Part Two

The Core Language

Part One should have given the reader an overall
appreciation of the scope and some of the details of Ada
95. The discussion included some rationale for the main
JSeatures but did not go into all the details. This second
part takes the discussion of the Core language a step
Jurther. It covers those important features not discussed
in Part One and gives more detail of the rationale
including alternatives that were considered and
rejected. It is assumed that the reader is familiar with
the material in Part One which will be referred to from
time to time. It is recommended that this part be read in
conjunction with the Ada 95 Reference Manual.

Ada 95 Rationale: Core Introduction: 1-1

1 Introduction

This second part of the rationale is arranged to generally correspond to the sections in the Ada 95
Reference Manual [RM95]. Thus the discussion on exceptions which is covered in section 11 of
[RM95] will be found in Chapter 11 of this part. The only exception to this is that the material
covered by sections 3 and 4 of [RM95] is subdivided differently. Chapter 3 of this volume covers
types and expressions in general whereas Chapter 4 concentrates on the object oriented features
such as type extension and class-wide types.

In a similar way the chapters of the third part correspond to the annexes of [RM 95]; thus
chapter C discusses the Systems Programming Annex which is annex C of [RM 95].

Each chapter of this second part starts with a brief summary of the changes, there are then a
number of sections addressing the various topics, and finally there is a summary of the
requirements addressed by the chapter.

This first chapter briefly covers the following general issues

. The description of Ada 95 uses more defined terms and there is less reliance on informal
English.

. The syntax is expanded to bring more rules into the syntax and to increase clarity.

. The categorization of errors is revised and includes the introduction of the concept of

bounded errors.

However, before getting down to detail it is appropriate to start with a few words about the
approach adopted in the development of Ada 95.

1.1 Overall Approach

Ada 95 is based on a building block approach. Rather than providing a number of new language
features to directly solve each identified application problem, the extra capability of Ada 95 is
provided by a few primitive language building blocks. In combination, these building blocks
enable programmers to solve more application problems efficiently and productively.

Thus in the case of the object oriented area, much of the capability is provided by the
interweaving of the properties of type extension, the child libraries and generic packages. Great
care has been taken to ensure that the additional building blocks work together in a cohesive and
helpful manner. Nevertheless implementation and understandability considerations have
sometimes caused some restrictions to be imposed. An example is that type extension of a formal
generic parameter is not permitted in a generic body (which would either break the contract model
or pose an intolerable pervasive implementation burden).

An area of particular difficulty in tasking is the provision of mutual exclusion (which is done
in implementation terms by imposing semaphores and locks at appropriate places). Much of the
difficulty with Ada 83 tasking lay in the composition of facilities to provide general paradigms and
especially the provision of guarded services. Attempts to solve such problems often resulted in
race conditions precisely because the facilities did not compose properly. The only solution was
paradigm inversion whereby the high level tasking model was used to provide, in essence, some
low-level semaphore which could then be used in a medieval fashion. The introduction of

1-2 Introduction Ada 95 Rationale: Core

protected types, barriers and the requeue statement with two distinct levels of locking is designed
to overcome these difficulties. Together, these building blocks may be used to program natural
and efficient solutions to problems involving a myriad of real-time paradigms, including
asynchronous communication, efficient mutual exclusion, barrier synchronization, counting
semaphores, and broadcast of a signal. To have provided separate features to solve each of these
problems would have resulted in a baroque language which would have run into difficulties
whenever a problem immediately outside the original goals was encountered.

As mentioned in 1.3 (in part one), there are four main areas where it was felt that users needed
additional functionality: Interfacing to other systems, Programming by Extension (OOP),
Programming in the Large (Program Libraries), and Tasking. Broadly speaking these needs are
met in Ada 95 by the following main features and are largely discussed in the chapters indicated.

Interfacing: by new forms of access types, pragmas and interface packages (Chapters 3 and B).
Programming by Extension: by type extension and class-wide types (Chapter 4).
Programming in the Large: by child library units (Chapter 10).

Tasking: by protected objects (Chapter 9).

Chapters 3, 4, 9 and 10 constitute the bulk of this part of the rationale mainly because they contain
a number of quite long examples. The changes described in the other chapters are more concerned
with supporting detail and less pervasive improvements.

1.2 The Reference Manual

The Ada 83 Reference Manual [RM8&3] is a remarkable document in that it is one of the few
definitions of a programming language that is regularly read by normal programmers. It achieves
this by using natural English wherever possible.

A corollary of this success is, however, that it has not proved to be quite so precise as desired
by compiler writers. Of course, there are many more programmers than compiler writers and so
the importance of the programmer should not be underestimated. However, it is vital that the
compiler writer be given as precise a description of the language as is reasonably possible. At the
end of the day, provided that the compiler is correct, then any misunderstanding of some subtle
point on the part of the programmer will generally give rise to an appropriate message from the
compiler. Furthermore, textbooks and other material such as this rationale are available to give
pedagogic information to the programmer.

The Ada 95 Reference Manual [RM95] thus continues the tradition of readability and
accessibility of the Ada 83 document wherever possible but achieves greater precision by the
careful introduction of more specific terminology. Different typography is also used to distinguish
normal English words from defined terms and syntax thereby increasing clarity but retaining
readability.

In addition to the definitive standard, the Annotated Ada Reference Manual [AARM] is an
annotated form containing much additional information aimed largely at compiler writers,
language lawyers and others with a need for additional detailed information. This contains such
matters as advice for implementers, rationale on fine detail, further awkward examples and so on.
Both forms of the reference manual as well as this rationale and other material are available in
machine readable form on the sw—eng.falls-church.va.us hostin the public/ada9x/rm9x
directory.

Ada 95 Rationale: Core Introduction: 1-3

1.3 Syntax

The syntax is expressed in the same notation as for Ada 83. However, the diligent reader will
observe a considerable number of changes to the description of the syntax. Apart from those
changes required by the new parts of the language, the changes have been made in order to
increase clarity of the exposition.

This increased clarity has been achieved at the cost of introducing rather more new syntax
rules than the increased size of the language would suggest. However, the extra clarity achieved
brings major benefits not only in understanding the syntax itself but also by some reduction in the
need for English text to explain rules which are now expressed by the syntax.

Examples of more notable changes (other than those corresponding to completely new
material) are as follows

. The rules for the characters used in the program text have been completely rewritten in a
more structured manner. The previous rules were not hierarchical and contained a curious
imbalance between upper and lower case letters which is no longer appropriate.

. The category integer is now called numeral. The term integer was somewhat
inappropriate for what is simply a syntactic sequence of digits not specifically related to
the integer types.

. Reserved words are no longer considered as identifiers. A consequence is that the syntax
now explicitly includes those attributes which double as reserved words, namely Delta,
Digits, Range and Access (the last being a further such attribute in Ada 95).

. Categories such as defining_identifier are introduced for those occurrences of identifiers
which define an entity. Usage occurrences use direct_name or selector_name
according to the visibility rules. The term simple_name is no longer used. In Ada 83 the
term simple_name was used confusingly for just some usage occurrences.

. The category type_ declaration now properly includes both task and protected types.
Surprisingly, task type declarations were excluded in Ada 83 probably because of a lack of
reconsideration of the rules subsequent to the introduction of task types in around 1980.

. The category type_mark is replaced by subtype_mark because all names of types are
now considered to actually denote the first named subtype.

. Scalar and composite constraints are now distinguished.

. A real change is that the category hame is broadened to include function_call and
type_conversion in accordance with changes to the concept of a name. This causes a
number of consequential changes to other definitions such as primary and prefix.

. The one previous category aggregate has now been replaced by some nine syntax rules
thereby bringing into the syntax the various distinctions between array and record
aggregates and their various rules which were previously expressed by English text.

. The new category handled sequence of statements avoids much repetition in a
number of other rules, and clarifies the region of text in which a given handler applies.

. The categories body_stub and renaming_declaration are both broken down into named
subcategories for ease of exposition.

1-4 Introduction Ada 95 Rationale: Core

. The previous category generic_parameter_declaration which confusingly reused other
categories from other contexts is now replaced by some twenty individual categories
describing the various classes of generic parameters in a hierarchical manner.

The statistically minded might be interested to observe that Ada 83 is described by 180 rules
whereas Ada 95 has about 270. However, the rules introduced for clarity account for about 50 of
this increase and so in real terms the syntax for Ada 95 is about one seventh bigger than Ada 83. A
major part of this increase is simply due to the introduction of protected types.

1.4 Classification of Errors

The classification of errors in Ada 95 is somewhat different to that in Ada 83. The primary reason
for the new classification is to be more realistic and practical regarding the possible consequences
of undefined behavior. The effect is often to indicate that the range of possible outcomes of a
program execution is less than the Ada 83 rules led one to believe (in practice there is little
change).

The most significant new classification is the introduction of the category called bounded
errors. The general idea is that the behavior is not fully determined but nevertheless falls within
well-defined bounds. Many errors which were previously classed as erroneous (which implied
completely undefined behavior) are now simply bounded errors. An obvious example is the
consequence of evaluating an uninitialized scalar variable; this could result in the raising of
Program_Error Or Constraint_Error or the production of a value not in the subtype, see
[RM95 4.4, 11.6].

A rather different approach is taken regarding unportable behavior. A program whose
behavior depends upon some order of evaluation is no longer classed as incorrect but simply as
being not portable. As a consequence the category of error called incorrect order dependences is
deleted.

There are also cases where the language has been changed so that a run-time error in Ada 83
is now detected during compilation in Ada 95. Thus static subtype matching is required in some
situations as described in 3.9.

The language also allows a compiler to have different modes of operation according to the
detection of suspicious situations such as too many warnings. This specifically meets one of the
requirements for early detection of errors where possible.

1.5 Requirements Summary
The requirements

R 2.1-A(1) — Incorporate Approved Commentaries

R 2.1-A(2) — Review Other Presentation Suggestions
are both addressed by the extra attention given to terminology and by the incorporation of
improved text recommended by the Ada Rapporteur Group.

The requirements
R 2.1-B(1) — Maintain Format of Existing Standard
R 2.1-C(1) — Machine-Readable Version of the Standard

have also been met as explained in 1.2. Furthermore, the requirement

Ada 95 Rationale: Core Introduction: 1-5

R 2.2-B(1) — Understandability

is also addressed by the greatly improved terminology as well as by the revisions to the syntax
described in 1.3. However, it should be noted that, as expressed in [DoD 90], this particular
requirement was perhaps slanted more at certain specific language features rather than clarity of
description in general.

In the case of error detection the requirement and study topic

R 2.3-A(2) — Limit Consequences of Erroneous Execution
S 2.3-A(1) — Improve Early Detection of Errors

are addressed by the introduction of the concept of bounded errors and more compilation checking
such as static subtype matching.

Ada 95 Rationale: Core Lexical Elements: 2-1

2 Lexical Elements

There are only a small number of changes in this part of the language but they are important. The
following are worth noting

. There are six more reserved words.
. The program text character set is extended.
. The rules regarding pragmas are improved.

2.1 Reserved Words and Identifiers

Ada 95 has six more reserved words which are abstract, aliased, protected, requeue,
tagged, and until. In addition the word "access" is also used as both an attribute and a reserved
word.

The introduction of new reserved words poses a potential incompatibility problem. However,
the new words are not likely to have been particularly popular as program identifiers and so little
problem should arise.

It was suggested by some reviewers that new reserved words should be avoided by the subtle
reuse of existing words in various contexts. This might have led to a bizarre and unnatural
language for the sake of avoiding very occasional incompatibility. It would certainly have made
the language seem strange and unattractive especially to those not familiar with the background to
the development. The smooth integration of the new and important features such as type extension
and protected types could not have been achieved without the introduction of additional reserved
words.

There are some changes to the terminology in order to clarify the exposition. For example,
reserved words are no longer formally classed as identifiers; this has some impact on the syntax as
mentioned in 1.3. Also the term numeral is introduced in the discussion of literals.

2.2 Program Text

As part of the original agreement between ISO and ANSI to accept ANSI/MIL-STD-1815A as an
international standard, ANSI agreed to provide better support for international character sets in the
first revision of Ada.

Therefore, Ada 95 uses an 8-bit character set based on ISO-8859, and a 16-bit character set
based on ISO-10646. These extended character sets are usable in character and string literals and
also in comments.

The text of a program (outside literals) is typically written in the Latin-1 set, ISO-8859-1 and
thereby allows accented characters in identifiers.

Moreover, an implementation is allowed to support other character sets provided that it has a
mode in which the "standard" sets are supported. This enables national variations to support sets
such as those used in Japan. See [RM95 2.1].

In order to promote portability all implementations are required to support a line length of at
least 200 characters.

2-2 Lexical Elements Ada 95 Rationale: Core

2.3 Pragmas

In order to improve error detection when dealing with implementation defined pragmas, we require
that compilers produce a warning when a pragma is unrecognized, and identify as an error a
pragma that is misplaced or malformed. In Ada 83, it was permissible for compilers to ignore such
pragmas without a warning, which could lead to unexpected behavior.

We have formalized the definition of configuration pragmas to specify options that affect
more than a single compilation unit (often an entire program).

There are a number of additional pragmas in Ada 95 which will be mentioned in the course of
the discussion.

2.4 Requirements Summary

The requirement and study topic
R3.1-A(4) — Extended Comment Syntax
S3.1-A(5) — Extended Identifier Syntax

are both addressed and met by the changes mentioned above. Indeed, recently approved Ada
Issues permit Ada 83 compilers to meet these requirements on a voluntary (non-binding) basis.

Ada 95 Rationale: Core Types and Expressions: 3-1

3 Types and Expressions

This chapter covers a number of changes. Some are essentially functional changes in their own
right such as the addition of modular types, but many of the changes are more to provide a better
framework for the establishment of the object oriented programming facilities which are described
in the next chapter. The main changes are

. The foundation concepts and terminology are improved. The idea of a view is formalized.
The concepts of a type and class are clarified. The concept of an object is generalized.

. The rules for derived types and their operations are changed to accommodate type
extension.

. Character types are changed to conform to the requirements for 8-bit and wider character
sets.

. The numeric model is revised to provide a closer mapping to actual machine architectures;

the types root_integer and root_real are added to aid the description.
. Modular (unsigned integer) and decimal fixed point types are added.

. Discriminants are generalized and the concepts of definite and indefinite subtypes
introduced. This is particularly relevant to generic parameter matching.

. The rules for implicit array subtype conversion are liberalized to allow sliding in all
contexts except qualification (and, of course, membership tests).

. Array aggregates with others are allowed in more contexts.

. Access types are greatly generalized to provide general access types and access to
subprogram types.

. The rules for type conversion are extended to cover the new features in the language.

. The rules for staticness are more liberal thereby allowing more expressions to be
considered static.

. There are a number of minor improvements such as the removal of the irritating rule
regarding the order of declarations.

It be should be noted that the enhanced forms of access types constitute a major extension to the
language in their own right. They provide the more flexible interfacing which was highlighted as
one of the four main areas of User Need in 1.3.

Type extension, class-wide types and polymorphism are discussed in the next chapter.

3-2 Types and Expressions Ada 95 Rationale: Core

3.1 Types, Classes, Objects and Views

The term view is widely used in the description to make it easier to separate properties associated
with an entity from properties associated with a particular reference to an entity. For example, a
type may have two views, one in places where its full declaration is visible, and one where the type
is private. Another example occurs in renaming where two subprogram names may denote the
same subprogram, but with different formal parameter names associated with these two different
views.

We have generalized the term class to include user-defined classes defined by a type and all
its direct and indirect derivatives; we call these derivation classes. The concept of language-
defined type classes (such as the discrete class or the real class) allowed the description of Ada 83
to be more economical, and easier to understand. This same economy of definition and
understanding is valuable for a user-defined type hierarchy forming a class.

There is a strong distinction between specific types and class-wide types. Specific types are
those declared by type declarations, and correspond to Ada 83 types. Each specific tagged type T
has an associated class-wide type, T'Class. Class-wide types enable class-wide (polymorphic)
programming, because a subprogram with a formal parameter of a class-wide type like T'Class
accepts actual parameters for any type covered by the class-wide type (that is, T or any of its
derivatives). In the implementation of such a subprogram, the operations of the root type (T in this
case) are available. It is also possible to write dispatching operations, which automatically
dispatch to the appropriate implementation based on the type tag of the actual parameter. A class-
wide operation of a tagged class-wide type usually calls one or more dispatching operations of the
specific type.

