of the
LMC DMA Control (LDMACI) register.

1. Start the DMA transfer with a call to the IwaveDmaXfer function.

This function takes as arguments a pointer to the DMA play structure and the number
of bytes to be downloaded. This function in turn calls other functions that program the
DMA controller in the PC and the InterWave and eventually begins the transfer.

2. Block other DMA activity until the transfer is complete with a call to the
IwaveDmaWait function.

This function polls the flag member of the iw variable to determine when the transfer
is done.

3. Test the transfer by reading local memory with calls to the IwaveMemPeek
function and by printing the results to the display.

4. Release the system memory.

5. Shut down the InterWave IC and the DDK with a call to the IwaveClose function.

The shutdown process performed by IwaveClose includes restoring the system’s
interrupt vector table to its original state. Failure to perform this step may result in the
system hanging, crashing, or exhibiting erratic behavior.
���� /RFDO�0HPRU\�&RQWURO

AMD
Sample 8-1 System-to-Local Memory DMA Transfer Program

/*///
/ FILE: ldma.c
/
/ REMARKS: This program is an illustration of the steps needed to conduct a DMA
/ transfer to local memory. Note how the transfer is described to the DDK, how to
/ register a callback, and the DMA and IRQ structures.
/
///*/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include "iwdefs.h"
#include "iwprotos.h"
#include "iwcore.h"

BYTE dmaflag = 0; /* callback flag */

/* step 1 */
void DmaCallback()
{
 dmaflag++; /* flag completion of DMA xfer */
}

void main()
{
 IRQ irq1; /* variable for interrupt service */
 DMA dma1; /* variable for DMA service */
 BYTE far *ptr, i;

 /* step 2 */
 IwaveOpen(14, GUS_MODE); /* Initialize DDK and sound board */

 /* step 3 */
 IwaveSetInterface(&dma1, NULL, &irq1, NULL); /* register DMA and IRQ structures */

 /* step 4 */
 IwaveSetCallback(DmaCallback, PLAY_DMA_HANDLER); /* register callback */

 /* step 5 */
 if ((dma1.pc_ram=farmalloc(16)) == NULL) { /* allocate memory for data */
 printf("Failed to allocate DMA buffer\n");
 exit(-1);
 }
 dma1.local = 0L; /* where data is in Local Mem */
 ptr = (BYTE far *)dma1.pc_ram;

 for (i = 0; i <= 15; i++) /* load buffer with some data */
 *ptr++ = i;

 /* step 6 */
 /* describe transfer to DDK */
 dma1.cur_control |= DMA_DOWN; /* tell InterWave IC to download */
 dma1.cur_control &= ~DMA_INV; /* pass samples with no inversion */
 dma1.type = DMA_READ; /* tell DMA controller to download */
/RFDO�0HPRU\�&RQWURO ����

AMD
 /* step 7 */
 if (IwaveDmaXfer(&dma1,16) != DMA_OK) {
 printf("DMA Failure\n");
 }
 else {
 /* step 8 */
 IwaveDmaWait(); /* block until DMA is done */

 /* step 9 */
 ptr = (BYTE far *)dma1.pc_ram;
 for (i = 0; i <= 15; i++)
 if (IwaveMemPeek(dma1.local + (ADDRESS)i) != *ptr++) {
 printf("DMA Error(%u)\n", i);
 break;
 }
 }

 printf("amount sent %u\n", dma1.amnt_sent);

 /* step 10 */
 farfree(dma1.pc_ram); /* free buffer */

 /* step 11 */
 IwaveClose(); /* close down DDK and board */
}

���� /RFDO�0HPRU\�&RQWURO

CHAPTER
9
 GAME AND MIDI PORTS
The InterWave IC contains ports for supporting two standard PC joysticks and for sending
and receiving Musical Instrument Digital Interface (MIDI) data.

This chapter covers the following topics:

■ Game port basics

■ MIDI port basics

■ Game port and MIDI port register overview

■ Programming tips and examples

Game Port Basics
The game port on the InterWave IC provides the functions found in standard game ports
in PCs. It supports X and Y position inputs for two joysticks plus four button inputs. The
button inputs can be used for two, two-button joysticks or one, four-button joystick. By
reading the game port through the game port registers, you can determine the X and Y
position of the joysticks and the state of each of the buttons. Figure 9-1 shows the game
port connections. On the Am78C202, the second joystick X and Y position connections are
deleted.

Figure 9-1 Game Port Connections

Joystick 2

Joystick 1
X position

X position

Y position

Y position

Button 1

Button 2

Button 1

Button 2

InterWave IC

GGCR[4]

GGCR[5]

GGCR[0]

GGCR[1]

GGCR[6]

GGCR[7]

GGCR[2]

GGCR[3]
*DPH�DQG�0,',�3RUWV ���

AMD
-R\VWLFN�%XWWRQV

Bits 7–4 of the Game Control register (GGCR) reflect the current state of the button
connected to it, as illustrated in Figure 9-1. These bits are normally High. When a button
is pushed, the corresponding bit goes Low and stays low until the button is released.

-R\VWLFN�;�<�3RVLWLRQ

Bits 3–0 of the Game Control register (GGCR) provide a means of reading the joystick’s X
and Y position, as illustrated in Figure 9-1. Writing to the GGCR register sets bits 3–0 High.
The joystick X/Y position lines are then compared to the joystick trim DAC to determine
when the joystick X/Y capacitors charge up to the trim DAC voltage. When each of these
lines reaches the trim DAC voltage, the corresponding bit in GGCR drops to Low. By timing
how long the bit takes to drop to Low, a program can determine the X/Y position.

-R\VWLFN�7ULP�'$&

The joystick trim DAC provides a voltage reference used as a threshold to determine when
the joystick X/Y position bits should drop to Low. This threshold voltage can be adjusted
for different systems by writing a 5-bit value to the Joystick Trim DAC register (GJTDI[4:0]).
Software typically uses a counter based on a system clock to determine how long it takes
for the X or Y position capacitors to charge. In a fast system, if the threshold comparison
voltage is too high, the counter may overflow before the capacitor charges to the threshold.
Setting the threshold voltage allows the software to use the maximum range of voltage for
the best joystick position resolution without overflowing the joystick position counter. Some
hardware vendors provide a utility program to test the joystick for the best joystick threshold
voltage.

Game Port Register Overview
Table 9-1 lists the game port functions that can be accomplished through the InterWave
programmable registers. For detailed information about the registers, see the reference
page listed in the last column of the table. These references point to the applicable section
in Chapter 16, “Game Port and MIDI Port Registers.”

MIDI Port Basics
The Musical Instrument Digital Interface (MIDI) standard specifies a low-performance local
area network (LAN) and describes the data that are passed onto the LAN. These data are
geared toward controlling musical instruments such as synthesizers. The port allows for
the connection of MIDI-compatible devices such as keyboards. The MIDI port can receive
and transmit serial data at digital levels; external circuitry is required for the interface to the
MIDI LAN.

Table 9-1 Game Port Functions

Function
Register and Bit

Field
Reference

Read the state of the joystick buttons GGCR[7:4] 16-1

Read the state of the joystick position flags GGCR[3:0] 16-1

Specify the joystick trim DAC level GJTDI[4:0] 16-1
��� *DPH�DQG�0,',�3RUWV

AMD
0,',�8$57

The MIDI interface hardware is, in essence, a UART.

From a software standpoint, the MIDI UART can be programmed to look like a Motorola
MC6850 with limited programmability or a MPU-401 UART. The UART supports these basic
functions:

■ Bit rate = 31.25 kHz ±1%

■ 1 start bit (0)

■ 8 data bits

■ 1 stop bit (1)

■ DCD/, CTS/, RTS/ not implemented

In addition, a 16-byte MIDI receive FIFO has been included.

The MIDI port module can be programmed to generate an interrupt to the system control
module when data enters the MIDI Receive Data register (GMRDR) or when the
transmission of data is complete.

0,',�5HFHLYH�),)2�DQG�5HJLVWHU

A 16-byte receive FIFO sits between the UART and the MIDI Receive Data register
(GMRDR). When GMRDR contains data, the MIDI port module generates an interrupt (if
enabled). Reading the register clears the interrupt. If more MIDI data is received before the
byte is read from the register, the new data is placed in the receive FIFO. If, after GMRDR
is read, the FIFO contains more data, the module transfers the next byte from the FIFO to
the register and generates another interrupt. Therefore, the IRQ assigned to the MIDI
interrupt is cleared when the data is read but can be triggered again immediately as the
data is passed from the FIFO to the register.

0,',�/RRS�%DFN

You can loop the contents of the MIDI Transmit Data register (GMTDR) directly back into
the MIDI Receive Data register (GMRDR). When in loop-back mode, GMTDR still functions
normally; that is, it transmits the looped data. However, in loop-back mode, the MIDI port
cannot receive external data.

MIDI Port Register Overview
Table 9-1 lists the MIDI port functions that can be accomplished through the InterWave
programmable registers. For detailed information about the registers, see the reference
page listed in the last column of the table. These references point to the applicable section
in Chapter 16, “Game Port and MIDI Port Registers.”
*DPH�DQG�0,',�3RUWV ���

AMD
Programming Tips and Examples
This section provides information about how to accomplish the following game port and
MIDI port tasks in an application program:

■ Read the joystick X/Y position

■ Read the joystick buttons

■ Receive MIDI data

■ Transmit MIDI data

■ Loopback MIDI data

5HDGLQJ�WKH�-R\VWLFN�;�<�3RVLWLRQ

Before the X and Y position of a joystick can be read, the joystick must be calibrated. A
typical joystick calibration procedure consists of reading the capacitor charge times at the
extreme X and Y positions of the joystick. These charge times then provide a maximum
range against which subsequent charge times can be compared to determine the relative
X or Y position.

To read the joystick position, use the following procedure. This procedure assumes that a
threshold value has already been written to the Joystick Trim DAC register (GJTDI[4:0]).

1. Write any value to the Game Control register.

This write sets the GGCR joystick X/Y position bits High and allows an external capacitor
to be charged through the X and Y position lines to the joystick.

2. Poll the Game Control port and time how long it takes for the GAMIO pins to drop
to 0.

That time is how long it takes to charge the external capacitor to the threshold voltage
through the X and Y position lines. Compare this time to the time obtained during
calibration to determine the joystick’s relative position.

Table 9-2 MIDI Port Functions

Function
Register and Bit

Field
Reference

Enable the MIDI receive data IRQ GMCR[7] 16-2

Enable the MIDI transmit data IRQ GMCR[6:5] 16-2

Reset the MIDI port GMCR[1:0] 16-2

Read the status of the MIDI IRQ GMSR[7] 16-3

Determine if MIDI receive FIFO is full GMSR[5] 16-3

Determine if there has been a MIDI framing error GMSR[4] 16-3

Determine if MIDI Transmit Data register (GMTDR) is available GMSR[1] 16-3

Determine if MIDI Receive Data register (GMRDR) is full GMSR[0] 16-3

Transmit MIDI data GMTDR 16-4

Receive MIDI data GMRDR 16-4

Write to the MIDI receive FIFO GMRFAI 16-4
��� *DPH�DQG�0,',�3RUWV

CHAPTER
10
 LEGACY SOUND CARD COMPATIBILITY AND
EMULATION
The InterWave IC supports application software written to operate with legacy sound cards
and synthesizers through two kinds of facilities: registers that mimic registers found in the
earlier device, and general purpose registers that can be located in I/O address space to
capture information written by the application software and to send information back to the
application.

MPU-401 Emulation Basics
The InterWave IC supports MPU-401 emulation with two MPU-401 emulation registers and
with the use of the general purpose registers.

*HQHUDO�3XUSRVH�5HJLVWHUV

Two 8-bit general purpose registers in the IC are used for MPU-401 emulation and to
support other emulation software. The general purpose registers, referred to as UGP1I and
UGP2I, can be located anywhere in the ISA 10-bit I/O address space through ICMPTI[3:0],
UGPA1I, and UGPA2I. Each general purpose register actually represents two registers:
one that is read from by the application and one that is written to by the application. The
application writes to one of these registers at the emulation address, causing an interrupt
if the interrupt is enabled. The interrupt signals the emulation software to read the register
through a back-door access location in the GUS Hidden Register Data Port (UHRDP). The
emulation software can then write to the same back-door location to update the general
purpose register before it is read by the application. Figure 10-1 illustrates the flow of
information through the general purpose registers. The dashed arrows in the illustration
stand for IRQ enables.

Figure 10-1 Data Flow Through the General Purpose Registers

Several controls have been added to the general purpose registers as found in the GUS
to support MPU-401 emulation. Such emulation assumes there is an MPU-401emulation
terminate-and-stay-resident program (TSR) running concurrently with the application
(typically game software). To match the MPU-401 card, the emulation address (UGPA1I,
UGPA2I, and ICMPTI[3:0]) may be set to match the MIDI UART address. The two UART
addresses can be swapped so that the MIDI Receive Data and MIDI Transmit Data registers
(GMRDR and GMTDR) are accessed through P3XR+0 and the MIDI Control and MIDI
Status registers (GMCR and GMSR) are accessed through P3XR+1. Writing to the general
purpose registers causes an interrupt (potentially NMI). Emulation software captures the
interrupt, reads the data in the emulation registers through the GUS Hidden Register Data

Application
I/O Writes

Application
I/O Reads

I/O Adress:
UGPA1I,
UGPA2I,
ICMPTI[3:0]

Emulation
Software

UGP2I Wr IRQ

UGP2I In

UGP1I Wr IRQ

UGP1I In

I/O Adress:
UGPA1I,
UGPA2I,
ICMPTI[3:0]

UGP2I Rd IRQ

UGP2I Out

UGP1I Rd IRQ

UGP1I Out
/HJDF\�6RXQG�&DUG�&RPSDWLELOLW\�DQG�(PXODWLRQ ����

AMD
Port (UHRDP) and uses it to determine how to control the synthesizer. The MIDI commands
may also be sent to the UART so that the application can be driven by the same interrupts
and observe the same status as the MPU-401 card.

Figure 10-2 shows the access possibilities for the application and the emulation TSR. In
that figure, the switch symbols are the enables controlled by the MPU-401 Emulation Control
A and MPU-401 Emulation Control B registers (IEMUAI and IEMUBI).

Figure 10-2 Emulation Control Registers

038�����6WDWXV�(PXODWLRQ

Two MPU-401 status bits are generated: Data Receive Ready (bit 6) and Data Send Ready
(bit 7). The intended meaning of these bits is as follows: Data Receive Ready (DRR)
becomes active (Low) when the host (CPU) is free to send a new command or data byte
to the UART; Data Send Ready (DSR) becomes active (Low) when there is data available
in the UART's receive data register. Note that the names of these bits are derived from the
perspective of the MPU-401 hardware.

DRR is set inactive (High) by the hardware whenever there is a write to either of the
emulation registers through the emulation address (ICMPTI[3:0], UGPA1I, UGPA2I), if a
write to that register is enabled. Writes to UGP1I[6] through the back door (UHRDP) also
update the state of this bit. This bit defaults to High at reset.

DSR is set inactive (High) by the hardware when there is a read of UGP2I via the emulation
address (ICMPTI[3:2], UGPA2I). Writes to UGP1I[7] through the back door (UHRDP) also
update the state of this bit. This bit defaults to Low at reset.

Appli-
cation
I/O
Writes

I/O Addr.
P3XR + 0

I/O Addr.
P3XR + 1

Emulation
 I/O Addr.
UGPA2I

UART
Receive

Emulation
 I/O Addr.
UGPA1I

UART Transmit
(GMTDR)

UGP2I Wr IRQ

UGP2I In

UGP1I Wr IRQ

UGP1I In

UGP2I Rd IRQ

UGP2I Out

UGP1I Rd IRQ

UGP1I Out

UART Control
(GMCR)

UART Status (GMSR)

MPU-401 Status
Emulation

MIDI Receive
I/O Addr.
P3XR + 0

MIDI Status
I/O Addr.
P3XR + 1

Appli-
cation
I/O
Reads

FIFO GMRDP

Emulation
TSR

Access Via
Back Door
(UHRDP)

Interrupt
Service

•

• •

• •

• •

• •

• •

• •

• •

• • • •

• • • ••

•

•

Emulation
 I/O Addr.
UGPA2I

Emulation
 I/O Addr.
UGPA1I

• •

[5:0]

[7]

[6]

MIDI InMIDI Out
• •• •• •

MIDI Loopback
���� /HJDF\�6RXQG�&DUG�&RPSDWLELOLW\�DQG�(PXODWLRQ

AMD
Legacy Sound Card Emulation
The InterWave IC contains programmable registers that support software written for the
AdLib sound card or the Sound Blaster sound card. Emulation of legacy sound cards follows
a basic 3-step process:

4. Trap the various emulation interrupts.

5. Upon trapping an emulation interrupt, read any register that contains information
pertaining to that interrupt.

6. Take appropriate actions based on the interrupt and information read.

Table 10-1 lists and briefly describes the registers involved in the emulation of legacy sound
cards. For detailed information about the AdLib–Sound Blaster emulation registers, go to
the reference pages listed in the last column of Table 10-1.

Table 10-1 AdLib and Sound Blaster Emulation Registers

Mnemonic Register Description Reference

UISR IRQ Status Contains several interrupt status bits for
AdLib–Sound Blaster emulation.

12-2

U2X6R Sound Blaster 2X6 Writing to this register triggers the Write to 2X6
interrupt, whose status is reflected in UASRR[3].

12-3

UACWR AdLib Command Write Written to by AdLib application software to program
the internal synthesizer to duplicate the AdLib
sound.

12-3

UASRR AdLib Status Read Contains several interrupt status bits for AdLib and
Sound Blaster emulation.

12-3

UADR AdLib Data Performs AdLib functions based on the state of
various bits. Writing to this register causes an
interrupt.

12-4

UACRR AdLib Command Read Read by AdLib application software. 12-3

UASWR AdLib Status Write See UASRR. 12-3

UI2XCR Sound Blaster IRQ 2XC The Sound Blaster 2XC register. Writing to this
register causes an interrupt if the Sound Blaster
interrupts are enabled.

12-5

U2XCR Sound Blaster 2XC (no IRQ) Allows writing to the Sound Blaster 2XC register
without generating an interrupt.

12-6

U2XER Sound Blaster 2XE The Sound Blaster 2XE register. Writing to this
register causes an interrupt if the U2XER interrupt
is enabled.

12-6

URCR Register Control Contains an enable bit for the U2XER interrupt, and
the Toggle UI2XCR[7] bit.

12-6

USRR Status Read Contains the 2XE interrupt status bit. 12-7

UICI Interrupt Control Contains the AdLib–Sound Blaster to NMI bit for
sending AdLib–Sound Blaster interrupts to NMI
instead of the selected IRQ channel.

12-9

UASBCI AdLib–Sound Blaster Control Controls the AdLib and Sound Blaster emulation
hardware. Contains enabling bits for various
emulation interrupts and the auto-timer mode.

12-12

UAT1I AdLib Timer 1 Contains the load value for AdLib Timer 1. See
UADR for the Start Timer 1 bit.

12-13
/HJDF\�6RXQG�&DUG�&RPSDWLELOLW\�DQG�(PXODWLRQ ����

AMD
UAT2I AdLib Timer 2 Contains the load value for AdLib Timer 2. See
UADR for the Start Timer 2 bit.

12-13

IDECI Decode Control Contains bits for enabling reading and writing of the
Sound Blaster and AdLib registers.

12-16

IEIRQI Emulation Control Contains a bit for controling the state of the IRQ line
selecting in PSBISI.

12-20

PSACTI PNP AdLib–Sound Blaster
Activate

Activates the AdLib-Sound Blaster emulation logical
device.

12-24

PSRCI PNP AdLib–Sound Blaster I/O
Range Check

Provides a method for checking the AdLib-Sound
Blaster emulation I/O addresses.

12-24

PSBISI PNP AdLib–Sound Blaster
Emulation IRQ Select

Selects the IRQ number for the Sound Blaster
emulation interrupt.

12-25

PSBITI PNP AdLib–Sound Blaster
Emulation IRQ Type

Provides data back to standard PNP software
concerning the type of interrupts supported by the
InterWave IC.

12-26

Table 10-1 AdLib and Sound Blaster Emulation Registers (Continued)

Mnemonic Register Description Reference
���� /HJDF\�6RXQG�&DUG�&RPSDWLELOLW\�DQG�(PXODWLRQ

Part 3
InterWave Registers Reference

This section provides the information needed to program each of the InterWave
user-accessible registers. The registers are separated into chapters by major component:

■ System control

■ Codec

■ Synthesizer

■ Local memory control

■ Game and MIDI ports

Notes: 1. In the following register definitions, Res or Reserved specifies reserved bits.
Unless noted otherwise, such fields must be written with zeros. Reading a
reserved bit returns an indeterminate value. A read-modify-write operation can
write back the value read.

2. To make the following register definitions easier to understand, this book uses
certain conventions when describing bit positions and bit values. For information
about the conventions used, see “Typographical Conventions” on page -xix.

AMD

CHAPTER
11
 REGISTER SUMMARY
The InterWave audio IC has hundreds of user-accessible registers for controlling all aspects
of its operation. This chapter describes the conventions used to name the registers and
lists every user-accessible register in the InterWave IC along with its address, default value,
and a page reference to the detailed register information in Part , “InterWave Registers
Reference.”

Information about how to program the InterWave IC through the registers can be found in
Part , “Programming the InterWave IC.” For information about the relocatable address
spaces, direct and indirect registers, and external decoding mode, see “Accessing
InterWave Registers” on page 4-2.

Register Naming Conventions
To help you understand how the InterWave IC operates, we have used the following
mnemonic conventions in naming registers:

■ The first character of a register's name is a code letter that specifies the InterWave
functional block to which the register belongs (see Table 11-1).

■ The middle two to four characters describe the function of the register.

■ The final character is either R for a direct register, P for a port (to access an array of
indexed registers), or I for an indirect register.

For example, the IGIDXR register breaks down as follows:

■ A system control register (I)

■ The General Index register (GIDX)

■ A direct register (R)—which means software writes directly to the register address
without having to write an index value to some other register first.

Table 11-1 Module Mnemonics

Code Function

C Codec digital section

G Game port (joystick), MIDI port

I Interface (system control, system bus interface)

L Local memory control

P Plug and Play ISA

S Synthesizer

U UltraSound (GUS compatibility, emulation of legacy sound cards)
5HJLVWHU�6XPPDU\ ����

AMD
Registers By I/O Address
Table 11-2 lists the InterWave I/O programmable registers and ports in the order of their
I/O addresses. Table 11-3 lists the same registers and ports alphabetized by mnemonic
name. All addresses are in hexadecimal. Default values are shown in hexadecimal (00h)
or binary (0000 0000). When shown in binary, an x in a bit position means the bit value is
indeterminate. A question mark in a bit position means the default bit value may be either
High or Low depending on certain conditions, as described in the detailed information in
Part , “InterWave Registers Reference.” The last column of the table shows the page in
Part 3 that contains detailed information about the register or port.

Table 11-2 InterWave Registers and Ports by I/O Address

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
 only

UMCR Mix Control P2XR+0 — r/w 03h 12-1

UISR IRQ Status P2XR+6 — read 00h 12-2

U2X6R Sound Blaster 2X6 P2XR+6 — write — 12-3

UACWR AdLib Command Write P2XR+8,
P388AR+0

— write 00h 12-3

UASRR AdLib Status Read P2XR+8,
P388AR+0

— read 00h 12-3

UADR AdLib Data P2XR+9,
P389AR+1

— r/w 00h 12-4

UACRR AdLib Command Read P2XR+0Ah — read 00h 12-3

UASWR AdLib Status Write P2XR+0Ah — write 00h 12-3

UHRDP GUS Hidden Register Data Port P2XR+0Bh — r/w — 12-5

UI2XCR Sound Blaster IRQ 2XC P2XR+0Ch — r/w 00h 12-5

U2XCR Sound Blaster 2XC (no IRQ) P2XR+0Dh — write 00h 12-6

U2XER Sound Blaster 2XE P2XR+0Eh — r/w 00h 12-6

URCR Register Control P2XR+0Fh — r/w 00h 12-6

USRR Status Read P2XR+0Fh — read 01h 12-7

UDCI DMA Channel Control P2XR+0Bh UMCR[6]=0,
URCR[2:0]=0

r/w 00h 12-8

UICI Interrupt Control P2XR+0Bh UMCR[6]=1,
URCR[2:0]=0

write 07h 12-9

UGP1I General Purpose Register 1 (Back Door) P2XR+0Bh URCR[2:0]=1 r/w 00h 12-10

UGP2I General Purpose Register 2 (Back Door) P2XR+0Bh URCR[2:0]=2 r/w 00h 12-10

UGP1I General Purpose Register 1
(Emulation Address)

UGPA1I r/w 00h 12-10

UGP2I General Purpose Register 2
(Emulation Address)

UGPA2I r/w 00h 12-10

UGPA1I General Purpose Register 1 Address P2XR+0Bh URCR[2:0]=3 r/w 00h 12-11

UGPA2I General Purpose Register 2 Address P2XR+0Bh URCR[2:0]=4 r/w 00h 12-11

UCLRII Clear Interrupt P2XR+0Bh URCR[2:0]=5 write — 12-11

UJMPI Jumper P2XR+0Bh URCR[2:0]=6 r/w 06h 12-11

GGCR Game Control P201AR+0 — r/w x0h 16-1

GMCR MIDI Control P3XR+0 — r/w 0x0x xxx0 16-2

GMSR MIDI Status P3XR+0 — read 0x00 xx10 16-3

GMTDR MIDI Transmit Data P3XR+1 — write — 16-4

GMRDR MIDI Receive Data P3XR+1 — read FFh 16-4

SVSR Synthesizer Voice Select P3XR+2 — r/w 00h 14-1
���� 5HJLVWHU�6XPPDU\

AMD
IGIDXR General Index P3XR+3 — r/w 00h 12-12

I16DP General 16-bit I/O Data Port P3XR+(4-5) — r/w — 12-12

I8DP General 8-bit I/O Data Port P3XR+5 — r/w — 12-12

SACI Synth. Address Control (1 per voice) P3XR+5 IGIDXR=0, 80 w, r 01h 14-8

SFCI Synth. Frequency Control (1 per voice) P3XR+(4-5) IGIDXR=1, 81 w, r 0400h 14-7

SASHI Synth. Address Start High (1 per voice) P3XR+(4-5) IGIDXR=2, 82 w, r 0000h 14-4

SASLI Synth. Address Start Low (1 per voice) P3XR+(4-5) IGIDXR=3, 83 w, r 0000h 14-5

SAEHI Synth. Address End High (1 per voice) P3XR+(4-5) IGIDXR=4, 84 w, r 0000h 14-5

SAELI Synth. Address End Low (1 per voice) P3XR+(4-5) IGIDXR=5, 85 w, r 0000h 14-5

SVRI Synth. Volume Rate (1 per voice) P3XR+5 IGIDXR=6, 86 w, r 00h 14-10

SVSI Synth. Volume Start (1 per voice) P3XR+5 IGIDXR=7, 87 w, r 00h 14-9

SVEI Synth. Volume End (1 per voice) P3XR+5 IGIDXR=8, 88 w, r 00h 14-9

SVLI Synth. Volume Level (1 per voice) P3XR+(4-5) IGIDXR=9, 89 w, r 0000h 14-10

SAHI Synth. Address High (1 per voice) P3XR+(4-5) IGIDXR=A, 8A w, r 0000h 14-6

SALI Synth. Address Low (1 per voice) P3XR+(4-5) IGIDXR=B, 8B w, r 0000h 14-6

SROI Synth. Right Offset (1 per voice) P3XR+(4-5) IGIDXR=C, 8C w, r 0700h 14-12

SVCI Synth. Volume Control (1 per voice) P3XR+5 IGIDXR=D, 8D w, r 01h 14-10

SAVI Synth. Active Voices P3XR+5 IGIDXR=E, 8E w, r CDh 14-1

SVII Synth. Voices IRQ P3XR+5 IGIDXR=8F read E0h 14-2

SUAI Synth. Upper Address (1 per voice) P3XR+5 IGIDXR=10, 90 w, r 00h 14-4

SEAHI Synth. Effects Address High (1 per voice) P3XR+(4-5) IGIDXR=11, 91 w, r 0000h 14-7

SEALI Synth. Effects Address Low (1 per voice) P3XR+(4-5) IGIDXR=12, 92 w, r 0000h 14-7

SLOI Synth. Left Offset (1 per voice) P3XR+(4-5) IGIDXR=13, 93 w, r 0000h 14-13

SEASI Synth. Effects Output Accumulator Select
(1 per voice)

P3XR+5 IGIDXR=14, 94 w, r 00h 14-14

SMSI Synth. Mode Select (1 per voice) P3XR+5 IGIDXR=15, 95 w, r 02h 14-14

SEVI Synth. Effects Volume (1 per voice) P3XR+(4-5) IGIDXR=16, 96 w, r 0000h 14-13

SFLFOI Synth. Frequency LFO (1 per voice) P3XR+5 IGIDXR=17, 97 w, r 00h 14-8

SVLFOI Synth. Volume LFO (1 per voice) P3XR+5 IGIDXR=18, 98 w, r 00h 14-11

SGMI Synth. Global Mode P3XR+5 IGIDXR=19, 99 w, r 00h 14-3

SLFOBI Synth. LFO Base Address P3XR+(4-5) IGIDXR=1A, 9A w, r 0000h 14-3

SROFI Synth. Right Offset Final (1 per voice) P3XR+(4-5) IGIDXR=1B, 9B w, r 0700h 14-12

SLOFI Synth. Left Offset Final (1 per voice) P3XR+(4-5) IGIDXR=1C, 9C w, r 0000h 14-13

SEVFI Synth. Effect Volume Final (1 per voice) P3XR+(4-5) IGIDXR=1D, 9D w, r 0000h 14-14

SVIRI Synth. Voices IRQ Read P3XR+5 IGIDXR=9F read E0h 14-2

LDMACI LMC DMA Control P3XR+5 IGIDXR=41 r/w 00h 15-1

LDSALI LMC DMA Start Address Low (bits 19–4) P3XR+(4-5) IGIDXR=42 r/w 0000h 15-2

LMALI LMC I/O Address Low (bits 15–0) P3XR+(4-5) IGIDXR=43 write 0000h 15-3

LMAHI LMC I/O Address High (bits 23–16) P3XR+5 IGIDXR=44 write 00h 15-3

UASBCI AdLib–Sound Blaster Control P3XR+5 IGIDXR=45 r/w 00h 12-12

UAT1I AdLib Timer 1 P3XR+5 IGIDXR=46 r/w 00h 12-13

UAT2I AdLib Timer 2 P3XR+5 IGIDXR=47 r/w 00h 12-13

USCI ADC Sample Control P3XR+5 IGIDXR=49 r/w 00h 12-13

GJTDI Joystick Trim DAC P3XR+5 IGIDXR=4B r/w 1Dh 16-1

URSTI GUS Reset P3XR+5 IGIDXR=4C write xxxx x000 12-14

LDSAHI LMC DMA Start Address High
(bits 23–20, 3–0)

P3XR+5 IGIDXR=50 r/w 00h 15-3

Table 11-2 InterWave Registers and Ports by I/O Address (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
 only
5HJLVWHU�6XPPDU\ ����

AMD
LMSBAI LMC 16-Bit Access P3XR+(4-5) IGIDXR=51 r/w — 15-4

LMCFI LMC Configuration P3XR+(4-5) IGIDXR=52 r/w 0000h 15-4

LMCI LMC Control P3XR+5 IGIDXR=53 r/w 00h 15-5

LMRFAI LMC Record FIFO Base Address
(bits 23–8)

P3XR+(4-5) IGIDXR=54 r/w 0000h 15-6

LMPFAI LMC Playback FIFO Base Address
(bits 23–8)

P3XR+(4-5) IGIDXR=55 r/w 0000h 15-6

LMFSI LMC FIFO Size P3XR+(4-5) IGIDXR=56 r/w 0000h 15-6

LDICI LMC DMA Interleave Control P3XR+(4-5) IGIDXR=57 r/w 0000h 15-7

LDIBI LMC DMA Interleave Base Address
(bits 23–8)

P3XR+(4-5) IGIDXR=58 r/w 0000h 15-7

ICMPTI Compatibility P3XR+5 IGIDXR=59 r/w 1Fh 12-15

IDECI Decode Control P3XR+5 IGIDXR=5A r/w 7Fh 12-16

IVERI Version Number P3XR+5 IGIDXR=5B r/w 0010 0?00 12-17

IEMUAI MPU-401 Emulation Control A P3XR+5 IGIDXR=5C r/w 00h 12-18

IEMUBI MPU-401 Emulation Control B P3XR+5 IGIDXR=5D r/w 30h 12-19

GMRFAI MIDI Receive FIFO Access P3XR+5 IGIDXR=5E write — 16-4

Reserved P3XR+5 IGIDXR=5F

IEIRQI Emulation IRQ P3XR+5 IGIDXR=60 r/w 0?xx xx00 12-20

LMBDR LMC Byte Data P3XR+7 — r/w — 15-1

CIDXR Codec Index Address PCODAR+0 — r/w 40h 13-1

CDATAP Codec Indexed Data Port PCODAR+1 — r/w — 13-2

CSR1R Codec Status Register 1 PCODAR+2 — read CCh 13-2

CPDR Playback Data PCODAR+3 — write — 13-4

CRDR Record Data PCODAR+3 — read — 13-4

CLICI Left ADC Input Control PCODAR+1 CIDXR[4:0]=0 r/w 000x 0000 13-4

CRICI Right ADC Input Control PCODAR+1 CIDXR[4:0]=1 r/w 000x 0000 13-4

CLAX1I Left Auxiliary 1/Synthesizer Input Control PCODAR+1 CIDXR[4:0]=2 r/w 1xx0 1000 13-5

CRAX1I Right Auxiliary 1/Synthesizer Input
Control

PCODAR+1 CIDXR[4:0]=3 r/w 1xx0 1000 13-5

CLAX2I Left Auxiliary 2 Input Control PCODAR+1 CIDXR[4:0]=4 r/w 1xx0 1000 13-5

CRAX2I Right Auxiliary 2 Input Control PCODAR+1 CIDXR[4:0]=5 r/w 1xx0 1000 13-5

CLDACI Left Playback DAC Control PCODAR+1 CIDXR[4:0]=6 r/w 1x00 0000 13-6

CRDACI Right Playback DAC Control PCODAR+1 CIDXR[4:0]=7 r/w 1x00 0000 13-6

CPDFI Playback Data Format PCODAR+1 CIDXR[4:0]=8 r/w 00h 13-6

CFIG1I Configuration Register 1 PCODAR+1 CIDXR[4:0]=9 r/w 00xx 1000 13-7

CEXTI External Control PCODAR+1 CIDXR[4:0]=A r/w 00xx 0x0x 13-8

CSR2I Codec Status Register 2 PCODAR+1 CIDXR[4:0]=B read 00h 13-9

CMODEI Mode Select, ID PCODAR+1 CIDXR[4:0]=C r/w 100x 1010 13-10

CLCI Loopback Control PCODAR+1 CIDXR[4:0]=D r/w 0000 00x0 13-10

CUPCTI Upper Playback Count PCODAR+1 CIDXR[4:0]=E r/w 00h 13-11

CLPCTI Lower Playback Count PCODAR+1 CIDXR[4:0]=F r/w 00h 13-11

CFIG2I Configuration Register 2 PCODAR+1 CIDXR[4:0]=10 r/w 0000 xxx0 13-11

CFIG3I Configuration Register 3 PCODAR+1 CIDXR[4:0]=11 r/w 0000 x000 13-12

CLLICI Left Line Input Control PCODAR+1 CIDXR[4:0]=12 r/w 1xx0 1000 13-13

CRLICI Right Line Input Control PCODAR+1 CIDXR[4:0]=13 r/w 1xx0 1000 13-13

CLTIMI Lower Timer PCODAR+1 CIDXR[4:0]=14 r/w 00h 13-14

Table 11-2 InterWave Registers and Ports by I/O Address (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
 only
���� 5HJLVWHU�6XPPDU\

AMD
CUTIMI Upper Timer PCODAR+1 CIDXR[4:0]=15 r/w 00h 13-14

CLMICI Left Microphone Input Control PCODAR+1 CIDXR[4:0]=16 r/w 1xx0 1000 13-14

CRMICI Right Microphone Input Control PCODAR+1 CIDXR[4:0]=17 r/w 1xx0 1000 13-14

CSR3I Codec Status Register 3 PCODAR+1 CIDXR[4:0]=18 r/w x000 0000 13-15

CLOAI Left Output Attenuation PCODAR+1 CIDXR[4:0]=19 r/w 1xx0 0000 13-16

CMONOI Mono Input and Output Control PCODAR+1 CIDXR[4:0]=1A r/w 000x 0000 13-17

CROAI Right Output Attenuation PCODAR+1 CIDXR[4:0]=1B r/w 1xx0 0000 13-16

CRDFI Record Data Format PCODAR+1 CIDXR[4:0]=1C r/w 00h 13-17

CPVFI Playback Variable Frequency PCODAR+1 CIDXR[4:0]=1D r/w 00h 13-18

CURCTI Upper Record Count PCODAR+1 CIDXR[4:0]=1E r/w 00h 13-19

CLRCTI Lower Record Count PCODAR+1 CIDXR[4:0]=1F r/w 00h 13-19

PCSNBR PNP Card Select Number Back Door 201 — write 00h 12-21

PIDXR PNP Index Address 279 — write 00h 12-21

PNPWRP PNP Write Data Port A79 — write — 12-21

PNPRDP PNP Read Data Port PNPRDP — read — 12-21

PSRPAI PNP Set Read Data Port Address A79 PIDXR=00 write 80h 12-22

PISOCI PNP Isolate Command PNPRDP PIDXR=01 read — 12-22

PCCCI PNP Configuration Control Command A79 PIDXR=02 write — 12-22

PWAKEI PNP Wake[CSN] Command A79 PIDXR=03 write — 12-23

PRESDI PNP Resource Data PNPRDP PIDXR=04 read 00h 12-23

PRESSI PNP Resource Data Status PNPRDP PIDXR=05 read 00h 12-23

PCSNI PNP Card Select Number PNPRDP,
A79

PIDXR=06 r/w 00h 12-23

PLDNI PNP Logical Device Number (LDN) PNPRDP,
A79

PIDXR=07 r/w 00h 12-23

PUACTI PNP Audio Activate PNPRDP,
A79

LDN=0, PIDXR=30 r/w 00h 12-24

PURCI PNP Audio I/O Range Check PNPRDP,
A79

LDN=0, PIDXR=31 r/w 00h 12-24

P2X0HI PNP P2XR[15:8] PNPRDP,
A79

LDN=0, PIDXR=60 r/w 00h 12-25

P2X0LI PNP P2XR[7:0] PNPRDP,
A79

LDN=0, PIDXR=61 r/w 00h 12-25

P3X0HI PNP P3XR[15:8] PNPRDP,
A79

LDN=0, PIDXR=62 r/w 00h 12-25

P3X0LI PNP P3XR[7:0] PNPRDP,
A79

LDN=0, PIDXR=63 r/w 00h 12-25

PHCAI PNP PCODAR[15:8] PNPRDP,
A79

LDN=0, PIDXR=64 r/w 00h 12-25

PLCAI PNP PCODAR[7:0] PNPRDP,
A79

LDN=0, PIDXR=65 r/w 00h 12-25

PUI1SI PNP Audio IRQ Channel 1 Select PNPRDP,
A79

LDN=0, PIDXR=70 r/w 00h 12-25

PUI1TI PNP Audio IRQ Channel 1 Type PNPRDP LDN=0, PIDXR=71 read 02h 12-26

PUI2SI PNP Audio IRQ Channel 2 Select PNPRDP,
A79

LDN=0, PIDXR=72 r/w 00h 12-25

PUI2TI PNP Audio IRQ Channel 2 Type PNPRDP LDN=0, PIDXR=73 read 02h 12-26

PUD1SI PNP Audio DMA Channel 1 Select PNPRDP,
A79

LDN=0, PIDXR=74 r/w 04h 12-27

Table 11-2 InterWave Registers and Ports by I/O Address (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
 only
5HJLVWHU�6XPPDU\ ����

AMD
PUD2SI PNP Audio DMA Channel 2 Select PNPRDP,
A79

LDN=0, PIDXR=75 r/w 04h 12-27

PSEENI PNP Serial EEPROM Enable PNPRDP,
A79

LDN=0, PIDXR=F0 r/w 00h 12-28

PSECI PNP Serial EEPROM Control PNPRDP,
A79

LDN=0, PIDXR=F1 r/w xxxx 000x 12-28

PPWRI PNP Power Mode PNPRDP,
A79

LDN=0, PIDXR=F2 r/w x111 1111 12-29

PSRSTI PNP Software Reset PNPRDP,
A79

LDN=0, PIDXR=F3 write — 12-30

PRACTI PNP CD-ROM Activate PNPRDP,
A79

LDN=1, PIDXR=30 r/w 00h 12-24

PRRCI PNP CD-ROM I/O Range Check PNPRDP,
A79

LDN=1, PIDXR=31 r/w 00h 12-24

PRAHI PNP PCDRAR[15:8] PNPRDP,
A79

LDN=1, PIDXR=60 r/w 00h 12-25

PRALI PNP PCDRAR[7:0] PNPRDP,
A79

LDN=1, PIDXR=61 r/w 00h 12-25

PATAHI PNP PATAAR[15:8] PNPRDP,
A79

LDN=1, PIDXR=62 r/w 00h 12-25

PATALI PNP PATAAR[7:0] PNPRDP,
A79

LDN=1, PIDXR=63 r/w 00h 12-25

PRISI PNP CD-ROM IRQ Select PNPRDP,
A79

LDN=1, PIDXR=70 r/w 00h 12-25

PRITI PNP CD-ROM IRQ Type PNPRDP LDN=1, PIDXR=71 read 02h 12-26

PRDSI PNP CD-ROM DMA Select PNPRDP,
A79

LDN=1, PIDXR=74 r/w 04h 12-27

PGACTI PNP Game Port Activate PNPRDP,
A79

LDN=2, PIDXR=30 r/w 00h 12-24

PGRCI PNP Game Port I/O Range Check PNPRDP,
A79

LDN=2, PIDXR=31 r/w 00h 12-24

P201HI PNP P201AR[15:8] PNPRDP,
A79

LDN=2, PIDXR=60 r/w 00h 12-25

P201LI PNP P201AR[7:0] PNPRDP,
A79

LDN=2, PIDXR=61 r/w 01h 12-25

PSACTI PNP AdLib–Sound Blaster Activate PNPRDP,
A79

LDN=3, PIDXR=30 r/w 00h 12-24

PSRCI PNP AdLib–Sound Blaster I/O Range
Check

PNPRDP,
A79

LDN=3, PIDXR=31 r/w 00h 12-24

P388HI PNP P388AR[15:8] PNPRDP,
A79

LDN=3, PIDXR=60 r/w 00h 12-25

P388LI PNP P388AR[7:0] PNPRDP,
A79

LDN=3, PIDXR=61 r/w 08h 12-25

PSBISI PNP AdLib–Sound Blaster Emulation
IRQ Select

PNPRDP,
A79

LDN=3, PIDXR=70 r/w 00h 12-25

PSBITI PNP AdLib–Sound Blaster Emulation
IRQ Type

PNPRDP LDN=3, PIDXR=71 read 02h 12-26

PMACTI PNP MPU-401 Activate PNPRDP,
A79

LDN=4, PIDXR=30 r/w 00h 12-24

PMRCI PNP MPU-401 I/O Range Check PNPRDP,
A79

LDN=4, PIDXR=31 r/w 00h 12-24

Table 11-2 InterWave Registers and Ports by I/O Address (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
 only
���� 5HJLVWHU�6XPPDU\

AMD
Registers By Mnemonic

P401HI PNP P401AR[15:8] PNPRDP,
A79

LDN=4, PIDXR=60 r/w 00h 12-25

P401LI PNP P401AR[7:0] PNPRDP,
A79

LDN=4, PIDXR=61 r/w 00h 12-25

PMISI PNP MPU-401 Emulation IRQ Select PNPRDP,
A79

LDN=4, PIDXR=70 r/w 00h 12-25

PMITI PNP MPU-401 Emulation IRQ Type PNPRDP LDN=4, PIDXR=71 read 02h 12-26

Table 11-3 InterWave Registers and Ports by Mnemonic

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page

CDATAP Codec Indexed Data Port PCODAR+1 — r/w — 13-2

CEXTI External Control PCODAR+1 CIDXR[4:0]=A r/w 00xx 0x0x 13-8

CFIG1I Configuration Register 1 PCODAR+1 CIDXR[4:0]=9 r/w 00xx 1000 13-7

CFIG2I Configuration Register 2 PCODAR+1 CIDXR[4:0]=10 r/w 0000 xxx0 13-11

CFIG3I Configuration Register 3 PCODAR+1 CIDXR[4:0]=11 r/w 0000 x000 13-12

CIDXR Codec Index Address PCODAR+0 — r/w 40h 13-1

CLAX1I Left Auxiliary 1/Synthesizer Input Control PCODAR+1 CIDXR[4:0]=2 r/w 1xx0 1000 13-5

CLAX2I Left Auxiliary 2 Input Control PCODAR+1 CIDXR[4:0]=4 r/w 1xx0 1000 13-5

CLCI Loopback Control PCODAR+1 CIDXR[4:0]=D r/w 0000 00x0 13-10

CLDACI Left Playback DAC Control PCODAR+1 CIDXR[4:0]=6 r/w 1x00 0000 13-6

CLICI Left ADC Input Control PCODAR+1 CIDXR[4:0]=0 r/w 000x 0000 13-4

CLLICI Left Line Input Control PCODAR+1 CIDXR[4:0]=12 r/w 1xx0 1000 13-13

CLMICI Left Microphone Input Control PCODAR+1 CIDXR[4:0]=16 r/w 1xx0 1000 13-14

CLOAI Left Output Attenuation PCODAR+1 CIDXR[4:0]=19 r/w 1xx0 0000 13-16

CLPCTI Lower Playback Count PCODAR+1 CIDXR[4:0]=F r/w 00h 13-11

CLRCTI Lower Record Count PCODAR+1 CIDXR[4:0]=1F r/w 00h 13-19

CLTIMI Lower Timer PCODAR+1 CIDXR[4:0]=14 r/w 00h 13-14

CMODEI Mode Select, ID PCODAR+1 CIDXR[4:0]=C r/w 100x 1010 13-10

CMONOI Mono Input and Output Control PCODAR+1 CIDXR[4:0]=1A r/w 000x 0000 13-17

CPDFI Playback Data Format PCODAR+1 CIDXR[4:0]=8 r/w 00h 13-6

CPDR Playback Data PCODAR+3 — write — 13-4

CPVFI Playback Variable Frequency PCODAR+1 CIDXR[4:0]=1D r/w 00h 13-18

CRAX1I Right Auxiliary 1/Synthesizer Input
Control

PCODAR+1 CIDXR[4:0]=3 r/w 1xx0 1000 13-5

CRAX2I Right Auxiliary 2 Input Control PCODAR+1 CIDXR[4:0]=5 r/w 1xx0 1000 13-5

CRDACI Right Playback DAC Control PCODAR+1 CIDXR[4:0]=7 r/w 1x00 0000 13-6

CRDFI Record Data Format PCODAR+1 CIDXR[4:0]=1C r/w 00h 13-17

CRDR Record Data PCODAR+3 — read — 13-4

CRICI Right ADC Input Control PCODAR+1 CIDXR[4:0]=1 r/w 000x 0000 13-4

CRLICI Right Line Input Control PCODAR+1 CIDXR[4:0]=13 r/w 1xx0 1000 13-13

CRMICI Right Microphone Input Control PCODAR+1 CIDXR[4:0]=17 r/w 1xx0 1000 13-14

CROAI Right Output Attenuation PCODAR+1 CIDXR[4:0]=1B r/w 1xx0 0000 13-16

Table 11-2 InterWave Registers and Ports by I/O Address (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
 only
5HJLVWHU�6XPPDU\ ����

AMD
CSR1R Codec Status Register 1 PCODAR+2 — read CCh 13-2

CSR2I Codec Status Register 2 PCODAR+1 CIDXR[4:0]=B read 00h 13-9

CSR3I Codec Status Register 3 PCODAR+1 CIDXR[4:0]=18 r/w x000 0000 13-15

CUPCTI Upper Playback Count PCODAR+1 CIDXR[4:0]=E r/w 00h 13-11

CURCTI Upper Record Count PCODAR+1 CIDXR[4:0]=1E r/w 00h 13-19

CUTIMI Upper Timer PCODAR+1 CIDXR[4:0]=15 r/w 00h 13-14

GGCR Game Control P201AR+0 — r/w x0h 16-1

GJTDI Joystick Trim DAC P3XR+5 IGIDXR=4B r/w 1Dh 16-1

GMCR MIDI Control P3XR+0 — r/w 0x0x xxx0 16-2

GMRDR MIDI Receive Data P3XR+1 — read FFh 16-4

GMRFAI MIDI Receive FIFO Access P3XR+5 IGIDXR=5E write — 16-4

GMSR MIDI Status P3XR+0 — read 0x00 xx10 16-3

GMTDR MIDI Transmit Data P3XR+1 — write — 16-4

I8DP General 8-bit I/O Data Port P3XR+5 — r/w — 12-12

I16DP General 16-bit I/O Data Port P3XR+(4-5) — r/w — 12-12

ICMPTI Compatibility P3XR+5 IGIDXR=59 r/w 1Fh 12-15

IDECI Decode Control P3XR+5 IGIDXR=5A r/w 7Fh 12-16

IEIRQI Emulation IRQ P3XR+5 IGIDXR=60 r/w 0?xx xx00 12-20

IEMUAI MPU-401 Emulation Control A P3XR+5 IGIDXR=5C r/w 00h 12-18

IEMUBI MPU-401 Emulation Control B P3XR+5 IGIDXR=5D r/w 30h 12-19

IGIDXR General Index P3XR+3 — r/w 00h 12-12

IVERI Version Number P3XR+5 IGIDXR=5B r/w 0010 0?00 12-17

LDIBI LMC DMA Interleave Base (bits 23–8) P3XR+(4-5) IGIDXR=58 r/w 0000h 15-7

LDICI LMC DMA Interleave Control P3XR+(4-5) IGIDXR=57 r/w 0000h 15-7

LDMACI LMC DMA Control P3XR+5 IGIDXR=41 r/w 00h 15-1

LDSAHI LMC DMA Start Address High
(bits 23–20, 3–0)

P3XR+5 IGIDXR=50 r/w 00h 15-3

LDSALI LMC DMA Start Address Low (bits 19–4) P3XR+(4-5) IGIDXR=42 r/w 0000h 15-2

LMAHI LMC I/O Address High (bits 23–16) P3XR+5 IGIDXR=44 write 00h 15-3

LMALI LMC I/O Address Low (bits 15–0) P3XR+(4-5) IGIDXR=43 write 0000h 15-3

LMBDR LMC Byte Data P3XR+7 — r/w — 15-1

LMCFI LMC Configuration P3XR+(4-5) IGIDXR=52 r/w 0000h 15-4

LMCI LMC Control P3XR+5 IGIDXR=53 r/w 00h 15-5

LMFSI LMC FIFO Size P3XR+(4-5) IGIDXR=56 r/w 0000h 15-6

LMPFAI LMC Playback FIFO Base Address
(bits 23–8)

P3XR+(4-5) IGIDXR=54 r/w 0000h 15-6

LMRFAI LMC Record FIFO Base Address
(bits 23–8)

P3XR+(4-5) IGIDXR=55 r/w 0000h 15-6

LMSBAI LMC 16-Bit Access P3XR+(4-5) IGIDXR=51 r/w — 15-4

P201HI PNP P201AR[15:8] PNPRDP,
A79

LDN=2, PIDXR=60 r/w 00h 12-25

P201LI PNP P201AR[7:0] PNPRDP,
A79

LDN=2, PIDXR=61 r/w 01h 12-25

P2X0HI PNP P2XR[15:8] PNPRDP,
A79

LDN=0, PIDXR=60 r/w 00h 12-25

P2X0LI PNP P2XR[7:0] PNPRDP,
A79

LDN=0, PIDXR=61 r/w 00h 12-25

Table 11-3 InterWave Registers and Ports by Mnemonic (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
���� 5HJLVWHU�6XPPDU\

AMD
P388HI PNP P388AR[15:8] PNPRDP,
A79

LDN=3, PIDXR=60 r/w 00h 12-25

P388LI PNP P388AR[7:0] PNPRDP,
A79

LDN=3, PIDXR=61 r/w 08h 12-25

P3X0HI PNP P3XR[15:8] PNPRDP,
A79

LDN=0, PIDXR=62 r/w 00h 12-25

P3X0LI PNP P3XR[7:0] PNPRDP,
A79

LDN=0, PIDXR=63 r/w 00h 12-25

P401HI PNP P401AR[15:8] PNPRDP,
A79

LDN=4, PIDXR=60 r/w 00h 12-25

P401LI PNP P401AR[7:0] PNPRDP,
A79

LDN=4, PIDXR=61 r/w 00h 12-25

PATAHI PNP PATAAR[15:8] PNPRDP,
A79

LDN=1, PIDXR=62 r/w 00h 12-25

PATALI PNP PATAAR[7:0] PNPRDP,
A79

LDN=1, PIDXR=63 r/w 00h 12-25

PCCCI PNP Configuration Control Command A79 PIDXR=02 write — 12-22

PCSNBR PNP Card Select Number Back Door 201 — write 00h 12-21

PCSNI PNP Card Select Number PNPRDP,
A79

PIDXR=06 r/w 00h 12-23

PGACTI PNP Game Port Activate PNPRDP,
A79

LDN=2, PIDXR=30 r/w 00h 12-24

PGRCI PNP Game Port I/O Range Check PNPRDP,
A79

LDN=2, PIDXR=31 r/w 00h 12-24

PHCAI PNP PCODAR[15:8] PNPRDP,
A79

LDN=0, PIDXR=64 r/w 00h 12-25

PIDXR PNP Index Address 279 — write 00h 12-21

PISOCI PNP Isolate Command PNPRDP PIDXR=01 read — 12-22

PLCAI PNP PCODAR [7:0] PNPRDP,
A79

LDN=0, PIDXR=65 r/w 00h 12-25

PLDNI PNP Logical Device Number (LDN) PNPRDP,
A79

PIDXR=07 r/w 00h 12-23

PMACTI PNP MPU-401 Activate PNPRDP,
A79

LDN=4, PIDXR=30 r/w 00h 12-24

PMISI PNP MPU-401 Emulation IRQ Select PNPRDP,
A79

LDN=4, PIDXR=70 r/w 00h 12-25

PMITI PNP MPU-401 Emulation IRQ Type PNPRDP LDN=4, PIDXR=71 read 02h 12-26

PMRCI PNP MPU-401 I/O Range Check PNPRDP,
A79

LDN=4, PIDXR=31 r/w 00h 12-24

PNPRDP PNP Read Data Port PNPRDP — read — 12-21

PNPWRP PNP Write Data Port A79 — write — 12-21

PPWRI PNP Power Mode PNPRDP,
A79

LDN=0, PIDXR=F2 r/w x111 1111 12-29

PRACTI PNP CD-ROM Activate PNPRDP,
A79

LDN=1, PIDXR=30 r/w 00h 12-24

PRAHI PNP PCDRAR[15:8] PNPRDP,
A79

LDN=1, PIDXR=60 r/w 00h 12-25

PRALI PNP PCDRAR[7:0] PNPRDP,
A79

LDN=1, PIDXR=61 r/w 00h 12-25

PRDSI PNP CD-ROM DMA Select PNPRDP,
A79

LDN=1, PIDXR=74 r/w 04h 12-27

Table 11-3 InterWave Registers and Ports by Mnemonic (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
5HJLVWHU�6XPPDU\ ����

AMD
PRESDI PNP Resource Data PNPRDP PIDXR=04 read 00h 12-23

PRESSI PNP Resource Data Status PNPRDP PIDXR=05 read 00h 12-23

PRISI PNP CD-ROM IRQ Select PNPRDP,
A79

LDN=1, PIDXR=70 r/w 00h 12-25

PRITI PNP CD-ROM IRQ Type PNPRDP LDN=1, PIDXR=71 read 02h 12-26

PRRCI PNP CD-ROM I/O Range Check PNPRDP,
A79

LDN=1, PIDXR=31 r/w 00h 12-24

PSACTI PNP AdLib–Sound Blaster Activate PNPRDP,
A79

LDN=3, PIDXR=30 r/w 00h 12-24

PSBISI PNP AdLib–Sound Blaster Emulation
IRQ Select

PNPRDP,
A79

LDN=3, PIDXR=70 r/w 00h 12-25

PSBITI PNP AdLib–Sound Blaster Emulation
IRQ Type

PNPRDP LDN=3, PIDXR=71 read 02h 12-26

PSECI PNP Serial EEPROM Control PNPRDP,
A79

LDN=0, PIDXR=F1 r/w xxxx 000x 12-28

PSEENI PNP Serial EEPROM Enable PNPRDP,
A79

LDN=0, PIDXR=F0 r/w 00h 12-28

PSRCI PNP AdLib–Sound Blaster I/O Range
Check

PNPRDP,
A79

LDN=3, PIDXR=31 r/w 00h 12-24

PSRPAI PNP Set Read Data Port Address A79 PIDXR=00 write 80h 12-22

PSRSTI PNP Software Reset PNPRDP,
A79

LDN=0, PIDXR=F3 write — 12-30

PUACTI PNP Audio Activate PNPRDP,
A79

LDN=0, PIDXR=30 r/w 00h 12-24

PUD1SI PNP Audio DMA Channel 1 Select PNPRDP,
A79

LDN=0, PIDXR=74 r/w 04h 12-27

PUD2SI PNP Audio DMA Channel 2 Select PNPRDP,
A79

LDN=0, PIDXR=75 r/w 04h 12-27

PUI1SI PNP Audio IRQ Channel 1 Select PNPRDP,
A79

LDN=0, PIDXR=70 r/w 00h 12-25

PUI1TI PNP Audio IRQ Channel 1 Type PNPRDP LDN=0, PIDXR=71 read 02h 12-26

PUI2SI PNP Audio IRQ Channel 2 Select PNPRDP,
A79

LDN=0, PIDXR=72 r/w 00h 12-25

PUI2TI PNP Audio IRQ Channel 2 Type PNPRDP LDN=0, PIDXR=73 read 02h 12-26

PURCI PNP Audio I/O Range Check PNPRDP,
A79

LDN=0, PIDXR=31 r/w 00h 12-24

PWAKEI PNP Wake[CSN] Command A79 PIDXR=03 write — 12-23

SACI Synth. Address Control (1 per voice) P3XR+5 IGIDXR=0, 80 w, r 01h 14-8

SAEHI Synth. Address End High (1 per voice) P3XR+(4-5) IGIDXR=4, 84 w, r 0000h 14-5

SAELI Synth. Address End Low (1 per voice) P3XR+(4-5) IGIDXR=5, 85 w, r 0000h 14-5

SAHI Synth. Address High (1 per voice) P3XR+(4-5) IGIDXR=A, 8A w, r 0000h 14-6

SALI Synth. Address Low (1 per voice) P3XR+(4-5) IGIDXR=B, 8B w, r 0000h 14-6

SASHI Synth. Address Start High (1 per voice) P3XR+(4-5) IGIDXR=2, 82 w, r 0000h 14-4

SASLI Synth. Address Start Low (1 per voice) P3XR+(4-5) IGIDXR=3, 83 w, r 0000h 14-5

SAVI Synth. Active Voices P3XR+5 IGIDXR=E, 8E w, r CDh 14-1

SEAHI Synth. Effects Address High (1 per voice) P3XR+(4-5) IGIDXR=11, 91 w, r 0000h 14-7

SEALI Synth. Effects Address Low (1 per voice) P3XR+(4-5) IGIDXR=12, 92 w, r 0000h 14-7

SEASI Synth. Effects Output Accumulator Select
(1 per voice)

P3XR+5 IGIDXR=14, 94 w, r 00h 14-14

SEVFI Synth. Effect Volume Final (1 per voice) P3XR+(4-5) IGIDXR=1D, 9D w, r 0000h 14-14

Table 11-3 InterWave Registers and Ports by Mnemonic (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
����� 5HJLVWHU�6XPPDU\

AMD
SEVI Synth. Effects Volume (1 per voice) P3XR+(4-5) IGIDXR=16, 96 w, r 0000h 14-13

SFCI Synth. Frequency Control (1 per voice) P3XR+(4-5) IGIDXR=1, 81 w, r 0400h 14-7

SFLFOI Synth. Frequency LFO (1 per voice) P3XR+5 IGIDXR=17, 97 w, r 00h 14-8

SGMI Synth. Global Mode P3XR+5 IGIDXR=19, 99 w, r 00h 14-3

SLFOBI Synth. LFO Base Address P3XR+(4-5) IGIDXR=1A, 9A w, r 0000h 14-3

SLOFI Synth. Left Offset Final (1 per voice) P3XR+(4-5) IGIDXR=1C, 9C w, r 0000h 14-13

SLOI Synth. Left Offset (1 per voice) P3XR+(4-5) IGIDXR=13, 93 w, r 0000h 14-13

SMSI Synth. Mode Select (1 per voice) P3XR+5 IGIDXR=15, 95 w, r 02h 14-14

SROFI Synth. Right Offset Final (1 per voice) P3XR+(4-5) IGIDXR=1B, 9B w, r 0700h 14-12

SROI Synth. Right Offset (1 per voice) P3XR+(4-5) IGIDXR=C, 8C w, r 0700h 14-12

SUAI Synth. Upper Address (1 per voice) P3XR+5 IGIDXR=10, 90 w, r 00h 14-4

SVCI Synth. Volume Control (1 per voice) P3XR+5 IGIDXR=D, 8D w, r 01h 14-10

SVEI Synth. Volume End (1 per voice) P3XR+5 IGIDXR=8, 88 w, r 00h 14-9

SVII Synth. Voices IRQ P3XR+5 IGIDXR=8F read E0h 14-2

SVIRI Synth. Voices IRQ Read P3XR+5 IGIDXR=9F read E0h 14-2

SVLFOI Synth. Volume LFO (1 per voice) P3XR+5 IGIDXR=18, 98 w, r 00h 14-11

SVLI Synth. Volume Level (1 per voice) P3XR+(4-5) IGIDXR=9, 89 w, r 0000h 14-10

SVRI Synth. Volume Rate (1 per voice) P3XR+5 IGIDXR=6, 86 w, r 00h 14-10

SVSI Synth. Volume Start (1 per voice) P3XR+5 IGIDXR=7, 87 w, r 00h 14-9

SVSR Synth. Voice Select P3XR+2 — r/w 00h 14-1

U2X6R Sound Blaster 2X6 P2XR+6 — write — 12-3

U2XCR Sound Blaster 2XC (no IRQ) P2XR+0Dh — write 00h 12-6

U2XER Sound Blaster 2XE P2XR+0Eh — r/w 00h 12-6

UACRR AdLib Command Read P2XR+0Ah — read 00h 12-3

UACWR AdLib Command Write P2XR+8,
P388AR+0

— write 00h 12-3

UADR AdLib Data P2XR+9,
P389AR+1

— r/w 00h 12-4

UASBCI AdLib–Sound Blaster Control P3XR+5 IGIDXR=45 r/w 00h 12-12

UASRR AdLib Status Read P2XR+8,
P388AR+0

— read 00h 12-3

UASWR AdLib Status Write P2XR+0Ah — write 00h 12-3

UAT1I AdLib Timer 1 P3XR+5 IGIDXR=46 r/w 00h 12-13

UAT2I AdLib Timer 2 P3XR+5 IGIDXR=47 r/w 00h 12-13

UCLRII Clear Interrupt P2XR+0Bh URCR[2:0]=5 write — 12-11

UDCI DMA Channel Control P2XR+0Bh UMCR[6]=0,
URCR[2:0]=0

r/w 00h 12-8

UGP1I General Purpose Register 1
(Emulation Address)

UGPA1I r/w 00h 12-10

UGP1I General Purpose Register 1 (Back Door) P2XR+0Bh URCR[2:0]=1 r/w 00h 12-10

UGP2I General Purpose Register 2
(Emulation Address)

UGPA2I r/w 00h 12-10

UGP2I General Purpose Register 2 (Back Door) P2XR+0Bh URCR[2:0]=2 r/w 00h 12-10

UGPA1I General Purpose Register 1 Address P2XR+0Bh URCR[2:0]=3 r/w 00h 12-11

UGPA2I General Purpose Register 2 Address P2XR+0Bh URCR[2:0]=4 r/w 00h 12-11

UHRDP GUS Hidden Register Data Port P2XR+0Bh — r/w — 12-5

UI2XCR Sound Blaster Interrupt 2XC P2XR+0Ch — r/w 00h 12-5

Table 11-3 InterWave Registers and Ports by Mnemonic (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
5HJLVWHU�6XPPDU\ �����

AMD
UICI Interrupt Control P2XR+0Bh UMCR[6]=1,
URCR[2:0]=0

write 07h 12-9

UISR IRQ Status P2XR+6 — read 00h 12-2

UJMPI Jumper P2XR+0Bh URCR[2:0]=6 r/w 06h 12-11

UMCR Mix Control P2XR+0 — r/w 03h 12-1

URCR Register Control P2XR+0Fh — r/w 00h 12-6

URSTI GUS Reset P3XR+5 IGIDXR=4C write xxxx x000 12-14

USCI ADC Sample Control P3XR+5 IGIDXR=49 r/w 00h 12-13

USRR Status Read P2XR+0Fh — read 01h 12-7

Table 11-3 InterWave Registers and Ports by Mnemonic (Continued)

Mnem. Description I/O Address Index
Read/
Write

Default
Value

Page
����� 5HJLVWHU�6XPPDU\

CHAPTER
12
 SYSTEM CONTROL REGISTERS
P2XR Direct Registers
UMCR—Mix Control
Address: P2XR+0 read, write

Default: 03h

Note: For a description of how this register controls access to the hidden registers,
see “IVERI—Version Number” on page 12-17.

