Ada 95 Rationale: Annexes Real-Time Systems: D-1

D Real-Time Systems

The purpose of this Annex is to supplement the core language with features specific to real-time
systems. Since Ada is a general-purpose language with a large and diverse audience, not all the
capabilities that are required to build applications can be sensibly put in the core language without
prohibitively increasing its size and hurting other application domains.

As is the case with Ada 95 in general, this Annex tries to provide a single solution to each
recognized problem, even though we acknowledge that several alternatives exist in the market-
place. The mechanisms that we have provided can serve as building blocks when more
sophisticated solutions are needed. The models that we specify allow for extensions, and
accommodate a certain degree of variability. The primary goal was to allow the user to rely on a
portable, yet usable, set of capabilities. These capabilities will always be present in an
implementation that supports this Annex. Therefore, the default behavior is well-specified, and the
user must explicitly request implementation-provided additions. In addition, optionality within
this Annex was kept to a minimum.

This annex addresses the following topics

. Priorities of tasks in general and especially the ability to change priorities (they were fixed
in Ada 83) either explicitly or as a result of interaction with other tasks and protected
objects;

. Scheduling issues including the entry queue discipline;

. Specific measurements on the effect of the abort statement including the formalization of

the concept of an abort-deferred region;

. Restrictions on the use of certain aspects of the tasking model that should permit the use of
specialized runtime systems;

. Resolution of a number of timing issues in Ada 83, including the introduction of a distinct
monotonic clock;

. The addition of explicit synchronous and asynchronous task control protocols.

Note that several features in this Annex are invoked by using configuration pragmas (see
[RM95 10.1.5]). This means that the corresponding semantics are defined on a per-partition basis;
thus priority scheduling, the queuing policy and time are only specified in the scope of the one
active partition containing the unit where the pragma applies. Ada 95 does not address issues
concerning multipartition execution beyond the minimum that is in the Distributed Systems
Annex. Interactions among partitions are left to implementations or to the providers of partition
communication software.

D-2 Real-Time Systems Ada 95 Rationale: Annexes

D.1 Task Priorities

In real-time applications, it is necessary to schedule the use of processing resources to meet timing
constraints. One approach is to use priority scheduling; this has a well developed theory, and is
adequate for a wide range of real-time applications; see [Sha 90a] and [Klein 93].

Ada 83 specified preemptive task scheduling based on static priorities, but left certain aspects
implementation dependent. This scheduling model, however, has raised issues in practice. On the
one hand, it is viewed as not sufficiently specified for portable real-time system designs. On the
other hand, it is viewed as too restrictive to permit the implementation of important real-time
programming paradigms.

It is important that a language not limit the application to a particular scheduling model.
There are many appropriate scheduling techniques, and more are continually being developed. No
one scheduling model is accepted as adequate for all real-time applications.

It is also important to permit Ada to take advantage of the concurrent programming support of
commercial real-time operating systems or executives. This is especially so with the growing
acceptance of the "open systems" approach to software architecture, and the development of
standards for application program interfaces to operating system services, such as POSIX [1003.1
90]. Ada should not impose any requirements on the language implementation that conflict with
the scheduling model of an underlying operating system.

For these reasons, the Ada 83 priority scheduling model has been removed from the core of
the language. However, this leaves a gap. Some users have found the Ada 83 scheduling model
useful and it is clearly essential to continue to support those users. This argues for the inclusion of
a priority scheduling model in this Annex, and for it to be compatible with Ada 8§3.

A second reason for specifying a standard scheduling model in this Annex is economy. Even
though a single scheduling model cannot satisfy the requirements of all Ada users, it seems that a
large number can be satisfied with priority scheduling, provided that the obvious adjustments to
Ada 83 are made. This model thus provides a useful base for vendors and users alike.

The priority model specified in this Annex thus subsumes the Ada 83 model and provides
several important improvements: support for dynamic priorities; solutions to the problem of
priority inversion; and a unified model of the interactions of task priorities with protected objects
and interrupts.

The specification of the priority model is spread over several clauses in [RM95 D.1-5].
Besides readability, the main reason for this organization is to permit the designation of options
within the Annex. In particular, while the overall task dispatching model is essential, the standard
policies for Task Dispatching, Priority Ceiling Locking, and Entry Queuing may optionally be
replaced by other implementation defined alternatives.

D.1.1 Priority Subtypes

The range of possible task priorities is extended so that it can overlap with interrupt priorities as on
some hardware architectures. We now have

subtype Any_ Priority is Integer range implementation-defined;
subtype Priority is Any_ Priority

range Any_Priority'First .. implementation-defined;
subtype Interrupt_Priority is Any_Priority
range Priority'Last+l .. Any_Priority'Last;

The subtype Any_Priority is introduced (rather than simply allowing Priority to include
interrupt priorities) because existing Ada 83 programs may assume that Priority'Last is below
interrupt priority. Moreover, since giving a task a priority that blocks interrupts is sufficiently
dangerous that it should be very visible in the source code, the subtype Interrupt_Priority is
introduced. The ranges of Priority and Interrupt_Priority do not overlap.

Ada 95 Rationale: Annexes Real-Time Systems: D-3

A minimum number of levels of priority is specified, in the interest of promoting portability
of applications and to ensure that an implementation of this Annex actually supports priority
scheduling in a useful form. Research in Rate Monotonic scheduling [Lehoczky 86] has shown
that approximately 32 levels of priority is the minimum needed to ensure adequate schedulability
in systems with 32 or more tasks. Moreover, it is desirable that where hardware provides support
for priority scheduling, it should be possible to use such support. Certain hardware architectures
are reported to support only 32 levels of priority, including interrupt priority levels. Therefore the
combined number of priority levels is not required to be higher than 32. In order to permit the use
of efficient bit-vector operations on 32-bit machines, where one bit may need to be reserved, the
actual requirement is reduced to 31 of which one must be an interrupt priority.

As in Ada 83, priority subtypes need not be static, so an implementation that is layered over
an operating system can query the underlying operating system at elaboration-time to find out how
many priority levels are supported.

D.1.2 Base and Active Priorities

The distinction between base and active priority is introduced in order to explain the effect of
priority inheritance. The base priority of a task is the priority the task would have in the absence of
priority inheritance of any sort. Priority inheritance is already present in Ada 83, during
rendezvous. It is extended here, to bound priority inversion (see D.3.1 for the definition of priority
inversion) during protected operations.

In the default scheduling policy, priority inheritance is limited to a few simple forms, in order
to permit more efficient implementations. These forms do not cause the active priority of a task to
change asynchronously. Inheritance happens only as a direct result of the execution of the affected
task, when the task is being resumed, or before the task has ever executed. If inheritance is via
protected operations, the priority is raised at the start of the operation and lowered at the end. If
inheritance is via rendezvous, the priority is raised at the beginning of rendezvous (either by the
accepting task itself, or by the caller before the acceptor is resumed) and then lowered at the end of
the rendezvous (by the acceptor). The case of activation is slightly different, since if the active
priority of the task is raised, it is raised by the creator. However, this change is synchronous for
the affected task, since the task has not yet started to execute; the lowering of the priority is done at
the end of activation by the action of the activated task.

Priority inheritance via queued entry calls, via abortion, and via a task master waiting for
dependents to terminate is intentionally not specified, mainly because the effects are asynchronous
with respect to the affected task, which would make implementation significantly more difficult.
An additional reason for not specifying inheritance through task masters waiting for dependents is
that it would be a one-to-many relation, which would also introduce extra implementation
difficulty. Other reasons for not doing inheritance via abortion are stated in D.6.

D.1.3 Base Priority Specification

The initial specification of the base priority of a task is by means of the pragma Priority. This
is compatible with Ada 83.

The pragma Interrupt_Priority is provided for specifying a base priority that may be at
an interrupt level. The pragma is different in order to make it very visible in the source code
wherever a base priority is being assigned that might have the side-effect of blocking interrupts.
The Interrupt_Priority pragma is also allowed to specify priorities below interrupt level, so
that it is possible to write reusable code modules containing priority specifications, where the
actual priority is a parameter.

The rule that the priority expression is evaluated for each task object, at the time of task
initialization satisfies the requirement for having task objects of the same type but with different
priorities. The expression specifying the priority is evaluated separately for each task. This means

D-4 Real-Time Systems Ada 95 Rationale: Annexes

that it is possible, for example, to define an array of tasks of different priorities, by specifying the
priority as a discriminant of the task, or by a call to a function that steps through the desired
sequence of priority values thus

task type T is
pragma Priority (Next_One); —— call function Next_One

and similarly for protected objects.

A default base priority is specified, so that the behavior of applications is more predictable
across implementations that conform to this Annex. This does not prevent implementations from
supporting priority inheritance or other implementation-defined scheduling policies, which relied
for legality under Ada 83 on the task priority being unspecified. This is because an
implementation need not support this Annex at all but if it does then it may still conform and
provide user-selectable task scheduling policies that define additional forms of priority inheritance.
Such inheritance may raise the active priority of a task above its base priority, according to any
policy the implementation chooses.

The main reason for choosing the default priority of a task to be the base priority of the task
that activates it (the base priority of its creator) is that the creator must wait for the new task to
complete activation. For the same reason, AI-00288 specifies that during this time the task being
activated should inherit the priority of the creator.

The default base priority of the environment task (System.Default_Priority) is chosen
to be the midpoint of the priority range so that an application has equal freedom to specify tasks
with priorities higher and lower than that of the default. It does not seem to always be the case that
"normal" tasks (i.e. those that do not have a particular priority requirement), necessarily have the
lowest priority in all circumstances.

D.2 Priority Scheduling

The purpose of this section is to define the operational semantics of task priority, and to define a
specific default scheduling policy. The definitions introduced here are also used for priority
ceiling locking [RM95 D.3] and entry queuing policies [RM95 D.4].

D.2.1 The Task Dispatching Model

Ada 95 provides a framework for a family of possible task dispatching policies, including the
default policy which is specified in [RM95 D.2.2] as well as other policies which may be defined
by an implementation.

The phrase task dispatching is used here to denote the action of choosing a task to execute on
a processor at a particular instant, given that one already knows the set of tasks that are eligible for
execution on that processor at that instant, and their priorities. This is distinguished from the more
general concept of task scheduling, which includes determination of the other factors, i.e. which
tasks are eligible to execute (in the logical sense), which tasks are allowed to be executed on each
processor, and what is the active priority of each task.

The term "processing resource", which was introduced in Ada 83, is developed further.
Informally, a processing resource is anything that may be needed for the execution of a task, and
whose lack can prevent a task from execution even though the task is eligible for execution
according to the rules of the language.

Besides processors, the only specific processing resources that are specified by the Annex are
the logical "locks" of protected objects — i.e. the rights to read or update specific protected
objects. An important feature of the protected type model (explained more fully in D.3) is that
protected objects can be implemented in a way that never requires an executing task to block itself

Ada 95 Rationale: Annexes Real-Time Systems: D-5

in order to execute a protected subprogram call. As explained in D.3, it is a consequence of the
priority-ceiling rules that, if there is only one processor, the highest priority task that is eligible for
execution will never attempt to lock a protected object that is held by another task. Thus, based on
single-processor systems alone, there would be no need to treat protected objects as processing
resources. However, on a multiprocessor system, regardless of how protected types are
implemented, a task may be forced to wait for access to a protected object. Thus, access to a
protected object must be viewed as a processing resource. Even on a single-processor system, if
the implementation chooses not to use priority-ceiling locking, a task may need to wait for access
to a protected object. This might be the case, for example, if tasks are implemented using the
services of an underlying operating system which does not support economical priority changes.
(Note that this potential waiting is not formally considered to be "blocking" by the rules of the
language.)

In some systems there may be other processing resources. A likely example is access to a
page of virtual memory. This might require a task to wait for a page of real memory to be
allocated, and the desired page of virtual memory to be read into it. I/O operations may require
access to an I/O device that is in use by another task (or operating system process).

The use of conceptual ready queues in the specification of the task dispatching model is
derived from POSIX 1003.4 (Realtime Extension) [1003.4 93] and 1003.4a (Threads Extension)
[1003.4a 93] standards.

A separate queue for each processor is specified in the model, in order to allow models of
multiprocessor scheduling in which certain tasks may be restricted to execute only on certain
processors. If the implementation allows all tasks to run on any processor, then the conceptual
ready queues of all processors will be identical. Since this is only a conceptual model, the
implementation is free to implement the queues as a single physical queue in shared memory. The
model thus accommodates a full range of task-to-processor assignment policies, including the
extremes of a single task dispatching queue and a separate queue per processor.

To allow for multiprocessor implementations, it is implementation defined whether a task
may hold the processor while waiting for access to a protected object. This allows the
implementation to directly use a "spin-lock" mechanism, or to use a (higher-level) suspending lock
mechanism such as might be provided by an underlying multiprocessor operating system.

Though it is not specified here, it is desirable for delay queues to be ordered by priority within
sets of tasks with the same wake-up time. This can reduce priority inversion when several tasks
wake up at once. Ideally, run-time system processing for wake-ups of lower priority tasks should
also be postponed, while a high-priority task is executing. This behavior is allowed by the model,
but it is not required, since the implementation cost may be high.

Though we hope that the default scheduling policy defined in [RM95 D.2.2] will be adequate
for most real-time applications, it is inevitable that there will be a demand for implementation-
defined variations. We will consider how several such policies can be accommodated within the
framework.

Consider the Earliest-Deadline-First (EDF) scheduling technique. The EDF scheduling
algorithm is known to be optimal for systems of independent tasks on a single processor. The EDF
priority of a task is the number of ready tasks with later (absolute) deadlines. In general, this value
may need to be adjusted for every change in the set of tasks that are eligible for execution. Since
there is no mechanism by which a user-defined scheduler can be notified to make such changes,
the Dynamic_Priorities package (see D.5) is insufficient for a user to implement EDF
scheduling. = However, an implementation is free to provide EDF scheduling via an
implementation-defined mechanism. The implementation could dynamically adjust base priorities
to reflect EDF task ordering, in which case the semantics could be defined in terms of the run-time
system calling Set_Priority to affect the changes. Alternatively, an implementation could
model EDF scheduling by means of "priority inheritance", where tasks inherit priority dynamically
from some implementation-defined abstraction. For this to work well, the base priorities of all
tasks would need to be set to Any_Priority'First, since the active priority would need to be
lowered dynamically, as well as raised.

D-6 Real-Time Systems Ada 95 Rationale: Annexes

Another anticipated application requirement is for time slicing. Implementation-defined time-
slicing schemes may conform to this specification by modifying the active or base priority of a
task, in a fashion similar to that outlined for EDF scheduling.

D.2.2 The Standard Task Dispatching Policy

The standard dispatching policy can be explicitly requested by writing
pragma Task_Dispatching Policy (FIFO_Within_Priorities);

for the partition. An implementation may provide alternatives but none are required. If no such
pragma appears then the policy is implementation defined.

As mentioned above, the purpose of specifying a standard task dispatching policy is to
achieve more predictable task scheduling and more portability of applications that use priority
scheduling, as compared to the Ada 83 task scheduling model. This leads to a dilemma. On one
hand, the ideal is to completely specify which task will be chosen to execute. On the other hand,
such specification will prevent (efficient) implementation on certain machines. In particular, there
are inherent differences between multiprocessor and single-processor machines, and there may be
constraints on task dispatching policies imposed by underlying operating systems. It seems there
is no one task dispatching policy that will be acceptable to all users and implementable for all
execution environments. Nevertheless, if there is a dispatching policy that will satisfy the needs of
a large segment of real-time applications and is implementable on most execution platforms, there
are benefits to making it always available.

While implementations are allowed to provide additional dispatching policies, there is no
requirement that more than one such policy will be supported in the same active partition. This is
based on the assumption that usually it does not make a lot of sense to talk about two independent
dispatching policies in the same partition. Interactions must be defined and by doing so the two
policies become essentially one. However, the support of two such unrelated policies is not
precluded whenever it makes sense for the application and/or the underlying system. In addition,
the dispatching policy is unspecified (as opposed to implementation-defined) if the user does not
specify the pragma Task_Dispatching_Policy. This is because presumably, if the pragma is
not provided, the user is not concerned about the dispatching specifics, and in addition, in many
cases the actual policy (in the absence of the pragma) can simply be the policy of the underlying
OS. This might not be specified, not documented precisely enough, or may even vary from one
execution of the program to the next (as would be the case if the policy is controlled from outside
the program).

The standard task dispatching policy specified in this Annex can be implemented on both
single-processor and multiprocessor machines. It can be implemented by an Ada RTS that runs on
a bare machine, and it is also likely to be implementable over some operating systems. In
particular, the standard dispatching policy is intended to be compatible with the SCHED_FIFO
policy of the Realtime Extension of the POSIX operating system interface standard.

A special feature of the delay statement, whether it appears as a simple statement or in a select
statement, is that it always causes the executing task to go to the tail of its ready queue of its active
priority. This is true even for delay statements with a zero or negative duration. It means that if
there is another task of equal priority competing for the same processor, the task executing the
delay will yield to this task. Imposing this rule makes the delay behavior uniform. It is also
desired for predictable execution behavior, especially in situations where the delay duration or time
is a value computed at run time, and which may have positive, zero, or negative values. As
mentioned in UI-0044, causing a task to yield its processor to equal-priority tasks is a side-effect of
delay statements in many existing Ada 83 implementations. Some current Ada users rely on this
feature to achieve a form of voluntary round-robin scheduling of equal-priority tasks, under
application control. Supporting this feature is expected to increase the execution time overhead of
zero and negative delays, but the overhead does not seem to be greater than that which would be

Ada 95 Rationale: Annexes Real-Time Systems: D-7

experienced if the shortest possible nontrivial delay (i.e. one that requires the task to be blocked)
were executed.

D.3 Priority Ceiling Locking

Priority-ceiling locking of protected objects serves the following purposes, in order of decreasing
importance

. Priority inversion can be bounded.
. A very efficient implementation of locking is permitted.
. Protected subprograms can be called safely from within direct-execution hardware

interrupt handlers.
. On a single processor, deadlock is prevented.
Priority ceiling locking is specified by writing
pragma Locking Policy(Ceiling_ Locking);

in a unit of the partition. Other policies are permitted but not required. As with task dispatching, if
no pragma appears for the locking policy, then the policy is implementation defined.

Note that if FIFO_Within Priorities is requested as the task dispatching policy then
Ceiling_Locking must also be specified.

D.3.1 Bounding Priority Inversion

By specifying that the task executing a protected operation inherits the priority of the protected
object, we permit the duration of priority inversion (due to enforcement of mutual exclusion
between operations on a protected object) to be bounded. A priority inversion is a deviation from
the ideal model of preemptive priority scheduling; that is, a situation where a higher (base) priority
task is waiting for a processing resource that is being used by a lower (base) priority task. Priority
inversion is undesirable in a priority-based scheduling system, since it represents a failure to honor
the intent of the user, as expressed by the task priorities.

Bounding priority inversion is important in schedulability analysis. In particular, if priority
inversion can be bounded, Rate Monotonic Analysis can be used to predict whether a set of Ada
tasks will be able to meet their deadlines [Sha 90a]. The technique has been successfully applied
to several hard real-time systems written in Ada.

The ceiling locking scheme specified in this Annex is similar to the "priority ceiling
emulation” in [Sha 90b], and to the "stack resource protocol" described in [Baker 91]. On a single
processor, these schemes have the property that, once a task starts to run, it cannot suffer priority
inversion until it blocks itself. Thus, the only points at which a task can suffer priority inversion
are where the task has been unblocked (e.g. delay or rendezvous) and is waiting to resume
execution. At these points, it may need to wait for one task with lower base priority (but a higher
inherited priority) to complete the execution of a protected operation.

Among the locking policies that bound priority inversion, the policy specified here is the
simplest to implement, and has been shown to be more or less indistinguishable from other policies
in effectiveness. Support for this policy is also included in the mutex locking model of the
proposed POSIX Threads Extension standard [1003.4a 93].

With priority inheritance through protected object ceilings, the duration of priority inversion
encountered by a task T that has been unblocked will not be longer than the longest execution time

D-8 Real-Time Systems Ada 95 Rationale: Annexes

of any one protected operation, over all the protected objects with ceilings higher than or equal to
the base priority of T. In estimating this bound, the worst case execution time of each operation
must be used, including the entry-servicing code. For a protected object with entries, this time
bound must include the case where the maximum number of queued entry calls are served. (This
number is bounded by the number of tasks that share access to the protected object.)

Checking of priority ceiling violations by the implementation can be helpful to the
programmer, even if the implementation is not relying on the accuracy of this information for
locking, since it amounts to verifying important assumptions that are made in schedulability
analysis.

D.3.2 Efficient Implementation Techniques

Note that the Annex does not require that protected objects be implemented in any specific way.
However, it is intended that the model be implementable via an efficient non-suspending mutual
exclusion mechanism, based on priorities. Such mechanisms are well understood for static priority
systems where the only priority inheritance is through locks, but the inclusion of dynamic base
priorities and other forms of priority inheritance complicates the picture.

We will argue the adequacy of the specifications in this Annex to permit an efficient non-
suspending mutual exclusion mechanism based on priorities, under certain assumptions. In this
discussion it is assumed that priority inheritance occurs only via the mechanisms specified in this
Annex, and the only processing resources that can be required by a task are a processor and
protected object locks. Here, a lock is an abstraction for having mutually exclusive access to a
protected object. The operations on locks are seize a lock, and release a lock. Locks are not
transferable; once seized, a lock is not allowed to be seized by another task until it is released by
the last task that seized it. It is assumed that protected objects can be implemented using locks. It
is also assumed here that when the base priority of a task is lowered, it yields its processor to any
task with active priority equal to the new base priority, in particular to one that is holding a
protected object lock with that priority as its ceiling, if such a task exists. The cases of a single
processor and a multiprocessor will be considered separately.

Suppose there is only one processor. Assume that the implementation of the seize operation
is not able to block the task. We will argue that mutual exclusion is still enforced, by the
scheduling policy. In particular, suppose a task, T1, is holding a lock on a protected object, R1.
Suppose T2 is another task, and T2 attempts to seize R1 while T1 is holding it. We will show that
this leads to a contradiction.

Let C(R) denote the ceiling of a protected object R, Bp(T) denote the base priority of a task T,
and Ap(T) denote the active priority of a task T. If Ap(T2) > C(R1), T2 would not be allowed to
attempt to lock R1. (This rule is enforced by a run-time check.) Therefore, Ap(T2) £ C(R1).

T1 must run in order to seize R1, but it cannot be running when T2 attempts to seize R1. So
long as T1 is holding R1, it cannot be blocked. (This rule can be enforced statically, or by a run-
time check.) Thus T1 must be preempted after it seizes R1 but before T2 attempts to seize R1.
When T1 is preempted, it goes to the head of the ready queue for its active priority, where it stays
until it runs again. Note that the active priority of T1 cannot be changed until it runs again,
according to the reasoning in D.1.2: changes to base priority are deferred while T1 is holding the
lock of R1, and T1 cannot inherit higher priority since it is not blocked (and not running) and must
already have started activation.

For T2 to attempt to seize R1 while T1 is on the ready queue, T2 must have higher active
priority than T1, or have been inserted at the head of T1's queue after T1 was preempted. The
latter case can be eliminated: for T2 to be inserted at the head of T1's ready queue, T2 must be
preempted after T1; to be preempted after T1, T2 must be running after T1 is preempted; to be
running after T1 is preempted, T2 must be at the head of the highest priority non-empty queue; this
queue must have higher priority than Ap(T1), since T1 is at the head of its own queue. Thus, in
either case, T2 must be executing with higher active priority than Ap(T1), some time after T1 is
preempted and while T1 is still on the same priority queue. That is Ap(T1) < Ap(T2).

Ada 95 Rationale: Annexes Real-Time Systems: D-9

Since T1 is holding R1, it follows that C(R1) £ Ap(T1) < Ap(T2) at the first point where T2
runs after T1 is preempted, and while T1 is still on the same ready queue. Before T2 attempts to
seize R1, the active priority of T2 must drop to a value no greater than C(R1). (This is enforced by
a run-time check.) The active priority of T2 cannot drop below Ap(T1), or T1 would preempt.
This leaves the possibility that the active priority of T2 drops to exactly Ap(T1). But in this case,
the implementation must cause T2 to yield to T1, as part of the operation that changes the base
priority of T2 (see [RM95 D.5]). Thus, T2 cannot execute and so cannot attempt to lock R1.