The universal types which existed in Ada 83 remain and act much as class-wide types for the
numeric classes. However, there are important differences which are discussed in 3.3.

To simplify and unify the description of the Ada 95 type model, we have adopted the terms
elementary and composite for describing the two major categories of Ada types. Elementary types
have no internal structure, and are used to represent simple values. Composite types are made up
of components and other internal state, and are used to represent more complex values and objects.
There are a number of existing Ada 83 rules, and new Ada 95 rules, that are made simpler by
expressing them only in terms of elementary and composite types, rather than by enumerating
more specific type classes.

There was much confusion in Ada 83 regarding the distinction between types and subtypes.
In Ada 95, only subtypes have names. A type declaration such as

type A is array (Integer range <>) of Float;

introduces a first subtype named A. The underlying type has no name. In this case the first
subtype is unconstrained. (We now say first subtype rather than first named subtype.) On the
other hand a declaration such as

type B is array (Integer range 1 .. 10) of Float;

introduces a first subtype named B which is constrained. Another point is that in Ada 83 a type
was also a subtype; this is not the case in Ada 95.

This change of nomenclature has no semantic effect; it is designed to simplify later
description. In particular, the term type mark is now replaced by subtype mark since it is always
the name of a subtype, and one need never say "type or subtype".

The idea of an object is generalized. The result of a function and of evaluating an aggregate
are now considered to be (anonymous) constant objects. One consequence of this is that the result
of a function call can be renamed; this is particularly useful for limited types, see 7.3. Some things
are not objects, for example named numbers are not objects.

Ada 95 Rationale: Core Types and Expressions: 3-3

3.1.1 Classification of Operations

We have introduced the term primitive operations to encompass that set of operations that are
"tightly bound" to a type, being either explicitly or implicitly declared at the point of the type
declaration, and inherited by derivatives of the type. These operations are the closed set that
effectively define the semantics of the type. The more general term "operation" of a type is no
longer formally used.

Ada 83 used "implicit conversion" to explain how integer literals were usable with any integer
type, and how real literals were usable with any real type. For Ada 95, we have adopted a similar
mechanism as the basis for class-wide programming. However, rather than using the concept of
implicit conversion, the static semantic rules are defined in terms of type resolution between actual
parameters and formal parameters. (The implicit conversions still happen but are not part of
overload resolution.)

As in Ada 83, if the actual parameter and the formal parameter are of the same type, then the
actual matches the formal. However, the type resolution rules also allow certain other
combinations. In particular, if a formal parameter is of a class-wide type, then the actual parameter
may be of any type in the class. This allows the definition of class-wide operations.

A similar approach is taken with universal types. A formal parameter of a universal type is
matched by any type of the corresponding numeric class. Thus the Va1l attribute (which accepts an
operand of type universal_integer) can be matched by any integer type. There is a change to the
rules for fixed point multiplication and division which now take universal_fixed operands as
explained in 3.3.1 and can thus be matched by any fixed point type.

In addition to class-wide matching, the type resolution rules cover the use of access
parameters (not to be confused with parameters of an access type, see 3.7.1). When a formal is an
access parameter, only the designated type of the actual parameter is considered for matching
purposes. The actual matches the formal if their designated types are the same, or, in the case of
tagged types, one is T while the other is T'Class. In addition, for tagged types, changes of
representation are not permitted for derived types, so an actual also matches a formal access
parameter if the designated type of the actual is covered by the designated type of the formal.

Access parameters allow operations to be defined that take access values rather than
designated objects, while still keeping the operation a primitive operation of the designated type.
With tagged types, this allows "dispatching on access types" without requiring the access value to
be dereferenced first.

Another important change is that the attribute S'Base may be used as a subtype mark
generally, rather than strictly as a prefix for other attributes. S'Base denotes an unconstrained
subtype of the type of s and is only allowed for elementary types. It is particularly useful within a
generic package that might be instantiated with a constrained numeric subtype, since the temporary
variables used to perform a calculation might need to be unconstrained, even if the parameters and
final result of an operation must satisfy the constraints of the actual constrained subtype.

For example consider the implementation of Generic_Elementary_Functions. We need
to allow the user to instantiate the package with a constrained subtype corresponding to
Float_Type, but do not wish the calculations to be constrained. Accordingly the parameters and
results of the various functions are of the subtype Float_Type'Base.

One potential problem with allowing the declaration of objects of subtype S'Base is that the
first subtype (for example S) may have a size clause that takes advantage of the constraints on S.
Objects of subtype S'Base cannot generally be limited by the size specified for s. There are
several reasons why this problem is not serious in practice:

. Many compilers already use different sizes for different subtypes of the same type;
. The construct for B in S'Base'First .. S'Base'last loop ... is already legal

in Ada-83 (presuming s is discrete), and is an existing way to effectively create an object
(B) of subtype s'Base;

3-4 Types and Expressions Ada 95 Rationale: Core

3.1.2 Derived Types

For Ada 95, we have chosen to build upon the Ada 83 derived type mechanism to provide for type
extension (single inheritance) and run-time polymorphism, two fundamental features of object-
oriented programming. (Derived types were the existing type inheritance mechanism in Ada 83.)
If a new inheritance mechanism had been introduced, perhaps based on "package types" or an
explicit "class" construct, inheritance based on derived types would still remain as an almost
redundant and complicating alternative inheritance mechanism. Choosing to enhance the basic
derived type mechanism provides a single robust inheritance mechanism rather than two
potentially conflicting and weaker ones.

Rather than introducing an explicit class construct, we have instead chosen to support user-
defined classes via a hierarchy of derived types. The (derivation) class rooted at a type T consists
of T and all of its direct and indirect derivatives. The existing Ada 83 rules for derived types
ensure that all of the types in the class rooted at T have at least the same set of primitive operations
as T, because a derivative may override and add operations, but it cannot eliminate an operation
inherited from the parent type.

Having a set of operations that are well defined for all types in a class rooted at some type T
makes it meaningful to construct class-wide operations that take advantage of this commonality.
Much of the power and economy of object-oriented programming comes from the ability to write
such class-wide operations easily.

If an operation is explicitly defined on a class-wide type, then it is a class-wide operation via
the type resolution rules.

The existing universal types behave very much as class-wide numeric types. In fact we
introduce types root_integer and root_real as the numeric types from which all other numeric
types are descended and then the universal types can be considered to be the class-wide types
corresponding to these root types.

Ada 83 already had existing operations such as the val attribute that took an operand of any
integer type; in Ada 95 this is described by saying that val takes an operand of the
universal_integer type. These are therefore like class-wide operations.

3.2 Character Types

We mentioned in Chapter 2 that the text of an Ada 95 program can be written using more liberal
character sets. In this section we consider the support for character types in the executing program.

As part of providing better support for international character sets, the fundamental character
set of Ada 95 is changed from the seven-bit ISO 646 standard, to the eight-bit ISO 8859 standard
(which includes Latin-1). This means that the type Character in package Standard is now an
enumeration type with 256 positions, rather than just 128.

This change is not upward compatible for programs that have arrays indexed by Character,
or case statements over Character. However, the benefits of accommodating international
character sets were felt to outweigh the costs of this upward incompatibility. See X.2.

To facilitate direct use of character literals and string literals from all languages in the
international community, a type Wide_Character is declared in package Standard. The type
Wide_Character has 2**16 positions, and starts with the 256 enumeration literals of the type
Character.

The predefined library package Ada.Characters has a child package
Characters.Handling containing useful classification and conversion functions (such as
Is_Letter and To_Lower) and a child package Characters.Latin_1 containing constants for
the Latin-1 symbol set.

There is also a string type Wide_String indexed by subtype Positive, with component
subtype Wide_Character.

Ada 95 Rationale: Core Types and Expressions: 3-5

3.3 Numeric Types

The model of numeric types is somewhat different in Ada 95. The overall goal of the change is to
give the implementation more freedom for optimizations such as keeping intermediate results and
local variables in registers. Most of the change is fine detail that need not concern the normal user
and is addressed in the Numerics annex. However, one area that is important in the core language
is the somewhat different treatment of universal types and the introduction of the anonymous types
root_integer and root_real.

The essence of the root types is that they can be considered as the types from which all other
integer and real types are derived. The base range of root_integer is thus System.Min_Int
System.Max_Int. We will first discuss the integer types and then indicate where the floating
types differ.

We have introduced the term base range for the implemented range of a type whereas range
refers to the requested range of a particular subtype. Range checks only apply to constrained
subtypes; overflow checks always apply. An important consequence is that we either get the
mathematically correct answer or Constraint_Error is raised.

Thus if we write

type My_Integer is range -20_000 .. +20_000;
MI: My_Integer;
MIB: My_Integer'Base;

then My_Integer'Range will be -20_000 .. +20_000 and all assignments to variables of the
subtype My_Integer such as MI will be checked to ensure that the range is not violated;
Constraint_Error is raised if the check fails.

On the other hand, the base range of My_Integer is the range of My_Integer'Base and
this will be that of the implemented range which might reflect that of a 16-bit word and thus be -
2**15 .. +2**15-1. No range checks apply to assignments to the variable MIB. However, as
an optimization, it might be the case that a particular variable of the subtype My_Integer'Base is
held in a register and this could have a wider range than the base range of the subtype. The base
range is thus the guaranteed minimum implemented range. Nevertheless overflow checks will
always apply and MIB will never have a mathematically incorrect value although the value could
be outside the base range. For example, consider

X: My_Integer := 18_000;
Y: My_Integer 15_000;

MIB := X + Y;

where we will assume that the computation is not all optimized away by a smart compiler!

(Note that no explicit conversion is needed because My_Integer and My_Integer'Base
are both subtypes of the same (unnamed) type. Remember that all types are unnamed.)

If M1B is implemented with its base range then an overflow will occur and result in
Constraint_Error because the result is outside the base range. If, however, MIB is held in a
32-bit register, then no overflow will occur and MIB will have the mathematically correct result.
On the other hand

MI := X + Y;

will always result in Constraint_Error being raised because of the range check upon the
assignment.

In the case of the predefined types such as Integer the same rules apply; the subtype
Integer is constrained whereas Integer'Base is not. The base range and range happen to be
the same. So the declarations

3-6 Types and Expressions Ada 95 Rationale: Core

I: Integer;
IB: Integer'Base;

have a different effect. Checks will apply to assignments to I but not to assignments to IB (but
remember that an implementation is always free to add checks if convenient; they may be
automatic).

Another possibility for optimization is that an intermediate expression might be computed
with a larger range. This is why the predefined operators such as "+" on the predefined types such
as Integer have parameters and result of Integer'Base rather than Integer. There are no
range checks on these operations (just overflow checks). Now consider

MI := X * Y / 30_000;

in which we will assume that the computation is done with the operations of type Integer which
has a 16-bit base range on this implementation. If the operations are done from left to right and the
operations are performed in 16-bit registers then overflow will occur and Constraint_Error
will be raised. On the other hand, the operations might be performed in 32-bit registers in which
case overflow will not occur and the correct result will be assigned to MI after successfully
performing a range check on the result.

The universal types are types which can be matched by any specific numeric type of their
class. We see therefore that the universal types are rather like class-wide types of the respective
classes. So universal_integer is thus effectively root_integer' Class.

The integer literals are, of course, of the type universal_integer and so, as in Ada 83, can be
implicitly converted to any integer type including the anonymous root_integer. An important
distinction between universal and tagged class-wide types is that the latter carry a tag and explicit
conversion to a specific type is required which is checked at runtime to ensure that the tag is
appropriate, see 3.8.

One consequence of treating universal_integer as matching any integer type is that the rules
for the initial expression in a number declaration are more liberal than they were in Ada 83. The
initial expression can be of any integer type whereas in Ada 83 it had to be universal; it still of
course has to be static.

Similar remarks apply to real types. In the case of floating point types a range check is only
applied if the definition contains a range (this is the same rule as for integer type definitions but
they always have range anyway). So given

type My_Float is digits 7;
type Your_Float is digits 7 range -1.0E-20 .. +1.0E+20;

then My_Float is an unconstrained subtype whereas Your_Float is constrained. Range checks
will apply on assignments to Your_Float but not to My_Float. The predefined types such as
Float are unconstrained; it is considered that their notional definition does not include a range.

Overflow checks apply to floating point computations only if the attribute
Machine_Overflows is true as in Ada 83.

By introducing root numeric types, the special Ada 83 rules regarding convertible universal
operands are eliminated (only certain simple expressions could be automatically converted in Ada
83). Instead, the distinction between convertible and non-convertible universal operands
corresponds directly to the distinction between the universal and specific root numeric types. The
operators of the root numeric types return specific root numeric types, and hence their result is not
universal (not "implicitly convertible" using Ada 83 terminology). The type resolution rules
ensure that these operators accept operands of the universal types, so they may be used on literals
and named numbers.

There is an important change to the visibility rules concerning a preference for the root types
in the case of an ambiguity. This is discussed in 8.4.

In order to promote precise use of specific hardware the library package Interfaces defines
signed integer types corresponding to the hardware supported types with names such as

Ada 95 Rationale: Core Types and Expressions: 3-7

Integer_32 and Integer_16 plus corresponding modular types (see 3.3.2). This package also
predefines similar floating types corresponding to the hardware although no names are prescribed.

The description of the real numbers is greatly simplified. The model and safe numbers of Ada
83 have been abandoned because they were not well understood, did not truly provide the
portability they sought and obscured the real machine from the specialist. Accordingly the
definition of floating point is now in terms of model numbers which roughly correspond to the old
safe numbers and are close to the represented numbers. In the case of fixed point the definition is
entirely in terms of small and the notion of model numbers no longer applies.

To avoid confusion and to improve the correspondence between the real type attributes and
the machine attributes, the attributes are completely redefined so that they more closely correspond
to the capabilities of the machine.

The description of model numbers is moved to the Numerics annex because of its specialist
nature. For more details consult Part Three of this rationale.

We considered removing floating point and fixed point accuracy constraints from the syntax
so that delta and digits would only be specified as part of a real type definition. Indeed, AI-571
concluded that reduced accuracy real subtypes should not be represented with reduced accuracy,
making their usefulness in the language questionable. However, they are retained (although
considered obsolete) for compatibility because of the different format obtained with Text_TIo0.

3.3.1 Operations

The mixed multiplying operators of the Ada 83 universal numeric types are redefined in Ada 95 in
terms of the root numeric types.

There were some essentially unnecessary restrictions on the use of literals in fixed point
multiplication and division in Ada 83. These operations now take universal_fixed as their
operands and return universal_fixed as the result. However the result must be in a context which
provides a specific expected type. As a consequence literals may now be used more freely in fixed
point operations and a multiplication or division need not be followed by conversion to a specific
type if the context supplies such a type.

So given two fixed point types Fixedl and Fixed2, we can now write sequences such as

X, Y: Fixedl;

Z: Fixed2;
X = 2.0 * X;
X =Y * Z;

which were forbidden in Ada 83. Note that multiple operations as in
X =X *Y / Z;

remain forbidden since the context does not provide a type (and therefore an accuracy and range)
for the intermediate result.

3.3.2 Modular Types

In Ada 95 the integer types are subdivided into signed integer types and modular types. The
signed integer types are those with which we are already familiar from Ada 83 such as Integer
and so on. The modular types are new to Ada 95.

The modular types are unsigned integer types which exhibit cyclic arithmetic. (They thus
correspond to the unsigned types of some other languages such as C.) A strong need has been felt
for some form of unsigned integer types in Ada and most compiler vendors have provided their

3-8 Types and Expressions Ada 95 Rationale: Core

own distinct implementations. This of course has caused an unnecessary lack of portability which
the introduction of modular types in Ada 95 will overcome.
As an example consider unsigned 8-bit arithmetic (that is byte arithmetic). We can declare

type Unsigned_Byte is mod 256; —- or mod 2**8;

and then the range of values supported by Unsigned_Byte is 0 .. 255. The normal arithmetic
operations apply but all arithmetic is performed modulo 256 and overflow cannot occur.

The modulus of a modular type need not be a power of two although it often will be. It might,
however, be convenient to use some obscure prime number as the modulus perhaps in the
implementation of hash tables.

The logical operations and, or, xor and not are also available on modular types; the binary
operations naturally treat the values as bit patterns; the not operation subtracts the value from its
maximum. No problems arise with mixing these logical operations with arithmetic operations
because negative values are not involved.

The logical operations will be most useful if the modulus is a power of two; they are well
defined for other moduli but there are some surprising effects. For example DeMorgan's theorem
that

not (A and B) = not A or not B

does not hold if the modulus is not a power of two.