Bit 7: Reserved.

Bit 6: Control Register Select . If the Register Selector field of the Register
Control register (URCR[2:0]) is Low, this bit selects between indexing the
Interrupt Control register (UICI) and the DMA Channel Control register
(UDCI).
1:UICI
0:UDCI

Bit 5: MIDI Loopback . If set High, causes data from the MIDITX pin to be looped
back to the MIDIRX pin. This setting does not block the transfer of data out
of the MIDITX line; it does, however, block data reception through MIDIRX.

Bit 4: Channel Synthesizer Interrupts . If set High, causes the ORing of all the
synthesizer and codec interrupts to the selected Channel 2 IRQ pin and the
masking of synthesizer and codec interrupts to the selected Channel 1 IRQ
pin.

Bit 3: IRQ and DMA Enable . If set High, enables the IRQ and DRQ pins (for audio
functions only; does not affect the selected IRQ and DRQ lines for other
logical device numbers). If set Low, forces all IRQ and DRQ pins into the
high-impedance mode (for audio functions only).

Bit 2: Enable Stereo Microphone Input . If set Low, disables the stereo
microphone inputs (no sound).

Bit 1: Enable Line Out . If set High, disables the stereo line-out outputs (no sound).
This switch comes after all enables and attenuators in the codec module.

Bit 0: Enable Line In . If set High, disables the stereo line-in inputs (no sound).
This switch comes before all enables and attenuators in the codec module.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Control
Register
Select

MIDI
Loopback

Channel
Synthesizer
Interrupts

IRQ and DMA
Enable

Enable Stereo
Microphone
Input

Enable Line
Out

Enable Line In
6\VWHP�&RQWURO�5HJLVWHUV ����

AMD
UISR—IRQ Status
Address: P2XR+6 read

Default: 00h (after initialization)

This register specifies the cause of various interrupts.

Bit 7: DMA Terminal Count IRQ . If set High, indicates that the ISA-bus terminal
count signal, TC, has become active as a result of DMA activity between
system and local memory. The flip-flop that drives this bit is cleared by a
read of the LMC DMA Control register (LDMACI). This bit is ORed into the
interrupt associated with the synthesizer. If the TC interrupt is not enabled
(LDMACI[5]=0), then this bit is read as inactive even if the interrupt's flip-flop
has been set.

Bit 6: Volume Loop IRQ . If set High, indicates that the volume ramp for one of
the voices reached an end point. This bit is cleared after writing 8Fh to the
General Index register (IGIDXR)—the value used to access the Synthesizer
Voices IRQ register (SVII). This bit is enabled (but not cleared) by the
Synthesizer Interrupt Enable field of the GUS Reset register (URSTI[2]).

Bit 5: Address Loop IRQ . If set High, indicates that the local memory address of
one of the voices has reached an end point. This bit is cleared after writing
8Fh to the General Index register (IGIDXR)—the value used to access the
Synthesizer Voices IRQ register (SVII). This bit is enabled (but not cleared)
by the Synthesizer Interrupt Enable field of the GUS Reset register
(URSTI[2]).

Bit 4: AdLib–Sound Blaster Register IRQ . The OR value of the following bits
from the AdLib Status Read register: UASRR[0], UASRR[3], and UASRR[4].
The flip-flop that drives the AdLib Data register (UADR) interrupt is enabled
when the Enable Data Interrupt field of the AdLib–Sound Blaster Control
register (UASBCI[1]) is High, and is asynchronously cleared when
UASBCI[1] is Low. The other two bits are enabled when the Sound Blaster
Interrupts Enable field of the AdLib–Sound Blaster Control register
(UASBCI[5]) is High, and are asynchronously cleared when UASBCI[5] is
Low. This bit is ORed into the IRQ associated with AdLib–Sound Blaster
emulation.

Bit 3: AdLib Timer 2 . Is set High when AdLib Timer 2 rolls from FF to the preload
value set in the AdLib Timer 2 register (UAT2I). This bit is cleared and
disabled by the Enable Interrupt for Timer 2 field of the AdLib–Sound Blaster
Control register (UASBCI[3]). The flip-flop that drives this bit is ORed into
the interrupt associated with AdLib–Sound Blaster and is also readable in
the Timer 2, Non-Maskable field of the AdLib Status Read register
(UASRR[1]).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DMA Terminal
Count IRQ

Volume Loop
IRQ

Address Loop
IRQ

AdLib
Register IRQ

AdLib Timer 2 AdLib Timer 1 MIDI Receive
IRQ

MIDI Transmit
IRQ
���� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
Bit 2: AdLib Timer 1 . Is set High when AdLib Timer 1 rolls from FF to the preload
value set in the AdLib Timer 1 register (UAT1I). This bit is cleared and
disabled when the Enable Interrupt for Timer 1 field of the AdLib–Sound
Blaster Control register (UASBCI[2]) is Low. The flip-flop that drives this bit
is ORed into the interrupt associated with AdLib–Sound Blaster and is also
readable in the Timer 1, Non-Maskable field of the AdLib Status Read
register (UASRR[2]).

Bit 1: MIDI Receive IRQ . If set High, indicates the MIDI Receive Data register
(GMRDR) contains data. This bit is cleared by reading GMRDR.

Bit 0: MIDI Transmit IRQ . If set High, indicates the MIDI Transmit Data register
(GMTDR) is empty. This bit is cleared by writing to GMTDR.

U2X6R—Sound Blaster 2X6
Address: P2XR+6 write

A write to this address sets the Write to 2X6 Interrupt bit in the AdLib Status register
(UASRR[3]) to High. No data is transferred or latched at this address.

UACRR, UACWR—AdLib Command Read/Write
Address: P2XR+0Ah read (UACRR); P2XR+08h and 388h write (UACWR)

Default: 00h

These registers emulate AdLib operation. UACRR is read and UACWR is written by AdLib
application software to program the internal synthesizer to duplicate the AdLib sound.

UASRR, UASWR—AdLib Status Read/Write
Address: P2XR+08h and 388h read (UASRR); P2XR+0Ah write (UASWR)

Default: 00h

When the Disable Auto-Timer Mode field of the AdLib–Sound Blaster Control register
(UASBCI[0]) is High (auto-timer mode disabled), this is a read-write register with different
locations for the read and write addresses. When the Disable Auto-Timer Mode field of the
AdLib–Sound Blaster Control register (UASBCI[0]) is Low (auto-timer mode enabled),
writes to this register are latched but not readable. Reads of this register provide the
following status information:

Bit 7: OR of Bits 5 and 6 . This bit represents the logical OR of bits 5 and 6 of this
register.

Bit 6: Timer 1, Maskable . This bit is set High when AdLib Timer 1 rolls from FF
to the preload value set in the AdLib Timer 1 register (UAT1I). This bit is
cleared by setting the AdLib IRQ Reset bit of the AdLib Data register
(UADR[7]). This bit does not become active if the Mask Timer 1 bit of the
AdLib Data register (UADR[6]) is High.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OR of Bits 5
and 6

Timer 1,
Maskable

Timer 2,
Maskable

Write to 2XC
Interrupt

Write to 2X6
Interrupt

Timer 1,
Non-maskabl
e

Timer 2,
Non-maskable

Data IRQ
6\VWHP�&RQWURO�5HJLVWHUV ����

AMD
Bit 5: Timer 2, Maskable . This bit is set High when AdLib Timer 2 rolls from FF
to the preload value set in the AdLib Timer 2 register (UAT2I). This bit is
cleared by setting the AdLib IRQ Reset bit of the AdLib Data register
(UADR[7]). This bit does not become active if the Mask Timer 2 bit of the
AdLib Data register (UADR[5]) is set.

Bit 4: Write to 2XC Interrupt . This bit is set High by a write to UI2XCR. The flip-flop
driving this bit is enabled when the Sound Blaster Interrupts Enable bit of
the AdLib–Sound Blaster Control register (UASBCI[5]) is High and
asynchronously cleared when UASBCI[5] is Low.

Bit 3: Write to 2X6 Interrupt . This bit is set High by a write to U2X6R. The flip-flop
driving this bit is enabled when the Sound Blaster Interrupts Enable bit of
the AdLib–Sound Blaster Control register (UASBCI[5]) is High and
asynchronously cleared when UASBCI[5] is Low.

Bit 2: Timer 1, Non-maskable . This bit is set High when AdLib Timer 1 rolls from
FF to the preload value set in the AdLib Timer 1 register (UAT1I). It is cleared
and disabled when the Enable Interrupt for Timer 1 bit of the AdLib–Sound
Blaster Control register (UASBCI[2]) is set Low. The flip-flop that drives this
bit is ORed into the interrupt associated with AdLib–Sound Blaster emulation
and is also readable in UISR[2].

Bit 1: Timer 2, Non-maskable . This bit is set High when AdLib Timer 2 rolls from
FF to the preload value set in the AdLib Timer 2 register (UAT2I). It is cleared
and disabled when the Enable Interrupt for Timer 2 bit of the AdLib–Sound
Blaster Control register (UASBCI[3]) is set Low. The flip-flop that drives this
bit is ORed into the interrupt associated with AdLib–Sound Blaster emulation
and is also readable in UISR[3].

Bit 0: Data IRQ . This bit is set High by a write to the AdLib Data register (UADR).
The flip-flop that drives this bit is enabled when the Enable Data Interrupt
bit of the AdLib–Sound Blaster Control register (UASBCI[1]) is High, and is
asynchronously cleared when UASBCI[1] is Low. It is ORed into the interrupt
associated with AdLib–Sound Blaster and is also readable in the AdLib
Register IRQ bit of the IRQ Status register (UISR[4]).

UADR—AdLib Data
Address: P2XR+9 and 389h read, write

Default: 00h

This register performs AdLib functions based on the state of various bits as follows:

Table 12-1 AdLib Data (UADR) Function

Case Condition Result

1
((UASBCI[0]=0) • (UACWR=04h))

UADR behaves like a simple read/write register that
is accessible through two different I/O addresses.
Writes to UADR cause interrupts (see bit 4 of the IRQ
Status (UISR) register).

2
(UASBCI[0]=0) • (UACWR=04h)

Writes to UADR are disabled and no interrupt is
generated; AdLib timer emulation functions are written
instead of UADR. Reads provide the data that was last
latched in case 1.
���� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
For case 2, the following AdLib timer emulation bits are written. All of these bits also default
to Low after reset. Note that when the most significant bit is set High, the other bits do not
change. Also, when IVERI[3] is active, the following bits are readable from this address,
regardless of the state of the Disable Auto-Timer Mode bit of the AdLib–Sound Blaster
Control register (UASBCI[0]) or the AdLib Command Write register (UACWR).

Bit 7: AdLib IRQ Reset . If set High, the flip-flops driving the Timer 1, Maskable
and Timer 2, Maskable bits of the AdLib Status Read register (UASRR[6]
and UASRR[5]) are cleared; this bit is automatically cleared after UASRR[6]
and UASRR[5] are cleared. Also, when this bit is set High, the other four
bits of this register are not altered. When this bit is set Low, the other bits
of this register are latched.

Bit 6: Mask Timer 1 . When High, the flip-flop that drives the Timer 1, Maskable
bit of the AdLib Status Read register (UASRR[6]) is disabled from becoming
active.

Bit 5: Mask Timer 2 . When High, the flip-flop that drives the Timer 2, Maskable
bit of the AdLib Status Read register (UASRR[5]) is disabled from becoming
active.

Bits 4–2: Reserved.

Bit 1: Start Timer 2 . When Low, the value found in the AdLib Timer 2 register
(UAT2I) is loaded into AdLib Timer 2 with every 320-µs rising clock edge.
When High, the timer increments with every 320-µs rising clock edge; on
the next clock edge after the timer reaches FFh, UAT2I is again loaded into
the timer.

Bit 0: Start Timer 1 . When Low, the value found in the AdLib Timer 1 register
(UAT1I) is loaded into AdLib Timer 1 with every 80-µs rising clock edge.
When High, the timer increments with every 80-µs rising clock edge; on the
next clock edge after the timer reaches FFh, UAT1I is again loaded into the
timer.

UHRDP—GUS Hidden Register Data Port
Address: P2XR+0Bh read write

This port allows access to the hidden registers. For more details, see “UGP1I—General
Purpose Register 1” on page 12-10. For information about the access protocol for registers
based at this port, see the description of bit 0 in “IVERI—Version Number” on page 12-17.

UI2XCR—Sound Blaster IRQ 2XC
Address: P2XR+0Ch read, write

Default: 00h

Writes to this simple read/write register cause an interrupt. This register can also be written
through the Sound Blaster 2XC register (U2XCR), which does not generate an interrupt.
The interrupt is cleared by clearing the Sound Blaster Interrupts Enable bit of the
AdLib–Sound Blaster Control register (UASBCI[5]).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

AdLib IRQ
Reset

Mask Timer 1 Mask Timer 2 Reserved Reserved Reserved Start Timer 2 Start Timer 1
6\VWHP�&RQWURO�5HJLVWHUV ����

AMD
U2XCR—Sound Blaster 2XC
Address: P2XR+0Dh write

Default: 00h (after initialization)

This register provides access to the Sound Blaster IRQ 2XC register (UI2XCR) without
generating an interrupt.

U2XER—Sound Blaster 2XE
Address: P2XR+0Eh read, write

Default: 00h

This is a simple read-write register used for Sound Blaster emulation. If the Enable U2XER
Read Interrupts bit of the Register Control register (URCR[7]) is High, then reads of this
register cause interrupts.

URCR—Register Control
Address: P2XR+0Fh write, read (if IVERI[3] is active)

Default: 00h

Note: When the Register Read Mode bit of the Version Number register (IVERI[3])
is High, this register becomes readable; if IVERI[3] is Low, then reads from this
address provide the data in the Status Read register (USRR).

Bit 7: Enable U2XER Read Interrupts . If set High, enables an interrupt to be
generated by reading the Sound Blaster 2XE register (U2XER). This
interrupt is ORed with the interrupts associated with AdLib–Sound Blaster.

Bit 6: Enable General Purpose Register Access . If set High, enables access to
the general purpose registers through the addresses specified in the
General Purpose Register 1 Address and General Purpose Register 2
Address fields of the Compatibility register (ICMPTI[1:0] and ICMPTI[3:2]),
and the General Purpose Register 1 Address and General Purpose Register
2 Address registers (UGPA1I and UGPA2I).

Bit 5: Toggle UI2XCR[7] . If set High, causes bit 7 of the Sound Blaster IRQ 2XC
register (UI2XCR) to toggle with each I/O read of that register.

Bit 4: General Purpose 2 Interrupt . If set High, enables the interrupt caused by
either a read or a write to General Purpose Register 2 through the address
specified in the General Purpose Register 2 Address field of the
Compatibility register (ICMPTI[3:2]) and the General Purpose Register 2
Address register (UGPA2I). The interrupt is logically ORed with the
AdLib–Sound Blaster interrupt. Accesses to this register through the GUS
Hidden Register Data Port (UHRDP) back door do not cause an interrupt.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Enable
U2XER Read
Interrupts

Enable
General
Purpose
Register
Access

Toggle
UI2XCR[7]

General
Purpose 2
Interrupt

General
Purpose 1
Interrupt

Register Selector
���� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
Bit 3: General Purpose 1 Interrupt . If set High, enables the interrupt caused by
either a read or a write to General Purpose Register 1 through the address
specified in the General Purpose Register 1 Address field of the
Compatibility register (ICMPTI[1:0]) and the General Purpose Register 1
Address register (UGPA1I). The interrupt is logically ORed with the
AdLib–Sound Blaster interrupt. Accesses to this register through the GUS
Hidden Register Data Port (UHRDP) back door do not cause an interrupt.

Bits 2–0: Register Selector . This field selects which register is accessed by writes
to the GUS Hidden Register Data Port (UHRDP).
0:DMA Channel Control and Interrupt Control registers (UDCI
and UICI)
1:General Purpose Register 1 Back Door register (UGP1I)
2:General Purpose Register 2 Back Door register (UGP2I)
3:General Purpose Register 1 Address register (UGPA1I)
4:General Purpose Register 2 Address register (UGPA2I)
5:Clear Interrupts register (UCLRII)
6:Jumper register (UJMPI)

USRR—Status Read
Address: P2XR+0Fh read

Default: 01h

This register provides the state of various interrupts. Clear all of these interrupts by a write
to the Clear Interrupts register (UCLRII).

Note: When the Register Read Mode bit of the Version Number register (IVERI[3])
is High, the data in this register is not accessible.

Bit 7: 2XE Interrupt . If High, indicates that a read of the Sound Blaster 2XE
register (U2XER) caused an interrupt.

Bit 6: General Purpose 2 Read Interrupt . If High, indicates that a read of the
General Purpose 2 register through the address specified in the General
Purpose Register 2 Address field of the Compatibility register (ICMPTI[3:2]
and the General Purpose Register 2 Address register (UGPA2I) caused an
interrupt.

Bit 5: General Purpose 2 Write Interrupt . If High, indicates that a write of the
General Purpose 2 register through the address specified in ICMPTI[3:2]
and UGPA2I caused an interrupt.

Bit 4: General Purpose 1 Read Interrupt . If High, indicates that a read of the
General Purpose 1 register through the address specified in the General
Purpose Register 1 Address field of the Compatibility register (ICMPTI[1:0]
and the General Purpose Register 1 Address register (UGPA1I) caused an
interrupt.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

2XE Interrupt General
Purpose 2
Read Interrupt

General
Purpose 2
Write Interrupt

General
Purpose 1
Read Interrupt

General
Purpose 1
Write Interrupt

Always Low IRQ/DMA
Enable Status

Always High
6\VWHP�&RQWURO�5HJLVWHUV ����

AMD
Bit 3: General Purpose 1 Write Interrupt . If High, indicates that a write of General
Purpose 1 register through the address specified in ICMPTI[1:0] and
UGPA1I caused an interrupt.

Bit 2: Always reads as Low. This bit cannot be written.

Bit 1: IRQ/DMA Enable Status . Provides the state of the IRQ and DMA Enable
bit of the Mix Control register (UMCR[3]).

Bit 0: Always reads as High. This bit cannot be written.

URCR[2:0], UHRDP Indexed Registers
UDCI—DMA Channel Control
Address: P2XR+0Bh read, write; indexes UMCR[6]=0 and URCR[2:0]=0

Default: 00h

Writing to the PNP Audio DMA Channel 1 Select register (PUD1SI) modifies the DMA Select
Channel 1 field (UDCI[2:0]), and writing to the PNP Audio DMA Channel 2 Select register
(PUD2SI) modifies the DMA Select Channel 2 field (UDCI[5:3]). If the value written to
PUD1SI or PUD2SI is not supported by UDCI, then the corresponding UDCI field is set to
0. The ability to alter these fields can be disabled by clearing the Compatibility Enable bit
of the Compatibility register (ICMPTI[4]).

For information about restricting access to this register, see “IVERI—Version Number” on
page 12-17.

Note: It is not legal to write to this register while the IC has any DMA activity enabled.
Do not write to this register if any of the following bits are High:
– Enable GUS-Compatible DMA bit of the DMA Control register (LDMACI[0])
– Interleaved DMA Enable bit of the LMC DMA Interleave Control register (LDICI[9])
– Record Enable bit of the Configuration Register 1 (CFIG1I[1])
– Playback Enable bit of the Configuration Register 1 (CFIG1I[0])

Bit 7: Extra Interrupt . When both interrupt sources are combined through the
Combine Interrupt Channels field of the Interrupt Control register (UICI[6]),
setting this bit High drives the IRQ line selected by the Channel 2 IRQ
Selection field of the Interrupt Control register (UICI[5:3]).

Bit 6: Combine DMA Channels . If set High, combines both DMA channels using
the channel selected in the DMA Select Channel 1 field of this register
(UDCI[2:0]).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Extra Interrupt Combine
DMA
Channels

DMA Select Channel 2 DMA Select Channel 1
���� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
Bits 5–3: DMA Select Channel 2 (codec play)
0:no DMA
1:DRQ/DAK1 (8-bit)
2:DRQ/DAK3 (8-bit)
3:DRQ/DAK5 (16-bit)
4:DRQ/DAK6 (16-bit)
5:DRQ/DAK7 (16-bit)
6:DRQ/DAK0 (8-bit)

Bits 2–0: DMA Select Channel 1 (system memory to local memory and codec record)
0:no DMA
1:DRQ/DAK1 (8-bit)
2:DRQ/DAK3 (8-bit)
3:DRQ/DAK5 (16-bit)
4:DRQ/DAK6 (16-bit)
5:DRQ/DAK7 (16-bit)
6:DRQ/DAK0 (8-bit)

UICI—Interrupt Control
Address: P2XR+0Bh read, write; indexes UMCR[6]=1 and URCR[2:0]=0

Default: 07h

Writing to the PNP Audio IRQ Channel 1 Select register (PUI1SI) modifies the Channel 1
IRQ Selection field (UICI[2:0]), and writing to the PNP Audio IRQ Channel 2 Select register
(PUI2SI) modifies the Channel 2 IRQ Selection field (UICI[2:0]). If the value written to
PUI1SI is not supported by UICI[2:0], then UICI[2:0] is set to 7. If the value written to PUI2SI
is not supported by UICI[5:3], then UICI[5:3] is set to 0 (no IRQ). The ability to alter these
fields can be disabled by clearing the Compatibility Enable bit of the Compatibility register
(ICMPTI[4]).

For information about restricting access to this register, see “IVERI—Version Number” on
page 12-17.

Bit 7: AdLib–Sound Blaster to NMI . If set High, causes IOCHK (NMI) to be
selected for interrupts associated with AdLib–Sound Blaster emulation and
disables such interrupts from going to the IRQ selected in the Channel 1
IRQ Selection field (UICI[2:0]).

Bit 6: Combine Interrupt Channels . If set High, combines both interrupt sources
to the IRQ selected in the Channel 1 IRQ Selection field (UICI[2:0]).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

AdLib–Sound
Blaster to NMI

Combine
Interrupt
Channels

Channel 2 IRQ Selection Channel 1 IRQ Selection
6\VWHP�&RQWURO�5HJLVWHUV ����

AMD
Bits 5–3: Channel 2 IRQ Selection (MIDI)
0:No Interrupt
1:IRQ9 (aka IRQ2)
2:IRQ5
3:IRQ3
4:IRQ7
5:IRQ11
6:IRQ12
7:IRQ15

Bits 2–0: Channel 1 IRQ Selection (codec, synthesizer, Sound Blaster, and AdLib)
0:IOCHK
1:IRQ9 (aka IRQ2)
2:IRQ5
3:IRQ3
4:IRQ7
5:IRQ11
6:IRQ12
7:IRQ15

Note: The reference to IRQ2 in the GUS is changed to IRQ9. This change reflects
the preference expressed in the PNP ISA specification; however, this IRQ is still
physically connected to pin B04 of the ISA connector.

UGP1I—General Purpose Register 1
Address: P2XR+0Bh read, write; index URCR[2:0]=1

Default: 00h

The General Purpose 1 register consists of two 8-bit registers—UGP1I IN and UGP1I
OUT—used for compatibility with other sound cards and with MPU-401. Each of these
registers is accessed through both the Hidden Register Data Port (UHRDP) and the
emulation address, which is specified in the General Purpose Register 1 Address field of
the Compatibility register (ICMPTI[1:0]) and the General Purpose Register 1 Address
register (UGPA1I). UGP1I IN is written through the emulation address and read through
UHRDP. UGP1I OUT is read through the emulation address and written through UHRDP.
Accessing these registers through the emulation address results in interrupts (if the
interrupts are enabled).

For information about restricting access to this register, see “IVERI—Version Number” on
page 12-17.

UGP2I—General Purpose Register 2
Address: P2XR+0Bh read, write; index URCR[2:0]=2

Default: 00h

The General Purpose 2 register consists of two 8-bit registers, UGP2I IN and UGP2I OUT,
used for compatibility with other sound cards and with MPU-401. Each of these registers
is accessed through both the Hidden Register Data Port (UHRDP) and the emulation
address, which is specified in the General Purpose Register 2 Address field of the
Compatibility register (ICMPTI[3:2]) and the General Purpose Register 2 Address register
(UGPA2I). UGP2I IN is written through the emulation address and read through UHRDP.
UGP2I OUT is read through the emulation address and written through UHRDP. Accessing
these registers through the emulation address results in interrupts (if enabled).
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
For information about restricting access to this register, see “IVERI—Version Number” on
page 12-17.

UGPA1I—General Purpose Register 1 Address
Address: P2XR+0Bh read, write; index URCR[2:0]=3

Default: 00h

This register controls the emulation address through which the General Purpose Register
1 (UGP1I) is accessed. The 8 bits written become bits 7–0 of the emulation address for
UGP1I; emulation address bits 9–8 are specified in the General Purpose Register 1 Address
field of the Compatibility register (ICMPTI[1:0]).

For information about restricting access to this register, see “IVERI—Version Number” on
page 12-17.

UGPA2I—General Purpose Register 2 Address
Address: P2XR+0Bh read, write; index URCR[2:0]=4

Default: 00h

This register controls the emulation address through which the General Purpose Register
2 (UGP2I) is accessed. The 8 bits written become bits 7–0 of the emulation address for
UGP2I; emulation address bits 9–8 are specified in the General Purpose Register 2 Address
field of the Compatibility register (ICMPTI[3:2]).

For information about restricting access to this register, see “IVERI—Version Number” on
page 12-17.

UCLRII—Clear Interrupt
Address: P2XR+0Bh write; index URCR[2:0]=5

Writing to this register causes all the interrupts described in the Status Read register (USRR)
to be cleared.

For information about restricting access to this register, see “IVERI—Version Number” on
page 12-17.

UJMPI—Jumper
Address: P2XR+0Bh read, write; index URCR[2:0]=6

Default: 06h

For information about restricting access to this register, see “IVERI—Version Number” on
page 12-17.

Bits 7–3: Reserved.

Bit 2: Enable Joystick . If set High, enables reading and writing of the Game
Control register (GGCR) (located at P201AR).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Enable
Joystick

Enable MIDI Reserved
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
Bit 1: Enable MIDI . If set High, enables reading and writing of the following MIDI
registers (located at P3XR+0 and P3XR+1):
–MIDI Control (GMCR)
–MIDI Status (GMSR)
–MIDI Transmit Data (GMTDR)
–MIDI Receive Data (GMRDR)

Bit 0: Reserved.

P3XR Direct Registers
IGIDXR—General Index
Address: P3XR+3, read, write

Default: 00h

This register specifies the indexed address to a variety of registers within the InterWave
IC. The data ports associated with this index are I8DP and I16DP. When the Auto Increment
field of the Synthesizer Voice Select register (SVSR[7]) is set High, the value in this register
is incremented by one after every I/O write to either I8DP or I16DP (but not after 8-bit writes
to the low byte of I16DP, P3XR+4).

I8DP, I16DP—General 8-Bit/16-Bit Data Port
Address: P3XR+5 for I8DP, P3XR+4-5h for I16DP, read, write

These data ports are used to access a variety of registers within the InterWave IC. The
8-bit I/O accesses to P3XR+5 are used to transfer 8-bit data. The 16-bit I/O accesses to
P3XR+4 are used to transfer 16-bit data. It is also possible to transfer 16-bit data by using
an 8-bit I/O access to P3XR+4 followed by an 8-bit access to P3XR+5 (in that order). The
index associated with these ports is IGIDXR. When the Auto Increment field of the
Synthesizer Voice Select register (SVSR[7]) is set High, the value in IGIDXR is incremented
by one after every I/O write to either I8DP or I16DP (but not after 8-bit writes to the low
byte of I16DP, P3XR+4).

IGIDXR, I8DP, and I16DP Indexed Registers
UASBCI—AdLib–Sound Blaster Control
Address: P3XR+5 read, write; index IGIDXR=45h

Default: 00h

This register is used to control the AdLib and Sound Blaster emulation hardware.

Bits 7–6: Reserved.

Bit 5: Sound Blaster Interrupts Enable . If set High, enables interrupts for writes
to the Sound Blaster 2X6 (U2X6R) and Sound Blaster IRQ 2XC (UI2XCR)
registers. If set Low, disables and asynchronously clears both of the
interrupts.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Sound Blaster
Interrupts
Enable

Enable Timer
Test

Enable
Interrupt for
Timer 2

Enable
Interrupt for
Timer 1

Enable Data
Interrupt

Disable
Auto-Timer
Mode
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
Bit 4: Enable Timer Test . If set High, enables a high-speed clock to operate AdLib
Timer 1 and AdLib Timer 2. If set Low, allows normal clocks to operate these
timers. The frequency of the high-speed clock is 0.99614 MHz.

Bit 3: Enable Interrupt For AdLib Timer 2 . If set High, enables the interrupt
associated with AdLib Timer 2. If set Low, disables and asynchronously
clears the interrupt.

Bit 2: Enable Interrupt For AdLib Timer 1 . If set High, enables the interrupt
associated with AdLib Timer 1. If set Low, disables and asynchronously
clears the interrupt.

Bit 1: Enable Data Interrupt . If set High, enables the interrupt that results from a
write to the AdLib Data register (UADR). If set Low, disables and
asynchronously clears the interrupt.

Bit 0: Disable Auto-Timer Mode . If set Low, places the IC into auto-timer mode.
If set High, disables auto-timer mode. For an explanation of auto-timer mode,
see “UASRR, UASWR—AdLib Status Read/Write” on page 12-3 and
“UADR—AdLib Data” on page 12-4.

UAT1I—AdLib Timer 1
Address: P3XR+5 read, write; index IGIDXR=46h

Default: 00h

This value is loaded into AdLib Timer 1 when one of the following conditions occurs:

■ The Start Timer 1 bit of the AdLib Data register (UADR[0]) is High and this timer
increments past 0FFh

■ UADR[0] is Low and there is a rising clock edge of this timer's 80-µs clock (16.9344 MHz
divided by 1344)

Reading this register returns the preload value, not the actual state of the timer.

UAT2I—AdLib Timer 2
Address: P3XR+5 read, write; index IGIDXR=47h

Default: 00h

This value is loaded into AdLib Timer 2 when one of the following conditions occurs:

■ The Start Timer 2 bit of the AdLib Data register (UADR[1]) is High and this timer
increments past 0FFh

■ UADR[1] is Low and there is a rising clock edge of this timer's 320-µs clock (Timer 1's
clock divided by 4)

Reading this register returns the preload values, not the actual state of the timer.

USCI—ADC Sample Control
Address: P3XR+5 read, write; index IGIDXR=49h

Default: 00h

This register exists for compatibility with the GUS hardware. Some software writes to and
reads this index and expects bit 6 to be Low. The bits in this register are reset by the process
described in “URSTI—GUS Reset” on page 12-14.
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
Bits 7, 5–0: Read/Write Bits . Each of these bits returns what was most recently written
to it and does not control anything.

Bit 6: Always Reads Low . This bit always reads back as Low. It cannot be set
High.

URSTI—GUS Reset
Address: P3XR+5 read, write; index IGIDXR = 4Ch

Default: XXXX X000

Bits 7–3: Reserved.

Bit 2: Synthesizer Interrupt Enable . If set High, enables the synthesizer's loop
and volume interrupts, which are read in the IRQ Status register (UISR[6:5]).
Disabling these interrupts with this bit does not clear the interrupts.

Bit 1: DAC Enable . If set High, enables the synthesizer digital-to-analog
converter. If set Low, mutes the output of the synthesizer DAC.

Bit 0: Reset GUS . This bit allows software to reset the InterWave IC to
GUS-compatible mode. To perform a reset, set this bit Low, wait for at least
22 µs, then set the bit High. The following items are reset by this process:

• Interrupt associated with a write to the Sound Blaster 2X6 register
(U2X6R)

• Interrupt associated with a write to the Sound Blaster IRQ 2XC register
(UI2XCR)

• Any DMA or I/O activity to local memory (including IOCHRDY)

• LMC DMA Control register (LDMACI)

• DRAM/ROM Select and Auto Increment bits of the LMC Control register
(LMCI[1] and LMCI[0])

• LMC FIFO Size register (LMFSI)

• LMC DMA Interleave Control register (LDICI)

• Synthesizer Global Mode register (SGMI)

• Synthesizer LFO Base Address register (SLFOBI)

• Synthesizer Voices IRQ register (SVII)

• Synthesizer Voices IRQ Read register (SVIRI)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Read/Write Bit Always Reads
Low

Read/Write Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Synthesizer
Interrupt
Enable

DAC Enable Reset GUS
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
• Flip-flop that drives the DMA Terminal Count IRQ bit of the IRQ Status
register (UISR[7])

• Synthesizer Interrupt Enable bit and DAC Enable bit of the GUS Reset
register (URSTI[2:1])

• AdLib–Sound Blaster Control register (UASBCI)

• Interrupt associated with a write to the AdLib Data register (UADR)

• AdLib Data register (UADR)

• Flip-flops that drive the AdLib Status Read register (UASRR)

• ADC Sample Control register (USCI)

Also, while this bit is Low, the following conditions exist:

• It is not possible to write to the synthesizer’s register array

• The synthesizer IRQs are all cleared

• All synthesizer state machines are prevented from operating; they stay
frozen and no sound is generated.

This bit is fully controlled by software.

Note: This bit must remain Low for at least 22 µs after hardware and software resets
have completed for the synthesizer register array to be properly initialized.

ICMPTI—Compatibility
Address: P3XR+5 read, write; index IGIDXR=59h

Default: 0001 1111 binary (1Fh)

Bits 7–5: Serial Transfer Mode . These bits specify the mode of the serial transfer
block of the codec module. This block is fully specified in the codec module.
When ICMPTI[7] is High, the four external device pins (EX_CS, EX_IRQ,
EX_DRQ, and EX_DAK) are switched to become the external serial port
pins. Table 12-2 shows the possible modes.

Bit 4: Compatibility Enable . If set High, specifies that writes to the DMA Select
Channel fields of the DMA Channel Control register (UDCI[5:0]) and the
Channel IRQ Selection fields of the Interrupt Control register (UICI[5:0]) are
allowed. If set Low, such writes are not allowed. These bits can also be
altered by writes to the PNP Audio DMA Channel 1 Select (PUD1SI), PNP
Audio DMA Channel 2 Select (PUD2SI), PNP Audio IRQ Channel 1 Select
(PUI1SI), and PNP Audio IRQ Channel 1 Select (PUI2SI) registers,
regardless of the state of this bit.

Bits 3–2: General Purpose 2 Address Bits 9–8 . These bits specify ISA-address bits
9–8 to go with address bits 7–0 found in the relocatable General Purpose
Register 2 Address register (UGPA2I).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Serial Transfer Mode Compatibility
Enable

General Purpose 2 Address
Bits 9–8

General Purpose 1 Address
Bits 9–8
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
Bits 1–0: General Purpose 1 Address Bits 9–8 . These bits specify ISA-address bits
9–8 to go with address bits 7–0 found in the relocatable General Purpose
Register 1 Address register (UGPA1I).

Note: It is not possible to use the serial transfer mode when the local memory record
and playback FIFOs are in use. For details, see “LMFSI—LMC FIFO Size” on
page 15-6. Also, to use the serial transfer mode, the application or driver software
must always surround the enabling of codec playback and record and synthesizer
play with the control of these bits. For example, these bits would be changed to 011
binary first, then the codec record and playback paths would be enabled; the codec
record and playback paths would be disabled before changing these bits back to 000.

IDECI—Decode Control
Address: P3XR+5 read, write; index IGIDXR = 5Ah

Default: 7Fh

This register enables and disables the reading and writing of various address spaces.

Bit 7: Interrupt Associated With Codec To Channel 2 . If set High, the interrupt
associated with the codec comes out on the Channel 2 IRQ pin and not on
the Channel 1 IRQ pin. If set Low, this interrupt comes out on Channel 1.

Bit 6: Enable Interrupts on Channel 1 . If set High, Channel 1 interrupts are
enabled. If set Low, the selected Channel 1 IRQ output becomes
high-impedance. If the IRQ selected by the Channel 1 IRQ Selection field
of the Interrupt Control register (UICI[2:0]) is IOCHK (NMI), then this bit has
no effect; however, IDECI[4] can be used to gate the NMI.

Bit 5: Enable Interrupts on Channel 2 . If set High, Channel 2 interrupts are
enabled. If set Low, the selected Channel 2 IRQ output becomes
high-impedance.

Table 12-2 Serial Transfer Mode Selection

Bits 2, 1, 0 Description

0 0 0 Disabled

0 0 1 Synthesizer DSP data to codec record FIFO input

0 1 0 Synthesizer DSP data to codec play FIFO input

0 1 1 Codec record FIFO output to codec play FIFO input

1 0 0 Synthesizer DSP data to external serial port pins

1 0 1 Codec record FIFO to external serial port output and external serial port input
to codec playback FIFO

1 1 0 Not valid

1 1 1 Not valid

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Interrupt
Associated
w/Codec to
Channel 2

Enable
Interrupts on
Channel 1

Enable
Interrupts on
Channel 2

Enable NMI
Interrupts

Enable
Decode of
Codec

Enable
Decodes of
388h and
389h

Enable
Decodes of
2XE, 2XD,
and 2XC

Enable
Decodes of
2XA, 2X9, and
2X8
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
Bit 4: Enable NMI Interrupts . If set High, IOCHK interrupts are enabled. If set
Low, IOCHK becomes high-impedance.

Bit 3: Enable Decode of Codec . If set High, enables reading and writing of the
codec registers—accessed through the PCODAR address space. If set Low,
disables reading and writing of these registers.

Bit 2: Enable Decodes of 388h and 389h . If set High, enables reading and writing
of the following addresses:
P388AR+0 write:AdLib Command Write register (UACWR)
P388AR+0 read:AdLib Status Read register (UASRR)
P388AR+ 1 r/w:AdLib Data register (UADR)

If set Low, disables reading and writing of these addresses.

Bit 1: Enable Decodes of 2XE, 2XD, and 2XC . If set High, enables reading and
writing of the following addresses:
P2XR+Ch:Sound Blaster IRQ 2XC register (UI2XCR)
P2XR+Dh:Sound Blaster 2XC register (no IRQ) (U2XCR)
P2XR+Eh:Sound Blaster 2XE register (U2XER)

If set Low, disables reading and writing of these addresses.

Bit 0: Enable Decodes of 2XA, 2X9, and 2X8 . If set High, enables reading and
writing of the following addresses:
P2XR+8h write:AdLib Command Write register (UACWR)
P2XR+8h read:AdLib Status Read register (UASRR)
P2XR+9h:AdLib Data register (UADR)
P2XR+Ah read:AdLib Command Read register (UACRR)
P2XR+Ah write:AdLib Status Write register (UASWR)

If set Low, disables reading and writing of these addresses.

IVERI—Version Number
Address: P3XR+5 read, write; index IGIDXR = 5Bh

Default: 0001 0X00; see the description of bit 2 for its default value.

Bits 7–4: Version Number . This field contains the version number of the IC die. Here
are the possibilities:

• 0h = rev A silicon (A0, A1, and A2)

• 1h = rev B silicon

This field is read-only.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Version Number Register Read
Mode

Pull-Up Power MPU-401
Emulation
Mode

Hidden
Register Lock
Enable
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
Bit 3: Register Read Mode . If set High, specifies that reads of three of the
InterWave IC’s normally unreadable registers return the data written to those
registers:

• The AdLib Data register (UADR) returns bits 7–0 (with bits 4–2 all Low)
regardless of the state of the Disable Auto-Timer Mode bit of the
AdLib–Sound Blaster Compatibility register (UASBCI[0]) or the AdLib
Command Write register (UACWR).

• The Register Control register (URCR) returns the data last written to it
instead of the data in the Status Read register (USRR).

• The MIDI Control register (GMCR) returns the data last written to it
instead of the data in the MIDI Status register (GMSR).

Bit 2: Pull-Up Power . If set Low, disables the power to the internal pull-up resistors
on the signals IRQ15, IRQ12, IRQ11, IRQ7, IRQ5, SA11–SA6,
DRQ7–DRQ5, DRQ3, DAK7–DAK5, and DAK3 so that these signals do not
drive voltages onto the ISA bus during suspend mode, or add current load.
If set High, enables the pull-up resistors on those signals. Normally, this bit
should be left High for the 144-pin package and set Low for the 160-pin
package. The default state of this bit is latched at the trailing edge of RESET
by the state of the EX_DAK pin. This bit is not reset by the software reset
(PCCCI).

Bit 1: MPU-401 Emulation Mode . If set High, moves the MIDI Transmit Data
register (GMTDR) and the MIDI Receive Data register (GMRDR) from
P3XR+1 to P3XR+0, and the MIDI Control register (GMCR) and MIDI Status
register (GMSR) from P3XR+0 to P3XR+1.

Bit 0: Hidden Register Lock Enable . If set High (inactive), unconditionally
enables accesses to registers through the GUS Hidden Register Data Port
(UHRDP). If set Low (active), access to registers through UHRDP must
conform to a protocol. The protocol is initiated by a write to the Mix Control
register (UMCR) which enables the next subsequent I/O access to the
hidden registers through UHRDP. An I/O read or write (while AEN is Low)
to any address except P2XR+0 (UMCR) or P2XR+0Bh (UHRDP) locks out
further I/O accesses to the hidden registers.

IEMUAI—MPU-401 Emulation Control A
Address: P3XR+5 read, write; index IGIDXR=5Ch

Default: 00h

The emulation addresses described in the following bit definitions are the addresses
specified in the General Purpose Register 1 Address and General Purpose Register 1
Address fields of the Compatibility register (ICMPTI[1:0] and ICMPTI[3:2]), the General
Purpose Register 1 Address register (UGPA1I), and the General Purpose Register 2
Address register (UGPA2I).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

UART
Receive
Buffer Read
Enable

UART Status
Read Enable

Emulation
Address 2
Read Enable

Emulation
Address 1
Read Enable

UART
Transmit
Buffer Write
Enable

UART
Command
Buffer Write
Enable

Emulation
Address 2
Write Enable

Emulation
Address 1
Write Enable
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
Bit 7: UART Receive Buffer Read Enable . If set Low, allows reading of the MIDI
Receive Data register (GMRDR). If set High, reads of that register are
ignored internally (although the ISA data bus is still driven).

Bit 6: UART Status Read Enable . If set Low, allows reading of the MIDI Status
register (GMSR). If set High, reads of that register are ignored internally
(although the ISA data bus is still driven).

Bit 5: Emulation Address 2 Read Enable . If set Low, allows reading of the
General Purpose Register 2 (UGP2I) through the emulation address. If set
High, reads of UGP2I through the emulation address are ignored internally
(although the ISA data bus is still driven).

Bit 4: Emulation Address 1 Read Enable . If set Low, allows reading of the
General Purpose Register 1 (UGP1I) through the emulation address. If set
High, reads of UGP1I through the emulation address are ignored internally
(although the ISA data bus is still driven).

Bit 3: UART Transmit Buffer Write Enable . If set Low, allows writing to the MIDI
Transmit Data register (GMTDR). If set High, writes to that register are
ignored by the UART.

Bit 2: UART Command Buffer Write Enable . If set Low, allows writing to the
MIDI Control register (GMCR). When set High, writes to that register are
ignored by the UART.

Bit 1: Emulation Address 2 Write Enable . If set Low, allows writing to the General
Purpose 2 back door register (UGP2I) through the emulation address. If set
High, UGP2I does not change during writes to the emulation address.

Bit 0: Emulation Address 1 Write Enable . If set Low, allows writing to the General
Purpose 1 back door register (UGP1I) through the emulation address. If set
High, UGP1I does not change during writes to the emulation address.

IEMUBI—MPU-401 Emulation Control B
Address: P3XR+5 read, write; index IGIDXR=5Dh

Default: 30h

The emulation addresses described in the following bit definitions are the addresses
specified in the General Purpose Register 1 Address and General Purpose Register 1
Address fields of the Compatibility register (ICMPTI[1:0] and ICMPTI[3:2]), the General
Purpose Register 1 Address register (UGPA1I), and the General Purpose Register 2
Address
register (UGPA2I).

Bit 7: MIDI Receive Data Enable . If set Low, allows MIDI receive data from the
MIDIRX pin to pass into the UART. If set High, disables the data path from
MIDIRX to the UART.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MIDI Receive
Data Enable

MIDI Transmit
Data Enable

Select Status
Emulation
Register 1
Bit 7 for I/O
Reads

Select Status
Emulation
Register 1
Bit 6 for I/O
Reads

Emulation
Register 2
Write Interrupt
Enable

Emulation
Register 1
Write Interrupt
Enable

Emulation
Register 2
Read Interrupt
Enable

Emulation
Register 1
Read Interrupt
Enable
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
Bit 6: MIDI Transmit Data Enable . If set Low, allows MIDI transmit data from the
UART to pass to the MIDITX pin. If set High, disables the data path from
MIDITX to the UART.

Bit 5: Select Status Emulation Register 1 Bit 7 for I/O Reads . If set High,
enables bit 7 of the General Purpose Register 1 (UGP1I OUT[7]) onto the
data bus during reads of UGP1I OUT through the emulation address. Setting
this bit Low enables the Data Send Ready signal (DSR) onto bit 7 of the
data bus during those reads. DSR is set High (inactive) by the hardware
when the General Purpose Register 2 register (UGP2I OUT) is read through
the emulation address, if the Emulation Address 2 Read Enable bit of the
MPU-401 Emulation Control A register (IEMUAI[5]) is Low. This flag is also
controlled by writes to UGP1I OUT[7] through the GUS Hidden Register
Data Port (UHRDP).

Bit 4: Select Status Emulation Register 1 Bit 6 for I/O Reads . If set High,
enables bit 6 of the General Purpose Register 1 (UGP1I OUT[6]) onto the
data bus during reads of UGP1I OUT through the emulation address. Setting
this bit Low enables Data Receive Ready (DRR) onto bit 6 of the data bus
during those reads. DRR is set High (inactive) by the hardware when there
is a write to either the General Purpose Register 1 (UGP1I IN) or General
Purpose Register 2 (UGP2I IN) through the emulation address, if the
Emulation Address 1 Write Enable bit (for UGP1I) or the Emulation Address
2 Write Enable bit (for UGP2I) of the MPU-401 Emulation Control A register
(IEMUAI[0] or IEMUAI[1]) is Low. DRR is also controlled by writes to UGP1I
OUT[6] through the GUS Hidden Register Data Port (UHRDP).

Bit 3: Emulation Register 2 Write Interrupt Enable . If set Low, writing to UGP2I
through the emulation address causes an interrupt. If set High, writing to
UGP2I does not cause an interrupt.

Bit 2: Emulation Register 1 Write Interrupt Enable . If set Low, writing to UGP1I
through the emulation address causes an interrupt. If set High, writing to
UGP1I does not cause an interrupt.

Bit 1: Emulation Register 2 Read Interrupt Enable . If set Low, reading UGP2I
through the emulation address causes an interrupt. If set High, reading
UGP2I does not cause an interrupt.

Bit 0: Emulation Register 1 Read Interrupt Enable . If set Low, reading UGP1I
through the emulation address causes an interrupt. If set High, reading
UGP1I does not cause an interrupt.

IEIRQI—Emulation IRQ
Address: P3XR+5 read, write; index IGIDXR = 60h

Default: 0?XX XX00; see the description of bit 6 for its default value

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Select
GPOUT1–GP
OUT2 Codec
Flags

16-Bit I/O
Decoding
Selected

Reserved IRQ MPU-401 IRQ Sound
Blaster
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
Bit 7: Select GPOUT1–GPOUT0 Codec Flags . If set High, the pins
GPOUT1–GPOUT0 are selected. If Low, the pins are IRQ10 and IRQ4.

Bit 6: 16-Bit I/O Decoding Selected . This read-only bit reflects the state of the
internal pin IP16BITIO, which is latched off of EX_CS at the trailing edge of
RESET. When Low, system address bit 11 and bit 10 (SA11–SA10) are
ignored for most address blocks. When High, SA11–SA10 must be Low to
decode most address blocks.

Bits 5–2: Reserved.

Bit 1: IRQ MPU-401 . This bit controls the state of the IRQ line selected by the
PNP MPU-401 Emulation IRQ Select register (PMISI). If set High, the IRQ
line becomes High; if set Low, the IRQ line becomes Low.

Bit 0: IRQ Sound Blaster . This bit controls the state of the IRQ line selected by
the PNP AdLib–Sound Blaster Emulation IRQ Select register (PSBISI). If
set High, the IRQ line becomes High; if set Low, the IRQ line becomes Low.

PNP Direct Registers
PCSNBR—PNP Card Select Number Back Door
Address: 0201h write

Default: 00h

It is possible to write a card select number (CSN) to the InterWave IC through this I/O port
if all of the following conditions exist:

■ The InterWave IC is in PNP system mode (latched by the state of the PNPCS pin at the
end of reset).

■ The audio logical device has not been activated (bit 0 of the PNP Audio Activate register
(PUACTI[0]) is Low).

■ The IC is in the PNP isolation state.

PIDXR—PNP Index Address
Address: 0279h write

Default: 00h

This 8-bit index address register points to standard Plug and Play registers.

PNPWRP—PNP Write Data Port
Address: 0A79h write

Write to the Plug and Play ISA registers through this port, indexed by PIDXR.

PNPRDP—PNP Read Data Port
Address: Address is relocatable between 003h and 3FFh, read only. The address is

set by writing 00h (the index value for the PNP Set Read Data Port Address
register (PSRPAI)) to the PNP Index Address register (PIDXR), and then
writing a byte that represents bits 9–2 of the address to the PNP Data Write
Port (PNPWRP). Bits 1–0 are always assumed to be High.

Read Plug and Play ISA registers through this port, indexed by PIDXR.
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
PIDXR, PNPWRP, and PNPRDP PNP Indexed Registers
These PNP registers are indexed with PIDXR and accessed through PNPRDP and
PNWRP. Many of the registers—PIDXR=30h and greater—are further indexed by the
Logical Device Number register (PLDNI). All such registers can be accessed only when
the IC is in the PNP configuration state.

PSRPAI—PNP Set Read Data Port Address
Address: 0A79h write; index PIDXR=0

Default: 80h

Writing to this register sets up bits 9–2 of the address of the PNP Read Data Port (PNPRDP).
Bits 1–0 of the address are both assumed to be High. Writing to this register is allowed only
when the IC is in the PNP isolation state.

PISOCI—PNP Isolate Command
Address: PNPRDP read; index PIDXR=1

Reading this register causes a specific value—based on data read out of the PNP serial
EEPROM—to be driven onto the ISA bus and then to be read back to check for a difference.
This process can result in a lose-isolation condition and cause the IC to enter the PNP
sleep state. If the IC is in PNP system mode, then it is assumed that there is no serial
EEPROM and no data will ever be driven on the bus for reads from this register. In PNP
system mode, reads of PISOCI always cause the InterWave IC to lose isolation and go into
the sleep state. Reading this register is allowed only when the IC is in the PNP isolation state.

PCCCI—PNP Configuration Control Command
Address: 0A79h write; index PIDXR=2

Bits 7–3: Reserved.

Bit 2: Reset CSN . If the IC is in the PNP sleep, isolation, or configuration state,
setting this bit High causes the CSN to be set to zero. This command is
ignored if the IC is in the PNP wait-for-key state.

Bit 1: Wait for Key . If set High, the IC enters the PNP wait-for-key state. This
command is ignored if the IC is already in the PNP wait-for-key state, but is
valid for the other three states.

Bit 0: Reset . If set High, the InterWave IC resets. This results in a 3-ms to 10-ms
pulse over the general reset line to the whole IC. The only areas not reset
by this command are the PNP Set Read Data Port Address register
(PSRPAI), the PNP Card Select Number register (PCSNI), and the PNP
state. This command is ignored if the IC is in the PNP wait-for-key state, but
is valid for the other three states.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reset CSN Wait-for-Key Reset
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
PWAKEI—PNP Wake[CSN] Command
Address: 0A79h write; index PIDXR=3

Writes to this register affect the PNP state based on the state of the PNP Card Select
Number register (PCSNI) and the data written. If the data is 00h and the CSN is 00h, then
the IC enters the PNP isolation state. If the data is not 00h and the CSN matches the data,
then the IC enters the PNP configuration state. If the data does not match the CSN, then
the IC enters the PNP sleep state. This command also resets the serial EEPROM control
logic that contains the address to that part. This command is ignored if the IC is in the PNP
wait-for-key state, but it is valid for the other three states.

PRESDI—PNP Resource Data
Address: PNPRDP read; index PIDXR=4

Default: 00h

PNP software reads this register when it obtains resources from the PNP serial EEPROM.

Note: If the serial EEPROM has been placed into direct-control mode—the Serial
EEPROM Mode bit of the PNP Serial EEPROM Enable register (PSEENI[0]) set
High—then the wake command must be executed before access through the PNP
Resource Data register (PRESDI) is possible. This command is valid only when the
IC is in the PNP configuration state.

PRESSI—PNP Resource Data Status
Address: PNPRDP read; index PIDXR=5

Default: 00h

If bit 0 of this register is High, then the next byte of PNP resource data is available to be
read; all other bits are reserved. After the PNP Resource Data register (PRESDI) is read,
this bit becomes cleared until the next byte is available. This register can be read only when
the IC is in the PNP configuration state.

PCSNI—PNP Card Select Number
Address: PNPRDP read, 0A79h write; index PIDXR=6

Default: 00h

While the IC is in the PNP isolation state, writing to this register sets up the CSN for the IC
and sends the IC into the PNP configuration state. When the IC is in the configuration state,
this register can be read but not written.

PLDNI—PNP Logical Device Number
Address: 0A79h write, PNPRDP read; index PIDXR=7

Default: 00h

This register further indexes the PNP address space into logical devices. The InterWave
IC contains the following logical devices with corresponding logical device numbers (LDNs):

audio 00h—all audio functions, synthesizer, codec, and ports

external device
01h—the external device interface (e.g., a CD-ROM interface to the four
EX_xxx pins)

game port 02h—game port (P201AR only)
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
AdLib–Sound Blaster emulation
03h—AdLib–Sound Blaster emulation IRQ and I/O addresses

MPU-401 emulation
04h—MPU-401 emulation IRQ and I/O addresses

This register can be accessed only when the IC is in the PNP configuration state.

PNP Unimplemented Registers
Reads of all PNP indexed addresses from PIDXR=08h through 2Fh return all zeros, per
the PNP specification.

PUACTI, PRACTI, PGACTI, PSACTI, PMACTI—PNP Activate Registers
Address: 0A79h write, PNPRDP read; indexes PIDXR = 30h and PLDNI = one of the

following:
0:PUACTI (audio)
1:PRACTI (external)
2:PGACTI (game port)
3:PSACTI (AdLib–Sound Blaster)
4:PMACTI (MPU-401)

Default: 00h

Setting bit 0 High activates the specified logical device; all other bits are reserved. If set
Low, none of the specified logical device’s address spaces are decoded and the interrupt
and DMA channels are not enabled.

PURCI, PRRCI, PGRCI, PSRCI, PMRCI—PNP I/O Range Check Registers
Address: 0A79h write, PNPRDP read; indexes PIDXR=31h and PLDNI= one of the

following:
0:PURCI (audio)
1:PRRCI (external)
2:PGRCI (game port)
3:PSRCI (AdLib–Sound Blaster)
4:PMRCI (MPU-401)

Default: 00h

Note: These registers are not available when the IC is in external decoding mode.
These registers are disabled when bit 0 of any of the corresponding activate registers
(PUACTI, PRACTI, PGACTI, PSACTI, PMACTI) is set High.

Bits 7–2: Reserved.

Bit 1: Range Check Enable . If set High, causes reads of all of the specified logical
device address spaces to drive either 55h or AAh based on the state of the
High 55h/Low AAh field. This bit functions only when the logical device is
not activated.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved Range Check
Enable

High 55h/
Low AAh
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
Bit 0: High 55h/Low AAh . When the Range Check Enable bit is High (PURCI[1]),
this bit selects the data value that is driven back onto the ISA data bus during
a read. Setting this bit High specifies that 55h be driven; Low specifies AAh.

PNP Address Control Registers
Table 12-3 lists the PNP registers that control the address of blocks of I/O space within the
InterWave IC.

Notes:

1. If P201AR[9:6] = 0h, then the value read back from P201LI is 00h (not 01h as shown).

2. If P388AR[9:6] = 0h, then the value read back from P388LI is 00h (not 08h as shown).

All unused bits in the above PNP address control registers are reserved. All of the PNP
address control registers shown in Table 12-3 are written through 0A79h (PNPWRP) and
read through the PNP Read Data Port (PNPRDP). The value read back in the unspecified
bits of all of the above registers is shown in the default column. For a description of the
functions controlled by the various address blocks, see “I/O Address Spaces” on page 4-2.

All of the groups of registers in Table 12-3 are used to describe an I/O address. When the
programmable bits of any of these registers are zero (which is the power-up default), the
addresses they describe are not decoded. Leaving the bits at zero is the PNP method of
specifying that the range is not valid.

PUI1SI, PUI2SI, PRISI, PSBISI, PMISI—PNP IRQ Select Registers
Address: 0A79h write, PNPRDP read; see Table 12-4 for indexes

Default: 00h

Bits 3–0 select the IRQ number for the specified logical device interrupts as shown in
Table 12-5. The mapping of IRQ number to interrupt event for each register is shown in
Table 12-6.

Table 12-3 PNP Address Control Registers

Mnemonic Index LDN Default Description

P2X0HI 60h 0 00h P2X0HI[1:0] specifies P2XR[9:8]

P2X0LI 61h 0 00h P2X0LI[7:4] specifies P2XR[7:4]

P3X0HI 62h 0 00h P3X0HI[1:0] specifies P3XR[9:8]

P3X0LI 63h 0 00h P3X0LI[7:3] specifies P3XR[7:3]

PHCAI 64h 0 00h PHCAI[1:0] specifies PCODAR[9:8]

PLCAI 65h 0 00h PLCAI[7:2] specifies PCODAR[7:2]

PRAHI 60h 1 00h PRAHI[1:0] specifies PCDRAR[9:8]

PRALI 61h 1 00h PRALI[7:4] specifies PCDRAR[7:4]

PATAHI 62h 1 00h PATAHI[1:0] specifies PATAAR[9:8]

PATALI 63h 1 00h PATALI[7:1] specifies PATAAR[7:1]

P201HI 60h 2 00h P201HI[1:0] specifies P201AR[9:8]

P201LI 61h 2 01h* P201LI[7:6] specifies P201AR[7:6]

P388HI 60h 3 00h P388HI[1:0] specifies P388AR[9:8]

P388LI 61h 3 08h* P388LI[7:6] specifies P388AR[7:6]

P401HI 60h 4 00h P401HI[1:0] specifies P401AR[9:8]

P401LI 61h 4 00h P401LI[7:1] specifies P401AR[7:1]
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
IRQ10 and IRQ4 are not available unless selected. For details, see the description of bit 7
in “IEIRQI—Emulation IRQ” on page 12-20.

Bits 7–4 of each of these registers are reserved.

Writes to PUI1SI appropriately affect the Channel 1 IRQ Selection field of the Interrupt
Control register (UICI[2:0]). If a value is written to PUI1SI that is not supported by UICI[2:0],
then UICI[2:0] is set to 7 (IRQ15). Writes to PUI2SI appropriately affect the Channel 2 IRQ
Selection field of the Interrupt Control register (UICI[5:3]). If a value is written to PUI2SI
that is not supported by UICI[5:3], then UICI[5:3] is set to 0 (no IRQ).

PUI1TI, PUI2TI, PRITI, PSBITI, PMITI—PNP IRQ Type Registers
Address: PNPRDP read; see Table 12-4 for indexes

Default: 02h

These registers provide data back to standard PNP software concerning the type of
interrupts supported by the InterWave IC. Each register always reads as 02h to indicate
edge-triggered, active-high interrupts.

Table 12-4 Indexes for PNP IRQ Select Registers

Mnemonic PIDXR PLDNI Register Name

PUI1SI 70h 00h PNP Audio IRQ Channel 1 Select

PUI2SI 72h 00h PNP Audio IRQ Channel 2 Select

PRISI 70h 01h PNP CD-ROM (External Function) IRQ Select

PSBISI 70h 03h PNP AdLib–Sound Blaster Emulation IRQ Select

PMISI 70h 04h PNP MPU-401 Emulation IRQ Select

Table 12-5 IRQ Number Selection

[3:0] Description [3:0] Description [3:0] Description [3:0] Description

0h No IRQ 4h IRQ4 8h No IRQ 0Ch IRQ12

1h No IRQ 5h IRQ5 9h IRQ2/9 0Dh No IRQ

2h IRQ2/9 6h No IRQ 0Ah IRQ10 0Eh No IRQ

3h IRQ3 7h IRQ7 0Bh IRQ11 0Fh IRQ15

Table 12-6 IRQ Number to Interrupt Event Mapping for IRQ Select Registers

Mnemonic Selects the IRQ number for the following interrupts

PUI1SI Audio Channel 1 IRQs; normally passes along synthesizer, codec, and various
miscellaneous IRQs

PUI2SI Audio Channel 2 IRQs; normally passes along the MIDI IRQs; not used in many
configurations

PRISI External function (e.g., CD-ROM) IRQ. This IRQ is sourced from the EX_IRQ pin.