In conclusion, for a single processor, the scheduling policy guarantees that there is no way a
task can execute to attempt to seize a lock that is held by another task, and thus, no explicit locking
mechanism is required.

On a multiprocessor, it is clear that priorities alone will not be sufficient to enforce mutual
exclusion. Some form of interprocessor locking is required. Suppose this is accomplished by
means of a busy-wait loop, using an atomic read-modify-write operation such as test-and-set. That
is, a processor attempting to seize a protected object lock "spins" until it is able to set some
variable in shared memory, which indicates that the protected object is locked. Thus, there is no
danger of loss of mutual exclusion. The new problem is deadlock.

A necessary (but not sufficient) condition for deadlock is a cycle of "wait-for" relationships
between pairs of tasks. In this case, there are two kinds of wait-for relationships. The obvious
kind is where task T is spinning for a lock R held by task T'. The less obvious kind is where T is
waiting for a processor that is being held by the spinning task T'.

The priority locking scheme does not prevent a direct deadlock situation of the obvious kind,
in which task T1 is spinning waiting for a lock held by task T2, and task T2 is spinning (on another
processor) waiting for a lock held by task T1. Fortunately, the user can prevent this kind of a
deadlock, by not using nested protected operation calls, or by imposing a fixed ordering on nested
protected operation calls.

A more serious problem, if it could occur, would be a deadlock involving a task waiting for a
processor that is busy spinning for a lock. For example, suppose task T1 seizes R1, T1 is
preempted by T2, and then T2 starts spinning in an attempt to seize R1. This would result in a
deadlock if T2 is spinning on the only processor where T1 can execute at this time. This kind of
deadlock would be serious, since it would be hidden inside the implementation, where the user
could not prevent it.

Fortunately, this kind of deadlock is prevented by the priority ceiling locking scheme. For
tasks executing on the same processor, this is obvious. Since T1 inherits the ceiling priority of R1,
an exception will be raised if T2 tries to lock R1 while its active priority is high enough to preempt
T1. The priority ceiling scheme also prevents such deadlocks in situations involving tasks
executing on different processors. For example, suppose task T1 (executing on processor M1)
locks R1 and task T2 (executing on M2) locks R2. Suppose task T3 preempts T1 and attempts to
lock R2, while T4 preempts T2 and tries to lock R1. For this to happen, either T3 or T4 must fail
the priority ceiling check. We will show this for the general case. Suppose there is a cycle of
wait-for relationships. If T is waiting for T', we have either:

1 T is spinning for a lock L held by T', so Ap(T) = C(L) £ Ap(T'). (Note that we may have
C(L) < Ap(T") if T' performs a nested protected operation with higher ceiling, while it is
still holding the lock L.)

2 T is waiting for a processor held by T', which is spinning for some lock L', so Ap(T) <
Ap(T) = C(L).

In order for the cycle to happen, both relationships have to hold for at least one pair of tasks,
but then we have a contradiction.

D-10 Real-Time Systems Ada 95 Rationale: Annexes

D.3.3 Deadlock Prevention

It is a consequence of the priority ceiling locking scheme that an application cannot create a
deadlock using protected subprograms on a single processor. This follows directly from the fact
that a task executing a protected object operation cannot be preempted by any other task that
requires access to that protected object.

Note that this is distinct from the problem of deadlock discussed above, which is within a
particular multiprocessor implementation of ceiling locking. In the case of a multiprocessor, the
priority ceiling locking does not prevent an application from constructing a deadlock with
protected subprograms, but it still can be used to prevent deadlocks that might be caused by the
implementation.

D.3.4 Implementing Over an OS

Priority ceiling locking may be very costly (possibly even impossible) where Ada tasks are
implemented using the services of certain operating systems or executives. In particular, locking a
protected object requires setting the active priority of a task to the protected object ceiling, or
making the task entirely non-preemptable in some way, or using specialized operating system
primitives. If there is no way to do this at all over a particular OS or executive, [RM95 1.1.3(6)]
may be used to relieve the implementation from supporting priority ceiling locking. A more
difficult case would be where there is a way to change a task's priority, but this operation is very
costly. This might be true, for example, where Ada is implemented over a version of POSIX
threads which does not support the priority ceiling emulation option for mutexes.

We considered whether an implementation of this Annex should be allowed to support
priority ceiling locking but to only use it on those protected objects for which it is requested
explicitly. The rationale is that the cost of priority changes may be too high to tolerate in general,
but the user may determine that it is worthwhile in some specific cases. The extra implementation
overhead of supporting two kinds of locks would be offset by the gain in efficiency for those cases
(perhaps the majority) where ceiling locking is not used. Presumably, an implementation could
still use priority ceiling locking with a default priority ceiling when no ceiling is specified, but
could also use some other locking protocol in this case.

If this proposal had been accepted, then there would have been a problem with the check for
ceiling violations. To reap the maximum benefit in efficiency from not raising the active priority
of a task when it locks a protected object, no check for ceiling violations should be required either.
This would result in portability problems going from implementations that use a mixture of
priority-ceiling and non-priority-ceiling locking (A) to implementations that use priority-ceiling
locking for all protected objects (B). For example, suppose PR1 has no specified ceiling, PR2 has
a ceiling specified that is somewhere below Priority'Last, and all callers of PR1 and PR2
happen to have active priorities below Priority'Last. Suppose some operation of PR1 calls
some operation of PR2. With implementation (A), this call to PR2 would always be safe, since the
active priority of a task is not raised by calling PR1. With implementation (B), the call to PR2
from inside PR1 would be made at the default ceiling priority of PR1, which is Priority'Last.
This would violate the ceiling of PR2, causing Program_Error to be raised.

While this approach could have worked, it did not seem that there was enough user benefit to
justify the loss of portability. If the implementation did not support priority-ceiling locking,
because the cost of priority changes is prohibitive, but the application designer judged that
avoiding priority inversion justifies the overhead of the priority changes, the application might
have to adjust the active priority explicitly, by setting the base priority. This would mean calling
Set_Priority before and after calls to the protected operations where priority inversion is of
concern. Naturally, techniques like this are prone to race conditions, especially in the presence of
interrupts. Also, it is not clear that the overhead of Set_Priority would be any smaller than the
direct OS support for priority ceilings.

Ada 95 Rationale: Annexes Real-Time Systems: D-11

This Annex provides a prioritized model of mutual-exclusion which is integrated with
interrupt disabling when shared data is used between the interrupt handler and normal tasks. There
may be situations where this model will be too elaborate and costly. Examples of this may be
certain operating systems, or implementations over bare machines which traditionally have
disabled preemption and/or interruption for this purpose. This implementation model is allowed
by the Annex and is consistent with the other priority rules. In particular, the tasks' priorities still
maintain the granularity and the range of the type. However, for protected object ceilings,
implementations are allowed to round all priority values in the Priority range to
Priority'Last, and those in the Interrupt_ Priority range to Interrupt_-
Priority'Last. The net effect of such rounding is that on each call of a protected object with
ceiling in the lower range, preemption (or dispatching) is disabled. When a protected object in the
interrupt range is involved, all interrupts are disabled. This reduces the number of protected object
ceilings to only two values which makes the approach quite similar to the disable
preemption/interruption employed by existing kernels. The rest of the priority rules are not
affected by this approach.

D.3.5 Implementation and Documentation Requirements

The implementation will require protection of certain processing resources, not visible to the
application, from concurrent access. For example, a storage allocation operation generally requires
exclusive access to the data structure that is used to keep track of blocks of free storage. Likewise,
run-time system operations involved in rendezvous generally require exclusive access to an entry
queue. It would be natural to implement such critical sections in the run-time system using
protected objects. If this is done, it is important that an application task with high active priority
does not unwittingly violate the priority ceiling of one of these run-time system structures.

In order to reduce the likelihood of such problems, the implementation requirement is for the
ceilings of such resources to be at least Priority'Last. This is intended to make such unwitting
ceiling violations impossible unless the application uses interrupt priorities. An application that
does use interrupt priorities is responsible for ensuring that tasks avoid operations with low
ceilings while they are operating at interrupt priority. The rules against performing potentially
blocking operations in protected bodies are expected to help in this respect, by ruling out most of
the operations (other than storage allocation) that are likely to require locking run-time system data
structures. In addition, the implementation is allowed to limit the RTS operations that are allowed
from an interrupt handler.

An application that uses interrupt priority levels will need to know of any implementation
uses of resources with lower ceilings, in order to avoid ceiling violations. The implementation is
required to provide this information.

D.4 Entry Queuing Policies

The Ada 83 rule that entry calls be served in FIFO order may result in priority inversion, which
can cause a loss of schedulable processor utilization. The same issue has been raised regarding the
choice between open alternatives of a selective accept statement, which is unspecified by Ada 83.
However, for upward compatibility reasons any existing Ada applications that rely on FIFO entry
queuing order should continue to work with Ada 95. For this reason, the default entry queuing
policy, specified in [RM95 9.5.3] and [RM95 9.7.1] is still FIFO. (This contrasts with the other
two policies where, if no pragma is supplied, the policies are implementation defined.)

In addition, the wuser can override the default FIFO policy with the pragma
Queueing_Policy thus

pragma Queuing_Policy(Priority_Queuing);

D-12 Real-Time Systems Ada 95 Rationale: Annexes

which stipulates the alternative policy which all implementations supporting this Annex must
provide.

An approach that we rejected was for a user to be able to specify different entry service
policies for each entry or task. Based on analysis of existing Ada run-time system technology, it
appeared that requiring the Ada implementation to support per-entry or per-task selection would
impose significant distributed execution-time overhead and would significantly complicate the Ada
run-time system. Moreover, the need for mixed policies for entry service has not been
demonstrated.

The solution adopted here is that a user can rely on applications that select priority queuing on
a partition-wide basis being portable to any implementation that complies with this Annex. It is
left to the implementor to decide whether to support finer-grained (i.e. per-task or per-entry)
selection of queuing policy, based on customer demand.

It is possible that the choice of entry queuing policy may cause different code to be generated.
Thus, the entry queuing policy must be specified no later than the point where each affected entry
is declared.

Since certain compilation units (including packages that are intended to be reusable) may
depend for correctness on a particular policy, it is important for the compiler or linker to be able to
detect inconsistencies in such dependences. This can be guaranteed so long as the choice of policy
is fixed at the time the entry is declared, and achieved through the general mechanism of
compatible configuration pragmas (see [RM95 10.1.5]).

D.4.1 FIFO Queuing

FIFO queuing is provided for upward compatibility with Ada 83. If the correctness of a particular
unit relies on FIFO entry queuing, it may specify this policy explicitly by

pragma Queueing Policy (FIFO_Queuing) ;

This is important when other units that are included in the same partition specify Priority_ -
Queuing. If FIFO_Queuing was just the default, all units in the partition would have inherited,
in this case, the Priority_Queuing policy, as opposed to being illegal (due to conflicts) which is
the desired behavior. Implementations may support both policies in the same partition, but then
the interactions between the policies are implementation-defined.

Nothing is specified about the rules for choosing between open alternatives of a selective
accept statement, since there is no consensus among existing Ada compilers or Ada users as to
how this choice should be resolved in a FIFO queuing environment. Leaving the rule unspecified
provides upward compatibility.

D.4.2 Priority Queuing

Substantial consensus seems to have evolved that priority scheduling requires priority-ordered
entry service. Priority-ordered entry service eliminates a source of unnecessary priority inversion
and more consistently expedites the execution of higher priority tasks. Therefore, the
Priority_Queuing policy is specified as a user-selectable option that must be supported by all
real-time implementations.

Priority inheritance through queued entry calls was intentionally omitted from the
Priority_Queuing policy. Several models for priority inheritance through queued calls have
been proposed in the literature. However, there is no hard analytical data to support choosing one
of these priority inheritance models over another. The basic need for providing access to shared
data without unbounded priority inversion is already supported by the inheritance feature of
priority-based protected objects. The implementation overhead of more complex forms of priority

Ada 95 Rationale: Annexes Real-Time Systems: D-13

inheritance is sufficiently high that requiring it is not sensible, if only one standard entry queuing
and priority inheritance policy is specified.

The decision to require priority-order selection among open alternatives of selective accept
statements, and among open entries of a protected object is based on the desire to avoid
unnecessary priority inversion. It is understood that there will be some additional implementation
overhead, but this overhead is believed to be justified by the potential gain in schedulability.

Priority ties can occur. If there are several open accept alternatives of a selective accept
statement, or several open entries of a protected object, there may be several highest priority calls.
For predictable behavior, a tie-breaking rule is needed. Textual order of the select alternatives or
entry declarations is specified, on the grounds that this provides the greatest degree of
predictability and direct control to the programmer. In addition, it is believed to be easy to
implement.

The choice of tie-breaker rules does limit implementation choices. Even though the semantic
model for entries is based on there being a separate queue for each entry, the implementation may
choose not to provide separate physical queues. For example, when a task reaches a selective
accept statement or is exiting a protected object the implementation might do one of the following:

. Do a full scan of all tasks in the system, in priority order, to see whether any of them is
trying to call one of the currently open entries. (This might already be very inefficient, due
to the rules about the effects of priority changes on queued calls.)

. Search a single priority-ordered queue, which is associated with the accepting task or the
protected object, to find the first caller that is calling one of the currently open entries.

With data structures that combine calls to different entries, it would be harder to select the call
that corresponds to the lexically-first accept alternative or entry body declaration. The most
natural tie-breaker between equal priority calls would be some form of FIFO. On the other hand, if
the implementation does maintain a separate queue for each entry, then it may be easier to break
ties based on textual order. The present rule takes the point of view that pinning down the choice
of tie-breaker rule is important enough to the application that the implementation choice can be so
limited.

Reordering of Entry Queues

The decision to specify what effect task priority changes have on queued entry calls is based on the
goal of implementation uniformity. The rules distinguish between "synchronous" entry calls and
those associated with asynchronous select statements.

Entry calls associated with asynchronous select statements are not reordered when the priority
of the task that queued the entry call changes. This decision is largely based on consideration of
implementation efficiency and the fact that the task is not waiting for these entry calls. Otherwise,
every time the priority of a task changed, its asynchronous calls would be deleted and reinserted in
their various entry queues. This would conceivably happen even for temporary changes in active
priority associated with starting and completing a protected action in the abortable part.

The priority of an entry call must be determined before the task has locked the protected
object, because it is a consequence of the priority ceiling locking mechanism that, at the time the
protected object lock is seized, the active priority of the task making the entry call will always be
equal to the ceiling of the protected object. If the priority of the call were taken at this time, it
would be the same for all callers to the entry, which would defeat the purpose of priority queuing.
The desired semantics can be implemented by recording the calling priority as an implicit
parameter associated with the queued call, before the protected object is locked.

In an earlier version, asynchronous entry calls were reordered as well, but only upon base
priority changes. However, this introduced certain problems. In particular, the task that caused the
priority to change would probably have to do the reordering itself, which would imply getting the

D-14 Real-Time Systems Ada 95 Rationale: Annexes

locks on the various protected objects with asynchronous calls. This would not be possible if the
ceiling of the protected object were below the active priority of the task causing the priority
change. By contrast, a task waiting on a synchronous entry call can do its own queue reordering,
presuming its new priority is not above the ceiling. If it is, it is considered a bounded error, and
Program_Error might be raised in the waiting task. This is consistent with the behavior which
would have occurred if the priority had been raised above the ceiling just before the task originated
the entry call, so it was deemed appropriate.

We also considered the idea of requiring that the priority of a task not change while it is on an
entry queue. This would eliminate the question of queue reordering, but it has several complicated
consequences. Most serious of these seems to be that a task could not lock a protected object
while it is on an entry queue and executing the abortable part of an asynchronous select statement.
Other limitations would also need to be imposed, including extension of the deferral of base
priority changes to cover the case where a task is on an entry queue. This would in turn increase
the overhead of entry calls.

More serious is that this limitation would interfere with the use of an entry queue to control
user-defined scheduling. It seems plausible to create the equivalent of a ready queue using a
protected entry queue, and then use dynamic priority changes coupled with other operations on the
protected object to implement a scheduling policy. If dynamic priority changes were not
permitted, a hypothetical scheduler would have significantly less flexibility in controlling the order
of service of the various tasks on the entry queue.

In contrast to asynchronous calls, a synchronous entry call is reordered upon a priority change
in the waiting task. This was deemed important for consistency of the priority model, for example
when dynamic priority changes are used to implement mode changes or a user-defined scheduling
policy. Moreover, since dynamic priority changes are not expected to be frequent and there are
other factors that are already likely to make the Set_Priority operation complicated, the extra
complexity of checking whether the task is waiting on a (synchronous) entry call does not seem too
high.

We considered whether, when a task's priority changes, the new position of its queued call
should be based on the new base priority or the new active priority. Since a waiting task could not
be inheriting priority from a protected object, the active priority will be the same as the base unless
the task is in a rendezvous or activating. (This assumes there are no extra implementation-defined
sources of priority inheritance.) In these latter cases, it seems the call should continue to inherit
the priority from the activator or entry caller. Therefore, the new priority of the call is specified as
the new active priority of the caller after the new base priority is set.

Another semantic detail is whether adjustment of priority causes loss of FIFO position within
a priority queue, in the case that the new active priority is the same as the old active priority. For
conceptual consistency, Set_Priority is specified as having the same round-robin effect on
queued entry calls as it does on the task's position in the ready queue(s).

D.4.3 Other Queuing Policies

The possibility of specifying other standard entry queuing policies, including some with priority
inheritance, was also considered. The decision not to specify such alternative policies in the
Annex was based on a general design goal of avoiding multiple solutions for a single problem.
This would be contrary to the intent of the Annex to encourage uniformity among implementations
and portability among applications. Moreover, supporting each alternative policy would involve
significant implementation cost. Therefore, requiring every implementation of the Real-Time
Systems Annex to support several alternative policies would not be sensible. The intent is that
there be one policy that all Annex implementations are required to support; this is the
Priority_Queuing. For applications that require upward compatibility with Ada 83,
FIFO_Queuing is also specifiable. The basic model defined in this Annex allows experimentation
with new policies, and the introduction of new solutions based on market demands. Therefore,

Ada 95 Rationale: Annexes Real-Time Systems: D-15

implementations are permitted to define alternatives, but portable applications should rely only on
the Priority_Queuing and FIFO_Queuing policies.

D.5 Dynamic Priorities

The ability to vary the priorities of tasks at run-time has been so widely demanded that most Ada
implementations provide some form of dynamic priority facility. The package Ada.Dynamic_-
Priorities provides such a capability in a portable manner. The interactions of priority changes
with other aspects of Ada task semantics are also defined. The following subprograms are
provided

procedure Set_Priority(Priority: Any Priority;
T: Task_ID := Current_Task);

function Get_Priority (T: Task_ID := Current_Task)
return Any_Priority;

where the priority is the base priority rather than the active priority.

Versions of Get_Priority and Set_Priority with no explicit task parameter (and so
applying implicitly to the calling task) are unnecessary since this capability is provided by the
Current_Task as a default parameter. Calling such operations might be slightly faster, but they
would clutter the interface, and since these operations are not trivial anyway, the benefit did not
seem to be worthwhile. (Compilers recognizing this special case can still optimize it by calling a
separate entry point in the RTS.)

Calling Get_Priority for a terminated task raises Tasking_Error. This allows the
implementation to reclaim the storage devoted to the task control block upon task termination.
Querying the priority of a completed or abnormal task is allowed and has a well-defined meaning
since such tasks may still be executing and may still use the CPU, so providing user access to their
priorities makes sense.

A function for querying the active priority of a task was intentionally omitted. This is partly
because the active priority can be volatile, making the result unreliable. In particular, querying the
active priority inside a protected body will not return useful information, since the task will always
be executing at the priority ceiling of the protected object. Another reason is that it is likely to be
difficult to implement such a function on some systems. Moreover, requiring this value to be
available would rule out at least one efficient technique for priority inheritance, in which
inheritance relationships are represented only by links from donor to inheritor, and the
implementation does not need to explicitly compute the active priority of a task or to store it.

When the base priority of a running task is set, the task is required to go to the tail of the
ready queue for its active priority. There are several reasons for this. First, this is what is specified
in the SCHED_FIFO policy of [1003.4 93], after which the default task dispatching policy is
modelled. Second, this is needed to prevent priority changes from violating the ceiling rules if
priority inheritance is used to enforce mutual exclusion. For example, suppose task T1 is
executing a protected operation of PR1, and task T2 preempts. Suppose T2 then lowers its own
base priority to the ceiling of PR1. T2 is required to go to the tail of the ready queue at this point.
This ensures that there is no danger of T2 trying to perform a protected operation on PRI.
(Allowing T1 to preempt under these circumstances might also be desirable from the point of view
of expediting the release of PR1.)

Deferral of the Effect of Priority Changes
The effect of set_Priority on a task is deferred while the task is executing a protected

operation, for several reasons. One reason is to prevent Set_Priority from forcing a task that is
executing in a protected object to give up the processor to a task of the same active priority.

D-16 Real-Time Systems Ada 95 Rationale: Annexes

Another reason is to permit more efficient implementation of priority inheritance and priority
changes. In particular, when entering a protected operation body, or starting a rendezvous, it is
permissible to push the old active priority on a stack, from which it is popped when the protected
operation is left, or the rendezvous ends. Note that there need be no additional execution time
overhead for implementing this deferral, over that already imposed by deferring abortion, in the
case that no priority change is attempted during the time the protected operation is executed.

For simplicity of implementation, priority changes are allowed to be deferred until the next
abort completion point. This will be primarily useful in the context of target environments that
have limited support for preemptive interthread or interprocessor signalling.

Taken from a user's point of view, deferring a change to the base priority of a task during
protected operations should make no difference if the change is in the downward direction, since
this would not affect the active priority of the task anyway. If the change is in the upward
direction, the difference could be noticeable, but no requirement for immediate upward change of
base priority during protected operations has been demonstrated. There may be a requirement for a
temporary change to the active priority, but this is possible by calling an operation of a protected
object with high enough ceiling.

Deferring the effect of changing the base priority also eliminates some semantic questions.
One of these is whether the base priority of a task should be allowed to be raised higher than the
ceiling priority of a protected object in which the task is currently executing. Allowing this would
constitute a retroactive violation of the rule that a task cannot call a protected operation of a
protected object while its active priority is higher than the protected object ceiling (the active
priority is of course never less than the base priority).

Dynamic Priorities and Ceilings

When ceiling priorities and dynamic changes to priorities are supported in the same environment,
some interactions with other language features are unavoidable. The source of these problems is
mainly the inherent conflict between the need to arbitrarily and asynchronously change the task
base priorities, and the ceiling model where a more disciplined usage of priorities is required. The
problems get more serious if the effect of such misuse affects not just the program behavior, but
also the correctness of the implementation. At least two interesting cases exist:

1 As part of the set_Priority operation, a protected entry queue may have to be
reordered. This happens when the affected task is waiting on a protected entry call (see
[RM95 D.4]). If the task calling Sset_Priority has an active priority higher than the
ceiling of the relevant protected object, it will not be able to accomplish this reordering
due to a ceiling violation. To circumvent this problem, it can awaken the waiting task
which can then itself reorder the queue and continue waiting.

2 A call queued on a protected entry queue may sometimes need to be cancelled. This
happens when the task is aborted, its currently executing abortable_part is aborted (and it
has some nested calls), or when the abortable_part completes normally and the triggering
call needs to be removed from its queue. If the task's base priority was raised after the call
was initially queued and remains too high when the call needs to be removed, it might fail
to remove the call due to ceiling violations (since such removal involves locking the
protected object). This situation is considered a bounded error, and can result in the task's
priority being temporarily lowered to accomplish the cancellation of its call.

We considered other alternatives as solutions to the above problems. For the first case, we
looked into the possibility of temporarily lowering the priority of the task calling Set_Priority.
This has the obvious problems of potentially introducing priority inversions, complicating
implementations, and presenting a non-intuitive model to the user. We also looked at allowing the
reordering to be deferred. This is also undesirable: the deferral may be too long and there may be

Ada 95 Rationale: Annexes Real-Time Systems: D-17

several priority changes during this time. Resuming the affected task in order to accomplish the
reordering was chosen as the suggested implementation model, since a similar mechanism is
already required to support abort of a low-priority task by a high-priority task. We also looked at
the possibility of limiting the effect of the set_Priority call such that it will raise the priority
only to the minimum of the ceilings of protected objects either held by or being queued on by the
task. Again, it was not clear that these semantics are desired, and it would certainly add a
substantial cost to the implementation.