The package Interfaces defines modular types corresponding to each predefined signed
integer type with names such as Unsigned_16 and Unsigned_32. For these modular types
(which inevitably have a modulus which is a power of two) a number of shift and rotate operations
are also provided.

It is an important principle that conversion between numeric types should not change the
value (other than rounding). Conversion from modular to signed integer types and vice versa is
thus allowed provided the value is in the range of the destination; if it is not then
Constraint_Error is raised.

Thus suppose we had

type Signed_Byte is range -128 .. +127;
U: Unsigned_Byte := 150;
S: Signed_Byte := Signed_Byte (U);

then Constraint_Error will be raised
Unchecked conversion can be used to convert patterns out of range. We could neatly write

function Convert_Byte is
new Unchecked_Conversion (Signed_Byte, Unsigned_Byte);
function Convert_Byte is
new Unchecked_Conversion (Unsigned_Byte, Signed_Byte);
providing conversions in both directions and then

S := Convert_Byte (U);

would result in s having the value -106.
The modular types form a distinct class of types to the signed integer types. There is thus a
distinct form for a generic formal parameter of a modular type namely

type T is mod <>;

and this cannot be matched by a type such as Integer. Nor indeed can the signed integer form
with range <> be matched by a modular type such as Unsigned_32.

Ada 95 Rationale: Core Types and Expressions: 3-9

The new attribute Modulus applies to a modular type and returns its modulus. This is of
particular value with generic parameters.

3.3.3 Decimal Types

Decimal types are used in specialized commercial applications and are dealt with in depth in the
Information Systems annex. However, the basic syntax of decimal types is in the core language.

A decimal type is a form of fixed point type. The declaration provides a value of delta as for
an ordinary fixed point type (except that in this case it must be a power of 10) and also prescribes
the number of significant decimal digits. So we can write

type Money is delta 0.01 digits 18;

which will cope with values of a typical decimal currency. This allows 2 digits for the cents and
16 for the dollars so that the maximum allowed value is

9,999,999,999,999,999.99

The usual operations apply to decimal types as to other fixed point types. Furthermore the
Information Systems annex describes a number of special packages for decimal types including
conversion to human readable output using picture strings.

Much as with modular types there is also a special form for a generic parameter of a decimal
type which is

type T is delta <> digits <>;

This cannot be matched by an ordinary fixed point type and similarly the form with just delta <>
cannot be matched by a decimal type such as Money.

3.4 Composite Types

In Ada 95, the concept of composite types is broadened to include task and protected types. This is
partly a presentation issue and partly reflects the generalization of the semantics to allow
discriminants on task and protected types as well as on records.

The terms definite and indefinite subtypes are introduced as explained in II.11 when we
discussed the generic parameter mechanism. Recall that a definite subtype is one for which an
uninitialized object can be declared such as Integer or a constrained array subtype or a record
subtype with discriminants with defaults. An indefinite subtype is an unconstrained array subtype
or an unconstrained record, protected or task subtype which does not have defaults for the
discriminants, or a class-wide subtype or a subtype with unknown discriminants.

As a simple generalization to Ada 83, we have allowed both variables and constants of an
indefinite subtype to be declared, so long as an initial value is specified; the object then takes its
bounds or discriminants from the initial value. In Ada 83, only initialized constants of such a
subtype could be declared. However, the implementation considerations are essentially identical
for constants and variables, so eliminating the restriction against variables imposes no extra
implementation burden, and simplifies the model.

Here is an example of use

if Answer /= Correct_Answer then
declare
Image: String := Answer_Enum'Image (Correct_Answer);
begin
Set_To_Lower_Case (Image) ;

3-10 Types and Expressions Ada 95 Rationale: Core

Put_Line ("The correct answer is " & Image & '.');
end;
end if;

Allowing composite variables without a specified constraint to be declared, if initialized, is
particularly important for class-wide types and (formal) private types with discriminant part (<>)
since such types have an unknown set of discriminants and thus cannot be constrained. For
example, in the case of class-wide types, it would otherwise be hard if not impossible to write the
procedure Convert in 4.4.3 since we would not be able to declare the temporary variable Temp.

3.4.1 Discriminants

A private type can now be marked as having an unknown number of discriminants thus
type T (<>) is private;

The main impact of this is that the partial view does not allow uninitialized objects to be declared.
If the partial view is also limited then objects cannot be declared at all (since they cannot be
initialized). The gives the writer of an abstraction rather more control over the use of the
abstraction.

As we have already noted, discriminants are also allowed on task and protected types in Ada
95. (An early draft of Ada 9X also permitted discriminants on arrays and discriminants to be of
any nonlimited type. This was, however, felt to be too much of a burden for existing
implementations.)

Discriminants are the primary means of parameterizing a type in Ada, and therefore we have
tried to make them as general as possible within transition constraints. Task and protected types in
particular benefit from discriminants acting as more general type parameters.

In Ada 83, an instance of a task type had to go through an initial rendezvous to get parameters
to control its execution. In Ada 95, the parameters may be supplied as discriminant values at the
task object declaration, eliminating the need for the extra rendezvous. Variables introduced in the
declarative part of the task body can also depend on the task type discriminants, as can the
expression defining the initial priority of the task via a Priority pragma. See 9.6 for some
detailed examples.

In addition to allowing discrete types as discriminants as in Ada 83, we now also permit
discriminants to be of an access type. There are two quite distinct situations. A discriminant can
be of a named access type or it can be an access discriminant in which case the type is anonymous.
Thus we can declare

type R1(D: access T) is
type AT is access T;
type R2(D: AT) is

and then the discriminant of R1 is an access discriminant whereas the discriminant of R2 is a
discriminant of a named access type. A similar nomenclature applies to subprogram parameters
which can be access parameters (without a type name) or simply parameters of a named access
type (which was allowed in Ada 83).

Access discriminants provide several important capabilities. Because they impose minimal
accessibility checking restrictions, an access discriminant may be initialized to refer to an
enclosing object, or to refer to another object of at least the same lifetime as the object containing
the discriminant. Access discriminants can only be applied to limited types. Note also that a task
and a protected object can have access discriminants.

When an object might be on multiple linked lists, it is typical that one link points to the next
link. However, it is also essential to be able to gain access to the object enclosing the link as well.

Ada 95 Rationale: Core Types and Expressions: 3-11

With access discriminants, this reference from a component that is a link on a chain, to the
enclosing object, can be initialized as part of the default initialization of the link component. This
is discussed further in 4.6.3. For a fuller discussion on how access discriminants avoid
accessibility problems see 3.7.1. Further examples of the use of access discriminants will be found
in 7.4 and 9.6.

Finally, a derived type may specify a new set of discriminants. For untagged types, these new
discriminants are not considered an extension of the original type, but rather act as renamings or
constraints on the original discriminants. As such, these discriminants must be used to specify the
value of one of the original discriminants of the parent type. The new discriminant is tightly linked
to the parent's discriminant it specifies, since on conversion from the parent type, the new
discriminant takes its value from that discriminant (presuming Constraint_Error is not raised).
The implementation model is that the new discriminants occupy the space of the old. The new
type could actually have less discriminants than the old. The following are possible

H

type S1(
type S2(

Integer) is ...;
Integer; J: Integer) is ...;

H

type T1(N: Integer) is new S1(N);
type T2 (N: Integer) is new S2 (N, 37);
type T3 (N: Integer) is new S2 (N, N);

The last case is interesting because the new discriminant is mapped onto both the old ones. A
conversion from type S2 to T3 checks that both discriminants of the S2 value are the same. A
practical use of new discriminants for non-tagged types is so that we can make use of an existing
type for the full type corresponding to a private type with discriminants.

type T(D: DT) is private;
private
type T(D: DT) is new S (D);

In the case of a tagged type, we can either inherit all the discriminants or provide a completely
new set. In the latter case the parent must be constrained and the new discriminants can (but need
not) be used to supply the constraints.

Thus a type extension can have more discriminants than its parent, which is not true in the
untagged case.

3.5 Array Types

A very minor change is that an index specification of an anonymous array type in an initialized
declaration can also take the unconstrained form

V: array (Integer range <>) of Float :=
(3 ..5=>1.0, 6| 7 =>2.0);

in which case the bounds are deduced from the initial expression.

3.5.1 Array Aggregates

Ada 83 had a rule that determined where a named array aggregate with an others choice was
permitted; see [RM83 4.3.2(6)]. There were a related set of rules that governed where implicit
array subtype conversion ("sliding") was permitted for an array value; see [RM83 3.2.1(16) and
5.2.1(1)]. These rules were constructed to ensure that named array aggregates with others and
array sliding were not both permitted in the same context. However, the lack of array sliding in

3-12 Types and Expressions Ada 95 Rationale: Core

certain contexts could result in the unanticipated raising of Constraint_Error because the
bounds did not match the applicable constraint.

For Ada 95, we have relaxed the restrictions on both array sliding and named array aggregates
with others, so that both are permitted in all contexts where an array aggregate with just an others
choice was legal in Ada 83. This corresponds to all situations where an expression of the array
type was permitted, and there was an applicable index constraint; see [RM83 4.3.2(4-8)]. This
ensures that sliding takes place as necessary to avoid Constraint_Error, and simplifies the
rules on array aggregates with an others choice.

The original Ada 83 restrictions were related to the possible ambiguity between determining
the bounds of an aggregate and sliding. In Ada 95, this ambiguity is resolved by stipulating that
sliding never takes place on an array aggregate with an others choice. The applicable index
constraint determines the bounds of the aggregate.

As an example consider

type Vector is array (Integer range <>) of Float;
V: Vector(l .. 5) := (3 .. 5=>1.0, 6 | 7 =>2.0);

which shows a named aggregate being assigned to v. The bounds of the named aggregate are 3
and 7 and the assignment causes the aggregate to slide with the net result that the components
V(1) .. v(3) havethe value 1.0 and v (4) and v (5) have the value 2. 0.

On the other hand writing

V := (3 .. 5=>1.0, others => 2.0);

has a rather different effect. It was not allowed in Ada 83 but in Ada 95 has the effect of setting
V(3) .. V(5)tol.0and v(1l) and v(2) to 2.0. The point is that the bounds of the aggregate
are taken from the context and there is no sliding. Aggregates with others never slide.

Similarly no sliding occurs in

vV := (1.0, 1.0, 1.0, others => 2.0);

and this results in setting v(1) .. Vv(3)tol.0andVv(4) and v (5) to 2.0.

3.5.2 Concatenation

The rules for concatenate (we now use this more familiar term rather than catenate) are changed so
that it works usefully in the case of arrays with a constrained first subtype.

In Ada 83 the following raised Constraint_Error, while in Ada 95 it produces the desired
result

X: array (1..10) of Integer;
begin
X := X(6..10) & X(1..5);

In Ada 83, the bounds of the result of the concatenate were 6 .. 15, which caused
Constraint_Error to be raised since 15 is greater than the upper bound of the index subtype. In
Ada 95, the lower bound of the result (in this constrained case) is the lower bound of the index
subtype so the bounds of the resultare 1 .. 10, as required.

3.6 Record Types

A record type may be specified as tagged or limited (or both) in its definition. This makes
record types consistent with private types, and allows a tagged record type to be declared limited

Ada 95 Rationale: Core Types and Expressions: 3-13

even if none of its components are limited. This is important because only limited types can be
extended with components that are limited.

A derived type is a record extension if it includes a record extension part, which has the same
syntax as a normal record type definition preceded by the reserved word with. For example

type Labelled_Window (Length : Natural) is new Window with
record
Label: String(l..Length);
end record;

Record extension is the fundamental type extension (type inheritance) mechanism in Ada 95.
A private extension must be defined in terms of a record extension. The new discriminants in a
discriminant extension are normally used to control the new components defined in the record
extension part (as illustrated in the above example).

Record extension is a natural evolution of the Ada 83 concept of derived types. From an
implementation perspective, it is relatively straightforward, since the new components may all be
simply added at the end of the record, after the components inherited from the parent type.

We considered having other kinds of type extension, including enumeration type extension,
task type extension, and protected type extension. However, none of these seemed clearly as
useful as record extension, and all introduced additional implementation complexities. In any case,
the automatic assignment of tags to type extensions lessens the need for enumeration types, and the
added flexibility associated with access to subprogram and dispatching operations makes it less
critical to allow task types to be extended.

Type extension of protected objects was another interesting possibility. However, certain
implementation approaches do not easily support extension of the set of protected operations, or
the changing of the barrier expressions. With some regret therefore it was decided that the benefit
of extending protected types was not worth the considerable implementation burden. This is an
obvious topic for review at the next revision of Ada.

Type extension is only permitted if the parent type is tagged. Originally we considered
allowing any record or private type to be extended, but this introduced additional complexity,
particularly inside generics. Furthermore, extending an untagged type breaks the general model
that a class-wide type can faithfully represent any value in the class. An object of an untagged
class-wide type would not have any provision for holding a value of a type extension, since it
would lack a run-time type tag to describe the value.

3.6.1 Record Aggregates

Record aggregates are only permitted for a type extension if both the extension part and the parent
part are fully visible. This corresponds to the principle that if part of a type is private, then it must
be assumed to have an unknown set of components in that part. In other words we can only use an
aggregate where we can view all the components.

However, extension aggregates can be used provided only that the components in the
extension part are visible; we do not need a full view of the type of the ancestor expression.
Typically we can provide an expression for the ancestor part. Thus suppose we have

type T is tagged private;

T Obj: T := ...;

type NT is new T with
record

I, J: Integer;
end record;

then we can write an extension aggregate such as

3-14 Types and Expressions Ada 95 Rationale: Core

(T_Obj with I => 10, J => 20)
A variation is that we can also simply give the subtype name as the ancestor part thus
(T with T => 10, J => 20)

which is essentially equivalent to declaring a temporary default initialized object of the type and
then using it as the ancestor expression (this includes calling Initialize in the case of a
controlled type, see 7.4). This is allowed even if the ancestor type is abstract and thereby permits
the creation of aggregates for types derived from abstract types.

3.6.2 Abstract Types and Subprograms

As we have already discussed in I1.3, a tagged type may be declared as abstract by the appearance
of abstract in its declaration. A subprogram which is a primitive operation of an abstract tagged
type may be specified as abstract. An abstract subprogram has no body, and cannot be called
directly or indirectly. A dispatching call will always call some subprogram body that overrides the
abstract one because it is not possible to create an object of an abstract type.

If a type is derived from an abstract type and not declared as abstract then any inherited
abstract subprograms must be overridden with proper subprograms. Note, of course, that an
abstract type need not have any abstract subprograms.

The interaction between abstract types and private types is interesting. It will usually be the
case that both views are abstract or not abstract. However, it is possible for a partial view to be
abstract and the full view not to be abstract thus

package P is

type T is abstract tagged private;
private

type T is tagged ...;
end P;

In this case, objects of the type can only be declared for the full view and abstract primitive
operations cannot be declared at all. This is because an abstract operation in the visible part would
still apply in the private part and would thus be abstract for the nonabstract view.

It is of course not possible for the full view to be abstract and the partial view not to be
abstract. This is quite similar to the rules for limitedness. A partial view can be limited and a full
view not limited but not vice versa; the key point is that the partial view cannot promise more
properties than the full view (the truth) actually has.

Of more interest is private extension where again the partial view could be declared abstract
and the full view not abstract. An inherited abstract subprogram would need to be overridden. If
this were done in the private part then the partial view of the subprogram would still be abstract
although the full view would be of the overriding subprogram and thus not abstract. Thus

package P is
type T is abstract tagged null record;
procedure Op (X: T) is abstract;

end P;

with P;
package NP is
type NT is abstract new P.T with private;

private
type NT is new T with ...;
procedure Op (X: T); —-— overrides

end NP;

Ada 95 Rationale: Core Types and Expressions: 3-15

The overriding is essential since otherwise we might dispatch to an abstract operation.
Another point is that an abstract type is not allowed to have an invisible abstract operation
since otherwise it could not be overridden. The following difficulty is thus avoided.

package P is

type T is abstract ...;

procedure Nasty (X: T'Class);
private

procedure Op (X: T) is abstract; —-- illegal
end P;

package body P is
procedure Nasty (X: T'Class) is
begin
Op (X) ;
end Nasty;
end P;

with P;

package Q is
type NT is new P.T with ...; —— not abstract
—— cannot see Op in order to override it

end Q;

The problem is that we must override Op since by declaring an object of type NT we can then
dispatch to op by calling the procedure Nasty.