PSBISI AdLib–Sound Blaster emulation IRQ. This IRQ is fully controlled by the IRQ
Sound Blaster bit of the Emulation IRQ register (IEIRQI[0]).

PMISI MPU-401 emulation IRQ. This IRQ is fully controlled by the IRQ MPU-401 bit of
the Emulation IRQ register (IEIRQI[1]).
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
PUD1SI, PUD2SI, PRDSI—PNP DMA Select Registers
Address: 0A79h write, PNPRDP read; see Table 12-4 for indexes

Default: 04h

Bits 2–0 of these registers select the DMA request-acknowledge number as shown in
Table 12-9.

The DMA functions for which the DMA request-acknowledge number is selected by each
register are:

PUD1SI: DMA Channel 1—local–system memory transfers or codec record

PUD2SI: DMA Channel 2—codec playback

PRDSI: External Device—passes EX_DRQ to the selected DRQ pin and selects a
DAK pin to control EX_DAK

Bits 7–3 are reserved.

Writes to PUD1SI appropriately affect the DMA Select Channel 1 field of the DMA Channel
Control register (UDCI[2:0]). Writes to PUD2SI appropriately affect the DMA Select Channel
2 field of the DMA Channel Control register (UDCI[5:3]). If a value is written to either of
these registers that is not supported by UDCI, then the corresponding UDCI field is set to
0 (no DMA).

Note: It is not legal to write to this register while the IC has any DMA activity enabled.
Do not write to this register if any of the following bits are High:
– Enable GUS-Compatible DMA bit of the DMA Control register (LDMACI[0])
– Interleaved DMA Enable bit of the LMC DMA Interleave Control register (LDICI[9])
– Record Enable bit of the Configuration Register 1 (CFIG1I[1])
– Playback Enable bit of the Configuration Register 1 (CFIG1I[0])

Table 12-7 Indexes for PNP IRQ Type Registers

Mnemonic PIDXR PLDNI Register Name

PUI1TI 71h 00h PNP Audio IRQ Channel 1 Type

PUI2TI 73h 00h PNP Audio IRQ Channel 2 Type

PRITI 71h 01h PNP CD-ROM (External Function) IRQ Type

PSBITI 71h 03h PNP AdLib–Sound Blaster Emulation IRQ Type

PMITI 71h 04h PNP MPU-401 Emulation IRQ Type

Table 12-8 Indexes for PNP DMA Select Registers

Mnemonic PIDXR PLDNI Register Name

PUD1SI 74h 00h PNP Audio DMA Channel 1 Select

PUD2SI 75h 00h PNP Audio DMA Channel 2 Select

PRDSI 74h 01h PNP CD-ROM (External Function) DMA Select
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
PSEENI—PNP Serial EEPROM Enable
Address: 0A79h write, PNPRDP read; index PIDXR=F0h and PLDNI=0

Default: 00h

This register is accessible only when the PNP state machine is in the configuration state.

Bits 7–2: Reserved.

Bit 1: ISA Data Bus Drive . This bit specifies the output-low drive capability, Iol,
of the SD15–SD0, IOCHRDY, IOCS16, and IOCHK pins. At 5 V: 00=24 mA,
01=12mA, 10=3mA, 11=reserved. At 3.3 V, the drive is at least 3 mA for bits
2–1 = 00, 01, and 10.

Bit 0: Serial EEPROM Mode . If set Low, specifies that the serial EEPROM
interface circuitry is in initialization mode, whereby the data transfer is
controlled by the PNP state machine. If set High, the serial EEPROM is
controlled directly by the PNP Serial EEPROM Control register (PSECI).

PSECI—PNP Serial EEPROM Control
Address: 0A79h write, PNPRDP read; index PIDXR=F1h and PLDNI=0

Default: XXXX 000X

If the InterWave IC is in control mode—the Serial EEPROM Mode bit of the PNP Serial
EEPROM Enable register (PSEENI[0]) set High—and the PNP Audio Activate register
(PUACTI[0]) is inactive, then bits 2–0 of this register are used to directly control the serial
EEPROM. Bits 7–4 are read-only status bits that show the state of various control signals
that are latched at the trailing edge of RESET. For details, see Appendix A, “Packaging
and Pin Designations.” This register is accessible only when the PNP state machine is in
the configuration state.

Table 12-9 DMA Request Number Selection

[2:0] Description [2:0] Description

0h DRQ/AK0 4h No DMA

1h DRQ/AK1 5h DRQ/AK5

2h No DMA 6h DRQ/AK6

3h DRQ/AK3 7h DRQ/AK7

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved ISA Data Bus
Drive

Serial
EEPROM
Mode

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SUSPEND-C
32KHz Select

External
Decode
Select

PNP System
Board Select

VCC is 5 V Serial
EEPROM
Chip Select

Serial
EEPROM
Serial Clock

Serial
EEPROM
Data In

Serial
EEPROM
Data Out
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
Bit 7: SUSPEND-C32KHZ Select . Provides the state of the internal signal
IPSUS32, which is latched off the RA[21] pin at the trailing edge of RESET.

Bit 6: External Decode Select . Provides the state of the internal signal IPEXDEC
which is latched off the RA[20] pin at the trailing edge of RESET.

Bit 5: PNP System Board Select . Provides the state of the internal signal
IPPNPSYS, which is latched off the PNPCS pin at the trailing edge of
RESET.

Bit 4: VCC is 5 V . Provides the state of the internal 5-V/3.3-V detect circuitry. It is
High for 5 V and Low for 3.3 V.

Bit 3: Serial EEPROM Chip Select . If the Serial EEPROM Mode bit of the PNP
Serial EEPROM Enable register (PSEENI[0]) is set High, then the data
latched in this bit is reflected on the PNPCS pin. Reads provide the latched
value.

Bit 2: Serial EEPROM Serial Clock . Writes to this bit are reflected on the MD[2]
pin. Reads provide the latched value.

Bit 1: Serial EEPROM Data In . Writes to this bit are reflected on the MD[1] pin.
Reads provide the latched value.

Bit 0: Serial EEPROM Data Out . Writes to this bit are ignored. Reads provide the
state of the MD[0] pin.

PPWRI—PNP Power Mode
Address: 0A79h write, PNPRDP read; index PIDXR=F2h and PLDNI=0

Default: X111 1111

Use this register to enable and disable clocks and low-power modes for major sections of
the InterWave IC. Writing to this register is accomplished differently from most. Bit 7
specifies the value to be written (1 or 0); for bits 6–0, a High indicates that the value in bit
7 is to be written into the bit and a Low indicates that the bit is to be left unmodified. Thus,
to modify a subset of bits 6–0, it is not necessary to read the register ahead of time to
determine the state of bits that should not change. Examples: To set bit 0 High, write 81h;
to clear bit 4, write 10h.

If a single command comes to set bits 6–1 Low (I/O write of 0111 111X, binary), then the
IC enters shut-down mode and the 16.9-MHz oscillator becomes disabled. When,
subsequently, one or more of bits 6–1 are set High, the 16.9-MHz oscillator is re-enabled.
After being re-enabled, the 16.9-MHz clock requires 4 ms to 8 ms to become stable.

This register is accessible only when the IC is in the PNP configuration state.

Bit 7: Enable . Specifies the value that is to be written to bits 6–0 of the register.
In all seven cases, a High specifies that the block is functional and a Low
indicates that it is in low-power mode.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Enable 24.576-MHz
Oscillator
Enable

Local Memory
Control
Enable

Synthesizer
Enable

Game–MIDI
Ports Enable

Codec
Playback Path
Enable

Codec Record
Path Enable

Codec Analog
Circuitry
Enable
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
Bit 6: 24.576-MHz Oscillator Enable . If set Low, causes the 24.576-MHz
oscillator to stop. It is not recommended that this oscillator be disabled if
either the Playback Crystal Select bit of the Playback Data Format register
(CPDFI[0]) or the Record Crystal Select bit of the Record Data Format
register (CRDFI[0]) are Low. However, it is okay to set this bit Low as part
of the shut-down command, regardless of the state of CPDFI[0] and
CRDFI[0].

Bit 5: Local Memory Control Enable . If set Low, disables the 16.9-MHz clock to
the local memory control module and allows slow refresh cycles to local
DRAM using C32KHZ.

Bit 4: Synthesizer Enable . If set Low, disables the 16.9-MHz clock to the
synthesizer module and the clocks to the synthesizer DAC input to the codec
mixer.

Bit 3: Game–MIDI Ports Enable . If set Low, disables all clocks to the ports module
and disables internal and external resistors from consuming current.

Bit 2: Codec Playback Path Enable . If set Low, disables clocks to the codec
playback path including the playback FIFO, format conversion, filtering, and
DAC.

Bit 1: Codec Record Path Enable . If set Low, disables clocks to the codec record
path including the record FIFO, format conversion, filtering, and ADC.

Bit 0: Codec Analog Circuitry Enable . If set Low, disables all the codec analog
circuitry and places it in a low-power mode. If set Low, the following analog
pins are placed into the high-impedance state: MIC[L,R], AUX1[L,R],
AUX2[L,R], LINEIN[L,R], MONOIN, LINEOUT[L,R], MONOOUT, CFILT,
IREF.

PSRSTI—PNP Software Reset
Address: 0A79h write; index PIDXR=F3h and PLDNI=0

This register is accessible only when the IC is in the PNP configuration state.

Note: This register is similar to PCCCI; however, where writes to PCCCI a ffect all
PNP-compliant cards in the system, writes to this register affect only the InterWave
IC that is in the PNP configuration state.

Bits 7–4: Reserved.

Bit 3: PNP Register Reset . Setting this bit High resets the following registers:

• PNP Activate registers (PUACTI, PRACTI, PGACTI, PSACTI, PMACTI)

• PNP I/O Range Check registers (PURCI, PRRCI, PGRCI, PSRCI,
PMRCI)

• PNP P2XR (P2X0HI, P2X0LI)

• PNP P3XR (P3X0HI, P3X0LI)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved PNP Register
Reset

Reset CSN Wait For Key General Reset
����� 6\VWHP�&RQWURO�5HJLVWHUV

AMD
• PNP PCODAR (PHCAI, PLCAI)

• PNP Audio IRQ Channel Select (PUI1SI, PUI2SI)

• PNP DMA Channel Select (PUD1SI, PUD2SI)

• PNP Serial EEPROM Enable (PSEENI)

• PNP Serial EEPROM Control (PSECI)

• PNP Power Mode (PPWRI)

• PNP PCDRAR (PRAHI, PRALI)

• PNP PATAAR (PATAHI, PATALI)

• PNP CD-ROM IRQ Type (PRISI)

• PNP CD-ROM DMA Select (PRDSI)

• PNP P201AR (P201HI, P201LI)

• PNP P388AR (P388HI, P388LI)

• PNP AdLib–Sound Blaster Emulation IRQ Select (PSBISI)

• PNP P401AR (P401HI, P401LI)

• PNP MPU-401 Emulation IRQ Select (PMISI)

• Interrupt Control (UICI)

• DMA Channel Control (UDCI)

Bit 2: Reset CSN . Setting this bit High sets the Card Select Number (CSN) to zero.

Bit 1: Wait For Key . Setting this bit High causes the IC to enter the PNP
wait-for-key state.

Bit 0: General Reset . Setting this bit High resets most of the IC. The only parts
of the IC not reset by this command are the PNP Set Read Data Port
(PSRPAI), the PNP Card Select Number register (PCSNI), the PNP state,
and the registers reset by bit 3 of this register.
6\VWHP�&RQWURO�5HJLVWHUV �����

AMD
����� 6\VWHP�&RQWURO�5HJLVWHUV

CHAPTER
13
 CODEC/MIXER REGISTERS
The InterWave codec is fully register-compatible with the CS4231 (modes 1 and 2) and the
AD1848 devices. The InterWave IC uses an indirect addressing mechanism for accessing
most of the codec registers. In mode 1, there are 16 indirect registers; in mode 2, there are
28 indirect registers; and in mode 3, there are 32 indirect registers.

To better understand the purpose and action of the registers described in this chapter, refer
to Figure 6-2, “Left Half of the InterWave Mixer,” on page 6-17.

Codec Direct Registers
CIDXR—Codec Index Address
Address: PCODAR+0 read, write

Default: 40h

Modes: bits 7–5, 3–0 in modes 1, 2, and 3; bit 4 in modes 2 and 3

Bit 7: Initialization . This read-only bit is High if the codec is in an initialization
phase and unable to respond to I/O activity. This bit is set by software and
hardware resets.

Bit 6: Mode Change Enable . This bit protects the Playback Data Format register
(CPDFI), Record Data Format register (CRDFI), and Configuration Register
1 (CFIG1I) from being written (except CFIG1I[1:0]; these bits can be
changed at any time). If set High, the protected registers can be modified,
and the left and right DAC outputs are muted. If set Low, the protected
registers cannot be modified. Moving this bit from High to Low resets the
Record FIFO Overrun bit and Playback FIFO Underrun bit in the Codec
Status Register 2 (CSR2I[7:0]) and the Record FIFO Underrun, Record FIFO
Overrun, Playback FIFO Overrun, and Playback FIFO Underrun bits of the
Codec Status Register 3 (CSR3I[3:0]).

Bit 5: DMA Transfer Disable . If set High, causes DMA transfers to be suspended
when the sample counter interrupts of the Codec Status Register 3 (CSR3I)
become active.

Mode 1 DMA is suspended (whether it be playback or record) when
the sample counter stops after the sample counter causes
an interrupt. Also, the active FIFO is disabled from
transferring more data to the codec. DMA transfers, FIFO
transfers, and the sample counter resume when the Global
Interrupt Status bit of the Codec Status Register 1
(CSR1R[0]) is cleared or when this bit (CIDXR[5]) is cleared.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Initialization Mode Change
Enable

DMA Transfer
Disable

Indirect Address Pointer
&RGHF�0L[HU�5HJLVWHUV ����

AMD
Modes 2 and 3
Record DMA, the record FIFO, and the record sample
counter stop when the record sample counter causes an
interrupt, read in the Record FIFO Interrupt Request bit of
Codec Status Register 3 (CSR3I[5]=1); playback DMA, the
playback FIFO, and the playback sample counter all stop
when the playback sample counter causes an interrupt. That
interrupt is read in the Playback FIFO Interrupt Request bit
of Codec Status Register 3 ((CSR3I[4]=1). The pertinent
DMA transfers and sample counter resume when the
appropriate interrupt bit in CSR3I is cleared or when this bit
(CIDXR[5]) is cleared.

In mode 3, this bit also works to discontinue the transfer of data between
the codec FIFOs and the Local Memory Record and Playback FIFOs.

Bits 4–0: Indirect Address Pointer . These bits point to registers in the indirect
address space. In mode 1, a 16-register space is defined and bit 4 of this
address is reserved. In modes 2 and 3, a 32-register space is defined.

CDATAP—Codec Indexed Data Port
Address: PCODAR+1 read, write

Modes: 1, 2, and 3

Read and write to all of the codec indexed registers—pointed to by the Indirect Address
Pointer field of the Codec Index Address register (CIDXR[4:0])—through this port.

CSR1R—Codec Status Register 1
Address: PCODAR+2 read, write

Default: CCh

Modes: 1, 2, and 3

This register reports the interrupt status and various playback and record FIFO conditions.
Reading this register also clears the overrun and underrun bits of the Codec Status Register
2 (CSR2I[7:6]) and Codec Status Register 3 (CSR3I[3:0]), if any are set. Writing to this
register clears all codec interrupts and the Global Interrupt Status bit (CSR1R[0]).

Bit 7: Record Channel Upper/Lower Byte Indication . When High, indicates that
a read of the record FIFO returns the upper byte of a 16-bit sample (bits
15–8) or that the record data is eight or fewer bits wide. When Low, indicates
that a read of the record FIFO returns the lower byte of a 16-bit sample (bits
7–0). After the last byte of the last received sample has been read from the
record FIFO, this bit does not change from its state during that byte until the
next sample is received.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Record
Channel
Upper/Lower
Byte
Indication

Record
Channel
Left/Right
Sample
Indication

Record
Channel Data
Available

Sample Error Playback
Channel
Upper/Lower
Byte
Indication

Playback
Channel
Left/Right
Sample
Indication

Playback
Channel
Buffer
Available

Global
Interrupt
Status
���� &RGHF�0L[HU�5HJLVWHUV

AMD
Bit 6: Record Channel Left/Right Sample Indication . When High, indicates that
a read of the record FIFO returns the left sample or that the record path is
in either mono or ADPCM mode (or both). When Low, a read returns the
right sample. After the last byte of the last received sample has been read
from the record FIFO, this bit does not change from its state during that byte
until the next sample is received.

Bit 5: Record Channel Data Available . When High, there is valid data to be read
from the record FIFO. When Low, the FIFO is empty.

Bit 4: Sample Error . This bit is High whenever data has been lost because of
either a record FIFO overrun or a playback FIFO underrun—it is a logical
OR of the Record FIFO Overrun and Playback FIFO Underrun bits of the
Codec Status Register 2 (CSR2I[7:6]) and the Codec Status Register 3
(CSR3I[3:0]). If both record and playback channels are enabled, the specific
channel that set this bit can be determined by reading the other codec status
registers (CSR2I or CSR3I). However, the overrun and underrun status bits
in CSR2I and CSR3I are cleared when this register is read, so any overrun
or underrun detection process should involve reading CSR2I or CSR3I
before CSR1R is read.

Bit 3: Playback Channel Upper/Lower Byte Indication . When High, indicates
that the next write to the playback FIFO should be the upper byte of a
16-bit sample (bits 15–8) or that playback data is eight or fewer bits wide.
When Low, indicates the next write to the playback FIFO should be the lower
byte (bits 7–0) of a 16-bit sample. After the playback FIFO becomes full, this
bit stays in the state of the last byte written until a space becomes available
in the FIFO.

Bit 2: Playback Channel Left/Right Sample Indication . When High, indicates
that the next write to the playback FIFO should be the left sample or that
the playback path is in either mono or ADPCM mode. When Low, indicates
the right sample is expected. After the playback FIFO becomes full, this bit
stays in the state of the last byte written until a space becomes available in
the FIFO.

Bit 1: Playback Channel Buffer Available . When High, there is room in the
playback FIFO for additional data. When Low, the FIFO is full.

Bit 0: Global Interrupt Status . This bit is High whenever there is an active
condition that can request an interrupt. It is implemented by ORing together
the three sources of interrupts in the codec, found in the Codec Status
Register 3 (CSR3I[6:4]).

To clear this bit, write any value to the Codec Status Register 1 (CSR1R)
or write a 0 to the status bit in the Codec Status Register 3 (CSR3I) causing
the interrupt. If the Playback Enable bit (CFIG1I[0]) or the Record Enable
bit (CFIG1I[1]) in the Configuration Register 1 change from High to Low
while this bit is High, the active interrupt still has to be cleared.
&RGHF�0L[HU�5HJLVWHUV ����

AMD
CPDR, CRDR—Playback and Record Data
Address: PCODAR+3 read (record FIFO), write (playback FIFO)

Modes: 1, 2, and 3

Data written to this address is loaded into the playback FIFO. Data read from this address
is removed from the record FIFO. Bits in the Codec Status Register 1 (CSR1R) indicate
whether the data is for the left or right channel, and for 16-bit samples, the upper or lower
portion of the sample. Writes to this address are ignored when either the playback FIFO is
in DMA mode or the playback path is not enabled—the Playback Enable bit of the
Configuration Register 1 (CFIG1I[0]) is Low. Reads from this address are ignored when
either the record FIFO is in DMA mode or the record path is not enabled—the Record
Enable bit of the Configuration Register 1 (CFIG1I[1]) is Low.

Codec CIDXR, CDATAP Indexed Registers
CLICI, CRICI—Left/Right ADC Input Control
Address: PCODAR+1 read, write; left index CIDXR[4:0]=0, right index CIDXR[4:0]=1

Default: 000X 0000 (for both)

Modes: 1, 2, and 3

These registers are used to select the input source to the analog-to-digital converter (ADC)
and to specify the amount of gain to be applied to the signal path. The registers are identical:
One controls the left channel and the other controls the right channel.

Bits 7–6: Left/Right ADC Source Select . These bits select which input source will
be fed to the analog-to-digital converter.
00:Line
01:Auxiliary 1
10:Stereo Microphone
11:Mixer Output

Bit 4: Reserved.

Bit 5: Read/Write Bit . This bit does not control anything. Reads return what has
been written to it.

Bits 3–0: Left/Right ADC Input Gain Select . The selected input source is fed to the
ADC through a gain stage. These four bits specify the amount of gain applied
to the signal. The values vary from 0h = 0 dB to 0Fh = +22.5 dB with 1.5 dB
per step.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Left/Right ADC Source Select Read/Write Bit Reserved Left/Right ADC Input Gain Select
���� &RGHF�0L[HU�5HJLVWHUV

AMD
CLAX1I, CRAX1I—Left/Right Auxiliary 1/Synthesizer Input Control
Address: PCODAR+1 read, write; left index CIDXR[4:0]=2, right index CIDXR[4:0]=3

Default: 1XX0 1000 (for both)

Modes: 1, 2, and 3

This register pair controls the left and right Auxiliary 1 or Synthesizer inputs—multiplexed
by the Aux 1/Synth Signal Select field of the Configuration Register 3 (CFIG3I[1])—to the
mixer. The registers are identical: One controls the left channel and the other controls the
right channel.

Bit 7: Left/Right Aux 1/Synth Mute Enable . If set High, the selected input is
muted. If set Low, the input operates normally.

Bits 6–5: Reserved.

Bits 4–0: Left/Right Aux 1/Synth Gain Select . These bits specify the amount of gain
applied to the selected Auxiliary 1 or Synthesizer input signal. The values
vary from 00h = +12 dB to 1Fh = –34.5 dB with 1.5 dB per step.

CLAX2I, CRAX2I—Left/Right Auxiliary 2 Input Control
Address: PCODAR+1 read, write; left index CIDXR[4:0]=4, right index CIDXR[4:0]=5

Default: 1XX0 1000 (for both)

Modes: 1, 2, and 3

This register pair controls the left and right Auxiliary 2 inputs to the mixer. The registers are
identical: One controls the left channel and the other controls the right channel.

Bit 7: Left/Right Aux 2 Mute Enable . If set High, the Auxiliary 2 input is muted.
If set Low, the input operates normally.

Bits 6–5: Reserved.

Bits 4–0: Left/Right Aux 2 Gain Select . These bits specify the amount of gain applied
to the Auxiliary 2 input signal. The values vary from 00h = +12 dB to 1Fh =
–34.5 dB with 1.5 dB per step.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Left/Right
Aux 1/Synth
Mute Enable

Reserved Reserved Left/Right Aux 1/Synth Gain Select

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Left/Right Aux
2 Mute Enable

Reserved Reserved Left/Right Aux 2 Gain Select
&RGHF�0L[HU�5HJLVWHUV ����

AMD
CLDACI, CRDACI—Left/Right Playback DAC Control
Address: PCODAR+1 read, write; left index CIDXR[4:0]=6, right index CIDXR[4:0]=7

Default: 1X00 0000 (for both)

Modes: 1, 2, and 3

Each of these registers sums the DAC output and the loopback signal from the input to the
ADC as they are input to the mixer. The registers are identical: One controls the left channel
and the other controls the right channel.

Bit 7: Left/Right DAC Mute Enable . If set High, the DAC output and the loopback
signal from the input to ADC are muted. If set Low, the input to the mixer
operates normally.

Bit 6: Reserved.

Bits 5–0: Left/Right DAC Attenuation Select . These bits specify the amount of
attenuation applied to the DAC output and the loopback signal from the input
to the ADC. The values vary from 00h = 0 dB to 3Fh = –94.5 dB with 1.5 dB
per step.

CPDFI—Playback Data Format
Address: PCODAR+1 read, write; index CIDXR[4:0]=8

Default: 00h

Modes: The definition of this register varies depending on the mode.

This register specifies the sample rate (selects the oscillator to be used and the divide factor
for that oscillator), stereo or mono operation, linear or compressed data, and 8-bit or 16-bit
data. It can be changed only when the Mode Change Enable bit of the Codec Index Address
register (CIDXR[6]) is High (active).

Mode 1 This register controls both the playback and record paths.

Mode 2 Bits 3–0 of this register control both the record and playback sample rate
(i.e., both rates must be the same), and bits 7–4 specify the state of the
playback-path data format.

Mode 3 This register controls only the playback path; the record sample rate is
controlled by the Record Data Format register (CRDFI).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Left/Right
DAC Mute
Enable

Reserved Left/Right DAC Attenuation Select

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Playback Data Format Select Playback
Stereo/Mono
Select

Playback Clock Divider Select Playback
Crystal Select
���� &RGHF�0L[HU�5HJLVWHUV

AMD
Bits 7–5: Playback Data Format Select . These 3 bits specify the playback data
format for the codec.
000:8-bit unsigned
001:µ-law
010:16-bit signed, little endian
011:A-law
100:Reserved, default to 8-bit unsigned*
101:IMA-compliant ADPCM*
110:16-bit signed, big endian*
111:Reserved, default to 8-bit unsigned*
*Modes 2 and 3 only. In mode 1, bit 7 is treated as Low regardless of the
value written to it.

Bit 4: Playback Stereo/Mono Select . If set High, stereo operation is selected;
samples alternate left then right. If set Low, mono mode is selected; playback
samples are fed to both left and right FIFOs. Record samples (in mode 1)
come only from the left ADC.

Bits 3–1: Playback Clock Divider Select . These three bits specify the playback clock
rate in mode 3 and the record and playback rate in modes 1 and 2. The
possible values are listed in Table 13-1.

Note:

*These divide-downs are provided but are not guaranteed to function unless XTAL1 is less than 18.5 MHz.

Bit 0: Playback Crystal Select . If set High, the 16.9344-MHz crystal oscillator
(XTAL2) is used for the playback sample frequency. If set Low, the
24.576-MHz crystal oscillator (XTAL1) is used.

CFIG1I—Configuration Register 1
Address: PCODAR+1 read, write; index CIDXR[4:0]=9

Default: 00XX 1000

Modes: 1, 2, and 3

This register specifies whether to use I/O cycles or DMA to service the codec FIFOs, selects
one-channel or two-channel DMA operation, and enables or disables the record and
playback paths. Bits 7–2 are protected; to write to protected bits, the Mode Change Enable
bit of the Codec Index Address register (CIDXR[6]) must be set High (active).

Table 13-1 Playback Clock Divider Selections

Sampling Rate in kHz

Bits 3 2 1 24.576-MHz crystal (XTAL1) 16.9344-MHz crystal (XTAL2)

000 8.0 5.51

001 16.0 11.025

010 27.42 18.9

011 32.0 22.05

100 ÷ 448* 37.8

101 ÷ 384* 44.1

110 48.0 33.075

111 9.6 6.62
&RGHF�0L[HU�5HJLVWHUV ����

AMD
Bit 7: Record FIFO I/O Select . If set High, the record FIFO can be serviced only
through I/O cycles. If set Low, DMA operation is supported.

Bit 6: Playback FIFO I/O Select . If set High, the playback FIFO can be serviced
only through I/O cycles. If set Low, DMA operation is supported.

Bits 5–4: Reserved.

Bit 3: Calibration Emulation . This bit is present for compatibility with the
CS4231and has no actual effect on the operation of the InterWave IC. For
more details, see the Calibration Active Emulation bit (CSR2I[5]) description
in “CSR2I—Codec Status Register 2” on page 13-9.

Bit 2: 1 or 2 Channel DMA Operation Select . If set High, single-channel DMA
operation is selected. Record or playback operation is allowed, but not both.
When both record and playback DMA are enabled while this bit is set, only
the playback transfers are serviced. If set Low, two-channel DMA operation
is allowed.

Bit 1: Record Enable . If set High, the record codec path is enabled. If set Low,
the record path is turned off and the Record Channel Data Available bit of
the Codec Status Register 1 (CSR1R[5]) is held Low (inactive).

Bit 0: Playback Enable . If set High, the playback codec path is enabled. If set
Low, the playback path is turned off and the Playback Channel Buffer
Available bit of the Codec Status Register 1 (CSR1R[1]) is held Low
(inactive).

CEXTI—External Control
Address: PCODAR+1 read, write; index CIDXR[4:0]=Ah

Default: 00XX 0X0X

Modes: 1, 2, and 3

This register contains the global interrupt enable control as well as control bits for the two
general purpose external output pins.

Bits 7–6: General Purpose Output Flags . The state of these bits are reflected on
the GPOUT1 and GPOUT0 pins. These two pins default to IRQ10 and IRQ4.
They become the general purpose output flags when the Select GPOUT
Codec Flags bit of the Emulation IRQ register (IEIRQI[7]) is High.

Bits 5–4: Reserved.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Record FIFO
I/O Select

Playback
FIFO I/O
Select

Reserved Reserved Calibration
Emulation

1 or 2 Channel
DMA
Operation
Select

Record
Enable

Playback
Enable

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

General Purpose Output Flags Reserved Reserved Read/Write Bit Reserved Global
Interrupt
Enable

Reserved
���� &RGHF�0L[HU�5HJLVWHUV

AMD
Bit 3: Read/Write Bit . This bit can be read and written but it does not control
anything within the InterWave IC.

Bit 2: Reserved.

Bit 1: Global Interrupt Enable. If set High, enables codec interrupts. If set Low,
codec interrupts are not passed on to the selected IRQ pin. The status bits
are not affected by the state of this bit.

Bit 0: Reserved.

CSR2I—Codec Status Register 2
Address: PCODAR+1 read; index CIDXR[4:0]=Bh

Default: 00h

Modes: 1, 2, and 3

This register reports certain FIFO errors and the state of the record and playback data
request bits, and allows testing of the analog-to-digital paths for clipping.

Bit 7: Record FIFO Overrun . When High, the record FIFO is full and the codec
needs to load another sample (the sample is discarded). This bit is cleared
to Low when the Codec Status Register 1 (CSR1R) is read or when the
Mode Change Enable bit of the Codec Index Address register (CIDXR[6])
goes from High to Low.

Bit 6: Playback FIFO Underrun . When High, the playback FIFO is empty and the
codec needs another sample. This bit is cleared to Low when the Codec
Status Register 1 (CSR1R) is read or when the Mode Change Enable bit of
the Codec Index Address register (CIDXR[6]) goes from High to Low. (In
mode 1, the previous sample is reused. In modes 2 and 3, either the previous
sample is reused or the data is forced to all zeros depending on the state
of the DAC Output Force Enable bit of the Configuration Register 2
(CFIG2I[0]). For details, see “CFIG2I—Configuration Register 2” on
page 13-11.

Bit 5: Calibration Active Emulation . If the Calibration Emulation bit of
Configuration Register 1 (CFIG1I[3]) is High, this bit goes High when the
Mode Change Enable bit of the Codec Index Address register (CIDXR[6])
goes from High to Low; it goes back to Low after the trailing edge of the first
subsequent read of the Codec Status Register 2 (CSR2I). This action has
no actual effect on InterWave IC operation and is present only for
compatibility with the Crystal 4231.

Bit 4: DMA Request Pin Status . This bit is High anytime that either the record or
playback DMA request pins are active.

Bits 3–2: Right Overrange Detect . See Left Overrange Detect.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Record FIFO
Overrun

Playback
FIFO
Underrun

Calibration
Active
Emulation

DMA Request
Pin Status

Right Overrange Detect Left Overrange Detect
&RGHF�0L[HU�5HJLVWHUV ����

AMD

.

Bits 1–0: Left Overrange Detect . These two pairs of bits are updated on a sample

by sample basis to reflect whether the signal into the ADC is causing clipping
00:Less than 1.5 dB underrange
01:Between 1.5 dB and 0 dB underrange
10:Between 0 dB and 1.5 dB overrange
11:More than 1.5 dB overrange

CMODEI—Mode Select, ID
Address: PCODAR+1 read, write; index CIDXR[4:0]=Ch

Default: 100X 1010

Modes: 1, 2, and 3

This register specifies the operating mode of the codec and reports the revision number of
the InterWave IC.

Bits 7, 3–0: Revision ID Number . These five bits specify the revision number of the IC,
which is 1,1010 for the first AMD part. These bits are read-only; they cannot
be changed.

Bits 6–5: Mode Select . To enter mode 3, write 6Ch to this port; bit 5 is forced Low
for writes of any other value.
00:mode 1
10:mode 2
01:reserved
11:mode 3

Bit 4: Reserved.

CLCI—Loopback Control
Address: PCODAR+1 read, write; index CIDXR[4:0]=Dh

Default: 0000 00X0

Modes: 1, 2, and 3

This register enables and specifies the attenuation of the analog path between the output
of the ADC path gain stage (at the input to the ADC) and the input of the DAC-loopback
sum. This register affects both the left and right channels.

Bits 7–2: Loopback Attenuation . These bits specify the amount of attenuation
applied to the loopback signals before being summed with the DAC outputs.
The values vary from 00h = 0 dB to 3Fh = –94.5 dB with 1.5 dB per step.

Bit 1: Reserved.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Revision ID
Number Bit 4

Mode Select Reserved Revision ID Number Bits 3–0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Loopback Attenuation Reserved Loopback
Enable
����� &RGHF�0L[HU�5HJLVWHUV

AMD
Bit 0: Loopback Enable . If set High, the loopback path is enabled for mixing with
the DAC outputs. When cleared, the path is disabled and the signal is muted.

CUPCTI, CLPCTI—Upper/Lower Playback Count
Address: PCODAR+1 read, write; upper index CIDXR[4:0]=Eh, lower index

CIDXR[4:0]=Fh

Default: 00h (for both)

Modes: The definition of these registers varies depending on the mode.

These registers collectively provide the 16-bit preload value used by the playback sample
counters. CUPCTI provides the upper preload bits 15–8 and CLPCTI provides the lower
preload bits 7–0. All 16 bits are loaded into the counter during the write of the upper byte;
therefore, the lower byte should be written first. However, if only the low byte is written and
the counter underflows, the new value is placed into the counter. The preload value is
loaded into the counter on the cycle after the counter decrements to 0. Reads of these
registers return the value written into them, not the current state of the counter. In mode 1,
these registers are used for both playback and record; in modes 2 and 3 they are used for
playback only.

CFIG2I—Configuration Register 2
Address: PCODAR+1 read, write; index CIDXR[4:0]=10h

Default: 0000 XXX0

Modes: 2 and 3

This register selects the full-scale voltage output range, enables the codec timer, enables
the record and playback sample counters, and enables DAC output forcing.

Bit 7: Output Full-Scale Voltage Select . If set High, the full-scale output is 2.9
V for Vcc = 5 V and 1.34 for Vcc = 3.3 V. If set Low, the full-scale output is
2.0 V for Vcc = 5 V and 1.00 for Vcc = 3.3 V. This bit affects the left and right
signals that exit the mixers, prior to entering the Left and Right Output
Attenuation registers (CLOAI and CROAI); therefore, it also affects the input
to the record multiplexer.

Bit 6: Timer Enable . If set High, the timer and its associated interrupt are enabled.
If set Low, the timer is disabled. The timer count is specified in the Lower
Timer and Upper Timer registers (CLTIMI and CUTIMI).

Bit 5: Record Sample Counter Disable . If set High, this bit disables the record
sample counter from counting. This bit can be accessed in mode 3 only and
affects only the sample counter in mode 3.

Bit 4: Playback Sample Counter Disable . If set High, this bit disables the
playback sample counter from counting. This bit can be accessed in mode
3 only and affects only the sample counter in mode 3.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Output Full-
Scale Voltage
Select

Timer Enable Record
Sample
Counter
Disable

Playback
Sample
Counter
Disable

Reserved Reserved Reserved DAC Output
Force Enable
&RGHF�0L[HU�5HJLVWHUV �����

AMD
Bits 3–1: Reserved.

Bit 0: DAC Output Force Enable . If set High, the output of the DACs are forced
to the center of the scale whenever a playback FIFO underrun error occurs.
When cleared, the last valid sample is output in the event of an underrun.

CFIG3I—Configuration Register 3
Address: PCODAR+1 read, write; index CIDXR[4:0]=11h

Default: 0000 X000

Modes: bits 7–1 in mode 3; bit 0 in modes 2 and 3

In mode 3, this register provides for the programming of FIFO thresholds and the generation
of I/O-mode FIFO service interrupts.

Bit 7: Record FIFO Service Request Interrupt Enable . When the record path is
enabled—the Record Enable bit of the Configuration Register 1 (CFIG1I[1])
is set High—setting this bit High enables the generation of an interrupt
request when the Record FIFO Interrupt Request bit in the Codec Status
Register 3 (CSR3I) goes High. This bit can be accessed in mode 3 only.

Bit 6: Playback FIFO Service Request Interrupt Enable . When the playback
path is enabled—the Playback Enable bit of the Configuration Register 1
(CFIG1I[0]) is set High—setting this bit High enables the generation of an
interrupt request when the Playback FIFO Interrupt Request bit in Codec
Status Register 3 (CSR3I) goes High. This bit can be accessed in mode 3
only.

Bits 5–4: FIFO Threshold Select . These two bits specify the record and playback
FIFO thresholds, as listed in Table 13-2.

When the appropriate bit of the Configuration Register 1 is Low—Record
FIFO I/O Select (CFIG1I[7]) or Playback FIFO I/O Select (CFIG1I[6])—a
DMA request occurs when the FIFO threshold is reached. The DMA
transfers occur until the playback FIFO is full or the record FIFO is empty.

The appropriate interrupt bit in the Codec Status Register 3 (CSR3I[5] for
record, CSR3I[4] for playback) is set High when the FIFO threshold is
reached and the following conditions exist:

• The FIFO I/O select bit is High

• The InterWave IC is programmed for mode 3 operation

• The appropriate FIFO service request interrupt enable bit is High
(CFIG3I[7] for record, CFIG3I[6] for playback).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Record FIFO
Service
Request
Interrupt
Enable

Playback
FIFO Service
Request
Interrupt
Enable

FIFO Threshold Select ADPCM
Record

Suspend

Variable
Frequency
Playback
Mode

Aux 1/Synth
Signal Select

Read/Write Bit
����� &RGHF�0L[HU�5HJLVWHUV

AMD
These bits are active in mode 3 only and have no effect in modes 1 and 2.

For a complete understanding of the FIFO threshold interrupt structure, see
“Codec Interrupt Structure” on page 6-6.

Bit 3: ADPCM Record Suspend . When the record path is in ADPCM mode,
setting this bit High causes recording to suspend. Setting this bit Low allows
recording to resume without resetting the ADPCM index that is used when
calculating ADPCM values. The index should be reset only at the beginning
of a file of record data. The index is reset when the Record Enable bit of the
Configuration Register 1 (CFIG1I[1]) is inactive (Low).

Bit 2: Variable Frequency Playback Mode . If set High, selects
variable-frequency-playback mode. In this mode, the sample rate is selected
by a combination of the Playback Crystal Select bit of the Playback Data
Format register (CPDFI[0]) and the Playback Variable Frequency register
(CPVFI) to allow variable frequencies between 3.5 kHz and 32 kHz. This bit
can be accessed in mode 3 only.

Bit 1: Aux 1/Synth Signal Select . This bit selects the source of the signals that
enter the Left/Right Auxiliary 1/Synthesizer Input Control register (CLAX1I
and CRAX1I) attenuators before entering the left and right mixers. This bit
Low selects the AUX1[L,R] input pins. If set High, selects the output of the
synthesizer DACs. This bit can be accessed in mode 3 only.

Bit 0: Read/Write Bit . This bit can be read and written but it does not control
anything within the InterWave IC. This bit can be accessed in mode 2 and
mode 3.

CLLICI, CRLICI—Left/Right Line Input Control
Address: PCODAR+1 read, write; left index CIDXR[4:0]=12h, right index

CIDXR[4:0]=13h

Default: 1XX0 1000 (for both)

Modes: 2 and 3

This register pair controls the gain or attenuation applied to the line inputs to the mixer. The
registers are identical; one controls the left channel and the other controls the right channel.

Bit 7: Left/Right Line Input Mute Enable . If set High, the LINE IN input is muted.
If set Low, the input operates normally.

Table 13-2 FIFO Threshold Selections

FT 1 0 Point at Which Request Becomes Active

0 0 Minimum: Record FIFO not empty; playback FIFO not full

0 1 Middle: Record FIFO half full; playback FIFO half empty

1 0 Maximum: Record FIFO full; playback FIFO empty

1 1 Reserved

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Left/Right Line
Input Mute
Enable

Reserved Reserved Left/Right Line Input Gain Select
&RGHF�0L[HU�5HJLVWHUV �����

AMD
Bits 6–5: Reserved.

Bits 4–0: Left/Right Line Input Gain Select . These bits specify the amount of gain
applied to the LINE IN[L,R] input signals. The values vary from 0 = +12 dB
to 1Fh = –34.5 dB with 1.5 dB per step.

CUTIMI, CLTIMI—Upper Timer, Lower Timer
Address: PCODAR+1 read, write; low index CIDXR[4:0]=14h, upper index

CIDXR[4:0]=15h

Default: 00h (for both)

Modes: 2 and 3

These registers collectively provide the 16-bit preload value used by the general purpose
timer. Each count represents 10 µs (total of 650 ms). CUTIMI provides the upper preload
bits 15–8 and CLTIMI provides the lower preload bits 7–0. Writing to CLTIMI causes all 16
bits to be loaded into the general purpose timer, so write to CUTIMI first. Reads of these
registers return the value written into them, not the current state of the counter.

When the timer decrements to 0, the Timer Interrupt Request bit in the Codec Status
Register 3 (CSR3I[6]) is set. The values in CUTIMI and CLTIMI are loaded into the counter
on the next clock cycle, independent of the state of the interrupt bit.

CLMICI, CRMICI—Left/Right Microphone Input Control
Address: PCODAR+1 read, write; left index CIDXR[4:0]=16h, right index

CIDXR[4:0]=17h

Default: 1XX0 1000 (for both)

Modes: 3

This register pair controls the left and right MIC inputs to the mixer. The registers are
identical; one controls the left channel and the other controls the right channel.

Bit 7: Left/Right MIC Mute Enable . If set High, the MIC input is muted. If set Low,
the input operates normally.

Bits 6–5: Reserved.

Bits 4–0: Left/Right MIC Gain Select . These bits specify the amount of gain applied
to the MIC[L,R] input signals. The values vary from 0 = +12 dB to 1Fh =
–34.5 dB with 1.5 dB per step.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Left/Right MIC
Mute Enable

Reserved Reserved Left/Right MIC Gain Select
����� &RGHF�0L[HU�5HJLVWHUV

AMD
CSR3I—Codec Status Register 3
Address: PCODAR+1 read, write (to clear specific bits); index CIDXR[4:0]=18h

Default: X000 0000

Modes: 2 and 3; definition of bits 5–4 vary based on the mode

This register provides additional status information on the FIFOs and reports the cause of
various interrupt requests. Each of the bits 6–4 are cleared by writing a 0 to the active bit;
writing a 1 to a bit is ignored; these bits can also be cleared by a write of any value to the
Codec Status Register 1 (CSR1R). Bits 3–0, the underrun-overrun bits, are cleared to a
Low by reading CSR1R; these bits are also cleared when the Mode Change Enable bit in
the Codec Index Address register (CIDXR[6]) goes from High to Low.

Bit 7: Reserved.

Bit 6: Timer Interrupt Request . When High, indicates an interrupt request from
the timer. It is cleared by writing a 0 to this bit or by writing any value to the
Codec Status Register 1 (CSR1R).

Bit 5: Record FIFO Interrupt Request . When High, indicates a record path
interrupt. It is cleared by writing a 0to this bit or by writing any value to
CSR1R.

Mode 2 This bit indicates an interrupt request from the record sample
counter.

Mode 3 and CFIG1I[7] = 0 (DMA)
This bit indicates an interrupt request from the record sample
counter. The setting in the FIFO Threshold Select field of
Configuration Register 3 (CFIG3I[5:4]) determines at which
point DMA requests become active.

Mode 3 and CFIG1I[7] = 1 (I/O)
This bit indicates that the record FIFO threshold (specified in
the FIFO Threshold Select field of Configuration Register 3
(CFIG3I[5:4])) has been reached.

Bit 4: Playback FIFO Interrupt Request . If set High, indicates a playback path
interrupt. It is cleared by writing a 0 to this bit or by writing any value to the
Codec Status Register 1 (CSR1R).

Mode 2 This bit indicates an interrupt request from the playback
sample counter.

Mode 3 and CFIG1I[6] = 0 (DMA)
This bit indicates an interrupt request from the playback
sample counter.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Timer
Interrupt
Request

Record FIFO
Interrupt
Request

Playback
FIFO Interrupt
Request

Record FIFO
Underrun

Record FIFO
Overrun

Playback
FIFO Overrun

Playback
FIFO
Underrun
&RGHF�0L[HU�5HJLVWHUV �����

AMD
Mode 3 and CFIG1I[6] = 1 (I/O)
This bit indicates that the playback FIFO threshold (specified
in the FIFO Threshold Select field of Configuration Register
3 (CFIG3I[5:4])) has been reached.

Bit 3: Record FIFO Underrun (Modes 2, 3). This bit is set High if there is an
attempt to read from an empty record FIFO.

Bit 2: Record FIFO Overrun (Modes 2, 3). This bit is set High if the ADC needs
to load a sample into a full record FIFO. The record sample is lost and the
FIFO contents are not changed. CSR3I[2] is identical to the Record FIFO
Overrun bit of the Codec Status Register 2 (CSR2I[7]).

Bit 1: Playback FIFO Overrun (Modes 2, 3). This bit is set High if there is an
attempt to write to a full playback FIFO.

Bit 0: Playback FIFO Underrun (Modes 2, 3). This bit is set High if the DAC needs
a sample from an empty playback FIFO. The previous sample is used, of if
the DAC Output Force Enable bit of the Configuration Register 2 (CFIG2[0])
is High, a zero value sample is used. CSR3I[0] is identical to the Playback
FIFO Underrun bit of the Codec Status Register 2 (CSR2I[6]).

CLOAI, CROAI—Left/Right Output Attenuation
Address: PCODAR+1 read, write; left index CIDXR[4:0]=19h, right index

CIDXR[4:0]=1Bh

Default: 1XX0 0000 (for both);

Modes: 3 only. In mode 2, CLOAI is a read-only register that drives an 80h when read.

This register pair controls the left and right MONO and LINE output levels. The LINE output
mute control bit is also located in this register pair.

Note: These registers can be written to only in mode 3, but any value written in mode
3 is still in effect if software changes operation to mode 1 or mode 2.

Bit 7: Line Output Mute Enable . If set High, the LINE output is muted. If set Low,
the output operates normally.

Bits 6–5: Reserved.

Bits 4–0: Line Output Attenuation Select . These bits specify the amount of
attenuation applied to both the MONO and LINE output signals. The values
vary from 00h = 0 dB to 1Fh = –46.5 dB with 1.5 dB per step.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Line Output
Mute Enable

Reserved Reserved Line Output Attenuation Select
����� &RGHF�0L[HU�5HJLVWHUV

AMD
CMONOI—Mono Input and Output Control
Address: PCODAR+1 read, write; index CIDXR[4:0]=1Ah

Default: 000X 0000

Modes: bits 7–6, 4–0 modes 2 and 3; bit 5 mode 3

This register specifies the amount of attenuation applied to the MONO input path. The mute
controls for the MONO input and output are also located here.

Bit 7: Mono Input Mute Enable . If set High, the MONO input is muted. If set Low,
the input is active.

Bit 6: Mono Output Mute Enable . If set High, the MONO output is muted. If set
Low, the output operates normally.

Bit 5: AREF to High Impedance . If set High, the AREF pin is placed into
high-impedance mode. If Low, AREF operates normally. This bit is
accessible only in mode 3.

Bit 4: Reserved.

Bits 3–0: Mono Input Attenuation . This specifies the amount of attenuation to be
applied to the MONO input path. The values vary from 0 = 0 dB to
0Fh = –45 dB with 3.0 dB per step.

CRDFI—Record Data Format
Address: PCODAR+1 read, write; index CIDXR[4:0]=1Ch

Default: 00h

Modes: 2 and 3; definition of register varies based on the mode

This register specifies the sample rate (selects which of the two oscillators is to be used
and the divide factor for that oscillator), stereo or mono operation, linear or companded
data, and 8-bit or 16-bit data. It can only be changed when the Mode Change Enable bit
of the Codec Index Address register (CIDXR[6]) is High (active).

Mode 2 Bits 3–0 are not used (the record-path sample rate is specified in the
Playback Data Format register (CPDFI)) and bits 7–4 specify the record-path
data format.

Mode 3 All of this register controls record path attributes; the playback attributes are
controlled by the Playback Data Format register (CPDFI).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Mono Input
Mute Enable

Mono Output
Mute Enable

AREF to High
Impedance

Reserved Mono Input Attenuation

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Record Data Format Selection Record
Stereo/Mono
Select

Record Clock Divider Select Record
Crystal
Select
&RGHF�0L[HU�5HJLVWHUV �����

AMD
Bits 7–5: Record Data Format Selection . These 3 bits specify the playback data
format for the codec. These bits can be accessed in modes 2 and 3 only.
000:8-bit unsigned
001:µ-law
010:16-bit signed, little endian
011:A-law
100:Reserved, default to 8-bit unsigned
101:IMA-compliant ADPCM
110:16-bit signed, big endian
111:Reserved, default to 8-bit unsigned

Bit 4: Record Stereo/Mono Select . If set High, stereo operation is selected;
samples alternate left then right. If set Low, mono mode is selected; record
samples come only from the left ADC. This bit can be accessed in modes
2 and 3 only.

Bits 3–1: Record Clock Divider Select . These three bits specify the record clock
rate. These bits can be accessed in mode 3 only; in mode 2, they are
reserved.

Note:

*These divide-downs are provided but are not guaranteed to function unless XTAL1 is less than 18.5 MHz.

Bit 0: Record Crystal Select . If set High, the 16.9344-MHz crystal oscillator is
used. If set Low, the 24.576-MHz crystal oscillator is used. This bit can be
accessed from mode 3 only; in mode 2, this bit is reserved.

CPVFI—Playback Variable Frequency
Address: PCODAR+1 read, write; index CIDXR[4:0]=1Dh

Default: 00h

Modes: 3 only

This 8-bit register specifies the playback frequency when the Variable Frequency Playback
bit of the Configuration Register 3 (CFIG3I[2]) is set High. The playback frequency is
PCS/(16•(48+CPVFI)), where PCS is the frequency of the oscillator selected in the Playback
Crystal Select bit of the Playback Data Format register (CPDFI[0]). The 16.9-MHz oscillator
provides a range from about 3.5 kHz to 22.05 kHz; the 24.5-MHz oscillator provides a range

Table 13-3 Record Clock Divider Selections

Sampling Rate in kHz

Bits 3,2,1
24.576-MHz crystal

(XTAL1)
16.9344-MHz crystal

(XTAL2)

000 8.0 5.51

001 16.0 11.025

010 27.42 18.9

011 32.0 22.05

100 ÷ 448* 37.8

101 ÷ 384* 44.1

110 48.0 33.075

111 9.6 6.62
����� &RGHF�0L[HU�5HJLVWHUV

AMD
from about 5.0 kHz to 32 kHz. It is not necessary to set the Mode Change Enable bit of the
Codec Index Address register (CIDXR[6]) High when altering the value of this register.

Note: It is not recommended that the Playback Crystal Select field of the Playback
Data Format register (CPDFI[0]) be changed while in variable frequency playback
mode. Doing so causes glitches in internal circuitry and can produce unpredictable
results.

CURCTI, CLRCTI—Upper/Lower Record Count
Address: PCODAR+1 read, write; upper index CIDXR[4:0]=1Eh, lower index

CIDXR[4:0]=1Fh

Default: 00h (for both)

Modes: 2 and 3. In mode 1, function is moved to CUPCTI and CLPCTI.

These registers collectively provide the 16-bit preload value used by the record sample
counters. CURCTI provides the upper preload bits 15–8 and CLRCTI provides the lower
preload bits 7–0. All 16 bits are loaded into the counter during the write of the upper byte;
therefore, the lower byte should be written first. However, if only the low byte is written and
the counter underflows, the new value is paced into the counter. The preload value is loaded
into the counter on the cycle after the counter decrements to 0. Reads of these registers
return the value written into them, not the current state of the counter.
&RGHF�0L[HU�5HJLVWHUV �����

AMD
����� &RGHF�0L[HU�5HJLVWHUV

CHAPTER
14
 SYNTHESIZER REGISTERS
Direct Register
SVSR—Synthesizer Voice Select
Address: P3XR+2h read/write

Default: 00h

Use this register to select voice-specific indirect registers for reading or writing and to enable
auto-increment mode. The Synthesizer Voice Select register can be written with 0 through
31 (0h to 1Fh) to select one of 32 voices to program. Auto-increment mode allows the
General Index register (IGIDXR) to automatically increment with every write to either of the
general I/O data ports (I8DP and I16DP).

Bit 7: Auto Increment . If set High, the value in the General Index register
(IGIDXR) automatically increments with every write to the General 8-Bit I/O
Data Port (I8DP) or the General 16-Bit I/O Data Port (I16DP). This bit is held
Low when the Enhanced Mode bit of the Synthesizer Global Mode register
(SGMI[0]) is Low.

Bits 6–5: Reserved.

Bits 4–0: Voice Select . Write a value from 0 through 31 (0h to 1Fh) to select one of
32 voices to program.

Indirect Registers
The synthesizer module has two types of indirect registers: global and voice-specific. Global
registers affect the operation of all voices, and voice-specific registers affect the operation
of only one voice. For information about programming these two types of indirect registers,
see “Programming Voice-Specific Registers” on page 7-30.

*OREDO�5HJLVWHUV

SAVI—Synthesizer Active Voices
Address: P3XR+5h read/write; index IGIDXR=0Eh write or IGIDXR=8Eh read

Default: CDh

This register is needed only to remain compatible with the GUS. When the Enhanced Mode
bit of the Synthesizer Global Mode register (SGMI[0]) is set High, this register does not
affect operation. When SGMI[0] is Low, this register controls which voices produce an
output and affect the output sample rate. The number of active voices can range from 14
to 32. With 14 active voices, the output sample rate is 44.1 kHz or a sample period of

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Auto
Increment

Reserved Reserved Voice Select
6\QWKHVL]HU�5HJLVWHUV ����

AMD
approximately 22.7 µs. Each additional voice above 14 adds approximately 1.6 µs to the
sample period. When SGMI[0] is Low, the frequency control values must be adjusted to
compensate for the slower output sample rates when more than 14 voices are active. The
programmed value equals the number of active voices minus 1. The programmed values
of this register can range from CDh to DFh.

Bits 7–5: Reserved.

Bits 4–0: Active Voices . These bits indicate the number of active voices.

SVII—Synthesizer Voices IRQ
Address: P3XR+5h read; index IGIDXR=8Fh read

Default: E0h

This register indicates which voice needs interrupt service and what type of interrupt service
is needed. Indexing this register with a value of 8Fh in the General Index register (IGIDXR)
clears the IRQ bits in the voice-specific Synthesizer Volume Control or Synthesizer Address
Control registers that caused the interrupt and also clears the Volume Loop IRQ and
Address Loop IRQ bits in the IRQ Status register (UISR[6:5]).

Bit 7: Wavetable IRQ . When Low, the voice indicated in the Voice Number field
has crossed an address boundary and has caused an interrupt.

Bit 6: Volume IRQ . When Low, the voice indicated in the Voice Number field has
crossed a volume boundary and has caused an interrupt.

Bit 5: Reserved.

Bits 4–0: Voice Number . These bits indicate which voice needs interrupt service.

Note: All bits in this register except reserved bits are self-modifying.

SVIRI—Synthesizer Voices IRQ Read
Address: P3XR+5h read; index IGIDXR=9Fh read

Default: E0h

This register contains the same bits as the SVII register but can be read without clearing
any internally stored interrupt conditions.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Active Voices

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Wavetable
IRQ

Volume IRQ Reserved Voice Number

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Wavetable
IRQ

Volume IRQ Reserved Voice Number
���� 6\QWKHVL]HU�5HJLVWHUV

AMD
Bit 7: Wavetable IRQ . When Low, the voice indicated in the Voice Number field
has crossed an address boundary and has caused an interrupt.

Bit 6: Volume IRQ . When Low, the voice indicated in the Voice Number field has
crossed a volume boundary and has caused an interrupt.

Bit 5: Reserved.

Bits 4–0: Voice Number . These bits indicate which voice needs interrupt service.

Note: All bits in this register except reserved bits are self-modifying.

SGMI—Synthesizer Global Mode
Address: P3XR+5h read/write; index IGIDXR=19h write or IGIDXR=99h read

Default: 00h

This register controls modes of operation that affect all voices.

Bits 7–4: Reserved.

Bit 3: Reserved. This bit must be written to 0.

Bit 2: Reserved. This bit must be written to 0.

Bit 1: Global LFO Enable . If set High, enables operation of all LFOs.

Bit 0: Enhanced Mode . If set High, enables enhanced features added to the GUS
capabilities.

SLFOBI—Synthesizer LFO Base Address
This register holds the base address for the locations of voice LFO parameters.

Address: P3XR+(4-5) read, write; index IGIDXR=1Ah write or IGIDXR=9Ah read

Default: 0000h

Bits 15–14: Reserved.

Bit 13–0: LFO Base Address . Bits 23–10 of the base address in local memory for
the locations of voice LFO parameters.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved Global LFO
Enable

Enhanced
Mode

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved LFO Base Address bits 23–10
6\QWKHVL]HU�5HJLVWHUV ����

AMD
9RLFH�6SHFLILF�5HJLVWHUV

SUAI—Synthesizer Upper Address
Address: P3XR+5h read/write; index IGIDXR=10h write or IGIDXR=90h read; voice

index SVSR=(00h through 1Fh)

Default: 00h

This register contains the upper bits of the local memory address for a voice’s wavetable
data. The upper bits of the address are added to the starting, ending, and current addresses
for each voice. The upper address bits fix a voice in one of four 4-Mbyte memory spaces.
With the upper address bits, the synthesizer can address a total of 16 Mbytes of memory
for wavetable data. When the Enhanced Mode bit of the Synthesizer Global Mode register
(SGMI[0]) is Low, SUAI is held to the default value.

Bits 7–2: Reserved.

Bits 1–0: Upper Address . Bits 23–22 of the local memory addresses for a voice’s
wavetable data.

Synthesizer Starting Address Registers

The integer portion of this pair of registers specifies a real local memory boundary address
when a voice is moving through wavetable data. These registers' value is less than the
Synthesizer Address End registers' value. Bits 21–20 have been added to the GUS address
to allow a voice to access 4 Mbytes of local memory instead of just 1 Mbyte. When the
Enhanced Mode bit of the Synthesizer Global Mode register (SGMI[0]) is Low, address bits
21–20 are held Low.

SASHI—Synthesizer Address Start High
Address: P3XR+(4-5)h read/write; index IGIDXR=02h write or IGIDXR=82h read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

Bit 15: Reserved.

Bits 14–13: Start Address Bits 21 –20. Extended integer portion of Start Address.

Bits 12–0: Start Address Bits 19 –7. Part of integer portion of Start Address.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved Upper Address bits 23–22

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res. Start Address Bits 21–7
���� 6\QWKHVL]HU�5HJLVWHUV

AMD
SASLI—Synthesizer Address Start Low
Address: P3XR+(4-5) read/write; index IGIDXR=03h write or IGIDXR=83h read; voice

index SVSR=(00h through 1Fh)

Default: 0000h

Bits 15–9: Start Address Bits 6 –0. Part of integer portion of Start Address.

Bits 8–5: Start Address (Fraction) Bits 3 –0. These four bits represent the upper bits
of a 10-bit fractional portion that is fully represented in the Synthesizer
Frequency Control register (SFCI).

Bits 4–0: Reserved.

Synthesizer Ending Address Registers

The integer portion of this pair of registers specifies a real local memory boundary address
when a voice is moving through wavetable data. These registers' value is greater than the
Synthesizer Address Start registers' value. Bits 21–20 have been added to the GUS address
to allow a voice to access 4 Mbytes of local memory instead of just 1 Mbyte. When the
Enhanced Mode bit of the Synthesizer Global Mode register (SGMI[0]) is Low, address bits
21–20 are held Low.

SAEHI—Synthesizer Address End High
Address: P3XR+(4-5) read/write; index IGIDXR=04h write or IGIDXR=84h read; voice

index SVSR=(00h through 1Fh)

Default: 0000h

Bit 15: Reserved.

Bits 14–13: End Address Bits 21 –20. Extended integer portion of End Address.

Bits 12–0: End Address Bits 19 –7. Part of integer portion of End Address.

SAELI—Synthesizer Address End Low
Address: P3XR+(4-5) read/write; index IGIDXR=05h write or IGIDXR=85h read; voice

index SVSR=(00h through 1Fh)

Default: 0000h

Bits 15–9: End Address Bits 6 –0. Part of integer portion of End Address.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Start Address Bits 6–0 Start Address (Fraction)
Bits 3–0

Reserved

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res. End Address Bits 21–7

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

End Address Bits 6–0 End Address (Fraction)
Bits 3–0

Reserved
6\QWKHVL]HU�5HJLVWHUV ����

AMD
Bits 8–5: End Address (Fraction) Bits 3 –0. These four bits represent the upper bits
of a 10-bit fractional portion that is fully represented in the Synthesizer
Frequency Control register.

Bits 4–0: Reserved.

Synthesizer Current Address Registers

The integer portion of this pair of registers is the current location in local memory where a
voice is fetching sample data. The fractional portion is used to interpolate between the
sample in the location addressed by the integer portion of the address (address bits 21–0)
and the sample in the location addressed by the value in bits 21–0 plus 1. This register pair
is self-modifying and changes values as a voice moves through wavetable data in local
memory. Bits 21–20 have been added to the GUS address to allow a voice to access
4 Mbytes of local memory instead of just 1 Mbyte. When the Enhanced Mode bit of the
Synthesizer Global Mode register (SGMI[0]) is Low, address bits 21–20 are held Low. Bit
0 of the fractional portion of the address is used in interpolation but is not normally accessible
for programming. Resetting and writing to the Synthesizer Address Low register (SALI)
clears bit 0 of the fractional portion of the address.

SAHI—Synthesizer Address High
Address: P3XR+(4-5)h read/write; index IGIDXR=Ah write or IGIDXR=8Ah read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

Bit 15: Reserved.

Bits 14–13: Address Bits 21 –20. Extended integer portion of Address.

Bits 12–0: Address Bits 19 –7. Part of integer portion of Address.

Note: All bits in this register except reserved bits are self-modifying.

SALI—Synthesizer Address Low
Address: P3XR+(4-5)h read/write; index IGIDXR=Bh write or IGIDXR=8Bh read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

Bits 15–9: Address Bits 6 –0. Part of integer portion of the Address.

Bits 8–0: Address (Fraction) Bits 9 –1. Fractional bits used during interpolation.

Note: All bits in this register are self-modifying.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res. Address Bits 21–7

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Address Bits 6–0 Address (Fraction) Bits 9–1
���� 6\QWKHVL]HU�5HJLVWHUV

AMD
Synthesizer Effects Address Registers

When a voice operates as an effects processor, this pair of registers indicates the current
address where data is being written in local memory. The data is from the effects
accumulator linked to the effects processor. The effects address is integer only, because
the data is being written. The integer portion of all wavetable addresses represents a local
memory location.

SEAHI—Synthesizer Effects Address High
Address: P3XR+(4-5)h read/write; index IGIDXR=11h write or IGIDXR=91h read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

Bit 15: Reserved.

Bits 14–0: Effects Address Bits 21–7 . Part of integer portion of Address.