The second situation introduces a problem that if not addressed might make the
implementation of finalization (as part of abortion) impossible. Here, a call is already queued and
it must be removed; just raising an exception is not acceptable since this will not solve the
problem. We considered various solutions, but ultimately declared the situation a bounded error,
and allowed the task when it needs to cancel its call to have its priority temporarily lowered. The
temporary priority inversion was not felt to be serious since this is considered an error situation
anyway.

Example of Changing Priorities of a Set of Tasks

type Task_Number is range 1 .. 4;
type Mode_Type is range 0 .. 2;
Task_Priority: array (Task Number, Mode_Type) of Priority := ... ;

protected Mode_Control is
procedure Set (Mode: Mode_Type);
pragma Priority(System.Priority'Last);
end Mode_Control;

protected High_ Priority_Mode_Control is
procedure Set (Mode: Mode_Type);
pragma Interrupt_Priority;

end High_Priority_Mode_Control;

use Dynamic_Priorities;
protected body Mode_Control is
procedure Set (Mode: Mode_Type) is
begin
High_Priority_Mode_Control.Set (Mode) ;
Set_Priority(Task_Priority(l, Mode),T1l);
Set_Priority(Task_Priority (2, Mode),T2);
end Set;
end Mode_Control;

protected body High_Priority_Mode_Control is
procedure Set (Mode: Mode_Type) is
begin
Set_Priority(Task_Priority (3, Mode),T3);
Set_Priority(Task_Priority (4, Mode),T4);
end Set;
end High_Priority_Mode_Control;

The table Task_Priority specifies the priorities that the tasks T1 through T4 should have,
for every mode. Here, in order to avoid blocking every task for a long time, the priority changes
are done in stages, at two different active priorities, via two protected objects. The task doing the
priority change starts with a call to the lower-priority protected object. This calls the next higher
level. The priority adjustments of lower priority tasks can be preempted by the execution of the
higher priority tasks.

D-18 Real-Time Systems Ada 95 Rationale: Annexes

Metrics

The purpose of the metric for Set_Priority is to specify the cost of this operation, compared to
other operations, for a case where it should be about as low as can be expected. This metric may
be critical for some applications, which need to perform priority changes under time constraints,
but the inherent complexity of Set_Priority is likely to make it time-consuming.

Of course, complicating factors such as entry queue reordering may make the execution time
of Set_Priority worse than would be indicated by this metric. The possibility of including
more metrics, such as for a situation involving entry-queue reordering, was considered. This idea
was rejected on the grounds that it would only be of interest for applications that change the
priority of tasks with queued entry calls. Special cases could not be covered uniformly to this level
of detail without greatly increasing the number of metrics. Finally, this metric would cover a large
part of the RTS code itself, and not just the priority change operation proper, thus it will be
influenced by many factors diminishing the value of the specific metric to the user.

D.6 Preemptive Abort

A requirement has been expressed for "immediate" task abortion. There appear to be several
motivations for wanting immediate abortion:

1 To stop the task from doing what it is currently doing before it can "contaminate" the
application further, possibly with dangerous consequences. A task can contaminate the
application by changing the system state or wasting processing resources.

2 To be certain that the task has stopped executing, so that the aborter can proceed without
fear of interference from the aborted task (e.g. I/O, rendezvous, writing on shared
variables).

3 To be certain that the aborted task does not continue executing indefinitely, as it might if it
were (due to error) in an infinite loop without any abort completion points (see [RM95
9.8]).

There are several possible meanings of "immediate" in this context:
. Before the abort statement completes. This is easy to define and implement, but it may

take a long or indeterminate time to complete, and so might require blocking the task that
executes the abort. It satisfies requirement (2) only.

. Before the affected task(s) are allowed to execute further. This is easy on a single
processor, but may be too costly or impossible on a multiprocessor. It satisfies all three
requirements.

. As soon as the implementation can do it, and certainly within a bounded time. On a single

processor, this would have the same meaning as above, but would allow some delay on a
multiprocessor. It satisfies requirements (2) and (3). Whether it satisfies (1) depends on
the implementation.

The third meaning of "immediate" seems like the best compromise. This is the basis for the
specifications in this section. With respect to what actually has to happen as part of the immediate
activity, [RM95 9.8] defines what is included in the completion of an aborted construct.
Specifically, [RM95 9.8] requires part of the effect of the abort statement to occur before that
statement returns (e.g. marking the affected tasks and their dependents as abnormal). The

Ada 95 Rationale: Annexes Real-Time Systems: D-19

requirements in the Annex go further and address the completion and finalization of the aborted
constructs.

The key requirement here is that the abortion be preemptive, in the sense that abortion should
preempt the execution of the aborted task, and if abortion requires the attention of another
processor, the abortion request should preempt any activity of the other processor that is not higher
in priority than the aborted tasks.

Note that the requirement for bounding the delay in achieving the effect of abortion can be
satisfied on a multiprocessor, even if it is not possible for one processor to interrupt another. One
technique is to use a periodic timer-generated interrupt on each processor, which causes the
processor to check whether the currently executing task has become abnormal.

An alternative was considered to allow the task calling the abort statement to be blocked until
all the aborted tasks have completed their finalization, and for those tasks to inherit the blocked
task's priority while it is blocked. This would be a change from Ada 83, where it is only necessary
to wait for the aborted tasks to become "abnormal", and Ada 83 did not have user-defined
finalization. Certainly, one of the reasons for aborting a task may be to release resources that it is
holding. The actual release of such resources may be done during task finalization. However,
waiting for finalization is not always possible, since a task may abort itself (perhaps indirectly, by
aborting some other task on which it indirectly depends). In this case, it is not possible for the task
calling for the abortion to wait for all the aborted tasks (including itself) to complete their
finalization. Another problem is where the abort statement is inside an accept statement, and the
task being aborted is the caller in the rendezvous. In this case, forcing the aborter to wait for the
aborted task to complete finalization would result in a deadlock. The problem with self-abortion
could be resolved by releasing the aborter to perform finalization, but the problem with rendezvous
does not seem to be so easily resolved.

The ability to wait for a collection of tasks to complete finalization is partially satisfied by two
other mechanisms. One of these is the rule that requires blocking of a completed task master until
its dependent tasks are terminated. If the tasks being aborted are not dependent, another partial
solution is to use the delay statement and the Terminated attribute to poll the aborted tasks until
they have all terminated. However, none of these mechanisms fully accomplishes the objective.

Not allowing abortion to cause blocking has several benefits. In real-time applications, there
are situations where the task executing the abort statement does not wish to wait for the aborted
task to complete; in this case it could also be said that requiring the task to block is not
"immediate" abortion. If the task executing the abort statement were to be blocked, unbounded
priority inversion would be possible unless the tasks being aborted inherit the priority of the
blocked task. This form of inheritance is undesirable for reasons explained in the next paragraph.
A final benefit is that in this way, the treatment of abortion of a task via the abort statement is more
similar to the abortion of a sequence of statements via a change to a barrier caused by a protected
operation, since executing the body of a protected operation can never involve blocking of the
calling task.

Irrespective of the decision not to block the task executing the abort statement, there are other
reasons for not requiring that aborted tasks executing finalization code inherit the priority of the
task executing the abort. First, this would introduce a new form of one-to-many inheritance, with
the associated additional implementation complexity. Second, if the aborted task is a low-priority
task, and the aborter has high priority, it might not be appropriate to suspend the aborter while the
aborted task finalizes. Third, if the active priority of the aborted task could be raised by abortion,
it would be necessary to take into account all abort statements, as well as task dependency
hierarchies, in determining protected object ceiling priorities; otherwise, the active priority of a
task might violate the ceiling of a protected object during finalization code.

Note finally, that if the user does want to make the finalization of the aborted task happen
faster, the only solution is to raise the aborted task's base priority either before or after issuing the
abort. Doing it afterwards enables the priority to be set higher than that of the aborting task; if the
aborted task is already terminated no harm is done

D-20 Real-Time Systems Ada 95 Rationale: Annexes

Abort_Task (Joes_1ID); —-— take that
Set_Priority(Priority'Last, Joes_1ID); —— die quickly you dog

While this approach is not that elegant, it is expected to satisfy such a need.

Documentation Requirements

It is clear that interprocessor communication delays may cause abortion to take longer on some
multiprocessor systems. The predictability of such delays is bound to depend on the
implementation, and the duration may depend on what other activities are going on in the system at
the time. It is important that the designer of an application that uses abortion be able to determine
whether this is going to be a problem for a particular application.

Metrics

The execution time of an abort statement is intended only to be a sample of the execution time, in a
non-pathological case. Of course the actual execution time will vary, depending on factors such as
the number of tasks being aborted, their current states, and their dependence relationships.
Providing an upper bound would therefore require specification of more conditions.

The intent of the upper bound on the additional delay for a multiprocessor is primarily to
require the implementor to verify that such an upper bound exists. The specific value is less
important than the existence of such a value. There must be some upper bound on the delay if
abortion is to be useful in a real-time system. An upper bound may not be able to be measured
directly, but it should be possible to (over-) estimate a bound by adding the upper bound of the
communication delay to the upper bound of the local processing time.

The intent of the metrics for asynchronous transfer of control is to tell whether this capability
is implemented efficiently enough to be useful in time-critical applications. Potentially, there is a
great gap in performance between an implementation of asynchronous transfer of control that is
based on creating a separate thread of control for the abortable part, versus an implementation that
uses the context of the same task. The intent is that such a gap can be discovered by the metrics.

D.7 Tasking Restrictions

This section establishes that the Ada standard permits the development of highly optimized
implementations for restricted tasking models. It also defines a specific set of restrictions, that
both serves as an example of what an implementation can do, and may encourage convergent
development and usage.

Builders of hard real-time systems have observed that the full Ada tasking model is more
general than they require, and imposes more overhead than they can afford. The existence of very
lightweight executives for other tasking models suggests that significant performance
improvements are possible for Ada tasking implementations, if some usage restrictions are
observed.

Any Ada implementor can define a restricted tasking model and provide a run-time system
that is optimized for this model. (In fact many implementations do so currently, but in a non-
portable way.) However, Ada 83 has been misinterpreted to give the (incorrect) impression that
this is a form of "subsetting", and therefore is not allowed by the language standard. It is not
subsetting, as long as the implementor also provides support for the full tasking model, perhaps
with different compilation and linking options. Thus, it appears desirable for the Real-Time Annex
to endorse this form of optimization.

Ada 95 Rationale: Annexes Real-Time Systems: D-21

A restricted tasking model should permit simple and useful multitasking applications to be
expressed, but simplify the implementation problem enough so that the size and execution time
overhead of the run-time system need be no greater than with traditional real-time executives.

Therefore, the intent behind the model defined here is to satisfy the needs of many of the real-
time embedded applications that have rejected the full Ada tasking model for being too
heavyweight. These applications include some that consist of a fixed set of cyclic tasks, with
periodic and aperiodic timing constraints. This has traditionally been a stronghold of the cyclic
executive and rate-monotonic scheduling models. The intended scope of restricted tasking
applications also includes some more complex applications, which are event-driven. These
applications have traditionally used real-time executives that can dynamically create and schedule
extremely lightweight tasks. This kind of system is organized into groups of simple tasks. A task
group is created in response to an event, executes for a while, and goes away. There may be
precedence relations and delays among tasks within a group, but an individual task never blocks to
wait for another task. Each task within a group is very simple: it may be preempted, but otherwise
it runs to completion without blocking. The events that can trigger the invocation of task groups
include interrupts and actions performed by other tasks. This is a well established model of
software architecture, and has been used for more than a decade in guidance and control systems,
including radar and sonar tracking systems, process control, railroad signalling and so on. This is
also the task model of classical scheduling theories (see [Coffman 73]).

D.7.1 The Chosen Approach To Restrictions

This Annex specifies a set of restrictions which should be such that the potential performance
improvement justifies producing one or more special versions of the RTS according to the
combinations of restrictions asserted in a particular program.

The Restrictions pragma (see [RM95 13.12]), which is a configuration pragma, takes two
forms. One such as

pragma Restrictions (No_Task_Hierarchy);
indicates a simple yes/no restriction, whereas
pragma Restrictions (Max_Select_Alternatives => 5);

indicates some numerical restriction on the feature concerned.

Compliance

Compliance with this pragma means that all the parameters must be recognized by the
implementation, and the associated limitations must be enforced. It is clearly important for the
implementation to reject violations of the restrictions. Without such checking, much of the value
of the pragma is lost. Checking itself can be of value as well. Where the implementation is for a
development host, if the host is used in preliminary testing of an application that is eventually
intended for an embedded target, enforcement of the pragma by the development host will help to
identify code that will cause problems arising when the time comes to move the application to the
final target.

Some of these limitations are to be checked at compile-time (such as for task hierarchies and
the presence of finalization). For those that can only be checked at run-time, implementations are
allowed to omit the checking code. Programs that violate the corresponding restrictions are
considered erroneous. If a run-time check fails, Storage_Error should be raised. This
exception is chosen because failure of these checks often indicates shortage of the storage
allocated for a task — either the run-time stack storage or storage allocated within the task control
block.

D-22 Real-Time Systems Ada 95 Rationale: Annexes

The permission to omit the run-time checks is given due to the recognition that a check for a
given violation may be as complex and costly as the support for the restricted construct. One does
not want the checks to be difficult to implement or for the checks to add any overhead to a model
that is intended to allow a simple implementation. The resource utilization checks need to be done
at run time, and may incur some run-time overhead, but they may be very important during the
testing of a system. The decision on whether to omit the checks is therefore left to the
implementation based on the particular situation.

The Specific Restrictions
The basic criteria for deciding upon the restrictions were:
. The restriction allows a faster or smaller run-time system.

. The advantage is distributed. If it is a speed improvement, it applies to operations other
than those ruled out by the restriction. If it is a size reduction, it is not simply due to
deletion of unused run-time system components, such as might be done automatically by a
linker.

. Taking advantage of the restriction does not require a major change in compilation
strategy for programs that follow the restriction from those that do not.

. A sample of real-time embedded systems developers felt that the restricted feature is not
essential for a significant portion of their applications.

In addition, some restrictions have been included because a significant number of users and
vendors felt that they were appropriate.
Some of the specific restrictions and the benefits they bring are as follows

. Max_Tasks (maximum number of task creations over the lifetime of the partition) plus
Max_Task_Entries (maximum number of entries per task). These enable fixed RTS and
task storage size. The amount of storage required by the run-time system for its own data
structures and task workspace should be determinable statically, no later than load time.

. Max_Task_Entries plus Max_ Asynchronous_Select_Nesting (maximum nesting
of asynchronous selects). These enable a fixed Task Control Block (TCB) size. If each
task can be represented in the RTS by a fixed-size task control block, the complexity of the
RTS is reduced. A list of free TCBs may be allocated at load time, speeding up task
creation.

J No_Task_Hierarchy; all tasks are library tasks. This means no overhead due to code
executed to keep track of potential task masters, or to check for unterminated dependent
tasks. Likewise, there should be no storage overhead for data structures to keep track of
task master nesting. Abortion and task termination should not be complicated by the need
to support hierarchies.

. No_Task_Hierarchy plus No_Nested_Finalization (all controlled objects at library
level). These permit the storage for non-library-level collections to be allocated on the
stack, and the stack space can be recovered without finalization when the stack frame is

popped.

J No_Dynamic_Priorities. There are several known scheduling algorithms that do not
use the capability to dynamically change the task's base priority. If it is known that the

Ada 95 Rationale: Annexes Real-Time Systems: D-23

base priority of a task is static, then it is possible to have much simpler and more efficient
queue management and dispatching algorithms in the run-time system.

. No_Asynchronous_Control. Even though the semantics of this package are defined in
terms of priorities, it is not clear that an implementation approach based on this semantic
model is feasible on all possible targets. In general, the ability to asynchronously suspend
the execution of another task is considered dangerous from the user's point of view, and
may have distributed ramifications on the rest of the run-time system. Since in some
applications, this feature will not be used (and may even be disallowed) it makes sense to
allow for the corresponding restriction.

. Max_Protected_Entries. There are several very efficient algorithms for servicing
protected entry queues when the maximum number of entries is statically known and
relatively small. The main issue here is the requirement for evaluating barriers whenever
the state of the protected objects changes. The language rules in [RM95 9.5.2, 9.5.3] make
it possible to evaluate the barrier less often than it would otherwise be needed (provided
that the compiler can determine that no "interesting" change has occurred since the last
check). It was suggested that the implementation can use a bit-vector (usually of one word
length) to represent the true/false state of the barriers, and then check this bit-vector (using
only a small number of machine instructions) in appropriate places instead of reevaluating
all the barrier expressions. For this approach to work, the number of possible entries
should be known a priori. Since the implementation of such a technique often involves the
compiler, it might be necessary for this information to be known before any unit is
compiled.

. No_Abort_Statements plus No_Asynchronous_Control. These enable a number of
further simplifications to the model.

J Max_Task_Entries = 0. Forbidding task entries could reduce the size of the run-time
system code. It could also reduce the amount of rendezvous-related information that must
be stored in task control blocks. Processing this information during task creation and
termination is a source of distributed overhead. The implementation of abortion might
also benefit by not having to take into account the special case of tasks engaged in a
rendezvous as callers, though the rules requiring deferral during protected operations and
finalization operations cast this into doubt. Protected objects provide a lighter-weight
mechanism that is more suitable than rendezvous for data and control synchronization in
small real-time embedded systems.

J No_Terminate_Alternatives. The terminate alternative may add distributed
overhead but is less valuable in Ada 95 since a protected object will typically be used
rather than a server task.

J No_Implicit_Heap_Allocation. We considered adding a restriction forbidding the
compiler from using the heap implicitly (i.e. not as a direct result of using an allocator).
Such a restriction can improve the deterministic behavior of the memory in the system, by
making all memory usage visible and user-invoked. However, this was difficult to
mandate as a requirement on the compiler and so we have adopted a slightly different
approach. The compiler is allowed to reject (and document) such user constructs that
require implicit heap allocation. This way, it can ensure that no such heap requests will be
present at run-time, and so the heap usage will be avoided.

Certain other restrictions were considered, but were not included.

D-24 Real-Time Systems Ada 95 Rationale: Annexes

Specifying a mechanism for configuring the run-time system size limits was also considered.
It was left implementation-defined, because the practical mechanism is outside the scope of the
language. For example, one method is for the implementor to provide source code of a few run-
time system packages, which contain configuration constants. The user could edit these, recompile
them, and link them in with the rest of the run-time system and the user's application. Another
method is to provide a configuration tool that edits the run-time system object code, inserting
constants for the required limits at the required points. This same function might be performed by
a linker or a loader.

Max_Storage At Blocking

This restriction deserves special mention. If a task is not permitted to be blocked while it is
holding more than a fixed amount of stack storage, a much larger number of tasks can be
supported, since only one dynamic stack storage area is required for each priority level (essentially,
only the TCB of a blocked task needs to be saved). Traditional real time systems are designed to
make this possible. Practical ramifications of this requirement include:

. Tasks should not have large local data objects or access collections.
. Tasks should not have entries whose parameters require a large amount of storage.
. Operations that may cause a task to be blocked should not be performed within deeply

nested procedure calls or within a block statement that has large local data requirements.

One implementation model is to have a fixed pool of stack spaces that are shared by all tasks,
or all the tasks at a priority level. On each processor, not more than one stack space will be needed
for each priority level. The stack space for a given level must be configured (by the user) to be
large enough to meet the largest stack requirement of any task that executes at that priority level.
A task releases its stack area when it blocks, and is allocated a stack area when it wakes up again.
Depending on how ready queues are structured, allocation of a stack area might be done at the
point where the task wakes up, or as a special case in the dispatcher when it gets ready to do a
context switch to a stack-less task. A slight variation of this approach would be to always allocate
a small and fixed-size part of the stack to the task, and to allocate the larger part only when the task
is ready. In any case, the implementation can go to a linked list of stack spaces, remove one, and
link it to the fixed-size part of the stack. This could be kept simple, maybe to the point of just
setting the saved stack pointer value and a link to the fixed part of the stack. For example, on a
machine with register windows, the implementation could keep one register window stored in the
TCB. When allocating a stack area, it would write the new stack pointer (base) into this saved
register window. Then, when the task is resumed, the implementation would load registers from
the TCB and the task would be running with the new stack.

The intention is that all requirements for non-volatile storage associated with a task be met by
the task control block (or by a fixed-size extension of it). For example, this includes storage for
the implementation of select statements, entry parameters, local variables, and local access
collections. This means that any large non-volatile data used by a task must be declared in library-
level packages or passed to the task by means of access values. The size of the task control block
and the fixed part of each task's run-time stack is intended to be determinable no later than link
time, so that a fixed-size pool of identical task control blocks can be pre-allocated at system
initialization time.

Ada 95 Rationale: Annexes Real-Time Systems: D-25

D.8 Monotonic Time

The package Ada.Real_Time is similar to the package Calendar. It has a type Time, a function
Clock, relational operations on time, and arithmetic operations for combining times and durations.
In order to explain why such a "duplicate" of Calendar is needed, we first review why some real-
time applications need facilities beyond those in package Calendar.

The inclusion of a standard calendar package and clock function in Ada seems useful.
Certainly, the existence of a standard interface to time-keeping services that hides unimportant
details of specific execution environments can be an aid to writing portable applications.
However, a sample of existing practice in real-time Ada applications reveals that they frequently
choose not to use the package Calendar. Perhaps the main reason is simply that Calendar is
typically "political" time and so is not guaranteed to be monotonic since it may be adjusted by the
effects of time zones and daylight saving changes.

Another issue is the diversity of time-keeping requirements among real-time applications. It
does not seem feasible to meet all these with a single solution. Both the requirements and the
hardware (or operating system) support available differ widely from one real-time application to
another. At one extreme, a simple real-time controller might be able to use a single 16-bit counter-
timer circuit, with very fine granularity but a rather narrow range. At the other extreme, a complex
electronic navigation system may require an atomic clock that is precisely synchronized with a
global time reference, and may have precision and range requirements that demand 64-bit time
representation.

Given this diversity, it is natural to wonder whether Ada 95 should attempt to provide any
standard time services at all other than the package Calendar which has to be retained for
compatibility. To the extent that there are common requirements for such services within certain
application domains, they should perhaps be the subject of a language-independent standard; but
no such standard exists.

The exisiting delay statement and the delay alternative require the language to provide a clock
for two reasons:

. Coordination of Clock and delay. 1If the application uses delay statements to control
timing, the application's view of the time should be consistent with that of the
implementation.

. Timer resource sharing. The implementation needs access to a timer for the

implementation of the delay statements. If there is only one such timer (as is the case on
some execution platforms), the implementation and application must share it.

Real-time applications clearly need the capability to block task execution until a specified
time, and to impose a time limit on how long a task can stay blocked waiting for other operations.

We considered an approach of providing general mechanisms for an application to wait for an
event, and to abort blocking operations in response to events. This would have allowed the
application to provide its own timer services. The delay statement could then just be a special case
of waiting for a time-out event signalled by the user-defined timer, rather than the
implementation's default timer. This solution was dropped since the added complexity seemed out
of proportion to the benefits.

The inclusion of the Real_Time package in this Annex is based on the realization that there
was no choice but to provide a real-time clock which applications could use. Specifically, an
application that requires time-outs on select statements must use the standard delay statement
implementation. If the application needs to know what time it is, based on a time reference that is
consistent with the delay, it must use a clock provided by the implementation.

The following general requirements can be identified for a clock that is used in conjunction
with the delay statement, to schedule task execution and specify time-outs:

D-26 Real-Time Systems Ada 95 Rationale: Annexes

. Monotonically non-decreasing time value, incremented at a steady rate, with bounded
discontinuities.

. Fine granularity.

. The ability to be used as the time reference in all forms of delay statement.

. Efficient implementability using clock facilities that are typical of most existing hardware,

and real-time operating systems.

. Exact arithmetic on time and duration values, and precise conversion of rational-number
durations to time intervals.

. A defined relationship to other time-related features of the language, including the
Calendar package, System.Tick, and the Standard.Duration type.

The package Ada.Real_Time is intended to provide facilities that satisfy these requirements.
Some real-time applications have other requirements, such as

. Unique time-stamps. With fast processors and multiprocessor architectures, it is possible
that for some implementations the clock may be read several times in one tick. Enforcing
uniqueness in such an environment would amount to slowing down the clock reading
operation.