The overall motivation for the rules is to ensure that it is never possible to dispatch to a non-
existent subprogram body.

A rather different problem arises when we extend a type which is not abstract but which has a
function with a controlling result. The old function cannot be used as the inherited version because
it cannot provide values for the type extension when returning the result (parameters are not a
problem because they only involve conversion towards the root). As a consequence the type must
be declared as abstract unless we provide a new function.

A related restriction is that a function with a controlling result cannot be declared as a private
operation since otherwise a similar difficulty to that discussed above would arise on type
extension. If extension were performed using the partial view then the function would become
abstract for the extended type and yet, being private, could not be overridden.

Observe also that since we do not require every abstract subprogram to be explicit, it is
possible for a generic package specification to define an abstract record extension of a formal
tagged type without knowing exactly which functions with controlling results exist for the actual
type.

Finally, note that it is possible to have an abstract operation of a nontagged type. This is
fairly useless since dispatching is not possible and static calls are illegal. However, it would be
harder to formulate the rules to avoid this largely because an operation can be primitive of both a
tagged and nontagged type (although not of two tagged types, see 4.5).

3.7 Access Types

As we have already seen in II.5 and I1.6, access types in Ada 95 have been generalized so that they
may be used to designate subprograms and also declared objects.

A new attribute designator, Access, has been defined for creating an access value designating
a subprogram or object specified in the prefix. For example:

A
B

Object'Access; —— point to a declared object
Subprogram'Access; —— point to a subprogram

3-16 Types and Expressions Ada 95 Rationale: Core

Full type checking is performed as part of interpreting the Access attribute. An additional
accessibility check is performed to ensure that the lifetime of the designated subprogram or object
will not end before that of the access type, eliminating the possibility of dangling references.

Although these two extensions to access types share some common terminology and concepts
the details are rather different and so we will now discuss them separately in the following
sections.

3.7.1 Access to General Objects

Access types that may designate declared objects are called general access types, as distinguished
from pool-specific access types, which correspond to those which were provided by Ada 83.
There are two steps to the use of general access types

. Objects that are to be designated by access values must be aliased. This can be done by
using the reserved word aliased in their declaration. This serves various purposes. It
documents the fact that an object is to be designated by an access value. It forces the
object to be properly aligned in memory and informs the compiler that the representation
of the object should correspond to that used for objects created by an allocator. In
addition, the optimizer is informed that this object is likely to be accessible via one or
more access values, and therefore its value might change as a result of an update via an
access value.

. The attributes Access and Unchecked_Access, when applied to an object, return an
access value that designates the object. Unless the subtype is tagged or has unconstrained
discriminants, the subtype of the object must statically match the designated subtype of the
access type. The access values which are formed by the Access attribute must obey
certain accessibility restrictions, which are generally checked at compile time (at runtime
in the case of access parameters). They cannot be used to create access values of a type
whose lifetime is longer than the lifetime of the designated object; this prevents an access
value from being stored in a global and then leaving the region where the designated
object is declared. The access values that are formed by the Unchecked_Access
attribute are not subject to such restrictions. It is the responsibility of the programmer who
uses such unchecked access values to avoid dangling references.

General access types have the reserved word all or constant in their definition. We
originally considered allowing any (object) access type to designate a declared object (as opposed
to an allocated object), but this would have forced all access types to be represented as full
addresses. By distinguishing general access types from pool-specific access types, we preserve the
possibility of optimizing the representation of a pool-specific access type, by taking advantage of
its limited storage-pool size.

A value of a general access type declared with the reserved word all can only designate
variables (not constants), and may be used to read and update the designated object. If the
reserved word constant is used, then access values may designate constants, as well as variables.
An object designated by an access-to-constant value may not be updated via the access value. An
allocator for an access-to-constant type requires an initial value and might generally reserve
storage in a read-only part of the address space.

There are two important cases where a view is deemed to be aliased (and thus Access can be
applied) even though the word aliased does not appear. One is that a parameter of a tagged type
is considered to be aliased (see 6.1.2) and the other is where an inner component refers to the
current instance of an outer limited type (see 4.6.3).

There is a restriction concerning discriminated records which ensures that we cannot apply the
Access attribute to a component that might disappear. This is similar to the rule for renaming

Ada 95 Rationale: Core Types and Expressions: 3-17

which prevents the renaming of a component of an unconstrained variable whose existence
depends upon a discriminant.

Indirect access to declared objects is useful for avoiding dynamic allocation, while still
allowing objects to be inserted into linked data structures. This is particularly useful for systems
requiring link-time elaboration of large tables, which may use levels of indirection in their
representation. Such access types are also convenient for returning a reference to a large global
object from a function, allowing the object to be updated through the returned reference if desired.

Finally, rather than relying on allocators, it is sometimes appropriate to use a statically
allocated array of objects, managed explicitly by the application. However, it may still be more
convenient to reference components of the array using access values. By declaring the array
components as aliased, the Access attribute may be used to produce an access value designating a
particular component.

An interesting example is provided by the following which illustrates the static creation of
ragged arrays

package Message_Services is
type Message_Code_Type is range 0..100;

subtype Message is String;

function Get_Message (Message_Code: Message_Code_Type)
return Message;

pragma Inline (Get_Message) ;
end Message_Services;

package body Message_Services is
type Message_Handle is access constant Message;

Message_0: aliased constant Message := "OK";
Message_1l: aliased constant Message := "Up";
Message_2: aliased constant Message := "Shutdown";
Message_3: aliased constant Message := "Shutup";

Message_Table: array (Message_Code_Type) of
Message_Handle :=

(0 => Message_0'Access,

1 => Message_1"'Access,

2 => Message_2'Access,

3 => Message_3'Access,

—-— etc.

)i

function Get_Message (Message_Code: Message_Code_Type)
return Message 1is
begin
return Message_Table (Message_Code) .all;
end Get_Message;
end Message_Services;

This example is based on Revision Request 018 and declares a static ragged array. The
elements of the array point to strings, the lengths of which may differ. The access values are
generated by the Access attribute; no dynamic allocation is needed to create the values.

Access types are used extensively in object-oriented applications. To enable the use of access
types with the run-time dispatching provided for the primitive operations of tagged types, Ada 95
includes a new kind of in parameter, called an access parameter. We can thus write

3-18 Types and Expressions Ada 95 Rationale: Core

procedure P (A: access T);

This is to be distinguished from a parameter of a named access type which already existed in Ada
83. A similar distinction arises with access discriminants as we saw in 3.4.1.

An access parameter is matched by an actual operand of any access type with the same
designated type. Furthermore, if a subprogram has an access parameter with designated type T,
and the subprogram is defined in the same package specification as the type T, then the
subprogram is a primitive operation of T, and dispatches on the tag of the object designated by the
access parameter. Inside the subprogram, an access parameter is of an anonymous general access
type, and must either be dereferenced or explicitly converted on each use, or passed to another
operation as an access parameter.

An important property of access parameters is that they can never have a null value. It is not
permitted to pass null as an actual parameter (this is checked on the call) and of course being of an
anonymous type another such object cannot be declared inside the subprogram. As a consequence
within the subprogram there is no need to check for a null value of the type (neither in the program
text nor in the compiled code). Note also that since other objects of the type cannot be declared,
assignment and equality do not apply to access parameters.

For a tagged type T and an aliased object X of type T, X'Access and new T are overloaded
on all access to T, on all access to T'Class, and on all other access to class-wide types that cover
T. These overloadings on access to class-wide types allow allocators and the Access attribute to
be used conveniently when calling class-wide operations, or building heterogeneous linked data
structures.

Access parameters and access discriminants are important with respect to accessibility which
we will now discuss in more detail. The accessibility rules ensure that a dangling reference can
never arise; in general this is determined statically. Suppose we have a library package P
containing a globally declared access type and a global variable

package P is
type T is ...;
type T_Ptr is access all T;
Global: T_Ptr;

end P;

then we must ensure that the variable Global is never assigned an access to a variable that is
local. So consider

procedure Q is
X: aliased T;

Local: T_Ptr := X'Access; -—— illegal
begin
Global := X'Access; —— illegal
Global := Local;
end Q;

in which we have declared a local variable X and a local access variable. The assignment of
X'Access to Global is clearly illegal since on leaving the procedure Q, this would result in
Global referring to a non-existent variable. However, because we can freely assign access values,
we must not assign X'Access to Local either since although that would be safe in the short term,
nevertheless we could later assign Local to Global as shown.

Since we do not wish to impose accessibility checks at run-time on normal access assignment
(this would be a heavy burden), we have to impose the restriction that the Access attribute can
only be applied to objects with at least the lifetime of the access type. The rules that ensure this
are phrased in terms of accessibility levels and the basic rule is that the access attribute can only be
applied to an object at a level which is not deeper than that of the access type; this is, of course,

Ada 95 Rationale: Core Types and Expressions: 3-19

known at compile time and so this basic accessibility rule is static. This may seem rather
surprising since the concept of lifetime is dynamic and so one might expect the rules to be
dynamic. However, it can be shown that in the case of named access types, the static rule is
precisely equivalent to the intuitive dynamic rule. The reason for this is that the access attribute
can only be applied at places where both the object and the access type are in scope; see [Barnes
95] for a detailed analysis. As discussed below, the situation is quite different for access
parameters where the type has no name and the checks then have to be dynamic. (In the case of
generic bodies, the rule is also dynamic as discussed in 12.3.)

Similar problems arise with discriminants and parameters of named access types. Thus we
could not declare a local record with a component of the type T_Ptr. However, access
discriminants and access parameters behave differently.

. The anonymous type is essentially declared inside the object or subprogram itself.

. It is not possible to have other components or objects of the same type (since it is
anonymous) and they are treated as constants.

. Records with access discriminants have to be limited.

The net result is that the accessibility problems we encountered above do not arise. Revisiting the
above example we can write

package P is
type T is ...;
type T_Ptr is access all T;
type Rec(D: access T) is limited
record

end record;
Global: T_Ptr;
Global_Rec: Rec(...);
end P;

where we have added the record type Rec with an access discriminant D plus a global record
variable of that type. Now consider

procedure Q is
X: aliased T;

Local_Rec: Rec (D => X'Access); -— OK
begin
Global := Local_Rec.D; -— illegal, type mismatch
Global := T_Ptr(Local_Rec.D); —-- illegal, accessibility check
Global_Rec := Local_Rec; —— illegal, assignment limited type
end Q;

in which we have declared a local record variable with its access discriminant initialized to access
the local variable x. This is now legal and the various attempts to assign the reference to X to a
more global variable or component are thwarted for the various reasons shown. The straight
assignment of the discriminant fails because of a type mismatch. The attempt to circumvent this
problem by converting the access type also fails because of an accessibility check on conversions
between access types [RM95 4.6]. And the attempt to assign the whole record fails because it is
limited.

Access parameters are particularly important since they are the one case where an
accessibility check is dynamic (other than in generic bodies). An access parameter carries with it

3-20 Types and Expressions Ada 95 Rationale: Core

an indication of the accessibility level of the actual parameter. Dynamic checks can then be made
when necessary as for example when converting to an external named access type. Consider

procedure Main is
type T is ...;
type A is access all T;
Ptr: A := null;
procedure P (XP: access T) is
begin
Ptr := A(XP); —— conversion with dynamic check
end P;
X: aliased T;
begin
P (X'"Access);
end Main;

The conversion compares the accessibility level of the object X passed as parameter with that of the
destination type A; they are both the same and so the check passes. Observe that if the destination
type A were declared inside P then the check can be (and is) performed statically. So not all
conversions of access parameters require dynamic checks.

Another possibility is where one access parameter is passed on as an actual parameter to
another access parameter. There are a number of different situations that can arise acording to the
relative positions of the subprograms concerned; the various possibilities are analysed in detail in
[Barnes 95] where it is shown that the implementation technique given in [AARM 3.10.2(22)]
precisely meets the requirements of the rules. The rules themselves are in [RM95 3.10.2 and 4.6].

Without access parameters, the manipulation of access discriminants would be difficult.
Given

procedure P (A: access T);

then we can satisfactorily make calls such as
P (Local_Rec.D);

in order to manipulate the data referenced by the discriminant. On the other hand declaring
procedure P (A: T_Ptr);

would be useless for the manipulation of the discriminant because the necessary type conversion
on the call would inevitably be illegal for reasons of accessibility mentioned above.

As a first example of the use of access discriminants we will consider the case of an iterator
over a set. This is typical of a situation where we want a reference from one object to another.
The iterator contains a means of referring to the set in question and the element within it to be
operated upon next. Consider

generic
type Element is private;
package Sets is
type Set is limited private;
... —— various set operations
type Iterator(S: access Set) is limited private;
procedure Start(I: Iterator);
function Done (I: Iterator) return Boolean;
procedure Next (I: in out Iterator);
function Get_Element (I: Iterator) return Element;
procedure Set_Element (I: in out Iterator; E: Element);
private

Ada 95 Rationale: Core Types and Expressions: 3-21

type Node;
type Ptr is access Node;
type Node is
record
E: Element;
Next: Ptr;
end record;
type Set is new Ptr; —— implement as singly-linked list

type Iterator(S: access Set) is
record
This: Ptr;
end record;

end Sets;

package body Sets is
—-— bodies of the various set operations

procedure Start (I: in out Iterator) is
begin

I.This := Ptr(I.S.all);
end Start;

function Done(I: Iterator) return Boolean is
begin

return I.This = null;
end Done;

procedure Next (I: in out Iterator) is
begin

I.This := I.This.Next;
end Next;

function Get_Element (I: Iterator) return Element is
begin

return I.This.E;
end Get_Element;

procedure Set_Element (I: in out Iterator; E: Element) is
begin

I.This.E := E;
end Set_Element;

end Sets;

The subprograms Start, Next and Done enable us to iterate over the elements of the set with
the component This of the iterator object accessing the current element; the subprograms
Get_Element and Set_Element provide access to the current element. The iterator could then
be used to perform any operation on the values of the elements of the set.

As a trivial example the following child function Sets.Count simply counts the number of
elements in the set. (Incidentally note that the child has to be generic because its parent is generic.)

generic
function Sets.Count (S: access Set) return Natural;

—— Return the number of elements of S.

function Sets.Count (S: access Set) return Natural is

3-22 Types and Expressions Ada 95 Rationale: Core

I: Iterator(S);

Result: Natural := 0;
begin
Start (I);
while not Done(I) loop
Result := Result + 1;
Next (I);
end loop;

return Result;
end Sets.Count;

In the more general case the loop might be

Start (I);
while not Done(I) loop
declare
E: Element := Get_Element (I); —-— get old value
begin
... —-— do something with it
Set_Element (I, E); —— put new value back
Next (I);
end;
end loop;

Note that if Iterator.sS were a normal component rather than an access discriminant then
we would not be able to initialize it at its point of declaration and moreover we could not make it
point to Sets.Count .S without using Unchecked_Access

Finally note that the procedure start could be eliminated by declaring the type Iterator as

type Iterator(S: access Set) is
record
This: Ptr := Ptr(S.all);
end record;

and this would have the advantage of preventing errors caused by forgetting to call Start.

3.7.2 Access to Subprograms

Ada 95 provides access-to-subprogram types. A value of such a type can designate any
subprogram matching the profile in the type declaration, whose lifetime does not end before that of
the access type. By providing access-to-subprogram types, Ada 95 provides efficient means to

. dynamically select and invoke a subprogram with appropriate arguments,
. store references to subprograms in data structures,
. parameterize subprograms with other subprograms (at run-time).

Access-to-subprogram values are created by the Access attribute. Compile-time accessibility
rules ensure that a subprogram designated by an access value cannot be called after its enclosing
scope has exited. This ensures that up-level references from within the subprogram will be
meaningful when the subprogram is ultimately called via the access value. It also allows
implementations to create and dereference these access-to-subprogram values very efficiently,
since they can be a single address, or an address plus a "static link".

Ada 95 Rationale: Core Types and Expressions: 3-23

For Subprogram'Access, the designated subprogram must have formal parameter and
result subtypes and a calling convention that statically match those of the access type. This allows
the compiler to emit the correct constraint checks, and use the correct parameter passing
conventions when calling via an access-to-subprogram value, without knowing statically which
subprogram is being called. We call this subtype conformance.

Overload resolution of the Access attribute applied to an overloaded subprogram name
represents a new situation in Ada. In Ada 83, the prefix of an attribute was required to be
resolvable without context. However, for the Access attribute to be useful on overloaded
subprograms, it was necessary to allow the Access attribute to use context to resolve the prefix.
Therefore, if the prefix of Access is overloaded, then context is used to determine the specific
access-to-subprogram type, and then the parameter and result type profile associated with that
access type is used to resolve the prefix.

