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G Numerics

The Numerics Annex addresses the particular needs of the numerically intensive computing
community. Like the other specialized needs annexes, support of this annex is optional. The
annex covers the following topics

. Various generic packages are provided for the manipulation of complex numbers including
the computation of elementary functions and input-output.

. The annex specifies two modes of operation, a strict mode in which certain accuracy
requirements must be met and the relaxed mode in which they need not be met. The
accuracy requirements for the strict mode cover both arithmetic and the noncomplex
elementary functions and random number generation of the core language.

. The models of floating point and fixed point arithmetic applicable to the strict mode are
described; these differ from those of Ada 83.

. Various model attributes are defined which are applicable to the strict mode for floating
point types; again these differ from Ada 83.

Note that since the elementary functions and random number generation are in the core language,
they and their accuracy requirements are discussed elsewhere (see A.3). The majority of attributes
(including the so-called "primitive function" attributes) are also defined in the core language.

Implementations conforming to the numerics annex should also support the package
Interfaces.Fortran, which is discussed in B.4.

G.1 Complex Arithmetic

Several application areas depend on the use of complex arithmetic. Complex fast Fourier
transforms are used, for example, in conjunction with radar and similar sensors; conformal
mapping uses complex arithmetic in fluid-flow problems such as the analysis of velocity fields
around airfoils; and electrical circuit analysis is classically modelled in terms of complex
exponentials.

The Ada 95 facilities for complex arithmetic consist of the generic packages

Numerics.Generic_Complex_Types
Numerics.Generic_Complex_Elementary_Functions

Text_IO0.Complex_TIO

which are children of Ada.

G.1.1 Complex Types and Arithmetic Operations

When first designed, Numerics.Generic_Complex_Types was patterned after the version of
the generic package, Generic_Complex_Types, that was then being developed in the SIGAda
Numerics Working Group for proposal as an ISO standard for Ada 83. At that time, roughly mid-
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1992, the latter defined a complex type as well as types for vectors and matrices of complex
components, together with a large set of scalar, vector, and matrix operations on those types. A
decision was made to abbreviate the Ada 95 package by omitting the vector and matrix types and
operations. One reason was that such types and operations were largely self-evident, so that little
real help would be provided by defining them in the language. Another reason was that a future
version of Ada might add enhancements for array manipulation and so it would be inappropriate to
lock in such operations prematurely.

The initial design for Numerics.Generic_Complex_ Types also inherited a rather
pedestrian approach to defining the complex type from the same proposed standard. The Ada 9X
Distinguished Reviewers recommended a different approach that enabled the writing of
expressions whose appearance closely matches that of the standard mathematical notation for
complex arithmetic. The idea was to define not just a complex type, but also a pure imaginary type
Imaginary and a constant i of that type; operations could then easily be defined to allow one to
write expressions such as

3.0 + 5.0*1 —— of type Complex

which has the feel of a complex literal.

Another advantage of this approach is that by providing mixed mode operations between
complex and imaginary as well as between complex and real, it is possible to avoid unnecessary
arithmetic operations on degenerate components. Moreover, avoiding such unnecessary operations
is crucial in environments featuring IEEE arithmetic [IEC 89], where signed infinities can arise and
can be used in meaningful ways.

(Ada 95 does not support infinite values, but in an implementation in which the
Machine_Overflows attribute is False, an overflow or a division by zero yields an
implementation-defined result, which could well be an infinite value. Thus a future Ada binding to
IEEE arithmetic could capitalize on exactly that opportunity by providing semantics of arithmetic
with infinities as in [IEC 89].)

To see how avoiding unnecessary operations provides more than just a gain in efficiency,
consider the multiplication of a complex value x + iy by a pure imaginary value iv. The result of
the multiplication should, of course, be -vy + ivx. Without a pure imaginary type, we have to
represent the pure imaginary value as the complex value 0.0 + iv and perform a full complex
multiplication, yielding (0.0x-vy) + i(vx+0.0y). This, of course, reduces to the same value as
before, unless x or y is an infinity.

However, if x is infinity, y is finite, and v is nonzero (say, positive), the result should be
-vy+1i ¥, but instead we get NaN + i ¥, since multiplication of zero and infinity yields a NaN
("Not-a-Number") in IEEE arithmetic, and NaNs propagate through addition. See [Kahan 91].

A similar situation can be demonstrated for the multiplication of a complex value and a pure
real value, but in that case we expect to have such a mixed-mode operation, and if we use it the
generation of the NaN is avoided.

Another subtle problem occurs when the imaginary value iv is added to the complex value
x+iy. The result, of course, should be x + i(y+v). Without an imaginary type, we have to
represent the imaginary value as the complex value 0.0 + iv and perform a full complex addition,
yielding (x+0.0) + i(y+v). The problem here [Kahan 91] is that if x is a negative zero, the real
component of the result of the full complex addition will have the wrong sign; it will be a positive
zero instead of the expected negative zero. This phenomenon, also a consequence of the rules of
IEEE arithmetic, can and does occur in existing Ada 83 implementations, since it does not require
an extension permitting infinities.

In both cases, the pure imaginary type gives the programmer the same opportunity to avoid
problems in mixed complex/imaginary arithmetic as in mixed complex/real arithmetic.

With the inclusion of a pure imaginary type and mixed complex/imaginary operations, the
generic complex types package in Ada 95 could have diverged from the proposed standard under
development in the SIGAda NumWG. This was averted, however, when the working group
changed its proposed standard to agree with the Ada 95 version. It also removed the vector and
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matrix types and operations from its generic complex types package and put them in a separate
package. And so, Numerics.Generic_Complex_Types is just a slight variation of the generic
package proposed for standardization for Ada 83. (The differences have to do with the use of
Real'Base, rather than just Real, as the subtype mark for the components of the complex type
and for the parameter and result subtypes of some of the operations, Real being the name of the
generic formal parameter. This capability is lacking in Ada 83.)

The type Complex defined by Numerics.Generic_Complex_Types is a visible record
type thus

type Complex is
record
Re, Im: Real'Base;
end record;

corresponding to the cartesian representation of a complex value. We have made the type visible
to allow one to write complex "literals" using aggregate notation as in some other languages (and
to ensure efficiency). The cartesian representation was chosen over a polar representation to avoid
canonicalization problems and because it is normal practice. An explicit choice of representation
is required in any case to give meaning to the accuracy requirements. Operations are provided,
however, to compute the modulus (length) and argument (angle) of a complex value and to
construct a complex value from a given modulus and argument, so that it is easy to convert
between the built-in cartesian representation and a polar representation, if needed.

It is perhaps unusual that the components of the complex type are of the unconstrained
subtype of the generic formal parameter, Real 'Base, rather than just Real, but this is intended to
increase the chances of being able to deliver the result computed by a complex arithmetic
operation even when their operands belong to some restricted domain. This provides behavior
analogous to that of the elementary functions (see A.3.1), which also yield results in the
unconstrained subtype of the relevant generic formal parameter. It is also similar to the behavior
of the predefined arithmetic operations, which yield results of an unconstrained subtype, even
when their operands are of a constrained subtype. A consequence is that we cannot create complex
types with constrained components, but that does not seem so severe in view of the fact that
applications of complex arithmetic typically have a naturally circular domain, rather than a
rectangular domain.

The type Imaginary, on the other hand, is private, its full type being derived from
Real'Base thus

type Imaginary is new Real'Base;

Making it private prevents the implicit conversion of a real literal to the type Imaginary, which
would be available if Imaginary were visibly derived from Real'Base. This avoids various
ambiguous expressions and enables overload resolution to work properly. It has the additional
advantage of suppressing the implicit declaration of multiplying operators for the Imaginary
type, which would incorrectly yield a result of the type Imaginary, when it should be
Real'Base. Operations with the correct result type such as

function "*" (Left, Right: Imaginary) return Real'Base;

are, of course, explicitly declared. The same benefits could have been achieved by defining
Imaginary as a visible record type with a single component, but the method chosen prevents the
writing of expressions containing pure imaginary values as aggregates, whose meaning would not
be intuitively obvious.

The imaginary constant i (and its equivalent, j, provided for the engineering community), has
the value 1.0, and so unoptimized expressions like 5.0*i will have the proper numerical value.
However, it is expected that compilers will optimize this and effectively convert the real literal
5.0 to the imaginary type. Similarly, an expression such as 3.0 + 5.0*i can be optimized to
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perform no arithmetic at all since it is functionally equivalent to the aggregate (3.0, 5.0) of the
type Complex.

Note that there are also constructor and selector functions such as Compose_From_ -
Cartesian. The following expressions are thus equivalent

X + i*Y —— using operators
(X, Y) -— using an aggregate
Compose_From_Cartesian (X, Y) —-— using the constructor

The constructor function has the merit that it can be used as a generic actual parameter, if it should
be necessary.

Nongeneric  equivalents of Numerics.Generic_Complex_Types are provided
corresponding to instantiations with the predefined types Float, Long_Float and so on with
names such as

Numerics.Complex_Types —-— for Float
Numerics.Long Complex_ Types —-— for Long_Float

This means that applications can effectively treat single-precision complex, double-precision
complex, etc., as predefined types with the same convenience that is provided for the predefined
floating point types (or, more importantly, so that independent libraries assuming the existence and
availability of such types without the use of generics can be constructed and freely used in
applications). The nongeneric forms also have the advantage that Fortran programmers migrating
to Ada do not have to learn generics in order to use complex arithemtic.

Accuracy requirements are generally specified for the complex arithmetic operations only in
the strict mode. Nevertheless, certain special cases are prescribed to give the exact result even in
the relaxed mode, ensuring high quality at negligible implementation cost. Examples are where
one operand is pure real or pure imaginary. (These prescribed results are likely to be achieved
even without special attention by the implementation.) Accuracy requirements are not given for
exponentiation of a complex operand by an integer, owing to the variety of implementations that
are allowed (ranging from repeated complex multiplication to well-known operations on the polar
representation).

Note finally that spurious overflows (those occurring during the computation of an
intermediate result, when the final result, or its components, would not overflow) are not allowed.
Thus, implementations of complex multiplication and division need to be somewhat more
sophisticated than the textbook formulae for those operations.

G.1.2 Complex Elementary Functions

The package Numerics.Generic_Complex Elementary_Functions differs from the
corresponding proposed standard for Ada 83 by taking advantage of the formal package parameter
facility of Ada 95. Thus it imports the one parameter which is an instance of
Numerics.Generic_Complex_ Types instead of the complex type and a long list of operations
exported by such an instance.

In the Ada 83 version, the complex type has to be imported as a private type, and
implementations of the complex elementary functions there have no choice but to use the imported
selector functions, Re and Im, to extract the real and imaginary components of a complex value,
and the imported constructor function, Compose_From Cartesian, to assemble such
components into a complex value. Implementations of the Ada 95 version see that type as the
record type that it is, allowing more efficient composition and decomposition of complex values;
they also have available the complete set of operations, not just the partial (albeit long enough) list
of operations imported in the Ada 83 version.
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Nonngeneric equivalents of Numerics.Generic_Complex_Elementary Functions are
also provided for each of the predefined floating point types.

The overloading of the Exp function for a pure imaginary parameter is provided to give the
user an alternative way to construct the complex value having a given modulus and argument.
Thus, we can write either

Compose_From_Polar (R, Theta)
or
R * Exp (i * Theta)

where the latter corresponds more naturally to the mathematical Re'.

The treatment of accuracy requirements and prescribed results for the complex elementary
functions is analogous to that discussed above for the complex arithmetic operations. However,
since the avoidance of spurious overflows is difficult and expensive to achieve in several of the
functions, it is explicitly permitted, allowing those functions to be implemented in the obvious
way. No accuracy requirement is imposed on complex exponentiation (the operator "**") by a
pure real, pure imaginary, or complex exponent, because the obvious implementation in terms of
complex exponentials and logarithms yields poor accuracy in some parts of the domain, and better
algorithms are not available.

G.1.3 Complex 1/0

Complex I/0O is performed using the procedures in the generic child package, Text_IO.-
Complex_T0. As with Numerics.Generic_Complex_FElementary_Functions, the user
instantiates this generic package with an instance of Numerics.Generic_Complex_Types.
(Note that nongeneric equivalents do not exist.)

A fundamental design decision underlying Text_I0.Complex_TIO is that complex values are
represented on the external medium in parenthesized aggregate notation, as in Fortran list-directed
I/0. This is the format produced on output, and it is the format expected on input, except that the
comma, the parentheses, or both may be omitted when the real and imaginary components are
separated by appropriate white space. (This allows the reading of existing Fortran files containing
complex data written by a variety of techniques.)

An implementation of Text_IO.Complex_ IO can easily be built around an instance of
Text_IO.Float_IO for Real'Base; the optional parentheses on input requires the use of the
procedure Text_I0.Look_Ahead; see A.4.2.

Text_IO.Complex_IO defines similar Get and Put procedures to Text_ IO.Float_ IO
with analogous semantics. The only somewhat arbitrary decision that we made concerns the
mechanism for filling the target string in the case of output to a string. The question is where to
put any extra blanks that are needed to fill the string. A rule like the one for Text_I0.Float_-
I0.Put to a string might read:

Outputs the value of the parameter Item to the given string, following the same
rule as for output to a file, using a value for Fore such that the sequence of
characters output exactly fills, or comes closest to filling, the string; in the latter
case, the string is filled by inserting one extra blank immediately after the comma.

Such a rule essentially allocates the available space equally to the real and imaginary components.
But that is not desirable when the value of the Exp parameter is zero and the two components of
the ITtem parameter have disparate magnitudes, so that the integer part of one requires more
characters than the integer part of the other. To accommodate this case, we have chosen a rule,
simple to implement, that left justifies the left parenthesis, real component, and comma and right
justifies the imaginary component and right parenthesis. All the extra spaces are placed between
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the comma and the imaginary component; they are available to accommodate either component,
should it be unusually long. If strings produced by this rule are eventually displayed in the output,
the real and imaginary components will not line up in columns as well as with the previously cited
rule, but it can be argued that output to a string is intended for further computation, rather than for
display.

Early implementation experience indicated that it might also have been profitable to consider
yet another rule for output to a string, namely, that all the components be right justified, with all
the padding placed at the beginning of the string. This rule would be extremely easy to implement
if Text_IO.Float_IO.Put to a string (which right justifies its output in the target string), had an
additional out parameter which gave the index of the first non-blank character that it put into the
output string.

G.2 Floating Point Machine Numbers

Many of the attributes of floating point types are defined with reference to a particular
mathematical representation of rational numbers called the canonical form, which is defined,
together with those attributes, in the Predefined Language Environment. The definitions clarify
certain aspects of the floating point machine numbers. Several new representation-oriented
attributes of floating point machine numbers are also defined, together with a group of functional
attributes called the "primitive function" attributes.

G.2.1 Clarification of Existing Attributes

The machine numbers of a floating point type are somewhat informally defined as the values of the
type that are capable of being represented to full accuracy in all unconstrained variables of the
type. The intent is to exclude from the set of machine numbers any extra-precise numbers that
might be held in extended registers in which they are generated as a consequence of performing
arithmetic operations. In other words, it is the stored values that matter and not values generated
as intermediate results.

The representation-oriented attributes S'Machine_Mantissa, S'Machine_Emin, and
S'Machine_Emax of a floating point subtype S are defined in terms of bounds on the components
of the canonical form. The attribute S'Machine_Radix is the radix of the hardware
representation of the type and is used as the radix of the mantissa in the canonical form.

These definitions clarify that S'Machine_Emin is the minimum canonical-form exponent
such that all numbers expressible in the canonical form, with that exponent, are indeed machine
numbers. In other words, S'Machine_Emin is determined by the normalized floating point
numbers only; the presence of IEEE denormalized numbers in the implementation does not affect
(reduce) the value of S'Machine_Emin. A consequence of this definition of S'Machine_Emin
is that the primitive function attribute S'Exponent (X) can yield a result whose value is less than
that of S'Machine_Emin if X is denormalized.

The definitions also clarify that s'Machine_Emax is the canonical-form exponent of the
machine number of largest magnitude whose negation is also a machine number; it is not the
canonical-form exponent of the most negative number on radix-complement machines.