. Synchronization with external time references. In some situations (such as where the
external time reference is non-monotonic, or synchronization cannot be performed
frequently enough to avoid large adjustments), synchronization may be incompatible with
the requirements for monotonicity and bounded discontinuity of the clock.

These were considered but appeared to conflict with satisfying one or more of the other
requirements and so were dropped.

D.8.1 An Ideal Clock

International Atomic Time (TAI), regulated by the Bureau International de I'Heure (BIH) and
supported by the various national time references, is currently accepted as the most precise
physical time reference. It is monotonic and does not have leap-seconds or seasonal changes. All
the other time standards can be defined as a function of TAI. That is, any other standard of
political or physical time can be defined as a function C = TAI + D(TAI), where D(TAI) is a
piecewise constant function, depending on the current value of TAIL. In an ideal world, and an
ideal implementation of the language for real-time applications, there would be a clock function
that returns the current TAI clock value. Language-defined functions could be provided to convert
this time to an arbitrary time zone.

In practice, most Ada execution environments will not have access to an atomic clock. Even
if such a clock is available, there may be a need to use other (less accurate) clocks, including the
local time as perceived by a human operator or an operating system, or counter-timer circuits that
are capable of generating interrupts.

D.8.2 Time Sources

A language implementation is limited by the actual time-keeping resources provided by the
hardware, which are possibly filtered through an operating system interface.

Ada 95 Rationale: Annexes Real-Time Systems: D-27

In practice, several different kinds of time references are likely to be available to an Ada
implementor. These have significantly different characteristics:

J Counter-timer circuit
J Calendar clock circuit
. Externally synchronized clock

A counter-timer circuit is a programmable hardware device which can be viewed as a register
counting clock ticks. Such a timer is typically driven by a crystal oscillator, and can be read and
reset to a specified value. A typical tick duration might be one microsecond.

A counter-timer can typically be used to generate an interrupt when a specified number of
ticks have elapsed. It might then restart automatically at a specified value (a periodic timer) or
wait to be reset (a one-shot timer).

Counter-timer circuits are comparatively inexpensive, and are easily added to a
microprocessor-based design. Thus, in a specific hardware configuration of an embedded
application, there may be several counter-timer circuits. However, these are not likely to be known
and available to the implementation. The standard configuration of most processors typically has
only a small number of counter-timer circuits (possibly one) that can be relied upon to always be
available for use by the application and the language implementation. In small embedded real-
time applications, these counter-timer circuits may be the only time reference available. The
strengths of counter-timer circuits include:

. Small clock-tick, typically one microsecond or smaller;
. Monotonicity, subject to periodic wrap-around to zero;
. Very regular ticks;

. Ability to generate interrupts;

. Very regular periodic interrupts, in periodic mode.

Some limitations of counter-timer circuits include: jitter up to one clock-tick, variation in interval
from one timer to another and with temperature, and a limited range before wrap-around.

A calendar-clock circuit is a programmable hardware device that is very similar to a counter-
timer-circuit. The main differences are:

. The visible update rate (granularity) of the clock may be coarser (e.g. once per second).
However, the underlying oscillator rate, and hence the accuracy, is likely to be just as high
as the counter-timer.

. The range of times representable by the clock is large, perhaps 100 years.

. The clock may be programmable to automatically take into account leap years and
seasonal political time changes, such as daylight savings time.

. Time values, instead of being a simple count of ticks, may be represented in terms of
second, minute, hour, day, month, and year.

Various forms of externally synchronized time references may be available in a specific
application. In a system requiring very precise global positioning there might be a local atomic
clock, periodically synchronized with the TAI via a communications link. In a network, there

D-28 Real-Time Systems Ada 95 Rationale: Annexes

might be a broadcast periodic "heartbeat", or a message-based averaging algorithm for keeping the
local clocks of various network nodes synchronized within some tolerance. Generally, the
frequency of external synchronization is limited, and if it relies on communications with external
systems there may be times when the local system is cut off from its source of external
synchronization. Typically, local clock or timer circuits are used to keep time between external
synchronization points, so that a finer granularity of time is available locally.

In general, synchronization conflicts with regularity and fine granularity. That is, if the
granularity of the clock is fine enough, synchronization will cause discernible irregularities in the
rate of progress of the clock. Clock synchronization may require the local clock to jump forward
or backward. Of these two, backward jumps are especially troublesome, since they can induce
apparent ordering inversion if the clock happens to be used to determine the times of events
immediately before and after a jump. However, an error in the measurement of an interval due to a
forward jump can also be serious.

A good synchronization method can reduce the impact of clock adjustments by several
techniques. Backward jumps may be avoided by arranging to skip some ticks of the local time
reference until the desired adjustment is reached. Discontinuities due to forward jumps and
skipped ticks may be smoothed by splitting a large adjustment into several smaller adjustments,
separated by intervals. Better, the size of adjustments may be kept small by frequent
synchronization. Still, these techniques are limited. In less than ideal circumstances, one must
anticipate that a synchronized clock may be available but not be able to deliver as fine a
granularity, or as regular a rate of progress, as unsynchronized time references that may be
available locally.

Where Ada is implemented over an operating system, and so does not have direct access to
time-keeping hardware circuits, it may be necessary to rely on the time-keeping services of the
operating system. The operating system ultimately must rely on hardware devices similar to those
described above, and it may or may not attempt to synchronize with other clocks; therefore,
operating system time sources are subject to the same diversity of characteristics discussed above.
In addition, they are subject to other limitations, including:

. Inability to access the full accuracy of the hardware, due to timer-programming decisions
made by the OS implementor.

. Loss of accuracy as viewed by the user, due to system-call overhead.

. Delay between expiration of a wake-up time and notification being delivered to a waiting
process, due to system overhead.

. Discontinuities, due to setting of the clock by a human operator or an unrelated application
program.
. Disparate views, due to "environment variables" specifying different time zones for

different processes within a system.

While these factors may affect the suitability of a particular operating system for a real-time
application, they must be accepted as inherent limitations from the point of view of the Ada
language. One is forced to assume that the time services provided by the OS have sufficient
accuracy and low enough overhead to meet the needs of Ada applications on that system.

For the purposes of this discussion, whatever time sources are provided by an operating
system are presumed to have characteristics similar to one of the three basic types of clocks
mentioned above.

Ada 95 Rationale: Annexes Real-Time Systems: D-29

A Single-Clock Model

In a real-time application, there may be requirements that cannot be satisfied by any single time
source that is available. As explained above, the actual time-keeping resources available in a
specific environment may have significant limitations, and the choice of time references may
require that one thing be sacrificed for another. For example, fine granularity may mean
sacrificing range or synchronization, greater range may mean sacrificing granularity, and
synchronization may mean sacrificing the regularity or fine granularity, all at the cost of higher
overhead. It follows that if all of these properties are important for a given application, a
combination of different time references must be used.

In some cases, it may be possible to provide a virtual interface that creates the illusion of a
single time reference, using multiple time references in the implementation. For example, this is
the case when a local timer is used to interpolate between points of synchronization with a remote
clock. However, preserving this illusion is not always possible, or practical. In the extreme, there
may be a fundamental conflict, as between steady tick rate and synchronization with an external
reference. An implementation of a single-clock interface may be useless if it ends up exhibiting
the same time anomalies such as sudden jumps, insufficient granularity, or insufficient accuracy.
In this case, the promise of portability becomes a dangerous illusion.

The Ada 83 calendar package attempts to provide a single-clock interface. In order to
ensure that it can be implemented in most execution environments, very little is specified about
Calendar.Clock and, as mentioned, the predominant practice among existing implementations
is to treat Calendar.Clock as political time. The values are likely not to be monotonic, and the
resolution may be rather coarse. In effect, Calendar.Clock cannot be relied upon for
measurement of "physical time" in real-time applications.

A Two-Clock Model

For the Real-Time Annex, we considered adding requirements to Calendar.Clock so that it
would satisfy real-time requirements. For example, it could be required to be monotonic and have
at least one millisecond precision. This idea was rejected. One reason is that the requirement for
monotonicity might conflict with existing practice and other (non-real-time) requirements for a
standard clock that returns local political time. A second reason is that requiring fine precision for
Calendar.Clock might prevent an implementation from using hardware calendar-clock circuits.
Thus Calendar.Clock is essentially as in Ada 8§3.

In contrast, Real_Time.Clock is used for computations of physical parameters based on
time, and scheduling of task execution to satisfy real-time constraints. The implementation must
ensure that the value of the clock progresses monotonically, and that irregularities are strictly
bounded. After the system starts, the clock is not allowed to be reset by an operator, the
underlying operating system, or the run-time environment.

Of course, there is no requirement for an implementation to have multiple clocks internally.
The implementation may simply provide two package interfaces to a single underlying
(monotonic) clock. The capability of supporting clock adjustments and seasonal time changes for
Calendar.Clock is not mandated by the language, so the values of the two clocks could be the
same. Moreover, where the application requires Calendar.Clock to do things that are
incompatible with the specification of Real_Time.Clock, such as seasonal time changes and
clock adjustments, the effect may be accomplished by computing a transformation of the value of
Real_ Time.Clock. It is in fact recommended that both Calendar.Clock and Real _Time.-
Clock be transformations of the same underlying timebase.

The suggestion was made that a way might be provided for the application to modify the rate
of the clock, so that the application could do clock synchronization, and do it in a way that would
not compromise monotonicity. However, such a requirement would be applicable to only a small
subset of applications, and the cost of providing the capability would be unwelcome for
applications not needing it. In fact, for most existing general purpose processors, such a facility is

D-30 Real-Time Systems Ada 95 Rationale: Annexes

not provided in the hardware, and providing it in software would introduce significant overhead in
the clock driver. Alternatively, this capability, as well as the capability to do other low-level clock
functions, is better provided by expecting the implementation to export the interface to its low-
level clock driver in these systems, allowing it to be replaced by applications with special clock
requirements.

D.8.3 Clock Accuracy Requirements

The average clock tick given by the constant Real_Time.Tick is specified as not being larger
than one millisecond. This number is conservative in the direction of not imposing extreme
requirements on implementors, and seems adequate for the task scheduling needs of many real-
time applications. Finer clock resolution is recommended.

D.8.4 Relationship to Delays

The requirement that Real_Time.Clock be consistent with the effect of delay statements may be
problematic for some implementations, but the conceptual consistency is seen as outweighing the
implementation difficulty. One problem is that the range of times measurable directly by the
available counter-timer circuit may be very narrow. In this case, the clock may need to be
implemented in two parts. The low-order part may be decremented by every tick of the hardware
timer, and the high-order part may be incremented by an interrupt handler that is driven by
underflow of the timer. Another possible problem is that a separate timer circuit may be used for
delays. It is desirable to utilize one timer to implement the real-time clock, using the simple
treatment of timer underflow explained above, and to program another timer to generate an
interrupt at the next point a delay is due to expire. However, in this case, since the delay timer is
used only to express offsets from the clock, any difference between the two timers may not be
noticeable.

D.8.5 Representation of Duration, Time_Span, and Real_Time.Time

The Time_Span type is introduced to allow more precise representation of durations. A new type
is introduced because the need for upward compatibility rules out changes to the range requirement
for Standard.Duration.

Requirements and Representation

Lack of sufficient precision is one of the issues with the Calendar package and delay statements
in Ada 83. The Duration type is required to be able to represent a full day, in the positive or
negative direction. The hardware arithmetic on many machines today is limited to 32 bits. If
Duration values are represented with 32 bits, then Duration'Small cannot be smaller than
2.0** (-14) seconds. This is coarser than the resolution of timer circuits. If the resolution of the
timer is not exactly equal to an integer multiple (or divisor) of Duration'Small, additional
precision can be lost in conversion. For example, suppose the clock is implemented using a timer
with microsecond resolution, and the difference of two clock values is 100 microseconds. If
Duration'Small iS 2.0**(-14), the nearest Duration value to 100 microseconds is
2*Duration'Small, or about 122 microseconds. Conversion to Duration in this example has
introduced an error of 22 percent!

The required minimum range and precision of Time_Span represent a compromise, given the
assumption that the value should be representable in 32 bits. Originally, we required that
Time_Span_Unit be equivalent to at most one microsecond and the range, equivalent to at least

Ada 95 Rationale: Annexes Real-Time Systems: D-31

-2.0 .. 2.0 seconds. These requirements would still allow for a nanosecond representation in
32 bits (for example, the real-time extensions to POSIX specify nanosecond precision for timers).
On the other hand, it would allow a range of up to an hour (with one microsecond precision).
However, reviewers have commented that a portable range of -2.0 .. 2.0 is too small to be
useful. We have changed the requirements so that a minimum resolution of twenty microseconds,
and a minimum range of — one hour are mandated. This compromise still allows for "spare" bits in
each direction, so that implementations, using 32 bits, can still have some flexibility in responding
to stricter application needs without violating the range or precision requirements. Of course, this
freedom sacrifices portability for users who require a greater range or finer precision than these
minimum specifications. It is expected that in many implementations, the representation of
Time_Span will use 64 bits (just as for the type Time). Since this type is private, such an
implementation approach will not require 64-bit arithmetic in general.

Since these requirements are based on a 32-bit machine architecture, for machines with a
smaller word size, we have provided an escape clause in the form of an implementation
permission. For example, some machines have only 24-bit words with no easy way to manipulate
double-words. If we want to maintain the model of one word for Time_Span and two for Time,
we must relax the range/accuracy requirements. On the other hand, a 16-bit machine such as the
1750A, which has built-in double-word operations, can easily use one double-word for
Time_Span and two double-words for Time, and thus meet the requirements.

The possibility was also considered of having Time_Span as a visible integer type, which
could be a count of ticks. This is appealing, since clocks count time in ticks, and arithmetic on real
numbers tends to introduce unnecessary loss of accuracy. Under the Ada 83 rules, the
multiplication and division operations on fixed point types require much greater precision than for
integer types of the same size. Moreover, real-time systems often involve computations in which
time is viewed as cyclic. Such computations are naturally expressed in terms of the integer
division and rem operations, rather than fixed point operations. This idea was discarded because
there was a potential for confusion arising from different units for logically similar types. For
example, the assignment statements in

T: Time_Span;

T T + 3 —-— add 3 ticks to T

T (=T + 3.0; —— add three seconds duration to T

would have a vastly different meaning and yet both be allowed because both relevant overloadings
of the "+" operator would exist.

The concept of a Time_Unit is introduced to ensure that the choice of representations for
Time and Time_Span do not cause loss of information in time arithmetic. That is, the value
obtained by subtracting two Time values should be exactly representable as a Time_Span, and
adding a Time_Span value to a Time value should yield an exact Time value. This is the origin of
the requirement that Time_Span_Unit be equal to Time_Unit.

Fixed point Issues

An alternative considered was to replace both Time and Time_Span by a single (64-bit) fixed
point type. This would have simplified the interface and allowed a full range of user needs to be
met. However, we concluded that supporting fixed point arithmetic on 64 bits would have been an
unreasonable requirement to impose on all real-time implementations. Moreover, users who do
not require extreme range or precision would have suffered from the overhead of arithmetic
operations on objects of such a type. Finally, the requirements for accuracy and determinism on
these types would have disturbed the general model of fixed point types in the core too much.
Some of the needed changes would have been in direct conflict to the changes needed to support

D-32 Real-Time Systems Ada 95 Rationale: Annexes

decimal types. Also, they would have been upward incompatible and too much of an
implementation burden. Below, we provide more details about this alternative and related issues.

D.8.6 Arithmetic and Relational Operators

In Ada 83 [RM&83 9.6(5)], nothing is specified about the semantics of arithmetic and relational
operators on times and durations except that the operations "have the conventional meaning". One
of the objectives of this Annex is to give a more precise specification. Several approaches were
considered. One of these is to specify a representation for Time, and then define the effects of the
operations in terms of the representation. Possibilities considered included: a two-part record,
analogous to the POSIX "timespec" type (a two-part record, consisting of a signed integer count of
seconds and an unsigned integer count of nanoseconds); a very long integer type; and a very long
fixed point type. This approach was rejected on the grounds that it would not allow the natural
implementation for a wide enough variety of machines and operating systems. On the assumption
that Time must be a private type, the possibility of providing an axiomatic specification of time
arithmetic was considered. This approach was rejected on the grounds that it is inconsistent with
the style of the rest of the Ada language definition. The present approach draws on analogy to the
definition of arithmetic on integer types. In addition, for the conversion functions, rounding is
specified (away from zero) to ensure deterministic results.

Another possibility considered was of specifying that the time values are unsigned integers.
As such, there is no overflow or underflow, and arithmetic is modular. One unfortunate aspect of
using modular arithmetic for time is that the relational operations must be used with great care.
For example, on a 12-hour clock it is not possible to say whether eleven o'clock is earlier or later
than one o'clock, without further information. Because of this potential for confusion, the idea of
arithmetic on time values being modular was dropped. This means that the Time type cannot be
practically represented in 32 bits.

If Time is going to take 64 bits, there is no problem representing a large range. A 32-bit
signed count of seconds can represent a range of about 136 years. The requirement for a range of
50 years has been chosen because it is well within this range, and appears more than adequate to
handle the continuous running time of most real-time systems.

The operations Nanoseconds, Microseconds, and Milliseconds construct values of the
type Time_Span. We considered having constants for one nanosecond, one microsecond, etc.
However, the possibility that such real time values might not be representable accurately as
Time_Span values, when using the constants to convert multiples of these values, leads to the
danger of introducing cumulative errors. For example, if one wants to have a value of Time_Span
equal to five milliseconds, calling Milliseconds (5) will return a more accurate result than
doing 5*One_Millisecond, where One_Millisecond is a constant of Time_Span
representing one millisecond. Using Milliseconds, one can convert up to almost 25 days worth
of milliseconds (assuming a 32-bit implementation of Integer). This range seems large enough
for this purpose, so a function that takes seconds as a parameter is not provided.

D.8.7 Other Issues

In order to allow direct mapping of Real_Time.Time onto the most natural time reference that is
available for a particular implementation, it is not required that there be any fixed correspondence
between time values and specific real-time intervals. For example, Real_Time.Time could be a
simple count of ticks since the clock was started. Given a fixed size representation of time values,
this gives the widest possible range of values in the direction of interest, which is forward from the
time of system start-up. It is also easy to implement, since there is no requirement for
synchronization to obtain the initial clock value.

In a model with this degree of implementation freedom, it is difficult to specify meaningful
counterparts of Calendar.Split and Calendar.Time_Of. In this context, Split and

Ada 95 Rationale: Annexes Real-Time Systems: D-33

Time_Of are likely to be used as a communication means to the outside world (since both Time
and Time_Span are private). Examples include constructing a (local) time value from information
read from a network, and logging event times in a readable format. Two possible approaches were
considered.

One approach was to provide functions for conversion between Real_Time.Time and
Calendar.Time. The Split and Time_Of operations on Calendar.Time could then be used.
The other approach was to define Time_Of and Split as operations that would convert a Time
value into a seconds value and Duration part, or construct a Time value from these values. The
seconds value would then be interpreted as an extended duration since clock start-up. Both of
these approaches could be implemented, within some degree of tolerance for error, if the
implementation reads both Real_Time.Clock and Calendar.Clock at the time of system start-
up to establish a common reference point.

The second approach, with a slight variation, was chosen for two reasons. First, it does not
seem appropriate to require applications to include the package Calendar, just for this I/O
purpose, if it is not needed otherwise (as is often the case). Second, as was discussed above, the
package Calendar allows for certain implementation-defined behavior; it is not clear that the
operations of this package will always be capable of serving as a transparent filter, one that
provides the appropriate range and accuracy needed by the Real_Time.Time type representation.

Accordingly, an integer type, Seconds_Count, is introduced. It represents the elapsed time
from the epoch (the origin point) in seconds. (Since the epoch of the time is not specified by this
Annex, the meaning of the Seconds parameter has to be interpreted based on implementation and
application conventions.) A seconds representation was chosen based on range considerations.
Even a 32 bit representation is enough to hold 50 years. Seconds_Count is a signed integer since
the Annex does not specify that Time_First equals the epoch. In fact, it is legal to have the
epoch defined somewhere in the future, and have Time values as negative offsets from that point.
Hence, Sseconds_Count should be able to hold both positive and negative values.

For the fraction part, we had originally chosen the type Duration (as opposed to
Time_Span). This was done in light of the fact that the primary purpose of the Split and
Time_Of operation is communication with the outside world. A visible and printable type is much
more convenient in this case. However, some reviewers commented that by doing so we introduce
the possibility of an error "at the source", and that Time_Span should be used instead of
Duration as the parameter for these operations. Since there exist other conversion routines that
return a Duration value, and since the suggestion seemed to provide more flexibility, it was
accepted.

Metrics

The intent of the upper bounds on clock ticks and clock jumps is to quantify the maximum fine-
grain clock variation that can be expected.

The upper bound on clock drift rate is intended to provide an estimate of the long-term
accuracy of the clock.

The upper bound on the execution time of a call to the Clock function is intended to expose
implementations where reading the clock is extremely time-consuming. This might be the case,
for example, where the clock function involves an operating system call, which involves context
switches in and out from the operating system kernel.

The reason for the metric on time arithmetic is to expose extremely inefficient time
representations. For example, this is likely to expose the difference between an implementation
based on a record containing years, months, days, etc. and an implementation based on a 64-bit
count of clock ticks.

Not all of these metrics are intended to be testable by pure Ada benchmark programs, such as
the PIWG performance tests. That measurement technique is inherently limited, especially by the
accuracy and precision of the software clock. Instead, it is intended that an external timing
instrument, such as a logic analyzer, plus some knowledge of the implementation, may be needed

D-34 Real-Time Systems Ada 95 Rationale: Annexes

to obtain the values of some metrics. In particular, this applies to measurements of the accuracy of
the clock itself. Benchmark programs that rely on the internal clock for a time reference are
inherently incapable of measuring the behavior of the clock itself. Moreover, for fine
measurements such programs must settle for average execution times, since they must perform
many iterations before they can accumulate enough execution time that is measurable on the
internal clock. Thus, benchmarks are intrinsically incapable of deriving worst-case bounds for
short execution times.

D.9 Delay Accuracy

Real-time applications require that a task of sufficiently high priority be able to delay itself for a
period of time with the assurance that it will resume execution immediately when the delay expires
— i.e. that the duration of the interval between the start of the delay and the time the task resumes
execution must be equal to the requested duration, within a predictable tolerance.

[RM95 9.6] only requires that execution of the task that executes the delay be blocked for at
least the duration specified. It is not in general possible to require an upper bound on the duration
of the execution of any statement, due to possible interleaved operations of other tasks on the same
processor. However, it is both possible and necessary to have an upper bound on the duration of
the interval between the start of a delay and the time the expiration of the delay is detected. It is
also possible to guarantee that if the task whose delay has expired has higher priority than all the
other tasks it will resume execution as soon as the expiration of the delay is detected.

This section of the Annex tightens the core requirements on the implementation of delays, and
requires documentation of implementation characteristics. These tighter semantics also apply to
uses of delay statements within select statements. These tighter semantics will permit better
prediction of application timing behavior.

Coordination with Real Time.Clock

An important reason for a language to provide a standard clock is to present a view of time that is
coordinated with the implementation of the delay statement. Without such coordination, the utility
of both delays and the clock is significantly diminished.

The measurement of delays relative to a time reference that may be reset or adjusted (i.e. the
time-of-day/calendar clock) is unacceptable, due to possible anomalies. In general, it may be
necessary to adjust the calendar clock, for such things as leap-seconds or time zones. Maintaining
a relationship between the actual delay duration and the time, relative to such a non-continuous
clock, would make delays useless for most hard real-time applications, and would impose extra
complexity on the delay implementation.

The specific requirements in this section for coordination with Real Time.Clock are
minimal, since a delay statement is only required to delay a task for "at least" a specified time.
However, taken together, the metrics on delay accuracy and clock accuracy permit a user to
determine more precisely how well coordinated delays are with Real_Time.Clock.