Indirect access to a subprogram is extremely useful for table-driven programming, using, for
example, a state machine model. It is also useful for installing call-backs in a separate subsystem
(like the X window system). Finally, it often provides an alternative to generic instantiation,
allowing a non-generic parameter to be a pointer to a subprogram, such as for applying an
operation to every element of a list, or integrating a function using a numerical integration
algorithm.

A number of examples of the use of access to subprogram types will be found in ILS.
However a very important use is to provide much better ways of interfacing to programs written in
other languages. This is done in conjunction with the pragma Import (essentially replacing
Interface) and new pragmas Export and Convention. For details see Part Three.

It should be noted that there is no equivalent to access discriminants or access parameters for
access to subprogram types. Apart from any aesthetic consideration of writing such an in situ
definition, the key reason concerns the implementation problems associated with keeping track of
the environment of such a "subprogram value". As a consequence we cannot, for example, use the
access to a local procedure as a parameter of a more globally declared procedure. Such values
would in any case not be safely assignable into a global.

The accessibility restrictions mean that access to subprogram values do not provide a
mechanism to solve the general iterator problem where the essence is usually to apply some inner
procedure over every element of a set with the inner procedure having access to more global
variables. One alternative approach is to use access discriminants as discussed in 3.7.1; another,
perhaps better, approach is to use type extension as illustrated in 4.4.4.

Generic formal subprograms remain the most general means of parameterizing an algorithm
by an arbitrary externally specified subprogram. Moreover they are often necessary anyway. For
example, consider a typical mathematical problem such as integration briefly mentioned in II.5. In
practice the integration function would inevitably be generic with respect to the floating point type.
So a more realistic specification would be

generic
type Float_Type is digits <>;
package Generic_Integration is
type Integrand is
access function (X: Float_Type) return Float_Type;

function Integrate(F: Integrand; From, To: Float_Type;
Accuracy: Float_Type := 10.0*Float_Type'Model_Epsilon)
return Float_Type;
end Generic_Integration;

Suppose now that we wish to integrate a function whose value depends upon non-local
variables and that therefore has to be declared at an inner level. All that has to be done is to
instantiate the generic at the same inner level and then no accessibility problems arise. So

3-24 Types and Expressions Ada 95 Rationale: Core

with Generic_Integration;
procedure Try_Estimate (External_Data: Data_Type;
Lower, Upper: Float;
Answer: out Float) is
—— external data set by other means

function Residue (X: Float) return Float is
Result: Float;

begin
—-— compute function value dependent upon external data
return Result;

end Residue;

package Float_Integration is
new Generic_Integration(Float_Type => Float);
use Float_Integration;

begin
Answer := Integrate(Residue'Access, Lower, Upper);
end Try_ Estimate;

The key point is that the instantiated access type Integrand is at the same level as the local
function Residue and therefore the Access attribute can be applied. This technique can of
course be used even when there are no generic parameters.

3.8 Type Conversion

Because Ada 95 supports type extension and has more flexible access types, the possibilities and
needs for type conversion become much more extensive than in Ada 83. In Ada 83, type
conversion involved only a possible representation change and a possible constraint check. If the
conversion succeeded, no components were lost or added, and the conversion was always
reversible. There were only three kinds of conversions, between derived types, between numeric
types and between array types. Note in particular that there were no conversions between access
types (except for the case where the type itself was derived from another access type).

Conversions in Ada 95 are classified as view conversions and value conversions. The general
idea is that a view conversion doesn't really perform a conversion but just provides a different view
of the object.

View conversions arise in two situations, where the operand is an object of a tagged type, and
where the conversion is used as an actual parameter corresponding to a formal in out or out
parameter. Other conversions are value conversions. Another way of looking at the difference is
that view conversions are for situations where an object is being converted whereas a value
conversion can apply to an expression.

The use of a view conversion as a parameter existed in Ada 83; for example where a
conversion of an object of say type Integer was used as an actual parameter corresponding to a
formal in out parameter of type Float. Such view conversions cause a real change of
representation in both directions and indeed view conversions of nontagged types are always
reversible.

View conversions of tagged types are different; no change of representation ever occurs; we
merely get a different view seeing different properties of the same object. And view conversions
of tagged types are generally not reversible because of the possibility of type extension.

For tagged specific types there is an important rule that conversion can only be towards the
root type. Conversion of a specific type away from the root type is not possible because additional
components will generally be required. Such additional components can be provided by an

Ada 95 Rationale: Core Types and Expressions: 3-25

extension aggregate. As we saw in the example of type Object and its extension Circle from
II.1 we can write

Object (C)
as an acceptable conversion towards the root but must write

C: Circle;
O: Object;

C := (O with Radius => 12.0);

to perform the operation away from the root. (In an early draft of Ada 9X a form of conversion
was used for such an extension but it was felt to be confusing and overcomplicate the rules for
conversion; it also had generic contract problems.) Note that we have used the named notation for
the additional components (in this case only one). Another important point is that the ancestor
expression (before with) need not be the immediate ancestor of the target type but can be any
ancestor. See also 3.6.1.

The same principle applies in the case of conversions from a tagged class-wide type to a
specific type; conversion is only allowed if the tag of the current value of the class-wide object is
such that conversion is not away from the root. This is not known statically and so a tag check
verifies that the type identified by the tag of the operand matches that of the target type, or is a
derivative of it. Constraint_Error is raised if this check fails.

Conversion from a specific type to a class wide type is always allowed implicitly (that is no
conversion need be explicitly stated); of course the specific type must be in the class concerned.
We could not convert a Low_Alert to Medium_Alert'Class; any attempt would be detected at
compile time.

Conversion from one class-wide type to another is also possible. The classes obviously have
to have a common ancestor and it may be necessary to check the tag at runtime. If the source class
is the same as or a subclass of the target class then clearly no check is necessary.

We will consider the conversion of tagged types in more detail when we discuss redispatching
in the next chapter (see 4.5).

Conversion between access types was not possible in Ada 83 (unless one was derived from
another); each access type was considered unrelated (even if the accessed types were the same).
Another issue was that access values need not necessarily be held as addresses but could be
indexes into the relevant pool.

However, the introduction of general access types and access parameters means that the
conversion between access types is very necessary.

Conversion from pool specific types to general access types and between general access types
is therefore permitted provided the accessed types are the same or are suitably related. But we
cannot convert from an access to constant type to an access to variable type because we might
thereby obtain write access to a constant. In general a conversion may involve constraint and
accessibility checks.

Conversions are particularly useful for programming with access types designating tagged
types. Essentially, an access type conversion is permitted if access values of the target type may
"safely" designate the object designated by the operand access value; or in other words providing
the new view is acceptable for the designated object. Thus a conversion from an access to class-
wide type to an access to specific type will require a dynamic check to ensure that the designated
object is of the specific type (or derived from it). Generally, conversions between access types to
tagged types follow exactly the same rules and involve the same checks as conversions between
the designated types. Both conversions effectively give new views of the object concerned.

Conversions between access types (in general) may require accessibility checks to ensure that
the new value could not give rise to a dangling reference. It is possible to convert between any
general access types (including anonymous access types used as access parameters and
discriminants) provided the designated types are the same. An example of access type conversion

3-26 Types and Expressions Ada 95 Rationale: Core

where an accessibility check is required occurs in 3.7.1. Conversions between access types may
also require constraint checks to ensure that any constraints on the accessed subtype are satisfied.

As explained above we have generalized implicit subtype conversions on arrays ("sliding") to
apply in more circumstances. These new rules should minimize the times when an unexpected
Constraint_Error arises when the length of the array value is appropriate, but the upper and
lower bounds do not match the applicable index constraint. In effect, we are treating the bounds as
properties of array objects rather than of array values. Array values have a length for each
dimension, but the bounds may be freely readjusted to fit the context.

Note also that array conversions require that the component subtypes statically match in Ada
95 whereas the check was dynamic in Ada 83. This is a minor incompatibility but avoids
unnecessary runtime checks.

3.9 Staticness

In Ada 83, static expressions were limited to predefined operators applied to static operands, to
static attributes or to static qualified expressions. For Ada 95, we have extended the rules so that a
static expression can also include items such as membership tests and attributes with static
constituents. See [RM95 4.9] for details.

By allowing more constructs in static expressions, the programmer has more freedom in
contexts where static values are required. In addition, we ensure more uniformity in what
expressions are evaluated at compile-time. Some Ada 83 compilers were aggressive in evaluating
compile-time known expressions, while others only evaluated those expressions that were
"officially" static. By shifting the definition of static to more closely correspond to compile-time-
known, uniformity of efficiency is enhanced.

In addition to generalizing the rules for static expressions, we also require that all static
evaluation be performed exactly. Although many compilers already perform all compile-time
arithmetic with arbitrary precision, this rule will provide more predictability for the value of a
static expression. Note that the exact static value must still be converted to a machine manipulable
representation when combined in an expression with non-static values.

Static strings are also introduced for use as parameters of pragmas. There are no other
contexts in the standard which require static strings.

Staticness is also relevant in other situations such as subtype conformance (see 6.2). This
kind of conformance is required between the parameter and result specifications given in an access
to subprogram type definition, and the specification of a potential designated subprogram.
Subtype conformance is based on a static match between the subtypes of corresponding parameters
and the result, if any. This is necessary because when calling a subprogram via an access to
subprogram type, the actual parameters must be prepared and the call must be performed given
only the address (and perhaps a static link) for the target subprogram. The way parameters are
passed, the constraints that need to be checked, the way the result is returned, and any other calling
conventions must be determined completely knowing only the definition of the access-to-
subprogram type.

A static subtype match is required for access-to-subprogram matching so that no additional
checks on the actual parameters are required when calling indirectly through an access to
subprogram type.

There is a general philosophy that static matching is required when two subtypes are involved
whereas when only one subtype and a value are involved (as in assignment) then dynamic
matching (possibly resulting in Constraint_Error) is applied as it was in Ada 83. Thus static
matching is also required in matching the component subtypes in array conversions and matching
the subtype indication in deferred constants. This change of philosophy eliminates a number of
run-time checks and makes for the earlier detection of errors in such situations.

Ada 95 Rationale: Core Types and Expressions: 3-27

3.10 Other Improvements

Ada 83 had a restriction that type, subtype, and object declarations were not permitted after bodies
(including body stubs) within a declarative part. This restriction has been removed in Ada 95. The
original restriction reflected Ada's Pascal heritage, where the ordering restrictions between
declarations are even more restrictive. However, in retrospect, the restriction seems somewhat
arbitrary, and forces the separation of declarative items that might more naturally be grouped
together, particularly in a package body declarative part.

By removing this restriction, it becomes legal to move local variable declarations of a
subprogram body to the end of its declarative part. This ensures that such variables are not
accessible for up-level references from nested subprograms declared in the same declarative part.
By so doing, it makes it easier for a compiler to allocate such variables to hardware registers,
rather than having to keep them in memory locations to support possible up-level references.

Having removed this restriction, it is necessary to rely more heavily on the Ada 83 rule
[RM83 13.1(5-7)] that the representation for a type is "frozen" by the appearance of a body
(including a body stub). This rule precludes the separation of a representation clause from its
associated declaration by a body. In Ada 83, this requirement was a ramification of the syntax,
since representation clauses were not allowed to follow bodies syntactically. In Ada 95, the
requirement becomes more relevant, since representation clauses are syntactically allowed to
appear anywhere in a declarative part.

3.11 Requirements Summary
The requirements for international users
R3.1-A(1) — Base Character Set
R3.1-A(2) — Extended Graphic Literals
R3.1-A(3) — Extended Character Set Support
are met by the changes to the type Character and the introduction of Wide_Character and
associated packages as discussed in 3.2.
The study topic and two requirements regarding subprograms
S4.1-A(1) — Subprograms as Objects
R4.1-B(1) — Passing Subprograms as Parameters
R4.1-B(2) — Pragma Interface
are met by access to subprogram types and the pragmas Import, Export and Convention as
discussed in 3.7.2.
The requirement

R6.1-A(1) — Unsigned Integer Operations

is met by the modular types described in 3.3.2.
The requirement

R6.4-A(1) — Access Values Designating Global Objects

is met by general access types and the study topic

3-28 Types and Expressions Ada 95 Rationale: Core

S6.4-B(1) — Low-Level Pointer Operations

is also addressed by general access types and the attribute Unchecked_Access.
The requirement

R10.1-A(1) — Decimal-Based Types
is met by the decimal types mentioned in 3.3.3. Full support for decimal types is provided by the
Information Systems annex to which the reader is referred for further details.
The requirement

S$2.3-A(1) — Improve Early Detection of Errors

is addressed by the introduction of static subtype matching.
The requirement

R2.2-A(1) — Reduce Deterrents to Efficiency
is addressed by the introduction of the concept of base range for numeric types as discussed in 3.3
and by the removal of the restriction on the order of declarations mentioned in 3.10.
The requirement
R2.4-A(1) — Minimize Implementation Dependencies
is addressed by the stipulation that all static expressions are evaluated exactly and that rounding of
odd halves is always away from zero; see 3.9 and 11.12.
Finally we have mentioned one of the items listed under the general requirement

R2.2-B(1) — Understandability

which is that the restriction on order of declarations is now removed.

Ada 95 Rationale: Core Object Oriented Programming: 4-1

4 Obiject Oriented Programming

This chapter describes the various ways in which object oriented programming is achieved in Ada
95. The main facilities upon which this is based are

. Record types which are marked as tagged may be extended with additional components on
derivation.

. The Class attribute may be applied to a tagged type and denotes the corresponding class-
wide type.

. Subprogram calls with formal parameters of a specific type called with actual parameters

of a class-wide type are dispatching calls.

. Types and subprograms may be specified as abstract.
. There are various new forms of generic parameter corresponding to derived and tagged
types.

These topics were discussed in some detail in Part One and are further discussed in other chapters
in this part (see Chapter 3 for types, including abstract types and abstract subprograms, and
Chapter 12 for generic parameters). The discussion in this chapter is more idiomatic and
concentrates on how the features are used in Ada 95 and briefly contrasts the approach with that of
other object oriented languages.

4.1 Background and Concepts

Ada has been traditionally associated with object oriented design [Booch 86], which advocates the
design of systems in terms of abstract data types using objects, operations on objects, and their
encapsulation as private types within packages. The "ingredients" of object oriented design may
be summarized as follows:

Objects. Entities that have structure and state.
Operations. Actions on objects that may access or manipulate that state.

Encapsulation. Some means of defining objects and their operations and providing an abstract
interface to them, while hiding their implementation details.

Ada 83 was well suited to supporting the paradigm of object oriented design. Object oriented
programming, as that term has evolved over the past decade, builds upon the base of object
oriented design, adding two other ingredients: inheritance and polymorphism. While the specific
properties of these two facilities vary from one programming language to another, their essential
characteristics may be stated as

4-2 Object Oriented Programming Ada 95 Rationale: Core

Inheritance. A means for incrementally building new abstractions from existing ones by
"inheriting" their properties — without disturbing the implementation of the original
abstraction or the existing clients.

Polymorphism. A means of factoring out the differences among a collection of abstractions, such
that programs may be written in terms of their common properties.

Ada 83 has been described as an object based language; it does not have the support for
inheritance and polymorphism found in fully object oriented languages (see 4.7). Recognizing
this, the Ada 9X Requirements reflect the need to provide improved support for this paradigm
through three Study Topics [DoD 90] as follows.

S4.1-A(1) — Subprograms as Objects: Ada 9X should provide:

1 an easily implemented and efficient mechanism for dynamically selecting a
subprogram that is to be called with a particular argument list;

2 a means of separating the set of subprograms that can be selected dynamically from the
code that makes the selection.

S4.3-A(1) — Reducing the Need for Recompilation: Ada 9X recompilation and related rules
should be revised so it is easier for implementations to minimize the need for recompilation and
for programs to use program structures that reduce the need for recompilation.

S4.3-B(1) — Programming by Specialization/Extension: Ada 9X shall make it possible to
define new declared entities whose properties are adapted from those of existing entities by the
addition or modification of properties or operations in such a way that:

. the original entity's definition and implementation are not modified;

. the new entity (or instances thereof) can be used anywhere the original one could be, in
exactly the same way.