Alternative definitions for S'Machine_Emin and S'Machine_ Emax were considered,
namely, that they yield the minimum and maximum canonical-form exponents for which some
combination of sign, exponent, and mantissa yields a machine number. This would have allowed
denormalized numbers to be accommodated without relaxing the normalization requirement (see
the next section) in the definition of the canonical form, and the result of S'Exponent (X) would
have necessarily remained within the range S'Machine_Emin .. S'Machine_Emax, which is
appealing. Nevertheless, it was judged to be too much of a departure from current practice and
therefore too likely to cause compatibility problems.
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G.2.2 Attributes Concerned With Denormalized Numbers and Signed Zeros

Many implementations of Ada do provide IEEE denormalized numbers and "gradual underflow",
as defined in [IEC 89], even though the full capabilities of IEEE arithmetic are not provided and
must await an Ada binding to IEEE arithmetic. (Denormalized numbers come for free with IEEE
hardware chips and have always been consistent with the Ada model of floating point arithmetic; it
would require extra code generation to suppress them.) Since denormalized numbers are capable
of being stored in variables of an unconstrained floating point type, they are machine numbers.
What characterizes the denormalized numbers is that they can be represented in the canonical form
with an exponent of S'Machine_ Emin, provided that the normalization requirement on the
mantissa is relaxed. If every nonzero number expressible in this weakened canonical form is a
machine number of the subtype s, then the new representation-oriented attribute, S'Denorm, is
defined to have the value True.

Many implementations also provide IEEE signed zeros, which similarly come for free. The
new representation-oriented attribute, S'Signed_zeros, is True if signed zeros are provided by
the implementation and used by the predefined floating point operations as specified in [IEC 89].
The idea behind a signed zero is that a zero resulting from a computation that underflows can
retain the sign of the underflowing quantity, as if the zero represented an infinitesimal quantity
instead; the sign of a zero quantity, interpreted as if it were infinitesimal, can then affect the
outcome of certain arithmetic operations.

Moreover, various higher-level operations, such as the elementary functions, are defined to
yield zeros with specified signs for particular parameter values when the Signed_Zeros attribute
of the target type is True. And indeed, some such operations, for example, Arctan and Arccot
produce different (nonzero) results in certain cases, depending on the sign of a zero parameter,
when Signed_Zeros is True.

In some cases, no conventions exist yet for the sign of a zero result. We do not specify the
sign in such cases, but instead require the implementation to document the sign it produces. Also,
we have not carried over into the facilities for complex arithmetic and the complex elementary
functions the specifications for the signs of zero results (or their components) developed by the
SIGAda NumWG, largely because of their excessive complexity. Instead we merely suggest that
implementations should attempt to provide sensible and consistent behavior in this regard (for
example, by preserving the sign of a zero parameter component in a result component that behaves
like an odd function).

G.2.3 The Primitive Function Attributes

A group of attributes of floating point types called the "primitive function" attributes is provided,
in support of Requirement R11.1-A(1), to facilitate certain operations needed by the numerical
specialists who develop mathematical software libraries such as the elementary functions.

These attributes are modelled on the various functions in the standard package
Generic_Primitive_Functions for Ada 83 [ISO 94b], but made available in the language as
attributes of a floating point subtype rather than as functions in a generic package. These attributes
support

. error-free scaling by a power of the hardware radix,

. decomposition of a floating point quantity into its components (mantissa and exponent),
and construction of a floating point quantity from such components,

. calculation of exact remainders, and various directed rounding operations.

All of these attributes yield the mathematically specified results, which are either machine numbers
or have the accuracy of the parameters. For a general rationale for the design of the primitive
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functions, see [Dritz 91b]. (Some of the attributes have different names from the corresponding
functions in [ISO 94b], since some of the names in the latter had already been used for other new,
but unrelated, attributes.)

The casting of the primitive functions as attributes, rather than as functions in a generic
package, befits their primitive nature and allows them to be used as components of static
expressions, when their parameters are static.

The Exponent and Fraction attributes decompose a floating point number into its exponent
and (signed) fraction parts. (These attributes, along with Scaling and Leading_Part, are useful
in the argument reduction step of certain kinds of function approximation algorithms in high-
quality mathematical software; Scaling and Compose are similarly useful in the final result
assembly steps of such algorithms.)

T'Exponent (X) is defined in such a way that it gives an indication of the gross magnitude of
X, even when X is denormalized. In particular, if X is repetitively scaled down by a power of the
hardware radix, T'Exponent (X) will decrease by one and will continue to do so (on machines
with denormalized numbers) even after X becomes denormalized. T'Fraction (X) will not
change as X is scaled in this way, even when X becomes denormalized. To achieve this behavior,
an implementation of Exponent must do more than just pick up the hardware exponent field and
unbias it, and an implementation of Fraction must do more than just pick up the hardware
fraction field; both attributes must be sensitive to denormalized numbers.

(Indeed, the presence or absence of the leading fraction digit is dependent on whether a
number is denormalized or not, on IEEE hardware. Probably the most efficient solution to the
problem is for the implementation of Exponent to scale the operand up by an appropriate fixed
amount k sufficient to normalize it when the operand is in the denormalized range, as evidenced by
its having the minimum exponent or by other means; extract and unbias the exponent field; and
then subtract k to obtain the result. The implementation of Fraction can simply extract the
fraction field after a similar scaling up when the operand is in the denormalized range, and then
attach the appropriate fixed exponent; what the scaling accomplishes is the left shifting of the
fraction field and the removal of its leading digit.)

The Copy_Sign attribute transfers the sign of one value to another. It is provided for those
applications that require a sign to be propagated, even (on machines with signed zeros) when it
originates on a zero; such a need cannot be met by the predefined comparison operators and
various sign-changing operations (like abs and negation), because comparison ignores the sign of
zero and therefore cannot be used to determine the sign of a zero. By the same token, the
implementation of Copy_Sign must likewise use some other technique, such as direct transfer of
the sign bit or some other examination of the Sign operand to determine its sign. An application
can use the Copy_Sign attribute to determine the sign of a zero value, when required, by
transferring that sign to a nonzero value and then comparing the latter to zero.

The Remainder attribute computes the remainder upon dividing its first floating point
parameter by its second. It considers both parameters to be exact, and it delivers the exact
remainder, even when the first parameter is many orders of magnitude larger than the second; for
this reason, its implementation can be tricky. This attribute is useful in implementing the argument
reduction step of algorithms for computing periodic functions (when the period is given exactly).

The function T'Remainder (X, Y) is defined so that the magnitude of the result is less than
or equal to half the magnitude of Y; it may be negative, even when both parameters are positive.
Note that the Remainder attribute cannot be considered to be a natural extension of the predefined
rem operator for floating point operands (and, indeed, that is one reason why the functionality was
not made available by overloading rem). To see this, observe that

Float'Remainder (14.0, 5.0) —— yields -1.0
whereas

14 rem 5 -— yields 4
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and so are quite different. The rationale for defining Remainder this way is twofold: it exhibits
the behavior preferred by numerical analysts (i.e., it yields a reduced argument of generally smaller
magnitude), and it agrees with the IEEE rem operator. Indeed, the latter is implemented in
hardware on some machines; when available, it should certainly be used instead of the painful
alternative documented in [Dritz 91b].

The functionality of the Successor and Predecessor functions of [ISO 94b] is provided
by extending the existing attributes Succ and Pred to floating point types. Note that
T'Succ (0.0) returns the smallest positive number, which is a denormalized number if T'Denorm
is True and a normalized number if T'Denorm is False; this is equivalent to the "fmin" derived
constant of LIA-1 (Language Independent Arithmetic) [ISO 93]. (Most of the other constants and
operations of LIA-1 are provided either as primitive functions or other attributes in Ada 95; those
that are absent can be reliably defined in terms of existing attributes.)

G.3 Assignments to Variables of Unconstrained Numeric Types

Ada 83 did not make a distinction between unconstrained and constrained numeric subtypes. Any
subtype T was considered constrained by the values given by T'First and T'Last; if no range
constraint was declared for T, then T'First = T'Base'First and T'Last = T'Base'Last.

It was technically not possible for a variable of an unconstrained subtype to be assigned a
value outside the range T'Base'First .. T'Base'Last. This prevented the optimization of
leaving a value in an extended register beyond an assignment, fulfilling subsequent references to
the target variable from the register. To guarantee that the new value of the target variable after an
assignment is not outside the range T'Base'First .. T'Base'Last, itis necessary in Ada 83
either to store the register into the variable's assigned storage location (if such a store operation
could signal violation of the range check by generating an overflow condition) or to compare the
value in the register to the values of T'Base'First and T'Base'Last; if the range check
succeeds, the value in the register can be used subsequently.

Ada 95 does not perform a range check on the value assigned to a variable of an
unconstrained numeric subtype; consequently, such a target variable can acquire a value outside its
base range (T'Base'First .. T'Base'Last). This allows the value to be retained in the
register in which it was generated and never stored (if all subsequent references to the target
variable can be fulfilled from the register) nor checked by comparison for inclusion in the base
range.

A consequence of this change, which generally allows more efficient object code to be
generated, is that an Ada 83 program that raised Constraint_Error for a range violation on
assignment to a variable of an unconstrained numeric subtype may raise the exception later (at a
different place) or not at all. The first possibility arises because it may be necessary to store the
extended register in the storage format for any of several reasons at a place far removed from the
original assignment. The opportunity to raise the exception at such remote places is provided by a
new rule that allows Constraint_Error to be raised at the place where a variable is referenced
(fetched), if its value is outside its base range.

G.4 Accuracy and Other Performance Issues

The Numerics Annex specifies the accuracy to be delivered by the elementary functions, the
complex arithmetic operations, and the complex elementary functions, and the performance to be
expected from the random number generator. It also specifies the accuracy expected of the
predefined floating point and fixed point arithmetic operators. If the Numerics Annex is not
implemented, the predefined arithmetic operations and the various numerical packages do not have
to yield any particular language-defined accuracy or performance, except where specified outside
the Numerics Annex.
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Even though the accuracy and performance requirements of the Numerics Annex are realistic,
strict conformance may, in certain implementations, come only at a price. One or more native
floating point instructions may produce slightly anomalous behavior that cannot conform to the
model without some kind of sacrifice; for example, the purported maximum precision may have to
be reduced, or some operations may have to be simulated in software. Similarly, achieving the
specified accuracy in the elementary functions (say) may mean abandoning less accurate but much
faster versions available on a hardware chip. Thus, to allow the user to trade accuracy for other
considerations, the Numerics Annex specifies a pair of modes, strict mode and relaxed mode, that
may be selected by the user. The accuracy and other performance requirements apply only when
the strict mode is selected; the relaxed mode exempts implementations from these requirements,
exactly as if the Numerics Annex had not been implemented.

A program that is intended for wide distribution, and whose numerical performance is to be
guaranteed and portable across implementations, must be compiled and linked in the strict mode.
Its portability will clearly extend, in that case, only to implementations that support the Numerics
Annex.

The language does not specify how the modes should be implemented. It is clear, however,
that the choice of mode can affect code generation, the values of the model-oriented attributes, and
the version of the numerical libraries that is used. In implementations that meet the requirements
without any undue sacrifices, or that have nothing substantial to gain from their relaxation, the two
modes may, in fact, be identical.

G.4.1 Floating Point Arithmetic and Attributes

The strict-mode accuracy requirements for predefined floating point arithmetic operations are
based on the same kind of model that was used in Ada 83, but with several changes. The Ada 83
model of floating point arithmetic was a two-level adaptation of the "Brown Model" [Brown 81]
and defined both model numbers and safe numbers. The Ada 95 model is closer to a one-level,
classical Brown Model that defines only model numbers, although it innovates slightly in the
treatment of the overflow threshold.

The existence of both model numbers and safe numbers in Ada 83 caused confusion which
hopefully will not apply to Ada 95. Note however, that the model numbers in Ada 95 are
conceptually closer to the safe numbers rather than the model numbers of Ada 83 in terms of their
role in the accuracy requirements. Other problems with the Ada 83 model centered around
inherent compromises in the way the Brown Model was adapted to Ada 83. These compromises
are eliminated in Ada 95, and other improvements are made, by

. freeing the model numbers to have a mantissa length that depends only on the
implementation's satisfaction of the accuracy requirements, rather than a quantized
mantissa length;

. defining the model numbers to have the hardware radix, rather than a fixed radix of two;

. defining the model numbers to form an infinite set, and basing overflow considerations on
the concept of a type's "safe range" rather than on the largest model number;

. separating range and precision considerations, rather than tying them together intimately
via the infamous "4B Rule" [RMS83 3.5.7]; and

. freeing the minimum exponent of the model numbers from a connection to the overflow
threshold, allowing it to reflect underflow considerations only.

We will now consider these in detail.
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Mantissa Length

The Ada 83 safe numbers have mantissa lengths that are a function of the Digits attribute of the
underlying predefined type, giving them a quantized length chosen from the list (5, 8, 11, 15, 18,
21, 25, ...). Thus, on binary hardware having T'Machine_Mantissa equal to 24, which is a
common mantissa length for the single-precision floating point hardware type, the last three bits of
the machine representation exceed the precision of the safe numbers. As a consequence, even
when the machine arithmetic is fully accurate (at the machine-number level), one cannot deduce
that Ada arithmetic operations deliver full machine-number accuracy. By freeing the mantissa
length from quantization, tighter accuracy claims will be provable on many machines. As an
additional consequence of this change, in Ada 95 the two types declared as follows

type Tl is digits D;
type T2 is digits T1l'Digits range Tl'First .. Tl'Last;

can be represented identically. This matches one's intuition, since the declaration of T2 requests
neither more precision nor more range than that of T1. In Ada 83, the chosen representations
almost always differ, with T2'Base'Digits being greater than T1'Base'Digits, for reasons
having nothing to do with hardware considerations. (Note that this artificial example is not
intended to illustrate how one should declare two different types with the same representation.)

Radix
Using the hardware radix rather than a binary radix has two effects:

. It permits practical implementations on decimal hardware (which, though not currently of
commercial significance for mainstream computers, is permitted by the radix-independent
IEEE floating point arithmetic standard [IEEE 87]; is appealing for embedded computers
in consumer electronics; and is used in at least one such application, a Hewlett-Packard
calculator);

. On hexadecimal hardware, it allows more machine numbers to be classed as model
numbers (and therefore to be proven to possess special properties, such as being exactly
representable, contributing no error in certain arithmetic operations, and so on).

As an example of the latter effect, note that T'Last will become a model number on most
hexadecimal machines. Also, on hexadecimal hardware, a 64-bit double-precision type having 14
hexadecimal (or 56 binary) digits in the hardware mantissa, as on many IBM machines, has safe
numbers with a mantissa length of 51 binary bits in Ada 83, and thus no machine number of this
type with more than 51 bits of significance is a safe number. In Ada 95, such a type would have a
mantissa length of 14 hexadecimal digits, with the consequence that every machine number with
53 bits of significance is now a model number, as are some with even more.

Note that the type under discussion does not have Ada 83 safe numbers with 55 bits in the
mantissa, even though that is the next possible quantized length and one which is less than that of
the machine mantissa. This is because some machine numbers with 54 or 55 bits of significance
do not yield exact results when divided by two and cannot therefore be safe numbers. This is a
consequence of their hexadecimal normalization, and it gives rise to the phenomenon known as
"wobbling precision": the hexadecimal exponent remains unchanged by the division, while the
mantissa is shifted right, losing a bit at the low-order end.
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Safe Range

Extending the model numbers to an infinite set is intended to fill a gap in Ada 83 wherein the
results of arithmetic operations are not formally defined when they are outside the range of the safe
numbers but an exception is not raised. Some of the reasons why this can happen are as follows:

. the quantization of mantissa lengths may force the bounds of the range of safe numbers to
lie inside the actual hardware overflow threshold;

. arithmetic anomalies of one operation may require the attributes of model and safe
numbers to be conservative, with the result that other operations exceed the minimum
guaranteed performance;

. the provision and use of extended registers in some machines moves the overflow
threshold of the registers used to hold arithmetic results well away from that of the storage
representation;

. the positive and negative actual overflow thresholds may be different, as on radix-

complement machines.