We also considered specifying a relationship between the clock resolution and the delay
resolution. It is not reasonable to require that the delay resolution be at least as fine as that of the
clock itself. The internal resolution can have very fine granularity if it is implemented via a
hardware timer, much finer than the overhead of setting up a delay or reading the clock. If a
periodic timer-generated interrupt is used to check for delay expirations, the interval between
interrupts must be kept long enough to get useful work done; this limits delay granularity. If delay
expirations are implemented via a programmed-interval timer, delay accuracy is limited by the
overhead of receiving an interrupt and reprogramming the timer. It is possible to achieve finer
granularity (without blocking) via execution of a timed sequence of "idle" instructions. This may
provide delay resolution below the level of granularity achievable by a timer, provided the task is
able to execute without preemption. Otherwise, if the task is preempted, it may delay longer than

Ada 95 Rationale: Annexes Real-Time Systems: D-35

desired. To remain accurate in the face of preemption, the task could loop, reading the clock and
comparing the clock value against the desired wake-up time; in this case, the precision is limited
by the time it takes to execute an iteration of this loop. Of course, such busy-waiting techniques
would not be sensible where delays are used within select statements, if the task is waiting for a
rendezvous with a task that must execute on the same processor. It is not reasonable to require that
the clock resolution be at least as fine as the delay resolution, either, since this could rule out the
high-resolution delay implementation techniques described above.

Uniform Behavior Near Zero

A problem with timed entry calls was pointed out by the Third International Workshop on Real-
Time Ada Issues [Baker 89]. Suppose the requested delay duration is a variable, and consider the
effect of the timed entry call as the requested duration approaches zero from above. For large
positive requests, an attempt will be made to perform a rendezvous. For small enough positive
requests, an implementation is permitted to not make any attempt to rendezvous, on the
presumption that simply determining whether a rendezvous is possible will take longer than the
requested delay. The effect is that for small positive requests there will certainly be no
rendezvous, and the total execution time of the timed entry call will be short. Then, as the
requested delay approaches zero, the semantics change abruptly, back to what they would be for
large positive requests (this is because of the conditional entry call semantics as specified in
[RM95 9.7.2, 9.7.3]). The implementation must check whether a rendezvous is possible. This
may take a long time. There is again a possibility of rendezvous, and the execution time of the
timed call will be longer than it is for requests with small positive delays. An implementation that
conforms to this Annex should avoid this anomalous behavior for small positive values, by always
attempting to make a rendezvous (even if the requested duration is very short).

Similar issues come up with timed entry calls using the absolute form of the delay statement,
and for delay alternatives in selective accept and asynchronous select statements. However, for
asynchronous select statements, the required behavior is modelled after the case where an entry
call replaces the delay statement. In this situation, if the entry call can proceed immediately, the
abortable part never starts. Similarly, when the delay amount is zero, the alternative is chosen, and
the abortable part does not start.

An Alternative Proposal

The Third International Workshop on Real-Time Ada Issues proposed a more detailed accuracy
model for delays [Baker 89]. One possibility that we considered was to incorporate this approach
into the implementation requirements. This proposal has not been adopted, because it is expressed
in terms of events in the implementation that are not directly visible to the user, and it was believed
to be too complex.

Documentation Requirements

The implementation is required to document the thresholds that it uses to determine whether a
delay statement will result in the blocking of the task.

Metrics

The specifications given here are intended to allow enough flexibility that they can be applied to a
variety of different implementation techniques.

D-36 Real-Time Systems Ada 95 Rationale: Annexes

The upper bound on the execution time of a relative delay statement with zero duration, and
the execution time of an absolute delay whose wake-up time has already arrived, are intended to
give the user an approximate idea of the minimum execution time overhead of the statement,
excluding blocking.

The upper bounds on the lateness of delay statements are intended to give the user an idea of
the accuracy with which delays are implemented. As with other upper bounds, its mere existence
is actually more important than the precise value of the bound.

It is understood that these metrics will not expose the full implementation behavior. For
example, if busy-wait delays are used for short durations, the granularity there may be much finer
than further up the scale. The present metric ignores this issue. Likewise, if the hardware timer
has limited range, a timer-task might be used for delays outside this range. Thus, there might be
another shift in granularity farther out. The metrics chosen here do not require the implementor to
expose such details. However, the implementor is free to provide more detailed information, by
expressing the bound as a function of the requested delay.

D.10 Synchronous Task Control

During the 9X revision, the term suspension was replaced with blocking since it was considered to
better describe the actual state (i.e. waiting for something to happen — being blocked as opposed
to just being suspended). We recognize that traditionally suspend and resume were the common
terms used when discussing these primitives. In this and the following section, we use the term
blocked when referring to the "official" Ada state, and the term suspended when referring to the
generic capability.

An important goal for Ada 95 was to allow protected objects for a simple suspend/resume
mechanism that in turn could be used to build higher-level synchronization primitives. Here, by
suspend, we mean the ability to block only the calling task itself, not another (for the latter, see the
next section). Even for such a simple mechanism, some guarantees have to be made. This is
commonly known as the two-stage suspend problem. (Strictly speaking, this name refers more to
the solution, rather to the problem itself.) The problem that needs to be solved can be briefly
described as follows. A task may want to block itself, after it has checked some data structure, and
found that a particular system state is not present yet. The data structure is used by other tasks as
well. One of these tasks will eventually set the data structure to the appropriate state and will
resume the blocked task. Therefore, this data structure must be protected from concurrent access,
i.e. a lock is needed. This in turn leads to the requirement that a task will be able to atomically
release the lock and block itself. If it first releases the lock, the state might change just before it is
about to be blocked (for example, the desired state may now be present, but there will be no way to
detect it). On the other hand, if the task is blocked while still holding the lock, another task will
not be able to access the shared data structure, and to record the new state — a deadlock.

If the state that is being waited upon can be easily expressed using a protected entry barrier
expression, then such functionality already exists in the language. However, this is not always the
case. When user-defined schedulers or servers are being implemented, it is often much more
natural to separate the blocked state (and the corresponding operations) from the actual reason the
task is waiting (it might be waiting for multiple events).

There are several approaches to solve this problem. They all depend on the kinds of
primitives the underlying system provides.

1 Allow the calling task to suspend while it still holds the lock. When the task is suspended,
it loses the lock, and has to reacquire it when it wakes up.

2 Register a pending suspension request while still holding the lock. After the task releases
the lock (presumably soon after registering the request), it will be suspended.

Ada 95 Rationale: Annexes Real-Time Systems: D-37

3 Atomically clear a bit in the user space marking the suspension intention, and then suspend
waiting for the bit to be set. A task wishing to resume the suspended task does so by
atomically setting the bit. If the protocol of manipulating this bit is well-coordinated, such
a technique can work safely and efficiently.

It is beyond the scope of this discussion to analyze the trade-offs of the approaches described
above. For Ada 95, we have chosen the third approach mainly for its simplicity and the fact that it
does not require any changes to the semantics of protected types and does not have complex
interactions with other existing semantics. Here, the two-stage suspend means that first the task
announces its intention to suspend itself, and then it actually does so. Between these two
operations, the task is logically suspended as viewed by other tasks in the system, and so they may
reliably resume it even before the actual suspension is done. For example, it would be wrong for
the suspending task to clear the bit again without first checking its state to ensure that no other task
has resumed it in the meantime. Failing to do so will effectively result in losing the resume
operation.

Originally, we proposed to express the needed functionality as visible operations of a
language-defined protected type. The abstraction presented by a simple protected type with
Set_True and Set_False operations and a Suspend_Until_True entry, in addition to one
boolean flag, seemed appropriate. Having this type known to the implementation would ensure
that optimization was straightforward.

We rejected this idea for two reasons: a procedural interface enables the implementation to
choose the most efficient technique by isolating this feature from the general support of the
protected types. Second, by not having a visible protected entry for the Suspend_Until_True
operation, the user is not able to use it in a select statement. While this may be considered as a loss
of functionality, it has not been demonstrated that such functionality (timed, conditional, and
asynchronous waits) is needed with such a low-level primitive. Not having to support the various
kinds of select statements allows a much simpler, and hence, more efficient implementation.

The chosen solution is thus to make the suspension object of a private type with the
operations described above (that is, Set_True, Set_False, and Suspend_Until_True). In
addition, we provide a function Current_State to query the state of the object. This function
should be used with care since the state may change asynchronously, and in particular,
immediately after the function returns. We considered providing additional operations, to
atomically change the state of the object and to return its previous state. We did not provide these
operations since they really do not belong to this abstraction and we could not find a practical use
for them; they were unreliable and they required an extra locking mechanism inside the
implementation. This locking would be required when Set_False and Set_True (both with a
return parameter) were called at the same time.

A suspension object can be viewed as a private binary semaphore in that it can be assumed to
belong to one task only. This assumption is not enforced by the language, but a check is provided
that only one task may wait on such an object at any point in time, Program_Error being raised
if it fails. This rule makes it unnecessary to maintain a queue — a major saving in run-time cost.

A suspension object (or a pointer to it) can be passed to other components, thus indirectly
maintaining the identity of the task that needs to be resumed when a certain state becomes true.

A typical example of the use of suspension objects is as follows

—— Assume that the protected object state
—— contains just a simple (protected) indication of the state;
—-— the rest is elsewhere.

use Ada.Synchronous_Task_Control;

type Token is access all Suspension_Obiject;

protected State is
procedure Check (T : in Token; Result : out Boolean);
procedure Set (D : in Some_Data_ Structure);

private

D-38 Real-Time Systems Ada 95 Rationale: Annexes

Data : Some_State_Structure;
Waiting_Task : Token;
end State;

protected body State is
procedure Check (T : in Token; Result : out Boolean) is

begin
if Data = Desired_State then
Result := True;
else

—-— Mark intention to suspend
Set_False(T.all);

Waiting_Task := T;
Result := False;
end if;
end Check;

procedure Set (D : in Some_Data_Structure) is
begin
Data := D;
if Data = Desired_State then
if Waiting Task /= null then
—-— Resume waiting task
Set_True (Waiting_ Task.all);
end if;
end if;
end Set;
end State;

—— Task wishing to suspend
task body T1 is
SO : aliased Suspension_Obiject;
In_Desired_State : Boolean;
begin
State.Check (SO'Unchecked_Access, In_Desired_State);
if In_Desired_State then
process—data
else
Suspend_Until_True (SO) ; —— suspend
end if;

end T1;
—— Another task detects that the waiting task needs
—-— to be resumed
task body T2 is
Data : Some_Data_Structure;
begin
State.Set (Data);
end T2;

When Check is called by T1, the state is checked. If it is possible to continue, T1 does so and
processes the data. Otherwise, T1 suspends itself until the object becomes true. When T2 updates
a new state, it checks to see if the updated state is a desired one. If it is, and a task is waiting, it is
resumed (Set_True). The new state is saved, so when T1 checks again, it will not have to be
suspended. The important thing to remember is that it makes no difference whether the Set_True
is called before or after the Suspend_Until_True. Since the semantics of suspension objects are

Ada 95 Rationale: Annexes Real-Time Systems: D-39

defined to be persistent in the sense that there is a bit to keep the state, the suspending task will
always notice the resume request.

D.11 Asynchronous Task Control

An important facility for some real-time aplications is a very low-level, simple, and efficient
capability to suspend the execution of another task (and resume it later).

The core part of Ada 95 intentionally omitted this capability because of the well-known
problems with integrating such a feature into a multi-tasking environment. The asynchronous
transfer of control is the feature that comes closest to this requirement, but it is not the full answer;
it requires cooperation of the "to-be-suspended" task, and does not allow the continuation of the
affected task from exactly the same point where it was interrupted. There are very good reasons
for these limitations in the general case. Suspending a task asynchronously at an arbitrary point is
likely to leave the system state in an inconsistent state. This state would then become visible to the
remaining tasks in the system. In addition, the interaction of such suspension with the other
blocking primitives of the language is quite problematic (particularly, when priority scheduling is
in effect).

In practice, two choices exist. One is to define the complete semantic model of such a feature
and how it interacts with the rest of the language. Such a model would then require additions to
the core and was believed to be very complex to understand and implement, especially for those
users that do not need this capability. The other option is to leave all these interactions as
implementation-defined. This is obviously undesirable since many of the benefits of standardizing
such a capability would be lost. In addition, using such features is likely to move the program into
the "erroneous zone", since the semantic model of tasking would not apply. Finally, and probably
due to the above, experience with such primitives has proven in the past to be quite error-prone.

However, for a certain class of applications, such a capability is considered essential. These
applications can be characterized as small, time-critical, and often safety-critical. They usually do
not use the full power of the language, especially its tasking model. For certification reasons, as
much as possible of the code needs to be visible in the actual program as opposed to be "hidden"
inside the run-time system support supplied by the vendor. So even though this capability by itself
may be considered unsafe, using it on top of a very simple run-time system, and applying strict
guidelines, can make a system easier to certify. A final argument in favor of adding such a
capability is that within certain application domains, this paradigm is well-understood, has been
heavily used in the past, and is known to be implementable efficiently. Note that the issue of
feature interaction with the rest of the tasking primitives is less of a concern here, since most of
these primitives are not likely to be used by such an application.

Existing capabilities in the language and annexes allow a task to block itself until a specified
state becomes true. This is not the same as a capability to asynchronously suspend another task.
Because of this difference, the problems mentioned above, and issues concerning the best way to
define such a feature in Ada, the straightforward approach of just defining a Suspend_Other
primitive was rejected. Such an approach would necessitate introducing another task state
("suspended"), in addition to the existing states, and defining all the necessary interactions.

Instead, the approach taken by this Annex is based on the observation that a "suspend-other"
capability is quite similar to the capability to lower a task's priority to a value that is so low as to
effectively prevent the task from being dispatched. (In fact, using dynamic priorities is a known
workaround to this problem, but it does not scale well to multiprocessors.)

The package Asynchronous_Task_Control introduces a conceptual idle task for each
processor in the system, in addition to a priority level which is so low as to be below any other task
in the system including the idle task. This level is also conceptual; it need not actually exist as a
separate level in the ready queue. The Hold procedure is defined in terms of sources of priority
inheritance. The general model of priority inheritance as defined in [RM95 D.3] states that the
task's own base priority is always a source of priority inheritance. However, when the task is being
held, its own base priority is no longer such a source, and instead the value of the special priority

D-40 Real-Time Systems Ada 95 Rationale: Annexes

level becomes such a source. For reasons similar to those discussed in D.10, we do not want to
stop the task's execution while it is inside a protected action. With this approach, a held task will
still inherit the ceiling priority of the protected object in which it is executing, and will therefore
continue to run until it leaves the protected action. When the task does not inherit any other
priority, its active priority becomes lower than the conceptual task; therefore it does not run. The
Continue operation simply changes the inheritance sources back to the default.

The benefit of this approach is that nothing else has to be said with respect to interactions with
other tasking constructs. All the rules are ramifications of the above definitions and the general
priority rules. (For a more detailed analysis of the various cases, see the notes in [RM95 D.11].)
In this way, no additional mechanism is needed in the run-time system, and the feature can be
implemented efficiently while still presenting a consistent and safe interface to the user. For
implementation flexibility, nothing in this section really requires the use of dynamic priorities
inside the implementation; priorities are used just to describe the semantic model. A
straightforward implementation approach that uses traditional states is therefore possible.

D.12 Other Optimization and Determinism Rules

This section of the Annex describes various requirements for improving the response and
determinism in a real-time system.

The maximum duration that interrupts are blocked by the implementation (in supporting the
language features) must be bounded and documented. Clearly, this value is very important to the
application for schedulability analysis. In addition, a real-time application often needs to interact
with an external device at a certain frequency. If the implementation-induced interrupt blocking
time is too long, such a device interface is not feasible.

Another requirement addresses the problem of the storage associated with terminated tasks.
In a real-time system, tasks are often allocated using a library-level access type, and their storage is
sometimes released only upon exit from the access type's scope. In this case, this will mean not
until the partition as a whole terminates, which is clearly too late. Ada 83 did not require
Unchecked_Deallocation of tasks to actually release the task's storage, and this is the
motivation for the new requirement.

When a protected object does not have entries, it acts similarly to a simple lock (mutex)
abstraction with no need for any overhead associated with checking barriers and servicing queues.
It is expected that such protected objects will be used heavily by concurrent applications to achieve
simple mutual exclusion. It is therefore important that implementations will recognize such cases,
and avoid any unnecessary run-time costs. In general, performance can be neither legislated nor
validated; the purpose of the requirement is to direct the attention of implementors to this
important case. The corresponding metrics are provided for the purpose of exposing the degree to
which such an optimization is carried out in a given implementation.

D.13 Requirements Summary
The requirements
R5.1-A(1) — Elapsed Time Measurement
R5.1-B(1) — Precise Periodic Execution
are met by the introduction of Real_ Time.Time and the precise requirements on the delay
statement.

The requirement

R5.2-A(1) — Alternative Scheduling Algorithms

Ada 95 Rationale: Annexes Real-Time Systems: D-41

is generally addressed by the various pragmas such as Task_Dispatching_Policy,
Locking_Policy and Queueing_Policy plus the facilities for priority control. The packages
for synchronous and asynchronous task control provide facilities for special techniques.

Ada 95 Rationale: Annexes Distributed Systems: E-1

E Distributed Systems

The Ada 95 model for programming distributed systems specifies a partition as the unit of
distribution. A partition comprises an aggregation of library units that executes in a distributed
target execution environment. Typically, each partition corresponds to a single execution site, and
all its constituent units occupy the same logical address space. The principal interface between
partitions is one or more package specifications. The semantic model specifies rules for partition
composition, elaboration, execution, and interpartition communication. Support for the
configuration of partitions to the target execution environment and its associated communication
connectivity is not explicitly specified in the model.

The rationale for this model derives from the Ada 9X Requirements for Distributed
Processing (see R8.1-A(1) and RS8.2-A(1)); namely, that the language shall facilitate the
distribution and dynamic reconfiguration of Ada applications across a homogeneous distributed
architecture. These requirements are satisfied by a blend of implementor- and user-provided (or
third-party) capabilities.

In addition, the following properties are considered essential to specifying a model for
distributed program execution:

. The differences between developing a distributed versus a nondistributed system should be
minimal. In particular, the same paradigms, rules for type safety, and interface
consistency for a nondistributed system should apply to a distributed system. Furthermore,
it must be possible to partition an Ada library for varying distributed configurations
without recompilation.

. The implementation should be straightforward. In particular, the run-time system of each
partition should be autonomous. In this way, robust type-safe distributed systems can be
implemented using off-the-shelf Ada compilers that support the model, rather than
depending upon custom adaptations of a compiler to a specific distributed environment.

. The partitioning should be separated from the details of the communications network
architecture supporting the distributed system. Similarly, inter-partition communication
should avoid specifying protocols more appropriately provided by an application or by
standard layers of the network communications software.

. The model should facilitate programming fault-tolerant applications to the extent that an
active partition failure should not cause the distributed program to fail. In particular, it
should be possible to replace the services provided by a failed partition with those of a
replacement partition.

. The model should be compatible with other standards that support open distributed
applications.

The requirements and properties are satisfied in the Annex by specifying a simple, consistent,
and systematic approach towards composing distributed systems based upon the partition concept.
Partitions are specified before runtime, usually during or after the linking step. Programming the
cooperation among partitions is achieved by library units defined to allow access to data and
subprograms in different partitions. These library units are identified at compile-time by
categorization pragmas. In this way, strong typing and unit consistency is maintained across a

E-2 Distributed Systems Ada 95 Rationale: Annexes

distributed system. Finally, separation of implementor and user responsibility is allowed by
specifying a common interface to a partition communication subsystem (PCS) that performs
message passing among partitions. The PCS is internally responsible for all routing decisions,
low-level message protocols, etc. By separating the responsibilities, an implementation need not
be aware of the specific network connectivity supporting the distributed system, while the
communication subsystem need not be aware of the types of data being exchanged.

E.1 The Partition Model

An Ada 83 program corresponds to an Ada 95 active partition (see below); an Ada 95 program is
defined in [RM95 10.2] as a set of one or more partitions. The description in the Core is kept
purposefully non-specific to allow many different approaches to partitioning a distributed program,
either statically or dynamically. In the Annex, certain minimal capabilities are specified to
enhance portability of distributed systems across implementations that conform to these
specifications.

This Annex develops the partitioning concept for distributed systems in terms of active and
passive partitions. The library units comprising an active partition reside and execute upon the
same processing node. In contrast, library units comprising a passive partition reside at a storage
node that is accessible to the processing nodes of different active partitions that reference them.
Library units comprising a passive partition are restricted to ensure that no remote access (such as
for data) is possible and that no thread of control is needed (since no processing capabilities are
available and no tasking runtime system exists in such a partition). Thus, a passive partition
provides a straightforward abstraction for representing an address space that is shared among
different processing nodes (execution sites).

It is implementation-defined (and must therefore be documented) whether or not more than
one partition may be associated with one processing or storage node. The characteristics of these
nodes are target dependent and are outside the scope of the Annex.

Similar to an Ada 83 program, each active partition is associated with an environment task
that elaborates the library units comprising the partition. This environment task calls the main
subprogram, if present, for execution and then awaits the termination of all tasks that depend upon
the library units of the partition. Therefore, there is no substantive difference between an active
partition and an Ada 83 program.

A partition is identified as either active or passive by the post-compilation (link-time)
aggregation of library units. Post-compilation tools provide the necessary functionality for
composing partitions, linking the library units of a partition, and for resolving the identities of
other partitions. A passive partition may include only shared passive and pure library units.

By naming a shared passive library unit (which resides in a passive partition) in a context
clause, the referencing unit gains access to data and code that may be shared with other partitions.
Different active partitions (executing on separate nodes) may thus share protected data or call
subprograms declared in such shared passive library units. An active partition can obtain mutually
exclusive access to data in a shared partition package if the data is encapsulated in a protected
object or is specified as atomic.

An active partition may call subprograms in other active partitions. Calls to subprograms in a
different active partition are allowed only if the called subprogram is declared in a library unit with
a Remote_Call_Interface pragma. Each active partition calling the subprogram must name
the corresponding remote call interface (RCI) library unit in its context clause. So we might have

package A is —-— 1in one active partition
pragma Remote_Call_TInterface (A);
procedure P(...);

end A;

Ada 95 Rationale: Annexes Distributed Systems: E-3

with A;

package B is —-— 1n another active partition
A.P(...); —-— a remote call

end B;

When an active partition calls such a subprogram, the call is termed a remote procedure call
(RPC). Stubs are inserted in the calling code and in the called code to perform the remote
communication; these are termed the calling stub and receiving stub respectively. In addition, an
asynchronous procedure call capability is provided to allow the caller and the remote subprogram
to execute independently once the call has been sent to the remote partition.

The categorization of library units establishes potential interfaces through which the partitions
of a distributed system may cooperate. In a distributed system where no remote subprogram calls
or shared library units are required, e.g., all inter-partition data is exchanged through other
communication facilities, library unit categorization is unnecessary. In such a case the
multipartition program is similar to the multiprogramming approach allowed by Ada 83 (using a
set of quite distinct programs).

The library unit categorization and link-time identification of partitions provides a flexible
and straightforward approach for partitioning the library units of an Ada program library. Library
units may be aggregated to form partitions exploiting the target execution environment for the
distributed system, with the single stipulation that any given shared passive or RCI library unit
may be assigned to only one partition. Different distributed configurations of the same target
execution environment may then be supported by a single version of an Ada library. (A change to
the configuration does not require recompilation of library units.) Library units are elaborated and
executed within the context of the environment task associated with the active partition, and until
they communicate with another partition, their execution proceeds independently (since all the
library units in a passive partition must be preelaborated, the environment task in such a partition is
purely conceptual).

The runtime system of each active partition is independent of all other runtime systems in a
multi-partition program. This is achieved by first disallowing tasks and protected types with
entries in the visible parts of the interface library units, and second, by declaring the library units
Calendar and Real_Time, as well as the subtype Priority, as local to each active partition. In
consequence, tasks (and hence entry queues) are not visible across partitions. This allows each
active partition to manage its own tasking subsystem independently, avoiding such complexities as
remote rendezvous, distributed time management, and distributed activation and termination
management. (Protected objects without entries are allowed in passive partitions, since access to
their data requires only a simple mutual-exclusion, a capability assumed to be present for a passive
partition.)

Mechanisms to specify the allocation of partitions to the target execution environment are not
included in the Annex; similarly, the dynamic creation and replication of partitions is not explicitly
specified. These capabilities are deemed beyond the scope of the requirements. However, because
partition replication is essential towards programming fault-tolerant applications, remote calls may
be directed to different partitions using one of the two forms of dynamic binding, by dereferencing
an access-to-subprogram object or access-to-class-wide tagged object. Thus, implementations that
support the replication of partitions can allow a failed partition to be replaced transparently to other
partitions.