Each of these Study topics can be understood in relation to object oriented programming.
S4.1-A(1) seeks the ability to associate operations (subprograms) with objects, and to dynamically
select and execute those operations. This is one basis on which to develop run-time
polymorphism.

Among the various causes of excessive recompilation addressed by S4.3-A(1) are those
arising from the breakage of an existing abstraction for the purpose of extending or otherwise
reusing it to build a new abstraction.

The topic S4.3-B(1) implies the essence of object oriented programming as defined above.
Alternatively, one might think of this in terms of two programming paradigms

Variant programming. New abstractions may be constructed from existing ones such that the
programmer need only specify the differences between the new and old abstractions.

Class-wide programming. Classes of related abstractions may be handled in a unified fashion,
such that the programmer may systematically ignore their differences when appropriate.

Finally, it should be mentioned that there are two rather awkward problems to be addressed
and solved in designing a compiled language for object oriented programming which retains
efficiency and avoids unnecessary run-time decisions.

Ada 95 Rationale: Core Object Oriented Programming: 4-3

Dispatching. The means of indicating in the program text when dispatching and especially
redispatching is used as opposed to static resolution.

Multiple Inheritance. The means of inheriting components and operations from two or more
parent types.

As will be seen, the solution adopted to these problems in Ada 95 illustrates our concern for
clarity and the advantages of the building block approach.

4.2 General Approach

Ada 95 generalizes the type facilities of Ada 83 in order to provide more powerful mechanisms for
variant and class-wide program development and composition. Derived types in Ada 83 provided
a simple inheritance mechanism: they inherited exactly the structure, operations, and values of
their parent type. This "inheritance" could be augmented with additional operations but not with
additional components. Ada 95 generalizes type derivation to permit type extension as we saw in
IL.1.

A tagged record or private type may be extended with additional components on derivation.
Tagged objects are self-identifying; the tag indicates their specific type. Tagged types provide a
mechanism for single inheritance as found in object oriented programming languages such as
Simula [Birtwistle 73] and Smalltalk [Goldberg 83].

The following example of type extension is inspired by [Seidewitz 91]. We first declare

type Account_With_Interest is tagged

record
Identity: Account_Number := None;
Balance : Money := 0.00;
Rate : Interest_Rate := 0.05;
Interest: Money := 0.00;

end record;

procedure Accrue_Interest (On_Account: in out Account_With_Interest;
Over_Time : in Integer);

procedure Deduct_Charges (From: in out Account_With_TInterest);
and can then extend it

type Free_Checking Account is new Account_With_ Interest with

record
Minimum_Balance: Money := 500.00;
Transactions : Natural := 0;

end record;

procedure Deposit (Into : in out Free_Checking_Account;
Amount: in Money);

procedure Withdraw (From : in out Free_Checking_Account;
Amount: in Money);

Insufficient_Funds: exception; —— raised by Withdraw
procedure Deduct_Charges (From: in out Free_Checking_Account);

The type Account_With_ Interest is a tagged type. The type Free_Checking_Account is
derived from it, inheriting copies of its components (Identity, Balance, Rate, Interest) and

4-4 Object Oriented Programming Ada 95 Rationale: Core

its operations (Accrue_Interest and Deduct_Charges). The derived type declaration has a
record extension part that adds two additional components (Minimum Balance and
Transactions) to those inherited from the parent. The type adds some new operations
(Deposit and Withdraw) and also overrides Deduct_Charges such that if the Balance was
above the Minimum_ Balance, no charges would be deducted. All components of the type,
whether inherited or declared as a part of the extension, are equally accessible (unlike "nested"
record types).

In Ada 83, the types declared in the visible part of a package had special significance for
Ada's abstraction mechanisms. Such operations on user-defined types were first-class in a manner
that parallels those of the predefined types. For derived types, these operations, together with the
implicitly declared basic operations, were the derivable operations on a type.

With the increased importance of derived types for object oriented programming in Ada 95,
the notion of the operations closely related to a type in this manner is generalized. The primitive
operations of a type are those that are implicitly provided for the type and, for types immediately
declared in a package specification, all subprograms with an operand or result of the type declared
anywhere in that package specification. The domain is therefore extended to include the private
part (but not the body).

Thus, in Ada 95, the derivable operations of Ada 83 have become "primitive operations" and
the restriction of these operations to the visible part of a package has been eliminated. These
changes support added capability: primitive operations may be private and a type and its
derivatives may be declared in the same declarative region (this property is useful for building
related abstractions and was used in the package New_Alert_System of Part One).

Primitive operations clarify the notion of an abstract data type for purposes of object oriented
programming (inheritance and polymorphism) and genericity. They are distinguished from the
other operations of a type in the following ways

Inheritance. Primitive operations are the derivable (inherited) operations.
Polymorphism. Primitive operations are dispatching operations on tagged types.

Genericity. Primitive operations are the ones available within generic templates parameterized by
a class.

Ada 83 used the term "class" (see [RM83 3.3]) to characterize collections of related types.
The class of a type determines how the type is declared, the types it can be converted to, its
predefined operations, and its structure. The class of a generic formal type parameter determines
the operations that are available within the generic template. Types within a class have common
structure and operations (see I11.1.2 for a further description of the class structure of Ada).

Ada 95 formalizes the Ada 83 notion of class. A type and its direct and indirect derivatives,
whether or not extended, constitute a derivation class. This definition allows for user-defined
classes based on derivation. User-defined classes, like the language-defined classes, support type
conversion, may be used to parameterize generic units and, in the case of tagged types, provide
class-wide programming.

Explicit conversion is defined among types within a class, as it was in Ada 83 for types
related by derivation, except that conversion is not allowed away from the root since additional
components may be required. Such transformations require an extension aggregate as described in
3.8.

Thus, continuing the previous example, a value of Account_With_Interest can be
extended to a value of Free_Checking_Account by providing values for the additional
components Minimum_Balance and Transactions.

Old_Account: Account_With_Interest;

New_Account: Free_Checking Account :=
(Old_Account with Minimum_Balance => 0.00, Transactions => 0);

Ada 95 Rationale: Core Object Oriented Programming: 4-5

The Ada 95 rules for conversion between types in a class define the semantics of inherited
operations in Ada 95 and are consistent with the semantics of inherited operations in Ada 83.
Calling an inherited operation is equivalent to calling the parent's corresponding operation with a
conversion of the actual to the parent type. Thus, inherited operations "ignore" the extension part.

User-defined classes may be employed to parameterize generic units. A new kind of generic
formal, a generic formal derived type, may be used. This kind of formal is matched by any type in
the class rooted at the generic formal's specified ancestor type.

For each tagged type T, there is an associated class-wide type T'Class. The set of values of
T'Class is the discriminated union of the sets of values of T and all types derived directly or
indirectly from T. Discrimination between the different specific types is with a type tag. This tag,
associated with each value of a class-wide type, is the basis for run-time polymorphism in Ada 95.
Note that ordinary types are referred to as specific types to distinguish them from class-wide types.

The associated class-wide type T'Class is "dynamic” in the sense of [Abadi 91]. The values
of the class-wide type can be thought of as pairs consisting of

. A tag. A type descriptor ranging over the types that are members of the class; and
. A value. The value taken from the specific type with the given tag.

Such tag and value pairs are strongly typed, consistent with the philosophy of Ada. But only
the class, and not necessarily the type within that class, will generally be known statically.

Class-wide types have no primitive operations of their own. However, explicit operations
may be declared for such types, using T'Class as a subtype mark. Such operations are "class-
wide" and can be applied to objects of any specific type within the class as well as to objects of the
class-wide type or a descendent class-wide type.

Thus the following functions

function Size_In_Bytes(Any_File: File'Class) return Natural;
function Get_File_From_User return File'Class;

are class-wide operations and can be applied to all specific types of the class of types derived from
the tagged type File. No dispatching is involved; the one same function is called whatever the
tag of the actual parameter.

On the other hand, when a primitive operation of a tagged type is called with an operand of
the class-wide type, the operation to be executed is selected at run time based on the type tag of the
operand. As mentioned before, this run-time selection is called dispatching, so primitive
operations of tagged types are called dispatching operations. Dispatching provides a natural form
of run-time polymorphism within classes of related (derived) types. This variety of polymorphism
is known as "inclusion polymorphism" [Cardelli 85].

formal
actual specific class—-wide
specific static binding class-wide op
class—-wide dispatching class—-wide op

Table 4-1: Kinds of Binding

4-6 Object Oriented Programming Ada 95 Rationale: Core

An operand used to control dispatching is called a controlling operand. A primitive operation
may have several controlling operands; a primitive function may also have a controlling result.
For a further discussion on controlling operands and results see 4.5.

The different kinds of binding corresponding to the various combinations of actual and formal
parameters are summarized in Table 4-1.

The following example shows how a type File might be the basis for a class of types relating
to the implementation of an Ada library

type File is tagged private;
procedure View(F: File);
—-— display file F on screen

type Directory is new File with private;
procedure View(D: Directory);
—— 1list directory D

type Ada_File is new File with private;
procedure View(A: Ada_File);
—-— open A with Ada sensitive editor

type Ada_Library is
new Directory with private;
procedure View (L: Ada_Library);
—-— list library units of L and their status

declare

A_File: File'Class := Get_File_From User;
begin

View (A_File); —— dispatches according to specific type of file
end;

The above example presents a user-defined class of File types. The type File is tagged and
hence the primitive operation View is dispatching. View is overridden for each type in the class in
order to provide a unique behavior for each type of File. When View is called with a parameter
that is of type File'Class, the tag will be used to determine the actual type within the class, and
the call will dispatch to the view procedure for that type. On the other hand if View is called with
a specific type then the choice of View procedure to be called is determined at compile time.

The hierarchy of types in the above example is illustrated in Figure 4-1.

File

l

Directory Ada_File

Ada_Library

Figure 4-1: The File Hierarchy

An earlier version of Ada 9X introduced class-wide types through the Class attribute for all
derivation classes and not just those for tagged types. This was discarded since many reviewers
felt that the added flexibility was unwise.

Ada 95 Rationale: Core Object Oriented Programming: 4-7

Note also that universal types (for numeric types) behave much as class-wide types although
there are differences, see 3.3.

When building an abstraction that is to form the basis of a class of types, it is often convenient
not to provide actual subprograms for the root type but just abstract subprograms which can be
replaced when inherited. This is only allowed if the root type is declared as abstract; objects of an
abstract type cannot exist. This technique enables common class-wide parts of a system to be
written without being dependent on the properties of any specific type at all. Dispatching always
works because it is known that there can never be any objects of the abstract type and so the
abstract subprograms could never be called. This technique is illustrated in II.3.

4.2.1 Benefits of Approach

A number of important practical criteria of concern to both existing and new users were taken into
account when designing the object oriented facilities of Ada 95.

Compatibility

Legal Ada 83 programs should remain legal in Ada 95. Ideally, existing Abstract Data Types
(ADTs) should be reusable with newly developed ones — the new facilities should not be so
radically different from mechanisms of Ada 83 that existing ADTs must be rebuilt before being
reused.

Tagged type extension and class-wide types are built upon the Ada 83 model of derived types.
Their use is optional, and their presence in the language does not affect Ada 83 programs. Existing
ADTs may be combined in some ways with new object oriented abstractions without modification.
In other cases, it may be sufficient to add "tagged" to a type declaration, or to make other simple
modifications such as changing an access type declaration to designate a class-wide type. Of
course, in order to exploit these facilities to the full, it will be necessary to take them into account
during the design process.

Consistency

The solution should be conceptually consistent with existing Ada programming models. Intuitions
about objects, types, subprograms, generic units, and so on should be preserved.

Ada 95 provides new capabilities in the context of a unified programming model: including
types, operations and generic units. Class-wide programming generalizes the classes developed in
Ada 83 to user-defined classes.

Efficiency

The solution should offer efficient performance for users of the facility with, ideally, no distributed
overhead for non-users.

The introduction of tagged types, and a distinct class-wide type associated with each specific
type as the mechanism for dispatch, makes run-time polymorphism optional to programmers (in
contrast to languages like Smalltalk), in two senses.

4-8 Object Oriented Programming Ada 95 Rationale: Core

. Programmers can choose whether or not to use object oriented programming, by
employing tagged and class-wide types. Types without tags incur no space or time
overhead. Only class-wide types allow for class-wide type matching.

. Dispatching occurs only on primitive operations of tagged types and only when an actual
operand is of a class-wide type.

Implementability

The solution should be readily implementable within current compiler technology, and provide
opportunities for optimizations.

Dispatching may be implemented as an indirect jump through a table of subprograms indexed
by the primitive operations. This compares favorably with method look-up in many object
oriented languages, and with the alternative of variant records and case statements, with their
attendant variant checks, both in implementability and run-time efficiency.

4.3 Class Wide Types and Operations

We have seen that a record or private type marked as tagged may be extended on derivation with
additional components. The run-time tag identifies information that allows class-wide operations
on the class-wide type to allocate, copy, compare for equality, and perform any other primitive
operations on objects of the class-wide type, in accordance with the requirements of the specific
type identified by the tag.

The tag is thus important to the inner workings of type extension and class-wide types in Ada
95 and is brought to the fore by using the reserved word tagged in the declaration of the type.
The concept of a tag is of course not new to programming languages but has a long precedent of
use in Pascal (where it is used in the sense of discriminant in Ada) and is discussed by Hoare in
[Dahl 72]. More recently the phrase type tag has been used by Wirth in connection with type
extension [Wirth 88].

The reader might find it helpful to understand the concept of the tag and the dispatching rules
by considering the implementation model alluded to at the end of the last section. We emphasize
that this is just a possible model and does not imply that an implementation has to be done this
way. In this model the tag is a pointer to a dispatch table. Each entry in the table points to the
body of the subprogram for a primitive operation. Dispatching is performed as an indirect jump
through the table using the primitive operation as an index into the table.

As an illustration consider the class of Alert types declared in II.1 in the package
New_Alert_System. These types form a tree as illustrated in II.2. Recall that the root type
Alert has primitive operations, Display, Handle and Log. These are inherited by Low_Alert
without any changes. Medium Alert inherits them from Alert but overrides Handle.
High_Alert inherits from Medium Alert and again overrides Handle and also adds
Set_alarm. (For simplicity, we will ignore other predefined operations which also have "slots" in
the dispatch table; such as assignment, the equality operator and the application of the Size
attribute.)

The tags for the various types are illustrated in Figure 4-2. A dispatching call, such as to
Handle, is very cheaply implemented. The code simply jumps indirectly to the contents of the
table indexed by the fixed offset corresponding to Handle (one word in this example). The base
of the table is simply the value of the tag and this is part of the value of the class-wide object.
Note moreover that the dispatch table does not contain any class-wide operations (such as
Process_Alerts in II.2) since these are not dispatching operations.

In addition to being used as formal parameters to class-wide operations, class-wide types may
also be used as the designated type for an access type, and as the type of a declared object. Access

Ada 95 Rationale: Core Object Oriented Programming: 4-9

types designating a class-wide type are very important, since they allow the creation of
heterogeneous linked data structures, such as trees and queues.

Alert'Tag -——> Display ——> Display of Alert
Handle —-—> Handle of Alert
Log —-—> Log of Alert
Low_Alert'Tag -——> Display ——> Display of Alert
Handle —-—> Handle of Alert
Log —-—> Log of Alert
Medium_Alert'Tag -——> Display ——> Display of Alert
Handle ——> Handle of Medium_Alert
Log —-—> Log of Alert
High_Alert'Tag ——> Display ——> Display of Alert
Handle ——> Handle of High_ Alert
Log -—> Log of Alert
Set_Alarm ——> Set_Alarm of High_ Alert

Figure 4-2: Tags and Dispatch Tables

Declared objects of a class-wide type are not as frequently used as are formal parameters and
heap objects, but they are useful as intermediates in larger computations. However, because there
is no upper bound on the size of types in a class, a declared object of a class-wide type must be
explicitly initialized. This determines the size, the tag, and any discriminants for the object, and
thereafter neither the tag nor the discriminants may be changed. Of course, it is necessary for all
class-wide objects to have a tag so that dispatching works without any unnecessary tests. We have
chosen to specify the tag by requiring an explicit initial value.

This indirectly provides a capability somewhat akin to declaration by association using like
in Eiffel [Meyer 88]. We can thereby ensure, for example, that a locally declared class-wide object
has the same tag as an actual parameter.

Note that discriminants of tagged types are not permitted to have defaults; this would have
increased the complexity of the language to no great benefit since the tag of an object (specific and
class-wide) cannot be changed and the tag is treated as a (hidden) discriminant. It would be
inconsistent to allow discriminants to be changed but not tags.