The change means, of course, that one can no longer say that the model numbers of a type are
a subset of the machine numbers of the type. As a consequence we have introduced the concept of
the "safe range" of a type in Ada 95. This is the subrange of the type's base range that is
guaranteed to be free of overflow; in Ada 83 terms, this subrange was the range of the type's safe
numbers. Thus, in Ada 95 the the model numbers of a type within the type's safe range are indeed
a subset of the machine numbers of the type.

By continuing the model numbers beyond the safe range of a type, we can say that an
operation whose result interval (defined, as usual, in terms of model numbers) transcends the safe
range of the result type either raises Constraint_Error, signalling overflow, or delivers a value
from that result interval (provided the Machine_Overflows attribute is True for the type). In
Ada 83, the result when an exception was not raised was completely implementation defined in
this case. Of course, it continues to be implementation defined when the Machine_Overflows
attribute is False for the type.

Incidentally, the safe range of a type has bounds characterized by two independent attributes,
Safe_First and Safe_Last. In Ada 83, the range of safe numbers of a type was necessarily
symmetric, with its upper bound being given by the value of the safe_Large attribute. This was
necessary, because Safe_Large was itself defined in terms of Safe_ Emax, which gave the
maximum exponent of the safe numbers. Because the model numbers no longer have a finite
range, we no longer talk about the maximum exponent of the model numbers, and in fact there is
no longer such an atttribute. Allowing the safe range to be asymmetric accommodates radix-
complement machines better than Ada 83; in fact, it removes another impediment to the identical
representation of the types T1 and T2 in the example given earlier.

The 4B Rule

Separating range and precision considerations is equivalent to dropping the "4B Rule" as it applies
to the predefined types. There is however a "4D Rule" which affects the implementation's implicit
selection of an underlying representation for a user-declared floating point type lacking a range
specification, providing in that case a guaranteed range tied to the requested precision.

The change in the application of the 4B Rule allows all hardware representations to be
accommodated as predefined types with attributes that accurately characterize their properties.
Such types are available for implicit selection by the implementation when their properties are
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compatible with the precision and range requested by the user; but they remain unavailable for
implicit selection, in the absence of an explicit range specification, exactly as in Ada 83.

The 4D Rule says that the representation chosen for a floating point type declared with a
decimal precision of d, but lacking a range specification, must provide a safe range of at least
-10.0%4 .. 10.0%. If the type declaration includes a range specification, the safe range need only
cover the specified range.

The 4B Rule was introduced in Ada 83 in order to define the model numbers of a type entirely
as a function of a single parameter (the requested decimal precision). By its nature, the rule
potentially precludes the implementation of Ada in some (hypothetical) environments; in other
(actual) environments, it artificially penalizes some hardware types so strongly that they have only
marginal utility as predefined types available for implicit selection and may end up being ignored
by the vendor. Such matters are best left to the judgment of the marketplace and not dictated by
the language. The particular minimum range required in Ada 83 (as a function of precision) is
furthermore about twice that deemed minimally necessary for numeric applications [Brown 81].

Among implementations of Ada 83, the only predefined types whose characteristics are
affected by the relaxation of the 4B Rule are DEC VAX D-format and IBM Extended Precision,
both of which have a narrow exponent range in relation to their precision.

In the case of VAX D-format, even though the hardware type provides the equivalent of 16
decimal digits of precision, its narrow exponent range requires that the Digits attribute for this
type be severely penalized and reported as 9 in Ada 83; the Mantissa attribute is similarly
penalized and reported as 31, and the other model attributes follow suit. In Ada 95, in contrast, the
Digits attribute of this predefined type would have a truthful value of 16, the Model_Mantissa
attribute (corresponding to Ada 83's Mantissa attribute, but interpreted relative to the hardware
radix rather than a fixed radix of two) would have a value of 56, and the other model-oriented
attributes would accurately reflect the type's actual properties. A user-declared floating point type
requesting more than 9 digits of precision does not select D-format as the underlying
representation in Ada 83, but instead selects H-format; in Ada 95, it still cannot select D-format if
it lacks a range specification (because of the effect of the new 4D Rule), but it can select D-format
if it includes an explicit range specification with sufficiently small bounds.

The IBM Extended Precision hardware type has an actual decimal precision of 32, but the 4B
Rule requires the value of its Digits attribute to be severely penalized and reported as 18 in Ada
83, only three more than that of the double-precision type. Supporting this type allows an Ada 83
implementation to increase System.Max_Digits from 15 to 18, a marginal gain and perhaps the
reason why it is rarely supported. In Ada 95, on the other hand, such an implementation can
support Extended Precision with a Digits attribute having a truthful value of 32, though
System.Max_Digits must still be 18. Although a floating point type declaration lacking a range
specification cannot request more than 18 digits on this machine, those including an explicit range
specification with sufficiently small bounds can do so and can thereby select Extended Precision.

Note that the named number System.Max_Base_Digits has been added to Ada 95; it gives
the maximum decimal precision that can be requested in a type declaration that includes a range
specification. In IBM systems having the Extended Precision type, the value of this named
number can be 32.

Minimum Exponent

Freeing the minimum exponent of the model numbers to reflect only underflow considerations
removes another compromise made necessary in Ada 83 by defining the model numbers of a type
in terms of a single parameter. The minimum exponent of the model or safe numbers of a type in
Ada 83 is required to be the negation of the maximum exponent (thereby tying it implicitly both to
the overflow threshold and, through the 4B Rule, to the precision of the model numbers).

One consequence of this is that Ada 83's range of safe numbers may need to be reduced
simply to avoid having the smallest positive safe number lie inside the implementation's actual
underflow threshold. Such a reduction gives yet another way of obtaining values outside the range
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of safe numbers without raising an exception. Another consequnce is that the smallest positive
safe number may, on the other hand, have a value unnecessarily greater than the actual underflow
threshold.

This change therefore allows more of the machine numbers to be model numbers, allowing
sharper accuracy claims to be proved.

Machine and Model Numbers

Consideration was given to eliminating the model numbers and retaining only the machine
numbers. While this would further simplify the semantics of floating point arithmetic, it would not
eliminate the interval orientation of the accuracy requirements if variations in rounding mode from
one implementation to another and the use of extended registers are both to be tolerated. It would
simply substitute the machine numbers and intervals for the model numbers and intervals in those
requirements, but their qualitative form would remain the same. However, rephrasing the accuracy
requirements in terms of machine numbers and intervals cannot be realistically considered, since
many platforms on which Ada has been implemented and might be implemented in the future
could not conform to such stringent requirements.

If an implementation has clean arithmetic, its model numbers in the safe range will in fact
coincide with its machine numbers, and an analysis of a program's behavior in terms of the model
numbers will not only have the same qualitative form as it would have if the accuracy requirements
were expressed in terms of machine numbers, but it will have the same quantitative implications as
well. On the other hand, if an implementation lacks guard digits or has genuine anomalies, its
model numbers in the safe range will be a subset of its machine numbers having less precision, a
narrower exponent range, or both, and accuracy requirements expressed in the same qualitative
form, albeit in terms of the machine numbers, would be unsatisfiable.

The values of the model-oriented attributes of a subtype S of a floating point type T are
defined in terms of the model numbers and safe range of the type T, when the Numerics Annex is
implemented; this is true even in the relaxed mode. (Some of these attributes have partially
implementation-defined values if the Numerics Annex is not implemented.)

Although these attributes generally have counterparts in Ada 83, their names are new in Ada
95. The reason is that their values may be different in Ada 95. Clearly, S'Model_Mantissa and
S'Model_Emin will have very different values on a nonbinary machine, since they are interpreted
relative to the hardware radix, rather than a radix of two. (On a hexadecimal machine, each will
have roughly a quarter of the value of the corresponding attribute in Ada 83.) S'Model_Small
and s'Model_Epsilon will only change slightly, if at all, because various effects will tend to
cancel each other out. In any case, the new names convert what would be upward inconsistencies
into upward incompatibilities. We have recommended that implementations continue to provide
the old attributes, as implementation-defined attributes, during a transition period, with compiler
warning messages when they are used. An Ada 83 program using the Safe_Small or
Base'Epsilon attributes should be able to substitute the Model_Small and Model_Epsilon
attributes for an equivalent (and logically consistent) effect, but substitutions for the other
attributes may require more careful case by case analysis.

It is instructive to consider how the fundamental model-oriented attributes and the Digits
attribute of a predefined floating point type P are determined in Ada 95, when the Numerics Annex
is implemented. The algorithm is as follows.

. Initially set P'Model_Emin to P'Machine_Emin and P'Model Mantissa to
P'Machine_Mantissa. This tentatively defines an infinite set of model numbers.

. If the accuracy requirements, defined in terms of the model numbers, are satisfied by every
predefined arithmetic operation that is required to satisfy them, when overflow does not
occur, then these are the final values of those attributes. Otherwise, if the machine lacks
guard digits or exhibits precision anomalies independent of the exponent, reduce
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P'Model_Mantissa by one until the accuracy requirements are satisfied (when overflow
does not occur); if underflow occurs prematurely, increase P 'Model_Emin by one until
the accuracy requirements are satisfied near the underflow threshold. The final set of
model numbers has now been determined.

J Let P'safe_First be the smallest model number that is greater than P'First and
similarly let P'safe_Last be the largest model number that is less than P'Last. These
tentatively define the safe range.

. If overflow is avoided throughout the safe range by every predefined arithmetic operation,
then this is the final safe range. Otherwise, i.e. if overflow occurs prematurely, increase
P'Safe_First and/or decrease P'Safe_Last by one model number until overflow is
correctly avoided in the resulting safe range. The final safe range has now been
determined.

. Finally, let P'Digits be the maximum value of d for which
@d*10g(10.0) /1log (P'Machine_Radix) + 1lg £ P'Model_Mantissa.

This is relevant in the context of the selection of a representation for a user-declared
floating point type, which must provide at least as many decimal digits of precision as are
requested. If this condition is satisfied, the type's arithmetic operations will satisfy the
accuracy requirements.

P'Model Epsilon and P'Model_Small are defined in terms of other attributes by familiar
formulae. The algorithm for Ada 83, which is not given here, is much more complex and subtle,
with more couplings among the attributes.

G.4.2 Fixed Point Arithmetic and Attributes

The revision of the model of fixed point arithmetic focuses on two of the problems concerning
fixed point types that have been identified in Ada 83:

. The model used to define the accuracy requirements for operations of fixed point types is
much more complicated than it needs to be, and many of its freedoms have never been
exploited. The accuracy achieved by operations of fixed point types in a given
implementation is ultimately determined, in Ada 83, by the safe numbers of the type, just
as for floating point types, and indeed the safe numbers can, and in some implementations
do, have more precision than the model numbers. However, the model in Ada 83 allows
the values of a real type (either fixed or float) to have arbitrarily greater precision than the
safe numbers, and so to lie between safe numbers on the real number axis.
Implementations of fixed point typically do not exploit this freedom. Thus, the
opportunity to perturb an operand value within its operand interval, although allowed, does
not arise in the case of fixed point, since the operands are safe numbers to begin with. In a
similar way, the opportunity to select any result within the result interval is not exploited
by current implementations, which we believe always produce a safe number; furthermore,
in many cases (for some operations) the result interval contains just a single safe number
anyway, given that the operands are safe numbers, and it ought to be more readily apparent
that the result is exact in these cases.

. Support for fixed point types is patchy, due to the difficulty of dealing accurately with
multiplications and divisions having "incompatible smalls" as well as fixed point
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multiplications, divisions, and conversions yielding a result of an integer or floating point
type. Algorithms have been published in [Hilfinger 90], but these are somewhat
complicated and do not quite cover all cases, leading to implementations that do not
support representation clauses for Small and that, therefore, only support binary smalls.

The solution adopted in Ada 95 is to remove some of the freedoms of the interval-based
accuracy requirements that have never been exploited and to relax the accuracy requirements so as
to encourage wider support for fixed point. Applications that use binary scaling and/or carefully
matched ("compatible") scale factors in multiplications and divisions, which is typical of sensor-
based and other embedded applications, will see no loss of accuracy or efficiency.

A host of specialized requirements for information systems applications is addressed by the
division of fixed point types into ordinary and decimal fixed point types. The facilities for the
latter are to be found in the Information Systems Annex, see Chapter F.

The default small in Ada 95 is an implementation-defined power of two less than or equal to
the delta, whereas in Ada 83 it was defined to be the largest power of two less than or equal to the
delta. The purpose of this change is merely to allow implementations that previously used extra
bits in the representation of a fixed point type for increased precision rather than for increased
range, giving the safe numbers more precision than the model numbers, to continue to do so. An
implementation that does so must, however, accept the minor incompatibility represented by the
fact that the type's default small will differ from its value in Ada 83. Implementations that used
extra bits for extra range have no reason to change their default choice of small, even though Ada
95 allows them to do so.

Note that the simplification of the accuracy requirements that apply in the strict mode, by
expressing them directly in terms of integer multiples of the result type's small rather than in terms
of model or safe intervals, removes the need for many of the attributes of fixed point types.
However, it is recommended that implementations continue to provide these attributes as
implementation-defined attributes during a transition period, with their Ada 83 values, and that
implementations produce warning messages upon detecting their use.

The accuracy requirements for the adding operators and comparisons now simply say that the
result is exact. This was always the case in Ada 83, assuming operands were always safe numbers,
and yet it was not clear from the model-interval form of the accuracy requirements that comparison
of fixed point quantities was, in practice, deterministic.

Other accuracy requirements are now expressed in terms of small sets of allowable results,
called "perfect result sets" or "close result sets" depending on the amount of accuracy that it is
practical to require. These sets comprise consecutive integer multiples of the result type's small (or
of a "virtual" small of 1.0 in the case of multiplication or division giving an integer result type). In
some cases, the sets contain a single such multiple or a pair of consecutive multiples; this translates
into a requirement that the result be exact, if possible, but never off by more than one rounding
error or truncation error. This occurs with fixed point multiplications and divisions in which the
operand and result smalls are "compatible" meaning that the product or quotient of the operand
smalls (depending on whether the operation is a multiplication or a division) is either an integer
multiple of the result small, or vice versa.

These compatible cases cover much of the careful matching of types typically exhibited by
sensor-based and other embedded applications, which are intended to produce exact results for
multiplications and at-most-one-rounding-error results for divisions, with no extra code for scaling;
they can produce the same results in Ada 95, and with the same efficient implementation. Our
definition of "compatible" is more general than required just to cover those cases of careful
matching of operand and result types, permitting some multiplications that require scaling of the
result by at worst a single integer division, with an error no worse than one rounding error.

In cases where the smalls are incompatible, the accuracy requirements are relaxed, in support
of Requirement R2.2-A(1); in fact, they are left implementation defined. Implementations need
not go so far as to use the Hilfinger algorithms [Hilfinger 90], though they may of course do so.
An Ada 95 implementation could, for instance, perform all necessary scaling on the result of a
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multiplication or division by a single integer multiplication or division (or shifting). That is, the
efficiency for the cases of incompatible smalls need not be less than that for the cases of
compatible smalls. This relaxation of the requirements is intended to encourage support for a
wider range of smalls. Indeed, we considered making support for all smalls mandatory in the strict
mode on the grounds that the weaker requirements removed all barriers to practical support for
arbitrary smalls, but we rejected it because it would make many existing implementations (which
could in all other respects satisfy the requirements of strict mode) instantly nonconforming.

Ada 95 allows an operand of fixed point multiplication or division to be a real literal, named
number, or attribute. Since the value v of that operand can always be factored as an integer
multiple of a compatible small, the operation must be performed with no more than one rounding
error and will cost no more than one integer multiplication or division for scaling. That v can
always be factored in this way follows from the fact that it, and the smalls of the other operand and
the result, are necessarily all rational quantities.