SEALI—Synthesizer Effects Address Low
Address: P3XR+(4-5)h read/write; index IGIDXR=12h write or IGIDXR=92h read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

Bits 15–9: Effects Address Bits 6–0 . Part of integer portion of the Address.

Bits 8–0: Reserved.

Note: All bits in this register except reserved bits are self-modifying.

SFCI—Synthesizer Frequency Control
Address: P3XR+(4-5)h read/write; index IGIDXR=01h write or IGIDXR=81h read;

voice index SVSR=(00h through 1Fh)

Default: 0400h

This register controls the rate at which a voice moves through local memory addresses.
This sets the pitch of the voice. At the default value of decimal 1.0, the synthesizer plays
back the wavetable data at the same rate as it was recorded. Bit 0 of the fractional portion
has been added to increase the fractional frequency resolution to 10 bits. When the
Enhanced Mode bit of the Synthesizer Global Mode register (SGMI[0]) is Low, fractional
portion bit 0 is held Low.

Bits 15–10: Integer Bits 5–0 . Integer portion of frequency control value.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res. Effects Address Bits 21–7

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Effects Address Bits 6–0 Reserved

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Integer Bits 5–0 Fraction Bits 9–0
6\QWKHVL]HU�5HJLVWHUV ����

AMD
Bits 9–1: Fraction Bits 9–1 . Fractional portion of frequency control value.

Bit 0: Fraction Bit 0 . Fractional portion of frequency control value.

SFLFOI—Synthesizer Frequency LFO
Address: P3XR+5h read/write; index IGIDXR=17h write or IGIDXR=97h read; voice

index SVSR=(00h through 1Fh)

Default: 00h

This register contains a value generated by the LFO generator used to modify the frequency
of a voice (vibrato effect). When SGMI[0] is Low, SFLFOI is held to the default value.

Bits 7–0: LFO Frequency Value .

Note: All bits in this register are self-modifying.

SACI—Synthesizer Address Control
 Address: P3XR+5h read/write; index IGIDXR=00h write or IGIDXR=80h read; voice

index SVSR=(00h through 1Fh)

Default: 01h

This register controls how the synthesizer module addresses local memory and the local
memory data width.

* Self-modifying bits

Bit 7: Wavetable IRQ . When High, the Wavetable IRQ Enable bit has been set
High and the synthesizer address has crossed a boundary set by the start
or end addresses. This bit is set Low when the voice's interrupt condition
has been loaded into the Synthesizer Voices IRQ register (SVII) and a value
of 8Fh has been written to the General Index register (IGIDXR). This bit can
also be set Low to clear an interrupt or set High to cause an interrupt.

Bit 6: Direction . This bit sets the direction in which the wavetable data in local
memory is addressed. If set Low, the address increases towards the
boundary set by the Address End registers. If set High, the address
decreases towards the boundary set by the Address Start registers. This bit
is modified by internal logic when the Bidirectional Loop Enable bit (SACI[4])
is set High.

Bit 5: Wavetable IRQ Enable . If set High, the Wavetable IRQ bit (SACI[7]) is set
High when an address boundary is crossed. If set Low, SACI[7] is cleared
and cannot be set.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

LFO Frequency Value

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Wavetable
IRQ*

Direction* Wavetable
IRQ Enable

Bidirectional
Loop Enable

Loop Enable Data Width Stop 1 Stop 0
���� 6\QWKHVL]HU�5HJLVWHUV

AMD
Bit 4: Bidirectional Loop Enable . If set High, the synthesizer current address
changes direction at both the start and the end address boundaries. If set
Low, the current address continues to loop in the same direction when end
points are crossed. This bit has no effect if the Loop Enable bit (SACI[3]) is
set Low.

Bit 3: Loop Enable . If set High, the address loops between address boundaries
controlled by the Bidirectional Loop Enable (SACI[4]) and Direction
(SACI[6]) bits. If set Low, the address moves to the boundary indicated by
the start or end addresses or beyond if the Enable PCM Operation bit in the
Synthesizer Volume Control register (SVCI[2]) is set High.

Bit 2: Data Width . This bit determines whether local memory is addressed as
16-bit or 8-bit data. If set High, local memory is addressed as 16-bit data. If
set Low, local memory is addressed as 8-bit data.

Bit 1: Stop 1 . If set High, stops voice activity. Both this bit and the Stop 0 bit
(SACI[0]) must be Low for a voice to operate.

Bit 0: Stop 0 . This bit is modified by the address control logic. If a voice is set to
stop at a boundary, this bit is set High when the boundary is crossed. Set it
High to stop a voice. When read, it shows the status of a voice. Both the
Stop 1 bit (SACI[1]) and this bit must be Low for a voice to operate.

SVSI—Synthesizer Volume Start
Address: P3XR+5h read/write; index IGIDXR=07h write or IGIDXR=87h read; voice

index SVSR=(00h through 1Fh)

Default: 00h

This register contains the low point of a volume ramp.

Bits 7–0: Volume Start . An 8-bit value indicating the beginning volume of a volume
ramp.

SVEI—Synthesizer Volume End
Address: P3XR+5h read/write; index IGIDXR=08h write or IGIDXR=88h read; voice

index SVSR=(00h through 1Fh)

Default: 00h

This register contains the high point of a volume ramp.

Bits 7–0: Volume End . An 8-bit value indicating the ending volume of a volume ramp.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Volume Start

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Volume End
6\QWKHVL]HU�5HJLVWHUV ����

AMD
SVLI—Synthesizer Volume Level
Address: P3XR+(4-5)h read/write; index IGIDXR=09h write or IGIDXR=89h read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

This register contains the current value of the looping component of volume. Volume has
three fractional bits that are needed for more resolution when choosing a slow rate of
increment. These three bits do not affect the volume multiplication until an increment causes
them to roll over into the least significant bit (LSB) of the Looping Volume field.

Bits 15–4: Looping Volume Integer Bits 11–0 . Current looping volume value.

Bits 3–1: Looping Volume Fraction Bits 2–0 . Fractional volume value.

Bit 0: Reserved.

Note: All bits in this register except reserved bits are self-modifying.

SVRI—Synthesizer Volume Rate
Address: P3XR+5h read/write; index IGIDXR=06h write or IGIDXR=86h read; voice

index SVSR=(00h through 1Fh)

Default: 00h

This register controls the rate at which the looping volume for a voice is incremented and
the amount of the increment.

Bits 7–6: Volume Rate . The rate at which the increment adds to the volume and the
division of the increment value.
0:add volume increment every frame
1:add (volume increment)/8 every frame
2:add (volume increment)/8 every 8th frame
3:add (volume increment)/8 every 64th frame

Bits 5–0: Volume Increment . The amount of increment.

SVCI—Synthesizer Volume Control
Address: P3XR+5h read/write; index IGIDXR=0Dh write or IGIDXR=8Dh read; voice

index SVSR=(00h through 1Fh)

Default: 01h

This register controls how the looping component of a voice's volume multiplier moves from
volume start to volume end. This register also contains the Enable PCM Operation bit that
controls local memory addressing to allow a voice to continuously play blocks of PCM data.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Looping Volume Integer Bits 11–0 Looping Volume
Fraction Bits 2–0

Res

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Volume Rate Volume Increment
����� 6\QWKHVL]HU�5HJLVWHUV

AMD
* Self-modifying bits

Bit 7: Volume IRQ . When High, the Volume IRQ Enable bit (SVCI[5]) has been
set and the volume has crossed a boundary point set by the start or the end
volume. This bit is cleared when the voice's interrupt condition has been
loaded into the Synthesizer Voices IRQ register (SVII) and a value of 8Fh
has been written to the General Index register (IGIDXR). This bit can also
be set Low to clear an interrupt, or set High to cause an interrupt.

Bit 6: Direction . If set High, volume decreases. If set Low, volume increases. This
bit is modified by internal logic when the Bidirectional Loop Enable bit
(SVCI[4]) is set High.

Bit 5: Volume IRQ Enable . If set High, the Volume IRQ bit (SVCI[7]) is set when
a volume boundary is crossed. If set Low, SVCI[7] is cleared and cannot be
set.

Bit 4: Bidirectional Loop Enable . If set High, the volume changes directions at
both the start and end volumes. If set Low, the volume continues to loop in
the same direction when end points are crossed. This bit has no effect if the
Loop Enable bit (SVCI[3]) is set Low.

Bit 3: Loop Enable . If set High, the volume loops between end points controlled
by the Bidirectional Loop Enable (SVCI[4]) and Direction (SVCI[6]) bits. If
set Low, the volume moves to a volume boundary and then the volume is
held constant.

Bit 2: Enable PCM Operation . If set High, the address continues past a wavetable
address boundary, which allows for continuous play of PCM data. For
information about how this bit affects the interpolation process, see “Address
Control” on page 7-9.

Bit 1: Stop 1 . If set High, stops the change in the looping component of volume.
Both this bit and the Stop 0 (SVCI[0]) bit must be set Low to allow the looping
component of volume to change.

Bit 0: Stop 0 . This bit is modified by the volume looping logic. If volume is set to
stop at a boundary, this bit is set High when the boundary is crossed. It can
also be set High to stop volume looping. When read, it shows the status of
volume looping. Both the Stop 1 bit (SVCI[1]) and this bit must be set Low
to allow the looping component of volume to change.

SVLFOI—Synthesizer Volume LFO
Address: P3XR+5h read/write; index IGIDXR=18h write or IGIDXR=98h read; voice

index SVSR=(00h through 1Fh)

Default: 00h

This register contains a value generated by the LFO generator used to modify the volume
of a voice. When the Enhanced Mode bit of the Synthesizer Global Mode register (SGMI[0])
is Low, SVLFOI is held to the default value.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Volume IRQ* Direction* Volume IRQ
Enable

Bidirectional
Loop Enable

Loop Enable Enable PCM
Operation

Stop 1 Stop 0*
6\QWKHVL]HU�5HJLVWHUV �����

AMD
Bits 7–0: Volume LFO .

Note: All bits in this register are self-modifying.

Synthesizer Offset Registers

These two register pairs control the placement of a voice in the stereo field. These registers
have two modes of operation depending on the setting of the Offset Enable bit in the
Synthesizer Mode Select register (SMSI[5]). If SMSI[5] is Low, bits 11–8 of the Synthesizer
Right Offset register (SROI) are used to control both right and left offsets. In this mode, 16
positions of pan are available. A decimal value of 0 places the voice full left and a value of
15 places the voice full right. This mode is compatible with the GUS. If SMSI[5] is High, the
Synthesizer Right Offset (SROI[15:4]) and Synthesizer Left Offset (SLOI[15:4]) registers
contain the current right and left offset values that separately affect the right and left channel
outputs of a voice. The final values for right and left offsets are contained in the Synthesizer
Right Offset Final Value (SROFI[15:4]) and Synthesizer Left Offset Final Value
(SLOFI[15:4]) registers. During the processing of a voice, the values in SROI and SLOI are
incremented or decremented by 1 to move their value closer to the values in SROFI and
SLOFI. SLOI affects operation only when SMSI[5] is High.

SROI—Synthesizer Right Offset
Address: P3XR+(4-5)h read/write; index IGIDXR=0Ch write or IGIDXR=8Ch read;

voice index SVSR=(00h through 1Fh)

Default: 0700h

Bits 15–4: Right Offset . The voice’s current right offset value.

Bits 3–0: Reserved.

Note: All bits in this register except reserved bits are self-modifying.

SROFI—Synthesizer Right Offset Final Value
Address: P3XR+(4-5)h read/write; index IGIDXR=1Bh write or IGIDXR=9Bh read;

voice index SVSR=(00h through 1Fh)

Default: 0700h

Bits 15–4: Right Offset Final . The voice’s final right offset value.

Bits 3–0: Reserved.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Volume LFO

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Right Offset Reserved

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Right Offset Final Reserved
����� 6\QWKHVL]HU�5HJLVWHUV

AMD
SLOI—Synthesizer Left Offset
Address: P3XR+(4-5)h read/write; index IGIDXR=13h write or IGIDXR=93h read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

Bits 15–4: Left Offset . The voice’s current left offset value.

Bits 3–0: Reserved.

Note: All bits in this register except reserved bits are self-modifying.

SLOFI—Synthesizer Left Offset Final Value
Address: P3XR+(4-5)h read/write; index IGIDXR=1Ch write or IGIDXR=9Ch read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

Bits 15–4: Left Offset Final . The voice’s final left offset value.

Bits 3–0: Reserved.

SEVI—Synthesizer Effects Volume
Address: P3XR+(4-5)h read/write; index IGIDXR=16h write or IGIDXR=96h read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

This register contains the current value of volume that controls the effects output of a voice.
During the processing of a voice, the value in SEVI is incremented or decremented by 1 to
move its value closer to the value in the Synthesizer Effects Volume Final Value register
(SEVFI).

Bits 15–4: Special Effects Volume . The current special effects volume value.

Bits 3–0: Reserved.

Note: All bits in this register except reserved bits are self-modifying.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Left Offset Reserved

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Left Offset Final Reserved

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Effects Volume Reserved
6\QWKHVL]HU�5HJLVWHUV �����

AMD
SEVFI—Synthesizer Effects Volume Final Value
Address: P3XR+(4-5)h read/write; index IGIDXR=1Dh write or IGIDXR=9Dh read;

voice index SVSR=(00h through 1Fh)

Default: 0000h

This register contains the final value of volume that controls the effects output of a voice.
During the processing of a voice, the value in the Synthesizer Effects Volume register
(SEVI) is incremented or decremented by the least significant bit to move its value closer
to the value in SEVFI.

Bits 15–4: Special Effects Volume Final . The final special effects volume value.

Bits 3–0: Reserved.

SEASI—Synthesizer Effects Output Accumulator Select
Address: P3XR+5h read/write; index IGIDXR=14h write or IGIDXR=94h read; voice

index SVSR=(00h through 1Fh)

Default: 00h

This register controls which of the effects accumulators receive the effects output of a voice.
Any, all, or none of the effects accumulators can be chosen. There are 8 effects
accumulators, numbered 0 to 7. When the Enhanced Mode bit of the Synthesizer Global
Mode register (SGMI[0]) is Low, SEASI is held to the default value.

Bits 7–0: Accumulator Selection . Any bit set High indicates that the corresponding
effects accumulator receives the effects output of the voice.

SMSI—Synthesizer Mode Select
 Address: P3XR+5h read/write; index IGIDXR=15h write or IGIDXR=95h read; voice

index SVSR=(00h through 1Fh)

Default: 02h

Use this register to enable or disable various features within a voice and to control whether
a voice is a signal generator, an effects processor, or off. Turning a voice off causes the
voice to not access local memory, allowing more access to local memory for other functions.
When the Enhanced Mode bit of the Synthesizer Global Mode register (SGMI[0]) is Low,
SMSI is held to the default value.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Effects Volume Final Reserved

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Accumulator Selection

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ROM µ-law Offset Enable Alternate
Effects Path

Reserved Reserved Deactivate
Voice

Effects
Processor
Enable
����� 6\QWKHVL]HU�5HJLVWHUV

AMD
Bit 7: ROM . If set High, enables the voice's input data to come from external ROM.

Bit 6: µ-law . If set High, enables the voice's input data to be in µ-law format. If this
bit is High, the Data Width bit of the Synthesizer Address Control register
(SACI[2]) must be Low to get 8-bit samples from local memory.

Bit 5: Offset Enable . If set High, enables the Synthesizer Offset registers to
separately control the left and right volume of the voice.

Bit 4: Alternate Effects Path . If set High, enables the alternate effects signal path
for the voice.

Bits 3–2: Reserved.

Bit 1: Deactivate Voice . If set High, the voice is not processed.

Bit 0: Effects Processor Enable . If set High, the voice acts as an effects
processor. During effects processing, the Data Width bit of the Synthesizer
Address Control register (SACI[2]) must be set High to enable 16-bit
accesses of local memory.
6\QWKHVL]HU�5HJLVWHUV �����

AMD
����� 6\QWKHVL]HU�5HJLVWHUV

CHAPTER
15
 LOCAL MEMORY CONTROL REGISTERS
LMBDR—LMC Byte Data
Address: P3XR+7 read, write

This register is an 8-bit port into local memory that is indexed by the I/O address counter
value in the LMC I/O Address High (LMAHI) and LMC I/O Address Low (LMALI) registers.
If the Auto Increment bit of the LMC Control register (LMCI[0]) is set High, then the I/O
address counter value automatically increments by one with each access through this port.

LDMACI—LMC DMA Control
Index: P3XR+5 read, write; index IGIDXR=41h

Default: 00h

This register controls aspects of both interleaved and GUS-compatible DMA access to local
memory.

Bit 7: Invert Most Significant Bit . If set High, causes the most significant bit of
the DMA data from system memory to local memory to be inverted. If set
Low, the data passes unchanged. Bit 6 of this register controls whether the
most significant bit is bit 7 or bit 15. This bit affects only GUS-compatible
DMA, not interleaved DMA.

Bit 6: read: DMA Terminal Count . This bit has separate read and write functions. When
read as High, it indicates a DMA terminal count (TC) interrupt is active; this
read also clears the interrupt bit (the first time this bit is read after the interrupt
is set, the value comes back as High; after that it is Low).

write: Invert Bit 15 . If set High, specifies the data width of the DMA data from
system memory to local memory as 16 bits wide. If set Low, specifies 8-bit
data. This bit is used only in conjunction with the Invert Most Significant Bit
field of this register. This bit can also be read from the Invert Bit 15 bit of
the LMC Control register (LMCI[6]).

Bit 5: DMA IRQ Enable . If set High, enables the ability for terminal count (TC) to
cause an interrupt at the end of a block of system-memory/local-memory
DMA. This interrupt becomes active if either the Enable GUS-Compatible
DMA bit (LDMACI[0]) or the Interleaved DMA Enable bit of the LMC DMA
Interleave Control register (LDICI[9]) is High, but not for codec DMA. This
bit is ANDed with the output of the flip-flop that drives the TC interrupt; the
output of this AND gate drives the DMA Terminal Count IRQ bit of the IRQ
Status register (UISR[7]).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Invert Most
Significant Bit

DMA Terminal
Count/Invert
Bit 15

DMA IRQ
Enable

DMA Rate Divider DMA Width Direction Enable
GUS-Compatible
DMA
/RFDO�0HPRU\�&RQWURO�5HJLVWHUV ����

AMD
Bits 4–3: DMA Rate Divider . These bits control the rate at which transfers between
local memory and system memory are allowed.

The times given are measured from the end of DMA acknowledge until the
new DMA request is set; however, if the local memory cycle associated with
the previous DMA cycle has not yet completed when the time is expired,
then the logic waits for that memory cycle to complete before setting the
DRQ signal.

The delay values for GUS-compatible DMA (controlled by this register) are
00:0.5 µs–1.0 µs
01:6 µs–7 µs
10:6 µs–7 µs
11:13 µs–14 µs

The delay values for interleaved DMA (controlled by the LMC DMA
Interleave Control register (LDICI)) are:
00:the DRQ pin becomes active immediately after the write cycle to
local memory is completed from the previous DMA cycle
01:0.5 µs–1.5 µs
10:6 µs–7 µs
11:13 µs–14 µs

Bit 2: DMA Width . This read-only bit specifies the data width of the DMA channel
for system memory to or from local memory transfers. It is set High (16-bit)
when the DMA Select Channel 1 field of the DMA Channel Control register
(UDCI[2:0]) is set to DMA request-acknowledge signals 5, 6, or 7. It is set
Low (8-bit) for all others.

Bit 1: Direction . If set Low, specifies local memory DMA transfers to be reads of
system memory and writes to local memory. If set High, specifies local
memory DMA transfers to be reads of local memory and writes to system
memory. This bit affects only GUS-compatible DMA, not interleaved DMA.

Bit 0: Enable GUS-Compatible DMA . If set High, causes DMA transfers between
the system bus and local memory to occur (this does not affect codec DMA).
There is a 0.5-µs–1.0-µs delay from the time that this bit is set High until the
first DMA request is issued. The hardware resets this bit when the TC line
is asserted.

LDSALI—LMC DMA Start Address Low
Index: P3XR+(4-5) read, write; index IGIDXR=42h

Default: 0000h

This 16-bit register specifies bits 19–4 of the GUS-compatible DMA address counter that
points to local memory. Writing to this register automatically clears bits 3–0 of the DMA
address counter.
���� /RFDO�0HPRU\�&RQWURO�5HJLVWHUV

AMD
LDSAHI—LMC DMA Start Address High
Index: P3XR+5 read, write; index IGIDXR=50h

Default: 00h

This register specifies bits 23–20 and 3–0 of the GUS-compatible DMA address counter
that points to local memory. Address bits 3–0 are automatically cleared during writes to the
LMC DMA Start Address Low register (LDSALI) for compatibility reasons. It is not legal to
start DMA transfers from an odd byte address.

LMALI—LMC I/O Address Low
Index: P3XR+(4-5) read, write; index IGIDXR=43h

Default: 0000h

This register specifies bits 15–0 of the I/O address counter that points to local memory.
The rest of the address is in the LMC I/O Address High register (LMAHI). The corresponding
data ports are the LMC Byte Data register (LMBDR) for byte accesses and the LMC 16-Bit
Access register (LMSBAI) for 16-bit accesses. The least significant bit of this register is
ignored for 16-bit accesses; it is not possible to write 16-bit data starting at an odd address.
If the Auto Increment bit of the LMC Control register (LMCI[0]) is set High, then the I/O
address counter automatically increments by one with each access through LMBDR and
by two with each access through LMSBAI.

LMAHI—LMC I/O Address High
Index: P3XR+5 read, write; index IGIDXR=44h

Default: 00h

This register specifies bits 23–16 of the I/O address counter that points to local memory.
The rest of the address is located in the LMC I/O Address Low register (LMALI). The
corresponding data ports are the LMC Byte Data register (LMBDR) for byte accesses and
the LMC 16-Bit Access register (LMSBAI) for 16-bit accesses. If the Auto Increment bit of
the LMC Control register (LMCI[0]) is set High, then the I/O address counter automatically
increments by one with each access through LMBDR and by two with each access through
LMSBAI. If the Enhanced Mode bit of the Synthesizer Global Mode register (SGMI[0]) is
set Low, then bits 23–20 of the address (LMAHI[7:4]) are reserved.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I/O Address Counter Bits 23–20 I/O Address Counter Bits 3–0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I/O Address Counter Bits 23–20 I/O Address Counter Bits 19–16
/RFDO�0HPRU\�&RQWURO�5HJLVWHUV ����

AMD
LMSBAI—LMC 16-Bit Access
Index: P3XR+(4-5) read, write; index IGIDXR=51h

This is a 16-bit port into local memory that is indexed by the I/O address counter value in
the LMC I/O Address Low (LMALI) and LMC I/O Address High (LMAHI) registers. If the
Auto Increment bit of the LMC Control register (LMCI[0]) is set High, then the I/O address
counter automatically increments by two with each access through this port. The least
significant bit of LMALI is always treated as being 0 during accesses through this port to
ensure that 16-bit local memory accesses are always aligned to even-byte boundaries.

LMCFI—LMC Configuration
Index: P3XR+(4-5) read, write; index IGIDXR=52h

Default: 0000h

Bits 15–12: Reserved.

Bits 11–10: Suspend Mode Refresh Rate . See Table 15-1.

Bits 9–8: Normal Mode Refresh Rate . See Table 15-1.

Bits 7–5: ROM Configuration . Specifies the size of the four ROM banks.
0:128Kx16
1:256Kx16
2:512Kx16
3:1Mx16
4:2Mx16
5:reserved
6:reserved
7:reserved

Bit 4: Reserved

Bits 3–0: DRAM Configuration. Table 15-2 shows all values for DRAM configuration
in byte quantities:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Suspend
Mode Refresh
Rate

Normal Mode
Refresh Rate

ROM Configuration Res DRAM Configuration

Table 15-1 Refresh Rate Selection

Bit Values Bits 11–10 - Suspend mode Bits 9–8 - Normal mode

0 0 No refresh 15-µs refresh rate

0 1 62-µs refresh rate 62-µs refresh rate

1 0 125-µs refresh rate 125-µs refresh rate

1 1 Self-timed refresh No refresh
���� /RFDO�0HPRU\�&RQWURO�5HJLVWHUV

AMD
LMCI—LMC Control
Index: P3XR+5 read, write; index IGIDXR=53h

Default: 00h

Bit 7: Reserved.

Bit 6: Invert Bit 15 . This bit is read only. It provides CPU read access to the DMA
Terminal Count bit of the LMC DMA Control register (LDMACI[6]). When
High, the data width of the DMA data from system memory to local memory
is specified to be 16 bits wide; when Low, the data width is 8 bits. This bit
is used only in conjunction with LDMACI[6].

Bits 5–4: Reserved.

Bit 3: Invert MSB of I/O Data . If set High, causes the most significant bit (MSB)
of I/O data written to local memory to be inverted. If set Low, the data passes
unchanged. When access takes place through the LMC 16-Bit Access
register (LMSBAI), bit 2 of this register controls whether the MSB is bit 7 or
bit 15. When access takes place through the LMC Byte Data register
(LMBDR), the MSB is assumed to be bit 7 regardless of the state of bit 2.

Bit 2: 16-Bit I/O Data Select . This bit is used only in conjunction with LMCI[3] and
the LMC 16-Bit Access register (LMSBAI). If set High, specifies that I/O data
to be written to local memory is 16 bits wide. If set Low, specifies 8-bit data.
When access takes place through the LMC Byte Data register (LMBDR),
the data is assumed to be 8 bits wide regardless of the state of this bit.

Table 15-2 DRAM Configuration Selection

Bits 3:0 Bank 3 Bank 2 Bank 1 Bank 0 Total

0 – – – 256K 256K

1 – – 256K 256K 512K

2 256K 256K 256K 256K 1M

3 – – 1M 256K 1.25M

4 1M 1M 1M 256K 3.25M

5 – 1M 256K 256K 1.5M

6 1M 1M 256K 256K 2.5M

7 – – – 1M 1M

Bits 3:0 Bank 3 Bank 2 Bank 1 Bank 0 Total

8 – – 1M 1M 2M

9 1M 1M 1M 1M 4M

10 – – – 4M 4M

11 – – 4M 4M 8M

12 4M 4M 4M 4M 16M

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Invert Bit 15 Reserved Reserved Invert MSB of
I/O Data

16-Bit I/O
Data Select

DRAM/ROM
Select

Auto-
Increment
/RFDO�0HPRU\�&RQWURO�5HJLVWHUV ����

AMD
Bit 1: DRAM/ROM Select . If set High, I/O memory cycles access ROM. If set Low,
I/O memory cycles access DRAM.

Bit 0: Auto Increment . If set Low, specifies that I/O reads and writes to local
memory through the LMC Byte Data register (LMBDR) and the LMC 16-Bit
Access register (LMSBAI) do not automatically increment the I/O address
counter. If set High, causes such accesses to increment the I/O address
counter by 1 for accesses through LMBDR and by 2 for accesses through
LMSBAI.

LMRFAI, LMPFAI—LMC Record/Playback FIFO Base Address
Index: P3XR+(4-5) read, write; record index IGIDXR=54h, play index IGIDXR=55h

Default: 0000h

These registers specify real (byte-oriented) address bits 23–8 of the base address of the
local memory record and playback FIFOs. Writing to LMRFAI causes the local memory
record FIFO-offset counter to reset to 0. Writing to LMPFAI causes the local memory
playback FIFO-offset counter to reset to 0.

LMFSI—LMC FIFO Size
Index: P3XR+(4-5) read, write; index IGIDXR=56h

Default: 0000h

Bits 15–13: Reserved.

Bit 12: LMRF Enable . If set High, samples from the codec record FIFO are
transferred into the local memory record FIFO (LMRF).

Note: When this bit is High, serial transfer mode is not available. For details, see
“ICMPTI—Compatibility” on page 12-15.

Bits 11–8: LMRF Size . These bits specify the rollover point of the LMRF offset counter,
that is, the size of the FIFO. The FIFO size is 2^(LMRF Size + 3) and can
range from 8 bytes to 256 Kbytes.

Bits 7–5: Reserved.

Bit 4: LMPF Enable . If set High, samples from the local memory playback FIFO
(LMPF) are transferred to the codec playback FIFO.

Note: When this bit is High, serial transfer mode is not available. For details, see
“ICMPTI—Compatibility” on page 12-15.

Bits 3–0: LMPF Size . These bits specify the rollover point of the LMPF offset counter,
that is, the size of the FIFO. The FIFO size is 2^(LMPF Size + 3) and can
range from 8 bytes to 256 Kbytes.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res Res Res LMRF
Enable

LMRF Size Res Res Res LMPF
Enable

LMPF Size
���� /RFDO�0HPRU\�&RQWURO�5HJLVWHUV

AMD
LDICI—LMC DMA Interleave Control

Index: P3XR+(4-5) read, write; index IGIDXR=57h

Default: 0000h

Bits 15–11: Reserved.

Bit 10: Invert MSB of Interleaved DMA Data . If set High, causes the most
significant bit (MSB) of the DMA data from system memory to local memory
to be inverted. If set Low, the data passes unchanged. Bit 8 of this register
controls whether the MSB is bit 7 or bit 15. This bit affects only interleaved
DMA, not GUS-compatible DMA.

Bit 9: Interleaved DMA Enable . While this bit is set High, interleaved DMA cycles
occur. This bit is cleared by the hardware when the terminal count is reached
after the DMA cycle associated with this function in which the TC pin is active.

Bit 8: Data Width 16 Bits . If set High, specifies that the interleaved samples are
each 16-bits wide. If set Low, specifies 8-bit-wide data.

Bits 7–3: Number of Interleaved Tracks . 00h specifies 1 track, 01h specifies 2
tracks, and so on.

Bits 2–0: Size of Interleaved Tracks . The size of each track is 2^(9 + Size of
Interleaved Tracks) samples. The range is from 512 bytes to 64Kbytes
(regardless of whether an 8-bit or 16-bit DMA channel is selected).

LDIBI—LMC DMA Interleave Base
Index: P3XR+(4-5) read, write; index IGIDXR=58h

Default: 0000h

This 16-bit register specifies real address bits 23–8, which are ORed with the offset
controlled by the LMC DMA Interleave Control register (LDICI). This register specifies real
addresses, as described in “Accessing InterWave Registers” on page 4-2, regardless of
the width of the DMA channel.

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit 10 Bit 9 Bit 8 Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit 2 Bit 1 Bit 0

Reserved Invert MSB
of
Interleaved
DMA Data

Interleaved
DMA
Enable

Data Width
16 Bits

Number of Interleaved Tracks Size of Interleaved
Tracks
/RFDO�0HPRU\�&RQWURO�5HJLVWHUV ����

AMD
���� /RFDO�0HPRU\�&RQWURO�5HJLVWHUV

CHAPTER
16
 GAME PORT AND MIDI PORT REGISTERS
Game Port Registers
GGCR—Game Control
Address: 201h write

Default: XXXX 0000

A write of any value to this register causes all four of the joystick X/Y position bits to go
High and starts the X/Y position capacitor-charging cycle.

Bits 7–4: Joystick Button States . These bits reflect the state of the four joystick
buttons. If the bit is Low, the corresponding button is being pushed.

bit 4:Joystick 1, button 1
bit 5:Joystick 1, button 2
bit 6:Joystick 2, button 1
bit 7:Joystick 2, button 2

Bits 3–0: Joystick X/Y Position Flags . These bits are set High by writing to this
register. When each of the joystick position capacitors charge to the joystick
trim DAC voltage level, the corresponding bit goes Low.

bit 0:Joystick 1, X position
bit 1:Joystick 1, Y position
bit 2:Joystick 2, X position
bit 3:Joystick 2, Y position

GJTDI—Joystick Trim DAC
Address: P3XR+5 read, write; index IGIDXR=4Bh

Default: 1Dh

Bits 7–5: Reserved.

Bits 4–0: Joystick Trim DAC Level . Sets the level of the joystick trim DAC as shown
in Table 16-1.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Joystick Button States Joystick X/Y Position Flags

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Joystick Trim DAC Level
*DPH�3RUW�DQG�0,',�3RUW�5HJLVWHUV ����

AMD
These values vary linearly with VCC.

MIDI Port Registers
GMCR—MIDI Control
Address: P3XR+0 write; read (if IVERI[3] is High)

Default: 0X0X XXX0

Note: When the Register Read Mode bit of the Version Number register (IVERI[3])
is High, this register becomes readable; if IVERI[3] is Low, then reads from this
address provide the data in the MIDI Status register (GMSR). If IVERI[3] is High, a
read of this register provides one bit each for the MIDI Reset field (GMCR[1 :0]) and
Transmit Interrupt Enable field (GMCR[6:5]): Bits 6 and 1 are unknown for these
reads; bit 0 is Low if MIDI Reset is written with 11 binary (reset MIDI por t); bit 5 is
High if Transmit Interrupt Enable is written with 01 binary (IRQ enabled).

Bit 7: Receive Data Interrupt Enable
0:Receive Interrupt disabled
1:Receive Interrupt enabled

Bits 6–5: Transmit Interrupt Enable
00:IRQ disabled
10:IRQ disabled
01:IRQ enabled
11:IRQ disabled

Bits 4–2: Reserved.

Bits 1–0: MIDI Reset
00:normal operation
10:normal operation
01:normal operation
11:reset MIDI port

Table 16-1 Joystick Trim DAC Level Settings

Setting Output at V CC=5.0 volts Output at V CC=3.3 volts

00h 0.59 V ±5% 0.389 V ±5%

1Fh 4.52 V ±5% 2.98 V ±5%

Voltage per step 0.127 V 0.0837 V

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Receive Data
Interrupt
Enable

Transmit Interrupt Enable Reserved Reserved Reserved MIDI Reset
���� *DPH�3RUW�DQG�0,',�3RUW�5HJLVWHUV

AMD
The reset MIDI port command resets the MIDI receive logic, the MIDI receive
FIFO, the MIDI Transmit Data register (GMTDR), the MIDI transmit logic,
and the MIDI transmit-receive UART. It does not reset the MIDI Receive
Data register (GMRDR). While this reset is active, the MIDI Transmit Data
Register Available bit of the MIDI Status register (GMSR[1]) is forced Low.
This command stays active until another I/O write changes this field to a
value other than 11 binary. This field is implemented with only one flip-flop
with combinatorial logic in front to decode the state: The flip-flop defaults at
reset to the active state (reset MIDI port).

GMSR—MIDI Status
Address: P3XR+0 read

Default: 0X00 XX10

Note: When the Register Read Mode bit of the Version Number register (IVERI[3])
is High, the data in this register is not accessible.

Bit 7: MIDI IRQ . This bit becomes High when one of MIDI Receive Data Register
(GMRDR) Full (bit 0), MIDI Overrun Error (bit 5), or MIDI transmit IRQ is
active (High). The interrupt equation for this bit is shown in Equation 16-1.

Equation 16-1 MIDI IRQ

MIRQ = GMCR[7] • (GMSR[0] + GMSR[5]) + (GMCR[6:5] == (0, 1)) • XMIT_IRQ

The MIDI transmit IRQ becomes active when the MIDI UART is free to accept
another byte of data to be transmitted. It is logically ORed with the MIDI
Reset field of the MIDI Control register (GMCR[1:0]) to drive bit 1 of this
register (GMSR[1]). Therefore, when MIDI reset is active, the MIDI transmit
IRQ automatically becomes active.

Bit 6: Reserved.

Bit 5: MIDI Overrun Error . This bit becomes High when the MIDI receive FIFO
fills up and an additional byte of MIDI data has been received. It is cleared
by reading the MIDI Receive Data register (GMRDR).

Bit 4: MIDI Framing Error . This bit becomes High (active) as a result of reading
the stop bit as other than a logic level 1. It is cleared by the receipt of a
subsequent properly framed byte of MIDI data.

Bits 3–2: Reserved.

Bit 1: MIDI Transmit Data Register (GMTDR) Available . This bit is set High when
the MIDI UART is ready to accept another byte of data. It is cleared to Low
when a write to GMTDR initiates a data transfer. During a MIDI port
reset—the MIDI Reset field of the MIDI Control register (GMCR[1:0]) is set

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MIDI IRQ Reserved MIDI Overrun
Error

MIDI Framing
Error

Reserved Reserved MIDI Transmit
Data Register
Available

MIDI Receive
Data Register
Full
*DPH�3RUW�DQG�0,',�3RUW�5HJLVWHUV ����

AMD
to 3h—this bit goes Low; after the reset, it goes High again. There is a buffer
between the register data bus and the UART that can store one byte;
therefore, after an initial byte is sent to GMTDR, this flag goes Low for only
a short time (2 µs to 4 µs) before going High again. After the second byte is
sent, the logic waits for the first byte to complete transmission and for the
data in the buffer to be transferred to the UART before setting this flag.

Bit 0: MIDI Receive Data Register (GMRDR) Full . This bit is set High when there
is a valid byte of data in the MIDI Receive Data register (GMRDR). This bit
is cleared when the byte is read out of the GMRDR. If there is data in the
MIDI receive FIFO, then this bit goes High again approximately 2 µs after
the GMRDR is read.

GMTDR—MIDI Transmit Data
Address: P3XR+1 write

Writing to this register causes the 8-bit value written to be transmitted serially through the
UART to the MIDITX pin in MIDI data format. There is a buffer between the register data
bus and the UART that can store one byte; therefore, it is possible to send a second byte
to this register shortly after an initial byte is sent. For details, see the descriptions of bit 0
in “GMSR—MIDI Status.”

GMRDR—MIDI Receive Data
Address: P3XR+1 read

Default: FFh

This register contains the 8-bit value received in MIDI data format from the MIDIRX pin into
the UART. If there is no data in the MIDI Receive FIFO, the value does not change after
being read. If there is unread data in the MIDI Receive FIFO, then the next byte in the FIFO
is transferred to this register after the read cycle.

Note: Writing to this register when MIDI reset is active—the MIDI Reset field of the
MIDI Control register (GMCR[1:0]) set to 3h (11 binary)—causes the system to hang.

GMRFAI—MIDI Receive FIFO Access
Index: P3XR+5 write; index IGIDXR=5Eh

Bits 7–0: Receive Data . Writing to this port places data into the MIDI receive FIFO.
It is assumed that no data from the UART is being passed into the FIFO
while this command is being executed. Placing this data into the FIFO
causes the MIDI receive data interrupt and status to be updated as if the
data had come from the MIDIRX pin. This command requires between 2 µs
and 4 µs to complete and holds the ISA bus while it is in progress.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Receive Data
���� *DPH�3RUW�DQG�0,',�3RUW�5HJLVWHUV

Part 4
InterWave Game API and
Driver Developer's Kit Reference

This section contains reference information about the InterWave Game API and the
InterWave Driver Developer’s Kit (DDK) API.

AMD

CHAPTER
17
 INTERWAVE GAME API REFERENCE
This chapter describes the InterWave Game API, which provides communication between
applications and terminate-and-stay-resident programs (TSRs) or background applications
and provides a library of game functions.

The Game API functions perform three types of actions:

■ InterWave Program Communication—By calling the InterWave Game API, an
application can communicate directly with a resident TSR or application running in the
background. Also, a third party program can use this API to free and restore resources
from currently loaded software. The application becomes part of a network of resident
InterWave programs and can be accessed generically as such.

■ InterWave Game Communication—Through the Game API, the caller can access
resident game support.

■ InterWave Broadcast—By listening to the communication between the application and
the resident or background application through the Game API, an application can receive
broadcast messages reflecting changes in the state of the machine or the sound card.

The interface to these functions is divided over two software interrupts. The bulk of the
communication is done over the DOS Multiplex interrupt INT 2Fh. Most DOS programming
guides have ample information on using this interrupt vector so that it’s use does not conflict
with any other programs. The rest of the functions, which include direct sound interfaces,
are accessed through a given software interrupt. The interrupt number is determined when
the Game API is successfully opened (see “INT 2Fh Function 21h: Game Device Open”
on page 17-7). This interrupt vector is called the Game Vector.

Note: All vectors and pointers described in this chapter should be utilized from real
mode only.

The implementation of the Game API differs depending on the purpose of the application
using it. If the application is a game, it need only make calls to the API and should have no
need to hook the INT 2Fh vector or install an InterWave Game API handler. However, if
the application is, for example, a TSR for controlling some or all of the InterWave, it needs
to make calls to and hook the INT 2Fh chain.

Game API Functions
This section describes each function of the InterWave Game API. Some sample code from
a test program is included to show how the API should be used. Be aware that much of the
description is from the point of view of both a program supporting the Game API and an
application using the API.

7KH�,17��)K�6SHFLILFDWLRQ

The InterWave Game API functions use the Microsoft INT 2Fh specification. To use the
INT 2Fh vector, load the INT 2Fh ID into the AH CPU register and the function number into
the AL CPU register, then call INT 2Fh. The following descriptions provide details on other
register inputs and the return values for each INT 2Fh function in the Game API.
,QWHU:DYH�*DPH�$3,�5HIHUHQFH ����

AMD
,17��)K�)XQFWLRQ�����,17��)K�,'�,QVWDOO�&KHFN

Use Function 0 to determine if an INT 2Fh ID is currently in use. If a -1 (FFh) is returned in
register AL, the ID is in use. Otherwise, any other value means the ID is open. The
application can further determine if the program currently using that ID is an InterWave
program by examining other registers looking for a particular InterWave stamp. If this stamp
is found, then an InterWave program is currently using that INT 2Fh ID number and the
calling application must use it.

This function is often used in a loop searching a range of possible INT 2Fh IDs until the
first InterWave program is found or the end of the range is reached. In no InterWave program
is found in the range, the first INT 2Fh ID that is not occupied is used and the new program
is the first InterWave application to install itself on the INT 2Fh chain recognizing that ID.
Search the range of CDh to ECh. This range provides ample room for an application to find
a free ID.

If a resident program supporting this Game API is already installed on the INT 2Fh chain
and receives a Function 0: Install Check, it must set register AL to FFH and register pair
DX:SI to the string “ETEK” (DX=”ET” and SI=”EK”). Control is then be returned to the calling
program and not chained to the previous INT 2Fh handler.

Called With

AH = the INT 2Fh ID
AL = 0
DX = “IW” (any value but "ET")
SI = “VE” (any value but "EK")

Returns

AL = FFh if the ID is occupied
DX = “ET” if the program using the ID is an InterWave application or TSR
SI = “EK” if the program using the ID is an InterWave application or TSR

Sample Code

/**
** test_2f_id() returns TRUE if ID is currently an occupied INT 2Fh ID.
**/
#define IW 0x4957 /* "IW" */
#define VE 0x5645 /* "VE" */
int test_2f_id(int id)
{
 union REGS regs;

 regs.h.al = 0; /* function 0 */
 regs.h.ah = id; /* INT 2Fh ID */
 regs.x.dx = IW; /* load dx:si with anything BUT "ETEK" */
 regs.x.si = VE;
 int86(0x2f,®s,®s);
 if (regs.h.al == 0xff /** This ID is occupied **/
 return TRUE;
 else
 return FALSE;
}

���� ,QWHU:DYH�*DPH�$3,�5HIHUHQFH

AMD
,17��)K�)XQFWLRQ����*HW�1XPEHU�2I�,QWHU:DYH�3URJUDPV���*HW�

,QVWDOOHG�3URJUDP�,'�1XPEHU

Use this function to determine the number of InterWave programs currently resident in
memory and supporting the InterWave Game API. To be able to access each program
individually and as single entities, each program must have an Installed Program ID number
assigned to it which only it responds to and all other InterWave programs ignore. This
function returns the next available Installed Program ID. Because the program IDs are
numbered starting with 0, this number is also the number of installed InterWave programs.

If a program does not need to install its own handler but only needs to talk to or find a
specific program in memory, it calls this function to get the number of resident InterWave
programs. It then calls another INT 2Fh function (like Function 2: Get Program Status and
Information) with Installed program ID numbers starting at 0 and up to but not equaling the
number of resident InterWave programs until it finds the program it wants.

If a program needs to install its own Game API handler, it uses the new Installed Program
ID number as its own. For example, the first InterWave program that loads realizes that it
is the first when it does not find any other InterWave programs on the INT 2Fh chain through
the use of INT 2Fh Function 0. It then assigns itself Installed Program ID number 0. If a
second program then searches the INT 2Fh chain, it finds the first program already loaded
and stores the INT 2Fh ID. It then calls INT 2Fh Function 1 with the INT 2Fh ID to determine
the number of InterWave programs already loaded and using this Game API. Function 1
returns 1. The new program then stores 1 as its Installed Program ID number. Any program
calling the Game API from this point on with the correct INT 2Fh ID number and Installed
Program ID number 1, talks directly to this newly installed program.

If the new program receives a Function 1 call through its new Game API handler, it simply
increments register BX and chains the INT 2Fh call.

This function is different from others in that control is chained to the previously installed
INT 2Fh handler and not immediately returned to the calling handler.

Called With

AH = INT 2Fh ID
AL = 1
BX = 0

Returns

BX = number of loaded InterWave programs using the Game API
,QWHU:DYH�*DPH�$3,�5HIHUHQFH ����

AMD
Sample Code

/**
** Calls INT 2Fh function 1 - Get Number of InterWave Programs
** This function returns the number of programs loaded that
** respond to the InterWave Game API
**/
int get_num_tsrs(int id)
{

union REGS regs;
regs.h.al = 1;
regs.h.ah = id;
regs.x.bx = 0;
int86(0x2f,®s,®s);
return regs.x.bx;

}

,17��)K�)XQFWLRQ�����*HW�3URJUDP�6WDWXV�DQG�,QIRUPDWLRQ

Use this function to get specific information about an InterWave program currently resident
in memory. Only one program in memory responds to this function on each call. This function
can return information such as a pointer to an identification string and a status bit field
showing which resources the program uses and if it supports game functions.

If the calling program needs to locate a specific program or a specific type of program in
memory, it can call this function with all valid Installed Program ID numbers (see “INT 2Fh
Function 1: Get Number Of InterWave Programs / Get Installed Program ID Number”) and
test the results of each call. For example, if the application is a DAC driver and wants to
support the InterWave codec in enhanced mode, it would first poll each resident InterWave
driver with this function testing for the codec bit to be on. If the codec bit is on for any driver
or resident application, the calling program must call INT 2Fh Function 3: Suspend Program
to free the codec hardware. After the calling program is finished with the codec and if it still
has control of the codec, it must call INT 2Fh Function 4: Wake Program to restore the
connection of the original program to the codec.

You must exercise caution when setting the hardware allocation bits for this function call.
If any program specifies that it is using either section of the InterWave hardware, it must
be prepared at any time to relinquish control of that hardware to another application
requesting control through INT 2Fh Function 3: Suspend Program. The program must also
be prepared to specify a usable base port, IRQ, and DMA channel (where applicable) to
the calling application. Be aware that the InterWave synthesizer and codec can be
programmed to use the same IRQ. Because it is not required that any chaining of handlers
or IRQ callback be issued, the IRQ lines must be different when the control of a hardware
section is given away. In some cases, that may mean that before the suspend call is granted,
you may have to separate the IRQ channels through some hardware programming.

This function also determines if a specific program supports any game devices. If bit 2 of
the CX CPU register is on, game device support is present. The version number must be
supplied for backward compatibility of future versions of the game functions and is only
valid if game devices are supported.

If bit 2 is on, the program supports at least one game device. A game device is a library of
routines used to produce sound. Each device is different in capability and function. See
“INT 2Fh Function 21h: Game Device Open” on page 17-7 for more details on each device.
���� ,QWHU:DYH�*DPH�$3,�5HIHUHQFH

AMD
Called With

AH = INT 2Fh ID
AL = 2
BX = Installed Program ID
BX = Game Functions Version (BCD BH.BL)
CX = Program Status
ES:DI = Pointer to ASCII ID string

Returns

Bits in the CS register are defined as follows (a 1 in the bit equals TRUE):

0 = Using synthesizer section of the InterWave card
1 = Using codec section of the InterWave card
2 = Supports at least one Game Device (see functions 21h and 22h)

Sample Code

/**
** Calls INT 2Fh function 2 - Get Program Status and Information
** It prints out the id string and whether or not it is using the
** CODEC and synth.
**/
int get_status(int id, installed_prog_id)
{

union REGS regs;

regs.h.al = 2;
regs.h.ah = id;
regs.x.bx = installed_prog_id;
int86x(0x2f, ®s, ®s, ®s);

printf(" ID String ---> \"%Fs\"\n",MK_FP(sregs.es,regs.x.di));
printf(" STATUS ---> ");

if (regs.x.cs & 0x01)
 printf ("Using SYNTH - ");
else
 printf ("NOT Using SYNTH - ");

if (regs.x.cx & 0x02)
 printf ("Using CODEC\n");
else
 printf ("NOT Using CODEC\n");

if (regs.x.cx & 0x04)
 printf(" Supports GAME Devices\n");
else
 printf(" No Support For GAME Devices\b");

return regs.x.cx;
}

,QWHU:DYH�*DPH�$3,�5HIHUHQFH ����

AMD
,17��)K�)XQFWLRQ�����6XVSHQG�3URJUDP

Use this function to suspend a resident program which is currently using the InterWave
Game API and has allocated sections of the InterWave hardware. The calling program is
responsible for waking up the suspended program after the caller is done with the resources.
This wake up call can be performed with INT 2Fh Function 4.

The calling program can request the release of only one section of the InterWave card at
a time. If control of either the codec or synthesizer sections of the InterWave card is
requested, the base port, IRQ, and DMA channel (when applicable) are returned. This
should and will be the standard approach for third party drivers to free resources. This will
not, however, be the method by which a game allocates hardware. Under no circumstances
should a game or any application not providing any InterWave specific services (i.e.
emulation, hardware function library, etc.) use hardware directly without allocating a game
device and only then if the game device is specified to be used in that manner. See “INT
2Fh Function 21h: Game Device Open” on page 17-7.

Called With

AH = INT 2Fh ID
AL = 3
BX = Installed Program ID
CX = Requested Device

Returns

AL = 0 if Suspended; otherwise the request failed
BX = Base Port
CL = IRQ
CH = DMA channel (for codec only)

Values for CX are:

01 = Just the synthesizer
02 = Just the codec

Sample Code

void suspend_prog(void)
{
 char status;
 union REGS regs;

 status = get status (int2f_id */
 if (status & BIT1 /* If bit 1 is on, CODEC is busy */
 {
 regs.h.al = 3;
 regs.h.ah = id; /* int 2Fh id */
 regs.h.ah = id; /* choose installed program id 0 */
 regs.x.bx = 0; /* request SYNTH */
 int86x(0x2f, ®s, ®s, ®s);
 if (regs.h.al = = 0)
 {
 syn_base = regs.x.bx;
 syn_irq = (unsigned int) regs.x.cl;
 }
 }
}

���� ,QWHU:DYH�*DPH�$3,�5HIHUHQFH

AMD
,QW��)K�)XQFWLRQ�����:DNH�3URJUDP

Use this function to restore a program to its initial state. It should be used only after using
INT 2Fh Function 3: Suspend Program to suspend the program. The suspended program
is responsible for restoring all that was suspended from the initial suspend call.

If, for some reason, the wake call cannot pass, it is then up to the calling program to notify
the user through some standard method that the InterWave card is now in an unstable state
and appropriate action must be taken. For example, if the suspended program was SBOS
and the calling program inadvertently broke SBOS so it could not somehow refresh its
internal status, SBOS would return a fail status on an attempt to wake. The calling program
could then call INT 2Fh function 2: Get Program Status and Information with SBOS’s
Installed Program ID number and format an error string for the user using the ID string
pointed to by the ES:DI registers. It must be assumed that the state of the machine (including
the InterWave card, PIC mask, etc.) after this call is in a significantly different and
unpredictable state.

Called With

AH = INT 2Fh ID
AL = 4
BX = Installed Program ID

Returns

AL = 0 if the program is successfully awakened; otherwise, the wake call failed

,17��)K�)XQFWLRQ����)UHH�5HVLGHQW�'HYLFH�'ULYHU

Use this function only to try to free a copy of the calling program itself. This function should
never be called to free another program. To free another program of its resources, use INT
2Fh Function 3: Suspend Program. Support for this procedure is not required, but if the
function is not required, a fail return code must still be returned.

Called With

AH = INT 2Fh ID
AL = 5
BX = Installed Program ID

Returns

AL = 0 if program is successfully freed; otherwise, the free attempt failed

,17��)K�)XQFWLRQ���K��*DPH�'HYLFH�2SHQ

Use this function to establish a connection to a program which has been found to support
game functions. See “INT 2Fh Function 2: Get Program Status and Information” on
page 17-4 for information on how to determine if a program supports the game functions.
If the calling program needs a MIDI device, it should first try to open the MIDISIMPLE
device. To open this device, the calling program loads a pointer to a null-terminated string
containing “MIDISIMPLE” just as it would for a disk file. If the open attempt fails, the device
is already open or is not implemented in the current version of the game function interface.
If a previous application opened a device and did not close it, the device can not be reopened
until it is closed using the correct handle number.

The real mode interrupt number passed back in register BX is the communication vector
for the remainder of the game functions if a software interface is utilized. Each function
,QWHU:DYH�*DPH�$3,�5HIHUHQFH ����

AMD
differs based on which device is opened. Therefore, each call to the Game Vector varies
based on the device it is communicating with.

There are currently three devices which applications can use to generate sound with the
Game API. These devices can be thought of as disk files. To use a device, you must open
it and get a handle to it. When you are finished with it, you must close it. While the application
uses the device, it is referred to through a handle number. As with a file, the handle is
meaningless before the device is opened and after it is closed. The device cannot be
reopened without first issuing a close. The supporting application must recognize which
device each handle number represents and parse the incoming data appropriately.

MIDISIMPLE

The MIDISIMPLE device is a simple byte-oriented MIDI engine with two functions. Both
functions process raw MIDI data. The data is passed to the processing application through
the use of the Game Vector returned from INT 2Fh Function 21: Open Game Device. The
functions for MIDISIMPLE are described in “MIDISIMPLE Functions” on page 17-9.

Called With
AH = INT 2Fh ID
AL = 21h
BX = Installed Program ID
ES:DI = pointer to “MIDISIMPLE”

Returns
AL = 0 if successfully allocated; otherwise, the allocation attempt failed
BX = Real Mode Interrupt Number
DX = Device Handle

MIDICOMPLEX

The MIDICOMPLEX device supports more complex MIDI processing including such things
as dynamic patch loading. The MIDICOMPLEX specification is still in development.

Called With
AH = INT 2Fh ID
AL = 21h
BX = Installed Program ID”
ES:DI = pointer to “MIDICOMPLEX”

Returns
AL = 0 if successfully allocated; otherwise, the allocation attempt failed
BX = Real Mode Interrupt Number
DX = Device Handle

DIRECTCODEC

The DIRECTCODEC device allocates the codec and allows the application to do direct
hardware writes to control digital output. The hardware specification for the codec can be
found in the InterWave specification.

If the returned DMA channel is four, no DMA services will be used. This may be the case
for PCMCIA implementations. In this case, the CODEC should be programmed using its
FIFO capability. The size of the FIFO, in bytes, is returned in the SI register. If DMA is to
be used, SI returns 0.
���� ,QWHU:DYH�*DPH�$3,�5HIHUHQFH

AMD
Called With
AH = INT 2Fh ID
AL = 21h
BX = Installed Program ID
ES:DI = pointer to “DIRECTCODEC”

Returns
AL = 0 if successfully allocated; otherwise, the allocation attempt failed
BX = Base Port
CL =
CH = DMA channel; - 4 for FIFO control
SI =
DX = Device Handle

,17��)K�)XQFWLRQ���K��*DPH�'HYLFH�&ORVH

Use this function when an application has finished using the previously opened game device
from INT 2Fh Function 21h. This function fails if the device is not open or if the handle is
invalid.

Called With

AH = INT 2Fh ID
AL = 22h
BX = Installed Program ID
DX = Device Handle

Returns

AL = 0 if the device is successfully closed; -1 if the device is not open its handle is bad

,17��)K�)XQFWLRQ���K��0L[HU�6HWWLQJV�&KDQJHG�%URDGFDVW�

0HVVDJH

This function should not be called by any application program unless that program controls
the InterWave mixer. This function is intended as a broadcast message only for those
applications that care if the mixer has changed values. This function is useful if an
application is displaying the values in the mixer and wants to keep them up to date. If this
message is received the new mixer values must be read from the InterWave card.

Called With

AH = INT 2Fh ID
AL = 80h

Sample Code

void interrupt int2f_handler(void)
{
 if (_AH == INT2f_ID && (_AL == 0x80)
 update_mixer-display();
}

MIDISIMPLE Functions
Both of these functions are valid only if the following is true: The handle used reflects a
successfully opened MIDISIMPLE device and the Game Vector called is valid as described
in “INT 2Fh Function 21h: Game Device Open” on page 17-7.
,QWHU:DYH�*DPH�$3,�5HIHUHQFH ����

AMD
*DPH�9HFWRU�)XQFWLRQ�����0,',�%\WH�2XW

Use this function to send a single MIDI byte out to the game device to be parsed and
immediately acted upon.

Called With

EAX = 1
BL = MIDI Byte
DX = Handle

Returns

EAX = 0 if the MIDI byte is successfully passed; -1 if the handle is bad

*DPH�9HFWRU�)XQFWLRQ�����0,',�6WULQJ�2XW

Use this function to send a string of MIDI bytes out to the game device to be parsed and
immediately acted upon. The string should include no timing information. Put the number
of bytes to be parsed in the ECX register.

Called With

EAX = 2
ES:EDI = pointer to MIDI string
ECX = byte count for the MIDI string
DX = handle

Returns

EAX = 0 if MIDI string is successfully passed; -1 if the handle is bad
����� ,QWHU:DYH�*DPH�$3,�5HIHUHQFH

CHAPTER
18
 PROGRAMMING WITH THE
DRIVER DEVELOPER’S KIT
The InterWave Driver Developer’s Kit (DDK) is a set of low-level functions written in C and
intended for the development of software for InterWave IC-based sound hardware. The
DDK allows applications to be developed with little knowledge of the InterWave IC. The
two primary goals of the DDK are:

■ To provide an easy to use interface (API-like layer) to any InterWave IC-based hardware.
This set of drivers could be used to write complete sound applications or it could be
used to write small sound utilities. The DDK is particularly well suited as a
test-development tool. Diagnostics software can been written with it to help debug
prototype boards (OEMs).

■ To serve as a tutorial guide to the InterWave IC. The DDK source files are written in C
and some in-line assembly language and are well commented to make it easy for a
developer to become familiar with the internal operation of the IC. The InterWave DDK
includes sample code that illustrates how to program the InterWave IC to perform certain
functions.

This chapter covers the following topics:

■ Supported compilers

■ DDK source files

■ DDK include files

■ DDK data types

■ Basic structure of a DDK program

■ Creating DDK libraries for specific C compilers

■ The Plug and Play interface

■ Accessing InterWave registers with the DDK

Supported Compilers
The InterWave DDK’s set of low-level drivers have been compiled and tested using the
following popular C compilers for the IBM PC and compatibles:

■ Borland C++, Version 4.0

■ Watcom C/C++, Version 9.5

■ Microsoft Visual C++, Version 1.0

■ Metaware High C/C++, Version 3.21

■ Symantec C++, Version 6.1

DDK Source Files
The following files contain the C language source code from which the DDK libraries are
built:
3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW ����

AMD
iwinit.c Definitions for functions that perform InterWave IC initialization-related
tasks.

iwdma.c Definitions for functions that perform DMA-related tasks.

iwpnp.c Definitions for functions that perform Plug-and-Play related tasks. These
functions can be used to debug Plug-and-Play functionality. Some of these
functions are instrumental in detecting InterWave IC-based hardware in a
PC system.

iwirq.c Definitions for functions that perform IRQ-related tasks. The handlers for
the audio logical device functions in the IC are defined here. These handlers
route the corresponding interrupt event to an application defined callback if
one is registered.

iwcodec.c Definitions for functions that pertain to the InterWave codec.

iwmem.c Definitions for functions that perform local memory management tasks.
These functions allow an application to allocate and deallocate Local
Memory as needed while keeping track of existing memory.

iwvoice.c Definitions for functions that perform voice-related tasks.

iwutil.c Definitions for functions that perform general tasks. Some of these functions
are called by other DDK functions.

For detailed information about a specific function, see the function reference pages in the
remaining chapters of Part , “InterWave Game API and Driver Developer's Kit Reference”.

DDK Include Files
The following include files are provided with the DDK.

Note: Always include the iwdefs.h, iwprotos.h, and iwcore.h files in your source file.
These files contain include statements for the other files.

iwdefs.h Definitions for all of the symbolic constants used by the DDK. Browse
through this file and become acquainted with it. Always include this file in
your source code.

iwprotos.h Declarations for all of the DDK functions. Always include this file in your
source code.

iwcc.h Definitions that allow the user to compile DDK source files with the compilers
mentioned above.

iwtypes.h Definitions of data types.

iwcore.h Definition of the global variable iw . This variable is initialized to default IO,
DMA, and IRQ resources that correspond to the Gravis UltraMax sound
board.
���� 3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW

AMD
DDK Data Types
As a matter of convenience and for readability purposes, the InterWave DDK has defined
certain data types. These definitions are found in the iwtypes.h file. The following data
types are defined:

BYTE unsigned char . Use this type to define 8-bit wide variables. It is normally
used to store the contents of an InterWave register.

WORD unsigned short. Use this type to define 16-bit wide variables. The
InterWave IC has a 16-bit data port (I16DP) with which these variables are
typically used.

PORT unsigned short . Defined for code readability. It is equivalent to the type
WORD.

ADDRESS unsigned long . Use this type to define 32-bit wide variables. It is typically
used for local memory addresses.

DWORD unsigned long . Defined for code readability. It is equivalent to the type
ADDRESS.

PVI Pointer to an interrupt vector.

PFV Pointer to a function which does not return a value (type void).

PFI Pointer to a function which returns an integer (type int).

DMA Structure type defined to facilitate the transfer of data between the InterWave
hardware and system memory. The following members are defined within
DMA structure variables:

page Type PORT, the address of the corresponding DMA
channel’s page register.

addr Type PORT, the address of the corresponding DMA’s
channel base address register. This register stores the base
offset to system memory where the transfer is to take place.
The page register together with the address register make
up the physical address of the data.

count Type PORT, the address of the corresponding DMA
channel’s base count register in the DMA controller. The
base count register is loaded with the number of bytes to be
transferred minus one.

single Type PORT, the address of the DMA controller’s
Single-Mask Bit register. Writing to this register allows
individual DMA channels to be disabled.

mode Type PORT, the address of the DMA controller’s Mode
Register. This register specifies the direction of transfer and
whether to place the channel in auto-initialization mode.

clear_ff Type PORT, the address of the clear byte pointer flip-flop in
the DMA controller. This flip-flop allows the reading or writing
of the base address, current count, and base count registers.
When the flip-flop is cleared, the next I/O access at this port
3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW ����

AMD
affects the lower byte. This I/O access toggles the flip-flop
and the next access affects the higher byte.

disable Type BYTE, the bit value needed to disable the
corresponding DMA channel by setting the mask for that
channel at port single .

enable Type BYTE, the bit value needed to enable the
corresponding DMA channel by clearing the mask for that
channel at port single .

write Type BYTE, the bit pattern to indicate the transfer of data
from a peripheral to system memory through the
corresponding DMA channel.

read Type BYTE, the bit pattern to indicate the transfer of data
from system memory to a peripheral through the
corresponding DMA channel.

cur_mode Type BYTE, the bit pattern to be written to port mode.

cur_page Type WORD, points to the current DMA page in PC memory.
This member is dynamically updated as needed during DMA
transfers.

cur_addr Type WORD, the base address for the current DMA transfer.

amnt_sent Type WORD, the value indicating the number of bytes sent
during a transfer.

cur_size Type WORD, the value indicating the number of bytes to be
sent during the current transfer.

nxt_page Type WORD, points to the next page when a DMA transfer
must be split into two transfers because of a DMA page
overrun.

nxt_addr Type WORD, points to the next base address when a DMA
transfer must be split into two transfers because of a DMA
page overrun.

nxt_size Type WORD, the size of the next transfer when a DMA
transfer must be split into two transfers because of a DMA
page overrun.

channel Type BYTE, the number of the DMA channel. This value can
range from 0 to 7.

type Type BYTE, the type of transfer to be carried out. Set this
member to the following symbolic constants as needed:

• DMA_READ to transfer data from system memory to a
peripheral

• DMA_WRITE to transfer data from a peripheral to system
memory

• AUTO_READ to transfer data from system memory to a
peripheral with auto-initialization of the DMA channel
���� 3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW

AMD
• AUTO_WRITE to transfer data from a peripheral to system
memory with auto-initialization of the DMA channel

pc_ram Type void far * , the physical address in PC memory where
the data are to be written or read.

local Type ADDRESS, the DMA starting address within InterWave
local memory.

flags Type BYTE, the status of the corresponding DMA channel.
When the channel is busy, the DDK ORs in the symbolic
constant DMA_BUSY. If the DMA transfer needs to be
broken up into two transfers, the DDK ORs in DMA_SPLIT.