In summary, this approach allows for flexible, link-time partitioning, with type-safety ensured
at compile-time. The model separates categorization and partitioning from configuration and
communication thus promoting compiler/linker independence from the target execution
environment. The objective is to maintain the properties of a single Ada program for distributed
execution with minimal additional semantic and implementation complexity. Fundamental to this
objective is the ability to dynamically call remote subprograms.

E-4 Distributed Systems Ada 95 Rationale: Annexes

E.2 Categorization of Library Units

Several library unit categorization pragmas exist. They are

pragma Shared_Passive(...);
pragma Remote_Types(...);
pragma Remote_Call_Interface(...);

where in each case the optional parameter simply names the library unit. These pragmas identify
library units used to access the types, data, and subprograms of other partitions. In other words,
the library units that are associated with categorization pragmas provide the visible interface to the
partitions to which they are assigned. These pragmas place specific restrictions upon the
declarations that may appear in the visible part of the associated library units and the other library
units that they may name in their context clauses. In addition, such library units are preelaborated.

The pragma Pure, which is defined in the core since it also relates to preelaboration, is also
important for distribution and has the most severe restrictions.

The various categories form a hierarchy, in the order given above with Pure at the top. Each
can only "with" units in its own or higher categories (although the bodies of the last two are not
restricted). Thus a package marked as Shared_Passive can only with packages marked as
Shared_Passive Or Pure.

Restricting the kinds of declarations that may be present in such library units simplifies the
semantic model and reduces the need for additional checking when the library unit is named in the
context clause of another library unit. For example, by disallowing task declarations (and
protected types with entries), we avoid the interaction among the run-time systems of different
partitions that is required to support entry calls across partitions.

Pure library units [RM95 10.2.1] may be named in the context clauses of other interface
library units. For example, a pure library unit may contain type declarations that are used in the
formal parameter specifications of subprograms in RCI library units. To achieve remote
dispatching, a library unit specified with pragma Pure must declare the corresponding dispatching
operations. Such a library unit is replicated in all referencing partitions. The properties of a pure
library unit allow it to be replicated consistently in any partition that references it, since it has no
variable state that may alter its behavior.

When no categorization pragma is associated with a library unit, such a unit is considered
normal; it may be included in multiple active partitions with no restrictions on its visible part.
Unlike a pure library unit, replication of such a unit in different partitions does not necessarily
maintain a consistent state. The state of the unit in each partition is independent.

E.2.1 Shared Passive Library Units

The rules for a shared passive library unit ensure that calling any of its subprograms from another
partition cannot result in an implicit remote call, either directly or indirectly. Moreover, the
restrictions eliminate the need for a run-time system (e.g., to support scheduling or real-time
clocks) to be associated with a passive partition. Thus a passive partition corresponds to a logical
address space that is common to all partitions that reference its constituent library units.

As mentioned earlier, a shared passive unit must be preelaborable and can only depend on
pure and other shared passive units. There are also restrictions on access type declarations which
ensure that it is not possible to create an access value referring back to an active partition.

E.2.2 Remote Types Library Units

Originally, this Annex provided only the Shared_Passive and Remote_Call_ Interface
pragmas (in addition to the core pragma Pure). However, this omitted an important functionality.

Ada 95 Rationale: Annexes Distributed Systems: E-5

Often one needs to be able to pass access values among partitions. Usually, such access values
have no meaning outside their original partition (since their designated object is still in that
partition). Hence we generally disallow access types for remote subprograms' formal parameters.
However, there are cases in which the access type has a user-defined meaning (such as a handle to
a system-wide resource) that can be "understood" in other partitions as well. Since the
implementation is not aware of such a meaning, the user must supply specific Read and Write
attributes to allow the meaningful transfer of the information embodied in such access values. In
addition, such a library unit often needs to be able to maintain specific (per-partition) state, to
support such conversions. This is the main reason for introducing the Remote_Types
categorization pragma. The restrictions enforced by this pragma are quite similar to those enforced
by pragma Pure; a separate copy of a remote types package is placed in every partition that
references it. Since a remote types library unit may be withed by a remote call interface, the types
declared in the former may be used as formals of remote subprograms.

E.2.3 Remote Call Interface Library Units

For RCI library units the restrictions ensure that no remote accesses need be supported, other than
remote procedure calls. These calls may be

. direct, through static binding,
. indirect, through a remote access to subprogram type,
. dispatching, through a remote access to class wide type.

Furthermore, the types of all formal parameters may be converted to and from a message stream
type using the Write and Read attributes respectively [RM95 13.13.2]. This message stream type
is the primary interface to the partition communication subsystem.

Child library units of an RCI library unit must be assigned to the same partition as the RCI
library unit. As a consequence, visible child library units of an RCI library unit have the same
restrictions as RCI library units. That is, the private part and the body of a child library unit have
visibility to the private part of the parent. Thus a child library unit, unless included in the same
partition as its parent, may make an unsupported remote access to its parent's private part. By
constraining a child to the same partition, its visible part must be as restricted as the root RCI
library unit.

The support for remote call interface library units is optional in the Annex, since RPC is not
always the appropriate communication paradigm for a particular application. The other
capabilities introduced by this Annex might still be useful in such a case.

Pragma All_Calls_Remote

For some applications, it is necessary that the partition communication subsystem get control on
each remote procedure call. There are several motivations for such a requirement, including
support for debugging (for example, isolating problems to either the PCS or to the generated code)
and the need in some circumstances to have the PCS perform application-specific processing (e.g.
supporting broadcasts) on each remote call. For such techniques to be feasible, users need to be
assured that remote calls are never "optimized away". This can be assured by inserting

pragma All_Calls_Remote;

in the unit concerned.

E-6 Distributed Systems Ada 95 Rationale: Annexes

Note that opportunities for such optimizations arise often, for example when the calling
library unit and the called RCI library unit are assigned to the same active partition. In such cases,
the linker can transform the remote call to a local call, thereby bypassing the stubs and the PCS.
(In fact, such an optimization is extremely important in general, to allow the design of library units
independent of their eventual location.) Similar optimization is possible (although probably not as
straightforward) when multiple active partitions are configured on the same processing node.

When a call on a subprogram declared in the visible part of an RCI library unit (usually a
remote call) is generated from either the body of that library unit or from one of its children, it is
always guaranteed to be local (regardless of the specific configuration). This is because the Annex
rules ensure that all corresponding units end up in the same partition. For this reason, the
All_cCalls_Remote pragma does not apply to such calls, and they remain local. Doing otherwise
would constitute a change of the program semantics (forcing a local call to be remote), would
introduce implementation difficulties in treating otherwise normal procedure calls as special, and
would introduce semantic difficulties in ensuring that such a local-turned-remote call did not
violate the privacy rules that guarantee that remote references are not possible.

E.3 Consistency of a Distributed System

Consistency is based on the concept of a version of a compilation unit. The exact meaning of
version is necessarily implementation-defined, and might correspond to a compilation time stamp,
or a closure over the source text revision stamps of all of the semantic dependences of the unit.

E.4 Remote Subprogram Calls

RCI library units allow communication among partitions of a distributed system based upon
extending the well-known remote procedure call (RPC) paradigm. This is consistent with the ISO
RPC Committee Draft that presents a proposed RPC Interaction Model (see subsequent section)
and Communication Model for cooperating applications in a distributed system. Calls to remote
partitions may be bound either statically or dynamically.

The task executing a synchronous remote call suspends until the call is completed. Remote
calls are executed with at-most-once semantics (i.e., the called subprogram is executed at most
once; if a successful response is returned, the called subprogram is executed exactly once). If an
exception is raised in executing the body of a remote subprogram, the exception is propagated to
the calling partition.

Unless the pragma Asynchronous (see below) is associated with a procedure (for a direct
call) or an access type (for an indirect call), the semantics of a call to a remote subprogram are
nearly identical to the semantics of the same subprogram called locally. This allows users to
develop a distributed program where a subprogram call and the called subprogram may be in the
same or different partitions. The location of the subprogram body, determined when the program
is partitioned, only affects performance.

The exception System.RPC.Communication_Error may be raised by the PCS (the
package System.RPC is the interface to the PCS). This exception allows the caller to provide a
handler in response to the failure of a remote call as opposed to the result of executing the body of
the remote subprogram; for example, if the partition containing the remote subprogram has become
inaccessible or has terminated. This exception may be raised for both synchronous and
asynchronous remote calls. For asynchronous calls, the exception is raised no later than when
control would be returned normally to the caller; any failure after that point is invisible to the
caller.

Ada 95 Rationale: Annexes Distributed Systems: E-7

E.4.1 Pragma Asynchronous

An asynchronous form of interaction among partitions is provided by associating the pragma
Asynchronous with a procedure accessible through an RCI library unit. Thus using the previous
example we might write

package A is
pragma Remote_Call_Interface (d);
procedure P(...);
pragma Asynchronous (P);

end A;

When this pragma is present, a procedure call may return without awaiting the completion of the
remote subprogram (the task in the calling partition is not suspended waiting the completion of the
procedure). This extends the utility of the remote procedure call paradigm to exploit the
underlying asynchronism that may be available through the PCS. As a consequence, synchronous
and asynchronous interactions among partitions are maintained at a consistent level of abstraction;
an agent task is not required to await the completion of a remote call when asynchronism is
desired. Asynchronous procedure calls are necessarily restricted to procedures with all parameters
of mode in (and of course a function cannot be asynchronous).

Unhandled exceptions raised while executing an asynchronous remote procedure are not
propagated to the calling partition but simply lost. When the call and called procedure are in the
same partition, the normal synchronous call semantics apply.

The use of asynchronous procedure calls, when combined with the capability to dynamically
bind calls using remote access values, allows the programming of efficient communication
paradigms. For example, an asynchronous procedure call may pass a remote access value
designating a procedure (in the sending partition) to be called upon completion. In this way, the
results of the asynchronous call may be returned in some application-specific way.

E.5 Post-Compilation Partitioning

Aggregating library units into partitions of a distributed system is done after the units have been
compiled. This post-compilation approach entails rules for constructing active and passive
partitions. These rules ensure that a distributed system is semantically consistent with a
nondistributed system comprising the same library units. Moreover, the required implementation
is within the capability of current post-compilation tools. Therefore, in order to allow the use of
existing tools and to avoid constraining future tools, the Annex omits specifying a particular
method for constructing partitions.

Each RCI library unit may only be assigned to a single active partition. Similarly, each
shared passive library unit may only be assigned to a single passive partition. Following the
assignment of a library unit to a partition, a value for the attribute Partition_ID is available that
identifies the partition after it is elaborated. (This attribute corresponds to values of the type
Partition_ID declared in System.RPC; see E.7. This library unit provides the interface to the
PCS; however, it is not required that this unit be visible to the partition using the attribute and
hence the attribute returns universal_integer.)

In order to construct a partition, all RCI and shared passive library units must be explicitly
assigned to a partition. Consequently, when a partition is elaborated, the Partition_ID attribute
for each RCI or shared passive library unit referenced by this partition has a known value. The
construction is completed by including in a partition all the other units that are needed for
execution.

An exception is that a shared passive library unit is included in one partition only. Similarly,
the body of an RCI library unit is in one partition only; however the specification of an RCI library

E-8 Distributed Systems Ada 95 Rationale: Annexes

unit is included in each referencing partition (with the code for the body replaced by the calling
stubs).

A library unit that is neither an RCI nor shared passive library unit may be included in more
than one partition. Unlike a nondistributed system, a normal library unit does not have a consistent
state across all partitions. For example, the package Calendar does not synchronize the value
returned by the Clock function among all partitions that include the package.

A type declaration within the visible part of a library unit elaborated in multiple partitions
yields matching types. For pure, RCI, and shared passive library units, this follows either from the
rule requiring library unit preelaboration (RCI and shared passive) or the restrictions on their
declarations. For normal library units, since non-tagged types are not visible across partitions, this
matching is of little significance. However, a special check is performed when passing a
parameter of a class-wide type to make sure that the tag identifies a specific type declared in a pure
or shared passive library unit, or the visible part of a remote types or RCI library unit. Type
extensions declared elsewhere (in the body of a remote types or RCI library unit, or anywhere in a
normal library unit) might have a different structure in different partitions, because of dependence
on partition-specific information. This check prevents passing parameters of such a type
extension, to avoid erroneous execution due to a mismatch in representation between the sending
and the receiving partition. An attempt to pass such a parameter to a remote subprogram will raise
Program_Error at run-time. For example, consider the following declarations:

package Pure_Pkg is
pragma Pure;
type Root_Type is tagged ...

end Pure_Pkg;

with Pure_Pkg;
package RCI_Pkg is

pragma Remote_Call_Interface;

—-— Class-wide operation

procedure Cw_OP (Cw : in Pure_Pkg.Root_Type'Class);
end RCI_Pkg;

with Pure_Pkg;
package Normal_Pkg is

type Specific_Type is new Pure_Pkg.Root_Type with
record
Vector : Vector_Type(l .. Dynamic_Value);
end record;
end Normal_Pkg;

with RCI_Pkg;

package body Normal_Pkg is
Value : Specific_Type;

begin
—— The following call will result in Program Error
—-— when the subprogram body is executed remotely.
RCI_Pkg.Cw_OP (Cw => Value);

end Normal_Pkg;

In the above example, if Normal_Pkg is included in a partition that is not assigned RCI_Pkg,
then a call to cw_oOP will result in a remote call. When this call is executed in the remote partition,
Program_Error is raised.

The following library units are a simple example of a distributed system that illustrate the
post-compilation partitioning approach. In this particular example, the system uses mailboxes to

Ada 95 Rationale: Annexes Distributed Systems: E-9

exchange data among its partitions. Each partition determines the mailbox of its cooperating
partitions by calling a subprogram specified in an RCI library unit.

The mailboxes for each partition are represented as protected types. Objects of the protected
types are allocated in a shared passive library unit. RCI library units (instantiations of
Gen_Mbx_Pkg) are included in active partitions, and they with the shared passive package
Ptr_Mbx_Pkg. When an allocator for Ptr_Safe_Mbox is executed (on behalf of a library unit in
another partition), the protected object is allocated in the passive partition, making it accessible to
other partitions. Consequently, no remote access is required to use mailbox data. However, to
access a mailbox of another partition, a remote subprogram call is required initially.

package Mbx_Pkg is
pragma Pure;
type Msg_Type is
type Msg_Array is array (Positive range <>) of Msg_Type;
type Key_Type is new Integer;

protected type Safe_Mbx (Lock : Key_Type;
Size : Positive) is
procedure Post (Note : in Msg_Type);
—-— Post a note in the mailbox
procedure Read (Lock : in Key_Type;
Note : out Msg_Type);
—— Read a note from the mailbox if caller has key

private
Key : Key_Type := Lock;
Mbx : Msg_Array(l .. Size);

end Safe_Mbxk;
end Mbx_Pkg;

with Mbx_Pkg;
package Ptr_Mbx Pkg is
pragma Shared_Passive;
type Ptr_Safe Mbx is access Mbx_ Pkg.Safe Mbx;
—— All mailboxes are allocated in a passive partition and
—— therefore remote access is not required.
end Ptr_Mbx_Pkg;

with Mbx_Pkg;
with Ptr_Mbx_Pkg;
generic
Mbx_Size : Positive;
Ptn_Lock : Mbx_Pkg.Key_Type;
package Gen_Mbx_ Pkg is
—— This package creates a mailbox and makes the
—— access value designating it available through
—-— a remote subprogram call.
pragma Remote_Call_Interface;
function Use_Mbx return Ptr_Mbx_Pkg.Ptr_Safe_Mbx;
end Gen_Mbx_Pkg;

with Mbx_Pkg;
package body Gen_ Mbx_Pkg is
New_Mbx : Ptr_Mbx_Pkg.Ptr_Safe Mbx :=
new Mbx_Pkg.Safe_Mbx (Ptn_Lock, Mbx_Size);
-— A mailbox is created in the passive partition.
—— The key to read from the mailbox is the elaborating
—-— partition's identity.
function Use_Mbx return Ptr_ Mbx Pkg.Ptr_Safe_Mbx is

E-10 Distributed Systems Ada 95 Rationale: Annexes

—— The access value designating the created mailbox is
—— made available to the calling unit.
begin
return New_ Mbx;
end Use_Mbx;
end Gen_Mbx_Pkg;

with Ptr_ Mbx_Pkg, Gen_Mbx_Pkg;
package RCI_1 is
—-— This package is the interface to a set of library units that
—-— 1s conveniently identified by the library unit Closure_1.
pragma Remote_Call_Interface;
package Use_Mbx_Pkg is new Gen_Mbx_Pkg(1_000, RCI_1'Partition_1ID);
function Use_Mbx return Ptr_ Mbx_Pkg.Ptr_Safe_Mbx
renames Use_Mbx_Pkg.Use_Mbx;
—-— All partitions include this remote subprogram in
—-— their interface.

end RCI_1;

with Ptr_Mbx_Pkg, Gen_Mbx_Pkg;

package RCI_2 is
—-— This package is the interface to a set of library units that
—-— 1s conveniently identified by the library unit Closure_2.
pragma Remote_Call_Interface;

end RCI_2;

with Ptr_Mbx Pkg, Gen_Mbx Pkg;

package RCI_3 is
—— This package is the interface to a set of library units that
—— 1s conveniently identified by the library unit Closure_3.
pragma Remote_Call_Interface;

end RCI_3;

with Closure_1;
—— Names library units that execute locally.
with RCI_2, RCI_3;
—— Names RCI packages for interfacing to other
—-— partitions executing at different sites.
package body RCI_1 is
My_Mbx : Ptr_Mbx_Pkg.Ptr_Safe Mbx := Use_Mbx_Pkg.Use_Mbx;
Mbx_ 2,
Mbx_3 : Ptr_Mbx_Pkg.Ptr_Safe_Mbx;

—— Obtain access values to other partition mailboxes.
—-— For example

Mbx_2 := RCI_2.Use_Mbx;

Mbx_3 RCI_3.Use_Mbx;

My_Mbx.Read (RCI_1'Partition_ID, Next_Note);

Mbx_2.Post (Next_Note) ;

Mbx_3.Post (Next_Note) ;

—— Read note in local mailbox and pass to other mailboxes.

end RCI_1;

Ada 95 Rationale: Annexes Distributed Systems: E-11

with Closure_2;

—— Names library units that execute locally.
with RCI_1, RCI_3;

—— Names RCI packages for interfacing to other

—-— partitions executing at different sites.
package body RCI_2 is

—— Obtain access values to other partition mailboxes.
—— For example

Mbx_1 := RCI_1.Use_Mbx;

Mbx_ 3 RCI_3.Use_Mbx;

end RCI_2;

with Closure_3;

—— Names library units that execute locally.
with RCI_1, RCI_2;

—— Names RCI packages for interfacing to other

—-— partitions executing at different sites.
package body RCI_3 is

—— Obtain access values to other partition mailboxes.
—-— For example

Mbx_1 := RCI_1.Use_Mbx;

Mbx_ 2 RCI_2.Use_Mbx;

end RCI_3;

The following post-compilation partitioning support is implementation defined; the syntax is
for illustration only. Several possible combinations for partitioning are presented. In each
combination, the first partition specified is a passive partition where the mailboxes are allocated.
This partition is accessible to other partitions by simply calling the protected operations of the
mailbox.

The minimally distributed partitioning comprises two partitions; one passive partition and one
active partition. All RCI library units in the application are assigned to a single active partition.
There would be no remote calls executed as a result of this partitioning.

Partition(Ptn => 0, Assign => (Ptr_Mbx_Pkg)) —-— passive
Partition (Ptn => 1, Assign => (RCI_1, RCI_2, RCI_3)) —-— active

A more distributed version comprises three partitions. The RCI library units in the
application are assigned to two active partitions.

Partition(Ptn => 0, Assign => (Ptr_Mbx_Pkg)) —-— passive
Partition(Ptn => 1, Assign => (RCI_1)) —-— active
Partition(Ptn => 2, Assign => (RCI_2, RCI_3)) —-— active

A fully distributed version comprises four partitions. The RCI library units in the application
are assigned to three active partitions.

Partition (Ptn => 0, Assign => (Ptr_Mbx_Pkg)) —— passive
Partition(Ptn => 1, Assign => (RCI_1)) —-— active
Partition(Ptn => 2, Assign => (RCI_2)) —-— active
Partition(Ptn => 3, Assign => (RCI_3)) —-— active

E-12 Distributed Systems Ada 95 Rationale: Annexes

Note that there is no need to mention the pure unit Mbx_Pkg because it can be replicated as
necessary. Moreover, generic units do not have to be mentioned since it is only their instances that
really exist.

E.5.1 Dynamically Bound Remote Subprogram Calls

In Ada 95, the core language supports dynamically bound subprogram calls. For example, a
program may dereference an access-to-subprogram object and call the designated subprogram, or it
may dispatch by dereferencing an access-to-class-wide type controlling operand. These two forms
of dynamic binding are also allowed in distributed systems to support the programming of fault-
tolerant applications and changes in communication topology. For example, through dynamically
bound calls, a distributed program may reference subprograms in replicated partitions to safeguard
against the failure of active partitions. In the event of a failure in a called active partition, the
caller can simply redirect the call to a subprogram backup partition.

An advantage of these two forms of dynamic binding is that they relax the requirement for
library units in the the calling partition to semantically depend on the library units containing the
actual remote subprograms. Partitions need only name an RCI or Remote-Types library unit that
includes the declaration of an appropriate general access type; objects of such types may contain
remote access values.

A remote access value designating a subprogram allows naming a subprogram indirectly. The
remote access value is restricted to designating subprograms declared in RCI library units. This
ensures that the appropriate stubs for the designated subprograms exist in a receiving (server)
partition. In order to pass remote access values designating subprograms among partitions,
subprograms declared in RCI library units may specify formal parameters of access-to-subprogram
types.

The remote access-to-class-wide type provides an alternative dynamic binding capability that
facilitates encapsulating both data and operations. The remotely callable subprograms are
specified as the primitive operations of a tagged limited type declared in a pure library unit. In an
RCI or Remote-Types library unit, a general access type designating the class-wide type is
declared; this declaration allows the corresponding primitive operations to be remote dispatching
operations when overridden. Similar to the binding using access-to-subprogram types, library
units in the calling partition need only include the RCI or Remote-Types library unit (that declares
the access-to-class-wide type) in their context clause in order to dispatch to subprograms in library
units included in other active partitions.

By restricting dereferencing of such remote access values to occur as part of a dispatching
operation, there is no need to deal with remote addresses elsewhere. The existing model for
dispatching operations corresponds quite closely to the dispatching model proposed for the linker-
provided RPC-receiver procedure suggested in [RM95 E.4].

These dynamic binding capabilities are enhanced further when combined with a name server
partition. Typically, the name server partition provides a central repository of remote access
values. When a remote access value is made available to a client partition, the value can be
dereferenced to execute a remote subprogram call. This avoids a link-time dependence on the
requested service and achieves the dynamic binding typical of a client/server paradigm.

The following library units illustrate the use of access-to-class-wide types to implement a
simple distributed system. The system comprises multiple client partitions, which are
instantiations of Client_Ptn, a mailbox server partition named Mbx_Server_Ptn, and two
partitions to access local and wide-area network mailboxes named Lan_Mbx_ Ptn and
Wan_Mbx_Ptn respectively. A client partition may communicate with other partitions in the
distributed system through a mailbox that it is assigned by the mailbox server. It may post a
message to its mailbox for delivery to another partition (based on the address in the message), or
wait for a message to be delivered to its mailbox. A client may be connected either to the LAN or
the WAN, but this is transparent to the application.