The accuracy requirements for fixed point multiplication, division, and conversion to a
floating point target are left implementation defined (except when the operands' smalls are powers
of the target's machine radix) because the implementation techniques described in [Hilfinger 90]
rely on the availability of several extra bits in typical floating point representations beyond those
belonging to the Ada 83 safe numbers; with the revision of the floating point model, in particular
the elimination of the quantization of the mantissa lengths of model numbers, those bits are now
likely gone. Except when the operands' smalls are powers of the target's machine radix, requiring
model-number accuracy for these operations would demand implementation techniques that are
more exacting, expensive, and complicated than those in [Hilfinger 90], or it would result in
penalizing the mantissa length of the model numbers of a floating point type just to recover those
bits for this one relatively unimportant operation. An implementation may use the techniques in
[Hilfinger 90] for fixed point multiplication, division, and conversion to a floating point target; the
accuracy achieved will be exactly as in Ada 83, but will simply not be categorizable as model-
number accuracy, unless the operands' smalls are powers of the target's hardware radix.
Furthermore, in the latter case, even simpler algorithms are available.

G.4.3 Accuracy of the Numerics Packages

The Numerics Annex specifies the accuracy or other performance requirements that the mandatory
elementary function and random number packages must satisfy in the strict mode. These are
discussed in A.3 with the packages themselves.

G.5 Requirements Summary

The facilities of the Numerics Annex and the floating point attributes of the Predefined Language
Environment Annex relate to the requirements in 11.1 (Floating Point).
The requirement

RI11.1-A(1) — Standard Mathematics Packages

is met in part by the Complex types and related packages of the Numerics Annex and in part by the
elementary functions and random numbers packages of the Predefined Language Environment
Annex.

The study topic

S11.1-B(1) — Floating Point Facilities

is met by the numeric model presented in the Numerics Annex and by the floating point attributes
provided in the Predefined Language Environment Annex.
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H Safety and Security

For critical software, the key issue is assurance of the application, that is, gaining sufficient
confidence in the application in order to authorize its use. The Ada 95 language contributes to this
process by providing a language definition which minimizes potential insecurities and which thus
facilitates independent program validation and verification. However, the size and richness of the
language also raise some issues that need to be addressed if it is to be fully exploited for safety and
security applications.

. As a high-level language, Ada 95 tries to leave implementation-oriented matters
unspecified, but validation and verification of a system requires knowledge of these
details.

. Although software development takes place in Ada 95, validation logically needs to be

performed at the object code level; understanding the correspondence between source and
object is therefore essential for the most critical applications.

. If the expressive power of the full language is not needed, there must be some way to
ensure that a tailored version of the run-time system is used, without support for the
unwanted features, thereby simplifying the process of validation and verification.

The Safety and Security Annex is designed to address these concerns. It should be noted that
the prospective users of this annex form a small, specialized community who historically have
been served by special contracts between large user organizations and specific vendors. However,
such an approach can only satisfy the requirements of enterprises with significant resources. Since
the Annex is part of the Ada 95 standard, "off-the-shelf" products should be able to satisfy the
same requirements at substantially reduced costs. This will allow Ada 95 to be used with
assurance by different application areas, including those outside the military sector such as medical
electronics or electronic funds transfer. Over the period that the Ada 95 standard can be expected
to be operative, the number of applications in such areas could rise quite steeply.

Relationship to Current Approaches

The UK Ministry of Defence standard for the procurement of safety-critical software [MoD 91] is
based upon the use of mathematical specifications and formal proofs or rigorous arguments for
showing compliance and has been effectively used in some environments. However, the complete
application of this standard is often not feasible and hence other methods must be used, even
within the defense context. Whatever approach is taken, the final form of the program is vital,
since it is an analysis of the program itself which must provide the basis of most of the assurance
procedures. This implies that the programming language used for the application is likely to have
a key role. The Annex aids but does not require the application of mathematical specification
techniques.

A mature standard in the safety-critical area which takes a different view to formal methods is
the international avionics standard [DO-178B]. Here the emphasis is on design, analysis and test.
Although there is little stated about programming languages, it is clear that any analysis will either
depend upon the programming language or upon a corresponding analysis of the object code
generated by the compiler. Quite rightly, the standard requires isolation from the correctness of
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the compiler for the most critical software, implying that one must either reason from the object
code or else show that the object and source code are equivalent. The Annex provides facilities to
aid in the analysis of the object code, including access to data values during testing, in order to
ease validation.

In the context of safety, the requirements surrounding the application of computers to nuclear
shut-down systems has been well documented [Archinoff 90]. In the same application area, the
need to show that compiler errors can be detected is given in [Pavey 93].

In the security area, the general requirements are well documented in [DoD 85, ITSEC 91].
Although the latter document does imply some requirements on the programming language in use,
they are at a level that is not really relevant to this Annex.

Dealing with Language Insecurities

To reason about a program requires that the structures used within the program be well-defined
and properly implemented. However, almost all existing programming languages standardized by
ISO are not defined in a mathematically precise form. Hence substantial care must be taken to
ensure that the features of the language used are well-defined and that the program accords with
the intention of the programmer.

Since programmers are fallible, languages which require checks for some forms of error are
an advantage, especially if the design can allow the software to request the system to return to a
safe state. Ada 83 is the only widely used language suitable for critical applications which requires
such checking (and Ada 95 of course continues in this tradition). Many critical applications do not
exploit this checking but demonstrate (perhaps by mathematical proof) that the checks could not
fail. Undertaking this form of static checking is very expensive in staff time, and hence is not
practical for less critical applications. A brief summary of the securities and insecurities of
standard languages is shown in Figure H-1.

Standard Security Features Insecurities
Language
Ada 83 Runtime checks required Access to unset scalars

Pointer initialization
Type-secure across packages
Can recover from check failures

Modula-2 Type-secure across modules Unset pointers (& scalars)
(not yet an ISO standard) | Limited recovery from failures

Pascal Strongly typed Runtime checks optional
Unset pointers (& scalars)

C (Additional tools: make and lint) 150 undefined "features"
Runtime checking often not done

Fortran 77 Type checking Default declarations
No pointers No checking across routines

Figure H-1: Securities and Insecurities in Standard Languages

A comparison of programming languages for safety and security applications showed that a
subset of Ada 83 was a good choice [Cullyer 91]. The subsequent maturity of Ada compilers, the
better understanding of the language, and the provision of Ada-specific tools, makes the language
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the first choice for many applications. In contrast, the C language is deprecated in the IEC draft
standard on safety software [IEC/SC65A 91] since it is very difficult to demonstrate that C code is
restricted to the subset which is well-defined. Ada 95 fills a number of the insecurities noted in
Ada 83 [Wichmann 89], and hence it provides the smallest area of uncertainty to the developer.

The C++ language is not listed in Figure H-1, since it is not yet standardized by ISO. There
are substantial problems in the validation of C++ code, some of which arise due to the lack of an
agreed standard. Moreover, since almost all C programs can be compiled by a C++ compiler, the
inherent problems of the validation of C code are transferred to C++. In addition, compiler
vendors are at a disadvantage compared to Ada in not having an internationally agreed and
comprehensive validation suite for the language.

The insecurities may be avoided by suitably chosen subsets of Ada, such as that provided by
SPARK [Carré 88]. The same subset could be used for Ada 83 and Ada 95, and may be exploited
by the compiler through the pragma Restrictions described below. Note that the use of such
subsets is not in conflict with Ada's traditional "no subsets, no supersets" policy, since for compiler
validation purposes there must be a complete implementation of the language, and not simply a
subset. The point is that any particular program will not use the full language, and if there are a set
of features whose exclusion can result in software for which validation and verification is
facilitated, then the implementation can enforce such exclusions in one mode of operation and can
link in reduced versions of the run-time system.

Until now, language standards have not addressed the problem of the validation of the object
code generated by a compiler. This is troublesome unless information is provided linking the
source code to the object code. Such checking will be required for many years to come while there
is a possibility of errors being introduced by a compiler. The alternative of having "trusted
compilers" does not yet seem viable for the major languages.

The user can indicate exclusion of particular features in a partition by means of pragma
Restrictions. For instance, the user can indicate that tasking is not needed, thus allowing the
run-time system to be very much smaller and simpler. Similarly, the user can ensure that other
language features are avoided. Through this facility, the language used on a particular system can
be reduced to a quite small subset of Ada 95. This can facilitate the analysis of the source code,
since not only can language features be avoided for which verification and validation are
impractical, but one can be assured that these restrictions are enforced by the compiler.

One might argue in favor of a smaller language than Ada 95 for safety-critical systems, rather
than a mechanism for indicating features to be excluded. However, past experience has shown that
there is no consensus on what should be in such a language; applications differ, and agreement on
a suitable subset is difficult since specific applications do require most features of Ada for
convenient and maintainable coding.

After agreeing to the Ada 95 standard, WG9 discussed the problems in the validation and
verification of Ada programs. Such activities could be substantially cheaper if tools could
effectively analyze Ada source code to verify safety or security requirements. In practice, this is
likely to require that the code conforms to some conventions, suh as being within a subset. These
issues are to be investigated by the WG9 Verification Rapporteur Group (VRG).

H.1 Understanding Program Execution

A key issue for the language in critical applications is that of understandable execution. Ada 95
addresses this issue in several ways:

. Eliminating certain cases of Ada 83 erroneous execution, and replacing them by bounded
erTors;

. Adding an attribute to check for scalar data validity;
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. Adding a pragma to cause otherwise uninitialized scalars to be set to values outside their
nominal subtypes;

. Requiring documentation of implementation decisions.

H.1.1 The Valid Attribute

Although this feature is in the core language [RM95 13.9.2], it is discussed here since it is relevant
to the safety and security applications. The valid attribute allows the user to check whether the
bit-pattern for a scalar object is valid with respect to the object's nominal subtype. A reason for
including such a facility is that the other language-defined operations that could conceivably
undertake the same function might not have the intended effect. The following example illustrates
the issue.

declare
I : Integer range 1 .. 10; —— Uninitialized
A : array (1 .. 10) of Float;

begin
A(I) := 1.0;

end;

In Ada 83, users are sometimes surprised to learn that a compiler is permitted to remove the
index check for A (1). The reason that such an optimization is allowed is that a reference to an
uninitialized scalar object in Ada 83 yields an erroneous execution, and therefore unspecified
effects. Thus the compiler may apply the following logic:

. If the value of I happens to be within 1 .. 10, then the check is unnecessary.

. On the other hand, if the value is not within 1 .. 10, then since execution is erroneous
any effect is allowed including using the out of range value as an index.

Perhaps even more surprising, the programmer cannot count on the following style to ensure
that a check is carried out:

declare
I : Integer range 1 .. 10; —-—- Uninitialized
A : array (1 .. 10) of Float;
begin
if T in 1 .. 10 then
A(I) := 1.0;
else
raise Bad_Index;
end if;
end;

In this example the compiler may optimize the test
Iin 1l .. 10

to true, using the same logic that led to the suppression of the index check in A (I), namely that if
the program's execution is not erroneous then the value of T will be within its declared subtype and
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hence the membership test can be omitted, and if the program's execution is erroneous then the
effect is unspecified and thus again the test can be omitted.

Ironically, if the programmer had declared the variable I without a range constraint, then it is
likely that the check would be performed (unless data flow analysis can show otherwise). The fact
that including a range constraint with a scalar declaration might reduce the security of the code (by
failing to raise a run-time exception) is against the Ada design philosophy.

This problem is addressed in several ways in Ada 95. First, a reference to an uninitialized
scalar variable is no longer erroneous but rather a bounded error: the permitted effects are to yield
a valid value (i.e., one within the variable's nominal subtype), to yield an invalid value (one within
the variable's type but outside its nominal subtype), or to raise the exception Program_Error.
This rule prevents the compiler from "reasoning from erroneousness”. In the first example, unless
the compiler has by default set the initial value of I to be within the range 1 .. 10 (which is not
recommended, since it would mask errors), it will need either to raise Program_Error (because
of the reference to an uninitialized object) or to generate a range check.

The second example will not have the problem of the in membership test being optimized
away, but there is still the possibility that the reference to the uninitialized value of I will raise
Program_Error, which is presumably not what the programmer intended. Moreover, to allow
membership tests to be implemented simply and efficiently, the membership test only performs a
range check and thus might not work as desired for enumeration types with "holes" in the
representation.

These remaining issues have motivated the introduction of a simple, intuitive facility for
checking that the value of a scalar object is within the object's nominal subtype. That is the
purpose of the valid attribute, which applies to any scalar object. As illustration, an alternative
version of the second example, using Valid rather than the membership test, is as follows

declare
I : Integer range 1 .. 10; —— Uninitialized
A : array (1 .. 10) of Float;
begin
if I'Valid then
A(I) := 1.0;
else
raise Bad_Index;
end if;

end;

The purpose of the valid attribute is to check the contents of a scalar object without formally
reading its value. Using this attribute on an uninitialized object is not an error of any sort, and is
guaranteed to either return True or False (it will never raise Program_Error), based on the
actual contents of the object, rather than on what the optimizer might have assumed about the
contents of the object based on some declaration.

Although the use of the valid attribute for checking the validity of uninitialized data is
somewhat contrived, other examples are more realistic, such as checking data from:

. An unchecked conversion;

. Calling procedure Read from Sequential IO or Direct_IO;

. An object for which pragma Import has been specified;

. An object that has been assigned a value where checks have been suppressed.

The valid attribute could potentially be applied to a wider range of types than that of scalars.
Unfortunately, this extension is not easy to define with the rigor that should be expected. For
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instance, what action should an implementation perform to attempt to determine if a bit-pattern of
an access type is a valid value? If the attribute did have a larger scope but with unspecified
semantics, then its use on critical systems would require an implementation-defined specification,
checked by analysis of the object code produce by the compiler. This complexity did not seem
justified.

If the attribute is to be used on a record read from a file that was written by a COBOL
program, it is important that the Ada program can check that the value is meaningful rather than
execute code based upon the premise that the value is legal. In the context of safety-critical
applications, such alien data is likely to be provided by some external device. Such data could
well be a composite value, in which case the attribute must be applied to the scalar components.
Checking on non-scalar components or for potential gaps between components cannot be
undertaken with valid.

It is not necessarily logically sound to apply valid to a composite type, due to the presence
of components which are undefined, as in the following example

type Stack_Data is array (1 .. 100) of Character range 'A' .. 'Z';

type Stack is

record
Index : Integer range 0 .. 100;
Data : Stack_Data;

end record;

Only those elements of the array up to the position of Index need to be checked for validity, but
there is no way for a general definition to capture such semantics.

In formulating the design of the valid attribute, we considered several alternatives. One was
to have it as a scalar subtype attribute function, applied to the object of that subtype whose validity
was to be checked; for example,

declare
subtype S is Integer range 1 .. 10;
I : S;

begin

if S'Valid(I) then ... else ... end if;
end;

However, this would present semantic difficulties since calling a function causes evaluation of the
actual parameters; the main idea behind the valid attribute, however, is that it should not read the
value of the object, since this might raise an exception.

Another approach we considered was to have the attribute as a function associated with a
"target" scalar subtype (either as an attribute or through generic instantiation) applied to a value of
any (other) "source" scalar subtype. The idea is to check a source bit pattern (say an Integer
value) to see if it is a valid value for the target subtype. As an example, if Enum is an enumeration
type with "holes" (that is, it has a representation clause with non-contiguous integer values), and v
1S an Integer value, then Enum'valid (V) would return True if vV has one of the identified
values, and False otherwise. The idea is to check validity before the source bits are copied to the
target object.

One problem with such an approach, however, is that it raises some semantic and
implementation questions with respect to the expected sizes of both the source value and the target
subtype; this issue does not arise with the notation X'valid since the object X is not itself
evaluated. Another problem is that it is rather unwieldy in the common case where validity needs
to be checked for data that is being read from an external device into a record, and where the
record fields have scalar subtypes. In such a case it is simplest and most efficient to read the data
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into the record first, and then to check validity. This works conveniently using the valid attribute
applied to a scalar object

declare
type Rec is
record
A : Character range 'A' .. 'Z';
B : Integer range 1 .. 10;
end record;
R : Rec;
begin
Read (R) ;
if not R.A'Valid then ... end if;
if not R.B'Valid then ... end if;
end;

With the alternative style, it would be necessary to have a record type with fields corresponding to
the full types (Character and Integer), to read the data into an object of this record type, check
validity of the fields, and then copy it into R so that constraint checks can be enforced on
subsequent assignments to these fields.

As a result of analysis of these design alternatives, we decided on the approach where validity
is realized through an attribute that is applicable to a scalar object, rather than an attribute function
associated with a target scalar subtype.