If assignment were allowed to change the tag or the discriminants, then the size of the class-
wide object might have to grow, requiring a deallocation and reallocation as part of assignment.

4-10 Object Oriented Programming Ada 95 Rationale: Core

We have avoided introducing operations in Ada 95 that involve this kind of implicit dynamic
allocation at run-time. Therefore, an explicit access value with explicit deallocation and
reallocation is required if a programmer desires to have the equivalent of an unconstrained object
of a class-wide type.

Note that Ada 83 required a similar approach for handling unconstrained arrays and
unconstrained discriminated types without defaults for the discriminants. In general, the way
unconstrained composite types and their associated bounds or discriminants were handled in Ada
83 is a good model for how class-wide types and their associated type tags are handled in Ada 95.

The predefined equality operators and the membership tests are generalized to apply to class-
wide types. Like other predefined operations on such types, the implementation will depend on the
particular specific type of the operands. Unlike normal dispatching operations, however,
Constraint_Error is not raised if the tags of the operands do not match.

For equality, tag mismatch is treated as inequality. Only if the tags match is a dispatch then
performed to the type-specific equality checking operation. This approach allows a program to
safely compare two values of a class-wide tagged type for equality, without first checking that their
tags match. The fact that no exception is raised in such an equality check is consistent with the
other predefined relational operators, as noted in [RM83 4.5.2(12)].

For a membership test such as X in S, where X is of a class-wide type, the tag of the value of
the simple expression X is checked to see whether it belongs to the subtype mark s. If the subtype
mark S identifies a class-wide type, then the membership test determines whether the tag of the
value identifies a specific type covered by the class-wide type. If the subtype mark s identifies a
specific tagged type, then the membership test determines whether the tag of the value equals the
tag of that type. In any case, to be considered a member, the value must satisfy any constraints
associated with the subtype mark.

The Tag attribute is defined for querying the tag of a specific type, or of an object of a class-
wide type. This allows two class-wide objects to be checked to see whether they have the same
tag. It is also possible to compare the tag of a class-wide object with the tag of a specific type;
such a comparison is equivalent to a membership test.

Thus (using the alert example from Part One), the test

AC in Medium_Alert
is identical to

AC'Tag = Medium_Alert'Tag
but note that the test

AC in Medium_Alert'Class

has no generally applicable equivalent in terms of explicit user checks on tags because we cannot
talk about possible future extensions in terms of tags. It is thus preferable to use membership tests
rather than explicit testing of tags in order to ensure that our program is extensible.

The rules for membership tests on class-wide types are constructed so that certain simple
type-specific behavior may be performed in a class-wide operation, without the need to declare and
define a new primitive operation on all types within the class.

For example, given

type Expression_Node is tagged...
type Binary_Operator is new Expression_Node with
type Node_Ptr is access Expression_Node'Class;

one could define the following operation Display on the access to class-wide type Node_Ptr

Ada 95 Rationale: Core Object Oriented Programming: 4-11

procedure Display (Expr: Node_Ptr; Prec: Positive := 1) is
—-— display expr, parenthesized if necessary
begin

if Expr.all in Binary_Operator'Class then
—— handle the binary operator subclass

declare
Binop: constant Bin_Op_Ptr := Bin_Op_Ptr (Expr);
—— convert parameter to ptr to Binary_Operator
—— to gain access to its subclass operations
begin

if Precedence (Binop) < Prec then
—— parenthesize if lower precedence
Put (' (");
end if;
—— display left, op, right, passing down precedence
Display (Binop.Left, Precedence (Binop));
Put (Symbol (Binop)) ;
Display (Binop.Right, Precedence (Binop));
if Precedence (Binop) < Prec then
—— closing parenthesis if necessary
Put (') ');
end if;
end;
else
—— handle the other kinds of expressions
end if;
end Display;

An alternative, more "object-oriented" approach would be to define a separate Display
primitive operation for each distinct type within the class. See for example [Taft 93].

We conclude this section by discussing a number of important general principles regarding
primitive operations and dispatching. It is instructive to map these principles into the
implementation model of the tag and dispatch table mentioned above; but remember that this is
only a possible model although a very natural one. We can refer to the entries in the dispatch table
as "slots".

The first general principle is that dispatching always works without any checking at runtime;
in other words that the subprogram referred to by the dispatch table for the tag value can always be
safely called. A number of individual rules ensure that this is true. Perhaps the most important is
that operations cannot be removed when deriving a new type; they can only be added or replaced.
This means that if an operation is primitive for a type then it is necessarily available for all
(nonabstract) types in the class rooted at that type. Another vital rule is that we cannot create an
object of an abstract type; this prevents dispatching to an abstract subprogram (see 3.6.2).
Moreover, as discussed further in 4.5, the tag of an object can never be changed, so the tag of a
declared object cannot be changed into the tag corresponding to a type without the appropriate
operations.

Another important rule is that type extension is not allowed at a place which is not accessible
from the parent type such as within an inner block. This rule ensures that the accessibility of all
specific types in a (tagged) class is the same and prevents a value from being assigned to a class
wide object and thereby outlive its specific type. A further consequence is that we cannot dispatch
to a subprogram which is at an inner level and which might thereby attempt to access non-existent
data. Consider

package Outer is
type T is tagged ...;
procedure P (Object: T); —— a dispatching operation
type A is access T'Class;

4-12 Object Oriented Programming Ada 95 Rationale: Core
Global: A;
end Outer;

procedure Dodgy is
package Inner is

type NT is new T with ...; —-— an illegal extension
procedure P (Object: NT); —-— override
end;

package body Inner is

I: Integer := 0;
procedure P (Object: NT) is
begin
I :=1+ 1; -- assign to variable local to Inner
end P;
end Inner;
begin
Global := new Inner.NT'(...);
end Dodgy;

procedure Disaster is
begin

Dodgy;

P(Global.all); -- dispatch to non-existent P
end Disaster;

The procedure Dodgy attempts to declare the type NT and then assign an access to an object of the
specific type to the class wide access variable Global. If this were allowed then the call of P in
the procedure Disaster would attempt to dispatch to the procedure inside Inner and thereby
access the variable I which no longer exists. Disallowing extensions at an inner level prevents this
sort of difficulty.

Note also that having all the types at the same accessibility level ensures that the "subprogram
values" in the dispatch table can be implemented just as simple addresses; no level information is
required. There is an analogy with access to subprogram values discussed in 3.7.2.

Another important principle is that the dispatch table is the same for all views of a type; in
other words there is just one dispatch table common to both a partial view and a full view.
However, it can be the case that some operations are not visible from a partial view. This is
discussed further in 7.1.1.

Interestingly, it is also possible to have two operations of the same name (and profile), one
visible from one view and the other from another view in such a way that they are never both
visible from the same view; in this case they would occupy different slots in the dispatch table.
These and related possibilities are also illustrated in detail in 7.1.1.

The freezing rules have an important impact on type extension. The basic idea is that a record
extension freezes the parent; the key impact is that further primitive operations cannot then be
declared for the parent. However, a private extension does not freeze the parent; freezing is
postponed until the later full declaration. See 13.5.1.

Finally, we summarize the rules regarding which operations are primitive. The main rule is
that only those operations with an operand or result of the type and declared immediately in the
package specification with the type declaration (or type extension) are primitive operations. (This
general rule applies to both tagged and other types.) Note that if a type is not declared in a
package specification then any operations declared in the same declarative region are not primitive
and thus not inherited. Because this might give rise to surprises, especially in the case of tagged
types, it is in fact forbidden to call a nonprimitive operation in a dispatching way (that is with a
class-wide actual); this eliminates the risk of accidentally declaring a tagged type and then finding
that what were presumed to be primitive operations do not dispatch.

Ada 95 Rationale: Core Object Oriented Programming: 4-13

Note moreover that, in the case of a type extension, although new primitive operations cannot
be added except in a package specification, primitive operations inherited from the parent may be
overridden wherever the extension is declared and these overridden versions will of course be
inherited by any further extension. Thus new slots can only be created by a type declared or
extended in a package specification, but existing slots may be overridden wherever a type
extension is declared. Consider

package P is

type T is tagged ...;

procedure Opl (X: T); —-— primitive of T
end P;

with P; use P;
package Q is

type NTQ is new T with ...;

procedure Opl (X: NTQ); —-— overrides inherited Opl from T

procedure Op2 (X: NTQ); —-— additional primitive of NTQ
end Q;

package body P is

type NTP is new T with ...;
procedure Opl (X: NTP); —-— overrides inherited Opl from T
procedure Op2 (X: NTP); —-— not a primitive of NTP

end P;

The type NTQ is declared immediately inside the specification of package O and thus the
operation Op2 is primitive. On the other hand NTP is declared in the body of package P and thus
although oOp1 overrides the inherited Op1, nevertheless the operation Op2 is not primitive.

These rules are designed to give flexibility with minimum burden. Many type extensions will
simply replace existing operations rather than add new ones and it seems a heavy burden to insist
that these be in a package specification. Indeed, in the case of the leaves of the tree of types, there
is no need to add further primitive operations (if a type is a leaf then any new operation is not
inherited by another type and thus there is no need to dispatch); but it is important to be able to
override existing operations wherever the type is declared. See the example in 4.4.4.

A minor difference between tagged and nontagged types concerns the parameter modes of
overriding operations. In the case of tagged types an overriding operation must have the same
parameter modes otherwise dispatching would not work. In the case of nontagged types this does
not matter and for compatibility with Ada 83, the modes need not be the same; note that overload
resolution ignores parameter modes.

4.4 Examples of Use

This section presents some of the ways in which Ada 95's object oriented programming features
may be used and combined with other facilities to address a number of programming paradigms.
An important use of object oriented programming is variant programming. This was amply
illustrated by the example of processing alerts in Part One. As we saw, the use of variant records
can be both cumbersome and error prone [Wirth 88] whereas the use of type extension is both
more flexible and entirely secure.
In this section we give other typical paradigms of use

. An example of different approaches to a standard queue package that can be used as a
basis for a wide range of applications.

. An example of a more elaborate heterogeneous doubly linked list abstraction.

4-14 Object Oriented Programming Ada 95 Rationale: Core

. An example showing how alternative implementations can be provided for the same
abstraction.
. An example showing how type extension and dispatching can be used to program iterators

and similar applications.

4.4.1 Queues

In dealing with the alert example in II.2 we mentioned that the various alerts might be held on a
queue ready for processing. Such a queue must have the capability to be heterogeneous because
the alerts are of different specific types. This is a common requirement and it is therefore
appropriate to develop a package that can be reused for a variety of applications.

However, the strong typing model of Ada 83 made it very difficult to write a common
abstraction that could be reused without alteration even through the use of generics. (Only
homogeneous structures could be constructed with Ada 83 generic units. Variant records could be
used to provide some heterogeneity, but source code changes and possibly extensive recompilation
were required to add new variants.)

There are several approaches that can be taken which have a different balance between
convenience and efficiency. We will explore a number of these in order to illustrate various
considerations and potential pitfalls to be avoided. We will start at the convenient end of the
spectrum by considering a package which is generic with respect to the type of data on the queue.
The specification might be

generic
type Q_Data(<>) is private;

package Generic_Queues is
type Queue is limited private;
function Is_Empty (Q: Queue) return Boolean;
procedure Add_To_Queue (Q: access Queue; X: in Q_Data);
function Remove_From_Queue (Q: access Queue) return Q Data;
Queue_Empty: exception;

private

end Generic_Queues;

It is important to note that the formal type has an unknown discriminant part. It can then be
matched by a specific type or by a class wide type (see 12.5). If we use a specific type then of
course the queue is homogeneous but using a class wide type provides a heterogeneous queue.
Note also that the exported type Queue is limited private; the implementation will inevitably be in
terms of pointers to a chained list and making it limited prevents the user from making a copy
which might subsequently become nonsense; we will return to the implementation details in a
moment.

Values are added to the queue by calling the procedure Add_To_Queue and removed by
calling the function Remove_From_Queue. Making the latter a procedure with profile

procedure Remove_From_Queue (Q: access Queue; X: out Q_Data);

is rather restrictive because we cannot call the procedure with an uninitialized class-wide object
(they are not allowed) and an initialized one will be constrained by its initial value. Such a
procedure is therefore only useful if we always know (by some other means) the anticipated
specific type of the item being removed. Using a function works because the returned result
provides the initial value and thus the constraint.

Incidentally we made the parameter Q of the function an access parameter largely because an
in out parameter is not allowed for functions. We could have made it an in parameter but the

Ada 95 Rationale: Core Object Oriented Programming: 4-15

internal implementation of the queue would then need an extra level of indirection. See 6.1.2 for a
fuller discussion on the merits of access versus in out parameters. We also have to choose between
declaring a queue directly and making it aliased or creating the queue with an allocator. We
choose the latter.

So for the alerts, we can write

package Alert_Queues is new Generic_Queues (Q_Data => Alert'Class);
use Alert_Queues;
type Queue_Ptr is access all Queue;
The_Queue: Queue_Ptr := new Queue;
MA: Medium_Alert := ...;
Add_To_Queue (The_Queue, MA);
and a value could be retrieved by

Any Alert: Alert'Class := Remove_From_ Queue (The_Queue);

where the result provides the constraint for Any_Alert.
Returning to the example in 1.2, we could then call the first form of Process_Alerts by

Process_Alerts (Any_Alert);
and indeed we could directly write
Process_Alerts (Remove_From_Queue (The_Queue)) ;

It is often preferable to manipulate access values to tagged types rather than tagged type
values themselves; partly because this avoids the cost of copying and perhaps more important it
overcomes the problem of not knowing the size of the object in the case of a class wide type. So
an alternative approach would be to write

type Alert_Ptr is access all Alert'Class;

package Alert_Ptr_Queues is new Generic_Queues (Alert_Ptr);
use Alert_Ptr_Queues;

type Queue_Ptr is access all Queue;

The_Queue: Queue_Ptr := new Queue;

ﬁé&_Alert: Alert_Ptr := new Medium_Alert'(...);
Aaa_To_Queue(The_Queue, New_Alert);

and then in the body of the second form of Process_Alerts we could have
Next_Alert: Alert_Ptr := Remove_From_Queue (The_Queue) ;
ééﬁdle(Next_Alert.all);

This second formulation is very straightforward since the queue is really homogeneous; all the
elements are of the same access type and the heterogeneity comes from the nature of the accessed
type.

We now return to consider how the generic package might be implemented. An important
point is that since the formal type is indefinite, we cannot declare an uninitialized object of the type
or a record with a component of the type. This forces us to use dynamic storage. As a first attempt
the private part might be

4-16 Object Oriented Programming Ada 95 Rationale: Core

private
type Data_Ptr is access Q_Data;
type Node;
type Node_Ptr is access Node;
type Node is
record
D: Data_Ptr;
Next: Node_Ptr;
end record;
type Queue is
record
Head: Node_Ptr;
Tail: Node_Ptr;
end record;
end Generic_Queues;

This is an obvious approach although slightly cumbersome because of the double levels of
indirection. This causes a double allocation whenever a new data item is added; one for the node
and one for the data itself. Care is also needed in discarding storage when an item is removed.
The details are left to the reader.

A problem with the above approach is the encapsulation of the storage management.
Although the generic is very reusable it is somewhat costly because of the storage allocation
overheads. Of course if the queue were homogeneous and had a definite parameter without <>
then it would be simpler because the values could be stored directly; we are paying for the
generality. Insisting that the parameter be definite would not be unreasonable because, as shown
above, the client can always pass an access type.