IRQ Structure type defined to facilitate programming the interrupt controller. The
following members are defined within IRQ structure variables:

mask Type BYTE, the bit mask for the corresponding interrupt
request channel.

spec_eoi Type BYTE, the bit pattern for specific end of interrupt for the
corresponding IRQ channel.

ocr Type BYTE, the address of the Operation Command
Register.

imr Type BYTE, the address of the Interrupt Mask Register
(OCW1). This address is 0xA1 for the slave and 0x21 for the
master.

IWAVE Structure type containing information which is critical to the operation of
most DDK functions. Among the data stored here are the IO space the
InterWave hardware is configured for, the addresses of callbacks to be
called by interrupt handlers upon the occurrence of certain events, flags
indicating the status of DMA operations, etc. The members are:

pcodar Type PORT, the base address for the codec registers.

p2xr Type PORT, the compatibility base address. This value is
the address of the Mix Control register (UMCR).

p3xr Type PORT, the MIDI and synthesizer base address.

p401ar Type PORT, the base address for the MPU-401 emulation
device. This value corresponds to the emulation address of
the General Purpose Register 1 (UGP1I).

p201ar Type PORT, the address of the game logical device. This
member is typically set to the legacy value of 201h.

pataar Type PORT, the base address for the ATAPI interface I/O
space.

pnprdp Type PORT. If the IC is in Plug and Play mode, this member
contains the address of the PNP Read Data Port register
(PNPRDP) as defined by the Microsoft Plug and Play
Specification.

igidxr Type PORT, the address of the General Index register
(IGIDXR) at P3XR+3.
3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW ����

AMD
i16dp Type PORT, the address of the General 16-bit I/O Data Port
(I16DP) at P3XR+4.

i8dp Type PORT, the address of General 8-bit I/O Data Port
(I8DP) at P3XR+5.

cdatap Type PORT, the address of the Codec Indexed Data Port
register (CDATAP) at PCODAR + 1. All codec indexed
registers are accessed through this data port.

csr1r Type PORT, the address of the Codec Status Register 1
(CSR1R) at PCODAR + 2.

cxdr Type PORT, the address of the Playback Data register
(CPDR) and Record Data register (CRDR) at PCODAR + 3.
Writing to this address places data in the playback FIFO.
Reading this address removes data from the record FIFO.

gmxr Type PORT, the address of the MIDI Control register
(GMCR) or the MIDI Status (GMSR) register at P3XR + 0.

gmxdr Type PORT, the address of the MIDI Transmit Data register
(GMTDR) or the MIDI Receive Data register (GMRDR) at
P3XR + 1.

lmbdr Type PORT, the address of the LMC Byte Data register
(LMBDR) at P3XR+7.

svsr Type PORT, the address of the Synthesizer Voice Select
register (SVSR) at P3XR+2.

csn Type BYTE, the card select number (CSN) assigned to the
InterWave IC-based board. This value can range from 1–255.

cmode Type BYTE, reflects the current mode of codec operation.
This member should always be set either to CODEC_MODE1,
CODEC_MODE2, or CODEC_MODE3. The default value is
CODEC_MODE3. This member is updated when the code
mode is changed by the IwaveCodecMode function.

dma1_chan Type BYTE, the number of the DMA channel associated with
local memory DMA and codec record DMA. This value is the
same as that in the PNP Audio DMA Channel 1 Select
register (PUD1SI).

dma2_chan Type BYTE, the number of the DMA channel associated with
codec playback DMA. This value is the same as that in the
PNP Audio DMA Channel 2 Select register (PUD2SI).

ext_chan Type BYTE, the number of the DMA channel for the external
device. This value is the same as that in the PNP CD-ROM
DMA Select register (PRDSI).

dma1 Pointer to a structure of type DMA allocated to the local
memory DMA and codec record DMA. This pointer is
initialized to NULL but an application can register a structure
here with the IwaveRegisterDMA or IwaveSetInterface
functions.
���� 3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW

AMD
dma2 Pointer to a structure of type DMA allocated to the codec
playback DMA. This pointer is initialized to NULL but an
application can register a structure here with the
IwaveRegisterDMA or IwaveSetInterface functions.

synth_irq Type BYTE, the IRQ number assigned to the synthesizer,
codec, and compatibility function. This value is the same as
that in the PNP Audio IRQ Channel 1 Select register
(PUI1SI).

midi_irq Type BYTE, the IRQ number assigned to the MIDI functions.
This value is the same as that in the PNP Audio IRQ Channel
2 Select register (PUI2SI).

emul_irq Type BYTE, the IRQ number assigned to the AdLib–Sound
Blaster emulation functions. This value is the same as that
in the PNP AdLib–Sound Blaster IRQ Select register
(PSBISI).

mpu_irq Type BYTE, the IRQ number assigned to the MPU-401
emulation functions. This value is the same as that in the
PNP MPU-401 IRQ Select register (PMISI).

synth Pointer to a structure of type IRQ defined to provide IRQ
services for the synthesizer, codec, and compatibility
functions. This pointer is initialized to NULL but an application
can register a structure here with the IwaveRegisterIRQ or
IwaveSetInterface functions.

midi Pointer to a structure of type IRQ defined to provide IRQ
services for the MIDI functions. This pointer is initialized to
NULL but an application can register a structure here with the
IwaveRegisterIRQ or IwaveSetInterface functions.

voices Type BYTE, number of currently active voices.

vendor Type BYTE, first 32 bits of the PNP serial identifier stored in
the serial EEPROM. This member is initialized at start-up
time by the IwaveOpen function.

free_mem Type ADDRESS, the address of the first free block of local
memory. This member is used by the local memory manager
functions.

reserved_mem
Type DWORD, the amount in bytes of local memory reserved
by an application.

smode Type BYTE, set either to GUS_MODE or to ENHANCED_MODE
to reflect the mode of operation of the InterWave IC.

size_mem Type WORD, the actual amount of local memory in Kbytes
available to the application. In GUS-Compatibility mode, the
maximum possible amount is 1 Mbyte (1024 Kbytes). This
member is initialized at start-up time by the IwaveOpen
function.
3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW ����

AMD
old_synth_vect
Type PVI, the address of the previous handler in the system
Interrupt Vector Table (IVT) corresponding to the synthesizer
IRQ. This vector must be restored when the DDK application
exits.

old_midi_vect
Type PVI, the address of the previous handler in the system
IVT corresponding to the MIDI IRQ. This vector must be
restored when the DDK application exits.

old_ext_vect
Type PVI, the address of the previous handler in the system
IVT corresponding to the external-device IRQ. This vector
must be restored when the DDK application exits.

midi_xmit_func
Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the transmit function.

midi_rcv_func
Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the receive function.

timer1_func Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the AdLib timer 1
interrupts.

timer2_func Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the Adlib timer 2
interrupts.

codec_dma_func
Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the codec DMA
interrupts.

codec_timer_func
Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the codec timer
interrupts.

codec_play_func
Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the codec playback
path interrupts.

codec_rec_func
Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the codec record path
interrupts.

play_dma_func
Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the local memory DMA
interrupts.
���� 3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW

AMD
rec_dma_func
Type PFV, the address of a callback function to be called by
the IwaveHandler service routine for the local memory DMA
interrupts.

Basic Structure of a DDK Program
The code in Sample 18-1 illustrates the basic skeleton of a DDK program. Use this skeleton
as a starting point for the development of a DDK application.

,QFOXGLQJ�+HDGHU�)LOHV

The sample includes three header files. Every DDK application must include these files.
The iwcore.h file defines the iw variable of type IWAVE and initializes it to its default
values. The iw variable holds all relevant information about the InterWave IC-based
hardware such as its assigned I/O space, DMA and IRQ channels, application-defined
callback vectors, and so on, and is accessed by most of the DDK functions.

,QLWLDOL]LQJ�WKH�''.�DQG�WKH�,QWHU:DYH�+DUGZDUH

A DDK program should always initialize the DDK as well as the InterWave IC by calling the
IwaveOpen function or a similar function. IwaveOpen establishes a communication
interface with the InterWave IC and, in the process, initializes the iw variable with the
parameters of the function call and the configuration information read from the PNP serial
EEPROM, if present. To obtain that configuration information, the software must know the
vendor ID (the first 32 bits of the PNP serial identifier) as defined by the PNP ISA
Specification 1.0A. The DDK requires the vendor ID to be stored in the IWAVEID
environment variable. This vendor ID is the most reliable way for the DDK to correctly
identify the InterWave IC-based sound board.

The code shown initializes the DDK and the InterWave IC-based hardware to operate in
Enhanced mode with 32 active voices.

Most of the application code should follow the call to the IwaveOpen function and may also
contain calls to other DDK functions. The final call to the IwaveClose function is essential
and must always be carried out.

Sample 18-1 Basic Structure of a DDK Application

#include "iwdefs.h" /* Always include these three files */
#include "iwprotos.h"
#include "iwcore.h"

...

void main()
{
 DMA dma1; /* Optional - Codec record and local memory DMA */
 DMA dma2; /* Optional - Codec playback DMA */
 IRQ irq1; /* Optional - Synthesizer, codec, and compatibility IRQs */
 IRQ irq2; /* Optional - MIDI IRQs */

 ...

 IwaveOpen(32, ENH_MODE); /* Initialize the iw structure and the InterWave */

 ... /* Application Code */
3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW ����

AMD
 IwaveClose(); /* Close application */
}

5HJLVWHULQJ�&DOOEDFN�)XQFWLRQV�IRU�,QWHUUXSW�(YHQWV

Whenever an interrupt event takes place an application may need to gain control and
perform certain actions or tasks depending on the source of the interrupt. The DDK provides
the means for an application to register or install callback functions to be entered when
particular interrupts occur.

To register a callback, an application can use the IwaveSetCallback function. An
alternative way of registering a callback requires the programmer to become familiar with
certain members of the iw variable. For example, to register a callback for interrupt events
associated with the codec playback path, do either of the following steps:

■ Issue the call: IwaveSetCallback(PlayCallback, CODEC_PLAY_HANDLER) , or

■ Use the assignment: iw.codec_play_func=(PFV)PlayCallback

In this example, PlayCallback is the name of the callback function. The second call
results in smaller code but requires that knowledge of the callback members of iw .

(VWDEOLVKLQJ�D�'0$�DQG�,54�,QWHUIDFH�WR�WKH�,QWHU:DYH�

+DUGZDUH

If an application needs to conduct DMA transfers between the InterWave hardware and
the PC system or to service interrupt requests, it must register variables of type DMA or
IRQ to serve as an interface between the application and the hardware.

The audio logical device of the InterWave IC can use up to two DMA channels and up to
two IRQ channels. The DMA Channel Control register (UDCI) determines the DMA channel
configuration and the Interrupt Control register (UICI) determines the IRQ channel
configuration.

The first IRQ channel, specified in UICI[2:0], is dedicated to interrupt requests originating
in the synthesizer, codec, and compatibility sections of the IC. The second channel,
specified in UICI[5:3], is dedicated to MIDI interrupts. An application can combine all
interrupt sources to trigger interrupts through the first channel selected in UICI[2:0] by
setting UICI[6] High and setting UDCI[7] Low. To combine all interrupt sources to trigger
interrupts through the second channel selected in UICI[5:3], set both UICI[6] UDCI[7] High.
If the application needs to handle both channels, then define two variables. For example,
define irq1 (first channel) and irq2 (second channel) of type IRQ and register them with
the call

IwaveRegisterIRQ(&irq1, &irq2)

If the application does not need to handle interrupt requests from a particular channel, set
the corresponding argument to NULL. For example, if the application does not handle MIDI
interrupts, then issue the call

IwaveRegisterIRQ(&irq1, NULL)

The first DMA channel, specified in UDCI[2:0], is dedicated to DMA requests for the codec
record path and local memory. The second channel, specified in UDCI[5:3], is dedicated
to DMA requests from the codec playback path. An application can combine both DMA
channels to route all DMA requests to the first channel selected in UDCI[2:0] by setting
����� 3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW

AMD
UDCI[6] High. If the application needs to handle DMA requests from both channels, then
define two variables. For example, define dma1 (first channel) and dma2 (second channel)
of type DMA and register them with the call

IwaveRegisterDMA(&dma1, &dma2)

If the application does not need to handle requests from a particular channel, set the
corresponding argument to NULL. For example, if the application services only the codec
playback FIFO through DMA, then issue the call

IwaveRegisterDMA(NULL, &dma2)

*86�&RPSDWLELOLW\�0RGH�YHUVXV�(QKDQFHG�0RGH

The InterWave IC support programs written for the Advanced Gravis Ultrasound (GUS)
sound boards. The InterWave IC also supports several enhanced features not supported
by the GUS. For GUS programs to run correctly, the board must be in GUS-Compatibility
mode where the enhanced features are not available.

Note: As AMD expects most InterWave applications to take advantage of the
enhanced features, future releases of the DDK may not support GUS-Compatibility
mode.

Applications that utilize the Enhanced mode of the InterWave IC should always place the
InterWave IC-based hardware back into GUS-Compatibility mode before terminating so
that subsequent GUS applications can run. The IwaveClose DDK function, which should
be called at the end of the InterWave application, automatically resets the hardware to
GUS-Compatibility mode.

Creating DDK Libraries For Specific C Compilers
The DDK includes make files for each of the tested C compilers. This section describes
how to use the provided make file for each compiler.

&UHDWLQJ�''.�/LEUDULHV�ZLWK�%RUODQG�&

With the Borland C/C++ compiler, use the makeborl file provided with the DDK. The
command line for the make utility that creates a DDK library is

make -DMODEL=? -fmakeborl

where ? is one of t , s , m, l for the tiny, small, medium or large memory models, respectively,
or x for the TNT-DOS extended library.

The library is created in the current directory. makeborl makes the following assumptions:

■ The source file directory is c:\iwave\c .

■ The include file directory is c:\iwave\h .

■ The borland compiler is installed in the c:\bc4 directory.

If any of these assumptions does not hold true for your programming environment, make
the necessary modifications to the makeborl file.

The *.obj files from which the library is built are placed in the current directory but deleted
as soon as the library is created. The name of the library is iwbc?.lib where ? is the single
character code used in the command line to specify the memory model.
3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW �����

AMD
To compile an application with the 32-bit Borland C compiler, BCC32, first compile to object
code and then link. For example, to compile the InterWave peek.c program, issue the
following command to generate the *.obj file:

bcc32 -c -Ox -Ic:\iwave\h peek.c

Then issue the following command to link the program:

386link @bcc32.dos peek.obj iwpharl.obj -exe peek

&UHDWLQJ�''.�/LEUDULHV�ZLWK�0LFURVRIW�9LVXDO�&��

With the Microsoft Visual C++ compiler, use the makesoft file provided with the DDK. The
command line for the nmake utility that creates a DDK library is

nmake -fmakesoft MODEL=?

where ? is one of T, S, M, or L for the tiny, small, medium or large memory models,
respectively.

The library is created in the current directory. makesoft makes the following assumptions:

■ The source file directory is c:\iwave\c .

■ The include file directory is c:\iwave\h .

■ The Microsoft compiler is installed in the c:\msvc directory.

If any of these assumptions do not hold true for your programming environment, make the
necessary modifications to the makesoft file.

The *.obj files from which the library is built are placed in the current directory but deleted
as soon as the library is created. The name of the library is iwmscx.lib where x is the single
character code used in the command line to specify the memory model.

&UHDWLQJ�''.�/LEUDULHV�ZLWK�:DWFRP�&�&����

With the Watcom C/C++32 compiler, use the makewat file provided with the DDK to create
a protected mode library named iwwc*x.lib where * is the single character code
representing the memory model. Follow the instructions within makewat to build a suitable
library for the application.

Note: In Protected mode, the InterWave DDK’s DMA module works only when using
the flat memory model.

&UHDWLQJ�''.�/LEUDULHV�ZLWK�0HWD:DUH�+LJK�&�&��

With the MetaWare High C/C++ compiler, use the following command to compile each of
the iw*.c files in the DDK into a *.obj file:

hc386 -fsoft -c -O3 -Ic:\highc\inc -Ic:\iwave\c c:\iwave\c\iw*.c

To create the libraries, use the Phar Lap 386lib.exe library utility. Issue the command:

386lib iwmw.lib @resp.dat

MetaWare High C/C++ supports DOS extenders other than Phar Lap; however, the
InterWave DDK was only tested with Phar Lap’s TNT DOS extender under this compiler.
The above commands assume the High C compiler is installed in the c:\highc directory
and that the DDK source files are in the c:\iwave\c directory.
����� 3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW

AMD
&UHDWLQJ�''.�/LEUDULHV�ZLWK�6\PDQWHF�&�&��

With the Symantec C/C++ compiler, use the makesym file provided with the DDK. The
command line for the makesym utility that creates a DDK library is

make -fmakesym MODEL=?

where ? is one of c, s , m, l , x , or p for the compact, small, medium, large, 32-bit DOSX,
and Phar Lap memory models, respectively.

The library is created in the current directory. makesym makes the following assumptions:

■ The source file directory is c:\iwave\c .

■ The include file directory is c:\iwave\h .

■ The Symantec compiler is installed in the c:\sc directory.

If any of these assumptions does not hold true for your programming environment, make
the necessary modifications to the makesym file.

The *.obj files from which the library is built are placed in the current directory but deleted
as soon as the library is created. The name of the library is iwsc?.lib where ? is the single
character code used in the command line to specify the memory model.

The Plug and Play Interface
The InterWave IC is a PNP-compliant device capable of being configured by standard PNP
software. The PNP protocol isolates and numbers each PNP adapter present in a PC
system before arbitrating and assigning resources to all of them.

Full automation of the configuration processes is a difficult task because of the extensive
base of old or legacy adapters which cannot report their resource requirements. Therefore,
a means must be provided to inform the standard PNP software of the requirements needed
by such cards. Legacy adapters require some intervention, such as a software driver, to
register the resources used by the adapter and may possibly require the changing of
jumpers to avoid conflicts with PNP-compliant adapters. The software driver is typically
provided by a vendor in the absence of a PNP manager or a PNP BIOS.

In a non-PNP system (a system with no PNP manager, PNP BIOS, or PNP operating
system), the InterWave IC PNP interface serves as no more than a set of configuration
registers providing a jumperless solution to the automatic configuration problem.

Accessing InterWave Registers with the DDK
The DDK has two functions that can be used to access any register within the InterWave
IC: IwaveRegPeek and IwaveRegPoke . These functions are generic and can be used in
applications that read from or write to many registers; however, they should not be used
in time-critical situations.

IwaveRegPeek reads a register. It takes as its only argument the mnemonic of the register
whose contents are to be read. It returns a value of type WORD (16 bits). If the register is
only 8 bits wide, the upper byte is 0. For example, to read the Local Memory DMA Control
register (LDMACI), do the following:

WORD val;
...
val = IwaveRegPeek(LDMACI);
3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW �����

AMD
IwaveRegPoke writes to a register. For example, to write the value 0Bh to the Mix Control
(UMCR) register, issue the call:

IwaveRegPoke(UMCR, 0x0B);

When using these functions always make sure that you are performing the correct operation
for the specified register. Trying to read from a write-only register or write to a read-only
register yields meaningless results.

The iwdefs.h file contains definitions for all of the InterWave register mnemonics. These
definitions contain coded information that allows the register I/O functions to access the
registers.
����� 3URJUDPPLQJ�:LWK�7KH�'ULYHU�'HYHORSHU·V�.LW

CHAPTER
19
 DDK QUICK REFERENCE
The sections of this chapter list and briefly describe the DDK functions. For more detailed
information about a particular DDK function, go to the reference page shown in parentheses
at the end of each description.

System Control Functions
The DDK system control functions fall into one of three categories: initialization, utilities,
and interrupt control.

,QLWLDOL]DWLRQ�)XQFWLRQV

These functions are defined in the iwinit.c and iwpnp.c files.

IwavePnpBIOS
Checks for the presence of a valid PNP BIOS. (20-9)

IwavePnpBIOS40
Queries the PNP BIOS for the number of PNP adapters in the system and
the address of the PNP Read Data Port. (20-10)

IwavePnpPing Detects the presence of InterWave IC-based hardware in PNP card mode.
(20-13)

IwaveOpen Initializes the iw variable and prepares the InterWave IC-based hardware
for operation. (20-7).

IwaveGusReset
Resets the InterWave IC to GUS-Compatibility mode. (20-4)

IwaveClose Closes down the DDK and resets the InterWave IC-based hardware. (20-2)

IwavePnpPower
Enables or disables major sections of the InterWave IC. (20-14)

IwavePnpKey
Issues the PNP initiation key. (20-12)

IwavePnpIsol Performs the PNP isolation protocol to assign a unique card select number
(CSN) to each PNP card in the system. (20-12)

IwavePnpIOcheck
Performs a conflict check on the I/O port to be used by a logical device.
(20-11)

IwavePnpSerial
Reads the vendor ID and the serial number from the PNP serial EEPROM.
(20-14)

IwavePnpPeek
Returns a specified number of resource data bytes from the serial EEPROM.
(20-13)
''.�4XLFN�5HIHUHQFH ����

AMD
IwavePnpWake
Issues a PNP wake command to the InterWave IC. (20-15)

IwavePnpDevice
Selects any of the five logical devices in the InterWave IC. (20-10)

IwavePnpActivate
Activates or deactivates any of the five logical devices in the InterWave IC.
(20-9)

IwavePnpSetCfg
Reads the configuration members of an iw variable and configures the
InterWave IC accordingly. (20-15)

IwavePnpGetCfg
Reads the PNP registers of the InterWave IC-based hardware with the
specified card select number (CSN). (20-11)

IwaveSetInterface
Establishes a DMA and an IRQ interface to the InterWave IC-based
hardware. (20-20)

IwaveRegisterDMA
Registers DMA structures with the DDK to establish an interface for
InterWave DMA events. (20-16)

IwaveRegisterIRQ
Registers IRQ structures with the DDK to establish an interface for
InterWave IRQ events. (20-17)

8WLOLW\�)XQFWLRQV

These functions are defined in the iwutil.c file.

IwaveRegPeek
Reads an InterWave register. (20-13)

IwaveRegPoke
Writes to an InterWave register. (20-13)

IwaveAddrTrans
Performs the address translation required for 16-bit DMA channels or 16-bit
data. (20-13)

IwaveDelay Introduces a delay or wait for a specified number of milliseconds. (20-13)

IwaveFreeDOS
Releases or deallocates real-mode or DOS memory. (20-13)

IwaveAllocDOS
Allocates real-mode memory. (20-2)

IwaveRealAddr
Translates the contents of a pair of synthesizer address registers into a real
address. (20-16)

IwaveGetAddr
Retrieves the value of the local memory address pointer. (20-4)

WriteEnable Enables the write operation to the PNP serial EEPROM. (20-24)
���� ''.�4XLFN�5HIHUHQFH

AMD
WriteOPCode
Sends the write opcode to the PNP serial EEPROM. (20-24)

ReadOPCode
Sends the read opcode to the PNP serial EEPROM. (20-23)

IwavePokeEEPROM
Writes data to the PNP serial EEPROM. (20-15)

IwavePeekEEPROM
Reads the contents of the PNP serial EEPROM. (20-8)

GetSamplePosition
Reads the DMA count register and determines how many bytes have been
sent to or received from the codec FIFOs. (20-1)

ReadWaveHeader
Reads the header from a *.wav file. (20-23)

_peek Reads an 8-bit hardware port and returns the value. (20-22)

_peekw Reads a 16-bit hardware port and returns the value. (20-22)

_poke Writes a byte to an 8-bit hardware port. (20-22)

_pokew Writes a word to a 16-bit hardware port. (20-23)

,QWHUUXSW�&RQWURO�)XQFWLRQV

These functions are defined in the iwirq.c file.

IwaveGetVect Retrieves the address of the current handler for a specified interrupt number.
(20-4)

IwaveSetVect Specifies a new handler for a specified interrupt number in the Interrupt
Vector Table (IVT). (20-21)

IwaveResetIvt
Restores the addresses corresponding to the interrupts assigned to the
synthesizer and MIDI devices, thus restoring the system's Interrupt Vector
Table (IVT) to its previous state. (20-18)

IwaveSetIvt Revectors the IRQ lines assigned to the MIDI and synthesizer devices.
(20-20)

IwaveUmaskIrqs
Enables IRQs at the programmable interrupt controllers (PICs). (20-21)

IwaveMaskIrqs
Disables IRQs at the programmable interrupt controllers (PICs). (20-6)

IwaveHandleDma
Handles local memory DMA interrupts. (20-5)

IwaveHandleVoice
Handles voice interrupts. (20-6)

IwaveHandler The main IRQ router for both MIDI and synthesizer–codec interrupts. (20-6)

IwaveSynthHandler
The synthesizer interrupt request handler. (20-21)
''.�4XLFN�5HIHUHQFH ����

AMD
IwaveHandleCodec
Handles codec interrupts. (20-5)

IwaveMidiHandler
The MIDI interrupt request handler. (20-7)

IwaveSetCallback
Registers a callback for interrupt events. (20-19)

IwaveDefFunc
The default callback function. (20-3)

Codec Functions
These functions are defined in the iwcodec.c file.

IwaveCodecMode
Specifies the codec mode of operation. (21-2)

IwaveCodecStatus
Retrieves the contents of any of the codec status registers: CSR1R, CSR2I,
or CSR3I. (21-3)

IwaveCodecIrq
Enables or disables the codec interrupts. (21-2)

IwaveDataFormat
Specifies the playback or record data formats. (21-4)

IwaveSetFrequency
Specifies the playback or record sample frequency. (21-13)

IwaveCodecAccess
Selects either programmed I/O or DMA to service both of the codec FIFOs.
(21-1)

IwavePlayAccess
Selects either programmed I/O or DMA to service the codec playback FIFO.
(21-10)

IwaveRecordAccess
Selects either programmed I/O or DMA to service the codec record FIFO.
(21-10)

IwaveCodecCnt
Loads the codec sample counters. (21-1)

IwaveCodecTrigger
Enables the codec record path, the codec playback path, or both. (21-3)

IwavePlayData
Sets up and starts a DMA transfer of data through the codec playback FIFO.
(21-11)

IwaveRecordData
Sets up and starts a DMA transfer of data through the codec record FIFO.
(21-12)
���� ''.�4XLFN�5HIHUHQFH

AMD
IwaveStopDma
Stops an active DMA transfer from the record FIFO or to the playback FIFO.
(21-14)

IwaveDisableLineIn
Disables the stereo line inputs. (21-6)

IwaveEnableLineIn
Enables the stereo line inputs. (21-6)

IwaveDisableOutput
Disables the stereo line outputs. (21-6)

IwaveEnableOutput
Enables the stereo line outputs. (21-7)

IwaveEnableMicIn
 Enables the stereo microphone inputs. (21-6)

IwaveDisableMicIn
Disables the stereo microphone inputs. (21-5)

IwaveLineMute
Mutes or unmutes the line inputs or outputs. (21-9)

IwaveLineLevel
Specifies the level of attenuation or gain for inputs or outputs. (21-1)

IwaveMonoMute
Mutes or unmutes the InterWave mono input or output. (21-10)

IwaveMonoAtten
Specifies the attenuation level for the mono input. (21-10)

IwaveInputSource
Selects the input source for the left or right ADC. (21-8)

IwaveInputGain
Specifies the gain level for the left or right ADC source. (21-8)

IwaveDacAtten
Specifies the attenuation level for the left or right DAC input. (21-4)

Synthesizer Functions
These functions are defined in the iwvoice.c file.

IwaveSynthGlobal
Controls the global mode of operation of the synthesizer (affects all voices).
(22-7)

IwaveSynthMode
Switches the InterWave IC between GUS-Compatibility mode and
Enhanced mode. (22-7)

IwaveReadyVoice
Prepares a selected voice for playback. It does not start the voice. (22-7)

IwaveSetLoopMode
Specifies the looping mode for both addressing and volume of a voice. (22-3)
''.�4XLFN�5HIHUHQFH ����

AMD
IwaveStartVoice
Starts the voice. (22-5)

IwaveStopVoice
Stops the output of a voice. (22-6)

IwaveReadVoice
Returns the real local memory address from which a playing voice is
currently fetching data. (22-2)

IwaveSetVoicePlace
Specifies the local memory address location from where a voice fetches
data. (22-4)

IwaveSetVoiceEnd
Specifies a new local memory end boundary address for a voice. (22-4)

IwaveReadVolume
Returns the current looping volume value for a voice. (22-2)

IwaveSetVolume
Specifies the current looping volume value for a voice. (22-5)

IwaveRampVolume
Ramps the volume of a voice. (22-1)

IwaveStopVolume
Stops the codec timer. (22-6)

IwaveVoicePitch
Specifies the sampling frequency of a voice in Enhanced mode. (22-9)

IwaveVoiceFreq
Specifies the sampling frequency of a voice in GUS-Compatibility mode.
(22-8)

IwaveVoicePan
Specifies a voice’s position in the stereo field. (22-8)

Local Memory Functions
The local memory functions fall into two categories: memory management and DMA.

0HPRU\�0DQDJHPHQW�)XQFWLRQV

These functions are defined in the iwmem.c file.

IwaveMemSize
Returns the number of Kbytes available as local memory attached to the
InterWave IC. (23-9)

IwaveMemCfg
Determines the current DRAM configuration of the InterWave IC-based
hardware. (23-6)

IwaveMemInit
Initializes local memory into a local memory pool for allocation and
de-allocation. (23-7)
���� ''.�4XLFN�5HIHUHQFH

AMD
IwaveMemAvail
Returns the total amount of memory available in the local memory pool.
(23-5)

IwaveMaxAlloc
Returns the size in bytes of the largest block of memory that can be still be
allocated from the local memory pool. (23-5)

IwaveMemAlloc
Allocates a block of memory from the local memory pool. (23-5)

IwaveMemFree
Releases or de-allocates previously allocated blocks of local memory. (23-6)

IwaveMemPoke
Writes a byte of data to local memory. (23-8)

IwaveMemPokeW
Writes a word (16 bits) of data to local memory. (23-8)

IwaveMemPeek
Reads a byte of data from local memory. (23-7)

IwaveMemPeekW
Reads a word (16 bits) of data from local memory. (23-8)

IwavePokeBlock
Writes a block of data to local memory through the LMC Byte Data register
(LMBDR). (23-10)

IwavePokeBlockW
Writes a block of data to local memory through the LMC 16-Bit Access
register (LMSBAI). (page 23-10)

IwavePeekBlock
Reads a block of data from local memory through the LMC Byte Data register
(LMBDR). (23-9)

IwavePeekBlockW
Reads a block of data from local memory through the LMC 16-Bit Access
register (LMSBAI). (23-10)

'0$�)XQFWLRQV

These functions are defined in the iwdma.c file.

IwaveDmaCtrl
Prepares the DMA controller on the PC for an impending DMA transfer.
(23-5)

IwaveDmaPgm
Programs the DMA controller for an impending DMA transfer. (23-3)

IwaveDmaXfer
Programs the DMA controller and the InterWave IC for a DMA transfer to or
from local memory, then starts the transfer. (23-4)

IwaveDmaIleaved
Programs the InterWave IC for an interleaved DMA transfer and starts the
transfer. (23-5)
''.�4XLFN�5HIHUHQFH ����

AMD
IwaveDmaPage
Sets up the InterWave IC and then initiates the transfer of up to one DMA
page (64 Kbytes) to or from local memory. (23-3)

IwaveDmaWait
Blocks program activity until a specific DMA transfer is completed. (23-3)

IwaveGetDmaPos
Reads the count register of the DMA controller to determine the current
position in a DMA transfer. (23-4)

IwaveDmaNext
If the data to be transferred crosses over one DMA page in system memory,
the DMA handler calls this function to send the data in the second DMA
page. (23-2)

IwaveDmaMalloc
Allocates memory that lies within a DMA page. (23-2)
���� ''.�4XLFN�5HIHUHQFH

CHAPTER
20 S
YSTEM CONTROL DDK FUNCTIONS
GetSamplePosition iwutil.c

)XQFWLRQ

Reads the DMA count register and determines how many bytes have been sent to or
received from the codec FIFOs.

6\QWD[

WORD GetSamplePosition(DMA *dma)

5HPDUNV

GetSamplePosition reads the DMA count register and determines how many bytes have
been sent to or received from the codec FIFOs. The dma argument points to a previously
registered DMA structure for the relevant DMA channel.

5HWXUQ�9DOXH

GetSamplePosition returns the number of bytes sent by the DMA transfer.

6HH�$OVR

IwaveGetDmaPos

IwaveAddrTrans iwutil.c

)XQFWLRQ

Performs the address translation required for 16-bit DMA channels or 16-bit data.

6\QWD[

ADDRESS IwaveAddrTrans(ADDRESS local)

5HPDUNV

IwaveAddrTrans performs the address translation required for 16-bit DMA channels or
16-bit data. If the InterWave IC is in GUS-Compatibility mode, IwaveAddrTrans shifts the
first 17 bits of the value in local one bit to the right while preserving bits 18 and 19. In
Enhanced mode, the function multiplies the real address value in local by two (a right shift).
For more information, see “Address Translation” on page 8-8. IwaveAddrTrans
determines the mode by looking at iw.smode . The address returned can then be written
to an address register or pair of address registers. Call this function to determine the logical
address if you are using 16-bit data while writing to synthesizer or local memory address
counters or when writing to DMA address registers while using a 16-bit DMA channel.
6\VWHP�&RQWURO�''.�)XQFWLRQV ����

AMD
5HWXUQ�9DOXH

IwaveAddrTrans returns a logical address that can be written to any of the InterWave IC’s
address registers.

IwaveAllocDOS iwutil.c

)XQFWLRQ

Allocates real-mode memory.

6\QWD[

void *IwaveAllocDOS(WORD nbytes, WORD *pseg, WORD *psel)

5HPDUNV

IwaveAllocDOS allocates nbytes of real-mode memory. pseg points to the real mode
segment and psel points to the selector. This memory could be used as a DMA buffer. This
function is for use with the Watcom protected mode compiler.

5HWXUQ�9DOXH

Pointer to real-mode buffer.

6HH�$OVR

IwaveFreeDOS

IwaveClose iwinit.c

)XQFWLRQ

Closes down the DDK and resets the InterWave IC-based hardware.

6\QWD[

void IwaveClose(void)

5HPDUNV

IwaveClose closes down the DDK and resets the InterWave IC-based hardware. It should
be the last function the DDK application calls. The function performs the following actions:

■ Mutes all sound outputs.

■ Resets the sound hardware to GUS-Compatibility mode.

■ Multiplexes the synthesizer into the mixer section and enables codec mode 3 interrupts.

■ Restores the system’s Interrupt Vector Table (IVT).

■ Disables the generation of Interrupts and DMA requests.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveOpen , IwaveGusReset
���� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
IwaveDefFunc iwirq.c

)XQFWLRQ

The default callback function.

6\QWD[

void IwaveDefFunc(void)

5HPDUNV

IwaveDefFunc is the default callback function. This function is called in an application that
does not install any callbacks of its own.

5HWXUQ�9DOXH

None.

IwaveDelay iwutil.c

)XQFWLRQ

Introduces a delay or wait for a specified number of milliseconds.

6\QWD[

void IwaveDelay(WORD count)

5HPDUNV

IwaveDelay causes a delay in program execution for count milliseconds. count can range
from 0 to 52.

5HWXUQ�9DOXH

None.

IwaveFreeDOS iwutil.c

)XQFWLRQ

Releases or deallocates real-mode or DOS memory.

6\QWD[

void IwaveFreeDOS(WORD sel)

5HPDUNV

IwaveFreeDOS releases or deallocates real-mode memory previously allocated with the
IwaveAllocDOS function. sel is the selector value. This function is for use with the Watcom
compiler protected mode compiler.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveAllocDOS
6\VWHP�&RQWURO�''.�)XQFWLRQV ����

AMD
IwaveGetAddr iwutil.c

)XQFWLRQ

Retrieves the value of the local memory address pointer.

6\QWD[

ADDRESS IwaveGetAddr(void)

5HPDUNV

IwaveGetAddr retrieves the value of the local memory address pointer from the Local
Memory Address High and Local Memory Address Low registers (LMAHI and LMALI).

5HWXUQ�9DOXH

IwaveGetAddr returns the address read from the Local Memory Address High and Local
Memory Address Low registers (LMAHI and LMALI).

IwaveGetVect iwirq.c

)XQFWLRQ

Retrieves the address of the current handler for a specified interrupt number.

6\QWD[

PVI IwaveGetVect(int int_no)

5HPDUNV

IwaveGetVect retrieves the address of the current handler for the interrupt number
specified in int_no from the Interrupt Vector Table (IVT).

5HWXUQ�9DOXH

IwaveGetVect returns the address of the current handler.

6HH�$OVR

IwaveSetVect

IwaveGusReset iwinit.c

)XQFWLRQ

Resets the InterWave IC to GUS-Compatibility mode.

6\QWD[

void IwaveGusReset(void)

5HPDUNV

IwaveGusReset resets the InterWave IC to GUS-Compatibility mode by setting the Reset
GUS bit of the GUS Reset register (URSTI[0]) Low for at least 22 µs and then pulling it
back high. For details of what actions are accomplished by this reset, see “URSTI—GUS
Reset” on page 12-14.
���� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
All Enhanced mode applications should reset GUS on exit to ensure that any subsequent
GUS-only applications work correctly. The IwaveClose function calls IwaveGusReset .

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveClose

IwaveHandleCodec iwirq.c

)XQFWLRQ

Handles codec interrupts.

6\QWD[

static void IwaveHandleCodec(void)

5HPDUNV

IwaveHandleCodec determines the source of an interrupt within the codec and activates
the appropriate registered callback function to process the interrupt request.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveMidiHandler , IwaveSynthHandler

IwaveHandleDma iwirq.c

)XQFWLRQ

Handles local memory DMA interrupts.

6\QWD[

static void IwaveHandleDma(void)

5HPDUNV

IwaveHandleDma determines the source of an interrupt within the local memory controller
and activates the appropriate registered callback function to process the interrupt request.
This handler processes both normal and interleaved DMA related interrupts.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveMidiHandler , IwaveSynthHandler
6\VWHP�&RQWURO�''.�)XQFWLRQV ����

AMD
IwaveHandler iwirq.c

)XQFWLRQ

The main IRQ router for both MIDI and synthesizer–codec interrupts.

6\QWD[

static void IwaveHandler(void)

5HPDUNV

IwaveHandler acts as a routing point to service all interrupt requests from the InterWave
IC. It identifies the source of the interrupt by reading register the Interrupt Status register
(UISR) or the Codec Status Register 1 (CSR1R) and then calls all necessary callback
functions. This function reads these registers until all interrupts are serviced.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveMidiHandler , IwaveSynthHandler

IwaveHandleVoice iwirq.c

)XQFWLRQ

Handles voice interrupts.

6\QWD[

static void IwaveHandleVoice(void)

5HPDUNV

IwaveHandleVoice handles interrupts caused by a particular synthesizer voice when such
voice has crossed either an address boundary or a volume boundary. This function reads
the Synthesizer Voices IRQ register (SVII) to determine the number of the voice that caused
the interrupt as well as the source of the interrupt (wavetable or volume ramp).

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveMidiHandler , IwaveSynthHandler

IwaveMaskIrqs iwirq.c

)XQFWLRQ

Disables IRQs at the programmable interrupt controllers (PICs).

6\QWD[

void IwaveMaskIrqs(void)
���� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
5HPDUNV

IwaveMaskIrqs disables IRQs at the PICs by properly setting the mask register for the
particular levels to be disabled at the input to the controller. For this purpose, it issues the
appropriate OCW1. The interrupt levels disabled are those associated with iw.synth_irq
and iw.midi_irq.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveUmaskIrqs

IwaveMidiHandler iwirq.c

)XQFWLRQ

The MIDI interrupt request handler.

6\QWD[

static void interrupt IwaveMidiHandler(void)

5HPDUNV

IwaveMidiHandler is the interrupt handler for the MIDI interrupt requests. This code takes
over immediately after the interrupt occurs. It sends an EOI instruction to the programmable
interrupt controllers (PICs) to allow further interrupts and then it calls a function that
eventually routes the request to the appropriate function.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveMidiHandler

IwaveOpen iwinit.c

)XQFWLRQ

Initializes the iw variable and prepares the InterWave IC-based hardware for operation.

6\QWD[

void IwaveOpen(BYTE voices, BYTE mode)

5HPDUNV

IwaveOpen initializes the iw variable (an IWAVE structure) and prepares the InterWave
IC-based hardware for operation. The iw variable is necessary for creating DDK
applications for the InterWave IC. To initialize the IC, the function performs the following
actions:

■ Detects the InterWave IC-based board and extracts its configuration. During this
process, the function assigns the card select number (CSN) to the board and determines
the PNP Read Data Port address.
6\VWHP�&RQWURO�''.�)XQFWLRQV ����

AMD
■ Initializes the global iw variable to reflect the configuration of the InterWave IC-based
board.

■ Performs a GUS reset.

■ Places the codec in mode 3 operation.

■ Multiplexes the synthesizer and enables the codec mode 3 interrupts.

■ Programs the synthesizer for Enhanced or GUS-Compatibility mode (ENH_MODE or
GUS_MODE).

■ Determines the size of local memory and sets iw.size_mem.

■ Specifies the number of voices (from 0 to 31, where 0 = 1 voice) and sets iw.voices .

■ Enables interrupts and DMA requests onto the ISA bus.

■ Disables line inputs, microphone inputs, and line outputs.

■ Writes 0 to the Left/Right Output Attenuation registers (CLOAI and CROAI) to prevent
them from affecting mode 1 and mode 2 operation. For mode 3 operation, the software
must write the appropriate values to these registers.

The iw variable contains pointers to the DMA and IRQ structures that provide an interface
to the InterWave IC-based hardware. IwaveOpen initializes these pointers to NULL. If the
application requires IRQ and DMA services, it should register the IRQ or DMA structures
by a call to IwaveSetInterface , IwaveRegisterDMA , or IwaveRegisterIRQ .

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveClose , IwaveGusReset

IwavePeekEEPROM iwutil.c

)XQFWLRQ

Reads the contents of the PNP serial EEPROM.

6\QWD[

void IwavePeekEEPROM(BYTE *data)

5HPDUNV

IwavePeekEEPROM reads the contents of the serial EEPROM through the PNP Serial
EEPROM Control register (PSECI[3:0]). First, it places the serial EEPROM in direct-control
mode (PSEENI[0]=1). Then, it fills the buffer pointed to by data with the contents of the
serial EEPROM. The function assumes the InterWave IC is in the configuration state (a
CSN has been assigned to the board). IwavePeekEEPROM takes care of all the signaling
and control of the serial EEPROM by appropriately writing to PSECI[3:0]. See Sample 5-2
on page 5-24 for an example program using this function.

Note: This function programs the serial EEPROM unit KM93C66 which is a 4K-bit
unit organized as 256x16. Compatible units can be programmed by this function.
���� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePokeEEPROM , WriteEnable , WriteOPCode , ReadOPCode .

IwavePnpActivate iwpnp.c

)XQFWLRQ

Activates or deactivates any of the five logical devices in the InterWave IC.

6\QWD[

void IwavePnpActivate(BYTE dev, BYTE state)

5HPDUNV

IwavePnpActivate activates or deactivates any one of the five logical devices in the
InterWave IC. Set dev to one of the following symbolic constants:

■ AUDIO for the audio device (synthesizer, codec and compatibility sections)

■ EXT for the external function (usually a CD-ROM)

■ GAME for the game control device

■ EMULATION for the AdLib–Sound Blaster emulation device

■ MPU401 for the MPU401 emulation device

To activate a device, set state to ON. To deactivate a device, set state to OFF.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePnpDevice

IwavePnpBIOS iwpnp.c

)XQFWLRQ

Checks for the presence of a valid PNP BIOS.

6\QWD[

BYTE far *IwavePnpBIOS(void)

5HPDUNV

IwavePnpBIOS checks for the presence of a valid PNP BIOS in the systems. It can be
used within the initialization part of a program.

5HWXUQ�9DOXH

IwavePnpBIOS returns a pointer to an installation check structure if there is a valid PNP
BIOS in the system. Otherwise, it returns NULL.
6\VWHP�&RQWURO�''.�)XQFWLRQV ����

AMD
6HH�$OVR

IwavePnpBIOS40

IwavePnpBIOS40 iwpnp.c

)XQFWLRQ

Queries the PNP BIOS for the number of PNP adapters in the system and the address of
the PNP Read Data Port.

6\QWD[

WORD IwavePnpBIOS40(BYTE far *ptrS, BYTE far *cfig)

5HPDUNV

If a PNP BIOS system is available, IwavePnpBIOS40 queries the BIOS through function
40h to determine the total number of PNP cards in the system as well as the location of
the PNP Read Data Port. This is a real-mode function and should not be used by protected
mode programs. ptrS is a pointer to a PNP BIOS installation check structure. cfig is a pointer
to a structure containing three elements:

■ A member of type BYTE to store the revision number

■ A member of type BYTE to store the total number of PNP cards

■ A member of type PORT to store the address of PNPRDP

5HWXUQ�9DOXH

IwavePnpBIOS40 returns 0 if it succeeds, non-0 if it fails.

6HH�$OVR

IwavePnpBIOS

IwavePnpDevice iwpnp.c

)XQFWLRQ

Selects any of the five logical devices in the InterWave IC.

6\QWD[

void IwavePnpDevice(BYTE dev)

5HPDUNV

IwavePnpDevice selects any one of the five logical devices in the InterWave IC. Set dev
to one of the following symbolic constants:

■ AUDIO for the audio device (synthesizer, codec and compatibility sections)

■ EXT for the external function (usually a CD-ROM)

■ GAME for the game control device

■ EMULATION for the AdLib–Sound Blaster emulation device

■ MPU401 for the MPU401 emulation device
����� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePnpActivate

IwavePnpGetCfg iwpnp.c

)XQFWLRQ

Reads the PNP registers of the InterWave IC-based hardware with the specified card select
number (CSN).

6\QWD[

void IwavePnpGetCfg(void)

5HPDUNV

IwavePnpGetCfg reads the configuration data for the I/O space, DMA and IRQ channels
for all logical devices from the InterWave IC PNP interface, and loads that information into
the configuration members of the iw variable. Call this function when an InterWave sound
application needs to retrieve the InterWave IC configuration. IwavePnpGetCfg assumes
that the card has been properly isolated, selected, and that it is in the configuration mode
so that its configuration registers can be read.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePnpSetCfg

IwavePnpIOCheck iwpnp.c

)XQFWLRQ

Performs a conflict check on the I/O port to be used by a logical device.

6\QWD[

PORT IwavePnpIOCheck(PORT base, BYTE no_ports)

5HPDUNV

IwavePnpIOCheck performs a conflict check on the I/O port to be used by a logical device.
The function receives the base address of the I/O range as well as the number of ports in
the range (no_ports) and then performs the I/O check protocol. This function assumes that
the logical device has been deactivated and that the PNP interface is in the configuration
mode.

5HWXUQ�9DOXH

IwavePnpIOCheck returns IO_CHK if no conflicts are detected. Otherwise, it returns the
first address of the I/O port in conflict within the range.
6\VWHP�&RQWURO�''.�)XQFWLRQV �����

AMD
IwavePnpIsol iwpnp.c

)XQFWLRQ

Performs the PNP isolation protocol to assign a unique card select number (CSN) to each
PNP card in the system.

6\QWD[

BYTE IwavePnpIsol(PORT *pnprdp)

5HPDUNV

IwavePnpIsol isolates each PNP card in the system by assigning a unique CSN to it. To
accomplish this task, the function reads 72 pairs of 16-bit values from the PNP Read Data
Port register (PNPRDP), which is initially assumed to be at 203h. These 72 pairs are
translated into a 64-bit value and an 8-bit checksum value by converting each pair into a
1 or 0 bit value. For each pair read, the function checks for the 0x55–0xAA sequence. If
the sequence is read, the function assumes a 1 in that bit position. Otherwise, a 0 is
assumed. The first 64 bits produced by this process are converted into an 8-bit checksum
value and compared to the last 8 bits produced. If the first pair of reads does not produce
the 0x55–0xAA sequence or the checksum values do not match, the function assumes a
PNPRDP conflict and relocates the port. If after several tries the same situation arises, then
the function assumes that there are no PNP cards in the system.

The function stores the address of the PNPRDP register at pnprdp. All indexed registers
in the Plug and Play section are read through this port.

5HWXUQ�9DOXH

IwavePnpIsol returns PNP_ABSENT if it is not able to either successfully assign a location
for PNPRDP or if it does not detect the 0x55–0xAA sequence in the first pair of reads.

6HH�$OVR

IwavePnpKey , IwavePnpWake

IwavePnpKey iwpnp.c

)XQFWLRQ

Issues the PNP initiation key.

6\QWD[

void IwavePnpKey(void)

5HPDUNV

IwavePnpKey issues the initiation key that places the Plug and Play logic into the
configuration state. The PNP interface is quiescent at power up and must be enabled by
software. First, the function resets the LFSR to its initial value by writing 00h to the PNP
Index Address register (PIDXR) twice. Then, it writes the 32-byte initiation key to PIDXR.

5HWXUQ�9DOXH

None.
����� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
6HH�$OVR

IwavePnpWake

IwavePnpPeek iwpnp.c

)XQFWLRQ

Returns a specified number of resource data bytes from the serial EEPROM.

6\QWD[

void IwavePnpPeek(PORT pnprdp, WORD bytes, BYTE *data)

5HPDUNV

IwavePnpPeek reads bytes number of bytes of resource data from the serial EEPROM to
the memory block pointed to by data. The function does NOT reset the serial EEPROM
logic with successive calls so it can read the entire EEPROM by repeated calls. This function
assumes that the InterWave IC is not in the sleep or wait-for-key states. Also, on the first
call, if the calling program needs to read from the beginning of the serial EEPROM, the
EEPROM logic must be reset with a PNP wake command. pnprdp is the I/O address of the
PNP Read Data Port register (PNPRDP).

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePnpKey , IwavePnpWake

IwavePnpPing iwpnp.c

)XQFWLRQ

Detects the presence of InterWave IC-based hardware in PNP card mode.

6\QWD[

BYTE IwavePnpPing(DWORD vendor)

5HPDUNV

IwavePnpPing detects an InterWave IC-based sound board and returns its assigned card
select number (CSN) so that an application can access the board’s PNP interface and
determine the board's current configuration. In conducting its search for the InterWave IC,
the function uses the first 32 bits of the board’s serial identifier (the vendor ID). The last
four bits of the identifier represent a revision number for the particular product and are not
included in the search. The function assigns the identifier to the vendor member of the iw
variable. The calling application should check the revision bits to make sure it is compatible
with the board. Also, this function determines the PNP data port and stores it in the pnprdp
member of the iw variable. The IwaveOpen function calls this function.

5HWXUQ�9DOXH

IwavePnpPing returns the CSN. Use this number to select the InterWave PNP interface
at any time to read resource data or to reconfigure its registers. If the InterWave hardware
is not detected then a value of 0 (FALSE) is returned.
6\VWHP�&RQWURO�''.�)XQFWLRQV �����

AMD
6HH�$OVR

IwavePnpOpen , IwavePnpGetCSN

IwavePnpPower iwpnp.c

)XQFWLRQ

Enables or disables major sections of the InterWave IC.

6\QWD[

void IwavePnpPower(BYTE mode)

5HPDUNV

IwavePnpPower enables or disables major sections of the InterWave IC. Disabling places
the section in low-power mode and prevents it from loading the ISA bus. Power modes are
controlled by writing the value of mode to the PNP Power Mode register (PPWRI). The
function assumes that the PNP interface is in configuration mode. For a description of the
sections of the IC which can be enabled or disabled and the value of mode, see
“PPWRI—PNP Power Mode” on page 12-29.

5HWXUQ�9DOXH

None.

IwavePnpSerial iwpnp.c

)XQFWLRQ

Reads the vendor ID and the serial number from the PNP serial EEPROM.

6\QWD[

void IwavePnpSerial(PORT pnprdp, BYTE csn, BYTE *vendor, DWORD serial)

5HPDUNV

IwavePnpSerial reads the first nine bytes of data from the PNP serial EEPROM through
the pnprdp I/O address. First, it resets the EEPROM control logic by issuing a PNP wake
command using csn. The function writes an ASCII string for the vendor ID in the VVVNNNN
format into the char array pointed to by vendor. The function assigns the serial number to
serial. The ninth byte is read but not used as it is invalid when the serial identifier is read
through the PNP Resource Data register (PRESDI). This function assumes that the PNP
interface is not in the wait-for-key state. Otherwise, meaningless results are obtained.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePnpSearch
����� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
IwavePnpSetCfg iwpnp.c

)XQFWLRQ

Reads the configuration members of an iw variable and configures the InterWave IC
accordingly.

6\QWD[

void IwavePnpSetCfg(void)

5HPDUNV

IwavePnpSetCfg reads the configuration members of the iw variable and configures the
I/O space, DMA and IRQ channels on the InterWave IC accordingly for all logical devices.
This function is called when an InterWave sound application wishes to reconfigure the
InterWave IC. IwavePnpSetCfg assumes that the card has been properly isolated and is
in the configuration mode so that its configuration registers can be written.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePnpGetCfg

IwavePnpWake iwpnp.c

)XQFWLRQ

Issues a PNP wake command to the InterWave IC.

6\QWD[

void IwavePnpWake(BYTE csn)

5HPDUNV

IwavePnpWake issues a PNP wake command to the InterWave IC’s PNP interface. If csn
matches the card select number (CSN) stored in the PNP Card Select Number register
(PCSNI), the particular card enters the configuration state. Otherwise, the card enters the
sleep state. This function assumes the PNP interface is not in the wait-for-key state. The
card select number can be from 1 to 255.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePnpKey

IwavePokeEEPROM iwutil.c

)XQFWLRQ

Writes data to the PNP serial EEPROM.
6\VWHP�&RQWURO�''.�)XQFWLRQV �����

AMD
6\QWD[

void IwavePokeEEPROM(BYTE *data)

5HPDUNV

IwavePokeEEPROM programs the contents of the serial EEPROM through the PNP Serial
EEPROM Control register (PSECI[3:0]). First, the function places the serial EEPROM in
direct-control mode (PSEENI[0]=1). Then, it writes the serial EEPROM starting at address
0 with the contents of the buffer pointed to by data. IwavePokeEEPROM assumes the
InterWave IC is in the PNP configuration state (a CSN has been assigned to the board).
This functions takes care of all the signaling and control of the serial EEPROM by
appropriately writing to PSECI[3:0]. See Sample 5-2 on page 5-24 for an example program
using this function.

Note: This function programs the serial EEPROM unit KM93C66 which is a 4K-bit
unit organized as 256x16. Compatible units can be programmed by this function.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePeekEEPROM , WriteEnable , WriteOPCode , ReadOPCode .

IwaveRealAddr iwutil.c

)XQFWLRQ

Translates the contents of a pair of synthesizer address registers into a real address.

6\QWD[

ADDRESS IwaveRealAddr(WORD high, WORD low, BYTE mode)

5HPDUNV

IwaveRealAddr translates the contents of a high (SAHI, SAEHI, SEAHI or SASHI) and low
(SALI, SASLI, SAELI or SEALI) pair of synthesizer address registers into a real address,
the actual address to local memory. The contents of the Synthesizer Address Control
register (SACI) in mode tells the function whether local memory is being addressed as 8-bit
or 16-bit data. The conversion from register or logical addresses to real addresses is based
on the formulas shown in Table 8-6 on page 8-8.

5HWXUQ�9DOXH

IwaveRealAddr returns a real local memory address.

IwaveRegisterDMA iwinit.c

)XQFWLRQ

Registers DMA structures with the DDK to establish an interface for InterWave DMA events.

6\QWD[

void IwaveRegisterDMA(DMA *dma1, DMA *dma2)
����� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
5HPDUNV

IwaveRegisterDMA registers DMA structures for an application requiring a DMA interface
to the InterWave IC. There are two possible DMA channels associated with the audio device
in the InterWave IC. The first channel corresponds to codec record DMA events and DMA
transfers between system memory and InterWave local memory. dma1 points to a DMA
structure related to DMA request services for that channel. The second channel
corresponds to codec playback DMA events. dma2 points to a DMA structure related to
interrupt request services for that channel. It is possible to combine or route all DMA sources
within the InterWave IC to trigger DMA requests through the first channel. The DDK takes
this into account when setting up the interface. If the application does not need a DMA
interface to the InterWave hardware, it should not call this function.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveRegisterIRQ , IwaveSetInterface

IwaveRegisterIRQ iwinit.c

)XQFWLRQ

Registers IRQ structures with the DDK to establish an interface for InterWave IRQ events.

6\QWD[

void IwaveRegisterIRQ(IRQ *irq1, IRQ *irq2)

5HPDUNV

IwaveRegisterIRQ registers IRQ structures for an application requiring an IRQ interface
to the InterWave IC. There are two possible IRQ channels associated with the audio device
in the InterWave IC. The first channel corresponds to interrupt events originating in the
codec, synthesizer, Sound Blaster and AdLib sections of the InterWave IC. irq1 points to
an IRQ structure related to interrupt request services for that channel. The second channel
corresponds to MIDI interrupt events. irq2 points to an IRQ structure related to interrupt
request services for that channel. It is possible to combine or route all interrupt sources
within the InterWave IC to trigger interrupt events through either the first or the second
channel only. The DDK takes this into account when setting up the interface. If the
application does not process interrupt events from the audio device, it should not call this
function.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveRegisterDMA , IwaveSetInterface

IwaveRegPeek iwutil.c

)XQFWLRQ

Reads an InterWave register.
6\VWHP�&RQWURO�''.�)XQFWLRQV �����

AMD
6\QWD[

WORD IwaveRegPeek(DWORD reg_name)

5HPDUNV

IwaveRegPeek reads the register specified in reg_name. The register is specified by using
a symbolic constant named after the actual register within the InterWave IC. To correctly
use this function, the program must use the mnemonics for register names defined in the
iwdefs.h header file. These mnemonics contain coded information used by the function to
properly access the desired register. An attempt to read from a write-only register returns
meaningless data.

5HWXUQ�9DOXH

IwaveRegPeek returns the value stored in any readable register.

6HH�$OVR

IwaveRegPoke

IwaveRegPoke iwutil.c

)XQFWLRQ

Writes to an InterWave register.

6\QWD[

void IwaveRegPoke(DWORD reg_name, WORD value)

5HPDUNV

IwaveRegPoke writes a value to the register specified in reg_name. To correctly use this
function, the program must use the mnemonics for register names defined in the iwdefs.h
header file. These mnemonics contain coded information used by the function to properly
access the desired register. This function does not guard against writing to read-only
registers. The program must ensure that the writes are to valid registers.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveRegPeek

IwaveResetIvt iwirq.c

)XQFWLRQ

Restores the addresses corresponding to the interrupts assigned to the synthesizer and
MIDI devices, thus restoring the system's Interrupt Vector Table (IVT) to its previous state.

6\QWD[

void IwaveResetIvt(void)
����� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
5HPDUNV

IwaveResetIvt restores the addresses corresponding to the interrupts assigned to the
synthesizer and MIDI devices, thus restoring the system's Interrupt Vector Table (IVT) to
its previous state. IwaveClose calls this function to de-install the IwaveSynthHandler and
IwaveMidiHandler functions.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveSetIvt

IwaveSetCallback iwirq.c

)XQFWLRQ

Registers a callback for interrupt events.

6\QWD[

PFV IwaveSetCallback(PVF handler, BYTE handle)

5HPDUNV

IwaveSetCallback installs or registers the callback function pointed to by handler for the
IRQ event specified in handle. It registers all callbacks in the iw variable. All callbacks are
set at start up time to point to a default callback function which simply executes a return.
This default setting prevents possible system crashes should spurious interrupts occur for
events without registered callbacks.

Set handle to one of the following symbolic constants:

■ PLAY_DMA_HANDLER for local memory DMA events (To local memory).

■ REC_DMA_HANDLER for local memory DMA events (From local memory).

■ MIDI_TX_HANDLER for MIDI transmit interrupt requests.

■ MIDI_RX_HANDLER for MIDI receive interrupt requests.

■ TIMER1_HANDLER for AdLib timer 1 interrupts.

■ TIMER2_HANDLER for AdLib timer 2 interrupts.

■ WAVE_HANDLER for interrupts caused by voices crossing wavetable boundaries.

■ VOLUME_HANDLER for interrupts caused by voices crossing volume boundaries.

■ CODEC_TIMER_HANDLER for codec timer interrupts.

■ CODEC_PLAY_HANDLER for codec play path interrupts.

■ CODEC_REC_HANDLER for codec record path interrupts.

5HWXUQ�9DOXH

IwaveSetCallback returns the address of the previous registered callback for the particular
type of event.
6\VWHP�&RQWURO�''.�)XQFWLRQV �����

AMD
IwaveSetInterface iwinit.c

)XQFWLRQ

Establishes a DMA and an IRQ interface to the InterWave IC-based hardware.

6\QWD[

void IwaveSetInterface(DMA *dma1, DMA *dma2, IRQ *irq1, IRQ *irq2)

5HPDUNV

IwaveSetInterface initializes and registers particular DMA and IRQ structures that are
intended to carry out DMA and IRQ handling operations between the system and the
InterWave IC-based sound board. The four arguments represent pointers to these
structures. IwaveSetInterface should be called after the call to IwaveOpen . If an
application does not need the services supported by one of the structures, then the
argument corresponding to that service should be set to NULL. If an application needs only
a DMA interface, it should call the IwaveRegisterDMA function. If an application needs
only an IRQ interface, it should call the IwaveRegisterIRQ function.

dma1 points to a DMA structure related to codec record transfers and to transfers between
system memory and local memory.

dma2 points to a DMA structure related to codec playback transfers.

irq1 points to an IRQ structure related to interrupt request services for the codec, the
synthesizer, and compatibility emulation.

irq2 points to an IRQ structure related to interrupt request services for the MIDI interface.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveRegisterDMA, IwaveRegisterIRQ

IwaveSetIvt iwirq.c

)XQFWLRQ

Revectors the IRQ lines assigned to the MIDI and synthesizer devices.

6\QWD[

void IwaveSetIvt(void)

5HPDUNV

IwaveSetIvt revectors the interrupt requests iw.synth_irq and iw.midi_irq respectively to
point to the IwaveSynthHandler and IwaveMidiHandler functions. The
IwaveRegisterIRQ function calls this function to install these two handlers.