H.1.2 Abnormal Values

A value can be abnormal instead of having an invalid representation [RM95 13.9.1]. From the
point of view of safety and security, such abnormal values are a potential disaster, since they can
give rise to erroneous execution — the opposite of predictable execution which the Annex strives
to provide.

In general, it is not possible for a scalar value to be abnormal, and in any case, the user can
take precautions against scalar values with an invalid representation by suitable use of the valid
attribute. It might be possible for an implementation to obtain an abnormal floating point value if a
signalling NaN was produced in which no trap-handler was provided, since access to the value
would produce unpredictable results.

(A signalling NaN is a bit pattern used in place of a floating point number in systems that
support IEC 559; see [IEC 89]. Access to such a bit pattern will cause an interrupt, if the processor
state is set correctly. If the interrupt is not then handled, disaster could ensue. In fact, signalling
NaNs could be used to detect unset floating point values with very little overhead on some
machines, although existing Ada systems do not appear to do this.)

Abnormal values can arise from an abort statement interrupting an assignment operation, or
interactions with the environment external to the Ada program. Typically, the data type would be
composite with a complex internal structure which can be placed in a state that the Ada system
cannot subsequently handle. Task objects and types with discriminants are potential candidates for
types which can have abnormal values. Vendors providing support for this Annex should be able
to indicate if and how such value can arise (unless they require the use of the Restrictions
pragma to effectively exclude such values).

Abnormal values can also arise if a language defined check would fail but the check has been
suppressed. Suppressing checks can obviously lead to problems, since any storage could be
overwritten making it generally impossible for the Ada run-time system to retain control.
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H.1.3 The Pragma Normalize_Scalars

The use of an undefined scalar is a very common programming error which must be detected in
critical systems (see [Wichmann 92] for a discussion of some of the subtleties of this issue in
connection with an earlier draft of the Ada 9X mapping). As observed above, the Ada 95 rule
treating this as a bounded error rather than an erroneous execution will inhibit certain compiler
optimizations that would make this kind of error difficult to detect. However, it does not prevent
the compiler from giving an in-range "default" initial value to otherwise uninitialized scalars,
which would also make it difficult to find errors.

In the light of these considerations, Ada 95 supplies the configuration pragma
Normalize_ Scalars, which serves to ensure that elaboration of the declaration of an otherwise
uninitialized scalar, sets the object to an invalid value if such a value exists. If no such invalid
value exists for a scalar object, then the implementation needs to identify this (for example on the
program listing) so that the programmer is alerted to ensure that the object is assigned before it is
referenced. In such cases, the program will have a predictable (but not necessarily portable) value
and the implementation needs to document the in-range value taken.

The name Normalize_Scalars reflects the intent of the pragma. A "normal" value for a
scalar object is either valid (if within the object's nominal subtype) or invalid (if outside). Since
scalar initializations induced by the pragma might or might not be invalid, "normalize" is an
appropriate description. In general, an invalid value will be outside the object's nominal subtype,
but there are also cases where it is possible for the implementation to produce an invalid value
even when the nominal subtype has the same range as the type. For example, suppose that an
implementation of the type Boolean reserves 8 bits for objects that are not in packed arrays or in
records with representation clauses, with 16#00# corresponding to False and 16#01# to True.
In the presence of pragma Normalize_Scalars, an otherwise uninitialized Boolean variable
will be set to an invalid value, which is neither 0 nor 1.

Some interactions with other pragmas need to be understood by prospective users. First, if a
scalar object is the argument to pragma Import, then its (probable lack of) initialization is not
affected by pragma Normalize_Scalars. This is reasonable, since an imported data item is
under the control of foreign language code that is not subject to Ada semantics. Note that if an
Ada scalar variable corresponds to a memory-mapped /O location, then any implicit initialization
could have an unwanted effect. This can be avoided by importing the scalar variable.

Another interaction is with pragma Restrictions. If a system is being developed in which
exception handling is absent, then the use of pragma Normalize_Scalars is inappropriate, and
even dangerous. With the pragma Restrictions (No_Exceptions) in effect, there is no object
code generated to perform constraint checks. Clearly, referencing an out-of-range scalar would
then result in an unpredictable effect.

H.1.4 Documentation of Implementation Decisions

One aspect of predictability is to understand the behavior of a program in situations identified by
the language rules as either bounded errors or unspecified effects. Thus the implementation needs
to document these behaviors, either as part of a listing or tool-processable output, or (if a general
rule) as independent documentation. Some specific requirements are now discussed.

Parameter Passing Mechanism

Some parameters can be passed by reference or by copy. A different mechanism could even be
chosen for two calls of the same subprogram. Incorrect programs can be affected by the choice
and hence safety and security applications need to check that either this error has not been made or
that the effect will be acceptable. The simplest solution is for the compiler to indicate the choice
made. If the choice is a simple static one (say, always by reference, except for entry parameters
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which are always by copy), then this could be stated once in the compiler documentation,
otherwise the object code listing (or appropriate tool) should indicate the choice. In fact, some
compilers have a complex algorithm which varies from call to call, especially for slices. The
complexity of this algorithm is not relevant to the issue, merely that the choices made should be
clear.

Storage Management

Many safety critical applications are in the form of an infinite loop. It is important that this loop
should not permanently consume storage. Therefore it must be possible, by reviewing the object
code, to ensure that this does not happen. In the security context, it is important that storage used
to contain classified information does not leak via the storage allocation system. It is possible that
this requirement can be met by proposals for a user-defined allocation and de-allocation of storage
— in which case the run-time system may be less critical. There is a parameter to the
Restrictions pragma to avoid storage leaks.

Of course, even if there is no net consumption of storage within a program, and if the storage
is not allocated and de-allocated via a stack, it will be necessary to show that storage fragmentation
does not undermine the system. For this reason, the algorithm used by the run-time system is
important and must be fully documented.

For time-critical applications, additional constraints could be required on the run-time
routines, such as having a tight upper bound in execution time. This requirement is not specified
here, since it will be application specific and many systems avoid the use of the heap and hence are
unlikely to have a problem.

Evaluation of Numeric Expressions

Problems can arise if the evaluation of numeric expressions involves extended range or extra
precision. Counter-intuitive results can be produced with floating point expressions when
combined with equality tests, which is quite common on IEEE systems. Hence the vendor should
document the approach taken, independent of any annotation of the object code, so that any
potential confusion can be avoided. This implies that for any specific expression, the range and
precision with which it is computed should be clear from the documentation (see [RM95 H.2(2)]).

The evaluation of the exponentiate operator is not defined exactly in [RM95 4.5.6(11..12)].
Apart from the association of the multiplications (which only makes a marginal difference to the
result), performing the division (for negative exponents) at the end or initially make a significant
difference to the occurrence of overflow.

Adherence of an Ada implementation to the Language Independent Arithmetic standard [ISO
93] would be appropriate in the context of this annex, since that standard requires that the numeric
operations used are precisely defined.

H.2 Reviewable Object Code

The relevant features supplied by the Annex are the pragmas Reviewable and
Inspection_Point.

H.2.1 The Pragma Reviewable

Due to the well-known fact that all compilers have bugs, it is the conventional wisdom of the
safety critical community to avoid assuming that the generated object code is automatically
correct. For instance, the approach taken in the avionics standard DO-178B is one of Design,



H-10 Safety and Security Ada 95 Rationale: Annexes

Review and Test [DO-178B]. As far as practical, the review and test activities are undertaken at
the object code level. Indeed, if the reliability requirements of Class 1 flight critical software (the
most critical) are to be attained, every attempt must be made to detect errors induced by a
compiler. This is expensive, but unavoidable given current technology.

The pragma Reviewable applies to a partition so that the compiler can generate code to
match special documentation thus permitting independent review of the object code. The
following specific requirements apply.

Elaboration Order for Library Units

Since the elaboration order may have a visible effect, it is essential that the chosen ordering be
indicated by the implementation in forms convenient both for human readers (such as in a program
listing) and for processing by automated tools. An example of such a tool is a static analyzer that
determines the absence of accesses to undefined variables.

Object Code

It cannot be assumed that the vendor will provide every tool needed for validation and verification.
In any case, complete reliance upon such tools may not be acceptable. Hence it should be possible
to extract the object code in a form that can be easily machine processed. An example of a tool is
one which provides maximal times for instruction sequences so that time-critical software can be
shown to meet deadlines.

The wording in the Annex on the requirement of producing output suitable for tools uses the
word "should" rather than the conventional (and stronger) "shall". This is because it may not be
possible to check compliance with the requirement objectively. Since there are no standard data
interchange formats for such information, there is no means of giving a precise description of what
is "suitable".

Object Lifetime Analysis

The implementation needs to allow the user to determine which objects are assigned to which
registers, and the lifetimes of those assignments.

An important aspect of code generation is the assignment of registers. The most general
register assignment algorithm is known to be NP complete and hence it is quite unreasonable for
compiler documentation to detail such an algorithm (especially since it may be proprietary).
However, the result of the algorithm for the specific safety/security application is to be provided.
The area allocated to any object is to be specified so that an object can be accessed, either via the
register or via main memory for the entire lifetime of the object. Compilers typically produce code
to address internal information as well as the information directly related to objects declared by the
program. This issue is not specified in the Annex, since it is unclear how it can be specified in a
testable form.

Initialization Analysis

For each reference to a scalar object, the implementation needs to identify whether the object is
either "known to be initialized" or "possibly uninitialized". Note that pragma
Normalize_Scalars does not affect this analysis.

Since the access to unset scalars can lead to severe errors, and compilers already perform
some of the analysis required, the purpose of this requirement is to provide the information to aid
validation and verification. In the case of "possibly uninitialized", the information would depend
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upon the strength of the analysis performed by the compiler, and hence different compilers (or
even the same compiler under different options) could not be expected to give identical
information.

Machine Instructions Used

For the most critical applications, it is necessary to check that the machine instructions required by
an application are correctly handled by the processor hardware. Microcode faults in processor
chips are not uncommon and therefore such checking may be needed [Wichmann 93]. A list of the
used instructions aids the checking since unused instructions need not be checked. It would be
helpful to identify instructions only used in the run-time system, but this is not essential.

For checking timing constraints, a user needs to consider only the instructions listed.

Relationship between Source and Object Code

Code sequences derived entirely from one Ada statement (or declaration) must be indicated as
such. In those cases in which a code sequence is derived from a single Ada statement, this
statement should be identified. Due to some optimizations, it could be that this identification is
difficult. In such cases, some optimizations could be disabled when the pragma Reviewable is in
force, rather than enhancing the compiler to meet the requirements with full optimization. In this
area, a tool could be much more useful for independent validation and verification rather than an
annotated listing.

Some compilers provide information based upon line numbers rather than Ada statements.
For the purposes of this annex, it can be assumed that there is only one statement per line. For a
single statement, several code sequences could be involved, especially if instruction scheduling
merges the code from more than one statement. Addressing instructions derived from more than
one statement would not have to be identified as such.

If an Ada statement results in no object code, then a positive indication of removal is required,
rather than a mere absence of object code from a statement.

The user may need to compute the storage requirements for a program so that the absence of
the Storage_Error exception can be checked. For subprograms containing only statically sized
objects, an implementation should indicate the size of the stack frame required.

Exception Analysis

The implementation must indicate where compiler-generated run-time checks occur in the object
code, and must also provide a method of determining which exceptions can be raised by any
statement.

The handling of the predefined exceptions is problematic. Exception sites need not be in the
same compilation unit as the handlers that service them. Some method is needed to indicate,
explicitly in the object code, the actual locations at which exceptions are raised and handled. Some
mechanism should be available, either through source or object code analysis, that permits the
analysis of the program to determine which handler is used for each site that can raise an exception
and to identify sites for which no handler is supplied. It would probably be most useful if this was
in the form of a tool, rather than tables which required detailed analysis of each case. An example
of a tool to undertake exception analysis is given by [Schaefer 93].

Since exceptions raised by predefined operations are not explicitly indicated in the source,
and since the implementation is allowed some freedom in choosing actual execution order, this
facility is best supported at the object code level. Even if a vendor does not choose to perform
such an analysis, the information necessary to perform it should be made available to the user. For
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a detailed analysis of the issues involved, see Chapter 2 of the report on Formal Studies of Ada 9X
[DoD 92].

Analysis of Run-Time System Components

Clearly, the fact that a compiler generates a call to an out-of-line routine does not obviate the need
for reviewing the object code of the called routine. Hence the same requirements for reviewing the
object code must apply to the run-time system components.

H.2.2 The Pragma Inspection_Point

A point in the program text can be marked as an inspection point through a pragma of the same
name, optionally identifying a set of objects whose values are to be available. At the
corresponding point(s) in the object code, the vendor is required to provide a means of determining
the values of the specified objects, or, if none was specified, then a means of determining the
values of all live objects. This implies that the object code can be analyzed with special tools so
that properties of the code and object values can be verified, independently of the source code. In
theory, full mathematical verification could be undertaken, although this implies that the
specification of the application is available in a suitable form.

This proposal arose out of the discussion from the special meeting held in April 1993
[Brosgol 93] attended by experts associated with producing safety critical systems. The idea is to
break down a program into code sections separated by inspection points to facilitate validation of
the code. This idea is new, although the concept of "break-points" in assembly language
debugging is clearly similar.

Note that a single occurrence of pragma Inspection_Point in the source text may
correspond to several inspection points in the object code; for example, if the pragma appears in an
inlined subprogram, a generic unit, or a loop that has been "unrolled" by the optimizer.

There are, not surprisingly, some interactions between the pragma and optimizations. Since a
user will in general examine the values of inspectable objects when execution is suspended at an
inspection point, it is essential that compilers not perform "dead code elimination" on prior
assignments to such objects. On the other hand, disabling all optimization is too extreme and in
fact is unnecessary. Thus the compiler is allowed to store inspectable objects in registers; the
implementation needs to provide sufficient information to make this mapping known to the user.
The compiler is also allowed to move expressions (including those which could raise predefined
exceptions) over inspection points.

The main design decision in connection with inspection points was whether to provide a
single pragma, or to separate it into two: one that identifies the inspectable objects, and the other
that identifies the points in program execution where currently live inspectable objects could be
inspected. An advantage of the two-pragma approach is separation of concerns, and the ability to
specify that, say, a variable declared in a package body is inspectable outside the package without
needing to have all live objects inspectable. (Note that, with the single pragma approach the name
of a variable declared in a package body is inaccessible outside the package and hence cannot be
used as an argument to pragma Inspection_Point. Thus in the single-pragma approach, if the
user needs to be able to inspect such a variable, pragma Inspection_Point with no arguments
needs to be provided, which makes all objects inspectable and thus may inhibit some
optimizations.)

In the end, the choice of a single-pragma approach was based on anticipated usage of the
functionality provided, and in particular on the desire to avoid tedious source code changes and
recompilations during software development. That is, the exact set of objects that need to be
inspected might not be apparent at the outset. With the two-pragma approach, a decision to
identify an additional variable will require a source code modification and may induce significant
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recompilation costs depending on where the variable is declared. With the single-pragma
approach, the default is to have all variables inspectable and hence this is not a problem.

In some respects the issue is similar to the decision taken in Ada that when a package is
withed, by default all entities declared in the package's visible part are available in the withing unit.
An alternative approach would have the latter specify exactly those entities that are needed.
Although seemingly producing a narrower and more specific interface, this would in practice yield
long lists of needed entities that no one would read, and programmers would end up using a
notation that made all visible entities available. In the case of inspection points, the anticipated
typical usage is to have all objects inspectable; in those contexts where the programmer knows that
only a limited set is of interest, a specific list can be provided as argument to pragma
Inspection_Point.

Pragma Inspection_Point with a specific list of names provides some of the capabilities
of an assertion facility without the need of an additional language feature. For example, if one
writes

pragma Inspection_Point (Alpha, Beta);

then, when the program is executed under the control of an appropriate monitor / debugger, it may
be suspended at the corresponding point in the object code. Information is available at that point to
examine Alpha and Beta. Therefore an assertion, say that Alpha < Beta, can be checked at
that point. Note that no change to the generated code is required, which would be an issue if the
assert capability were to be provided via an alternative mechanism. Variables such as A1pha and
Beta must be in scope. Also, if such Inspection_Point pragmas are added at several points in
a program, it may be possible to formally verify that the object code between the pragmas
performs the operations in the source code.