Ada 95 Rationale: Annexes Distributed Systems: E-13

package Mbx_Pkg is
pragma Pure;
type Mail_ Type is
type Mbx_Type is abstract tagged limited private;

procedure Post (Mail : in Mail_ Type;
Mbx : access Mbx_Type) is abstract;
procedure Wait (Mail : out Mail_ Type;
Mbx : access Mbx_Type) is abstract;
private

type Mbx_Type is abstract tagged limited null record;
end Mbx_Pkg;

with Mbx_Pkg; use Mbx_Pkg;

package Mbx_Server_Ptn is
pragma Remote_Call_Interface;
type Ptr_Mbx Type is access all Mbx_Type'Class;
function Rmt_Mbx return Ptr_ Mbx_Type;

end Mbx_Server_ Ptn;

with Mbx_Server_Ptn;
package Lan_Mbx_ Ptn is

pragma Remote_Call_Interface;

function New_Mbx return Mbx_Server_Ptn.Ptr_Mbx_ Type;
end Lan_Mbx_Ptn;

with Mbx_Server_Ptn;
package Wan_Mbx_ Ptn is

pragma Remote_Call_Interface;

function New_Mbx return Mbx_Server_Ptn.Ptr_ Mbx_ Type;
end Wan_Mbx_Ptn;

with Mbx_Pkg;
package body Lan_ Mbx_Ptn is

type Lan_Mbx Type is new Mbx_Pkg.Mbx_Type with ...;
procedure Post (Mail : in Mail_ Type;

Mbx : access Lan_Mbx_Type);
procedure Wait (Mail : out Mail_ Type;

Mbx : access Lan_Mbx_Type);

function New_Mbx return Ptr_Mbx_Type is
begin
return new Lan_Mbx_Type;
end New_Mbx;
end Lan_Mbx_Ptn;

with Mbx_Pkg;
package body Wan Mbx_ Ptn is

with Lan_Mbx_Ptn, Wan_Mbx_Ptn;
package body Mbx_Server_ Ptn is
function Rmt_Mbx return Ptr_ Mbx_Type is

begin
if ... then
return Lan_Mbx_Ptn.New_Mbx;
elsif ... then

return Wan_Mbx_Ptn.New_Mbx;
else

E-14 Distributed Systems Ada 95 Rationale: Annexes

return null;
end if;
end Rmt_Mbx;
end Mbx_Server_ Ptn;

—— The client partitions do not need to with the specific
—-— LAN/WAN mailbox interface packages.
with Mbx_Pkg, Mbx_Server_Ptn,
use Mbx_Pkg, Mbx_Server_Ptn,
procedure Use_Mbx is
Some_Mail : Mail_ Type;
This_Mbx : Ptr_Mbx_Type := Rmt_Mbx;
—-— Get a mailbox pointer for this partition
begin

Post (Some_Mail, This_Mbx);
—— Dereferencing controlling operand This_Mbx
—— causes remote call as part of Post's dispatching
Wait (Some_Mail, This_Mbx) ;

end Use_Mbx;

generic

package Client_Ptn is
pragma Remote_Call_Interface;

end Client_Ptn;

with Use_Mbx;

package body Client_Ptn is

begin

end Client_Ptn;

package Client_Ptn_1 is new Client_Ptn

package Client_Ptn_N is new Client_Ptn

—— Post-compilation partitioning
Partition(Ptn => 0, Assign => (Mbx_Server_Ptn))

Partition(Ptn => 1, Assign => (Lan_Mbx_Ptn))
Partition (Ptn => 2, Assign => (Wan_Mbx_Ptn))
Partition (Ptn => 3, Assign => (Client_Ptn_1))

Partition (Ptn => N+2, Assign => (Client_Ptn_N))

In this next example, there is one controlling partition, and some number of worker partitions,
in a pipeline configuration. The controller sends a job out to a worker partition, and the worker
chooses either to perform the job, or if too busy, to pass it on to another worker partition. The
results are returned back through the same chain of workers through which the original job was
passed. Here is a diagram for the flow of messages:

Job Job Job Job
Controller ————> Wl ———> W2 ———> W3 ———> Wa
<——= <——= <——= <——=
Result Result Result Result

Ada 95 Rationale: Annexes Distributed Systems: E-15

The elaboration of each worker entails registering that worker with the controller and
determining which other worker (if any) the job will be handed to when it is too busy to handle the
job itself. When it receives a job from some other worker, it also receives a "return" address to
which it should return results. The workers are defined as instances of a generic RCI library unit.

The first solution uses (remote) access-to-subprogram types to provide the dynamic binding
between partitions. Two access-to-subprogram types are declared in the RCI library unit
(Controller) that designate the procedures to perform the work and return the results. In
addition, this library unit declares two procedures; one to register and dispense workers for the
pipeline and one to receive the final results. An instantiation of a generic RCI library unit
(Worker) declares the actual subprograms for each worker. The locations of these procedures are
made available as remote access values; elaboration of Worker registers the Receive_Work
procedure with the Controller.

package Controller is
pragma Remote_Call_Interface;

type Job_Type is ...;
—— Representation of job to be done
type Result_Type is ...;

—— Representation of results
type Return_Address is access procedure (Rslt : Result_Type);
—— Return address for sending back results
type Worker Ptr is access

procedure (Job : Job_Type; Ret : Return_Address);
—-— Pointer to next worker in chain
procedure Register_ Worker (Ptr : Worker_Ptr;

Next : out Worker_ Ptr);
—— This procedure is called during elaboration
-— to register a worker. Upon return, Next contains
—-— a pointer to the next worker in the chain.
procedure Give_Results (Rslt : Result_Type);
—— This is the controller procedure which ultimately
—— receives the result from a worker.
end Controller;

with Controller; use Controller;
generic
—— Instantiated once for each worker
package Worker is
pragma Remote_Call_Interface;
procedure Do_Job (Job : Job_Type;
Ret : Return_Address);
—— This procedure receives work from the controller or
—— some other worker in the chain
procedure Pass_Back_Results(Rslt : Result_Type);
—— This procedure passes results back to the worker in the
—— chain from which the most recent job was received.
end Worker;

package body Worker is
Next_Worker : Worker_ Ptr;
—— Pointer to next worker in chain, i1f any
Previous_Worker : Return_Address;
—— Pointer to worker/controller who sent a job most recently

procedure Do_Job (Job : Job_Type;

Ret : Return_Address) is
—— This procedure receives work from the controller or
—-— some other worker in the chain

E-16 Distributed Systems Ada 95 Rationale: Annexes

begin
Previous_Worker := Ret;
—— Record return address for returning results
if This_Worker_Too_Busy
and then Next_Worker /= null then
—-— Forward job to next worker, if any, if
—— this worker is too busy
Next_Worker (Job, Pass_Back_Results'Access);
—— Include this worker's pass—-back-results procedure
—— as the return address
else
declare
Rslt : Result_Type; —-—- The results to be produced
begin
Do The Work (Job, Rslt);
Previous_Worker (Rslt) ;
end;
end if;
end Do_Job;

procedure Pass_Back_Results (Rslt : Result_Type) is
- This procedure passes results back to the worker in the
—— chain from which the most recent job was received.
begin
—— Just pass the results on...
Previous_Worker (Rslt) ;
end Pass_Back_Results;
begin
—-— Register this worker with the controller
—-— and obtain pointer to next worker in chain, if any
Controller.Register_Worker (Do_Job'Access, Next_Worker);
end Worker;

—-— Create multiple worker packages
package W1l_RCI is new Worker;

package WO9_RCI is new Worker;

—— Post—-Compilation Partitioning
—-— Create multiple worker partitions
Partition(Ptn => 1, Assign => (W1_RCI))

Partition(Ptn => 9, Assign => (W9_RCI))
—— create controller partition
Partition(Ptn => 0, Assign => (Controller))

The second solution uses (remote) access-to-class-wide types to provide the dynamic binding
between partitions. A root tagged type is declared in a pure package Common. Two derivatives are
created, one to represent the controller (Controller_ Type), and one to represent a worker
(Real_worker). One object of Controller_Type is created, which will be designated by the
return address sent to the first worker with a job. An object for each worker of the Real_Worker
type is created, via a generic instantiation of the One_wWorker generic. All of the data associated
with a single worker is encapsulated in the Real_ Worker type. The dispatching operations
Do_Job and Pass_Back_Results use the pointer to the Real_Worker (the formal parameter w)
to gain access to this worker-specific data.

Ada 95 Rationale: Annexes Distributed Systems: E-17

The access type Worker_Ptr is used to designate a worker or a controller, and can be passed
between partitions because it is a remote access type. Normal access types cannot be passed
between partitions, since they generally contain partition-relative addresses.

package Common is
—— This pure package defines the root tagged type
—— used to represent a worker (and a controller)
pragma Pure;

type Job_Type is ...;
—— Representation of Job to be done
type Result_Type is ...;

—— Representation of results
type Worker_ Type is abstract tagged limited private;
—-— Representation of a worker, or the controller
procedure Do_Job (W : access Worker_Type;

Job : Job_Type;

Ret : access Worker_ Type'Class) is abstract;
—— Dispatching operation to do a job
—-— Ret may point to the controller
procedure Pass_Back_Results (W : access Worker_ Type;

Rslt : Result_Type) is abstract;
—— Dispatching operation to pass back results
private

end Common;

with Common; use Common;
package Controller is
pragma Remote_Call_Interface;
type Worker_ Ptr is access all Common.Worker_ Type'Class;
—— Remote access to a worker
procedure Register_ Worker (Ptr : Worker_ Ptr;
Next : out Worker_ Ptr);
—— This procedure is called during elaboration
—— to register a worker. Upon return, Next contains
—— a pointer to the next worker in the chain.
end Controller;

package body Controller is
First_Worker : Worker_ Ptr := null;
—— Current first worker in chain
type Controller_Type is new Common.Worker_ Type;
-— A controller is a special kind of worker,
—-— it can receive results, but is never given a job
The_Controller : Controller_Type;
—— The tagged object representing the controller
Controller_Is_Not_A_ Worker : exception;
procedure Do_Job (W : access Controller_ Type;
Job : Job_Type;
Ret : access Worker Type'Class) is
—— Dispatching operation to do a job
begin
raise Controller_Is_Not_A_Worker;
—— Controller never works (lazy pig)
end Do_Job;

procedure Pass_Back_Results (W : access Controller_Type;
Rslt : Result_Type) 1is
—— Dispatching operation to receive final results

E-18 Distributed Systems Ada 95 Rationale: Annexes

begin
Do Something With Result (Rslt);
end Pass_Back_Results;

procedure Register_Worker (Ptr : Worker_ Ptr;
Next : out Worker_Ptr) is
—— This procedure is called during elaboration

—— to register a worker. It receives back
—— a pointer to the next worker in the chain.

begin
—-— Link this worker into front of chain gang
Next := First_Worker;
First_Worker := Ptr;

end Register_Worker;

begin

—— Once all workers have registered, Controller initiates

—— the pipeline by dispatching on Do_Job with First_Worker

—-— as the controlling operand; Controller then awaits the

—-— results to be returned (this mechanism is not specified).
end Controller;

with Common; use Common;
with Controller; use Controller;
package Worker_ Pkg is
—— This package defines the Real_Worker type
—— whose dispatching operations do all the
—— "real" work of the system.
—— Note: This package has no global data;
—-— All data is encapsulated in the Real_Worker type.
type Real Worker is new Common.Worker_ Type with
record
Next : Worker_Ptr;
—— Pointer to next worker in chain, i1f any
Previous : Worker_ Ptr;
—— Pointer to worker/controller who sent
—-— us a job most recently
—— other data associated with a worker
end record;

procedure Do_Job (W : access Real_ Worker;
Job : Job_Type;
Ret : access Worker_ Type'Class);
—— Dispatching operation to do a job
procedure Pass_Back_Results (W : access Real_ Worker;
Rslt : Result_Type);
—-— Dispatching operation to pass back results
end Worker_Pkg;

package body Worker_Pkg is
procedure Do_Job (W : access Real_ Worker;
Job : Job_Type;
Ret : access Worker_ Type'Class) is
—— Dispatching operation to do a job.
—— This procedure receives work from the controller or
—— some other worker in the chain.
begin
W.Previous := Worker_Ptr (Ret);
—— Record return address for returning results

Ada 95 Rationale: Annexes Distributed Systems: E-19

if W.This_Worker_Too_Busy
and then W.Next /= null then
—-— Forward job to next worker, if any, if
—-— this worker is too busy
Common.Do_Job (W.Next, Job, W);
—-— now dispatch to appropriate Do_Job,
—— include a pointer to this worker
—-— as the return address.

else
declare
Rslt : Result_Type; -——- The results to be produced
begin
Do The Work (Job, Rslt);
Common.Pass_Back_Results (W.Previous, Rslt);
—— dispatch to pass back results
—— to another worker or to the controller
end;
end if;

end Do_Job;

procedure Pass_Back_Results (W : access Real_ Worker;
Rslt : Result_Type) is
—— Dispatching operation to pass back results
—— This procedure passes results back to the worker in the
—— chain from which the most recent job was received.
begin
—— Pass the results to previous worker
Common.Pass_Back_Results (W.Previous, Rslt);
end Pass_Back_Results;
end Worker_Pkg;

generic

—-— Instantiated once for each worker
package One_Worker is

pragma Remote_Call_Interface;
end One_Worker;

with Worker_Pkg;
with Controller;
package body One_Worker is

The_Worker : Worker_Pkg.Real_Worker; —-- The actual worker
begin

—— Register this worker "object"

Controller.Register_Worker (The_Worker'Access, The_Worker.Next);
end One_Worker;

—-— Create multiple worker packages
package W1l_RCI is new One_Worker;

package W9_RCI is new One_Worker;

—— Post-Compilation Partitioning
—-— Create multiple worker partitions
Partition(Ptn => 1, Assign => (W1_RCI))

Partition(Ptn => 9, Assign => (W9_RCI))
—— create controller partition
Partition(Ptn => 0, Assign => (Controller))

E-20 Distributed Systems Ada 95 Rationale: Annexes

E.6 Configuring a Distributed System

In the previous examples, post-partitioning has been illustrated in terms of the library units that
comprise a partition. The configuration of partitions to nodes has been omitted since this is
beyond the scope of the Annex. For example, whether partitions may share the same node is
implementation defined. The capability for a passive partition to share a node with multiple active
partitions would allow a distributed system to be configured into a standard, multiprogramming
system, but this may not be practical for all environments.

The mapping of partitions to the target environment must be consistent with the call and data
references to RCI and shared passive library units, respectively. This requires only that the target
environment support the necessary communication connectivity among the nodes; it does not
guarantee that active partitions are elaborated in a particular order required by the calls and
references. To allow partitions to elaborate independently, a remote subprogram call is held until
the receiving partition has completed its elaboration. If cyclic elaboration dependencies result in a
deadlock as a result of remote subprogram calls, the exception Program_Error may be raised in
one or all partitions upon detection of the deadlock.

The predefined exception Communication_Error (declared in package System.RPC) is
provided to allow calling partitions to implement a means for continuing execution whenever a
receiving partition becomes inaccessible. For example, when the receiving partition fails to
elaborate, this exception is raised in all partitions that have outstanding remote calls to this
partition.

To maintain interface consistency within a distributed system, the same version of an RCI or a
shared passive library unit specification must be used in all elaborations of partitions that reference
the same library unit. The consistency check cannot happen before the configuration step. (The
detection of unit inconsistency, achievable when linking a single Ada program, cannot be
guaranteed at that time for the case of a distributed system.) It is implementation defined how this
check is accomplished; Program_Error may be raised but in any event the partions concerned
become inaccessible to one another (and thus later probably resulting in
Communication_Error); see [RM95 E.3].

In addition to the partition termination rules, an implementation could provide the capability
for one partition to explicitly terminate (abort) another partition; the value of the attribute
Partition_ID may be used to identify the partition to be aborted. If a partition is aborted while
executing a subprogram called by another partition, Communication_Error will be raised in the
calling partition since the receiving partition is no longer accessible.

E.7 Partition Communication Subsystem

The partition communication subsystem (PCS) is notionally compatible with the proposed
Communications Model specified by the in-progress recommendations of the ISO RPC Committee
Draft. The Annex requires that, as a minimum capability, the PCS must implement the standard
package RPC to service remote subprogram calls. Standardizing the interface between the
generated stubs for remote subprogram calls and the message-passing layer of the target
communications software (the RPC package) facilitates a balanced approach for separating the
implementation responsibilities of supporting distributed systems across different target
environments.

The remote procedure call (RPC) paradigm was selected as the specified communication
facility rather than message passing or remote entry call because of the following advantages of
RPC:

. The RPC paradigm is widely implemented for interprocess communication between
processes in different computers across a network. Several standards have been initiated
by organizations such as ISO and OSF. Furthermore, emerging distributed operating
system kernels promote support for RPC. Such considerations require that a language for

Ada 95 Rationale: Annexes Distributed Systems: E-21

programming distributed systems provide RPC as a linguistic abstraction. Finally, the
need for RPC support is identified in U.S. Government initiatives towards developing open
systems.

. A tenet of the revision is to maintain the type safety properties of the existing standard.
Type-safe interfaces among partitions are a consequence of using the RPC paradigm. RPC
is a compatible extension of the standard which, unless included in the Annex, would be
difficult to support (by user-defined facilities) since detailed information on the compiler
implementation is required.

. The RPC paradigm allows programs to be written with minimal regard for whether the
program is targeted for distributed or nondistributed execution. Except in the instance of
asynchronous procedure calls, the execution site implies no change in semantics from that
of a local subprogram call. This is necessary for partitioning library units into various
distributed configurations in a seamless or transparent manner. Furthermore, the use of
RPC maintains concurrency/parallelism as orthogonal to distribution. This orthogonality
reduces the complexity of the run-time system and allows remote references to be
controlled through straightforward restrictions.

. The asynchronous form of RPC relaxes the normal synchronous semantics of RPC. This
facilitates programming efficient application-specific communication paradigms where at-
most-once semantics are not required.

Ada 95 includes important enhancements that allow dynamic subprogram calls using access-
to-subprogram types and tagged types. To restrict these enhancements to nondistributed programs
is likely to promote criticism similar to the absence of dynamic calls in Ada 83. In addition, the
capability to support remote dispatching is an important discriminator between Ada 95 and other
competing languages.

Package System.RPC

This package specifies the standard interface necessary to implement stubs at both the calling and
receiving partitions for a remote subprogram call. The interface specifies both the actual
operations and the semantic conditions under which they are to be used by the stubs. It is also
adaptable to different target environments. Additional non-standard interfaces may be specified by
the PCS. For example, a simple message passing capability may be specified for exchanging
objects of some message type using child library units.

(Note that the normal user does have to use this package but only the implementer of the
communication system.)

The package specifies the primitive operations for Root_Stream_ Type to marshall and
unmarshall message data by using the attributes Read and Write within the stubs. This allows an
implementation to define the format of messages to be compatible with whatever message-passing
capability between partitions is available from the target communication software.

The routing of parameters to a remote subprogram is supported by the Partition_ID type
that identifies the partition, plus implementation-specific identifiers passed in the stream itself to
identify the particular RCI library unit and remote subprogram. A value of type Partition_ID
identifies the partition to which a library unit is assigned by the post-compilation partitioning.

The procedures RPC and APC support the generation of stubs for the synchronous and
asynchronous forms of remote subprogram call. Each procedure specifies the partition that is the
target of the call and the appropriate message data to be delivered. For the synchronous form, the
result data to be received upon the completion the call is specified. As a consequence, the task

E-22 Distributed Systems Ada 95 Rationale: Annexes

originating the remote subprogram call is suspended to await the receipt of this data. In contrast,
the asynchronous form does not suspend the originating task to await the receipt of the result data.

To facilitate the routing of remote calls in the receiving partition, the procedure
Establish_RPC_Receiver is specified to establish the interface for receiving a message and for
dispatching to the appropriate subprogram. The interface is standardized through the parameters
specified for an access-to-subprogram type that designates an implementation-provided RPC-
receiver procedure. In this way, post-compilation support can link the necessary units and data to
the RPC-receiver procedure. Once the RPC-receiver procedure has been elaborated, it may be
called by the PCS.

A single exception Communication_Error is specified to report error conditions detected
by the PCS. Detailed information on the precise condition may be provided through the exception
occurrence. These conditions are necessarily implementation-defined, and therefore, inappropriate
for inclusion in the specification as distinct exception names.

E.7.1 The Interaction Between the Stubs and the PCS

The execution environment of the PCS is defined as an Ada environment. This is done in order to
provide Ada semantics to serving partitions. In the calling and receiving partitions, the canonical
implementation relies upon the Ada concurrency model to service stubs. For example, in the
calling partition, cancellation of a synchronous remote call, when the calling task has been aborted,
requires that the PCS interrupt the Do_RPC operation to execute the cancellation. In the receiving
partition, the stub for a remote subprogram is assumed to be called by the RPC-receiver procedure
executing in a task created by the PCS.

E.8 Requirements Summary
The facilities of the Distributed Systems annex relate to the requirements in 8.1 (Distribution of
Ada Applications) and 8.2 (Dynamic Reconfiguration of Distributed Systems).

More specifically, the requirement

R8.1-A(1) — Facilitating Software Distribution

is met by the concept of partitions and the categorization of library units and the requirement

R8.2-A(1) — Dynamic Reconfiguration

is addressed by the use of remote access to subprogram and access to class wide types for dynamic
calls across partitions.

Ada 95 Rationale: Annexes Information Systems: F-1

F Information Systems

One of the major goals of Ada 95 is to provide the necessary language facilities for the
development of large-scale information systems that previously have been produced in COBOL
and 4GLs. To a large extent, core language enhancements such as child units and object-oriented
programming, and the new support for distribution, serve to meet this goal. However, there are
also specific requirements at the computational level and for report-oriented output that must be
addressed in order to ensure applicability to financial and related Information Systems
applications. The major needs are

. Exact, decimal arithmetic for quantities up to at least 18 digits of precision;

. The ability to produce human-readable formats for such values, with control over the form
and placement of currency symbol, sign, digits separator, and radix mark;

. The ability to interface with data produced by, or programs written in, other languages (in
particular C and COBOL).

This chapter describes the facilities and gives the reasons for the major decisions taken in Ada 95
to satisfy these requirements.

F.1 Decimal Computation

A numeric model highly appropriate for information systems, especially for financial applications,
is that supplied by the COBOL language. In COBOL the programmer defines numeric items via a
"picture" in terms of a specified number of decimal digits and the placement of the decimal point.
The arithmetic verbs provide exact arithmetic, with control over truncation versus rounding on a
per-computation basis. For example:

05 FRACTION PIC S9V99 VALUE .25.
05 ALPHA PIC S9999v9 VALUE 103.
05 BETA PIC S9999V9.

FRACTION has values in the range —9.99 through 9.99, and each of ALPHA and BETA is in the
range —9999. 9 through 9999.9.

MULTIPLY ALPHA BY FRACTION GIVING BETA ROUNDED.
* Now BETA = 25.8, the rounded value of 25.75

ADD ALPHA TO BETA.
* Now BETA = 128.8

DIVIDE BETA BY 10.
* Now BETA = 12.8, since truncation is the default

It is also possible to express the above calculation more succinctly in COBOL.:

COMPUTE BETA = (ALPHA * FRACTION + ALPHA) / 10.

F-2 Information Systems Ada 95 Rationale: Annexes

However, the effect of rounding versus truncation is now implementation dependent, so the result
may be either 12.8 or 12.9.

F.1.1 Decimal Arithmetic through Discriminated Type

In addressing the exact computational requirements, we examined several alternatives. One was to
rely on a private discriminated type, with discriminants reflecting scale and precision. (The
terminology here is the same as in SQL [ISO 92]: precision is the total number of decimal digits;
scale is the number of digits after the decimal point.) For example

package Computation is
subtype Scale_Range is
Integer range implementation-defined .. implementation-defined;
subtype Precision_Range is
Positive range 1 .. implementation-defined;
type Decimal (Precision : Precision_Range;
Scale : Scale_Range) is private;
—— Subprograms for arithmetic
end Computation;

Such an approach would have the benefit of separability from the core features, but its
numerous drawbacks led to its rejection:

. Literals are unavailable for private types, hence the programmer would need to perform
explicit conversions either from String or from a specific real type. Such a style would
be both inefficient and aesthetically displeasing. In an early version of the Ada 9X
mapping there was a capability to obtain numeric literals for private types, but this was
removed as a simplification.

. Non-trivial optimizations are needed to avoid time and space overhead. In COBOL
precision and scale are known at compile time, so the compiler can generate efficient code.
The discriminated type approach lets the programmer defer specifying the precision and
scale until run time, but the generality comes at a price.

. A problem often cited with the COBOL model is the lack of typing. For example, if by
mistake a COBOL programmer adds a unitless fraction to a salary, this error will not be
detected by the compiler. To obtain compile-time protection from such an error in Ada,
the programmer would need to derive from type Decimal, for example to declare the
types Fraction and Salary. However, derivation provides more operations than make
sense and hence other kinds of errors could still arise (for example, multiplying a Salary
by a Salary to obtain a Salary). At the same time it yields less than what is needed; for
example, it would be useful to be able to divide two Salary values and obtain a
Fraction, but this would not be provided automatically. Although both of these
problems could be solved by the programmer providing some additional explicit
declarations, programmers might be tempted to forego the type derivations (and the
resulting safety) and to simply declare all their data of type Decimal.