5HWXUQ�9DOXH

None.
����� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
6HH�$OVR

IwaveResetIvt

IwaveSetVect iwirq.c

)XQFWLRQ

Specifies a new handler for a specified interrupt number in the Interrupt Vector Table (IVT).

6\QWD[

void IwaveSetVect(int int_no, PVI isr)

5HPDUNV

IwaveSetVect specifies a new handler for the interrupt specified in int_no in the Interrupt
Vector Table (IVT). isr contains the address for the new handler.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveGetVect

IwaveSynthHandler iwirq.c

)XQFWLRQ

The synthesizer interrupt request handler.

6\QWD[

static void interrupt IwaveSynthHandler(void)

5HPDUNV

IwaveSynthHandler is the interrupt handler for the interrupt requests originating in the
codec, synthesizer, and compatibility sections of the InterWave IC. This code takes over
immediately after the interrupt occurs. It sends an EOI instruction to the programmable
interrupt controllers (PICs) to allow further interrupts and then it calls a function that
eventually routes the request to the appropriate function.

6HH�$OVR

IwaveMidiHandler

IwaveUmaskIrqs iwirq.c

)XQFWLRQ

Enables IRQs at the programmable interrupt controllers (PICs).

6\QWD[

void IwaveUmaskIrqs(void)
6\VWHP�&RQWURO�''.�)XQFWLRQV �����

AMD
5HPDUNV

IwaveUmaskIrqs enables IRQs at the PICs by properly setting the mask register for the
particular levels to be enabled at the input to the controller. For this purpose, it issues the
appropriate OCW1. The interrupt levels enabled are those associated with iw.synth_irq
and iw.midi_irq.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveMaskIrqs

_peek iwutil.c

)XQFWLRQ

Reads an 8-bit hardware port and returns the value.

6\QWD[

BYTE _peek(PORT port)

5HPDUNV

_peek reads the 8-bit hardware port at address port.

5HWXUQ�9DOXH

_peek returns the 8-bit value read from the port.

_peekw iwutil.c

)XQFWLRQ

Reads a 16-bit hardware port and returns the value.

6\QWD[

WORD _peekw(PORT port)

5HPDUNV

_peekw reads the 16-bit hardware port at address port.

5HWXUQ�9DOXH

_peekw returns the 16-bit value from the port.

_poke iwutil.c

)XQFWLRQ

Writes a byte to an 8-bit hardware port.

6\QWD[

void _poke(PORT port, BYTE value)
����� 6\VWHP�&RQWURO�''.�)XQFWLRQV

AMD
5HPDUNV

_poke writes an 8-bit value to the hardware port at address port.

5HWXUQ�9DOXH

None.

_pokew iwutil.c

)XQFWLRQ

Writes a word to a 16-bit hardware port.

6\QWD[

void _pokew(PORT port, WORD value)

5HPDUNV

_pokew writes a 16-bit value to the hardware port at address port.

5HWXUQ�9DOXH

None.

ReadOPCode iwutil.c

)XQFWLRQ

Sends the read opcode to the PNP serial EEPROM.

6\QWD[

void ReadOPCode(void)

5HPDUNV

ReadOPCode sends the bit string that specifies a read operation (100) to the KM93C66
serial EEPROM. This code must precede the address bit string. IwavePeekEEPROM calls
ReadOPCode for each read.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePokeEEPROM , IwavePeekEEPROM , WriteEnable , WriteOPCode

ReadWaveHeader iwutil.c

)XQFWLRQ

Reads the header of a .WAV sound file.

6\QWD[

BOOL ReadWaveHeader(BYTE *fname, WAV *wav)
6\VWHP�&RQWURO�''.�)XQFWLRQV �����

AMD
5HPDUNV

ReadWaveHeader reads the header of the fname .WAV sound file and places the
information (sample rate, length of sound data, data width, etc.) inside the elements of a
structure pointed to by wav. This function can be used as part of a wave file player.

5HWXUQ�9DOXH

ReadWaveHeader returns TRUE if it succeeds and FALSE if it fails.

WriteEnable iwutil.c

)XQFWLRQ

Enables the write operation to the PNP serial EEPROM.

6\QWD[

void WriteEnable(void)

5HPDUNV

WriteEnable enables the write operation to the PNP serial EEPROM. The KM93C66
always powers up in a write-disabled state to protect itself against accidental writes. After
power-up, any write operation to the EEPROM must be preceded by a write enable.
IwavePokeEEPROM calls WriteEnable to make sure that all writes are successful. This
write-enabled condition is preserved until power is removed or the write disable instruction
is sent. To keep the code small, IwavePokeEEPROM does not issue a write disable
instruction.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePokeEEPROM , ReadEnable , WriteOPCode , ReadOPCode .

WriteOPCode iwutil.c

)XQFWLRQ

Sends the write opcode to the PNP serial EEPROM.

6\QWD[

void WriteOPCode(void)

5HPDUNV

WriteOPCode sends the bit string that specifies a write operation (101) to the KM93C66
serial EEPROM. This code must precede the address bit string. IwavePokeEEPROM calls
WriteOPCode for each write.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePokeEEPROM , IwavePeekEEPROM , WriteEnable , ReadOPCode .
����� 6\VWHP�&RQWURO�''.�)XQFWLRQV

CHAPTER
21 C
ODEC/MIXER DDK FUNCTIONS
IwaveCodecAccess iwcodec.c

)XQFWLRQ

Selects either programmed I/O or DMA to service both of the codec FIFOs.

6\QWD[

void IwaveCodecAccess(BYTE type)

5HPDUNV

IwaveCodecAccess selects either programmed I/O or DMA to service both the codec
record FIFO and codec playback FIFO.

Set type to one of the following symbolic constants:

■ DMA_ACCESS for DMA access

■ DMA_ACCESS|DMA_SIMPLEX for single-channel DMA access, where either record or
playback operation is allowed, but not both.

■ PIO_ACCESS for programmed I/O access.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePlayAccess , IwaveRecordAccess

IwaveCodecCnt iwcodec.c

)XQFWLRQ

Loads the codec sample counters.

6\QWD[

void IwaveCodecCnt(BYTE index, WORD cnt)

5HPDUNV

IwaveCodecCnt loads the codec sample counters with a value determined from cnt (the
total number of bytes comprising the samples) and the format of the data. The codec sample
counters are each made up of two 8-bit registers: the Upper Playback Count and Lower
Playback Count registers (CUPCTI and CLPCTI) for playback and the Upper Record Count
and Lower Record Count registers (CURCTI and CLRCTI) for record. IwaveCodecCnt
writes the lower byte first because writing the upper byte causes the full 16-bit count to be
loaded.
&RGHF�0L[HU�''.�)XQFWLRQV ����

AMD
The value loaded into the counters depends on the format of the data being transferred
through the codec, as determined from iw.cdatap.

index selects either the playback or record sample counter. Set this argument to one of the
following symbolic constants:

■ PLAY or _CLPCTI for the playback sample counter

■ REC or _CLRCTI for the record sample counter

These constants are defined in the iwdefs.h include file.

5HWXUQ�9DOXH

None.

IwaveCodecIrq iwcodec.c

)XQFWLRQ

Enables or disables the codec interrupts.

6\QWD[

void IwaveCodecIrq(BYTE mode)

5HPDUNV

IwaveCodecIrq enables or disables the codec interrupts. To enable the interrupts, it sets
the Global Interrupt Enable bit of the External Control register (CEXTI[1]) High, thus causing
all codec interrupt sources (CSR3I[6:4]) to pass onto the IRQ pin. To disable the interrupts,
it sets CEXTI[2] Low. IwaveCodecIrq clears any codec interrupt requests presently
pending before enabling or disabling interrupts.

To enable codec interrupts, set mode to CODEC_IRQ_ENABLE. To disable the interrupts,
set mode to ~CODEC_IRQ_ENABLE.

5HWXUQ�9DOXH

None.

IwaveCodecMode iwcodec.c

)XQFWLRQ

Specifies the codec mode of operation.

6\QWD[

void IwaveCodecMode(BYTE mode)

5HPDUNV

IwaveCodecMode specifies the codec mode of operation. The InterWave codec defaults
to mode 1 after reset. Modes 1 and 2 provide compatibility with the CS4231. Mode 3
provides enhanced features over the CS4231.

Set mode to one of the following symbolic constants:

■ CODEC_MODE1
���� &RGHF�0L[HU�''.�)XQFWLRQV

AMD
■ CODEC_MODE2

■ CODEC_MODE3

5HWXUQ�9DOXH

None.

IwaveCodecStatus iwcodec.c

)XQFWLRQ

Retrieves the contents of any of the codec status registers: CSR1R, CSR2I, or CSR3I.

6\QWD[

void IwaveCodecStatus(BYTE index)

5HPDUNV

IwaveCodecStatus retrieves the contents the codec status register specified in index.

Note: Reading CSR1R causes bits CSR3I[3:0] and CSR2I[7:6] to be cleared, if any
are set. If the application needs these bits, make sure they have been retrieved before
reading CSR1R.

Set index to one of the following symbolic constants:

■ CODEC_STATUS1

■ CODEC_STATUS2

■ CODEC_STATUS3

5HWXUQ�9DOXH

None.

IwaveCodecTrigger iwcodec.c

)XQFWLRQ

Enables the codec record path, the codec playback path, or both.

6\QWD[

void IwaveCodecTrigger(BYTE path)

5HPDUNV

IwaveCodecTrigger enables the codec record or codec playback path or both by setting
one or both of the Record Enable and Playback Enable bits of the Configuration Register
1 (CFIG1I[1:0]), thereby causing the flow of data through the DACs or ADCs. These bits
are not write-protected.

Set path to one of the following symbolic constants: RECORD or PLAYBACK. To enable both
paths, OR both constants together (RECORD|PLAYBACK).

5HWXUQ�9DOXH

None.
&RGHF�0L[HU�''.�)XQFWLRQV ����

AMD
IwaveDacAtten iwcodec.c

)XQFWLRQ

Specifies the attenuation level for the left or right DAC input.

6\QWD[

void IwaveDacAtten(BYTE level, BYTE index)

5HPDUNV

IwaveDacAtten specifies the attenuation for the left or right DAC input by writing level to
the DAC Attenuation Select field of the Left Playback DAC Control or Right Playback DAC
Control registers (CLDACI[5:0] or CRDACI[5:0]), as specified by index.

The value of level can range from 0–63 representing attenuation from 0 dB to –94.5 dB in
steps of 1.5 dB.

Set index to one of the following symbolic constants: LEFT_DAC or RIGHT_DAC.

5HWXUQ�9DOXH

None.

IwaveDataFormat iwcodec.c

)XQFWLRQ

Specifies the playback or record data formats.

6\QWD[

void IwaveDataFormat(BYTE data, BYTE index)

5HPDUNV

IwaveDataFormat specifies the playback or record data formats in the Playback Data
Format register (CPDFI) or the Record Data Format register (CRDFI). It writes data, which
contains the data format and whether the data is stereo, to CPDFI[7:4] or CRDFI[7:4],
depending on the value of index.

Set data to one of the following symbolic constants:

BIT8_ULAW µ-Law

BIT8_ALAW A-Law

BIT8_LINEAR
8-bit unsigned

BIT16_BIG 16-bit signed big endian

BIT16_LITTLE
16-bit signed little endian

IMA_ADPCM IMA compliant ADPCM

To select stereo data OR in the mnemonic STEREO. The default is mono data.

Set reg to one of the following symbolic constants:
���� &RGHF�0L[HU�''.�)XQFWLRQV

AMD
_CPDFI playback

_CRDFI record

Note: Remember that in mode 1, both the playback and record data formats are
specified in CPDFI. In modes 2 and 3, the playback data format is specified in CPDFI
and the record data format is specified in CRDFI.

([DPSOH

To set the record data format to 8-bit µ-law stereo:

IwaveDataFormat(BIT8_ULAW | STEREO, _CRDFI)

5HWXUQ�9DOXH

None.

IwaveDisableLineIn iwcodec.c

)XQFWLRQ

Disables the stereo line inputs.

6\QWD[

void IwaveDisableLineIn(void)

5HPDUNV

IwaveDisableLineIn disables the stereo line inputs, both left and right channels, by setting
the Enable Line In bit of the Mix Control register (UMCR[0]) High.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveEnableLineIn

IwaveDisableMicIn iwcodec.c

)XQFWLRQ

Disables the stereo microphone inputs.

6\QWD[

void IwaveDisableMicIn(void)

5HPDUNV

IwaveDisableMicIn disables the stereo microphone inputs, both left and right channels,
by setting the Enable Stereo Microphone Input bit of the Mix Control register (UMCR[2])
Low.

5HWXUQ�9DOXH

None.
&RGHF�0L[HU�''.�)XQFWLRQV ����

AMD
6HH�$OVR

IwaveEnableMicIn

IwaveDisableOutput iwcodec.c

)XQFWLRQ

Disables the stereo line outputs.

6\QWD[

void IwaveDisableOutput(void)

5HPDUNV

IwaveDisableOutput disables the stereo line outputs, both left and right channels, by
setting the Enable Line Out bit of the Mix Control register (UMCR[1]) High.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveEnableOutput

IwaveEnableLineIn iwcodec.c

)XQFWLRQ

Enables the stereo line inputs.

6\QWD[

void IwaveDisableLineIn(void)

5HPDUNV

IwaveEnableLineIn enables the stereo line inputs, both left and right channels, by setting
the Enable Line In bit of the Mix Control register (UMCR[0]) Low.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveDisableLineIn

IwaveEnableMicIn iwcodec.c

)XQFWLRQ

Enables the stereo microphone inputs.

6\QWD[

void IwaveEnableMicIn(void)
���� &RGHF�0L[HU�''.�)XQFWLRQV

AMD
5HPDUNV

IwaveEnableMicIn enables the stereo microphone inputs, both left and right channels, by
setting the Enable Stereo Microphone Input bit of the Mix Control register (UMCR[2]) High.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveDisableMicIn

IwaveEnableOutput iwcodec.c

)XQFWLRQ

Enables the stereo line outputs.

6\QWD[

void IwaveEnableOutput(void)

5HPDUNV

IwaveEnableOutput enables the stereo line outputs, both left and right channels, by setting
the Enable Line Out bit of the Mix Control register (UMCR[1]) Low.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveDisableOutput

IwaveInputGain iwcodec.c

)XQFWLRQ

Specifies the gain level for the left or right ADC source.

6\QWD[

void IwaveInputGain(BYTE index, BYTE gain)

5HPDUNV

IwaveInputGain specifies the gain level for the left or right ADC input source by writing
gain to the ADC Input Gain Select field of the Left ADC Input Control or Right ADC Input
Control register (CLICI[3:0] or CRICI[3:0]), as specified in index.

Set index to either LEFT_SOURCE (or _CLICI) or RIGHT_SOURCE (or _CRICI).

The value of level can range from 0–15 representing 0 dB to 22.5 dB in steps of 1.5 dB.

5HWXUQ�9DOXH

None.
&RGHF�0L[HU�''.�)XQFWLRQV ����

AMD
IwaveInputSource iwcodec.c

)XQFWLRQ

Selects the input source for the left or right ADC.

6\QWD[

void IwaveInputSource(BYTE index, BYTE source)

5HPDUNV

IwaveInputSource selects one of several possible sources to the left or right ADC by writing
source to the ADC Source Select field of the Left ADC Input Control or Right ADC Input
Control registers (CLICI[7:6] or CRICI[7:6]), as specified by index.

Set index to one of the following symbolic constants: LEFT_SOURCE or RIGHT_SOURCE.

Set source to one of the following symbolic constants:

■ LINE_IN

■ AUX1_IN

■ MIC_IN

■ MIX_IN

5HWXUQ�9DOXH

None.

IwaveLineLevel iwcodec.c

)XQFWLRQ

Specifies the level of attenuation or gain for inputs or outputs.

6\QWD[

void IwaveLineLevel(BYTE level, BYTE index)

5HPDUNV

IwaveLineLevel specifies the attenuation or gain for the following InterWave inputs or
outputs by writing level to a register indexed by index:

■ the auxiliary 1/synthesizer line input (left or right)

■ the auxiliary2 line input (left or right)

■ the left or right line output

■ the left or right line input

level specifies either an attenuation level or a gain level depending on its value. The value
of level can range from 0–31 and represents the values +12 dB (0) to –34.5 dB (31) in steps
of 1.5dB.

Set index to one of the following symbolic constants:

■ _CLAX1I or LEFT_AUX1_INPUT (all modes)
���� &RGHF�0L[HU�''.�)XQFWLRQV

AMD
■ _CRAX1I or RIGHT_AUX1_INPUT (all modes)

■ _CLAX2I or LEFT_AUX2_INPUT (all modes)

■ _CRAX2I or RIGHT_AUX2_INPUT (all modes)

■ _CLOAI or LEFT_LINE_OUT (mode 3 only)

■ _CROAI or RIGHT_LINE_OUT (mode 3 only)

■ _CLLICI or LEFT_LINE_IN (modes 2 and 3)

■ _CRLICI or RIGHT_LINE_IN (modes 2 and 3)

■ _CLMICI or LEFT_MIC_IN (mode 3 only)

■ _CRMICI or RIGHT_MIC_IN (mode 3 only)

5HWXUQ�9DOXH

None.

IwaveLineMute iwcodec.c

)XQFWLRQ

Mutes or unmutes the line inputs or outputs.

6\QWD[

void IwaveLineMute(BYTE state, BYTE index)

5HPDUNV

IwaveLineMute mutes or unmutes one of the following inputs or outputs by writing the
state (ON for muting or OFF for unmuting) to a register indexed by index:

■ the auxiliary 1/synthesizer line input (left or right)

■ the auxiliary 2 line input (left or right)

■ the left or right line output

■ the left or right line input

Set index to one of the following symbolic constants:

■ _CLAX1I or LEFT_AUX1_INPUT (all modes)

■ _CRAX1I or RIGHT_AUX1_INPUT (all modes)

■ _CLAX2I or LEFT_AUX2_INPUT (all modes)

■ _CRAX2I or RIGHT_AUX2_INPUT (all modes)

■ _CLOAI or LEFT_LINE_OUT (mode 3 only)

■ _CROAI or RIGHT_LINE_OUT (mode 3 only)

■ _CLLICI or LEFT_LINE_IN (modes 2 and 3)

■ _CRLICI or RIGHT_LINE_IN (modes 2 and 3)

■ _CLMICI or LEFT_MIC_IN (mode 3 only)

■ _CRMICI or RIGHT_MIC_IN (mode 3 only)
&RGHF�0L[HU�''.�)XQFWLRQV ����

AMD
5HWXUQ�9DOXH

None.

IwaveMonoAtten iwcodec.c

)XQFWLRQ

Specifies the attenuation level for the mono input.

6\QWD[

void IwaveMonoAtten(BYTE level)

5HPDUNV

IwaveMonoAtten specifies the attenuation level for the mono input by writing level to the
Mono Input Attenuation field of the Mono Input and Output Control register (CMONOI[3:0]).

The value of level can range from 0–15 representing attenuation from 0 dB to 45 dB in
steps of 3 dB.

5HWXUQ�9DOXH

None.

IwaveMonoMute iwcodec.c

)XQFWLRQ

Mutes or unmutes the InterWave mono input or output.

6\QWD[

void IwaveMonoMute(BYTE state, BYTE io)

5HPDUNV

IwaveMonoMute mutes or unmutes the mono input or output by writing the state (ON or
OFF) to the Mono Input Mute Enable or Mono Output Mute Enable bits of the Mono Input
and Output Control register (CMONOI[7:6]), as specified in io (MONO_OUTPUT or
MONO_INPUT).

5HWXUQ�9DOXH

None.

IwavePlayAccess iwcodec.c

)XQFWLRQ

Selects either programmed I/O or DMA to service the codec playback FIFO.

6\QWD[

void IwavePlayAccess(BYTE type)
����� &RGHF�0L[HU�''.�)XQFWLRQV

AMD
5HPDUNV

IwavePlayAccess selects either programmed I/O or DMA to service the codec playback
FIFO.

Set type to one of the following symbolic constants:

■ DMA_ACCESS for DMA access

■ PIO_ACCESS for programmed I/O access.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveCodecAccess , IwaveRecordAccess

IwavePlayData iwcodec.c

)XQFWLRQ

Sets up and starts a DMA transfer of data through the codec playback FIFO.

6\QWD[

FLAG IwavePlayData(WORD size, BYTE wait, BYTE type)

5HPDUNV

IwavePlayData sets up and starts a DMA transfer of data through the codec playback path.
It programs the sample counters and makes sure that DMA cycles are selected. It then
calls the IwaveCodecTrigger function to start the transfer.

size specifies the size in bytes of the amount of data to transfer.

Set wait to TRUE to cause this function to return only after the transfer is completed. Set it
to FALSE to return right away.

Set type to one of the following symbolic constants:

DMA_READ Transfer a specific amount of data one time.

AUTO_READ Repeat the transfer over and over. When the transfer completes, the
controller resets its base address to the start of the DMA buffer and starts
the transfer again.

5HWXUQ�9DOXH

IwavePlayData returns DMA_BUSY if the DMA channel is in use or DMA_OK if the transfer
was started or completed successfully.

6HH�$OVR

IwaveRecordData, IwaveStopDma
&RGHF�0L[HU�''.�)XQFWLRQV �����

AMD
IwaveRecordAccess iwcodec.c

)XQFWLRQ

Selects either programmed I/O or DMA to service the codec record FIFO.

6\QWD[

void IwaveRecordAccess(BYTE type)

5HPDUNV

IwaveRecordAccess selects either programmed I/O or DMA to service the codec record
FIFO.

Set type to one of the following symbolic constants:

■ DMA_ACCESS for DMA access

■ PIO_ACCESS for programmed I/O access.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveCodecAccess , IwavePlayAccess

IwaveRecordData iwcodec.c

)XQFWLRQ

Sets up and starts a DMA transfer of data through the codec record FIFO.

6\QWD[

FLAG IwaveRecordData(WORD size, BYTE wait, BYTE type)

5HPDUNV

IwaveRecordData sets up and starts a DMA transfer of data through the codec record
path. It programs the sample counters and makes sure that DMA cycles are selected. It
then calls the IwaveCodecTrigger function to start the transfer.

size specifies the size in bytes of the amount of data to transfer.

Set wait to TRUE to cause this function to return only after the transfer is completed. Set it
to FALSE to return right away.

Set type to one of the following symbolic constants:

DMA_READ Transfer a specific amount of data one time.

AUTO_READ Repeat the transfer over and over. When the transfer completes, the
controller resets its base address to the start of the DMA buffer and starts
the transfer again.
����� &RGHF�0L[HU�''.�)XQFWLRQV

AMD
5HWXUQ�9DOXH

IwaveRecordData returns DMA_BUSY if the DMA channel is in use or DMA_OK if the transfer
was started or completed successfully.

6HH�$OVR

IwavePlayData, IwaveStopDma

IwaveSetFrequency iwcodec.c

)XQFWLRQ

Specifies the playback or record sample frequency.

6\QWD[

void IwaveSetFrequency(BYTE index, WORD freq)

5HPDUNV

IwaveSetFrequency specifies the playback or record sample frequency by writing
appropriate values to the Clock Divider Select and Crystal Select fields of the Playback
Data Format or Record Data Format registers (CPDFI[3:0] or CRDFI[3:0]), as specified in
index. IwaveSetFrequency uses the available frequency closest to the Hertz value in freq.

Set index to one of the following symbolic constants: _CPDFI or _CRDFI.

Note: In modes 1 and 2, CPDFI controls both the playback and record sampling
rates. In mode 3, CPDFI controls the playback rate and CRDFI controls the record rate.

5HWXUQ�9DOXH

None.

IwaveSetTimer iwcodec.c

)XQFWLRQ

Loads a value into the codec timer.

6\QWD[

void IwaveSetTimer(WORD cnt)

5HPDUNV

IwaveSetTimer loads the codec timer counter by writing the upper byte of cnt into the
Upper Timer register (CUTIMI) and then writing the lower byte into the Lower Timer register
(CLTIMI). Writing to CLTIMI loads the internal counter. The codec timer has a 10-µs
resolution. When the timer starts, the counter decrements to zero at which time an interrupt
is generated (if enabled). The internal counter is reloaded on the next clock.

Note: Reading these registers returns the value initially loaded into the registers,
not the current value of the counter.

5HWXUQ�9DOXH

None.
&RGHF�0L[HU�''.�)XQFWLRQV �����

AMD
6HH�$OVR

IwaveTimerStart , IwaveTimerStop

IwaveStopDma iwcodec.c

)XQFWLRQ

Stops an active DMA transfer from the record FIFO or to the playback FIFO.

6\QWD[

void IwaveStopDma(BYTE path)

5HPDUNV

IwaveStopDma stops an active DMA transfer from the record FIFO or to the playback FIFO
by disabling both the path and the DMA channel.

Set path to either PLAYBACK or RECORD.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveRecordData , IwavePlayData

IwaveTimerStart iwcodec.c

)XQFWLRQ

Starts the codec timer.

6\QWD[

void IwaveTimerStart(void)

5HPDUNV

IwaveTimerStart starts the codec timer by setting the Timer Enable bit of the Configuration
Register 2 (CFIG2I[6]) High.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveSetTimerStop , IwaveTimerStop

IwaveTimerStop iwcodec.c

)XQFWLRQ

Stops the codec timer.

6\QWD[

void IwaveTimerStop(void)
����� &RGHF�0L[HU�''.�)XQFWLRQV

AMD
5HPDUNV

IwaveTimerStop stops the codec timer by setting the Timer Enable bit of the Configuration
Register 2 (CFIG2I[6]) Low. Setting this bit Low prevents the codec counter from
decrementing and being reloaded.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveSetTimer , IwaveTimerStart
&RGHF�0L[HU�''.�)XQFWLRQV �����

AMD
����� &RGHF�0L[HU�''.�)XQFWLRQV

CHAPTER
22 S
YNTHESIZER DDK FUNCTIONS
IwaveRampVolume iwvoice.c

)XQFWLRQ

Ramps the volume of a voice.

6\QWD[

void IwaveRampVolume(BYTE voice, WORD start, WORD end,
BYTE rate, BYTE mode)

5HPDUNV

IwaveRampVolume ramps the volume of a specified voice. The voice argument can range
from 0–31 (0 is voice 1). Specify the start volume level, the end volume level, a rate and
increment, and a volume looping mode.

The start and end values can range from 0-4095.

rate contains two pieces of information. Bits 5–0 specify the increment to be added to or
subtracted from the volume level. Bits 7–6 control the rate at which this increment is added
or subtracted. For more information, see “SVRI—Synthesizer Volume Rate” on page 14-10.
To select a rate OR in one of the following symbolic constants:

VOLUME_RATE0
Adds or subtracts the increment value to the volume level every frame.

VOLUME_RATE1
Adds or subtracts one eighth of the increment value to the volume every
frame.

VOLUME_RATE2
Adds or subtracts one eighth of the increment value to the volume every
eighth frame.

VOLUME_RATE3
Adds or subtracts one eighth of the increment value to the volume every
64th frame.

The increment value can range from 0–63. For example, to increment the volume by four
every eighth frame, set rate to VOLUME_RATE2|32. VOLUME_RATE0 is the default rate.

To specify continuous playback, set mode to VC_ROLLOVER or 0. Specify decreasing
volume ramping by ORing in VC_DIRECT, but be aware that the function automatically
selects this mode if start is greater than end.

5HWXUQ�9DOXH

None.
6\QWKHVL]HU�''.�)XQFWLRQV ����

AMD
6HH�$OVR

IwaveSetVolume , IwaveReadVolume

IwaveReadVoice iwvoice.c

)XQFWLRQ

Returns the real local memory address from which a playing voice is currently fetching data.

6\QWD[

ADDRESS IwaveReadVoice(BYTE voice)

5HPDUNV

IwaveReadVoice returns the real local memory address from which a playing voice is
currently fetching data. The voice argument can range from 0–31 (0 is voice 1).

5HWXUQ�9DOXH

The real local memory address from which a playing voice is currently fetching data.

IwaveReadVolume iwvoice.c

)XQFWLRQ

Returns the current looping volume value for a voice.

6\QWD[

WORD IwaveReadVolume(BYTE voice)

5HPDUNV

IwaveReadVolume returns the current volume level for the specified voice as reflected in
the Synthesizer Volume Level register (SVLI[15:4]). The voice argument can range from
0–31 (0 is voice 1).

5HWXUQ�9DOXH

IwaveReadVolume returns the volume level for the voice.

6HH�$OVR

IwaveSetVolume

IwaveReadyVoice iwvoice.c

)XQFWLRQ

Prepares a selected voice for playback. It does not start the voice.

6\QWD[

BYTE IwaveReadyVoice(BYTE voice, ADDRESS begin, ADDRESS end,
ADDRESS fetch, BYTE mode)
���� 6\QWKHVL]HU�''.�)XQFWLRQV

AMD
5HPDUNV

IwaveReadyVoice prepares a selected voice for playback, but does not start the voice
playing. The voice argument can range from 0–31 (0 is voice 1). Specify the width of the
sample data in mode. If the boundary address specified in begin contains a larger value
than the end address, wavetable addressing is set to decrement from the begin address
towards the end address. Otherwise, the addressing increments from begin to end. The
direction of addressing is reflected in the return value. Specify the address where the
synthesizer starts fetching sample data in fetch. The begin, end, and fetch addresses must
all lie within the same 4MB local memory bank; that is, bits 23–22 of these addresses must
be the same. Otherwise, the results are unpredictable.

Set mode to VC_DATA_WIDTH if the sample data is 16-bit data. Otherwise, set it to 0 or
FALSE.

5HWXUQ�9DOXH

IwaveReadyVoice returns the value specified in mode if the synthesizer address is set to
increment, or mode|VC_DIRECT if address decrementing has been turned on.

IwaveSetLoopMode iwvoice.c

)XQFWLRQ

Specifies the looping mode for both addressing and volume of a voice.

6\QWD[

void IwaveSetLoopMode(BYTE voice, BYTE amode, BYTE vmode)

5HPDUNV

IwaveSetLoopMode specifies the looping mode for both address (amode) and volume
(vmode) of the specified voice by writing to the Synthesizer Address Control and
Synthesizer Volume Control registers (SACI and SVCI). The voice argument can range
from 0–31 (0 is voice 1). The function also enables address and volume boundary interrupts.
Any features not enabled by the call to this function are disabled.

Use amode to specify the following attributes of address looping:

Data Width To specify 16-bit data, OR in the symbolic constant VC_DATA_WIDTH.
Otherwise, 8-bit data is specified.

Direction To specify decreasing wavetable addressing, OR in the constant
VC_DIRECT.

Enable Looping
To enable address looping, OR in the symbolic constant VC_LOOP_ENABLE.
Otherwise, looping is disabled.

Enable Bidirectional Looping
To enable bidirectional address looping, OR in the symbolic constant
VC_BI_LOOP.

Enable Wavetable IRQ
To enable interrupts when an address boundary is crossed, OR in the
symbolic constant VC_IRQ_ENABLE.

Use vmode to specify the following attributes of volume looping:
6\QWKHVL]HU�''.�)XQFWLRQV ����

AMD
Enable Continuous Play
To specify 16-bit data, OR in the symbolic constant VC_ROLLOVER.
Otherwise, 8-bit data is specified.

Direction To specify decreasing volume ramp, OR in the constant VC_DIRECT.

Enable Looping
To enable volume looping, OR in the symbolic constant VC_LOOP_ENABLE.
Otherwise, looping is disabled.

Enable Bidirectional Looping
To enable bidirectional volume looping, OR in the symbolic constant
VC_BI_LOOP.

Enable Volume IRQ
To enable interrupts when a volume boundary is crossed, OR in the symbolic
constant VC_IRQ_ENABLE.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveReadyVoice

IwaveSetVoiceEnd iwvoice.c

)XQFWLRQ

Specifies a new local memory end boundary address for a voice.

6\QWD[

void IwaveSetVoiceEnd(BYTE voice, ADDRESS local)

5HPDUNV

IwaveSetVoiceEnd specifies a new real local memory end boundary address for a
particular voice. The voice argument can range from 0–31 (0 is voice 1).

This function can be used in conjunction with the IwaveSetLoopMode function to play a
sampled decay. Set the new end boundary with IwaveSetVoiceEnd and turn off looping
with IwaveSetLoopMode so the synthesizer accesses the wavetable data after the end
boundary.

5HWXUQ�9DOXH

None.

IwaveSetVoicePlace iwvoice.c

)XQFWLRQ

Specifies the local memory address location from where a voice fetches data.

6\QWD[

void IwaveSetVoicePlace(BYTE voice, DWORD local)
���� 6\QWKHVL]HU�''.�)XQFWLRQV

AMD
5HPDUNV

IwaveSetVoicePlace specifies the address local in local memory where a voice fetches
data from to a new position. The voice argument can range from 0–31 (0 is voice 1). Every
voice currently fetching data from memory is summed into the output even if the voice is
not running. Pops in the audio may result if a voice's fetching position is set to a location
with a significant value.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveReadVoice

IwaveSetVolume iwvoice.c

)XQFWLRQ

Specifies the current looping volume value for a voice.

6\QWD[

void IwaveSetVolume(BYTE voice, WORD volume)

5HPDUNV

IwaveSetVolume specifies the current volume level for the specified voice to be written to
the Synthesizer Volume Level register (SVLI[15:4]).The voice argument can range from
0–31 (0 is voice 1).

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveReadVolume

IwaveStartVoice iwvoice.c

)XQFWLRQ

Starts the voice.

6\QWD[

void IwaveStartVoice(BYTE voice)

5HPDUNV

IwaveStartVoice starts the specified voice playing by setting the Stop 1 and Stop 0 bits of
the Synthesizer Voice Control register (SACI[1:0]) Low. The voice argument can range
from 0–31 (0 is voice 1). IwaveStartVoice assumes that the characteristics of the voice
have already been programmed.

5HWXUQ�9DOXH

None.
6\QWKHVL]HU�''.�)XQFWLRQV ����

AMD
IwaveStopVoice iwvoice.c

)XQFWLRQ

Stops the output of a voice.

6\QWD[

void IwaveStopVoice(BYTE voice)

5HPDUNV

IwaveStopVoice stops the output of a particular voice by stopping any volume looping and
then preventing the synthesizer from fetching any more samples from local memory. It also
disables the voice’s ability to generate a wavetable interrupt. The voice argument can range
from 0–31 (0 is voice 1).

([DPSOH

To stop voice 23:

IwaveStopVoice(22)

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveStopVolume

IwaveStopVolume iwvoice.c

)XQFWLRQ

Stops the volume looping for a voice.

6\QWD[

void IwaveStopVolume(BYTE voice)

5HPDUNV

IwaveStopVolume stops the volume looping component of a particular voice by setting
the Stop 1 and Stop 0 bits of the Synthesizer Voice Control register (SVCI[1:0]) High. The
voice argument can range from 0–31 (0 is voice 1).

([DPSOH

To stop the volume looping component of voice 23:

IwaveStopVolume(22)

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveStopVoice
���� 6\QWKHVL]HU�''.�)XQFWLRQV

AMD
IwaveSynthGlobal iwvoice.c

)XQFWLRQ

Controls the global mode of operation of the synthesizer (affects all voices).

6\QWD[

void IwaveSynthGlobal(BYTE mode, BOOL state)

5HPDUNV

IwaveSynthGlobal controls the global modes of operation of the synthesizer which affects
all voices. mode specifies the mode or modes of operation and state specifies whether to
turn the modes ON or OFF. You can enable or disable one or more modes at the same time,
but you can not both enable and disable a particular mode at the same time. To turn on or
off only Enhanced mode, consider using the IwaveSynthMode function instead.

Set mode to one of the following symbolic constants:

■ ENH_MODE

■ ENABLE_LFOS

■ NO_WAVE_TABLE

■ ENH_MODE|ENABLE_LFOS

■ ENH_MODE|ENABLE_LFOS|NO_WAVE_TABLE

([DPSOHV

To turn on Enhanced mode:

 IwaveSynthGlobal(ENH_MODE, ON)

To enable Enhanced mode and all LFOS:

 IwaveSynthGlobal(ENH_MODE|ENABLE_LFOS, ON)

To disable Enhanced mode (enables GUS-Compatibility mode):

IwaveSynthGlobal(ENH_MODE, OFF)

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveSynthMode

IwaveSynthMode iwvoice.c

)XQFWLRQ

Switches the InterWave IC between GUS-Compatibility mode and Enhanced mode.

6\QWD[

void IwaveSynthMode(BYTE mode)
6\QWKHVL]HU�''.�)XQFWLRQV ����

AMD
5HPDUNV

IwaveSynthMode switches the InterWave IC between GUS-Compatibility mode and
Enhanced mode and sets the smode member of the iw variable. mode should be set to
the symbolic constant GUS_MODE or ENH_MODE. If the application uses the DDK memory
management function to manage local memory, switching modes invalidates the current
memory-management structure. After switching modes, reinitialize DRAM by calling
IwaveMemInit .

5HWXUQ�9DOXH

None.

IwaveVoiceFreq iwvoice.c

)XQFWLRQ

Specifies the sampling frequency of a voice in GUS-Compatibility mode.

6\QWD[

void IwaveVoiceFreq(BYTE voice, DWORD freq)

5HPDUNV

IwaveVoiceFreq specifies the sampling frequency of the specified voice by writing freq to
the Synthesizer Frequency Control register (SFCI). The voice argument can range from
0–31 (0 is voice 1). SFCI has two fields: SFCI[15:10] is an integer part indicating how many
times faster than it was recorded to play the sample data. SFCI[9:0] is a fractional part that
allows more resolution for the frequency (sample interpolation). SFCI[0] is not available in
GUS-Compatibility mode. Use this function in GUS-Compatibility-mode applications.
Otherwise, use the IwaveVoicePitch function for less code.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveVoicePitch

IwaveVoicePan iwvoice.c

)XQFWLRQ

Specifies a voice’s position in the stereo field.

6\QWD[

void IwaveVoicePan(BYTE voice, WORD right, WORD left)

5HPDUNV

IwaveVoicePan specifies the stereo position of a voice by writing to the Synthesizer Right
Offset and Synthesizer Left Offset registers (SROI and SLOI). The voice argument can
range from 0–31 (0 is voice 1).

When the Offset Enable bit of the Synthesizer Mode Select register (SMSI[5]) is Low, the
GUS-compatible pan mode is in effect and SROI[11:8] controls both the left and right stereo
���� 6\QWKHVL]HU�''.�)XQFWLRQV

AMD
offsets. In this mode, right can range from 0h–1Fh, with 0 placing the voice full left and 1Fh
placing it full right. left is ignored.

When SMSI[5] is High, the enhanced offset mode is in effect and SROI[15:4] and SLOI[15:4]
control the right and left offsets respectively. In this mode, right and left can each range
from 0h–0FFFh.

For more information, see “Stereo Positioning—Offset and Pan” on page 7-19.

5HWXUQ�9DOXH

None.

IwaveVoicePitch iwvoice.c

)XQFWLRQ

Specifies the sampling frequency of a voice in Enhanced mode.

6\QWD[

void IwaveVoicePitch(BYTE voice, DWORD freq)

5HPDUNV

IwaveVoicePitch specifies the sampling frequency of the specified voice by writing freq to
the Synthesizer Frequency Control register (SFCI). The voice argument can range from
0–31 (0 is voice 1). SFCI has two fields: SFCI[15:10] is an integer part indicating how many
times faster than it was recorded to play the sample data. SFCI[9:0] is a fractional part that
allows more resolution for the frequency (sample interpolation). SFCI[0] is not available in
GUS-Compatibility mode. Use this function in Enhanced-mode applications only.
Otherwise, use the IwaveVoiceFreq function.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveVoiceFreq .
6\QWKHVL]HU�''.�)XQFWLRQV ����

AMD
����� 6\QWKHVL]HU�''.�)XQFWLRQV

CHAPTER
23 L
OCAL MEMORY CONTROL DDK FUNCTIONS
IwaveDmaCtrl iwmem.c

)XQFWLRQ

Prepares the DMA controller on the PC for an impending DMA transfer.

6\QWD[

FLAG IwaveDmaCtrl(DMA *dma, WORD size)

5HPDUNV

IwaveDmaCtrl readies the DMA controller on the PC for an impending DMA transfer of
size bytes and initializes the DMA structure pointed to by dma, which must have been
properly initialized by a call to the IwaveRegisterDMA function. It then calls the
IwaveDmaPgm function to program the DMA controller. It does not start the transfer.

5HWXUQ�9DOXH

IwaveDmaCtrl returns DMA_OK if it succeeds or ~DMA_OK if it fails.

6HH�$OVR

IwaveDmaPage , IwaveDmaXfer , IwaveDmaNext , IwaveDmaIleaved

IwaveDmaIleaved iwmem.c

)XQFWLRQ

Programs the InterWave IC for an interleaved DMA transfer and starts the transfer.

6\QWD[

FLAG IwaveDmaIleaved(DMA *dma, WORD ctrl, BYTE tracks, WORD size)

5HPDUNV

IwaveDmaIleaved programs the InterWave IC for an interleaved DMA transfer of size bytes
for a specified number of tracks and initializes the DMA structure pointed to by dma, which
must have been properly initialized by a call to the IwaveRegisterDMA function. The tracks
argument can range from 0–31. It writes the LMC DMA Interleaved Control register (LDICI)
and the LMC DMA Interleaved Base Address register (LDIBI). The local memory base
address must be aligned to a 256-byte boundary. This function starts the DMA transfer.

Set ctrl to one of the following symbolic constants:

■ 0 for 8-bit data with no MSB inversion.

■ IDMA_INV for 8-bit data with MSB inverted.

■ IDMA_WIDTH_16 for 16-bit data with no MSB inversion.
/RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV ����

AMD
■ IDMA_INV|IDMA_WIDTH_16 for 16-bit data with MSB inverted.

5HWXUQ�9DOXH

IwaveDmaIleaved returns DMA_OK if it succeeds or ~DMA_OK if it fails.

6HH�$OVR

IwaveDmaPage , IwaveDmaXfer , IwaveDmaNext , IwaveDmaCtrl

IwaveDmaMalloc iwmem.c

)XQFWLRQ

Allocates memory that lies within a DMA page.

6\QWD[

void far *IwaveDmaMalloc(WORD buffsize)

5HPDUNV

IwaveDmaMalloc allocates buffsize bytes of memory that lies within a DMA page in system
memory. The buffsize argument can be up to 64 Kbytes (a DMA page). This utility is provided
so that applications can perform DMA transfers with the DMA controller operating in
auto-initialization mode. Use this function only if allocating space for this type of transfer;
otherwise, use the regular routines that come with your compiler.

5HWXUQ�9DOXH

IwaveDmaMalloc returns NULL if it fails to allocate the buffer. Otherwise, it returns a valid
pointer.

6HH�$OVR

IwaveAllocDOS , IwaveFreeDOS

IwaveDmaNext iwmem.c

)XQFWLRQ

If the data to be transferred crosses over one DMA page in system memory, the DMA
handler calls this function to send the data in the second DMA page.

6\QWD[

void IwaveDmaNext(DMA *dma)

5HPDUNV

If the data to be DMA transferred crosses over one DMA page in system memory, the DMA
handler calls IwaveDmaNext to send the data in the second DMA page. The possibility
exists that a DMA buffer may cross the boundary between two contiguous DMA pages. in
such a case, the DMA transfer is automatically split into two transfers: one for the data in
the first page and another for the data in the second page. The DMA structure pointed to
by dma must have been properly initialized by a call to the IwaveRegisterDMA function.

5HWXUQ�9DOXH

None.
���� /RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV

AMD
IwaveDmaPage iwmem.c

)XQFWLRQ

Sets up the InterWave IC and then initiates the transfer of up to one DMA page (64 Kbytes)
to or from local memory.

6\QWD[

FLAG IwaveDmaPage(DMA *dma, WORD size)

5HPDUNV

IwaveDmaPage programs the InterWave IC and then initiates the transfer of up to one
DMA page to or from local memory. The DMA structure pointed to by dma must have been
properly initialized by a call to the IwaveRegisterDMA function.

5HWXUQ�9DOXH

IwaveDmaPage returns DMA_OK if it succeeds or ~DMA_OK if it fails.

6HH�$OVR

IwaveDmaIleaved , IwaveDmaXfer , IwaveDmaNext , IwaveDmaCtrl

IwaveDmaPgm iwmem.c

)XQFWLRQ

Programs the DMA controller for an impending DMA transfer.

6\QWD[

void IwaveDmaPgm(DMA *dma)

5HPDUNV

IwaveDmaPgm programs the DMA controller with the appropriate settings for the DMA
channel reflected in the variable pointed to by dma.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveDmaCtrl

IwaveDmaWait iwmem.c

)XQFWLRQ

Blocks program activity until a specific DMA transfer is completed.

6\QWD[

void IwaveDmaWait(void)
/RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV ����

AMD
5HPDUNV

IwaveDmaWait blocks execution until a specific DMA transfer has completed. The function
monitors the third bit in iw.flags , which is cleared by the interrupt handler when the DMA
transfer completes.

5HWXUQ�9DOXH

None.

IwaveDmaXfer iwmem.c

)XQFWLRQ

Programs the DMA controller and the InterWave IC for a DMA transfer to or from local
memory, then starts the transfer.

6\QWD[

FLAG IwaveDmaXfer(DMA *dma, WORD size)

5HPDUNV

IwaveDmaXfer is an upper level driver that programs the DMA controller and the InterWave
IC for a DMA transfer of size bytes to or from local memory, then starts the transfer. The
dma argument points to a DMA structure, which must have been properly initialized by a
call to the IwaveRegisterDMA function.

5HWXUQ�9DOXH

IwaveDmaXfer returns DMA_OK if it succeeds or ~DMA_OK if it fails.

6HH�$OVR

IwaveDmaPage , IwaveDmaCtrl , IwaveDmaNext , IwaveDmaIleaved

IwaveGetDmaPos iwmem.c

)XQFWLRQ

Reads the count register of the DMA controller to determine the current position in a DMA
transfer.

6\QWD[

WORD IwaveGetDmaPos(DMA *dma)

5HPDUNV

IwaveGetDmaPos reads the current count register within the DMA controller to determine
the current position in a DMA transfer. The DMA structure pointed to by dma must have
been properly initialized by a call to the IwaveRegisterDMA function.

5HWXUQ�9DOXH

IwaveGetDmaPos returns a 16-bit value representing the contents of the DMA controller’s
current count register (down counter).

6HH�$OVR

GetSamplePosition
���� /RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV

AMD
IwaveMaxAlloc iwmem.c

)XQFWLRQ

Returns the size in bytes of the largest block of memory that can be still be allocated from
the local memory pool.

6\QWD[

DWORD IwaveMaxAlloc(void)

5HPDUNV

IwaveMaxAlloc returns the size in bytes of the largest block of memory currently available
from the local memory pool. If the InterWave IC is operating in GUS-compatibility mode,
the block can not be greater than 256 Kbytes. Use this function to determine if there is an
available block of memory large enough to honor an allocation request.

5HWXUQ�9DOXH

IwaveMaxAlloc returns the size in bytes of the largest block of memory currently available
from the local memory pool.

6HH�$OVR

IwaveMemInit , IwaveMemAvail , IwaveMemFree , IwaveMemAlloc

IwaveMemAlloc iwmem.c

)XQFWLRQ

Allocates a block of memory from the local memory pool.

6\QWD[

ADDRESS IwaveMemAlloc(DWORD size)

5HPDUNV

IwaveMemAlloc allocates a block of memory from the local memory pool to the requesting
application. In GUS-compatibility mode, the function rounds the requested size in bytes up
to the next 32-byte boundary and the size of the allocated block can not be greater than
256 Kbytes. In enhanced mode, the function rounds the requested size to an even byte
and the size is limited only by the amount of local memory present.

5HWXUQ�9DOXH

If the allocation is successful, IwaveMemAlloc returns the base address of the allocated
local memory block. Otherwise, it returns ALLOC_FAILURE.

6HH�$OVR

IwaveMemInit , IwaveMemAvail , IwaveMemFree , IwaveMaxAlloc .

IwaveMemAvail iwmem.c

)XQFWLRQ

Returns the total amount of memory available in the local memory pool.
/RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV ����

AMD
6\QWD[

DWORD IwaveMemAvail(void)

5HPDUNV

IwaveMemAvail returns the total amount of memory in bytes currently available in the local
memory pool. This value represents the addition of all available memory chunks.

5HWXUQ�9DOXH

The total amount of memory in bytes available from the local memory pool.

6HH�$OVR

IwaveMemInit , IwaveMaxAlloc , IwaveMemFree , IwaveMemAlloc .

IwaveMemCfg iwmem.c

)XQFWLRQ

Determines the current DRAM configuration of the InterWave IC-based hardware.

6\QWD[

void IwaveMemCfg(void)

5HPDUNV

IwaveMemCfg determines the current DRAM configuration of the InterWave IC-based
hardware, then writes an appropriate value to the LMC Configuration register (LMCFI) and
stores the total amount of DRAM in Kbytes into iw.size_mem . The function first places
the IC in enhanced mode to allow full access to all DRAM locations. Then it selects full
addressing span (LMCFI[3:0]=0Ch). Finally, it determines the amount of DRAM in each
bank and, from those values, the actual DRAM configuration. If a configuration other than
one shown in Table 15-2 on page 15-5 is implemented, this function selects full addressing
span (LMCFI[3:0]=0Ch).

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveMemSize

IwaveMemFree iwmem.c

)XQFWLRQ

Releases or de-allocates previously allocated blocks of local memory.

6\QWD[

BOOL IwaveMemFree(DWORD size, ADDRESS blk_addr)

5HPDUNV

IwaveMemFree releases or de-allocates a block of size bytes of local memory located at
the address in blk_addr. The block must have been previously allocated with
���� /RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV

AMD
IwaveMemAlloc . The function returns the block to the free-block chain. As a last step, the
function merges together all adjacent free blocks into a single block.

5HWXUQ�9DOXH

IwaveMemFree returns TRUE if successful or FALSE if it failed to release memory.

6HH�$OVR

IwaveMemInit , IwaveMemAvail , IwaveMemAlloc , IwaveMaxAlloc

IwaveMemInit iwmem.c

)XQFWLRQ

Initializes local memory into a local memory pool for allocation and de-allocation.

6\QWD[

BOOL IwaveMemInit(void)

5HPDUNV

IwaveMemInit initializes the local memory into a local memory pool for allocation and
de-allocation. In GUS-compatibility mode, the greatest chunk of memory that can be
allocated is 256 Kbytes. In enhanced mode, the maximum block size for allocation is the
size of physical memory.

5HWXUQ�9DOXH

IwaveMemInit returns TRUE if successful or FALSE if it fails to set up the free memory chain.

6HH�$OVR

IwaveMemFree , IwaveMemAvail , IwaveMemAlloc , IwaveMaxAlloc

IwaveMemPeek iwmem.c

)XQFWLRQ

Reads a byte of data from local memory.

6\QWD[

BYTE IwaveMemPeek(ADDRESS addr)

5HPDUNV

IwaveMemPeek reads a byte of data from the address specified in addr through the LMC
Byte Data register (LMBDR).

5HWXUQ�9DOXH

IwaveMemPeek returns a byte of data from local memory.

6HH�$OVR

IwavePokeBlock , IwavePeekBlock , IwaveMemPoke , IwaveMemPokeW ,
IwaveMemPeekW
/RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV ����

AMD
IwaveMemPeekW iwmem.c

)XQFWLRQ

Reads a word (16 bits) of data from local memory.

6\QWD[

WORD IwaveMemPeekW(ADDRESS addr)

5HPDUNV

IwaveMemPeekW reads a word (16 bits) of data from the address specified in addr through
the LMC Byte Data register (LMBDR).

5HWXUQ�9DOXH

IwaveMemPeekW returns a word (16 bits) of data from local memory.

6HH�$OVR

IwavePokeBlock , IwavePeekBlock , IwaveMemPoke , IwaveMemPokeW ,
IwaveMemPeekW

IwaveMemPoke iwmem.c

)XQFWLRQ

Writes a byte of data to local memory.

6\QWD[

void IwaveMemPoke(ADDRESS addr, BYTE value)

5HPDUNV

IwaveMemPoke writes the byte value to local memory at the address specified in addr
through the LMC Byte Data register (LMBDR).

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveMemPokeW, IwavePokeBlock , IwavePeekBlock , IwaveMemPeek ,
IwaveMemPeekW

IwaveMemPokeW iwmem.c

)XQFWLRQ

Writes a word (16 bits) of data to local memory.

6\QWD[

void IwaveMemPokeW(ADDRESS addr, WORD value)
���� /RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV

AMD
5HPDUNV

IwaveMemPokeW writes the 16-bit value to local memory at the address specified in addr
through the LMC Byte Data register (LMSBAI).

5HWXUQ�9DOXH

None.

6HH�$OVR

IwaveMemPoke, IwavePokeBlock , IwavePeekBlock , IwaveMemPeek ,
IwaveMemPeekW

IwaveMemSize iwmem.c

)XQFWLRQ

Returns the number of Kbytes available as local memory attached to the InterWave IC.

6\QWD[

WORD IwaveMemSize(void)

5HPDUNV

IwaveMemSize returns the number of Kbytes available as local memory attached to the
InterWave IC. The value returned by this function reflects the effective or actual amount of
DRAM that can be accessed based on the mode of operation of the InterWave IC, as
determine by the Enhanced Mode bit of the Synthesizer Global Mode register (SGMI[0]).

5HWXUQ�9DOXH

IwaveMemSize returns the number of Kbytes of DRAM attached to the InterWave IC.

6HH�$OVR

IwaveMemCfg

IwavePeekBlock iwmem.c

)XQFWLRQ

Reads a block of data from local memory through the LMC Byte Data register (LMBDR).

6\QWD[

void IwavePeekBlock(BYTE far *block, DWORD len, ADDRESS addr)

5HPDUNV

IwavePeekBlock reads len bytes of data from local memory starting at address addr into
the buffer pointed to by block a byte at a time. It starts by enabling the auto-increment
feature of the InterWave IC whereby each access of the LMC Byte Data register (LMBDR)
causes the local memory address to increment by one.

5HWXUQ�9DOXH

None.
/RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV ����

AMD
6HH�$OVR

IwavePokeBlock , IwavePokeBlockW , IwavePeekBlockW

IwavePeekBlockW iwmem.c

)XQFWLRQ

Reads a block of data from local memory through the LMC 16-Bit Access register (LMSBAI).

6\QWD[

void IwavePeekBlockW(WORD far *block, DWORD len, ADDRESS addr)

5HPDUNV

IwavePeekBlockW reads len bytes of data from local memory starting at address addr
into the buffer pointed to by block a word (16 bits) at a time. It starts by enabling the
auto-increment feature of the InterWave IC whereby each access of the LMC 16-Bit Access
register (LMSBAI) causes the local memory address to increment by two.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePokeBlock , IwavePokeBlockW , IwavePeekBlock

IwavePokeBlock iwmem.c

)XQFWLRQ

Writes a block of data to local memory through the LMC Byte Data register (LMBDR).

6\QWD[

void IwavePokeBlock(BYTE far *block, DWORD len, ADDRESS addr)

5HPDUNV

IwavePokeBlock writes len bytes of data from the buffer pointed to by block to local
memory starting at address addr a byte at a time. It starts by enabling the auto-increment
feature of the InterWave IC whereby each access of the LMC Byte Data register (LMBDR)
causes the local memory address to increment by one.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePeekBlock , IwavePokeBlockW , IwavePeekBlockW

IwavePokeBlockW iwmem.c

)XQFWLRQ

Writes a block of data to local memory through the LMC 16-Bit Access register (LMSBAI).
����� /RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV

AMD
6\QWD[

void IwavePokeBlockW(WORD far *block, DWORD len, ADDRESS addr)

5HPDUNV

IwavePokeBlockW writes len bytes of data from the buffer pointed to by block to local
memory starting at address addr a word (16 bits) at a time. It starts by enabling the
auto-increment feature of the InterWave IC whereby each access of the LMC 16-Bit Access
register (LMSBAI) causes the local memory address to increment by two.

5HWXUQ�9DOXH

None.

6HH�$OVR

IwavePokeBlock , IwavePeekBlock , IwavePeekBlockW
/RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV �����

AMD
����� /RFDO�0HPRU\�&RQWURO�''.�)XQFWLRQV

APPENDIX
A
PACKAGING AND PIN DESIGNATIONS
The InterWave audio IC is packaged in a 160-pin (Am78C201) or 120-pin (Am78C202)
plastic quad flat pack (PQFP). This chapter lists the pins for both packages of the InterWave
audio IC and then groups and describes the pins by function.

Am78C201 Pin Designations

Table A-1. Am78C201 Pin Designations

System Control Codec Local Memory Ports, Misc.

Pin Name # Pins Pin Name # Pins Pin Name # Pins Pin Name # Pins

SD15–SD0 16 MIC[L,R] 2 MA10–MA0 11 XTAL1I 1

SA11–SA0* 12 AUX1[L,R] 2 MD7–MD0 8 XTAL1O 1

SBHE 1 AUX2[L,R] 2 BKSEL3–BKSEL0 4 XTAL2I 1

DRQ[7,6,5,3,1,0] 6 LINEIN[L,R] 2 ROMCS 1 XTAL2O 1

DAK[7,6,5,3,1,0] 6 LINEOUT[L,R] 2 RAHLD 1 MIDIRX 1

TC 1 MONOIN 1 RA21–RA20 2 MIDITX 1

IRQ[15,12,11] 3 MONOOUT 1 MWE 1 GAMIN3–GAMIN
0*

4

IRQ[7,5,3,2/9] 4 IREF 1 RAS 1 GAMIO3–GAMIO
0

4

IRQ4, IRQ10 2→ GPOUT1–GPOU
T0

*

IOCHK 1 CFILT 1

IOR 1 AREF 1

IOW 1 2

IOCS16 1

IOCHRDY 1

AEN 1

EX_IRQ* 1→ ESPCLK *

EX_DRQ* 1→ ESPDIN *

EX_DAK* 1→ ESPSYNC *

EX_CS* 1→ ESPDOUT *

RESET 1

SUSPEND* 1→ FRSYNC *

C32KHZ* 1→ EFFECT *

PNPCS 1

Power & Ground 37
3DFNDJLQJ�DQG�3LQ�'HVLJQDWLRQV $��

AMD
Pin Descriptions by Functional Group
Table A-2 through Table A-7 list pins by function and describe each pin.

6\VWHP�%XV�,QWHUIDFH�3LQV

Table A-2. System Bus Interface Pins

Name Qty. Type Description

AEN 1 input Address Enable from the ISA bus, used to distinguish between DMA and I/O cycles.
This signal must be driven low when the bus performs and I/O access to the IC.

DAK7, DAK6,
DAK5, DAK3,
DAK1, DAK0

6 input The selectable DMA Acknowledge lines from the ISA bus. DAK 0, DAK1, and DAK3
are used for 8-bit DMA transfers and DAK5, DAK6, and DAK7 are used for 16-bit DMA.
The device can select up to three of the six supported DMA channels; the allocation
of DMA channels is fully programmable using the Plug and Play registers.

DRQ7, DRQ6,
DRQ5, DRQ3,
DRQ1, DRQ0

6 3-state
output

The selectable DMA Request lines to the ISA bus. DRQ0, DRQ1, and DRQ3 are used
for 8-bit DMA transfers and DRQ5, DRQ6, and DRQ7 are used for 16-bit DMA. The
device can select up to three of the six supported DMA channels; the allocation of DMA
channels is fully programmable using the Plug and Play registers.

IOCHRDY 1 oc output I/O Channel Ready to the ISA bus is used to extend the I/O bus cycle when deasserted.
IOCHRDY high indicates that the device is ready to complete the current I/O bus cycle.

IOCS16 1 oc output I/O Chip Select 16 is asserted low by the device during an I/O read or write operation
to indicate that a 16-bit port is supported at the current address.

IOR 1 input I/O Read on the ISA bus is driven low by the host to indicate that an input/output read
operation is taking place. IOR is valid only if the AEN signal is also low.

IOW 1 input I/O Write on the ISA bus is driven low by the host to indicate that an input/output write
operation is taking place. IOW is valid only if the AEN signal is also low.

IRQ15, IRQ12,
IRQ11, IRQ7,
IRQ5, IRQ3, IRQ2

7 3-state
output

The selectable Interrupt Requests to the ISA bus. IRQ4 and IRQ10 are multiplexed
with GPOUT1 and GPOUT0 and are listed in Table A-5. The device can select up to
three of the nine supported interrupts; the allocation of interrupt signals is fully
programmable using the Plug and Play registers. Internally, interrupt sources can be
assigned to the available interrupt request signals as required by software.

IOCHK 1 oc output I/O Check . Channel or I/O channel check on the ISA bus. IOCHK is asserted low by
the device to generate an NMI (non-maskable interrupt).

PNPCS 1 bidir Plug and Play Serial EEPROM Chip Select . Active high output used as chip select
for the Plug and Play serial EEPROM. This is an input during reset; its state is latched
by the trailing edge of reset to determine whether the IC is in PNP-compliant mode
(low) or PNP-system mode (high).

RESET 1 input Reset from the ISA bus. When RESET is asserted high on the ISA bus, the device
performs an internal system reset. The RESET pin must be asserted for at least 10 ms
before being deasserted. While in the reset state, the device ignores all ISA bus activity
and no local memory cycles take place. On the trailing edge of RESET, the state of
some I/O pins are latched to determine the configuration of certain multifunction pins.

SBHE 1 input The System Byte High Enable signal indicates the high byte of the system data bus
is to be used. When connecting to an 8-bit ISA bus, this pin must be disconnected.

SD15–SD0 16 bidir The ISA System Data Bus is used to transfer data to and from the device. The entire
data bus, SD15–SD0, is active during 16-bit I/O access. During 8-bit I/O accesses, the
lower data bus, SD7–SD0, is active when accessing an even byte, and the upper data
bus, SD15–SD8, is active when accessing an odd byte.
$�� 3DFNDJLQJ�DQG�3LQ�'HVLJQDWLRQV

AMD
Note:

oc = open collector or spen drain.

&RGHF�0L[HU�3LQV

TC 1 input Transfer Complete or Terminal Count is driven active high by the master or slave
DMAC when the word or byte transfer count for a DMA channel is complete.

XTAL1I 1 input Crystal 1 Input . Input from the 24.576-MHz crystal. The clock used by the codec
module to support select sampling rates is derived from the 24.576-MHz crystal
attached to the XTAL1 pins. An external 24.576-MHz CMOS compatible clock is not
supported.

XTAL1O 1 output Crystal 1 Output . Output from the 24.576-MHz crystal.

XTAL2I 1 input Crystal 2 Input . Input from the 16.9344-MHz crystal. The main clocks used throughout
the IC are derived from the 16.9344-MHz crystal attached to the XTAL2 pins. An
external 16.9344-MHz CMOS-compatible clock is not supported.

XTAL2O 1 output Crystal 2 Output . Output from the 16.9344-MHz crystal.

Table A-3. Codec/Mixer Pins

Name Qty Type Description

AREF 1 analog The Analog Reference pin provides a reference voltage which can be used by external
amplifier circuitry. When VCC is at +5 V, the value of this output pin is 0.376 times VCC,
nominal. When VCC is at +3.3 V, the value of AREF is 0.303 times VCC, nominal. AREF
is capable of sinking up to 250 microamps or sourcing up to 3.0 milliamps without
degradation and can be placed into high-impedance mode, as controlled by the Mono
Input and Output Control (CMONOI) register.