H.3 Safety and Security Restrictions

A key technique that those developing critical software adopt is that of restricting the language
constructs used. For instance, if tasking is not used, then the validation process is much simpler,
since certain kinds of programming errors specific to tasking (such as deadlock, race conditions,
and so on) cannot arise, and, moreover, the run-time system does not need to include any tasking
support.

Although the term "subset" often has negative connotations, since in the past uncontrolled
subsets for other languages have led to major portability problems, in the context of safety and
security applications the use of subsets is essential. The issue is then how to satisfy these
requirements without sacrificing the obvious significant advantages that Ada has enjoyed as a
single-language standard. Interestingly, the current revision to the COBOL standard is going to a
single-language model, in contrast to the language modules approach of the past, partly because of
the success that Ada 83 has had with program portability.

The approach adopted is for the user to indicate excluded features as arguments to pragma
Restrictions. The default behavior is for a compilation unit (or more generally a partition) to
be rejected if it uses a feature identified in the pragma. Hence an Ada 95 compiler may enforce
usage subsets in the manner required by [MoD 91], thus avoiding the potential risk of manual
checking for adherence to restrictions. Moreover, an implementation is permitted to "bundle"
restrictions, since otherwise compiler vendors would need to support 2V versions of the run-time
system, where N is the number of possible arguments to the pragma. Thus the pragma should not
be seen as a way for precisely defining a subset, but as a framework which a vendor can exploit.
As an example, consider the safety critical system produced by Alsys and described in [Brygier
93]. Here, an Ada 83 subset is defined which has a zero-byte run-time system, called CSMART.
This subset is vendor-specific since it is oriented around the structure of the Alsys run-time system.
An Ada 95 version of this system could be developed which is based on language-defined
parameters to the Restrictions pragma.
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The set of restrictions identified in the Safety and Security Annex is a representative set, but a
compiler implementation may extend it. For example, in the SPARK system [Carré 88] the
requirement is to use only those language features to which formal proof tools can be applied.
Hence features such as generics are excluded, even though the implementation issues are
straightforward.

Other analysis tools [Rex 88] impose similar restrictions on the source language. A vendor
intending to support Ada 95 in those environments may thus add further restrictions to those
defined in the Annex.

Although the default behavior in the presence of pragma Restrictions is to reject a
compilation unit (or partition) if a restricted feature is used, the implementation may have a "full
language" mode of operation where the use of a restricted feature elicits a warning message versus
a fatal error. This could be useful in some environments, and it helps address the compiler
validation concerns that might otherwise surround an implementation of a subset.

Possible scenarios showing uses of the Restrictions pragma are given in the following
two examples.

Application to a Safety System

Vendor A produces a compiler and an implementation of the Safety and Security Annex, targeted
to safety applications which use a standard similar to [DO-178B]. To simplify the production of
the compiler and ensure the documentation aspects of reviewable object code are met, they require
the use of the arguments No_Protected_Types, No_Allocators, No_Dispatch, No_Delay,
No_Exceptions and Max_Tasks = 0 when the pragma Reviewable is applied to a partition.

The user of this system has chosen this compiler because of the option above, knowing that
the object code produced has a very simple structure, and that therefore the source code and object
code are easily related. The user understands that since checking code does not appear in the
object code, it is essential for this application to ensure that the code is indeed exception-free. To
this end, a program analysis tool is being used. The pragma Normalize_Scalars is not used.

To ensure that some language features are not used which would cause problems for the
program analysis tool, additional parameters are specified by the user to the Restrictions
pragma as follows: No_Floating_Point, No_Fixed_Point, No_Access_Subprograms. In
other words, the design requirements of not using these features are enforced by the compiler by
means of the pragma.

In fact, the program analysis tool cannot handle Unchecked_Conversion. However, this
restriction cannot be imposed by use of the Restrictions pragma since the application does
require its use. In consequence, the use of Unchecked_Conversion is confined to one package
which is not analyzed by the tool. This package uses the attribute Valid to ensure that the raw
data will not subsequently cause an unbounded error.

Application to a Security System

Vendor B produces a compiler specifically for the security community who produce systems
complying with the Orange Book and ITSEC [DoD 85, ITSEC 91]. Here, the full language is
supported by the vendor when pragma Reviewable is enforced, since some applications require
almost all of the language.

The user chooses this compiler since the Annex is supported with the full language. Tested
packages which have formed part of other systems are being imported into their applications, and
therefore the imposition of the restrictions is not usually feasible.

Again, the user has tools to analyze the Ada source code to validate both the security kernel
and the main application code for adherence to the security policy. Since the kernel and the
application code are all in one partition, it is only possible to use the pragma Restrictions for
those features not used in any part of the system. For instance, Unchecked_Conversion is used
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in the kernel but should not appear in the application code, and hence this rule cannot be enforced
by the Restrictions pragma. On the other hand, the declaration of access-to-subprogram types
is not required at all, and hence this restriction is checked by the pragma.

Since the full language is supported by the vendor, the documentation provided to adhere to
the pragma Reviewable is quite complex. To aid the review of the object code, the vendor
provides a special tool, based upon the debugger, to ease the process of independent validation and
verification. In particular, the tool can be used to locate the object code arising from a specific
statement or declaration. This facility depends on the removal of optimizations that would be
applied in the absence of pragma Reviewable. The user decides to employ the pragma
Normalize_ Scalars to reduce the risk of a covert channel and also to aid the detection of
programming errors. (In principle, program components could communicate information via unset
scalar values, thus establishing a secret or covert communication channel.)

Hence, in this example, the pragma Restrictions has a modest effect upon the compiler
and its method of use.

Other Applications

The Restrictions pragma could clearly be used in other contexts apart from safety and security.
For instance, in the context of teaching Ada, it might be convenient to ensure students are using
just those features which would be allowed when developing high integrity software. Since the
pragma is a configuration pragma, it should be simple to set up an Ada compilation system so that
the student does not need to use pragma Restrictions explicitly.

Some high performance applications could also use the pragma to ensure an appropriately
tailored run-time system is used.

H.4 Validation against the Annex

The majority of the Ada 95 standard consists of specific features for which the conventional
validation process works well. Corresponding to each feature, a number of Ada test programs can
be written for which the outcome can be stated and checked, usually within the test program itself.
In contrast, the essence of the Safety and Security Annex is not language features but high
assurance for the application program. Thus it is clear that validation of implementations to this
Annex is different from both the other Annexes and also from Ada 83. The problem of devising
objective tests needs to be considered carefully in the context of the high assurance required, not
just adherence to the standard.

H.5 Issues outside the Scope of the Standard

The Safety and Security community have concerns which cannot be addressed by the Ada 95
standard itself. These issues are recorded here for completeness and to demonstrate that the
standard was not the correct place to have them resolved.

The general requirement is for a "high assurance" compiler and run-time system. However, it
is not possible to characterize this by means of requirements which are consistent with a language
standard. The philosophy adopted by the Annex is to require information so that a user can judge
whether a specific compiler meets the (subjective) requirements of an application.

Some of the issues which arise here are as follows:

. Version control for compilers and run-time;
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Each version of the compiler and/or run-time system must be distinguished by a version
number. It is convenient if it is easy to trace back from the binary to the corresponding
source code.

. Validation of compiler in non-standard modes;

The compiler may well be used in a mode of operation which does not support the full
language. In such a case, documentation is required (specified in the Annex). However, it
is often convenient to provide information on the processing of the validation suite in this
mode (not required by the Annex). There is a significant change from Ada 83 here, since a
mode of operation in which some language features are not supported can be provided by
means of the Restrictions pragma.

. Security of compiler against Orange book or ITSEC;

If a compiler is being used in a security context, it would be necessary to know that it
conformed to the relevant requirements [DoD 85, ITSEC 91].

. Compiler support;
Critical projects are likely to require support from the vendor over an extended period.

. Evaluation;
The Ada Compiler Evaluation Service provides additional tests to measure aspects such as
processing speed which cannot be specified in the standard. Special tools are also
available to stress test compilers in order to give further confidence in their quality; see
[Austin 91] and [Elsom 91].

. Certification of a specific system;
It would be convenient if a specific Ada run-time system could be formally certified. This
would give additional confidence in a system, and would allow a vendor to provide an
identical platform for several market areas. However, it is unclear how such a service

would operate.

In short, the requirements for critical systems go beyond those aspects which are covered by a
conventional standard, and hence those which can be satisfied by the ordinary validation process.

H.6 Requirements Summary

The facilities of the Safety and Security Annex relate generally to the requirements in 9.1
(Predictability of Execution), 9.2 (Certifiability), and 9.3 (Enforcement of Safety-Critical
Programming Practices).

More specifically, the study topic

S9.1-A(1) — Determining Implementation Choices
is met by the Normalize_Scalars pragma and by the requirements for documentation of
implementation decisions.

The requirement

R9.1-A(2) — Ensuring Canonical Application of Operations
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is met by the pragma Inspection_Point and by the provision of Off as an argument to the
pragma Optimize.
The requirement
R9.2-A(1) — Generating Easily Checked Code

is met by the Reviewable and Inspection_Point pragmas.
The requirement

R9.3-A(1) — Allow Additional Compile-Time Restrictions

is met by the pragma Restrictions.






Part Four

The Appendices

This fourth part comprises three appendices which
summarize various aspects of the relationship between
Ada 83 and Ada 95. Appendix X covers the incompatabilities
of which there are few of real significance. Appendix Y gives
the main changes betwen the Committee Draft, the Draft
International Standard and the final International Standard;
it shows that these changes are few and hence that the final
language has had the benefit of considerable stability
throughout the review periods. Appendix Z is a brief
summary of the mapping between the original Requirements
and the sections of this rationale where they are addressed;
it concludes that Ada 95 meets the Requirements.
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Appendix X Upward Compatibility

A major design goal of Ada 95 was to avoid or at least minimize the need for modifying the
existing base of Ada 83 software to make it compatible with Ada 95. This involves not only
pursuing upward compatibility but also preserving implementation-dependent behavior that can
currently be relied upon. In common with the experience of revising other language standards, it is
infeasible to guarantee 100% compatibility.

Other languages have been more or less successful in meeting this goal. For example,
COBOL 83 has been very successful in achieving upward compatibility with COBOL 74.
Nevertheless some minor incompatibilities were introduced which affect existing programs. For
example, IS_ALPHABETIC, accepts upper and lower case in the new COBOL standard. The
transition from C to ANSI C and from there to C++ has also caused incompatibilities, for example
C++ requires all procedure definitions in old-style C to be modified.

In the design of Ada 95, a very conservative approach has been adopted. The few
incompatibilities that exist can be dealt with in a simple mechanical way. For example, the
introduction of a small number of reserved words requires their replacement in any program using
them as identifiers. Extensive surveys of existing code show few programs to be affected. Most of
the other incompatibilities involve obscure or pathological programming styles which are expected
to appear very infrequently in existing code.

The great majority of programs will not be significantly affected by these changes — the most
likely incompatibilities being automatically detected at compilation time. Moreover, tools are
being developed to aid in the reliable detection of any problems and thereby smooth the process of
transition.

Only three incompatibilities are considered likely to occur in normal programs. They are as
follows:

New reserved words — In Ada 95, six new reserved words have been added to the language.

Type Character has 256 positions — In Ada 95, the type Character has 256 positions. In Ada
83, it had 128 positions.

Unconstrained generic parameters — In Ada 95, different syntax must be used in a generic formal
parameter to allow unconstrained actual parameters.

The following further two incompatibilities might occur in normal programs but are less
likely:

Library package bodies illegal if not required — In Ada 95, it is illegal to provide a body for a
library package that does not require one.

Numeric_Error renames Constraint Error — In Ada 95, the declaration for
Numeric_Error has been changed to a renaming of Constraint_Error.

These incompatibilities usually cause a legal Ada 83 program to be an illegal Ada 95 program
and hence are detected at compile time. They are described in more detail in the ensuing sections.
In each case we give an example of the incompatibility, an indication of how it can be avoided in
existing Ada 83 programs and the possibility of its automatic detection and removal.
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The remaining incompatibilities which are considered very unlikely to occur in normal
programs are briefly considered in X.6.

The reader should note that we say that an incompatibility is consistent if the worst that can
happen is that a legal Ada 83 program becomes illegal in Ada 95 and thus fails to compile. An
incompatibility is said to be inconsistent if the program can remain legal but have a different
meaning.

X.1 Reserved Words

Six new reserved words are introduced in Ada 95: abstract, aliased, protected, requeue,
tagged, and until.

Two alternatives to new reserved words were considered: a new concept of unreserved
keywords or the use of combinations of existing reserved words. Neither of these options was
considered preferable to the transitory inconvenience caused by the introduction of the new
reserved words.

An Ada 83 program that uses any of these words as identifiers is an illegal Ada 95 program.
For example, the following fragment of Ada 83 will fail to compile in Ada 95 because it uses two
of the new reserved words

Protected: Boolean := False;
procedure Requeue (The_Activity: Activity; On_Queue: Queue);

Avoidance is clearly straightforward — avoid use of these six words as identifiers. Detection
of the incompatibility is also straightforward. Automatic correction is problematic — to ensure
that a name change is valid requires significant analysis especially if the identifier is the name of a
library unit, or occurs in a package specification for which use clauses occur.

X.2 Type Character

In Ada 95, the type Character has 256 positions. In Ada 83, it had 128 positions.

Although suitable for English-speaking nations, a character type based on ASCII is
inappropriate for most of Europe. ISO has defined a number of 256 character standards such as
Latin-1 and Latin-2. This change to the language thus accommodates non-English speaking
nations.

An Ada 83 program could be an illegal Ada 95 program if it has a case statement or an array
indexed by Character, but it could be a legal Ada 95 program with different semantics if it relies
on the position number or value of Character'Last. For example

type Char_Kind is (Numeric, Alphabetic, Other);

Kind_Array: array (Character) of Char_Kind := -— (1)
('0'" .. '9'" => Numeric,
'A' .. 'Z' | 'a' .. 'z' => Alphabetic,

others => Other);

case Char is -— (2)
when Character'vVal (0) .. Character'val (63) =>
when Character'Val (64) .. Character'vVal (127) =>

end case;

I: Integer := Character'Pos (Character'Last); —-— (3)
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Declaration (1) is legal in Ada 95 but probably does not achieve the desired effect. Statement
(2) is illegal in Ada 95 and will be detected at compilation. Statement (3) illustrates a situation
where the program will still execute but have a different effect in Ada 95 (it is inconsistent).

As it is likely that allowing for 256 characters is outside the scope of the original requirement
for the program concerned, avoidance is not really the issue — a review of the requirements is
necessary.

The inconsistency illustrated by the third example can be avoided by not depending on the
position or value of Character'Last. Avoiding the other incompatibilities avoids the real issue
of how the extra 128 characters are to be handled. Unless uniform behavior is acceptable for these
extra characters, use of an others choice, whilst ensuring a legal (but bad style) Ada 95 program
might cause unacceptable behavior.

Detection of the consistent incompatibilities is straightforward; detection that an
inconsistency may arise is possible. Manual correction is necessary to determine whether the
required semantics of the program are those defined by Ada 95.

Finally, it should be noted that the ISO Working Group with responsibility for maintaining the
Ada standard, has decreed that this change can be introduced into Ada 83 compilers, so this will
increasingly become an Ada 83 portability issue as more implementations support 256 characters.

X.3 Library Package Bodies

In Ada 95, library unit packages are allowed to have a body only if required by language rules.
This avoids a nasty and not so rare error.

In Ada 83, a body need only be provided for a package that really needed one, such as where
the specification contains subprogram or task declarations. If a body was provided for a library
package that did not need a body (for performing initializations for example), then if the package
specification was subsequently changed, the body became obsolete. However, since it was
optional, subsequent builds incorporating the package would not incorporate the body, unless it
was manually recompiled. This obviously affects packages, for example, that only declare types,
constants and/or exceptions, a very common occurrence. As a trivial example in Ada 83 consider

package Optional_ Body is
Global_Variable: Integer;
end Optional_Body;

with Integer_Function;
package body Optional_Body is
begin
Global_Variable := Integer_Function;
end Optional_Body;

The solution adopted in Ada 95 is to allow a body for a library unit package only when one is
required by some language rule; the above example is therefore illegal in Ada 95. However, the
pragma Elaborate_Body can be used to cause a body to be required.