. Specifying just precision and scale allows more values than might be sensible. For
example, if we want a fraction value to be in the range 0.00 .. 1.00, we need to specify
Decimal (Precision=>3, Scale=>2), but this allows all values in the range -9.99 ..
9.99.

Another major problem with the discriminated type approach is the error-prone effects of having
arithmetic operators take parameters of type Decimal and deliver a result of type Decimal.

Ada 95 Rationale: Annexes Information Systems: F-3

Division in particular is troublesome; languages that attempt to address the issue lead inevitably to
anomalies. For example, the well-known curiosity in PL/I is that the operation 10+1/3 overflows,
since the language rules attempt to maximize the precision of the quotient. Moreover, the rules for
precision and scale of an arithmetic result would clash with the need for discriminant identity on
assignment. For example, consider the simple fragment:

declare
Salary : Decimal (Precision => 9, Scale => 2);
-— Values in -99 999 99.99 .. 99 999 999.99
Fraction : Decimal (Precision => 2, Scale => 2);
-— Values in -0.99 .. 0.99
begin
Salary := Salary * Fraction;
end;

The intuitive rule for "*" would be to define the precision of the result as the sum of the
precisions of the operands, and similarly for the scale. Thus Salary*Fraction would have
precision 11 and scale 4, sufficient to hold any product. But then the rules for discriminant
matching would cause Constraint_Error to be raised by the assignment to Salary.

A possible solution would be to introduce special rules for discriminant matching in such
cases, but this adds complexity. An alternative would be to omit the operator forms for the
arithmetic subprograms and instead to provide a procedural interface with an out parameter,
thereby making the result precision and scale known at the point of call. For example:

procedure Multiply
(Left, Right : in Decimal;
Result : out Decimal;
Rounding : in Boolean := False);

Although such an approach has been successfully applied in the Ada 83 Decimal Arithmetic
and Representation components [Brosgol 92], the other drawbacks led us to seek alternative
solutions for Ada 95.

F.1.2 Decimal Arithmetic and Ada 83 Numeric Types

The Ada 83 numeric types give us a choice among integer, floating point, and fixed point. In some
sense integer arithmetic provides the most appropriate computational model, since it matches the
requirements for exact results. For example, one might consider using an integer type Pennies to
represent monetary values. However, this would be impractical for several reasons: the absence of
real literals is a hardship, keeping track of implicit scaling is awkward, and many compilers do not
support the 64-bit integer arithmetic that would be needed for 18 digits of accuracy.

Floating point is unacceptable because of the inherent inexactness of representing decimal
quantities. Consider the following program fragment, where X is a floating point variable:

X := 0.0;

for I in 1 .. 10 loop
X :=X + 0.10;

end loop;

After execution of the loop using typical floating point hardware, X will not equal 1.00.
Moreover, 64-bit floating point does not have enough mantissa bits to represent 18 decimal digits.

At first glance, fixed point seems no better. The apparent motivations behind the fixed point
facility in Ada were to deal with scaled data coming in from sensors in real-time applications, and

F-4 Information Systems Ada 95 Rationale: Annexes

to provide a substitute for floating point in target environments lacking floating point hardware.
Indeed, the inherent bias toward powers of 2 for the attribute Small in the Ada 83 fixed point
model seems at odds with the needs of decimal computation.

However, fixed point provides a closer fit than might be expected [Dewar 90b]. The Ada 83
unification of floating point and fixed point under the category of "approximate" computation is
more artificial than real, since the model-number inaccuracy that is appropriate in the floating
point case because of differences in target hardware is not applicable at all to fixed point. The
fixed point arithmetic operations "+", "-", "*"_"/" are exact, and through a Small
representation clause the programmer can specify decimal scaling. Thus consider a COBOL
declaration

05 SALARY PICTURE S9(6)V9(2) USAGE COMPUTATIONAL.

which defines SALARY as a signed binary data item comprising 8 decimal digits, of which 2 are
after the assumed decimal point. This can be simulated in Ada:

type Dollars is delta 0.01 range -999_999.99 .. 999_999.99;
for Dollars'Small use 0.01;

Salary : Dollars;

The programmer-specified Small not only provides the required decimal scaling, it also prevents
the implementation from supplying extra fractional digits. This is important in financial
applications: if the programmer requests 2 fractional digits, it would be incorrect for a compiler to
provide 3.

The fixed point approach immediately avoids several of the problems with discriminated
types: we get numeric literals, compile-time known scales and precisions, strong typing, and the
ability to specify logical ranges. Moreover, the rules for the arithmetic operators are fitting. The
"+" and "-" operators require identical operand types and deliver a result of the same type, which
is an intuitively correct restriction. Adding or subtracting quantities with different scales is not a
frequent situation; when it arises, it is reasonable to require an explicit conversion to indicate the
rescaling. Automatic availability of mixed-type "*" and "/" also makes sense.

There are, however, several problems with adopting the Ada 83 fixed point model unchanged
for decimal arithmetic.

. The Ada fixed point model leads to occasional surprises, even in the presence of a Small
representation clause. For example, one or both endpoints supplied in the definition of a
fixed point type may be absent from the implemented range for the type.

. The Ada 83 fixed point rules require conversions of real literals (and named numbers of
type universal_real) that appear as factors in multiplication or division. Without the
programmer providing an explicit declaration of an applicable "*" operator, it would be
illegal to write:

Worker_Salary := 1.05 * Worker_Salary;
Instead, something like the following circumlocution is required:

Worker_Salary := Dollars (Some_Type (1.05) * Worker_Salary);
The need for the programmer to supply either these explicit conversions or an explicit
overloading of "*", is somewhat embarrassing. In COBOL the equivalent functionality

can be obtained directly:

MULTIPLY WORKER-SALARY BY 1.05.

Ada 95 Rationale: Annexes Information Systems: F-5

. The previous example illustrates another serious problem: Ada fixed point does not give a
well-defined result for the conversion of values. That is, the language does not guarantee
whether the result of a fixed point conversion is to be rounded or truncated. In fact,
different evaluations of the same expression in the same program could yield different
results, an unwelcome nondeterminism.

. Facilities such as edited output, and a division operation delivering both a quotient and
remainder, are not defined for fixed point types.

F.1.3 Decimal Arithmetic through Decimal Types

Since fixed point comes reasonably close to satisfying the requirements for decimal arithmetic, our
decision was to use that facility as the basis for a solution. Ada 95 thus introduces a new class of
fixed point types, the decimal types, distinguished syntactically by the presence of a positive
integer digits value following the delta in a fixed point definition. The delta .. digits ..
syntax, suggested by David Emery [Emery 91], has the advantage of identifying the type
immediately as a special kind of fixed point type (the delta) without requiring new reserved
words.
The delta value must be a power of 10. For example:

type Francs is delta 0.01 digits 9;
This declaration is similar in effect to the Ada 83 fragment:

type Francs is delta 0.01 range - (10.0**9 - 1.0) .. 10.0**9 - 1.0;
for Francs'Small use 0.01;

The digits value in a decimal fixed point type definition thus implies a range constraint.
For a decimal type with delta D and digits N (both of which must be static), the implied range is
- (10.0**N - 1.0)*D .. (10.0**N - 1.0)*D. Moreover, a range constraint may be
further supplied at the definition of a decimal type or subtype, and at the declaration of objects.
For example:

type Salary is delta 0.01 digits 8 range 0.00 .. 100_000.00;
subtype Price is Francs range 0.00 .. 1000.00;
Worker_Salary : Salary range 0.00 .. 50_000.00;

The ordinary fixed point operations, such as the arithmetic operators and fixed point
attributes, are available for decimal types. There are, however, several important differences:

. For a decimal subtype s, the conversion S (expr) where expr is of some numeric type is
defined to truncate (towards 0) rather than having an unspecified effect.

. To obtain a rounded result for an expression expr having a real type, the function attribute
S'Round (expr) can be used. This attribute is not available for ordinary fixed point
types.

. Other attributes apply only to decimal subtypes: for example, S'Digits and S'Scale.

The former reflects the value of digits supplied for the declaration of s. The latter is the
number of digits after the decimal point in values of S and is related to S'Delta by the
equation

10.0** (-S'Scale) = S'Delta

F-6 Information Systems Ada 95 Rationale: Annexes

A stylistic issue noted above, namely the inability in Ada 83 to write simple statements such
as:

Worker_Salary := 1.05 * Worker_Salary;

has been solved in Ada 95 for fixed point types in general. The revised rules permit a
universal_fixed value to be implicitly converted to a specific target type if the context uniquely
establishes the target type. Thus there is no need to convert to Salary the product on the right
side of the assignment. Another new rule allows a universal_real value to be used as an operand
to a fixed point "*" and "/"; thus there is no need to convert the literal 1.05 to a specific type.
Although these enhancements are motivated by considerations with decimal types, it makes no
sense either from an implementation or user viewpoint to apply the new rules only to decimal
types, and thus they have been generalized for ordinary fixed point types as well.

Given that decimal types come equipped with their own operations, it is natural to introduce a
category of generic formal type that can only be matched by decimal subtypes. The syntax for
such a generic formal type is what one would expect:

type T is delta <> digits <>;

The actual subtype supplied for a formal decimal type must be a decimal subtype. This makes
sense, since an ordinary fixed point subtype does not have all the necessary operations. On the
other hand, there is a design issue whether to permit an actual decimal subtype to match a formal
fixed point type (one given by delta <>). Such permission would seem to be useful, since it
would allow existing Ada 83 fixed point generics to be matched by Ada 95 decimal subtypes.
However, it would introduce some implementation difficulties, especially for those compilers that
attempt to share the code of the template across multiple instances. The fact that some operations
(in particular numeric conversion) behave differently for decimal and ordinary fixed point would
also cause complications if decimal subtypes were permitted to match formal fixed point types.
Thus the decimal fixed point types are defined to form a class disjoint from ordinary fixed point
types with respect to generic matching.

Formal decimal types are exploited to provide edited output (see below) as well as division
delivering both a quotient and a remainder.

One of the requirements for information systems applications is the ability to perform edited
output of decimal quantities. We considered introducing decimal subtype attributes for this effect;
for example S'Image (X, Picture) would return a String based on the value of X and the
formatting conventions of Picture. However, this approach would have introduced implementa-
tion complexity out of proportion to the notational benefit for users. The type of Picture is
defined in an external package, making such an attribute rather atypical, and support would affect
the compiler and not simply require a supplemental package. Instead, picture-based output is
obtained via generics, as described below.

F.1.4 Internal Representation for Decimal Objects

Ada and COBOL have a somewhat different philosophy about internal data representation.
Through the USAGE clause the COBOL programmer furnishes information about how numeric
items will be represented, either explicitly (such as BINARY, DISPLAY, PACKED-DECIMAL) or by
default (DIspLAY). COBOL's default representation opts for data portability versus computational
efficiency.

Ada's approach to data representation, for types in general and not just decimal, is to let the
compiler decide based on efficiency, and to let the programmer override this choice explicitly
when necessary. For decimal types this is achieved through the Machine_Radix attribute and the
corresponding attribute definition clause.

An object of a decimal type, as with fixed point in general, may be viewed as the product of
an integer mantissa (represented explicitly at run time) and the type's delta (managed at compile

Ada 95 Rationale: Annexes Information Systems: F-7

time). The type's Machine_Radix determines the representation of the mantissa: a value of 2
implies binary, while a value of 10 implies decimal. The compiler will choose an implementation-
defined machine radix by default, which the programmer can override with an explicit attribute
definition clause. Consider the following example, where the implementation's default for all
decimal types is binary machine radix:

type Money_2 is delta 0.01 digits 18;
type Money_ 10 is delta 0.01 digits 18;
for Money_10'Machine_Radix use 10;

An object of type Money_2 is represented in binary; on typical machines it will occupy 64 bits
(including a sign).

An object of type Money_ 10 is represented in decimal; it will take 18 digits (and a sign). The
exact representation is unspecified, and in fact different machines have different formats for
packed decimal concerning how the sign is encoded. If a decimal type's machine radix is 10, then
the compiler may also generate packed-decimal instructions for arithmetic computation. Whether
it chooses to do so, rather than converting to/from binary and using binary arithmetic, depends on
which is more efficient.

The only difference in behavior between decimal and binary machine radix, aside from
performance, is that some intermediate results might overflow in one case but not the other. For
example, if Money_10 values are represented in 19 digits (an odd number is typical for packed
decimal, since the sign can be stored in the same byte as a digit), and Money_2 values occupy 64
bits, then a computation such as (100.0 * Money) /100.0 will overflow if Money has type
Money_ 10, but not if Money has type Money_ 2, where Money is 10.0**18 - 1.0.

Implementations using packed decimal are encouraged to exploit subtype digits constraints
for space economization. For example:

Pay : Money_10 digits 9;

The compiler can and should represent Pay in 9 digits rather than 18 as would be needed in
general for Money_10.

Ada does not provide the equivalent of DISPLAY usage for decimal data, since computation
on character strings would be inefficient. If the programmer wishes to store decimal data in an
external file in a portable fashion, the recommended approach is to convert via the To_Display
function in Interfaces.COBOL.Decimal_Conversions; see B.3.

F.1.5 Compliance

The decimal type facility is part of the core language; thus the syntax for decimal types and for
formal generic decimal types must be supported by all implementations. However, since a
compiler needs to implement ordinary fixed point only for values of Small that are powers of 2, it
may reject the declaration of a decimal type and also the declaration of a generic unit with a formal
decimal type parameter. To be compliant with the Information Systems Annex a compiler must
implement decimal types and must also allow digits values up to at least 18.

We had considered requiring support for decimal types (but without the 18 digit capacity) for
all implementations. However, this was judged a heavy implementation burden for a facility
whose usage is fairly specialized.

F.2 Edited Output

A facility essential for financial and other Information Systems applications and long established
in COBOL is the ability for the programmer to dictate the appearance of numeric data as character

F-8 Information Systems Ada 95 Rationale: Annexes

strings, for example for reports or for display to human readers. Known as edited output, such a
facility allows control over the placement and form of various elements:

. The sign;

. The radix mark, which separates the integer part of the number from the fraction;

. The digits separator, which separates groups of digits to improve readability;

. The currency symbol;

. The treatment of leading zeros, for example whether they should appear explicitly as '0"'

characters, as blank space, or as a string of occurrences of a "check protection" character.

COBOL's approach is to associate a "picture string" with the target data item for the edited
output string. When a numeric value is moved to that target item, the associated picture
determines the form of the output string. For example:

05 OUTPUT-FIELD PIC S$,2Z9.99.
05 DATA-1 PIC S9999Vv99 VALUE -1234.56.

MOVE DATA-1 TO OUTPUT-FIELD.

The contents of OUTPUT-FIELD after the move are "-$bb1l,234.56" where 'b' denotes the
blank character.

F.2.1 General Approach

Textual I/O for decimal types is obtained in the same fashion as for other numeric types, by
generic instantiation. The generic package Decimal_ IO in Text_IO supplies Get and Put
procedures for a decimal type with analogous effects to Get and Put in Text_IO.Fixed_IO for
an ordinary fixed point type. Supplementing these facilities is a child package Text_I0.Editing
in the Information Systems Annex, which provides several facilities:

. A private type Picture and associated operations. A Picture object encodes the
formatting information supplied in a "picture string" concerning the placement of so-called
"editing characters" in an output string;

. Constants for the default localization elements. These elements comprise the currency
string, and the characters for fill of leading zeros, for digits separation, and for the radix
mark;

. A generic package Decimal_oOutput allowing COBOL-style edited output for decimal
types.

The Decimal_Output package supplies an Image function and several Put procedures,
each taking an Item parameter (of the decimal type), a Pic parameter (of type Picture), and
parameters for the localization effects. The default values for the localization parameters can be
supplied as generic parameters; if not, then the default values declared in the enclosing package
Text_T0.Editing are used.

An alternative that we considered for the picture parameter was to have it directly as a
String, but this would make optimizations difficult. Hence package Editing supplies a private
type Picture, conversion functions between String and Picture, and a function valid that
checks a string for well-formedness. Since picture strings are dynamically computable, the

Ada 95 Rationale: Annexes Information Systems: F-9

approach provides substantial flexibility. For example, an interactive program such as a
spreadsheet could obtain the picture string at run time from the user. On the other hand, if the
programmer only needs static picture strings, the compiler can exploit this and produce optimized
inline expansions of calls of the edited output subprograms.

An example of a typical usage style is as follows:

with Text_TO.Editing;
procedure Example is
use Text_IO.Editing;
type Salary is delta 0.01 digits 9;
package Salary_Output is new Decimal_Output (Salary);

S : Salary;

S_Pic : constant Picture := To_Picture ("S$*_**x*_**9 _99") .
begin

S := 12345.67

Salary_Output.Put (S, S_Pic); —— Produces "$***12,345.67"

end Example;

We recognize that someone coming to Ada from COBOL may find the style somewhat
unusual. In COBOL, performing edited output involves simply defining a picture and doing a
MOVE, whereas in Ada 95 it is necessary to instantiate a generic, convert a string to a private type,
and invoke a subprogram. However, this is principally a training and transition issue, which
experience has shown to be solvable via an appropriate pedagogical style. Moreover, generics and
private types are features of Ada that all programmers will need to understand and employ. Since
these features apply naturally to the problem of edited output, there is little point in trying to
disguise this.

F.2.2 Relationship to COBOL Edited Output

There are several reasons for basing the Ada 95 edited output facility directly on COBOL. First,
the programmer population toward whom Ada 95's information systems support is targeted
comprises largely COBOL users. Second, although enhanced edited output mechanisms have
appeared in modern spreadsheet utilities, their proprietary nature makes commercial products an
unappealing candidate as a source of specific features.

Still there was the issue of whether to adopt COBOL's "picture” approach as closely as
possible, or to use it more loosely as the basis for a more comprehensive but possibly incompatible
facility. We have taken the former approach for several reasons:

. To redesign the edited output facility from starting principles would have required a
detailed review of the entire history behind the current COBOL standard's approach, an
effort that would have been outside the scope of the Ada 9X project.

. Basing the Ada 95 edited output rules directly on COBOL obviously reduces the learning
curve for COBOL programmers.

As a result the rules for picture string formation and interpretation for edited output are
identical to those in ISO standard COBOL, except for the following:

. In Ada the picture characters for currency symbol, digits separator, and radix mark are not
overridable. 's' and '#' are the currency symbols, '_"' is the digits separator and ' . ' is
the radix mark. No other characters can be used for these purposes in the picture string.

. On the other hand, Ada provides more flexibility than COBOL in the run-time localization
of currency symbol, digits separator, radix mark, and "fill character”" (also known as the

F-10 Information Systems Ada 95 Rationale: Annexes

"check protection character"). The programmer can arrange localization by passing
explicit parameters to the edited output subprograms, or by instantiating the generic
Decimal_Output package with values to be used as defaults for the localization
elements.

. The currency symbol can be localized to a multi-character string; each of the other
localization elements can be localized to any single character. The first (or only)
occurrence of '$' in a picture string represents as many positions in the edited output
result as there are characters in the current currency string. Subsequent occurrences of the
symbol represent just one position in the edited output string.

. Ada allows a multi-character currency substring of the picture string to stand for a
substring with the same length in the edited output string, if '#' is the currency symbol.
This "length invariant" property can be useful in programs that need to deal with different
currencies.

. Ada also allows the use of parentheses for negative quantities in the edited output string.
The angle bracket characters '<' and '>" in the picture string denote positions where ' ('
and ') ' can appear in the edited output. (The parentheses characters themselves have
other meaning in picture strings, surrounding a count indicating repetition of the preceding
picture character as in COBOL. The angle brackets were chosen since they look enough
like parentheses to remind the user of their effect.)

. Ada allows the currency symbol to the right of the number as well as to the left.

There are several reasons why we have not adopted the COBOL-style permission to provide a
single-character replacement in the picture string for the 's' as currency symbol, or to interchange
theroles of '. ' and ', ' in picture strings:

. It would have introduced considerable complexity into Ada, as well as confusion between
run-time and compile-time character interpretation, since picture strings are dynamically
computable in Ada, in contrast with COBOL.

. Ada's rules for real literals provide a standard and natural interpretation of '_' as digits
separator and ' . ' for radix mark; it is not essential to allow these to be localized in picture
strings, since Ada does not allow them to be localized in real literals.

. The COBOL restriction for the currency symbol in a picture string to be replaced by a
single character currency symbol is a compromise solution. In any event a mechanism is
needed to localize the edited output to be a multi-character currency string. Allowing a
single-character localization for the picture character, and a multiple-character localization
for the currency string, would be an unwelcome complication.

The enhancement of the picture string form to allow parentheses for negative quantities is not
in the current COBOL standard, but it is a real need in many financial applications. Thus the
additional rules were judged to be worth the cost.

The approach to currency symbol localization is consistent with the directions that the ISO
COBOL standardization group (WG4) is taking [Sales 92]. Thus we are attempting to preserve
compatibility not just with the existing COBOL standard but also with the version currently under
development.

In COBOL, the BLANK WHEN 0 clause for a numeric edited item interacts with edited output.
For example, if OUTPUT-ITEM is defined as follows:

Ada 95 Rationale: Annexes Information Systems: F-11

05 OUTPUT-ITEM PIC -9999.99 BLANK WHEN O.

MOVE 0 to OUTPUT-ITEM.

then OUTPUT-ITEM will contain a string of 8 blanks. In the absence of the BLANK WHEN 0 clause,
OUTPUT-ITEM would contain "b0000.00". The effect of the BLANK WHEN O clause is
considered in Ada to be part of the Picture value; thus the function To_Picture takes not just a
picture string but also a Boolean value reflecting whether a 0 value is to be treated as all blanks.

The edited output rules in the Ada standard are given by a combination of BNF (for "well-
formed picture strings") and expansion rules that define the edited output of a non-terminal in
terms of the edited output for the right sides of the rules. We had considered defining the rules
instead by a direct reference to the COBOL standard, but that would have had two undesirable
consequences. First, it would have required the reader to be familiar with a rather complicated
section of a document (the COBOL standard) that would not necessarily be easily accessible.
Second, the reference would become obsolete when the COBOL standard is revised.

F.2.3 Example

The following example illustrates edited output with localization:

with Text_TO.Editing;
procedure Example is
use Text_TIO0.Editing;
type Money is delta 0.01 digits 8;
package Money_Output is new Decimal_Output (Money) ;

package Money_Output_FF is
new Decimal_Output (

Money,

Default_Currency => "Fr",
Default_Fill => '*x',
Default_Separator => '.',

Default_Radix_Mark => ',");

Amount : Money range 0.0 .. Money'Last;

Amount_Pic : constant Picture := To_Picture("$$$$_$$9.99");
begin

Amount := 1234.56;

Money_Output.Put (Item => Amount,
Pic => Amount_Pic);
—— OQutputs the string "bb$1,234.56"
—-— where 'b' designates the space character

Money_Output_FF.Put (Item => Amount,
Pic => Amount_Pic);
—— Outputs the string "bbFF1.234,56"

Money_Output.Put (Item => Amount,
Pic => Amount_Pic,
Currency => "CHF",
Fill => '*',

Separator => ',',
Radix_Mark => '.'");
—-— OQutputs the string "bbCHF1,234.56"

F-12 Information Systems Ada 95 Rationale: Annexes

Money_Output.Put (Item => Amount,
Pic => To_Picture ("####_##9.99")
Currency => "CHF",
Fill => '*x',
Separator => "','
Radix_Mark => '.');

—-— Outputs the string "CHF1,234.56"

end Example;

F.3 Requirements Summary
The facilities of the Information Systems Annex relate to the requirements in 10.1 (Handling
Currency Quantities for Information Systems), 10.2 (Compatibility with Other Character Sets),
10.3 (Interfacing with Data Base Systems), and 10.4 (Common Functions).

The requirement

R10.1-A(1) — Decimal-Based Types

is satisfied by the Ada 95 decimal fixed point type facility.
The study topic

S$10.1-A(2) — Specification of Decimal Representation

is met in part by the Machine_Radix attribute definition clause.
The study topic

S10.2-A(1) — Alternate Character Set Support
is satisfied in part by the permission of an implementation to localize the declaration of type
Character.
The study topic
S10.3-A(1) — Interfacing with Data Base Systems
is satisfied in part by the provision of decimal types and also the package Interfaces.COBOL
(see B.3).
The study topic
S10.4-A(2) — String Manipulation Functions

is met in part by the edited output facilities.