AUX1L, AUX1R 2 analog The Stereo Auxiliary 1 Inputs provide an alternative input path and are multiplexed
with the synthesizer DAC outputs. Only one of these sources can be mixed and supplied
to LINEOUT as selected in Configuration Register 3 (CFIG3I). Either of these sources
can be selected for analog-to-digital conversion through the Record Multiplexer. The
AUX1 input impedance is at least 20 kΩ.

AUX2L, AUX2R 2 analog The Stereo Auxiliary 2 Inputs can always be independently mixed or muted. Typically,
these inputs are used for mixing analog CD stereo audio. The AUX2 input impedance
is at least 20 kΩ.

CFILT 1 analog The Capacitor Filter input must be connected to analog ground through a 0.1µF
capacitor and a 10 µF capacitor.

GPOUT1,
GPOUT0

2 output The General Purpose Digital Outputs are two general purpose digital outputs
controlled by bits located in the External Control (CEXTI) register. These pins are
multiplexed with IRQ4 and IRQ10. GPOUT1 and GPOUT0 are selected by
IEIRQI[7] = 1.

IREF 1 analog The Current Reference input pin must be connected to analog ground through a
61.9 kΩ 1% tolerance resistor.

LINEINL,
LINEINR

2 analog The Stereo Line Inputs can always be independently mixed or muted. These inputs
can also be selected for analog-to-digital conversion through the Record Multiplexer.
Typically, these inputs are used for mixing or recording analog stereo audio from a
variety of external stereo audio sources. The LINEIN input impedance is at least 20 kΩ.

LINEOUTL,
LINEOUTR

2 analog The Stereo Line Outputs are stereo single-ended 600 Ω line drivers which are the
sum of the left and right mixer channels. The LINEOUTs can be independently
attenuated or muted and these mixer outputs can also be selected for analog-to-digital
conversion through the Record Multiplexer. Typically, these outputs are used for driving
powered speakers or connected to speaker or headphone drivers.

Table A-2. System Bus Interface Pins (continued)

Name Qty. Type Description
3DFNDJLQJ�DQG�3LQ�'HVLJQDWLRQV $��

AMD
/RFDO�0HPRU\�&RQWUROOHU�3LQV

MICL, MICR 2 analog The Stereo Microphone Inputs can be independently mixed or muted. These inputs
can also be selected for analog-to-digital conversion through the Record Multiplexer.
Typically, these inputs are used for mixing or recording a preamplified signal from a
stereo microphone. The MIC input impedance is at least 20 kΩ.

MONOIN 1 analog The Mono Input can always be independently mixed or muted and feeds both the left
and right mixer output paths. Typically, this input is used for mixing PC speaker audio.
The MONOIN input impedance is at least 20 kΩ.

MONOOUT 1 analog The Mono Output is a single-ended 600 Ω line driver which provides the sum of the
left and right LINEOUT signals and is independently mutable. Typically, this output is
connected to a speaker driver for a PC speaker.

Table A-4. Local Memory Controller Pins

Name Qty Type Description

BKSEL3–BKSEL0 4 output The Bank Select signals are used to control the CAS input of each DRAM bank or the
Output Enable input of each ROM bank.

MA10–MA3 8 bidir The Memory Address signals are multiplexed row-column address lines for DRAM
cycles. For ROM access cycles, they are time multiplexed ROM Latched Address[10:3]
outputs and ROM High Byte Data Bus[15:8] inputs. The ROM Latched Addresses must
be latched externally using the RAHLD signal.

MA2–MA0 3 output Memory address . The multiplexed row-column address bits for DRAM cycles, and
the RLA[2,1,19] outputs for ROM access cycles.

MD7–MD0 8 bidir The Memory Data Bus for DRAM cycles. For ROM access cycles, they are time
multiplexed ROM Latched Address[18:11] outputs and ROM Low Byte Data Bus[7:0].
The ROM Latched Addresses must be latched externally using the RAHLD signal. For
Plug and Play Serial EEPROM accesses, MD[2] is the Serial Data Clock(SK), MD[1]
is the Serial Data Input(DI), and MD[0] is the Serial Data Output(DO).

MWE 1 output The Memory Write Enable output controls the WE pin of all the DRAM banks and
determines whether a DRAM cycle is a read or write. This pin remains high during all
refresh cycles.

RA21–RA20 2 bidir The high ROM Address lines during ROM accesses. At the trailing edge of RESET,
these signals become inputs that are used to determine the operation mode of certain
multiplexed function pins.

RAHLD 1 output The ROM Address Hold output is used to latch the state of ROM Latched Address
lines, MD[7:0] (RLA[18:11]) and MA[10:3] (RLA[10:3]), in external latches during ROM
accesses.

RAS 1 output The Row Address Strobe is asserted low during DRAM accesses and is connected
directly to the RAS input of each DRAM in all of the DRAM banks.

ROMCS 1 output The ROM Chip Select output is asserted LOW during ROM accesses and is connected
directly to the Chip Select/Enable input of each ROM in all of the ROM banks.

Table A-3. Codec/Mixer Pins (continued)

Name Qty Type Description
$�� 3DFNDJLQJ�DQG�3LQ�'HVLJQDWLRQV

AMD
0XOWLSOH[HG�)XQFWLRQ�3LQV

Table A-5. Multiplexed Function Pins

Name Qty Type Description

C32KHZ /
EFFECT

1 input /
output

The Suspend Mode Refresh Clock input (C32KHZ) is used for refreshing local
memory DRAM when the InterWave IC is in suspend mode.

This pin can also be the Synthesizer Effect Local Memory Writes output (EFFECT)
which is asserted low during writes to local memory DRAM involving synthesizer
delay-based effects. The operation mode of this pin is determined by the state of RA[21]
at the trailing edge of RESET. If RA[21] is high at the trailing edge of RESET, the
C32KHZ pin function is selected; if RA[21] is low, the EFFECT signal is selected.

EX_CS /
ESPOUT

1 output The External Device Chip Select consisting of the decode of AEN deasserted (low)
and the address specified in the PNP CD-ROM Address High/Low (PRAHI and PRALI)
registers.

Optionally, this pin can be configured as the External Serial Port Data Out signal
(ESPDOUT) through the Compatibility (ICMPTI) register.

EX_DAK /
ESPSYNC

1 output The External Device DMA Acknowledge output to the external device.

Optionally, this pin can be configured as the External Serial Port Sync signal
(ESPSYNC) through the Compatibility (ICMPTI) register.

EX_DRQ /
ESPDIN

1 input External Device DMA Request .

Optionally, this pin can be configured as the External Serial Port Data In signal
(ESPDIN) through the Compatibility (ICMPTI) register.

EX_IRQ /
ESPCLK

1 input External Device Interrupt Request .

Optionally, this pin can be configured as the 2.1168-MHz External Serial Port Clock
output signal (ESPCLK) through the Compatibility (ICMPTI) register.

SA11–SA0 /
SCS1–SCS0,
SA3–SA0

12 input System Address Bus . During internal decoding mode, these inputs are the 12 lower
lines of the ISA System Address Bus which are used along with AEN to generate
decodes for internal device resources. During external decoding mode, the System
Address Bus is redefined as follows: SA[11:6] are not used, SA[5:4] are redefined as
System Chip Selects (SCS[1:0]), and the lower address lines SA[3:0] are unchanged.
The decoding mode is determined by the state of RA[20] at the trailing edge of the
RESET signal. If RA[20] is low at the trailing edge of RESET, internal decoding mode
is selected; if RA[20] is high, external decoding mode is selected.

SUSPEND /
FRSYNC

1 input /
output

When the Suspend input is asserted low, all chip activity becomes frozen, the
oscillators are turned off, the C32KHZ input clock is used to refresh local memory
DRAM, and most of the ISA bus inputs and outputs are isolated from the IC.

This pin can also be used as the Frame Sync output which is asserted low at the start
of each synthesizer data frame. The operation mode of this pin is determined by the
state of RA[21] at the trailing edge of the RESET signal. If RA[21] is high at the trailing
edge of RESET, the SUSPEND input function is selected; if RA[21] is low, the FRSYNC
output signal is selected.

IRQ4 / GPOUT0 1 input /
output

Register bit IEIRQI[7] selects between the two additional Interrupt Request lines
(IRQ4 and IRQ10) and the General Purpose Digital Output lines (GPOUT0 and
GPOUT1). If IEIRQI[7] is Low (the default), the pins are IRQ lines; if High, they become
GPOUT lines.

For description of the Interrupt Request lines, see Table A-2.

The General Purpose Digital Outputs are two general purpose digital outputs
controlled by bits located in the External Control (CEXTI) register.

IRQ10 / GPOUT1 1 input /
output

See description for IRQ4 / GPOUT0.
3DFNDJLQJ�DQG�3LQ�'HVLJQDWLRQV $��

AMD
*DPH�3RUW�DQG�0,',�3RUW�3LQV

3RZHU�6XSSO\�3LQV

Table A-6. Game and MIDI Port Pins

Name Qty Type Description

GAMIN3–GAMIN
0

4 input The Game Inputs are used to monitor the state of buttons on external joystick(s). The
state of these inputs can be read from the Game Control (GGCR) register. These pins
are internally pulled up through a nominal 6kΩ resistance.

GAMIO3–GAMIO
0

4 analog The Game I/O pins are used to determine the state of potentiometers on an external
joystick to obtain the joystick's X-Y position.

MIDITX 1 output The MIDI Transmit output is used to send serial digital data from the internal Motorola
MC6850-compatible UART.

MIDIRX 1 input The MIDI Receive input is used to receive serial digital data into the internal Motorola
MC6850-compatible UART.

Table A-7. Power Supply Pins

Name Qty Type Description

AVcc 6 power Analog Power . Supplies power to analog portions of the InterWave IC.

DVcc 8 power Digital Power . Supplies power to digital portions of the InterWave IC.

AVss 8 power Analog Ground . Supplies ground reference to analog portions of the InterWave IC.

DVss 15 power Digital Ground . Supplies ground reference to digital portions of the InterWave IC.
$�� 3DFNDJLQJ�DQG�3LQ�'HVLJQDWLRQV

APPENDIX
B
SAMPLE PLUG AND PLAY RESOURCE MAP
Sample B-1 contains a sample resource map for an InterWave IC-based board with an
EISA-assigned vendor ID of ADV, a vendor assigned product number of 550Ah, and a
serial number of 000000001h. Change these items and others to reflect values assigned
by your company for your particular board. Note that the checksum in the 9th byte is
calculated over the first 8 bytes in a manner prescribed by the Plug and Play ISA
specification 1.0A.

Sample B-1. Sample PNP Resource Map

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Plug and Play Header
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x55 ; Vendor assigned product number (byte 0)
DB 0x0A ; Vendor assigned product number (byte 1)
DB 0x01 ; Serial Number Byte 0
DB 0x00 ; Serial Number Byte 1
DB 0x00 ; Serial Number Byte 2
DB 0x00 ; Serial Number Byte 3
DB 0x3d ; checksum calculated on above bits
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Plug and Play Version
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
0x0A ; small item, plug and play version tag
0x10 ; packed BCD, version 1.0
0x10 ; vendor specified product number (1.0)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Identifier String (ANSI)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x82 ; large item, identifier string tag
DB 0x0F ; length byte 0 (15)
DB 0x00 ; length byte 1
DB 0x49 ; I (identifier string is InterWave Audio)
DB 0x6E ; n
DB 0x74 ; t
DB 0x65 ; e
DB 0x72 ; r
DB 0x57 ; W
DB 0x61 ; a
DB 0x76 ; v
DB 0x65 ; e
DB 0x20
DB 0x41 ; A
DB 0x75 ; u
DB 0x64 ; d
DB 0x69 ; i
DB 0x6F ; o
6DPSOH�3OXJ�DQG�3OD\�5HVRXUFH�0DS %��

AMD
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Audio Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, logical dev tag
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x00 ; Vendor assigned function ID (Byte 0)
DB 0x00 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; IRQ Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x22 ; small item, irq1 tag (Synth, codec, compatibility)
DB 0xAC ; IRQ2/9, IRQ3, IRQ5 and IRQ7 supported
DB 0x98 ; IRQ15, IRQ12 and IRQ11 supported
;
DB 0x22 ; small item, irq2 tag (MIDI IRQ)
DB 0xAC ; IRQ2/9, IRQ3, IRQ5 and IRQ7 supported
DB 0x98 ; IRQ15, IRQ12 and IRQ11 supported
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; DMA Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x2A ; small item, dma1 tag
DB 0xEB ; DRQ0, DRQ1,DRQ3,DRQ5,DRQ6, DRQ7 supported
DB 0x01 ; 8 and 16-bit DMA transfer type.
;
DB 0x2A ; small item, dma2 tag
DB 0xEB ; DRQ0, DRQ1, DRQ3, DRQ5, DRQ6, DRQ7 supported
DB 0x01 ; 8 and 16-bit DMA transfer type.
;
DB 0x30 ; small item, start dependent function 0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x20 ; min base addr 0x220 (P2XR)
DB 0x02 ;
DB 0x20 ; max base addr 0x220 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x20 ; min base addr 0x320 (P3XR)
DB 0x03 ;
DB 0x20 ; max base addr 0x320 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x30 ; small item, start dependent function 1
;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x30 ; min base addr 0x230 (P2XR)
DB 0x02 ;
%�� 6DPSOH�3OXJ�DQG�3OD\�5HVRXUFH�0DS

AMD
DB 0x30 ; max base addr 0x230 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x30 ; min base addr 0x330 (P3XR)
DB 0x03 ;
DB 0x30 ; max base addr 0x330 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x30 ; small item, start dependent function 2
;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x40 ; min base addr 0x240 (P2XR)
DB 0x02 ;
DB 0x40 ; max base addr 0x240 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x40 ; min base addr 0x340 (P3XR)
DB 0x03 ;
DB 0x40 ; max base addr 0x340 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x30 ; small item, start dependent function 3
;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x50 ; min base addr 0x250 (P2XR)
DB 0x02 ;
DB 0x50 ; max base addr 0x250 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x50 ; min base addr 0x350 (P3XR)
DB 0x03 ;
DB 0x50 ; max base addr 0x350 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x30 ; small item, start dependent function 3
;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
6DPSOH�3OXJ�DQG�3OD\�5HVRXUFH�0DS %��

AMD
DB 0x60 ; min base addr 0x260 (P2XR)
DB 0x02 ;
DB 0x60 ; max base addr 0x260 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x47 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x60 ; min base addr 0x360 (P3XR)
DB 0x03 ;
DB 0x60 ; max base addr 0x360 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x38 ; end dependent function tag
;
DB 0x47 ; I/O descriptor tag - codec’s PCODAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x00 ; min base addr 0x200
DB 0x02
DB 0xFC ; max base addr 0x3FC
DB 0x03
DB 0x04 ; alignment
DB 0x04 ; 4 contiguous ports
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; External Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, logical dev tag
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x00 ; Vendor assigned function ID (Byte 0)
DB 0x01 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; DMA Descriptor
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x2A ; small item, dma tag
DB 0xEB ; DRQ0, DRQ1,DRQ3,DRQ5,DRQ6, DRQ7 supported
DB 0x01 ; 8 and 16-bit DMA transfer type
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; IRQ Descriptor
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x22 ; small item, irq tag
DB 0xAC ; IRQ2/9, IRQ3, IRQ5 and IRQ7 supported
DB 0x98 ; IRQ15, IRQ12 and IRQ11 supported
;
DB 0x30 ; small item, start dependent function 0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x47 ; I/O descriptor tag - PCDRAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0xF0 ; min base addr 0x1F0
DB 0x01
%�� 6DPSOH�3OXJ�DQG�3OD\�5HVRXUFH�0DS

AMD
DB 0xF0 ; max base addr 0x1F0
DB 0x01
DB 0x08 ; alignment
DB 0x08 ; 8 contiguous ports
;
DB 0x47 ; I/O descriptor tag - PATAAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0xF6 ; min base addr 0x3F6
DB 0x03
DB 0xF6 ; max base addr 0x3F6
DB 0x03
DB 0x02 ; alignment
DB 0x02 ; 2 contiguous ports
;
DB 0x30 ; small item, start dependent function 1
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x47 ; I/O descriptor tag - PCDRAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x00 ; min base addr 0x200
DB 0x02
DB 0xF8 ; max base addr 0x3F8
DB 0x03
DB 0x08 ; alignment
DB 0x08 ; 8 contiguous ports
;
DB 0x47 ; I/O descriptor tag - PATAAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x00 ; min base addr 0x200
DB 0x02
DB 0xFE ; max base addr 0x3FE
DB 0x03
DB 0x02 ; alignment
DB 0x02 ; 2 contiguous ports
;
DB 0x38 ; end dependent function tag
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GAME Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, external logical dev tag
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x00 ; Vendor assigned function ID (Byte 0)
DB 0x02 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;
DB 0x30 ; small item, start dependent function 0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x47 ; I/O descriptor tag - P201AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x01 ; min base addr 0x201
DB 0x02
DB 0x01 ; max base addr 0x201
6DPSOH�3OXJ�DQG�3OD\�5HVRXUFH�0DS %��

AMD
DB 0x02
DB 0x01 ; alignment
DB 0x01 ; 1 port
;
DB 0x30 ; small item, start dependent function 1
;
DB 0x47 ; I/O descriptor tag - P201AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x41 ; min base addr 0x241
DB 0x02
DB 0xC1 ; max base addr 0x3C1
DB 0x03
DB 0x40 ; alignment
DB 0x01 ; 1 port
;
DB 0x38 ; end dependent function tag
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Sound Blaster/AdLib
; Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, external logical dev tag
DB 0x05 ; Vendor ID Byte 0
DB 0xA4 ; Vendor ID Byte 1
DB 0x03 ; Vendor assigned function ID (Byte 0)
DB 0x03 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; IRQ Descriptor
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x22 ; small item, irq tag
DB 0xBC ; one of IRQ2/9, IRQ3, IRQ4, IRQ5
DB 0x00 ; none supported
;
DB 0x30 ; small item, start dependent function 0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x47 ; I/O descriptor tag - P388AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x88 ; min base addr 0x388
DB 0x03
DB 0x88 ; max base addr 0x388
DB 0x03
DB 0x02 ; alignment
DB 0x02 ; 2 ports
;
DB 0x30 ; small item, start dependent function 1
;
DB 0x47 ; I/O descriptor tag - P388AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x08 ; min base addr 0x208
DB 0x02
DB 0xC8 ; max base addr 0x3C8
DB 0x03
DB 0x40 ; alignment
DB 0x02 ; 2 ports
;

%�� 6DPSOH�3OXJ�DQG�3OD\�5HVRXUFH�0DS

AMD
DB 0x38 ; end dependent function tag
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; MPU401Emulation
; Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, external logical dev tag
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x00 ; Vendor assigned function ID (Byte 0)
DB 0x04 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; IRQ Descriptor
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x22 ; small item, irq tag
DB 0xBC ; IRQ2/9, IRQ3, IRQ4, IRQ5 and IRQ7 supported
DB 0x00 ; none supported
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x47 ; I/O descriptor tag - P401AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x00 ; min base addr 0x300
DB 0x03
DB 0x30 ; max base addr 0x330
DB 0x03
DB 0x10 ; alignment
DB 0x02 ; 2 ports
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; End Tag
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x79 ; end tag
DB 0x00 ; checksum - calculated on all above bytes
6DPSOH�3OXJ�DQG�3OD\�5HVRXUFH�0DS %��

AMD
%�� 6DPSOH�3OXJ�DQG�3OD\�5HVRXUFH�0DS

G
GLOSSARY
µ-law A compression and expansion (companding) technique commonly used to
encode speech audio in the United States.

µs microsecond

ADC Analog-to-digital converter

ADPCM Adaptive differential pulse code modulation, also called adaptive delta pulse
code modulation. A compression and expansion (companding) technique
used to encode audio information. It is the encoding method used in the
Compact Disc-Interactive (CD-I) format.

A-law A compression and expansion (companding) technique commonly used to
encode speech audio in Europe.

ANSI American National Standards Institute

ATAPI A packet interface protocol which addresses CD-ROM connection issues.

big endian The mode of accessing 16-bit memory values where the most significant
bits are in the higher addressed byte. See little endian .

BIOS Basic Input/Output System

codec Audio coder/decoder module

CPU Central processing unit

CSN Card select number, used in the Plug and Play ISA specification

DAC Digital-to-analog converter

DAK DMA-Request Acknowledge

DMA Direct memory access

DRQ Direct memory access request

DSP Digital signal processor

EEPROM Electrically erasable programmable read-only memory. An EPROM that can
be reprogrammed while it is in the computer.

EISA Enhanced Industry Standard Architecture

EX_IRQ Interrupt request associated with an external device (e.g., CD-ROM).

FIFO First-in first-out. A queuing technique in which the next item to be retrieved
is the item that has been in the queue for the longest time.

frame One complete LMC/synthesizer cycle. It is the period of time during which
all active synthesizer voices are processed.

GUS The Advanced Gravis UltraSound sound card
*��

AMD
host system The PC in which the InterWave IC-based sound card is installed.

IMA Interactive Multimedia Association

IOCHK Non-maskable interrupt request, ISA bus

IOR I/O read

IOW I/O write

IRQ Interrupt request

ISA Industry Standard Architecture

LFO Low-frequency oscillator

little endian The mode of accessing 16-bit memory values where the most significant
bits are in the lower addressed byte. See big endian .

LMC The InterWave local memory control module.

LMPF The InterWave local memory playback FIFO.

LMRF The InterWave local memory record FIFO.

local memory DRAM and ROM dedicated to the InterWave hardware functions.

LSB Least significant bit

MIDI Musical Instrument Digital Interface

ms millisecond

MSB Most significant bit

NMI Non-Maskable Interrupt

PCM Pulse code modulation

PIO Programmed input/output. A technique for transfering data into and out of
system memory using one or more I/O ports. In the InterWave IC, it is used
as an alternative to DMA transfer when DMA channels are not available.

PNP Plug and Play. Used to indicate compliance with the Plug and Play ISA
specification which allows

RAM Random-access (read/write) memory

ROM Read-only memory

SB System bus

SBI System bus interface

STSYNC Serial Transfer Sync (synchronization)

subframe The period of time within a frame during which one synthesizer voice is
processed.

system memory
The host system's random-access memory (RAM).

synth Synthesizer. In most cases, this term refers specifically to the InterWave
synthesizer module.
*��

AMD
TC Terminal Count (ISA bus)

UART Universal Asynchronous Receiver/Transmitter

WAV file A binary file representing audio data that the synthesizer can use as
wavetable data.

wavetable data
Synthesizer data stored in local memory.
*��

AMD
*��

I
INDEX
Symbols
µ-law data format 3-2, 7-13, 14-15

A
accessing registers 4-2
ADC 6-2, 6-8

input clipping status 13-10
input multiplexer 6-16
selecting input source 13-4
specifying gain 13-4

ADC loopback
enabling 13-11
muting 13-6
specifying attenuation 13-6, 13-10

address control 7-9
frequency 7-11
wavetable addressing, table 7-12

address counter, DMA 15-2
address looping 7-9

interrupt 7-8, 12-2
address spaces 4-2

codec 13-2
PNP address control registers 12-25
setting PNP base addresses 12-25
table 4-3

address translation 8-8
in enhanced mode 8-9
in GUS-compatibility mode 8-9

addresses
direct 4-4
relocatable 4-2
setting PNP 12-25

AdLib data interrupt
enabling 12-13
status 12-4

AdLib timer interrupts
clearing 12-5
masking 12-5
status 12-3

AdLib timers
enabling interrupts for 12-13
enabling test 12-13
loading start value 12-13
reading interrupt status 12-2

starting 12-5
alternate effects signal path 7-5, 14-15
AREF pin 13-17
audio device

enabling IRQ and DMA 12-1
IRQ channel equations 5-9

audio I/O functions, table 5-7
auto-increment mode

address for I/O transfer 8-5, 15-6
voice register 3-1, 14-1

auto-timer mode 12-3, 12-13
auxiliary 1 input

described 6-16
muting 13-5
selecting 13-13
specifying gain 13-5

auxiliary 2 input
described 6-16
muting 13-5
specifying gain 13-5

B
base address

interleaved DMA 15-7
LFO parameters 7-22, 14-3
local memory FIFOs 15-6
setting and reading for I/O 4-2
setting for PNP 12-25

C
callback function 18-10
card mode

compared to system mode 5-13
defined 4-2
programming 5-14

card select number (CSN) 5-14
reading 12-23
resetting 12-22
writing 12-21, 12-23

CDATAP—Codec Indexed Data Port 13-2
CD-ROM

connecting 1-3
IRQ channel equation 5-9

CEXTI—External Control register 13-8
,��

AMD
CFIG1I—Configuration Register 1 13-7
controlling DMA operation 6-11
enabling playback path 13-4
enabling record path 13-4
protecting 13-1

CFIG2I—Configuration Register 2 13-11
enabling codec timer 6-19
forcing DAC output to zero 13-9, 13-16

CFIG3I—Configuration Register 3 13-12
enabling variable frequency playback 13-18
setting FIFO thresholds 6-11

CIDXR—Codec Index Address register 13-1
clearing playback FIFO underrun 13-9
clearing record FIFO overrun 13-9
enabling CFIG1I changes 13-7
enabling CPDFI changes 13-6
protecting CFIG1I bits 6-11

CLAX1I—Left Auxiliary 1/Synthesizer Input Control
register 13-5

selecting input 13-13
CLAX2I—Left Auxiliary 2 Input Control register 13-5
CLCI—Loopback Control register 13-10
CLDACI—Left Playback DAC Control register 13-6
clearing interrupts 4-8
CLICI—Left ADC Input Control register 13-4
CLLICI—Left Line Input Control register 13-13
CLMICI—Left Microphone Input Control register 13-14
CLOAI—Left Output Attenuation register 13-16
clock

codec playback divider selections, table 13-7
codec record divider selections, table 13-18
selecting crystal for playback 13-7
selecting crystal for record 13-18
selecting divider for playback 13-7
selecting divider for record 13-18

clocks 4-8
CLPCTI—Lower Playback Count register 13-11

loading sample counter 6-14
CLRCTI—Lower Record Count register 13-19

loading sample counter 6-14
CLTIMI—Lower Timer register 13-14

loading the codec timer 6-19
CMODEI—Mode Select, ID register 13-10
CMONOI—Mono Input and Output Control register

13-17
codec

analog circuitry, enabling 6-6, 12-30
CIDXR indexed registers 13-4
data flow, figure 6-18
data paths diagram 6-3
description 1-3
direct registers 13-1
DMA and IRQ functions, table 6-5
enabling interrupts 13-9

FIFO threshold selections, table 13-13
FIFO thresholds 6-11
FIFOs 6-1, 6-10
general control and configuration functions, table

6-3
general purpose flags 12-21
global interrupt status, equation 6-7
handling interrupts 6-20
initialization status 13-1
input and output control functions, table 6-5
interrupt equation variables, table 6-8
interrupt handler, program 6-21
interrupt signal, equation 6-7
interrupts 6-6
interrupts ORed with synthesizer 12-1
loopback path 6-16
mixer inputs and outputs 6-15
operating modes 6-8
playback clock crystal 13-7
playback clock divider 13-7
playback FIFO 6-22, 13-3, 13-4, 13-15, 13-16

program example 6-22
underrun 13-9
writing 13-3, 13-8

playback path, enabling 6-6, 12-30, 13-8
playback, selecting stereo or mono 13-7
programming examples 6-20
record clock crystal 13-18
record clock divider 13-18
record FIFO 13-2, 13-4, 13-15, 13-16

overrun 13-9
reading 13-3, 13-8

record path, enabling 6-6, 12-30, 13-8
record, selecting stereo or mono 13-18
sample counter operation 6-14
sample counters 6-1, 6-14
selecting IRQ channel 12-16
selecting mode 13-10
selecting playback data format 13-7
selecting record data format 13-18
servicing codec playback FIFO, program 6-22
timer 6-2, 6-19, 6-23

enabling 13-11
program 6-24
specifying load value 13-14

timer interrupt 13-15
clearing, equation 6-7
setting, equation 6-7

codec DDK functions, list 19-4
Command 5-16
Command register

issuing PNP wake command 5-16
compatibility logic 5-1
compatibility, UltraSound (GUS) 1-4
,�� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
compilers, DDK supported
Borland C 18-11
MetaWare High C 18-12
Microsoft Visual C++ 18-12
Symantec C 18-12
Watcom C/C++ 18-12

configuration state 5-18
accessing PIDXR registers 12-22
defined 5-15
entering 12-23
reading resource data status 12-23
resetting CSN 12-22

configuring
DRAM 15-4
PNP 5-7, 5-13, 5-14
ROM 15-4

connecting a CD-ROM 1-3
CPDFI—Playback Data Format

selecting playback frequency 13-18
CPDFI—Playback Data Format register 13-6

protecting 13-1
selecting format 6-8
selecting sample rate 13-13

CPDR—Playback Data register 13-4
CPVFI—Playback Variable Frequency register 13-18

selecting sample rate 13-13
CRAX1I—Right Auxiliary 1/Synthesizer Input Control

register 13-5
selecting input 13-13

CRAX2I—Right Auxiliary 2 Input Control register 13-5
CRDACI—Right Playback DAC Control register 13-6
CRDFI—Record Data Format register 13-17

protecting 13-1
selecting format 6-8

CRDR—Record Data register 13-4
CRICI—Right ADC Input Control register 13-4
CRLICI—Right Line Input Control register 13-13
CRMICI—Right Microphone Input Control register

13-14
CROAI—Right Output Attenuation register 13-16
PWAKEI—PNP Wake 5-16
register

PWAKEI—PNP Wake 5-16
CSR1R—Codec Status Register 1 13-2

clearing codec interrupt status bit 13-3
clearing playback FIFO underrun 13-9
clearing record FIFO overrun 13-9
codec timer interrupt 6-19
resuming DMA, FIFO, and sample counters 13-1

CSR2I—Codec Status Register 2 13-9
determining FIFO overrun or underrun errors 13-3
resetting FIFO overrun and underrun errors 13-1

CSR3I—Codec Status Register 3 13-15
checking sample counter status 6-14

clearing codec interrupt status bit 13-3
codec timer interrupt 6-19
determining FIFO overrun or underrun errors 13-3
disabling DMA 13-1
discontinuing DMA transfers 6-14
reading timer interrupt 13-14
resetting FIFO overrun and underrun errors 13-1

CUPCTI—Upper Playback Count register 13-11
loading sample counter 6-14

CURCTI—Upper Record Count register 13-19
loading sample counter 6-14

CUTIMI—Upper Timer register 13-14
loading the codec timer 6-19

D
DAC 6-2, 6-8

forcing output to zero 13-12
muting output 13-1, 13-6
specifying attenuation 13-6
synthesizer 6-10, 6-16, 13-13
synthesizer, enabling 12-14

data conversion 6-8
data format

µ-law 3-2, 14-15
selecting 6-25
selecting for playback 13-7
selecting for record 13-18

data order 6-10
data paths diagram

codec 6-3
InterWave IC 4-1
local memory control 8-2
synthesizer 7-3
system control 5-2

data width, specifying
for I/O transfer 15-5
for interleaved DMA 15-7
for wavetable data 14-9

DDK
codec programming examples 6-20
creating libraries 18-11
data types 18-3
include files 18-2
intializing 18-9
local memory programming examples 8-13
source files 18-1
supported compilers 18-1

DDK function
GetSamplePosition 20-1
IwaveAddrTrans 8-8, 8-14, 20-1
IwaveAllocDOS 20-2
IwaveClose 18-9, 18-11, 20-2
IwaveCodecAccess 21-1
,��

AMD
IwaveCodecCnt 21-1
IwaveCodecIrq 6-20, 21-2
IwaveCodecMode 21-2
IwaveCodecStatus 21-3
IwaveCodecTrigger 21-3
IwaveDacAtten 21-4
IwaveDataFormat 6-25, 21-4
IwaveDefFunc 20-3
IwaveDelay 20-3
IwaveDisableLineIn 21-5
IwaveDisableMicIn 21-5
IwaveDisableOutput 21-6
IwaveDmaCtrl 23-1
IwaveDmaIleaved 8-13, 23-1
IwaveDmaMalloc 23-2
IwaveDmaNext 23-2
IwaveDmaPage 23-3
IwaveDmaPgm 23-3
IwaveDmaWait 23-3
IwaveDmaXfer 8-10, 8-15, 23-4
IwaveEnableLineIn 21-6
IwaveEnableMicIn 21-6
IwaveEnableOutput 21-7
IwaveFreeDOS 20-3
IwaveGetAddr 20-4
IwaveGetDmaPos 23-4
IwaveGetVect 20-4
IwaveGusReset 20-4
IwaveHandle 20-6
IwaveHandleCodec 20-5
IwaveHandleDma 20-5
IwaveHandler 6-20
IwaveHandleVoice 20-6
IwaveInputGain 21-7
IwaveInputSource 21-8
IwaveLineLevel 21-8
IwaveLineMute 21-9
IwaveMaxAlloc 8-10, 23-5
IwaveMemAlloc 8-10, 23-5
IwaveMemAvail 23-5
IwaveMemCfg 8-6, 8-13, 23-6
IwaveMemFree 8-10, 23-6
IwaveMemInit 23-7
IwaveMemPeek 23-7
IwaveMemPeekW 23-8
IwaveMemPoke 23-8
IwaveMemPokeW 23-8
IwaveMemSize 8-6, 8-14, 23-9
IwaveMidiHandler 20-6
IwaveMonoAtten 21-10
IwaveMonoMute 21-10
IwaveOpen 18-9, 20-7
IwavePeekBlock 8-5, 8-9, 23-9
IwavePeekBlockW 8-9, 23-10

IwavePeekEEPROM 20-8
IwavePlayAccess 21-10
IwavePlayData 6-22, 21-11
IwavePnpActivate 20-9
IwavePnpBIOS40 20-9
IwavePnpDevice 20-10
IwavePnpGetCfg 20-11
IwavePnpIOCheck 20-11
IwavePnpIsol 5-14, 5-17, 20-12
IwavePnpKey 5-15, 20-12
IwavePnpPeek 20-13
IwavePnpPing 20-13
IwavePnpPower 20-14
IwavePnpSerial 20-14
IwavePnpSetCfg 20-15
IwavePnpWake 20-15
IwavePokeBlock 8-5, 8-9, 23-10
IwavePokeBlockW 8-9, 23-10
IwavePokeEEPROM 20-15
IwaveRampVolume 22-1
IwaveReadVoice 22-2
IwaveReadVolume 22-2
IwaveReadyVoice 22-2
IwaveRealAddr 20-16
IwaveRecordAccess 21-12
IwaveRecordData 6-22, 21-12
IwaveRegisterDMA 18-11, 20-16
IwaveRegisterIRQ 18-10, 20-17
IwaveRegPeek 18-13, 20-17
IwaveRegPoke 18-13, 20-18
IwaveResetIvt 20-18
IwaveSetCallback 20-19
IwaveSetFrequency 6-25, 21-13
IwaveSetInterface 8-15, 20-20
IwaveSetIvt 20-20
IwaveSetLoopMode 22-3
IwaveSetTimer 6-23, 21-13
IwaveSetVect 20-21
IwaveSetVoiceEnd 22-4
IwaveSetVoicePlace 22-4
IwaveSetVolume 22-5
IwaveStartTimer 6-23
IwaveStartVoice 22-5
IwaveStopDma 21-14
IwaveStopTimer 6-23
IwaveStopVoice 22-6
IwaveStopVolume 22-6
IwaveSynthGlobal 22-7
IwaveSynthHandler 20-21
IwaveSynthMode 22-7
IwaveTimerStart 21-14
IwaveTimerStop 21-14
IwaveUmaskIrqs 20-21
IwaveVoiceFreq 22-8
,�� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
IwaveVoicePan 22-8
IwaveVoicePitch 22-9
_peek 20-22
_peekw 20-22
_poke 20-22
_pokew 20-23
ReadOPCode 20-23
ReadWaveHeader 20-23
WriteEnable 20-24
WriteOPCode 20-24

decoding mode
external 4-4
normal or internal 4-2

delay-based effects 7-26
direct addresses 4-4

table 4-4
direct registers

codec 13-1
defined 4-4
PNP 12-21
synthesizer 14-1
system control, P2XR based 12-1
system control, P3XR based 12-12

DMA
channel 1 request number 12-9, 12-27
channel 2 request number 12-9, 12-27
channel selection 5-1, 5-11, 12-15
combining channels 12-8
data interleaving, figure 8-12
data width 5-12, 15-1, 15-2, 15-5
data width, interleaved 15-7
disabling on sample counter interrupt 13-1
establising interface 18-10
external device request number 12-27
GUS-compatible 15-2
interleaved 15-7

address generation, figure 8-12
base address 15-7
tracks, number of 15-7
tracks, size of 15-7

inverting MSB
GUS-compatible 15-1
interleaved 15-7

PNP DMA select register indexes, table 12-27
request categories, table 5-11
request number selection, table 12-28
resetting terminal count (TC) interrupt 12-15
selecting for playback FIFO 13-8
selecting for record FIFO 13-8
single-channel operation 6-14, 12-8, 13-8
specifying GUS-compatible address 15-3
terminal count (TC) interrupt 12-2, 15-1
transfer direction 15-2
transfer rate 5-12, 15-2

two-channel operation 13-8
DMA DDK functions, list 19-7
DMA request

channel selection, equation 5-12
mapping equations 5-12
playback status 13-9
record status 13-9
selecting number 12-27

DMA structure type 18-3
DMA terminal count (TC) interrupt

resetting 12-15
DMA transfers 6-22, 8-11, 8-14

codec playback FIFO, program example 6-22
discontinuing codec 6-14
in enhanced mode 8-10
in GUS-compatibility mode 8-9
interleaved modes, table 8-12

DOS driver 2-4
DOS Split Mode TSR, figure 2-4
DRAM

accessing 7-12
configuration selection, table 15-5
configurations, table 8-7
configuring 8-6, 15-4
refresh rates 8-7
selecting for I/O transfer 15-6

DRAM refresh
during suspend mode 4-6
rate selection, table 15-4
setting rate 15-4

DRQ pin mapping, equation 5-12

E
effects accumulator output links, table 7-28
effects accumulators 7-4
effects processing 7-26

description 3-3
reading current volume 14-13
specifying final volume 14-14

effects processor
accumulation 7-27
enabling voice as 14-15

effects processor voice 7-5
effects signal path 7-21

figure 7-4
emulation

AdLib and Sound Blaster emulation registers, table
10-3

control registers, figure 10-2
general purpose registers 10-1
legacy sound cards 1-4, 10-3
MPU-401 10-1, 12-18
MPU-401 status 10-2
,��

AMD
emulation registers read and write interrupts 12-20
enabling

µ-law decompression 3-2, 14-15
access to UHRDP 12-18
ADC loopback 13-11
AdLib data interrupt 12-13
AdLib timers interrupts 12-13
AdLib timers test 12-13
alternate effects signal path 14-15
bidirectional volume looping 14-11
channel 1 interrupts 12-16
channel 2 interrupts 12-16
codec analog circuitry 6-6, 12-30
codec interrupts 6-20
codec playback path 6-6, 12-30
codec record path 6-6, 12-30
codec registers 12-17
codec timer 6-19, 13-11
codec timer interrupt 13-11
DMA requests, equation 5-12
DMA selection 12-15
DMA terminal count (TC) interrupt 15-1
DMA, GUS-compatible 15-2
DMA, interleaved 15-7
emulation registers read and write interrupts 12-20
enhanced mode 14-3
game port 12-30
general purpose register interrupts 12-6
general purpose registers, access to 12-6
GMCR register 12-18
IRQ selection 12-15
IRQs, equation 5-10
joystick 12-11
LFOs 7-21, 14-3
line inputs 12-1
line outputs 12-1
local memory control 12-30
local memory playback FIFO (LMPF) 15-6
local memory record FIFO (LMRF) 15-6
microphone inputs 12-1
MIDI command buffer 12-19
MIDI functions 12-12
MIDI loopback 12-1
MIDI port 12-30
MIDI receive 12-19
MIDI receive buffer 12-19
MIDI receive data interrupt 16-2
MIDI transmit 12-20
MIDI transmit buffer 12-19
MIDI transmit data interrupt 16-2
MPU-401 emulation 12-18
NMI 12-17
offset mode 3-3, 14-15
P2XR registers 12-17

P388AR registers 12-17
PCM operation 14-11
power to pull-up resistors 12-18
reading from UASRR 12-17
reading from UGP2I and UGP1I through emulation

address 12-19
Sound Blaster 2XE interrupt 12-6
Sound Blaster interrupts 12-12
synthesizer 12-30
synthesizer DAC 12-14
synthesizer interrupts 12-14
terminal count (TC) interrupt 15-1
24.576-MHz oscillator 12-30
U2XCR register 12-17
U2XER register 12-17
UACRR register 12-17
UACWR register 12-17
UADR register 12-17, 12-18
UASRR register 12-17
UASWR register 12-17
UI2XCR register 12-17
URCR register 12-18
variable frequency playback 13-13
voice volume looping 14-11
volume IRQ 14-11
wavetable data

looping 14-9
wavetable data bidirectional looping 14-9
writing of CSN 12-21
writing to UGP2I and UGP1I through emulation

address 12-19
enhanced mode 18-11

µ-law data format 3-2
active voices 14-1
address translation 8-9
defined 3-1
DMA transfers 8-10
effects processing 3-3
enabling 3-1, 14-3
memory management 8-10
no tremolo 14-11
PCM operation 3-2
stereo position 3-3
voice data in ROM 3-2
voice deactivation 3-3
volume and frequency LFOs 3-2

envelope generation 7-16, 7-19
figure 7-4

equation
attenuation by offset value 7-19
audio IRQ channels 5-9
calculating ramp time 7-24
CD-ROM IRQ channel 5-9
codec global interrupt status 6-7
,�� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
codec interrupt signal 6-7
codec timer interrupt clear 6-7
codec timer interrupt set 6-7
DMA request channel selection 5-12
enabling DMA requests 5-12
GUS-compatible sample period 7-29
implemented volume multiplication 7-15
IRQ enabling 5-10
IRQ level selection 5-9
IRQ10 and IRQ4 enabling 5-10
IRQ10 and IRQ4 selection 5-10
left offset value 7-19
mapping to the DRQ pins 5-12
MIDI IRQ 16-3
MPU-401 IRQ channel 5-9
NMI function 5-10
playback FIFO interrupt clear 6-7
playback FIFO interrupt set 6-6
record FIFO interrupt clear 6-7
record FIFO interrupt set 6-7
right offset value 7-19
S data interpolation 7-13
Sound Blaster emulation IRQ channel 5-9
specifying LFO frequency 7-23
volume multiplication 7-15
volume multiplying components 7-15

error
FIFO overrun or underrun 13-1, 13-3
MIDI framing 16-3
MIDI overrun 16-3
playback FIFO underrun 13-16
record FIFO overrun 13-16
record FIFO underrun 13-16

external crystals 4-8
external decoding mode

addresses, table 4-5
defined 4-4

external device interface 1-3
external serial port 6-18

F
features, list 1-1
FIFO

codec playback 6-22, 13-3, 13-8, 13-16
codec playback, underrun 13-9
codec playback, writing 13-3, 13-4
codec record 13-2, 13-4, 13-8
codec record, reading 13-3
codec threshold selection, table 13-13
error conditions 6-15
error conditions, table 6-15
playback interrupt 13-15
playback overrun 13-16

playback service request 13-12
playback, disabling 6-12
record 13-8, 13-16
record FIFO overrun 13-9
record interrupt 13-15
record, disabling 6-12
selecting threshold 13-12
thresholds 6-11, 6-12

FIFOs
codec 6-10
codec record and playback 6-1
data order 6-10
data ordering table 6-11
in local memory 8-13
threshold configurations, table 6-11

figure
adding final LFO value to FC 7-26
adding final LFO value to volume 7-26
bidirectional looping and PCM playback 7-11
bidirectional volume looping 7-17
codec data flow 6-18
codec data paths 6-3
data flow through the general purpose registers

10-1
DMA data interleaving 8-12
DOS Split Mode TSR 2-4
emulation control registers 10-2
envelope generation and effects path 7-4
forward and reverse looping 7-10
forward and reverse single-pass addressing 7-10
forward and reverse volume looping 7-17
four possible LFO waveforms 7-25
game port connections 9-1
interleaved DMA address generation 8-12
interrupt structure 4-8
InterWave data paths 4-1
left half of the InterWave mixer 6-17
local memory control data paths 8-2
PNP auto-configuration states 5-15
sample interpolation process 7-14
serial transfer data flow and format 6-18
software heirarchy 2-1
synthesizer data paths 7-3
system control data paths 5-2
volume ramp-up and ramp-down 7-17
Windows 3.x 2-5
Windows 95 2-6

frame expansion 7-29, 8-2
defined 3-1

frame rate 7-9
frame, definition 7-8
framing error, MIDI 16-3
,��

AMD
G
game port 9-1

connections, figure 9-1
description 1-4
enabling 12-30
functions, table 9-2
low-power mode 12-30
programming examples 9-4
registers 16-1

general purpose flags 6-2
selecting 6-20, 12-21, 13-8

general purpose registers 10-1
data flow, figure 10-1
enabling access to 12-6
enabling interrupts 12-6
interrupts

interrupts
general purpose registers 12-7

GetSamplePosition function 20-1
GGCR—Game Control register 16-1

enabling reading and writing of 12-11
GJTDI—Joystick Trim DAC register 16-1
GMCR—MIDI Control register 16-2

enable reading from 12-18
enabling reading and writing of 12-12
enabling writing to 12-19
move to P3XR+1 12-18

GMRDR—MIDI Receive Data register 16-4
clearing MIDI receive interrupt 12-3
clearing overrun error 16-3
enabling reading and writing of 12-12
enabling reading from 12-19
full status 16-4
move to P3XR+0 12-18

GMRFAI—MIDI Receive FIFO Access register 16-4
GMSR—MIDI Status register 16-3

during MIDI reset 16-3
enabling reading and writing of 12-12
enabling reading of 12-19
move to P3XR+1 12-18

GMTDR—MIDI Transmit Data register 16-4
available status 16-3
clearing MIDI transmit interrupt 12-3
enabling reading and writing of 12-12
enabling writing to 12-19
move to P3XR+0 12-18
resetting 16-3

GPOUT1 and GPOUT0 12-21
selecting pins 13-8

GUS
compatibility 1-4, 3-1
native mode 1-4

GUS-compatibility mode 18-11

address translation 8-9
defined 3-1
DMA control 3-3
DMA transfers 8-9
frame expansion 3-1, 7-29, 8-2
local memory addressing 3-2
memory management 8-10
resetting 3-3, 12-14
sample period, equation 7-29

H
hardware reset 4-6
header files 8-15, 18-9

I
I/O address spaces 4-2

PNP address control registers 12-25
setting PNP base addresses 12-25
table 4-3

I/O transfer
auto-increment mode 15-6
data width 15-5
inverting MSB during 15-5
local memory address pointer 15-3
reading 16-bit value 15-4
selecting DRAM or ROM 15-6
selecting for playback FIFO 13-8
selecting for record FIFO 13-8

I16DP—General 16-Bit Data Port 12-12
I8DP—General 8-Bit Data Port 12-12
ICMPTI—Compatibility register 12-15

controlling serial transfer 6-18
setting UGP1I and UGP2I addresses 4-3

IDECI—Decode Control register 12-16
IEIRQI—Emulation IRQ register 12-20

selecting codec general purpose flags 13-8
selecting general purpose pins 6-20

IEMUAI—MPU-401 Emulation Control A register 12-18
IEMUBI—MPU-401 Emulation Control B register 12-19
IGIDXR—General Index register 12-12

auto-increment mode 3-1
clearing boundary interrupts 7-8
clearing volume IRQ 14-11

indexed registers
codec, by CIDXR 13-4
codec, reading and writing 13-2
PNP, by PIDXR 12-22
system control, by IGIDXR 12-12
system control, by URCR[2:0] 12-8

indirect registers 4-4
setting codec address pointer 13-2
synthesizer 14-1

initialization
,�� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
codec status 13-1
DDK functions, list 19-1
InterWave IC 4-7
system control 5-7

inputs
auxiliary 1 6-16, 13-5, 13-13
auxiliary 2 6-16, 13-5
line 6-16, 12-1, 13-13, 13-14
microphone 6-16, 12-1, 13-14
mono 6-16, 13-17
selecting for ADC 13-4
specifying gain into ADC 13-4
synthesizer 13-5, 13-13
synthesizer DAC 6-16

interleaved tracks
specifying number of 15-7
specifying size 15-7

internal decoding mode 4-2
interpolation 7-3, 7-9, 7-12, 7-13

S data, equation 7-13
interrupt

address looping 7-8, 12-2
AdLib data 12-4, 12-13
AdLib timers 1 and 2 12-2, 12-3, 12-5, 12-13
codec timer 6-20, 13-11, 13-15
DMA terminal count (TC) 12-2, 12-15, 15-1
emulation registers read and write 12-20
general purpose registers 12-6
MIDI 16-3
MIDI receive data 12-3, 16-2
MIDI transmit data 12-3, 16-2
playback FIFO service request 13-12
record FIFO service request 13-12
Sound Blaster 2X6 and 2XC 12-12
Sound Blaster 2XC 12-4
Sound Blaster 2XE 12-4, 12-6, 12-7
volume 14-11
volume looping 7-8, 12-2

interrupt control DDK functions, list 19-3
interrupt level selection 5-1, 5-7
interrupt structure

description 4-8
diagram 4-8

interrupts
clearing 4-8, 5-7
clearing USRR 12-11
codec playback FIFO 13-15
codec record FIFO 13-15
enabling 5-7
enabling channel 1 12-16
enabling channel 2 12-16
enabling codec 13-9
enabling synthesizer 12-14
enabling, equation 5-10

events, table 5-8
handling codec 6-20
level selection 5-7
level selection, equation 5-9
mapping equations 5-9
ORing synthesizer and codec 12-1
registering callback for 18-10
reporting 5-7
synthesizer 7-8

InterWave IC
clocks 4-8
data paths diagram 4-1
description 1-2
die version number 12-17
features 1-1
intializing 4-7, 5-1
resetting 4-6, 12-22
resetting to GUS-compatibility mode 12-14
revision ID 13-10

InterWave Kernel 2-2
DOS driver 2-4
supported compilers 2-3
Windows 3.x driver 2-5
Windows 95 driver 2-5

IRQ
channel 1 number 12-10
channel 2 number 12-10
channel selection 12-15
combining channels 12-9
establishing interface 18-10
MIDI, equation 16-3
number selection, table 12-26
number to event mapping, table 12-26
PNP IRQ type register indexes, table 12-27
select register indexes, table 12-26
selecting channel for codec 12-16
selecting number for PNP logical devices 12-25
selecting type for PNP logical devices 12-26
state of MIDI 12-21
state of Sound Blaster 12-21

IRQ structure type 18-5
IRQ10 and IRQ4

enabling, equation 5-10
selecting 6-20
selecting pins 12-21, 13-8
selection, equation 5-10

ISA bus interface
144-pin 1-3
output-low drive capability 12-28

ISA Plug and Play Interface 1-3
See also PNP

isolation state 5-16
defined 5-15
entering 12-23
,��

AMD
isolate command 12-22
reading PISOCI 12-22
resetting CSN 12-22
setting PNPRDP address 12-22
writing CSN 12-21

IVERI—Version Number register 12-17
IWAVE structure type 18-5
IwaveAddrTrans function 8-8, 8-14, 20-1
IwaveAllocDOS function 20-2
IwaveClose function 18-9, 18-11, 20-2
IwaveCodecAccess function 21-1
IwaveCodecCnt function 21-1
IwaveCodecIrq function 6-20, 21-2
IwaveCodecMode function 21-2
IwaveCodecStatus function 21-3
IwaveCodecTrigger function 21-3
IwaveDacAtten function 21-4
IwaveDataFormat function 6-25, 21-4
IwaveDefFunc function 20-3
IwaveDelay function 20-3
IwaveDisableLineIn function 21-5
IwaveDisableMicIn function 21-5
IwaveDisableOutput function 21-6
IwaveDmaCtrl function 23-1
IwaveDmaIleaved function 8-13, 23-1
IwaveDmaMalloc function 23-2
IwaveDmaNext function 23-2
IwaveDmaPage function 23-3
IwaveDmaPgm function 23-3
IwaveDmaWait function 23-3
IwaveDmaXfer function 8-10, 8-15, 23-4
IwaveEnableLineIn function 21-6
IwaveEnableMicIn function 21-6
IwaveEnableOutput function 21-7
IwaveFreeDOS function 20-3
IwaveGetAddr function 20-4
IwaveGetDmaPos function 23-4
IwaveGetVect function 20-4
IwaveGusReset function 20-4
IwaveHandle function 20-6
IwaveHandleCodec function 20-5
IwaveHandleDma function 20-5
IwaveHandler function 6-20
IwaveHandleVoice function 20-6
IwaveInputGain function 21-7
IwaveInputSource function 21-8
IwaveLineLevel function 21-8
IwaveLineMute function 21-9
IwaveMaskIrqs function 20-6
IwaveMaxAlloc function 8-10, 23-5
IwaveMemAlloc function 8-10, 23-5
IwaveMemAvail function 23-5
IwaveMemCfg function 8-6, 8-13, 23-6
IwaveMemFree function 8-10, 23-6

IwaveMemInit function 23-7
IwaveMemPeek function 23-7
IwaveMemPeekW function 23-8
IwaveMemPoke function 23-8
IwaveMemPokeW function 23-8
IwaveMemSize function 8-6, 8-14, 23-9
IwaveMonoAtten function 21-10
IwaveMonoMute function 21-10
IwaveOpen function 18-9, 20-7
IwavePeekBlock function 8-5, 8-9, 23-9
IwavePeekBlockW function 8-9, 23-10
IwavePeekEEPROM function 20-8
IwavePlayAccess function 21-10
IwavePlayData function 6-22, 21-11
IwavePnpActivate function 20-9
IwavePnpBIOS function 20-9
IwavePnpDevice function 20-10
IwavePnpGetCfg function 20-11
IwavePnpIOCheck function 20-11
IwavePnpIsol function 5-14, 5-17, 20-12
IwavePnpKey function 5-15, 20-12
IwavePnpPeek function 20-13
IwavePnpPing function 20-13
IwavePnpPower function 20-14
IwavePnpSerial function 20-14
IwavePnpSetCfg function 20-15
IwavePnpWake function 20-15
IwavePokeBlock function 8-5, 8-9, 23-10
IwavePokeBlockW function 8-9, 23-10
IwavePokeEEPROM function 20-15
IwaveRampVolume function 22-1
IwaveReadVoice function 22-2
IwaveReadVolume function 22-2
IwaveReadyVoice function 22-2
IwaveRealAddr function 20-16
IwaveRecordAccess function 21-12
IwaveRecordData function 6-22, 21-12
IwaveRegisterDMA function 18-11, 20-16
IwaveRegisterIRQ function 18-10, 20-17
IwaveRegPeek function 18-13, 20-17
IwaveRegPoke function 18-13, 20-18
IwaveResetIvt function 20-18
IwaveSetCallback function 20-19
IwaveSetFrequency function 6-25, 21-13
IwaveSetInterface function 8-15, 20-20
IwaveSetIvt function 20-20
IwaveSetLoopMode function 22-3
IwaveSetTimer function 6-23, 21-13
IwaveSetVect function 20-21
IwaveSetVoiceEnd function 22-4
IwaveSetVoicePlace function 22-4
IwaveSetVolume function 22-5
IwaveStartTimer function 6-23
IwaveStartVoice function 22-5
,��� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
IwaveStopDma function 21-14
IwaveStopTimer function 6-23
IwaveStopVoice function 22-6
IwaveStopVolume function 22-6
IwaveSynthGlobal function 22-7
IwaveSynthHandler function 20-21
IwaveSynthMode function 22-7
IwaveTimerStart function 21-14
IwaveTimerStop function 21-14
IwaveUmaskIrqs function 20-21
IwaveVoiceFreq function 22-8
IwaveVoicePan function 22-8
IwaveVoicePitch function 22-9
iwcc.h file 18-2
iwcodec.c file 18-2
iwcore.h file 8-15, 18-2, 18-9
iwdefs.h file 18-2, 18-14
iwdma.c file 18-2
iwinit.c file 18-2
iwinit.exe 4-7
iwirq.c file 18-2
iwmem.c file 18-2
iwpnp.c file 18-2
iwprotos.h file 18-2
iwtypes.h file 18-2
iwutil.c file 18-2
iwvoice.c file 18-2

J
joystick 9-2

buttons 16-1
enabling 12-11
reading X/Y position 9-4
trim DAC level 16-1
trim DAC settings, table 16-2
X/Y position 16-1

L
LDIBI—LMC DMA Interleave Base register 15-7
LDICI—LMC DMA Interleave Control register 15-7

resetting 12-14
LDMACI—LMC DMA Control register 15-1

determining DMA data width 5-12
reading terminal count flag 15-5
resetting 12-14

LDSAHI—LMC DMA Start Address High register 15-3
LDSALI—LMC DMA Start Address Low register 15-2
legacy sound cards 1-4, 10-3
LFO

adding final value to FC, figure 7-26
adding final value to volume, figure 7-26
adding to volume 7-3
calculating ramp time, equation 7-24

calculating the final value 7-24
characteristics, table 7-21
control word contents, table 7-23
four possible waveforms, figure 7-25
parameters 7-22
processing 7-23
specifying frequency, equation 7-23
tremolo 7-19
24-bit address, table 7-22
updating 7-24
vibrato 7-14

LFOs
enabling 14-3
parameters, base address 14-3

libraries, creating DDK 18-11
line inputs 6-16

enabling 12-1
muting 13-13
specifying gain 13-14

line outputs
enabling 12-1
muting 13-16
specifying attenuation 13-16

LMAHI—LMC I/O Address High register 15-3
LMALI—LMC I/O Address Low register 15-3
LMBDR—LMC Byte Data register 15-1

auto-increment mode 15-6
I/O transfer 15-5

LMCFI—LMC Configuration register 15-4
configuring DRAM 8-6
configuring ROM 8-7
specifying refresh rate 8-4

LMCI—LMC Control register 15-5
resetting auto-increment and DRAM select 12-14

LMFSI—LMC FIFO Size register 15-6
resetting 12-14

LMRFAI—LMC Record FIFO Base Address register
15-6

LMSBAI—LMC 16-Bit Access register 15-4
auto-increment mode 15-6

local memory
access priorities 8-10
access priorities, table 8-11
accessing 8-1, 8-8
address translation 8-8
address translations, table 8-8
configuring 8-6, 8-13
control functions, table 8-3
DMA and IRQ functions, table 8-4
DMA transfer, program 8-17
DRAM versus ROM 2-6
FIFO base address 15-6
initializing 8-4
management 8-10
,���

AMD
playback FIFO (LMPF) 8-13, 15-6
programmed I/O 8-9
programming examples 8-13
reading 16-bit value 15-4
record FIFO (LMRF) 8-13, 15-6
refresh rates 8-4
specifying synthesizer addresses 14-4

local memory addressing
auto-increment mode 15-6
in GUS-compatibility mode 3-2
setting I/O transfer pointer 15-3

local memory control
data paths diagram 8-2
enabling 12-30
low-power mode 12-30

local memory DDK functions, list 19-6
local memory playback FIFO (LMPF) 15-6
local memory record FIFO (LMRF) 15-6
logical devices

activating 12-24
checking I/O range 12-24
number (LDN) 12-23
selecting IRQ number 12-25
selecting IRQ type 12-26

M
memory management DDK functions, list 19-6
microphone inputs 6-16

enabling 12-1
muting 13-14
specifying gain 13-14

MIDI
enabling 12-12
enabling command buffer 12-19
enabling loopback 12-1
enabling receive 12-19
enabling receive buffer 12-19
enabling transmit 12-20
enabling transmit buffer 12-19
framing error 16-3
interrupt 16-3
IRQ equation 16-3
overrun error 16-3
port 1-4, 16-2
reading status 12-19
receive data interrupt 12-3, 16-2
receive FIFO 16-3
receive FIFO access 16-4
receive FIFO overrun 16-3
receiving data 16-4
transmit data interrupt 12-3, 16-2
transmit interrupt 16-3
transmit logic, resetting 16-3

transmitting data 16-4
UART 9-3, 16-3, 16-4

MIDI port 9-2, 9-4
description 1-4
enabling 12-30
functions, table 9-4
low-power mode 12-30
registers 16-2
resetting 16-2

mixer 6-2, 6-15
description 1-3
left half, figure 6-17
output 6-16

mnemonics, module 11-1
mode

auto-increment, address 8-5, 15-6
auto-increment, voice register 3-1, 14-1
auto-timer 12-3, 12-13
DMA interleaved 8-11
DMA normal 8-11
enhanced 3-1, 8-10, 14-3, 14-11, 18-11
external decoding 4-4
GUS-compatibility 3-1, 8-9, 8-10, 18-11
mono 6-9
MPU-401 emulation 12-18
normal or internal decoding 4-2
offset 3-3, 7-19, 14-12, 14-15
pan 7-19, 7-20
PCM operation 7-28
PNP card 4-2, 5-13, 5-14
PNP system 4-2, 5-13, 12-22
serial transfer 12-16
shut-down 4-7
single-channel DMA 6-14
standard playback and record 6-9
suspend 4-6, 7-8, 8-5
variable frequency playback 6-10, 13-13, 13-18

modes
codec operation 6-8, 13-10
low-power 12-29
power 4-7

module mnemonics, table 11-1
mono input 6-16

muting 13-17
specifying attenuation 13-17

mono mode 6-9
mono output

muting 13-17
mono playback 13-7
mono record 13-18
Motorola MC6850 UART 1-4
MPU-401

emulation 10-1
enabling emulation 12-18
,��� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
IRQ channel equation 5-9
setting IRQ state 12-21
status emulation 10-2
UART 1-4

N
native mode, GUS 1-4
NMI

enabling 12-17
equation 5-10

normal decoding mode. See internal decoding mode

O
offset

attenuation, equation 7-19
left value, equation 7-19
right value, equation 7-19

offset mode 7-19
defined 3-3
enabling 3-3, 14-15
specifying offset 14-12

outputs
line 12-1, 13-16
mono 13-17
selecting full-scale voltage 13-11

overrun error, MIDI 16-3

P
P201AR, address defined 4-3
P2XR

address defined 4-3
direct registers 12-1
enabling reading and writing of 12-17

P388AR
address defined 4-3
enabling reading and writing of 12-17

P3XR
address defined 4-3
direct registers 12-12

P401AR, address defined 4-3
packaging

Am78C201 (160-pin) 1-1
Am78C202 (144-pin) 1-1

pan mode 7-19, 7-20
parallel-to-serial converters 6-19

data ordering, table 6-19
PATAAR, address defined 4-3
PCCCI—PNP Configuration Control Command register

5-18, 12-22
resetting the IC 4-6

PCDRAR, address defined 4-3
PCM operation 7-12, 7-28

enabling 14-11
in enhanced mode 3-2
programming 7-34

PCM playback, figure 7-11
PCODAR

address defined 4-3
enable reading and writing of 12-17

PCSNBR—PNP Card Select Number Back Door
register 12-21

PCSNI—PNP Card Select Number register 12-23
during software reset 12-22
PNP wake command 12-23

_peek function 20-22
_peekw function 20-22
PGACTI—PNP Game Port Activate register 12-24
PGRCI—PNP Game Port I/O Range Check register

12-24
PIDXR—PNP Index Address register 5-14, 12-21

accessing PSRPAI 5-14
address defined 4-3
indexed registers 12-22
setting and reading base addresses 4-2