Given the non-uniform functionality of program libraries and sublibraries, it is probably wise
not to try to automatically detect, let alone correct, this incompatibility.

X.4 Indefinite Generic Parameters

Ada 95 provides new syntax for a generic formal private type to indicate that the actual subtype is
allowed to be indefinite. The old syntax is retained, but the meaning is changed to require definite
actual parameters.
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In Ada 83, no indication was given in a generic formal type declaration as to whether the
actual needed to be definite, for example because the body declared an uninitialized variable for
the type. It was thus possible for a legal instantiation to become illegal if the body was changed.

An Ada 83 program, where an indefinite type is used as a generic actual parameter is an
illegal Ada 95 program. For example the following legal Ada 83 program is illegal in Ada 95

generic
type Element_Type is private;
package Stack is

with Stack;
package String_Stack is new Stack (Element_Type => String);

There is no way to avoid this incompatibility but an Ada 83 program can be annotated with an
appropriate comment, thus

generic
type Element_Type is private; —— !l (<>) in Ada 95
package Stack

Detection of the incompatibility is straightforward. Manual correction is necessary to
determine whether restricting the actual to being definite is acceptable.

It is interesting to note that some predefined library units in Ada 83 used this feature and so
are changed. Examples are Unchecked_Conversion and Unchecked_Deallocation and also
Sequential_TIO.

Finally, it should be noted that the ISO Working Group has recommended that Ada 83
compilers be allowed to accept the new syntax in order to simplify transition.

X.5 Numeric Error

In Ada 95, the exception Numeric_Error is declared in the package Standard as a renaming of
Constraint_Error.

The checks that could cause Numeric_Error to be raised in Ada 83 have all been reworded
to cause Constraint_Error to be raised instead. Indeed, this change has been sanctioned by the
Ada Rapporteur Group and encouraged in existing Ada 83 implementations.

However, the alternative of completely removing Numeric_Error was rejected because it
would naturally have caused an incompatibility in programs using the construction

when Numeric_Error | Constraint_Error => Some_Action;

which is the currently recommended way of avoiding the confusion between Numeric_Error and
Constraint_Error in Ada 83.

This construction is still allowed in Ada 95 because of an additional rule that permits an
exception to be mentioned more than once in the same handler.

Programs which do have distinct separate handlers for Numeric_Error and
Constraint_Error such as

exception
when Constraint_Error => Action_1;
when Numeric_Error => Action_2;
end;
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are illegal in Ada 95. Moreover, an inconsistency will arise if a frame has an explicit handler for
Numeric_Error or Constraint_Error but not both as in the following

exception
when Constraint_Error => Action_1;
when others => Action_2;

end;

since Numeric_Error will be caught by the first handler in Ada 95 but by the second in Ada 83.
Detection of the incompatibility is straightforward but manual correction will be necessary in
cases where Numeric_Error is treated differently.

X.6 Other Incompatibilities

It is considered that other incompatibilities will be unlikely to occur in normal programs — the
Ada 83 semantics being known only to the most erudite of Ada programmers — and so only a
brief description seems appropriate in this document. In the following summary, they are grouped
according to whether they result in a legal Ada 95 program but with different semantics; whether
they would be detectable by an Ada 95 compiler and so on.

X.6.1 Unlikely Inconsistencies

These incompatibilities might cause a change in the runtime behavior, but they are not thought
likely to occur in normal programs.

Derived type inherits all operations of parent — In Ada 95 a derived type inherits all its parent's
primitive operations previously declared in the same declarative part. In Ada 83, it did
not.

Floating point types may have less precision — the chosen representation for a floating point type
may have less precision in Ada 95 for hardware with a non-binary radix.

Fixed point types may have less precision — the chosen representation for a fixed point type may
have less precision in Ada 95. This is related to the next item.

Default Small for fixed point types — In Ada 83, the default value of Small was defined to be the
largest power of two not exceeding S'Delta. In Ada 95, it is allowed to be a smaller
power of two.

Rounding from real to integer is deterministic — Rounding is defined in Ada 95 as away from zero
if the real number is midway between two integers.

Evaluation order of defaulted generic actual parameters — The order of evaluation of defaulted
generic actuals is arbitrary in Ada 95.

Static expressions evaluated exactly — Static expressions are always evaluated exactly in Ada 95.
In Ada 83 this was only required in a static context.
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X.6.2 Unlikely Incompatibilities

These incompatibilities cause a legal Ada 83 program to be an illegal Ada 95 program and hence
are detectable at compile time. They are considered to be unlikely in normal programs.

Bad pragmas illegal — In Ada 95, a pragma with an error in its arguments makes the compilation
illegal. In Ada 83, it was ignored.

S'Base not defined for composite subtypes — In Ada 95, s'Base is not defined for a composite
subtype s.

Wide_Character shares all character literals — As a result of adding types Wide_Character
and Wide_String to package standard, Ada 95 character literals are always overloaded
and Ada 95 string literals are always overloaded.

Definition of freezing tightened — In Ada 95, range constraints on a type after its declaration and
in occurrences in pragmas freeze the representation (are treated as forcing occurrences). In
Ada 83 they were not treated as forcing occurrences.

Static matching of subtypes — In Ada 95, matching of subtypes is now performed statically
instead of at runtime (as in Ada 83) in array conversions and generic instantiations.

Illegal to use value of deferred constant — In Ada 95 it is illegal to use the value of a deferred
constant before it is set. In Ada 83 it was erroneous.

Explicit constraints in uninitialized allocators designating access types — in Ada 95 such
constraints are illegal; in Ada 83 they were ignord.

Exceptions in static expressions illegal — in Ada 95, it is illegal to raise an exception in a static
expression; in Ada 83 it made the expression non-static.

Preference for universal numeric operators — In Ada 95, the overload resolution rules have been
changed to simplify them. As a consequence certain pathological Ada 83 programs
become illegal.

Assume worst when checking generic bodies — Ada 83 generic contract model violations have
been overcome in Ada 95 by assuming the worst case in a generic body.

New identifiers added to package System — New identifiers in package System may introduce
illegalities into a unit having a use clause for System.

Append_Mode added to File_Mode enumeration — In Ada 95, subtype File_Mode in packages
Sequential_I0 and Text_ IO has an extra literal, Append_Mode.

New identifiers added to package Text_I0 — New identifiers in package Ada.Text_IO may
introduce illegalities into a unit having a use clause for Text_TIO.

New identifiers added to package standard — New identifiers in package standard may clash
with existing use-visible identifiers.

Functions returning local variables containing tasks — In Ada 95 it is illegal or raises
Program_Error if a function with a result type with a task subcomponent returns a local
variable. In Ada 83 it was erroneous to return a variable containing a local task.
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Illegal to change representation of types containing tasks — In Ada 95, it is illegal to give a
representation item for a derived type containing a task.

Character literals always visible — In Ada 95, character literals are visible everywhere. In Ada 83
they followed the usual rules of visibility.

X.6.3 Implementation Dependent Incompatibilities

These incompatibilities only arise with some implementations. They occur either as a result of
tightening up Ada semantics or where an Ada 83 implementation has used an identifier now
predefined in Ada 95. In the latter case, an inconsistency could occur if the Ada 83 use of the
identifier is compatible with the Ada 95 use, though this is unlikely.

Real attributes replaced — The Ada 83 attributes for a real subtype s (such as S'Mantissa) have
been replaced by Ada 95 attributes defined in the Numerics Annex.

Certain pragmas removed — Some pragmas (including Interface and Shared) have been
removed from the language and Priority has been moved to the Real-Time Systems
annex.

New pragmas defined — The names of new pragmas may clash with implementation-defined
pragmas.

New attributes defined — The names of new attributes may clash with implementation-defined
attributes.

New library units defined — The names of new (language-defined) library units may clash with
user-defined or implementation-defined library units.

X.6.4 Error Incompatibilities

These incompatibilities only occur in programs containing runtime errors, either detectable (an
exception is raised) or undetectable (the execution is erroneous).

Exceeding 'First or 'Last of an unconstrained floating point type — In Ada 95, the 'First
and 'Last of a floating point type declared without a range constraint are treated as
minimum bounds and may be exceeded without causing Constraint_FError.

Dependent compatibility checks performed on object declaration — In Ada 95, dependent
compatibility checks are performed on object declaration. In Ada 83, they were performed
on subtype declaration.

Implicit array subtype conversion — Ada 95 allows sliding in more situations than did Ada 83, so
Constraint_Error might not be raised as in Ada 83.

Lower bound of catenation changed for constrained array types — In Ada 95, the lower bound of
the result of catenation for a constrained array type is defined to be 'First of the index
subtype. In Ada 83, the lower bound of the result was 'First of the left operand.

Raising Time_Error deferred — In Ada 95, raising Time_Error can be deferred until split or
Year is called, or might not be raised at all. In Ada 83, it is raised on "+" or "-".
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Data format for Get — In Ada 95, Get for real types accepts a wider range of formats which
would raise Data_Error in Ada 83. Leading and trailing zeros and the radix point are
not required.

X.7 Conclusion

This appendix has outlined the incompatibilities between Ada 83 and Ada 95. As we have seen,
the small number that are likely to occur in practice are easily overcome. The remainder are
unlikely to be encountered in normal programs but have been mentioned for completeness. For
further details the reader should consult the comprehensive discussion in [Taylor 95] upon which
this discussion has been based.

In conclusion, it is clear that there are unlikely to be significant transition issues for the vast
majority of Ada 83 programs. Ada 95 has been carefully designed to minimize incompatibilities
while meeting the overall goals of the requirements.
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Appendix Y Revisions To Drafts

The final International Standard for Ada 95 incorporates a number of changes to the Committee
Draft [CD 93] of September 1993 (version 4.0 of RM9X) and the Draft International Standard
[DIS 94] of June 1994 (version 5.0). These were made in response to formal comments made by
the ISO members as part of the ballots on these drafts and to informal comments made by
individual reviewers.

Although many of the changes are of an editorial nature several are of significance to the
normal user. The more important changes are outlined in this appendix for the convenience of
readers familiar with the drafts. Unless otherwise mentioned changes are with respect to the CD; if
a change has occurred since the DIS then this is explicitly mentioned. A reference to that section
of the rationale containing further discussion of the topic is given where appropriate.

The organization of the standard has been rearranged into a more logical order. The most
significant to users familiar with Ada 83 is that chapter 14 on input-output has been moved into the
annex on the predefined environment where it logically belongs. The annexes have themselves
been reordered so that the mandatory annexes on the predefined environment and interfacing to
other languages come first, followed by the six specialized needs annexes, the obsolescent features
and then finally the non-normative annexes summarizing attributes and so on.

Y.1 Core Language

Trailing underlines

Trailing underlines are not allowed in identifiers whereas they were in the Committee Draft.
Reversion to the Ada 83 rule was deemed appropriate because allowing just trailing underlines did
not achieve the flexibility desired for wide compatibility with other languages such as C.
Permitting leading underlines and multiple embedded underlines would have given greater
compatibility but was considered unacceptable given the strength of concern for readability of
program text. (2.1)

Modular types

Modular types are no longer described in terms of principal values and secondary values; they just
have a value. A consequence is that conversion to and from integer types always preserves the
numerical value or raises Constraint_Error. Wraparound on conversion no longer occurs.
(3.3.2)

Extension aggregates
The ancestor part can now be a subtype name as an alternative to an expression. This enables an

extension aggregate to be written even when the ancestor is abstract such as in the case of
controlled types. (3.6.1,7.4)
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Controlled types

The package Ada.Finalization is restructured. The types Controlled and
Limited_Controlled are no longer derived from types in the package
System.Implementation (which no longer exists) but are simply abstract private types. The
previous problem with writing aggregates for types derived from abstract types is now overcome
by the new form of extension aggregate mentioned above.

The procedure Split is now called Adjust. The procedures Adjust and Finalize are no
longer abstract but have null bodies like Initialize. (7.4)

Task storage size

The new pragma Storage_Size permits setting the storage size for individual tasks of a task
type. This pragma is placed in the task specification and could thus depend on the value of a task
discriminant. It replaces the use of an attribute definition clause for setting Storage_Size which
gave the same attribute value to all tasks of the type. (9.6)

Children of generic units

It is no longer necessary for a child of a generic unit to be instantiated as a child of an instantiation
of its parent. This requirement of the CD and DIS caused problems for many applications and a
child can now be instantiated anywhere provided the generic child is visible. (10.1.3)

Exception occurrences

The package Ada.Exceptions 1is significantly restructured. The generic child
Ada.Exceptions.Messages has been deleted. The ability to attach a user message to the
raising of an exception can now be done more flexibly using the procedure Raise_Occurrence
and the new attribute Tdentity. A major advantage is that exceptions so raised do not all have
the same name Exception_With_Message.

The type Exception_Occurrence is now limited so that occurrences cannot be directly
assigned. Exceptions can now be saved by a procedure and function Save_Occurrence. This
approach overcomes implementation problems associated with the size of saved information.
(11.2)

Access in generic bodies

The Access attribute can now be applied to objects in generic bodies when the access type is
external. The associated accessibility check is dynamic and raises Program_Error if it fails.
This gives greater flexibility in the use of generics. Note that the Access attribute still cannot be
applied to subprograms in generic bodies when the access type is external. (12.3)

Alignment and Size attributes
The rules regarding these attributes have been somewhat changed. They can now only be applied

to first subtypes (and objects) and not to all subtypes. Furthermore the Address must be a
multiple of the Alignment. (13.1)
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Y.2 Predefined Environment

Package Characters

This has been slightly restructured. The classification and conversion functions are now in a child
package Characters.Handling and the package Characters is itself empty (other than the
pragma Pure). The reason for this change is so that the child Characters.Latin_1 can be used
without introducing any unnecessary executable code from its parent. A related change is that the
package Standard.ASCII is now obsolescent; programmers are expected to use
Characters.Latin_1 instead. (A.1)

Import and Export

The pragmas Import and Export now have a fourth parameter. The third parameter now gives
the name of the entity in the other language and the fourth parameter gives the link name. (B.1)

Text IO

A number of improvements have been made to Text_TIO.

The concept of an error output stream has been added in line with facilities in many operating
systems. Subprograms enable the error stream to be manipulated in a manner similar to the default
output stream.

The functions Current_Input, Current_Output and Current_Error are overloaded
with versions returning an access value. This enables the current stream to be preserved for later
use in a more flexible manner.

The procedure Get_Immediate provides immediate non-buffered and non-blocking input;
this is useful for interactive applications.

The procedure Look_Ahead returns the next character without removing it; this enables the
user to write procedures which behave in a similar manner to the predefined procedures Get for
integer and real types.

The procedure Get for real types will now accept a literal in more liberal formats; leading and
trailing digits around the radix point are not required and indeed the point itself may be omitted.
This enables data produced by programs written in languages such as Fortran to be processed
directly.

The procedure Flush is added; this outputs the contents of the current buffer.

Nongeneric packages equivalent to instantiations of Integer_I0 and Float_IO with the
predefined types have been added since the DIS. These will be found of considerable benefit for
teaching Ada since simple input-output of numbers can now be performed without the introduction
of genericity. (A.4)

Command line

The package Ada.Command_Line enables a program to access the commands and parameters of
the command line interpreter if any. It also enables a program to set its result status. (A.5)
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Random number generator
The package Ada.Numerics.Random_Numbers has been considerably restructured and renamed

as Ada.Numerics.Float_Random. The additional generic package Ada.Numerics.-
Discrete_Random produces streams of random discrete values. (A.3)

Y.3 Specialized Needs Annexes

Edited output

The package Ada.Text_IO.Pictures is now called Ada.Text_I0.Editing. The description
has been recast to avoid dependence on the COBOL standard. (F.2)



Ada 95 Rationale: Appendices Requirements: Z-1

Appendix Z Requirements

This appendix lists the various requirements and study topics discussed in the Requirements
document [DoD 90] and generally indicates how they have been met (by refererence to other parts
of this rationale) or else notes why they proved to be inappropriate.

Z.1 Analysis

The requirements are listed here in exactly the order of the requirements document; against each
requirement is a list of the one or more Requirement Summary sections of this rationale containing
an indication of how the requirement has been met.

Note that a detailed analysis of how the requirements themselves relate back to the original
Revision Requests is contained in the Requirements Rationale [DoD 91].

General

R2.1-A(1) — Incorporate Approved Commentaries 1.5
R2.1-A(2) — Review Other Presentation Suggestions 1.5
R2.1-B(1) — Maintain Format of Existing Standard 1.5
R2.1-C(1) — Machine-Readable Version of the Standard 1.5
R2.2-A(1) — Reduce Deterrents to Efficiency 3.11, 8.5,9.8
R2.2-B(1) — Understandability 1.5,3.11, 8.5
R2.2-C(1) — Minimize Special-Case Restrictions 6.4,8.5,11.5
S2.3-A(1) — Improve Early Detection of Errors 1.5,3.11
R2.3-A(2) — Limit Consequences of Erroneous Executions 1.5
R2.4-A(1) — Minimize Implementation Dependencies 3.11

International Users

R3.1-A(1) — Base Character Set 3.11
R3.1-A(2) — Extended Graphic Literals 3.11
R3.1-A(3) — Extended Character Set Support 3.11

R3.1-A(4) — Extended Comment Syntax 24



Z-2 Requirements

S3.1-A(5) — Extended Identifier Syntax

Programming Paradigms

S4.1-A(1) — Subprograms as Objects

R4.1-B(1) — Passing Subprograms as Parameters
R4.1-B(2) — Pragma INTERFACE

R4.2-A(1) — Allocation and Reclamation of Storage
S4.2-A(2) — Preservation of Abstraction

S4.3-A(1) — Reducing the Need for Recompilation
S4.3-B(1) — Programming by Specialization/Extension
S4.3-C(1) — Enhanced Library Support

S4.4-A(1) — Generic Formal Parameters

R4.4-B(1) — Dependence of Instantiations on Bodies
S4.4-B(2) — Tighten the "Contract Model"
R4.4-C(1) — Generic Code Sharing

R4.5-A(1) — Accessing an Exception Name
R4.6-A(1) — Interactive TEXT_IO

R4.6-B(1) — Additional Input/Output Functions

Real-Time

R5.1-A(1) — Elapsed Time Measurement
R5.1-B(1) — Precise Periodic Execution
R5.1-C(1) — Detection of Missed Deadlines
R5.2-A(1) — Alternative Scheduling Algorithms
R5.2-A(2) — Common Real-time Paradigms
R5.3-A(1) — Asynchronous Transfer of Control
R5.4-A(1) — Non-Blocking Communication

S5.4-B(1) — Asynchronous Multicast
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24

3.11,4.8
3.11
3.11,B.5
13.7

7.5

4.8, 10.6
4.8,10.6
10.6
12.8
12.8
12.8
12.8
11.5

A6

A6

9.8,D.13
9.8,D.13
9.8
9.8,D.13
9.8
9.8
9.8
9.8



Ada 95 Rationale: Appendices

System Programming

R6.1-A(1) — Unsigned Integer Operations

R6.2-A(1) — Data Interoperability

R6.3-A(1) — Interrupt Servicing

R6.3-A(2) — Interrupt Binding

R6.4-A(1) — Access Values Designating Global Objects

S56.4-B(1) — Low-Level Pointer Operations

Parallel Processing

R7.1-A(1) — Control of Shared Memory
S7.2-A(1) — Managing Large Numbers of Tasks
S7.3-A(1) — Statement Level Parallelism

S7.4-A(1) — Configuration of Parallel Programs

Requirements: Z-3

3.11

13.7
9.8,C.7
9.8,C.7
3.11
3.11,13.7

C.7
9.8
9.8
9.8

No specific standard constructs for vector (SIMD) machines have been introduced; however the
rules regarding exceptions have been changed so that vendors are able to provide optimizations

through pragmas as discussed in 9.8.

Distributed Processing

R8.1-A(1) — Facilitating Software Distribution

R8.2-A(1) — Dynamic Reconfiguration

Safety-Critical and Trusted

S9.1-A(1) — Determining Implementation Choices

R9.1-A(2) — Ensuring Canonical Application of Operations

R9.2-A(1) — Generating Easily Checked Code

R9.3-A(1) — Allow Additional Compile-Time Restrictions

Information Systems

R10.1-A(1) — Decimal-Based Types

10.6, E.8
10.6, E.8

H.6
H.6
H.6
H.6

3.11,F3
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S10.1-A(2) — Specification of Decimal Representation
S10.2-A(1) — Alternate Character Set Support
S10.3-A(1) — Interfacing with Data Base Systems
S10.4-A(1) — Varying-Length String Package

S10.4-A(2) — String Manipulation Functions

Scientific and Mathematical

R11.1-A(1) — Standard Mathematics Packages
S11.1-B(1) — Floating Point Facilities

S11.2-A(1) — Array Representation

Z.2 Conclusion

Ada 95 Rationale: Appendices

F.3
F.3
B.5,F3
A6
A.6,F3

A6,G.S5
G.S5
B.5

The above analysis shows that all the formal Requirements have been thoroughly met and it is only
the Study Topics for parallel processing where compromises have been made.
We can therefore conclude that Ada 95 clearly meets the spirit of the Requirements as

expressed in [DoD 90].
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Index

The entries in this index refer to the section and not to the page number. In identifying an
appropriate entry the reader is reminded that references into Chapter II (of part One) are likely to
give a general introduction to a new feature, those into Chapter III (of part One) are likely to
briefly summarize a feature in the context of the whole language, whereas those in Parts Two and
Three (identified by chapters 1 to 13 and A to H respectively) will give further detail of specific
aspects of a feature. Furthermore Appendix X concerns incompatibilities with Ada 83 and
Appendix Y concerns changes since the Committee Draft and the Draft International Standard.

abort statement 9.5

preemptive D.6

with requeue 9.2
abstract types

sequences of 4.6.2

and private types 3.6.2
abstract types and subprograms I1.3, 3.6.2
abstraction

multiple implementation 4.4.3
accept statement

exception handler 11.4
Access attribute 3.7.1

restrictions in generics 12.3, Y.1

restriction on components 3.7.1
access discriminants 3.4.1, 3.7.1

self referential 4.6.3

and finalization 7.4

class wide with tasking 9.6.1
access parameters 3.7.1, 6.1.2,9.6.1
access types 3.7

to object 11.6, 3.7.1

to subprogram 1IL.5, 3.7.2
accessibility

of objects 3.7.1

of parameters 6.1.2

of subprograms 3.7.2

and type extension 12.5
accuracy

for real types G.4

for the Numerics packages G.4.3
active partition

See partition
active priority

See priority
Ada (predefined library package)

Ada.Characters A, A.l

Ada.Command_Line A, A.5

Ada.Numerics A

Ada.Strings A.A.2
Ada.Text_I0 A,A42, Y2
Ada.Wide_Text_IO A, A4.2
aliased I1.6, 3.7.1
Alignment attribute 13.1
array aggregates 3.5.1
with others 3.5.1, 6.1
array subtype conversion 11.12
assignment
dispatching 4.4.3
user-defined 7.4
asynchronous transfer of control 1I.10, 9.4
with controlled types 9.4
ATC 11.10,9.4
attributes
Alignment 13.1
Base II.12,3.1.1,3.3
Bit_Order 13.1
of floating point types G.2, G.4.1
Input A.4.1
Modulus 3.3.2
Normalize_Scalars H.1.2
output A4.1
Read A4.1
Size 13.1
Tag 4.3,4.5
valid 13.3, H.1.1
Write A4.1

barrier condition I1.9
barriers 9.1, 9.1.2
Base attribute 11.12, 3.1.1, 3.3
base priority
See priority
base range 3.3
Bit_Order attribute 13.1
bounded length strings A.2.5
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"Brown model" (for floating point accuracy)
G4.1

C (the language) B.2
categorization (of library units) E.2
catenation 3.5.2
ceiling

See priority
Character 3.2,X.2
character handling A.1
characters

in program text 2.2
Characters I11.13,Y.2
child unit 11.7
children, generic 1L.8, 4.4.4, 10.1.3
class wide types 11.2, 4.2

initialization 4.3
classes 111.1.2,3.1,4.2
clocks 9.3, D.8
COBOL

edited output F.2.2

interface package B.3
command line A.5,Y.2
Complex_10 G.1.3
complex number arithmetic G.1
concatenation 3.5.2
conformance 6.2
contract model 12.1
controlled types 7.4, Y.1

and ATC 94

storage pool 13.4
controlling operands 4.2, 4.5

results 4.2
conversion 3.8

tagged types 4.5
current error file A.4.3

decimal arithmetic F.1
decimal representation F.1.4, B.3
decimal types 3.3.3,F.1.3
deferral of abort 9.2
deferred constants 7.2, 13.5
definite types II.11, 12.1
delay statement 11.10, 9.3, D.9
derived types 3.1.2
Discrete_Random A.3.2
discriminants 1I.12, I11.1.2, 3.4.1
protected types 9.1
tasks 9.6
access class wide and tasking 9.6.1
dispatch table 4.3
dispatching 11.2, I11.1.4, 4.2, 4.5
equality 4.4.3
assignment 4.4.3
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safety of 4.3

for tasks D.2
Distributed Systems Annex E
dynamic binding II.5, E.1, E.5.1

edited output F.2, Y.3
elaboration order 10.3
entry barriers 9.1, 9.1.2
entry queueing
See queueing policy
equality
redefinition of II.12, 6.3
for tagged types 4.3
dispatching 4.4.3
errors 1.4
exception messages 11.2
exception occurrences 11.2, Y.1
extension aggregates 3.6.1, Y.1

File_Access (in Text_I10) A.4.3
finalization 7.4
and access discriminants 7.4
fixed length strings
See string handling
fixed point
arithmetic and attributes G.4.2
operations 3.3.1
floating point G.2
arithmetic and attributes G.4.1
Float_Random A.3.2
Flush (in Text_10) A.4.2
Fortran B.4
freezing 13.5
tagged types 13.5.1

generic body restrictions
Access attribute 12.3,Y.1
type extension 12.5
generic children 11.8, 4.4.4, 10.1.3
renaming 8.3
generic parameters II.11
packages II.11, 12.6
access 12.3
derived untagged 12.4
tagged 12.5
indefinite X.4
Generic_Complex_Types G.1.1
Generic_Complex_ Elementary_ -
Functions G.1.2
Generic_Elementary_Functions A.3.1
Base attribute 3.1.1
Get_Immediate (in Text_T10) A.4.2

heterogeneous structures 4.4.1,4.4.2
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hierarchical library 11.7, I11.3.6, 10.1

indefinite generic parameters X.4
indefinite types II.11, 12.1
initialization 3.4
Information Systems Annex F
initialization of indefinite types 3.4
Input attribute A.4.1
input-output II1.7.1, A.4
Interfaces 3.3

C B2
COBOL B.3
Fortran B.4

interfacing to other languages B, C.1
interrupt handling C.3

intrinsic subprograms C.1

iterators 3.7.1,4.4.4

Latin-1 A.1
library package bodies 11.12, 10.4, X.3
limited types 1I1.1.2, 7.3

access discriminants 3.4.1
localization (of edited output) F.2
locks 9.1.1,9.1.2

and interrupt handling C.3.1
logical operations

on modular types 3.3.2
Look_Ahead (in Text_T10) A.4.1

membership tests

for tagged types 4.3
"mixin" inheritance 4.6.2
mode change II.10
modular types 3.3.2,Y.1
Modulus attribute 3.3.2
multiple inheritance 4.6

Normalize_Scalars attribute H.1.2
normal value (for a scalar object) H.1.2
numeric packages 11.12
numeric types 111.1.2, 3.3
accuracy G.4
unconstrained, and assignment G.3
See also: fixed point, floating point
Numeric_Error 11.1,X.5
Numerics Annex G

objects 3.1

OOQOP, background 4.1, 4.7
order of declarations 3.10
out parameters 11.12, 6.1.1
Output attribute A.4.1

Index: 3

parameters, of subprograms 6.1
access 6.1.2
inout 6.1.2
out 6.1.1
partitions 1I1.3.7, 10.2, E.1
post-compilation partitioning E.5
partition communictaion subsystem (PCS)
E.7
passive partition
See partition
polymorphism III.1.2
pragmas 2.3
All _Calls_Remote E.2
Asynchronous E.4.1
Atomic C.5
Convention B.1
Elaborate_aAll 10.3
Elaborate_Body 10.3
Import and Export B.1,Y.2
Inspection_Point H.2.2
Preelaborate 10.3
Priority 9.6
Pure 10.3
Reviewable H.2.1
Restrictions 13.6,D.7, H,
H.1.2,H.3
Storage_Size 9.6,Y.1
Volatile C.5
predefined library I1.12, A
preelaboration 10.3, C.4
preference control I1.9, 9.2.1
preference rule 8.4
primitive function attributes (of floating
point types) G.2.3
primitive operations II.1, I11.1.3, 4.2, 4.3
private 7.1.1
of untagged generic paramters 12.4
of tagged generic parameters 12.5
priority D.1
ceiling locking D.3
ceiling priorities and interrupt
handling C.3.1
dynamic priority D.5
priority inversion D.3.1
private children IL.8, 10.1.1
private extensions 7.1
and visibility 7.1
private operations 7.1.1
private types 7.1
program libraries 10.1.5
program text 2.2
protected operations 9.1
as interrupt handlers C.3.1
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protected types I1.9, 111.4.3, 9.1
efficiency 9.1.3
public children II.7, 10.1.1

queueing policy D.4

random numbers A.3.2, Y.2
Read attribute A.4.1
Real-Time Systems Annex D
record aggregates 3.6.1
redispatching 4.5
remote call interface (RCI) E.1
remote subprogram calls (RPC) E.4
renaming 8.3
of class wide objects 4.5
of subprogram bodies 6.2, 8.3
of generic units 8.3
of generic children 8.3
of library units 10.1.2
requeue 11.9, 9.2
with abort 9.2
requirements 1.2
reserved words 2.1, X.1
restrictions
See pragma Restrictions
results of functions 6.1
as objects 7.3
root types 3.3, 8.4
rounding 11.12, X.6.1

Safety and Security Annex H
scheduling policy D.2
self referential structure 4.6.3
semaphores 11.1.9,9.1,9.1.3
shared variables C.5
shift operations
on modular types 3.3.2
signed zeros G.2.2
Size atttribute 13.1
sliding 11.12, 3.5.1
of parameters and results 6.1
specialized needs annexes
overview I1.14
requirements for 1.2
static expression I1.12, 3.9
static subtype matching 3.9, 12.7
storage elements 13.2
storage pools 13.4
stream input-output A.4.1
string handling A.2
subsystem construction 10.1.4
subunits 10.5
syntax 1.3
Systems Programming Annex C
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tag 1I.1,4.3

Tag attribute 4.3, 4.5

tagged types 1I.1, 111.3.3, 4

task priorities
See priority

tasks I11.4
asynchronous control D.11
attributes C.6.2
and discriminants 9.6
identification C.6.1
optimizations D.12
restrictions D.7
synchronous control D.10

Text_TI0O
See Ada.Text_I0

time D.8

Time_Span (in Ada.Real_Time) D.8.5

type classification III.1.2

type conversion 3.8
tagged types 4.5

type extension 1.4, 3.6

types and subtypes 3.1

unbounded length strings A.2.6
Unchecked_Access attribute 3.7.1,6.1.2
underlines Y.1

understandable program execution H.1
universal types 3.1.1

unsigned types 3.3.2

up-level (non-local) references 3.7.2, 3.10
use type clause I1.12, 8.2

Valid attribute 13.3, H.1.1
views III.1.2, 3.1
conversion 4.5
visibility 8.1
character literals 8.1
child units 11.8, 10.1.1
subunits 8.1

Wide_Character 3.2, A.l
Wide_String 3.2, A2.4,A2.7
Write attribute A.4.1