PISOCI—PNP Isolate Command register 12-22
playback

enable signal path 13-8
sample counter, disable 13-11
selecting clock crystal 13-7
selecting clock divider 13-7
selecting data format 13-7
selecting stereo or mono 13-7
specifying sample counter value 13-11

playback FIFO 6-22
determining if empty 13-9
determining underrun error 13-3
disabling 6-12
enabling service request interrupt 13-12
interrupt 13-15
interrupt clear, equation 6-7
interrupt set, equation 6-6
ready to write 13-3, 13-8
selecting threshold 13-12
underrun error 13-16
writing left or right sample 13-3
writing when full (overrun) 13-16

PLDNI—PNP Logical Device Number register 12-23
Plug and Play ISA specification 5-1
Plug and Play. See PNP
PMACTI—PNP MPU-401 Activate register 12-24
PMISI—PNP MPU-401 IRQ Select register 12-25
PMITI—PNP MPU-401 IRQ Type register 12-26
PMRCI—PNP MPU-401 I/O Range Check register

12-24
PNP 18-13

address control registers 12-25
,���

AMD
auto-configuration ports, table 5-14
auto-configuration process 5-14
auto-configuration states, diagram 5-15
card control registers 5-18
card mode 4-2, 5-13, 5-14
card select number (CSN) 5-14, 12-23
configuration commands, table 5-19
configuration ports 5-14
configuration state 5-15, 5-18, 12-22, 12-23
configuring 5-7, 5-13, 5-20
direct registers 12-21
DMA select register indexes, table 12-27
index address 12-21
initiation key 5-15
IRQ select register indexes, table 12-26
IRQ type register indexes, table 12-27
isolation phase 5-14
isolation process 5-16
isolation state 5-15, 5-16, 12-21, 12-22, 12-23
logical device configuration registers 5-18
logical devices 12-25, 12-26
purpose 5-13
registers 12-21
resource map, sample B-1
resources, reading 12-23
serial EEPROM 5-14, 12-23
serial EEPROM control attributes 12-28
serial EEPROM control mode 12-28
serial identifier 5-16
sleep state 5-15, 5-18, 12-22, 12-23
state during software reset 4-6, 12-22
system mode 4-2, 5-13, 12-22
unimplemented registers 12-24
wait-for-key state 4-6, 5-15, 12-22
wake command 12-23

PNP registers
configuring 4-7
reading from 12-21
writing to 12-21

PNP states
configuration 5-15, 5-18, 12-22, 12-23
during software reset 12-22
isolation 5-15, 5-16, 12-21, 12-22, 12-23
sleep 5-15, 5-18, 12-22, 12-23
wait-for-key 4-6, 5-15, 12-22

PNPRDP—PNP Read Data Port 5-14, 12-21
address defined 4-3
reading base addresses 4-2, 12-25
setting address 5-14, 5-16, 12-22

PNPWRP—PNP Write Data Port 5-14, 12-21
accessing PSRPAI 5-14
address defined 4-3
setting base addresses 4-2, 12-25

_poke function 20-22

_pokew function 20-23
power modes 12-29

controlling 4-7
power-up state 4-6
PPWRI—PNP Power Mode register 12-29

controlling power modes 4-7
initializing the codec 6-6

PRACTI—PNP CD-ROM Activate register 12-24
PRDSI—PNP CD-ROM DMA Select register 12-27
PRESDI—PNP Resource Data register 12-23

access through 12-23
PRESSI—PNP Resource Data Status register 12-23

reading status 12-23
PRISI—PNP CD-ROM IRQ Select register 12-25
PRITI—PNP CD-ROM IRQ Type register 12-26
program example

servicing codec playback FIFO 6-22
programmed I/O 8-9, 8-14

transfers 6-13
programming example

basic structure of DDK application 18-9
codec interrupt handler 6-21
codec timer 6-24
servicing codec playback FIFO 6-22
system-to-local memory DMA transfer 8-17

programming examples 9-4
codec 6-20
game port 9-4
local memory 8-13
MIDI port 9-4
synthesizer 7-29

PRRCI—PNP CD-ROM I/O Range Check register
12-24

PSACTI—PNP AdLib–Sound Blaster Activate register
12-24

PSBISI—PNP AdLib–Sound Blaster IRQ Select
register 12-25

PSBITI—PNP AdLib–Sound Blaster IRQ Type register
12-26

PSECI—PNP Serial EEPROM Control register 12-28
EEPROM control mode 12-28

PSEENI—PNP Serial EEPROM Enable register 12-28
direct control mode 12-23
specifying EEPROM control attributes 12-28

PSRCI—PNP AdLib–Sound Blaster I/O Range Check
register 12-24

PSRPAI—PNP Set Read Data Port Address register
12-22

accessing 5-14
during software reset 4-6

PUACTI—PNP Audio Activate register 12-24
enabling writing of CSN 12-21

PUD1SI—PNP Audio DMA Channel 1 Select register
12-27
,��� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
PUD2SI—PNP Audio DMA Channel 2 Select register
12-27

PUI1SI—PNP Audio IRQ Channel 1 Select register
12-25

PUI1TI—PNP Audio IRQ Channel 1 Type register
12-26

PUI2SI—PNP Audio IRQ Channel 2 Select register
12-25

PUI2TI—PNP Audio IRQ Channel 2 Type register
12-26

pull-up resistors, enabling power to 12-18
PURCI—PNP Audio I/O Range Check register 12-24
PWAKEI—PNP Wake[CSN] Command register 12-23

R
ReadOPCode function 20-23
ReadWaveHeader function 20-23
receiving MIDI data 16-4
record

enable signal path 13-8
sample counter, disable 13-11
selecting clock crystal 13-18
selecting clock divider 13-18
selecting data format 13-18
selecting stereo or mono 13-18
specifying sample counter value 13-19

record FIFO
determining if full 13-9
determining overrun error 13-3
disabling 6-12
enabling service request interrupt 13-12
interrupt 13-15
interrupt clear equation 6-7
interrupt set equation 6-7
overrun error 13-16
reading left or right sample 13-3
reading when empty (underrun) 13-16
ready to read 13-3, 13-8
selecting DMA or I/O 13-8
selecting threshold 13-12

refresh rates 8-7
register

CDATAP—Codec Indexed Data Port 13-2
CEXTI—External Control 13-8
CFIG1I—Configuration Register 1 6-11, 13-1, 13-4,

13-7
CFIG2I—Configuration Register 2 6-19, 13-9,

13-11, 13-16
CFIG3I—Configuration Register 3 6-11, 13-12,

13-18
CIDXR—Codec Index Address 6-11, 13-1, 13-6,

13-7, 13-9
CLAX1I—Left Auxiliary 1/Synthesizer Input Control

13-5, 13-13
CLAX2I—Left Auxiliary 2 Input Control 13-5
CLCI—Loopback Control 13-10
CLDACI—Left Playback DAC Control 13-6
CLICI—Left ADC Input Control 13-4
CLLICI—Left Line Input Control 13-13
CLMICI—Left Microphone Input Control 13-14
CLOAI—Left Output Attenuation 13-16
CLPCTI—Lower Playback Count 6-14, 13-11
CLRCTI—Lower Record Count 6-14, 13-19
CLTIMI—Lower Timer 6-19, 13-14
CMODEI—Mode Select, ID 13-10
CMONOI—Mono Input and Output Control 13-17
CPDFI—Playback Data Format 6-8, 13-1, 13-6,

13-13, 13-18
CPDR—Playback Data 13-4
CPVFI—Playback Variable Frequency 13-13,

13-18
CRAX1I—Right Auxiliary 1/Synthesizer Input

Control 13-5, 13-13
CRAX2I—Right Auxiliary 2 Input Control 13-5
CRDACI—Right Playback DAC Control 13-6
CRDFI—Record Data Format 6-8, 13-1, 13-17
CRDR—Record Data 13-4
CRICI—Right ADC Input Control 13-4
CRLICI—Right Line Input Control 13-13
CRMICI—Right Microphone Input Control 13-14
CROAI—Right Output Attenuation 13-16
CSR1R—Codec Status Register 1 6-19, 13-1,

13-2, 13-3, 13-9
CSR2I—Codec Status Register 2 13-1, 13-3, 13-9
CSR3I—Codec Status Register 3 6-14, 6-19, 13-1,

13-3, 13-14, 13-15
CUPCTI—Upper Playback Count 6-14, 13-11
CURCTI—Upper Record Count 6-14, 13-19
CUTIMI—Upper Timer 6-19, 13-14
GGCR—Game Control 12-11, 16-1
GJTDI—Joystick Trim DAC 16-1
GMCR—MIDI Control 12-12, 12-18, 12-19, 16-2
GMRDR—MIDI Receive Data 12-3, 12-12, 12-18,

12-19, 16-3, 16-4
GMRFAI—MIDI Receive FIFO Access 16-4
GMSR—MIDI Status 12-12, 12-18, 12-19, 16-3
GMTDR—MIDI Transmit Data 12-3, 12-12, 12-18,

12-19, 16-3, 16-4
I16DP—General 16-Bit Data Port 12-12
I8DP—General 8-Bit Data Port 12-12
ICMPTI—Compatibility 4-3, 6-18, 12-15
IDECI—Decode Control 12-16
IEIRQI—Emulation IRQ 6-20, 12-20, 13-8
IEMUAI—MPU-401 Emulation Control A 12-18
IEMUBI—MPU-401 Emulation Control B 12-19
IGIDXR—General Index 3-1, 7-8, 12-12, 14-11
IVERI—Version Number 12-17
,���

AMD
LDIBI—LMC DMA Interleave Base 15-7
LDICI—LMC DMA Interleave Control 12-14, 15-7
LDMACI—LMC DMA Control 5-12, 12-14, 15-1,

15-5
LDSAHI—LMC DMA Start Address High 15-3
LDSALI—LMC DMA Start Address Low 15-2
LMAHI—LMC I/O Address High 15-3
LMALI—LMC I/O Address Low 15-3
LMBDR—LMC Byte Data 15-1, 15-5, 15-6
LMCFI—LMC Configuration 8-4, 8-6, 8-7, 15-4
LMCI—LMC Control 12-14, 15-5
LMFSI—LMC FIFO Size 12-14, 15-6
LMRFAI—LMC Record FIFO Base Address 15-6
LMSBAI—LMC 16-Bit Access 15-4, 15-6
PCCCI—PNP Configuration Control Command

4-6, 5-18, 12-22
PCSNBR—PNP Card Select Number Back Door

12-21
PCSNI—PNP Card Select Number 12-22, 12-23
PGACTI—PNP Game Port Activate 12-24
PGRCI—PNP Game Port I/O Range Check 12-24
PIDXR—PNP Index Address 4-2, 4-3, 5-14, 12-21
PISOCI—PNP Isolate Command 12-22
PLDNI—PNP Logical Device Number 12-23
PMACTI—PNP MPU-401 Activate 12-24
PMISI—PNP MPU-401 IRQ Select 12-25
PMITI—PNP MPU-401 IRQ Type 12-26
PMRCI—PNP MPU-401 I/O Range Check 12-24
PNPRDP—PNP Read Data Port 4-2, 4-3, 5-14,

5-16, 12-21, 12-22, 12-25
PNPWRP—PNP Write Data Port 4-2, 4-3, 5-14,

12-21, 12-25
PPWRI—PNP Power Mode 4-7, 6-6, 12-29
PRACTI—PNP CD-ROM Activate 12-24
PRDSI—PNP CD-ROM DMA Select 12-27
PRESDI—PNP Resource Data 12-23
PRESSI—PNP Resource Data Status 12-23
PRISI—PNP CD-ROM IRQ Select 12-25
PRITI—PNP CD-ROM IRQ Type 12-26
PRRCI—PNP CD-ROM I/O Range Check 12-24
PSACTI—PNP AdLib–Sound Blaster Activate

12-24
PSBISI—PNP AdLib–Sound Blaster IRQ Select

12-25
PSBITI—PNP AdLib–Sound Blaster IRQ Type

12-26
PSECI—PNP Serial EEPROM Control 12-28
PSEENI—PNP Serial EEPROM Enable 12-23,

12-28
PSRCI—PNP AdLib–Sound Blaster I/O Range

Check 12-24
PSRPAI—PNP Set Read Data Port Address 4-6,

5-14, 12-22
PUACTI—PNP Audio Activate 12-21, 12-24

PUD1SI—PNP Audio DMA Channel 1 Select 12-27
PUD2SI—PNP Audio DMA Channel 2 Select 12-27
PUI1SI—PNP Audio IRQ Channel 1 Select 12-25
PUI1TI—PNP Audio IRQ Channel 1 Type 12-26
PUI2SI—PNP Audio IRQ Channel 2 Select 12-25
PUI2TI—PNP Audio IRQ Channel 2 Type 12-26
PURCI—PNP Audio I/O Range Check 12-24
PWAKEI—PNP Wake[CSN] Command 12-23
SACI—Synthesizer Address Control 7-8, 7-9, 14-8
SAEHI—Synthesizer Address End High 14-5
SAELI—Synthesizer Address End Low 14-5
SAHI—Synthesizer Address High 14-6
SALI—Synthesizer Address Low 14-6
SASHI—Synthesizer Address Start High 14-4
SASLI—Synthesizer Address Start Low 14-5
SAVI—Synthesizer Active Voices 14-1
SEAHI—Synthesizer Effects Address High 14-7
SEALI—Synthesizer Effects Address Low 14-7
SEASI—Synthesizer Effects Output Accumulator

Select 7-21, 14-14
SEVFI—Synthesizer Effects Volume Final Value

14-14
SEVI—Synthesizer Effects Volume 14-13
SFCI—Synthesizer Frequency Control 7-4, 7-11,

14-7
SFLFOI—Synthesizer Frequency LFO 14-8
SGMI—Synthesizer Global Mode 3-1, 7-21, 12-14,

14-1, 14-3, 14-4
SLFOBI—Synthesizer LFO Base Address 7-22,

12-14, 14-3
SLOFI—Synthesizer Left Offset Final Value 14-13
SLOI—Synthesizer Left Offset 14-13
SMSI—Synthesizer Mode Select 3-2, 3-3, 7-4, 7-5,

7-12, 7-13, 7-19, 7-21, 7-26, 7-27, 14-14
SROFI—Synthesizer Right Offset Final Value

14-12
SROI—Synthesizer Right Offset 7-20, 14-12
SUAI—Synthesizer Upper Address 14-4
SVCI—Synthesizer Volume Control 7-8, 7-9, 7-16,

7-28, 14-10
SVEI—Synthesizer Volume End 14-9
SVII—Synthesizer Voices IRQ 7-8, 12-14, 14-2,

14-11
SVIRI—Synthesizer Voices IRQ Read 7-8, 12-14,

14-2
SVLFOI—Synthesizer Volume LFO 7-19, 14-11
SVLI—Synthesizer Volume Level 14-10
SVRI—Synthesizer Volume Rate 7-18, 14-10
SVSI—Synthesizer Volume Start 14-9
SVSR—Synthesizer Voice Select 14-1
U2X6R—Sound Blaster 2X6 12-3, 12-14
U2XCR—Sound Blaster 2XC (no IRQ) 12-6, 12-17
U2XER—Sound Blaster 2XE 12-6, 12-17
UACRR—AdLib Command Read 12-3, 12-17
,��� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
UACWR—AdLib Command Write 12-3, 12-17
UADR—AdLib Data 12-3, 12-4, 12-15, 12-17,

12-18
UASBCI—AdLib–Sound Blaster Control 12-2,

12-4, 12-12, 12-15
UASRR—AdLib Status Read 12-3, 12-5, 12-15,

12-17
UASWR—AdLib Status Write 12-3, 12-17
UAT1I—AdLib Timer 1 12-3, 12-13
UAT2I—AdLib Timer 2 12-2, 12-4, 12-13
UCLRII—Clear Interrupts 12-7, 12-11
UDCI—DMA Channel Control 12-1, 12-7, 12-8,

15-2, 18-10
UGP1I—General Purpose Register 1 4-3, 12-7,

12-10, 12-11, 12-19, 12-20
UGP2I—General Purpose Register 2 4-3, 12-7,

12-10, 12-11, 12-19
UGPA1—General Purpose Register 1 Address

12-11
UGPA1I—General Purpose Register 1 Address

4-3, 12-7, 12-16
UGPA2I—General Purpose Register 2 Address

4-3, 12-7, 12-11, 12-15
UHRDP—GUS Hidden Register Data Port 12-5,

12-7, 12-18
UI2XCR—Sound Blaster IRQ 2XC 12-5, 12-6,

12-14, 12-17
UICI—Interrupt Control 12-1, 12-7, 12-9, 12-26,

18-10
UISR—IRQ Status 7-8, 12-2, 12-15
UJMPI—Jumper 12-7, 12-11
UMCR—Mix Control 12-1, 12-8, 12-18
URCR—Register Control 12-6, 12-18
URSTI—GUS Reset 12-14, 12-15
USCI—ADC Sample Control 12-13, 12-15
USRR—Status Read 12-7, 12-11

register array 7-30
registers

accessing 4-2
accessing with DDK 18-13
codec 12-17
codec direct 13-1
direct 4-4, 12-1, 12-12, 12-21
emulation control, figure 10-2
for interrupt events, table 5-8
game port 16-1
indexed

by CIDXR 13-4
by IGIDXR 12-12
by PIDXR 12-22
by URCR[2:0] 12-8

indexed by PIDXR 12-22
indirect 4-4
listed by I/O address 11-2

listed by mnemonic 11-7
MIDI port 16-2
naming conventions 11-1
PNP

address control 12-25
card control 5-18
direct 12-21
indexed 12-22
isolation phase, table 5-16
logical device configuration 5-18

synthesizer
current address 14-6
direct 14-1
effects address 14-7
ending address 14-5
global 14-1
indirect 14-1
offset address 14-12
starting address 14-4
voice-specific 14-4

system control
direct 12-1, 12-12
indexed 12-8, 12-12

voice-specific 7-30
relocatable addresses 4-2

table 4-3
reset

hardware 4-6
software 4-6, 12-22

resetting
card select number 12-22
MIDI port 16-2
MIDI receive FIFO 16-3
serial EEPROM control logic 12-23

revision ID, reading 13-10
ROM

accessing 7-12
configurations, table 8-8
configuring 8-6, 8-7, 15-4
enabling reading 3-2
reading voice data from 14-15
selecting for I/O transfer 15-6

S
SACI—Synthesizer Address Control register 14-8

voice address control 7-9
wavetable boundary interrupt 7-8

SAEHI—Synthesizer Address End High register 14-5
SAELI—Synthesizer Address End Low register 14-5
SAHI—Synthesizer Address High register 14-6
SALI—Synthesizer Address Low register 14-6
sample counter

disabling for playback 13-11
,���

AMD
disabling for record 13-11
specifying value for playback 13-11
specifying value for record 13-19

sample counters 6-1, 6-14
decrement events, table 6-14
operation in each mode 6-14

sample interpolation 7-3, 7-9, 7-12, 7-13
figure 7-14

sampling rate 6-9
selecting 6-25

SASHI—Synthesizer Address Start High register 14-4
SASLI—Synthesizer Address Start Low register 14-5
SAVI—Synthesizer Active Voices register 14-1
SBOS 2-3
SEAHI—Synthesizer Effects Address High register

14-7
SEALI—Synthesizer Effects Address Low register 14-7
SEASI—Synthesizer Effects Output Accumulator

Select register 14-14
choosing effects accumulator 7-21

serial EEPROM 5-14
control mode 12-28
reading resources 12-23
resetting control logic 12-23
specifying control attributes 12-28

serial interface 6-17
serial transfer

data flow and format, figure 6-18
parallel-to-serial converters 6-19
serial-to-parallel converters 6-19

serial transfer mode
selecting 12-15
selection, table 12-16

serial-to-parallel converters 6-19
SEVFI—Synthesizer Effects Volume Final Value

register 14-14
SEVI—Synthesizer Effects Volume register 14-13
SFCI—Synthesizer Frequency Control register 14-7

address control 7-11
specifying address rate 7-4

SFLFOI—Synthesizer Frequency LFO register 14-8
SGMI—Synthesizer Global Mode register 14-3

active voices 14-1
enabling enhanced mode 3-1
enabling LFOs 7-21
resetting 12-14
specifying synthesizer upper address 14-4

shut-down mode 4-7
signal path

enabling playback 13-8
enabling record 13-8

signal voice 7-4
accumulation 7-27

16-bit I/O decoding 12-21

sleep state 5-18
defined 5-15
entering 12-23
losing isolation 12-22
resetting CSN 12-22

SLFOBI—Synthesizer LFO Base Address register 14-3
resetting 12-14
specifying LFO base address 7-22

SLOFI—Synthesizer Left Offset Final Value register
14-13

SLOI—Synthesizer Left Offset register 14-13
SMSI—Synthesizer Mode Select register 14-14

µ-law data format 3-2
deactivating a voice 3-3
effects processing 3-3
enabling µ-law decompression 7-13
enabling offset mode 3-3, 7-19
enabling voice as effects processor 7-26
reading ROM 3-2
selecting effects signal path 7-5, 7-21, 7-27
selecting ROM or DRAM 7-12
specifying a signal voice 7-4
specifying an effects processor voice 7-5

software reset 4-6
software tools

DOS driver 2-4
heirarchy, figure 2-1
InterWave Kernel 2-2
memory sizes 2-8
SBOS 2-3
Windows 3.x driver 2-5
Windows 95 driver 2-5

Sound Blaster
2XC interrupt 12-4
2XE interrupt 12-4, 12-6, 12-7
emulation IRQ channel, equation 5-9
enabling interrupts 12-12
setting IRQ state 12-21

SROFI—Synthesizer Right Offset Final Value register
14-12

SROI—Synthesizer Right Offset register 14-12
specifying pan position 7-20

stereo playback 13-7
stereo position 7-5, 7-19
stereo record 13-18
SUAI—Synthesizer Upper Address register 14-4
suspend mode 7-8

defined 4-6
DRAM refreshing 4-6
refresh rate 8-5, 15-4

SVCI—Synthesizer Volume Control register 14-10
computing next volume value 7-16
enabling PCM operation 7-28
voice address control 7-9
,��� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
volume boundary interrupt 7-8
SVEI—Synthesizer Volume End register 14-9
SVII—Synthesizer Voices IRQ register 14-2

boundary interrupts 7-8
clearing volume IRQ 14-11
resetting 12-14

SVIRI—Synthesizer Voices IRQ Read register 14-2
reading voice interrupts 7-8
resetting 12-14

SVLFOI—Synthesizer Volume LFO register 14-11
creating tremolo 7-19

SVLI—Synthesizer Volume Level register 14-10
SVRI—Synthesizer Volume Rate register 14-10

specifying ramp rate 7-18
SVSI—Synthesizer Volume Start register 14-9
SVSR—Synthesizer Voice Select register 14-1
synthesizer

address looping 7-9
clearing

voice interrupt 14-2
volume interrupt 14-2, 14-11
wavetable interrupt 14-2, 14-8

control and configuration functions, table 7-6
DAC 6-2
data paths diagram 7-3
deactivating a voice 14-15
description 1-2
direct registers 14-1
effects volume 14-13, 14-14
enabling 12-30

interrupts 12-14
voice as effects processor 14-15
volume interrupt 14-11
wavetable IRQ 14-8

features 7-2
frequency control 14-7
global registers 14-1
indirect registers 14-1
initializing 7-8
interrupts 7-8
interrupts ORed with codec 12-1
IRQ functions, table 7-7
low-power mode 12-30
muting input 13-5
offset mode 14-12, 14-15
offset registers 14-12
programming examples 7-29
reading

voice data from ROM 14-15
voice interrupt 14-2
volume interrupt 14-2, 14-11
wavetable interrupt 14-2, 14-8

reading voice interrupt 14-3
reading volume interrupt 14-3

reading wavetable interrupt 14-3
selecting as input 13-13
selecting effects accumulator for voice 14-14
selecting voice 14-1
setting wavetable interrupt 14-8
specifying

current address 14-6
effects address 14-7
ending address 14-5
input gain 13-5
local memory addresses 14-4
starting address 14-4

starting a voice 14-9
stopping a voice 14-9
voice

status 14-9
tremolo 14-11
vibrato 14-8
volume control functions, table 7-7
volume level 14-9, 14-10, 14-11
volume looping 14-11, 14-11–??, 14-11,

??–14-11
volume ramp rate 14-10
wavetable control functions, table 7-6

voice volume level 14-9
voice volume looping 14-11
voice-specific registers 7-30, 14-4
wavetable data

biderectional looping 14-9
direction 14-8
width 14-9

wavetable data looping 14-9
synthesizer DAC 6-10, 6-16, 7-4, 7-8

enabling 12-14
synthesizer DDK functions, list 19-5
system bus interface (SBI)

144-pin 1-3
description 5-13

system control
data paths diagram 5-2
description 5-1
DMA and non-emulation IRQ functions, table 5-4
emulation and compatibility control functions, table

5-6
emulation IRQ functions, table 5-5
game port and MIDI port functions, table 5-7
general control functions, table 5-3
intialization 5-7
PNP functions, table 5-3

system control DDK functions, list 19-1
system mode

compared to card mode 5-13
defined 4-2
no isolation 12-22
,���

AMD
T
table

address spaces 4-3
audio I/O functions 5-7
Available ROM Patch Sets 2-6
codec DMA and IRQ functions 6-5
codec general control and configuration functions

6-3
codec input and output control functions 6-5
codec interrupt equation variables 6-8
contents of LFO control word 7-23
decoding the data select field 7-22
direct addresses 4-4
DMA and non-emulation functions 5-4
DMA request categories 5-11
DMA request number selection 12-28
DRAM and ROM Choice Space 2-7
DRAM configuration selection 15-5
DRAM configurations 8-7
DRAM refresh rate selection 15-4
DRAM refresh rates 8-7
effects accumlator output links 7-28
emulation and compatibility functions 5-6
emulation IRQ functions 5-5
external decoding mode addresses 4-5
FIFO data ordering 6-11
FIFO error conditions 6-15
FIFO threshold configurations 6-11
FIFO threshold selections 13-13
game port and MIDI functions 5-7
game port functions 9-2
general control functions 5-3
indexes for PNP IRQ select registers 12-26
interleaved DMA transfer modes 8-12
IRQ equation variables 5-11
IRQ number selection 12-26
IRQ number to interrupt event mapping 12-26
joystick trim DAC level settings 16-2
left and right amplitudes for pan values 7-20
LFO characteristics 7-21
local memory address translations 8-8
local memory control functions 8-3
local memory DMA and IRQ functions 8-4
MIDI port functions 9-4
module mnemonics 11-1
parallel-to-serial converter data ordering 6-19
PCCCI configuration commands 5-19
playback clock divider selections 13-7
PNP address control registers 12-25
PNP auto-configuration ports 5-14
PNP card control registers 5-18
PNP DMA select register indexes 12-27
PNP functions 5-3

PNP IRQ type register indexes 12-27
PNP isolation-phase registers 5-16
priorities of memory access cycles 8-11
reading the PNP serial identifier 5-17
record clock divider selections 13-18
registers by I/O address 11-2
registers by mnemonic 11-7
ROM bank configurations 8-8
sample counter decrement events 6-14
samples and cycles per DMA request 6-12
serial transfer mode selection 12-16
Sizes of Software Modules 2-8
Strategies for Loading DRAM Patch Sets 2-7
synthesizer control and configuration functions 7-6
synthesizer IRQ functions 7-7
synthesizer voice volume control functions 7-7
synthesizer voice wavetable control functions 7-6
24-bit LFO address 7-22
variable frequency formula and ranges 6-10
volume control combinations 7-18
wavetable addressing control 7-12

Table A-7. Power Supply Pins A-6
terminal count (TC) interrupt 15-1
timer

codec 6-2, 6-19, 6-23, 13-14
codec, interrupt 13-15
loading AdLib timer values 12-13
starting AdLib 12-5

transfer rate, selecting 15-2
transmitting MIDI data 16-4
tremolo 7-19, 7-21
24.576-MHz oscillator

enabling 12-30
low-power mode 12-30

U
U2X6R—Sound Blaster 2X6 register 12-3

resetting interrupt 12-14
U2XCR—Sound Blaster 2XC (no IRQ) register 12-6

enabling reading and writing of 12-17
U2XER—Sound Blaster 2XE register 12-6

enabling reading and writing of 12-17
UACRR—AdLib Command Read register 12-3

enabling reading from 12-17
UACWR—AdLib Command Write register 12-3

enabling writing to 12-17
UADR register 12-17
UADR—AdLib Data register 12-4

clearing AdLib timer interrupts 12-3
enabling reading and writing of 12-17
enabling reading from 12-18
masking AdLib timer interrupts 12-3
resetting 12-15
,��� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

AMD
UART
enabling command buffer 12-19
enabling receive buffer 12-19
enabling transmit buffer 12-19
MIDI 16-3, 16-4
Motorola MC6850 1-4
MPU-401 1-4
reading status 12-19

UASBCI—AdLib–Sound Blaster Control register 12-12
clearing AdLib timer interrupts 12-2
enabling AdLib data interrupt 12-4
enabling Sound Blaster 2XC interrupt 12-4
enabling Sound Blaster 2XE interrupt 12-4
resetting 12-15

UASRR—AdLib Status Read register 12-3
clearing AdLib timer interrupts 12-5
enable reading from 12-17
enabling reading from 12-17
masking AdLib timer interrupts 12-5
resetting 12-15

UASWR—AdLib Status Write register 12-3
enabling writing to 12-17

UAT1I—AdLib Timer 1 register 12-13
loading AdLib timer 1 12-3

UAT2I—AdLib Timer 2 register 12-13
loading AdLib timer 2 12-2, 12-4

UCLRII—Clear Interrupts register 12-11
selecting for access through UHRDP 12-7

UDCI—DMA Channel Control register 12-8
configuring DMA channels 18-10
determining DMA data width 15-2
selecting for access through UHRDP 12-7
selecting over UICI 12-1

UGP1I—General Purpose Register 1 12-10
back door, selecting for access through UHRDP

12-7
enabling reading through emulation address 12-19
relocatable address 4-3
selecting bits 7 and 6 values 12-20
specifying emulation address 12-11

UGP2I—General Purpose Register 2 12-10
back door, selecting for access through UHRDP

12-7
enabling reading through emulation address 12-19
relocatable address 4-3
specifying emulation address 12-11

UGPA1I—General Purpose Register 1 Address register
12-11

selecting for access through UHRDP 12-7
setting UGP1I address 4-3
specifying UGP1I emulation address 12-16

UGPA2I—General Purpose Register 2 Address register
12-11

selecting for access through UHRDP 12-7

setting UGP2I address 4-3
specifying UGP2I emulation address 12-15

UHRDP—GUS Hidden Register Data Port 12-5
enabling access to 12-18
selecting access register 12-7

UI2XCR—Sound Blaster IRQ 2XC register 12-5
enabling reading and writing of 12-17
resetting interrupt 12-14
toggling bit 7 12-6

UICI—Interrupt Control register 12-9
affected by writes to PUI1SI and PUI2SI 12-26
configuring IRQ channels 18-10
selecting for access through UHRDP 12-7
selecting over UDCI 12-1

UISR—IRQ Status register 12-2
boundary interrupts 7-8
resetting DMA terminal count (TC) interrupt 12-15

UJMPI—Jumper register 12-11
selecting for access through UHRDP 12-7

UltraSound
compatibility 1-4, 3-1
native mode 1-4

UMCR—Mix Control register 12-1
enabling access to UHRDP 12-18
reading IRQ and DMA enable status 12-8

URCR—Register Control register 12-6
enabling reading from 12-18

URSTI—GUS Reset register 12-14
resetting 12-15

USCI—ADC Sample Control register 12-13
resetting 12-15

USRR—Status Read register 12-7
clearing interrupts in 12-11

utility DDK functions, list 19-2

V
variable frequency playback

enabling 13-13
formula and ranges table 6-10
selecting frequency 13-18

version number, IC die 12-17
vibrato 7-21
voice

accumulation 7-27
address looping interrupt 12-2
alternate effects signal path 14-15
as effects processor 7-26
choosing effects accumulator 7-21
clearing

interrupt 14-2
volume interrupt 14-2, 14-11
wavetable interrupt 14-2, 14-8

controlling frequency 14-7
,���

AMD
deactivating 3-3, 14-15
effects processor 7-5
enabling

as effects processor 14-15
bidirectional volume looping 14-11
volume IRQ 14-11
volume looping 14-11
wavetable IRQ 14-8

frame 7-8
frequency control 7-11
PCM operation 14-11
processing 7-3
programming as effects processor 7-33
programming as signal generator 7-32
reading

current effects volume 14-13
current volume 14-10
data from ROM 14-15
interrupt 14-2
status 14-9
volume interrupt 14-2, 14-11
wavetable interrupt 14-2, 14-8

reading interrupt 14-3
reading volume interrupt 14-3
reading wavetable interrupt 14-3
register array 7-30
selecting 14-1
selecting effects accumulator for 14-14
setting wavetable interrupt 14-8
signal 7-4
specifying

ending volume 14-9
final effects volume 14-14
starting volume 14-9
volume ramp direction 14-11
volume ramp rate 14-10

starting 14-9
starting volume looping 14-11
stereo position 7-5
stopping 14-9
stopping volume looping 14-11
tremolo 7-19, 7-21, 14-11
vibrato 7-14, 7-21, 14-8
volume LFO 14-11
volume looping interrupt 12-2
volume looping status 14-11
volume ramp increment 14-10

voices
specifying number of active 14-2

volume
control 7-14
control combinations, table 7-18
effects component 7-5, 7-21
envelope 7-19

envelope generation 7-3, 7-16
envelope segments 7-34
implemented multiplication equation 7-15
LFO component 7-5
looping component 7-16
multiplication equation 7-15
multiplying components, equation 7-15
ramp rate 7-18
ramp-up and ramp-down, figure 7-17

volume looping
bidirectional, figure 7-17
forward and reverse, figure 7-17
interrrupt 7-8
interrupt 12-2
starting and stopping 14-11
status 14-11

W
wait-for-key state 5-15

entering 12-22
no reset of CSN 12-22
software reset 4-6

wake command 12-23
wavetable

clearing interrupt 14-2, 14-8
enabling IRQ 14-8
reading interrupt 14-2, 14-3, 14-8
setting interrupt 14-8

wavetable data
enabling bidirectional looping 14-9
enabling looping 14-9
specifying data width 14-9
specifying direction 14-8

Windows 3.x driver 2-5
Windows 95 driver 2-5
WriteEnable function 20-24
WriteOPCode function 20-24
,��� ,QWHU:DYH�3URJUDPPHU·V�*XLGH

	InterWave™ IC Am78C201/202
	List of Tables
	List of Figures
	Preface
	How To Use This Book
	Part 1. Introducing the InterWave IC
	Part 2. Programming the InterWave IC
	Part 3. InterWave Registers Reference
	Part 4. InterWave Game API and Driver Developer's ...
	Appendixes

	Typographical Conventions
	Equation 0�1 Audio Channel 1

	Introducing the InterWave IC
	Introduction
	InterWave IC Features
	General Description
	Synthesizer
	Integrated Effects Processing
	Wavetable Data in Local Memory
	Digital Mixer
	Low Frequency Oscillators (LFOs)
	On-Chip 16-Bit Synthesizer Digital-to-Analog Conve...
	Patch Formats

	Codec
	Flexible Sample Rates
	Data Formats
	FIFOs
	Serial DSP Port
	Mixer
	Bus Interface Options
	ISA Plug and Play Interface
	External Device Pass-Through
	Reduced Pin Count ISA Bus Interface

	Other Sound Card Support
	Game and MIDI Ports
	Software Environment

	Software Hierarchy
	Figure 2�1 Software Hierarchies

	InterWave Game API
	InterWave Driver Developer’s Kit (DDK)
	Plug and Play Support
	InterWave Kernel
	Supported Compilers
	SBOS
	Operating System Support
	DOS
	Figure 2�2 DOS Split Mode TSR

	Windows 3.x
	Figure 2�3 Windows 3.x

	Windows 95
	Figure 2�4 Windows 95

	DRAM versus ROM Local Memory Trade-offs
	Table 2�1 Available ROM Patch Sets
	Table 2�2 TDRAM and ROM Choice Space
	Table 2�3 Strategies for Loading DRAM Patch Sets

	Sizes of Software Modules
	Table 2�4 Memory Requirements for Software Modules...
	Compatibility With Advanced Gravis UltraSound and ...

	Frame Expansion
	Auto-Increment Mode
	Local Memory Addressing
	PCM Operation
	Volume and Frequency LFOs
	Voice Data in ROM
	µ-Law Voice Data Format

	Separate Left And Right Stereo Offset Registers
	Voice Deactivation
	Effects Processing
	DMA Control
	GUS-Compatibility Mode Reset
	Programming the InterWave IC
	Global Programming Topics
	Data Paths
	Figure 4�1 InterWave Data Paths

	Accessing InterWave Registers
	Normal or Internal Decoding
	System Mode
	Card Mode
	I/O Address Spaces
	Table 4�1 InterWave Address Spaces �

	Direct Registers
	Table 4�2 Direct Addresses

	Indirect Registers

	External Decoding
	Table 4�3 External Decoding Mode I/O Addresses �

	Reset
	Power-Up and Hardware Reset
	Software Reset
	Suspend Mode

	Initialization
	Programmable Power Modes
	Interrupt Structure
	Figure 4�2 Interrupt Structure

	Clocks
	System Control Functions

	System Control Basics

	System Control Data Paths
	Figure 5�1 InterWave System Control Data Paths
	Register Overview
	Table 5�1 General Control Functions �
	Table 5�2 PNP Functions (Continued)
	Table 5�3 DMA and Non-Emulation IRQ Functions �
	Table 5�4 Emulation IRQ Functions �
	Table 5�5 Emulation and Compatibility Control Func...
	Table 5�6 Game Port and MIDI Port Functions
	Table 5�7 Audio I/O Functions

	Initialization
	Interrupt Level Selection
	Registers for Enabling, Reporting, and Clearing In...
	Table 5�8 Registers for Interrupt Events �

	Interrupt-Mapping Equations
	Equation 5�1 Audio IRQ Channel 1
	Equation 5�2 Audio IRQ Channel 2
	Equation 5�3 CD-ROM IRQ Channel
	Equation 5�4 Sound Blaster Emulation IRQ Channel
	Equation 5�5 MPU-401 IRQ Channel
	Equation 5�6 IRQ Selection
	Equation 5�7 IRQ Enabling
	Equation 5�8 IRQ10 and IRQ4 Selection
	Equation 5�9 IRQ10 and IRQ4 Enabling
	Equation 5�10 NMI Function
	Table 5�9 Bit Fields and Variables in IRQ Equation...

	DMA Channel Selection
	Categories of DMA Requests
	Table 5�10 DMA Requests by Category

	DRQ-Mapping Equations
	Equation 5�11 DRQ Channel Selection
	Equation 5�12 Mapping to the DRQ Pins
	Equation 5�13 Enabling DMA Requests

	DMA Data Width
	DMA Transfer Rates

	System Bus Interface
	Plug and Play Functions
	The Purpose of PNP
	Card Mode versus System Mode
	PNP Auto-Configuration Ports
	Table 5�11 PNP Auto-Configuration Ports

	InterWave Programming in PNP Card Mode
	The Auto-Configuration Process
	Figure 5�2 PNP Auto-Configuration States

	Auto-Configuration States
	Table 5�12 Isolation-Phase Registers
	Figure 5�3 Reading the PNP Serial Identifier

	Table 5�13 PNP Card Control Registers
	Table 5�14 PCCCI Configuration Commands

	InterWave Programming in PNP System Mode

	Programming Tips and Examples
	Configuring the PNP Card
	Sample 5�1 Configuring the PNP Card

	Isolating the PNP Card
	Programming the Serial EEPROM
	Sample 5�2 Code to Program the Serial EEPROM
	Codec/Mixer

	Codec Basics
	Codec Data Paths
	Figure 6�1 Codec Data Paths

	Register Overview
	Table 6�1 Codec General Control and Configuration ...
	Table 6�2 Codec Input and Output Control Functions...
	Table 6�3 Codec DMA and IRQ Functions

	Initialization

	Codec Interrupt Structure
	Equation 6�1 Playback FIFO Interrupt Set
	Equation 6�2 Playback FIFO Interrupt Clear
	Equation 6�3 Record FIFO Interrupt Set
	Equation 6�4 Record FIFO Interrupt Clear
	Equation 6�5 Codec Timer Interrupt Set
	Equation 6�6 Codec Timer Interrupt Clear
	Equation 6�7 Codec Global Interrupt Status
	Equation 6�8 Codec Interrupt Signal
	Table 6�4 Codec Interrupt Equation Variables
	Operating Modes
	Data Conversion
	Data Format
	Available Data Formats
	Mode 1 Format Control
	Mode 2 and 3 Format Control

	Mono Mode
	Sampling Rates
	Standard Mode—Playback and Record
	Variable Frequency Playback Mode
	Table 6�5 Variable Frequency Formula and Ranges

	Synthesizer DAC

	Codec FIFOs
	Data Order
	Table 6�6 FIFO Data Ordering �

	FIFO Thresholds
	Table 6�7 FIFO Threshold Configurations

	DMA Transfers
	Table 6�8 Samples and Cycles per DMA Request
	When the Record FIFO Is Disabled
	When the Playback FIFO Is Disabled

	I/O Transfers
	ADPCM Issues
	Sample Counters
	Table 6�9 Sample Counter Decrement Events
	Mode 1
	Mode 2
	Mode 3

	FIFO Error Conditions
	Table 6�10 FIFO Error Conditions

	Mixer
	Outputs
	Inputs
	Loopback
	Output Mixer to ADC Path
	Signal Flow
	Figure 6�2 Left Half of the InterWave Mixer

	Serial Interface
	Figure 6�3 Codec Data Flow
	Table 6�11 Serial Transfer Data Flow and Format
	Multiplexed Pins
	Parallel-to-Serial Converters
	Table 6�12 Parallel-to-Serial Converter Data Order...

	Serial-to-Parallel Converters

	Miscellaneous Functions
	Codec Timer
	External Control Outputs

	Programming Tips and Examples
	Handling Codec Interrupts
	Sample 6�1 Codec Interrupt Handler

	Transferring Data to the Codec Playback FIFO Using...
	Sample 6�2 Servicing the Codec Playback FIFO Throu...

	Programming the Codec Timer
	Sample 6�3 Codec Timer Program

	Selecting Data Format and Sampling Rate
	Setting the Sample Counters
	Synthesizer

	Synthesizer Features
	Synthesizer Basics
	Figure 7�1 Basic Synthesizer Data Paths
	Figure 7�2 Envelope Generation and Effects Paths
	Signal Voices
	Effects Processor Voices
	Alternate Effects Signal Paths

	Register Overview
	Table 7�1 Synthesizer General Control and Configur...
	Table 7�2 Synthesizer Voice Wavetable Control Func...
	Table 7�3 Synthesizer Voice Volume Control Functio...
	Table 7�4 Synthesizer IRQ Functions

	Initialization
	Interrupts
	The Frame/Voice Structure
	Addressing Wavetable Data
	Address Control
	Address Looping
	Figure 7�3 Forward and Reverse Single-Pass Address...
	Figure 7�4 Forward and Reverse Looping
	Figure 7�5 Bidirectional Looping (Zigzag) and PCM ...

	Frequency Control
	Computing Next Address
	Table 7�5 Wavetable Addressing Control

	END to START Interpolation
	DRAM and ROM Access

	µ-Law Data Decompression
	Sample Interpolation
	Equation 7�1 S Data Interpolation
	Figure 7�6 Graph of Sample Interpolation Process

	Vibrato—Varying the Pitch

	Volume Control
	Equation 7�2 Volume Multiplying Components For Lef...
	Equation 7�3 Volume Multiplying Components For Rig...
	Equation 7�4 Volume Multiplying Components For Eff...
	Equation 7�5 Volume Multiplying Components For Alt...
	Equation 7�6 Volume Multiplication
	Equation 7�7 Implemented Volume Multiplication

	The Basic Envelope Segments—VOL(L)
	Computing VOL(L)
	Figure 7�7 Volume Ramp-up and Ramp-down
	Figure 7�8 Forward and Reverse Volume Looping
	Figure 7�9 Bidirectional Volume Looping
	Table 7�6 Volume Control Combinations

	Ramp Rates—Rate of Volume Change
	Envelope Variations
	Tremolo—VOL(LFO)
	Stereo Positioning—Offset and Pan
	Offset Mode
	Equation 7�8 Left Offset Value
	Equation 7�9 Right Offset Value
	Equation 7�10 Attenuation by Offset Values

	PAN Mode
	Table 7�7 Left and Right Amplitudes for PAN Values...

	Effects Volume—EVOL
	LFOs for Tremolo and Vibrato
	Table 7�8 LFO Characteristics (Continued)
	Addressing the LFO Parameters
	Table 7�9 The 24-bit LFO Address

	Using the LFO Parameters
	Table 7�10 Decoding the Data Select Field
	Table 7�11 Contents of the LFO CONTROL Word
	Equation 7�11 Specifying the LFO Frequency

	LFO Processing
	Frames and LFO Processing
	Ramp Updates
	Equation 7�12 Calculating Ramp Time

	The Final LFO Value
	Figure 7�10 The Four Possible LFO Waveforms
	Figure 7�11 Adding Final LFO Value to FC—Vibrato
	Figure 7�12 Adding Final LFO Value to Volume—Tremo...

	Delay-Based Effects
	Voice Accumulation
	Signal Voice Accumulation
	Effects Accumulation
	Table 7�12 Effects Accumulator Output Links

	Loading Patches
	Digital Audio Files and PCM Operation Mode
	Effects Digital Signal Processor Interface
	Serial DSP Interface
	Effects DSP

	GUS Frame Expansion
	Equation 7�13 GUS-Compatible Sample Period

	Programming Tips
	Programming Voice-Specific Registers
	The Register Array
	Accessing Voice-Specific Registers

	Using Signal Voices
	Using Effects-Processor Voices
	Playing Digital Audio Files in PCM Operation Mode
	Processing Volume Envelope Segments
	Local Memory Control

	Local Memory Control Basics
	Local Memory Access
	Frame-Expansion

	Data Paths
	Figure 8�1 Local Memory Control Data Paths

	Register Overview
	Table 8�1 Local Memory Control Functions
	Table 8�2 Local Memory DMA and IRQ Functions

	Initialization
	What to Initialize
	Refresh Timing
	Memory Configuration
	Address Registers
	Address Auto-Increment Mode

	Returning from Suspend Mode

	Interrupts
	Local Memory Configuration
	DRAM Banks
	Table 8�3 DRAM Bank Configurations (values are in ...

	DRAM Refresh Rates
	Table 8�4 DRAM Refresh Rates

	ROM Banks
	Table 8�5 ROM Bank Configurations (values in bits)...

	Accessing Local Memory
	Address Translation
	Table 8�6 Local Memory Address Translations

	Programmed I/O Cycles to Local Memory
	16-Bit Synthesizer Transfers
	DMA transfers in GUS-Compatible Mode
	DMA Transfers in Enhanced Mode
	Local Memory Management
	GUS-Compatible Mode
	Enhanced Mode
	DDK Local Memory Management Functions

	Memory-Access Priorities
	Table 8�7 Priorities of Access Cycles

	DMA Data Transfers
	Normal Mode
	Interleaved Mode
	Figure 8�2 DMA Data Interleaving
	Table 8�8 Interleaved DMA Transfer Modes
	Figure 8�3 Interleaved DMA Address Generation

	Local Memory Record and Playback FIFOs
	Programming Tips and Examples
	Configuring Local Memory
	Transferring Data Using I/O Cycles
	Transferring Data Between System and Local Memory ...
	Sample 8�1 System-to-Local Memory DMA Transfer Pro...
	Game and MIDI Ports

	Game Port Basics
	Figure 9�1 Game Port Connections
	Joystick Buttons
	Joystick X/Y Position
	Joystick Trim DAC

	Game Port Register Overview
	Table 9�1 Game Port Functions

	MIDI Port Basics

	MIDI UART
	MIDI Receive FIFO and Register
	MIDI Loop Back
	MIDI Port Register Overview
	Table 9�2 MIDI Port Functions

	Programming Tips and Examples
	Reading the Joystick X/Y Position
	Legacy Sound Card Compatibility and Emulation

	MPU-401 Emulation Basics
	General Purpose Registers
	Figure 10�1 Data Flow Through the General Purpose ...
	Figure 10�2 Emulation Control Registers

	MPU-401 Status Emulation

	Legacy Sound Card Emulation
	Table 10�1 AdLib and Sound Blaster Emulation Regis...
	InterWave Registers Reference
	Register Summary
	Register Naming Conventions
	Table 11�1 Module Mnemonics

	Registers By I/O Address
	Table 11�2 InterWave Registers and Ports by I/O Ad...

	Registers By Mnemonic
	Table 11�3 InterWave Registers and Ports by Mnemon...
	System Control Registers

	P2XR Direct Registers
	UMCR—Mix Control
	UISR—IRQ Status
	U2X6R—Sound Blaster 2X6
	UACRR, UACWR—AdLib Command Read/Write
	UASRR, UASWR—AdLib Status Read/Write
	UADR—AdLib Data
	Table 12�1 AdLib Data (UADR) Function

	UHRDP—GUS Hidden Register Data Port
	UI2XCR—Sound Blaster IRQ 2XC
	U2XCR—Sound Blaster 2XC
	U2XER—Sound Blaster 2XE
	URCR—Register Control
	USRR—Status Read

	URCR[2:0], UHRDP Indexed Registers
	UDCI—DMA Channel Control
	UICI—Interrupt Control
	UGP1I—General Purpose Register 1
	UGP2I—General Purpose Register 2
	UGPA1I—General Purpose Register 1 Address
	UGPA2I—General Purpose Register 2 Address
	UCLRII—Clear Interrupt
	UJMPI—Jumper

	P3XR Direct Registers
	IGIDXR—General Index
	I8DP, I16DP—General 8-Bit/16-Bit Data Port

	IGIDXR, I8DP, and I16DP Indexed Registers
	UASBCI—AdLib–Sound Blaster Control
	UAT1I—AdLib Timer 1
	UAT2I—AdLib Timer 2
	USCI—ADC Sample Control
	URSTI—GUS Reset
	ICMPTI—Compatibility
	Table 12�2 Serial Transfer Mode Selection �

	IDECI—Decode Control
	IVERI—Version Number
	IEMUAI—MPU-401 Emulation Control A
	IEMUBI—MPU-401 Emulation Control B
	IEIRQI—Emulation IRQ

	PNP Direct Registers
	PCSNBR—PNP Card Select Number Back Door
	PIDXR—PNP Index Address
	PNPWRP—PNP Write Data Port
	PNPRDP—PNP Read Data Port

	PIDXR, PNPWRP, and PNPRDP PNP Indexed Registers
	PSRPAI—PNP Set Read Data Port Address
	PISOCI—PNP Isolate Command
	PCCCI—PNP Configuration Control Command
	PWAKEI—PNP Wake[CSN] Command
	PRESDI—PNP Resource Data
	PRESSI—PNP Resource Data Status
	PCSNI—PNP Card Select Number
	PLDNI—PNP Logical Device Number
	PNP Unimplemented Registers
	PUACTI, PRACTI, PGACTI, PSACTI, PMACTI—PNP Activat...
	PURCI, PRRCI, PGRCI, PSRCI, PMRCI—PNP I/O Range Ch...
	PNP Address Control Registers
	Table 12�3 PNP Address Control Registers

	PUI1SI, PUI2SI, PRISI, PSBISI, PMISI—PNP IRQ Selec...
	Table 12�4 Indexes for PNP IRQ Select Registers
	Table 12�5 IRQ Number Selection
	Table 12�6 IRQ Number to Interrupt Event Mapping f...

	PUI1TI, PUI2TI, PRITI, PSBITI, PMITI—PNP IRQ Type ...
	Table 12�7 Indexes for PNP IRQ Type Registers

	PUD1SI, PUD2SI, PRDSI—PNP DMA Select Registers
	Table 12�8 Indexes for PNP DMA Select Registers
	Table 12�9 DMA Request Number Selection

	PSEENI—PNP Serial EEPROM Enable
	PSECI—PNP Serial EEPROM Control
	PPWRI—PNP Power Mode
	PSRSTI—PNP Software Reset
	Codec/Mixer Registers

	Codec Direct Registers
	CIDXR—Codec Index Address
	CDATAP—Codec Indexed Data Port
	CSR1R—Codec Status Register 1
	CPDR, CRDR—Playback and Record Data

	Codec CIDXR, CDATAP Indexed Registers
	CLICI, CRICI—Left/Right ADC Input Control
	CLAX1I, CRAX1I—Left/Right Auxiliary 1/Synthesizer ...
	CLAX2I, CRAX2I—Left/Right Auxiliary 2 Input Contro...
	CLDACI, CRDACI—Left/Right Playback DAC Control
	CPDFI—Playback Data Format
	Table 13�1 Playback Clock Divider Selections

	CFIG1I—Configuration Register 1
	CEXTI—External Control
	CSR2I—Codec Status Register 2
	CMODEI—Mode Select, ID
	CLCI—Loopback Control
	CUPCTI, CLPCTI—Upper/Lower Playback Count
	CFIG2I—Configuration Register 2
	CFIG3I—Configuration Register 3
	Table 13�2 FIFO Threshold Selections

	CLLICI, CRLICI—Left/Right Line Input Control
	CUTIMI, CLTIMI—Upper Timer, Lower Timer
	CLMICI, CRMICI—Left/Right Microphone Input Control...
	CSR3I—Codec Status Register 3
	CLOAI, CROAI—Left/Right Output Attenuation
	CMONOI—Mono Input and Output Control
	CRDFI—Record Data Format
	Table 13�3 Record Clock Divider Selections

	CPVFI—Playback Variable Frequency
	CURCTI, CLRCTI—Upper/Lower Record Count
	Synthesizer Registers

	Direct Register
	SVSR—Synthesizer Voice Select

	Indirect Registers
	Global Registers
	SAVI—Synthesizer Active Voices
	SVII—Synthesizer Voices IRQ
	SVIRI—Synthesizer Voices IRQ Read
	SGMI—Synthesizer Global Mode
	SLFOBI—Synthesizer LFO Base Address

	Voice-Specific Registers
	SUAI—Synthesizer Upper Address
	Synthesizer Starting Address Registers
	SASHI—Synthesizer Address Start High
	SASLI—Synthesizer Address Start Low
	Synthesizer Ending Address Registers
	SAEHI—Synthesizer Address End High
	SAELI—Synthesizer Address End Low
	Synthesizer Current Address Registers
	SAHI—Synthesizer Address High
	SALI—Synthesizer Address Low
	Synthesizer Effects Address Registers
	SEAHI—Synthesizer Effects Address High
	SEALI—Synthesizer Effects Address Low
	SFCI—Synthesizer Frequency Control
	SFLFOI—Synthesizer Frequency LFO
	SACI—Synthesizer Address Control
	SVSI—Synthesizer Volume Start
	SVEI—Synthesizer Volume End
	SVLI—Synthesizer Volume Level
	SVRI—Synthesizer Volume Rate
	SVCI—Synthesizer Volume Control
	SVLFOI—Synthesizer Volume LFO
	Synthesizer Offset Registers
	SROI—Synthesizer Right Offset
	SROFI—Synthesizer Right Offset Final Value
	SLOI—Synthesizer Left Offset
	SLOFI—Synthesizer Left Offset Final Value
	SEVI—Synthesizer Effects Volume
	SEVFI—Synthesizer Effects Volume Final Value
	SEASI—Synthesizer Effects Output Accumulator Selec...
	SMSI—Synthesizer Mode Select
	Local Memory Control Registers

	LMBDR—LMC Byte Data
	LDMACI—LMC DMA Control
	LDSALI—LMC DMA Start Address Low
	LDSAHI—LMC DMA Start Address High
	LMALI—LMC I/O Address Low
	LMAHI—LMC I/O Address High
	LMSBAI—LMC 16-Bit Access
	LMCFI—LMC Configuration
	Table 15�1 Refresh Rate Selection
	Table 15�2 DRAM Configuration Selection �

	LMCI—LMC Control
	LMRFAI, LMPFAI—LMC Record/Playback FIFO Base Addre...
	LMFSI—LMC FIFO Size
	LDICI—LMC DMA Interleave Control
	LDIBI—LMC DMA Interleave Base
	Game Port and MIDI Port Registers

	Game Port Registers
	GGCR—Game Control
	GJTDI—Joystick Trim DAC
	Table 16�1 Joystick Trim DAC Level Settings

	MIDI Port Registers
	GMCR—MIDI Control
	GMSR—MIDI Status
	Equation 16�1 MIDI IRQ

	GMTDR—MIDI Transmit Data
	GMRDR—MIDI Receive Data
	GMRFAI—MIDI Receive FIFO Access

	InterWave Game API and Driver Developer's Kit Refe...
	InterWave Game API Reference
	Game API Functions
	The INT 2Fh Specification
	INT 2Fh Function 0: INT 2Fh ID Install Check
	Called With
	Returns
	Sample Code

	INT 2Fh Function 1: Get Number Of InterWave Progra...
	Called With
	Returns
	Sample Code

	INT 2Fh Function 2: Get Program Status and Informa...
	Called With
	Returns
	Sample Code

	INT 2Fh Function 3: Suspend Program
	Called With
	Returns
	Sample Code

	Int 2Fh Function 4: Wake Program
	Called With
	Returns

	INT 2Fh Function 5: Free Resident Device Driver
	Called With
	Returns

	INT 2Fh Function 21h: Game Device Open
	MIDISIMPLE
	MIDICOMPLEX
	DIRECTCODEC

	INT 2Fh Function 22h: Game Device Close
	Called With
	Returns

	INT 2Fh Function 80h: Mixer Settings Changed Broad...
	Called With
	Sample Code

	MIDISIMPLE Functions
	Game Vector Function 1: MIDI Byte Out
	Called With
	Returns

	Game Vector Function 2: MIDI String Out
	Called With
	Returns
	Programming With The Driver Developer’s Kit

	Supported Compilers
	DDK Source Files
	DDK Include Files

	DDK Data Types
	Basic Structure of a DDK Program
	Including Header Files
	Initializing the DDK and the InterWave Hardware
	Sample 18�1 Basic Structure of a DDK Application

	Registering Callback Functions for Interrupt Event...
	Establishing a DMA and IRQ Interface to the InterW...
	GUS-Compatibility Mode versus Enhanced Mode

	Creating DDK Libraries For Specific C Compilers
	Creating DDK Libraries with Borland C
	Creating DDK Libraries with Microsoft Visual C++
	Creating DDK Libraries with Watcom C/C++32
	Creating DDK Libraries with MetaWare High C/C++

	Creating DDK Libraries with Symantec C/C++
	The Plug and Play Interface
	Accessing InterWave Registers with the DDK
	DDK Quick Reference

	System Control Functions
	Initialization Functions
	Utility Functions
	Interrupt Control Functions

	Codec Functions
	Synthesizer Functions
	Local Memory Functions
	Memory Management Functions
	DMA Functions
	System Control DDK Functions

	GetSamplePosition iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveAddrTrans iwutil.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveAllocDOS iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveClose iwinit.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveDefFunc iwirq.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveDelay iwutil.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveFreeDOS iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveGetAddr iwutil.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveGetVect iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveGusReset iwinit.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveHandleCodec iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveHandleDma iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveHandler iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveHandleVoice iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMaskIrqs iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMidiHandler iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveOpen iwinit.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePeekEEPROM iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpActivate iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpBIOS iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpBIOS40 iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpDevice iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpGetCfg iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpIOCheck iwpnp.c
	Function
	Syntax
	Remarks
	Return Value

	IwavePnpIsol iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpKey iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpPeek iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpPing iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpPower iwpnp.c
	Function
	Syntax
	Remarks
	Return Value

	IwavePnpSerial iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpSetCfg iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePnpWake iwpnp.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePokeEEPROM iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveRealAddr iwutil.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveRegisterDMA iwinit.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveRegisterIRQ iwinit.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveRegPeek iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveRegPoke iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveResetIvt iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveSetCallback iwirq.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveSetInterface iwinit.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveSetIvt iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveSetVect iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveSynthHandler iwirq.c
	Function
	Syntax
	Remarks
	See Also

	IwaveUmaskIrqs iwirq.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	_peek iwutil.c
	Function
	Syntax
	Remarks
	Return Value

	_peekw iwutil.c
	Function
	Syntax
	Remarks
	Return Value

	_poke iwutil.c
	Function
	Syntax
	Remarks
	Return Value

	_pokew iwutil.c
	Function
	Syntax
	Remarks
	Return Value

	ReadOPCode iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	ReadWaveHeader iwutil.c
	Function
	Syntax
	Remarks
	Return Value

	WriteEnable iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	WriteOPCode iwutil.c
	Function
	Syntax
	Remarks
	Return Value
	See Also
	Codec/Mixer DDK Functions

	IwaveCodecAccess iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveCodecCnt iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveCodecIrq iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveCodecMode iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveCodecStatus iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveCodecTrigger iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveDacAtten iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveDataFormat iwcodec.c
	Function
	Syntax
	Remarks
	Example
	Return Value

	IwaveDisableLineIn iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveDisableMicIn iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveDisableOutput iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveEnableLineIn iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveEnableMicIn iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveEnableOutput iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveInputGain iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveInputSource iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveLineLevel iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveLineMute iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveMonoAtten iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveMonoMute iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwavePlayAccess iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePlayData iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveRecordAccess iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveRecordData iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveSetFrequency iwcodec.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveSetTimer iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveStopDma iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveTimerStart iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveTimerStop iwcodec.c
	Function
	Syntax
	Remarks
	Return Value
	See Also
	Synthesizer DDK Functions

	IwaveRampVolume iwvoice.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveReadVoice iwvoice.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveReadVolume iwvoice.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveReadyVoice iwvoice.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveSetLoopMode iwvoice.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveSetVoiceEnd iwvoice.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveSetVoicePlace iwvoice.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveSetVolume iwvoice.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveStartVoice iwvoice.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveStopVoice iwvoice.c
	Function
	Syntax
	Remarks
	Example
	Return Value
	See Also

	IwaveStopVolume iwvoice.c
	Function
	Syntax
	Remarks
	Example
	Return Value
	See Also

	IwaveSynthGlobal iwvoice.c
	Function
	Syntax
	Remarks
	Examples
	Return Value
	See Also

	IwaveSynthMode iwvoice.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveVoiceFreq iwvoice.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveVoicePan iwvoice.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveVoicePitch iwvoice.c
	Function
	Syntax
	Remarks
	Return Value
	See Also
	Local Memory Control DDK Functions

	IwaveDmaCtrl iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveDmaIleaved iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveDmaMalloc iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveDmaNext iwmem.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveDmaPage iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveDmaPgm iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveDmaWait iwmem.c
	Function
	Syntax
	Remarks
	Return Value

	IwaveDmaXfer iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveGetDmaPos iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMaxAlloc iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemAlloc iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemAvail iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemCfg iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemFree iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemInit iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemPeek iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemPeekW iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemPoke iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemPokeW iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwaveMemSize iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePeekBlock iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePeekBlockW iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePokeBlock iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also

	IwavePokeBlockW iwmem.c
	Function
	Syntax
	Remarks
	Return Value
	See Also
	Packaging and Pin Designations

	Am78C201 Pin Designations
	Pin Descriptions by Functional Group
	System Bus Interface Pins
	Codec/Mixer Pins
	Local Memory Controller Pins

	Multiplexed Function Pins
	Game Port and MIDI Port Pins
	Power Supply Pins
	Sample Plug and Play Resource Map
	Sample B�1. Sample PNP Resource Map

	Glossary
	Index