A completely different approach is to arrange things so that the user's type provides the
storage for the linking mechanism through type extension; this avoids the overheads of storage
management but requires a little more effort on the part of the user. Consider the following

package Queues is
type Queue is limited private;
type Queue_Element is abstract tagged private;
type Element_Ptr is access all Queue_Element'Class;
function Is_Empty (Q: Queue) return Boolean;
procedure Add_To_Queue (Q: access Queue; E: in Element_Ptr);
function Remove_From_Queue (Q: access Queue) return Element_Ptr;
Queue_Error: exception;

private
type Queue_Element is tagged
record
Next: Element_Ptr := null;
end record;
type Queue is limited
record
Head: Element_Ptr := null;
Tail: Element_Ptr := null;

end record;
end Queues;

The general idea is that the user extends the type Queue_Element with the data to be
queued. The linking is then done through the private component Next of which the user is not
aware. The body might be as follows

package body Queues is
function Is_Empty (Q: Queue) return Boolean is
begin
return Q.Head = null;

Ada 95 Rationale: Core Object Oriented Programming:

end Is_Empty;

procedure Add_To_Queue (Q: access Queue;
E: in Element_Ptr) is

begin
if E.Next /= null then
raise Queue_Error: —— already on a queue
end if;
if Q.Head = null then —— list was empty
Q.Head := E;
Q.Tail := E;
else
Q.Tail.Next := E;
Q.Tail := E;
end if;

end Add_To_Queue;

function Remove_From_Queue (Q: access Queue)
return Element_Ptr is
Result: Element_Ptr;
begin
if Is_Empty(Q) then
raise Queue_Error;

end if;

Result := Q.Head;
Q.Head := Result.Next;
Result.Next := null;

return Result;
end Remove_From_Queue;
end Queues;

4-17

Heterogeneous queues can be made because the type Element_Ptr is an access to class wide
type. There are a number of ways in which this approach can be used which we will now explore

using the alert example.

The first point is that we cannot extend the queue element with a class wide type and so we
cannot just make a single extension which directly contains any alert. We could of course just

extend with a component of the type Alert_Ptr and then add and remove alerts as follows

type Alert_Element is new Queue_Element with
record
The_Ptr: Alert_Ptr;
end record;

type Queue_Ptr is access all Queue;

The_Queue: Queue_Ptr := new Queue;

New_Alert: Alert_Ptr := new Medium_ Alert'(...);
New_Element: Element_Ptr :=

new Alert_Flement' (Queue_Element with New_Alert)
Add_To_Queue (The_Queue, New_Element);

Next_Alert := Alert_Element (Remove_From_Queue (The_Queue)) .The_Ptr;

Note the use of the extension aggregate with the subtype name as the ancestor part, see 3.6.1.

4

We could create distinct element types for each alert level although this has its own problems

as will soon become apparent. If we write

4-18 Object Oriented Programming Ada 95 Rationale: Core

type Low_Element is new Queue_Element with
record
LA: Low_Alert;
end record;

type Medium_ Element is new Queue_Element with
record
MA: Medium_Alert;
end record;

then adding alerts to the queue is relatively straightforward.

MA: Medium_Alert := ...;
New_Element: Element_Ptr :=

new Medium_Element' (Queue_Element with MA);
Add_To_Queue (The_Queue, New_Element);

Removing an alert in this formulation is less straightforward since we have to identify its
specific type by interrogating the tag thus

Next_Element: Element_Ptr := Remove_From_ Queue (The_Queue) ;

if Next_Element'Tag = Low_Element'Tag then
Process_Alerts (Low_Element (Next_FElement) .LA);

Unfortunately this brings us back to variant programming which we try to avoid. The essence
of the difficulty is that we have dispersed the alerts into the different queue elements and lost their
commonality. There are two possible different approaches. The best is to plan ahead and ensure
that the complete alert hierarchy is developed with the common queue element already in place.
Following II.3, we can write

with Queues; use Queues;

package Base_Alert_System is
type Alert is abstract new Queue_Element with null record;
procedure Handle (A: in out Alert) is abstract;

end Base_Alert_System;

and then we develop all the rest of the alert structure as before. Now all alerts themselves have the
linking mechanism already in them and can be directly placed on a queue. So we can now simply
write

New_Alert: Alert_Ptr := new Medium_Alert'(...);
Add_To_Queue (Queue, New_Alert);

Next_Alert := Alert_Ptr (Remove_From_Queue (The_Queue)) ;

Note that we have to convert the result to the type Alert_Ptr. This conversion requires a
runtime check which always passes (because we have only placed alerts on the queue).

An important point to note with this approach is that each element can be on only one queue
at a time. An attempt to place an element on a second queue will result in Queue_Error. Note
that when an element is removed from a queue, its Next component is set to null so that it can
then be placed on another queue. Observe that if we consider the elements as like real objects then
they can only be in one place at a time and hence only on one queue at a time; so the restriction
should not be unrealistic.

If it is quite impossible to modify an existing hierarchy to incorporate the link in the root
(perhaps because we do not have the source), then it is still possible to avoid the variant difficulty

Ada 95 Rationale: Core Object Oriented Programming: 4-19

when removing elements from the queue. The idea is to add a dispatching operation which can
extract the particular alert; we can write

with Queues; use Queues;
package Alert_Elements is
type Data_Element is abstract new Queue_Element with null record;
type Data_Element_Ptr is access all Data_Element'Class;
function Extract (D: Data_Element) return Alert'Class is abstract;
end Alert_FElements;

By introducing the type Data_Element we provide a place to attach the required dispatching
operation. Note of course that Extract only applies to the class rooted at Data_Element and
not the class rooted at Queue_Element.

We can now declare the various types such as Low_Element for each alert type as extensions
of Data_Element and provide an appropriate function Extract for each such as

type Low_Element is new Data_Element with
record
LA: Low_Alert;
end record;

function Extract (D: access Low_FElement) return Alert'Class is
begin

return D.LA;
end Extract;

We can add alerts to the queue much as before but removing alerts is now much simpler. Having
copied the pointer to the removed element into Next_Element we can then convert to the type
Data_Element and then call Extract thus

Next_Element: Element_Ptr := Remove_From_Queue (The_Queue) ;
Any_ Alert: Alert'Class := Extract (Data_Element_ Ptr (Next_Element));

so that dispatching to the appropriate function Extract occurs thereby overcoming the need for
variant programming.

Although this mechanism works, it is vulnerable to error if the alert structure is extended.
There is a risk that the corresponding extension to the element structure might be forgotten in
which case a value of an extended type will not be extracted properly.

We continue this rather long discussion by considering how the original generic queue
package could be implemented in terms of the second package. The private part and body might
be

private
type Data_Ptr is access Q_Data;
type Q_Element is new Queues.Queue_Element with
record
D: Data_Ptr;
end record;
type Queue is new Queues.Queue;
end Generic_Queues;

package body Generic_Queues is
function Is_Empty (Q: Queue) return Boolean is
begin
return Queues.Is_Empty (Queues.Queue (Q));
end Is_Empty;

4-20 Object Oriented Programming Ada 95 Rationale: Core

procedure Add_To_Queue (Q: access Queue; X: in Q_Data) is
begin
Queues.Add_To_Queue (Queues.Queue (Q),
new Q Element' (Queues.Queue_Element with new Q Data' (X)));
end Add_To_Queue;

function Remove_From_Queue (Q: access Queue) return Q Data is
begin
if Is_Empty(Q) then
raise Queue_Empty;
end if;
declare
Q_E_P: Queues.Element_Ptr :=
Queues.Remove_From_Queue (Queues.Queue (Q)) ;

D_P: Data_Ptr := Q_Element (Q_E_P.all) .D;
Result: Q.Data := D_P.all;
begin

—— can now discard storage occupied by the queue element
—— and the data; assuming suitable unchecked conversions
Free(Q_E_P); Free (D_P);
return Result;
end;
end Remove_From_Queue;
end Generic_Queues;

Note that we have to take care not to lose access to the storage so that it can be freed. In
particular the result is copied into a local variable; this is allowed despite the type being indefinite
because the variable is initialized. Another point is that Is_Empty, Add_To_Queue and
Remove_From_Queue can be slightly simplified since Queue is derived from Queues.Queue and
therefore inherits subprograms with the same identifiers (although different profiles). For example
we could simply write

procedure Add_To_Queue (Q: access Queue; X: in Q_Data) is
begin
Add_To_Queue (Q,
new Q Element' (Queues.Queue_Element with new Q Data' (X)));
end Add_To_Queue;

The implementation of the generic queue package involves much copying of the data;
nevertheless it provides a clean interface and hides all the problems. However, the lower level
package is almost as easy to use if the data is structured correctly. Intermediate designs are also
possible; for example a generic package that accepts any definite type. The two subprograms
could then both be procedures with in out parameters and less indirection would be required.

We conclude with some general observations. It is much easier to manipulate access values
when dealing with class wide data. This is largely because of the difficulties of storing such data.
We also note that object oriented programming requires thought especially if variant programming
is to be avoided. There is a general difficulty in finding out what is coming which is particularly
obvious with input-output; it is easy to write dispatching output operations but generally
impossible for input.

4.4.2 Heterogeneous Lists

For the next example we consider doubly-linked lists which are a common programming
technique.

Ada 95 Rationale: Core Object Oriented Programming: 4-21

The implementation shown below uses tagged types and somewhat similar techniques to the
second queue package in the last section although at a lower level of abstraction.

package Doubly_Linked is

type Node_Type is tagged limited private;
type Node_Ptr is access all Node_Type'Class;

—— define add/remove operations,

—— assuming head of list is a single Node_Ptr

procedure Add(Item: Node_Ptr; Head: in out Node_Ptr);
—— add new node at head of list

procedure Remove (Item: Node_Ptr; Head: in out Node_Ptr);
—-— remove node from list, update Head if necessary

—— define functions to iterate forward or backward over list
function Next (Item: Node_Ptr) return Node_Ptr;
function Prev (Item: Node_Ptr) return Node_ Ptr;

private
type Node_Type is tagged limited
record
Prev: Node_Ptr := null;
Next: Node_Ptr := null;

—— other components to be added by extension
end record;
end Doubly_Linked;

This illustrates the specification of a simple doubly linked list abstraction that may be
extended with additional components and operations to create useful heterogeneous linked lists. It
is similar to the second queue example in that the user extends the type Node_Type to contain the
required data and it allows heterogeneous lists because the type Node_Ptr is an access to class
wide type and thus allows the various nodes of different specific types to be linked together.

A difference is that the user refers to the list through the parameter Head which is also of the
type Node_Ptr. Being doubly linked there is no need to separately maintain a reference to the tail
of the list. And indeed it is possible to create variations which deal with circular lists.

The procedure Add places a new item at the start of the list but in contrast to the queue
example, the procedure Remove takes the given item from wherever it is in the list. The
procedures Next and Prev enable the user to move over the list as required.

The details of the implementation are not shown but should ensure correct behavior when
dealing with an empty list and should also guard against adding an item which is already on the list
(or another list) or removing something not on the list.

We can now use the Doubly_Linked abstraction to demonstrate programming by extension.
We implement a keyed association abstraction using an extension of
Doubly_Linked.Node_Type. The generic package Association takes a Key_ Type, an
equality operation defined on the Key_Type and a hash function defined on the Key_Type. The
exported type Element_Type is intended to be further extended with the data to be associated
with the key.

with Doubly_Linked;

generic
type Key_ Type is limited private;
with function "=" (Left, Right: Key_Type) return Boolean is <>;

with function Hash (Key: Key_Type) return Integer is <>;
package Association is

type Element_Type is new Doubly_Linked.Node_Type with
record

4-22 Object Oriented Programming Ada 95 Rationale: Core

Key: Key_Type;
end record;
type Element_Ptr is new Doubly_Linked.Node_Ptr;

function Key (E: Element_Ptr) return Key_Type;

type Association_Table(Size: Positive) is limited private;
—— size determines size of hash table

procedure Enter (Table : in out Association_Table;
Element: in Element_Ptr);

function Lookup (Table: in Association_Table;
Key : in Key_Type) return Element_Ptr;

—— other operations on Association_Table (eg, an iterator)...
private
type Element_ Ptr Array is array (Integer range <>) of Element_Ptr;
type Association_Table(Size: Positive) is
record
Buckets: Element_Ptr_Array(l .. Size);
end record;
end Association;

An Association_Table is a hash table, where each hash value has an associated doubly-
linked list of elements. The elements may be of any type derived from Element_Type. The head
of each list is of the type Element_Ptr which is itself derived from Node_Ptr (an untagged
derived type). All the primitive operations (Add, Remove etc) which apply to Node_Ptr are thus
inherited by Element_Ptr. The function Key returns the key component of the object referred to
as parameter.

We can now go on to define a symbol table for a simple language with types, objects, and
functions using the association structure. The symbol table allows different types of entries for
each of types, objects and functions.

with Association;
package Symbol_Table_Pkg is

type Identifier is access String;

—-— symbol table key is pointer to string

—-— allowing arbitrary length identifiers
function Equal (Left, Right: Identifier) return Boolean;
function Hash (Key: Identifier) return Integer;

—-— instantiate Association to produce symbol table
package Symbol_Association is
new Association(Identifier, Equal, Hash);
subtype Symbol_Table is
Symbol_Association.Association_Table;

—— define the three kinds of symbol table elements
—-— using type extension
type Type_Symbol is new Symbol_Association.Element_Type with

record
Category: Type_Category;
Size : Natural;

end record;
type Type_Ptr is access Type_Symbol;

Ada 95 Rationale: Core Object Oriented Programming: 4-23

type Object_Symbol is new Symbol_Association.Element_Type with
record
Object_Type : Type_Ptr;
Stack_Offset: Integer;
end record;

type Function_Symbol is new Symbol_Association.Element_Type with

record
Return_Type : Type_Ptr;
Formals : Symbol_Table (5); —-— very small hash table
Locals : Symbol_Table(19); -- bigger hash table

Function_Body: Statement_List;
end record;
end Symbol_Table_Pkg;

A type Symbol_Table is produced by instantiating the generic Association with a key
that is a pointer to a string. Then three extensions of Element_Type are declared, each of which
may be entered into the symbol table. An interesting point is that the elements for the type
Function_Symbol each themselves contain internal symbol tables.

The body of the generic Association package might be as follows

package body Association is
procedure Enter (Table: in out Association_Table;
Element: Element_Ptr) is
—-— enter new element into association table.
Hash_Index: constant Integer :=
(Hash (Element .Key) mod Table.Size) + 1;

use Doubly_Linked;

begin
—— add to linked list of appropriate bucket
Add (Element, Table.Buckets (Hash_Index));

end Enter;

function Key (E: Element_Ptr) return Key_Type is
begin

return Element_Type (E.all) .Key;
end Key;

function Lookup (Table: Association_Table;
Key: Key_Type) return Element_Ptr is
—— look up element in association table.
Hash_Index: constant Integer :=
(Hash (Key) mod Table.Size) + 1;

Ptr: Element_Ptr := Table.Buckets (Hash_Index); —-—- head of 1list
use Doubly_Linked;
begin

—— Scan doubly-linked list for element with
—— matching key. Return null if none found.
while Ptr /= null loop

if Key (Ptr) .Key = Key then

return Ptr; —-- matching element found and returned
end if;
Ptr := Next (Ptr);
end loop;
return null; —— no matching element found

end Lookup;

4-24 Object Oriented Programming Ada 95 Rationale: Core

end Association;

The operations Enter and Lookup are implemented in a straightforward manner using the
operations of the type Element_Ptr inherited from Node_Ptr.

The function Key is interesting. Note first that since Element_Ptr is derived from
Node_Ptr its accessed type is also Node_Type'Class (this is a nontagged derivation and when
we derive from an access type the accessed type of the derived type is the same as its parent as in
Ada 83). So the expression E.all is of the type Node_Type'Class. Itis then converted to the
specific type Element_Type (this is away from the root and so involves a run-time check which
will always succeed in this example) and the component is then selected.

Note that since the type Node_Ptr is visible we could declare an object directly and pass an
access to it as parameter to the function Key; this would raise Constraint_Error because the
function Key is designed to operate on elements and not on nodes in general. We could overcome
this by making the types Element_Type and Element_ Ptr private so that the underlying
relationship to the type Node_Type is hidden.

4.4.3 Multiple Implementations

A very important aspect of object oriented programming is the ability to provide different
implementations of the one abstraction. One can do this to some extent in Ada 83 in that one
package could have alternate bodies. But only one implementation can be used in one program.

It is worth noting that the possibility of multiple implementations of an abstraction has been
recognized for some time [Guttag 77]. However, when abstraction facilities were incorporated
into conventional compiled languages, a single implementation per interface was typically adopted
for pragmatic reasons [Dijkstra 72]. This is illustrated by CLU [Liskov 77] and Modula [Wirth 77]
as well as Ada 83. It was really C++ [Stroustrup 91] that was the first main-stream systems
programming language that recognized that the dynamic binding inherent in having objects
identify their own implementation could be provided while preserving performance.

Thus, with a true object oriented language, the common structure of the types and their
operations provided by inheritance enable different types to be treated as different realizations of a
common abstraction. The tag of an object indicates its implementation and allows a dynamic
binding between the client and the appropriate implementation.

We can thus develop different implementations of a single abstraction, such as a family of list
types [LaLonde 89], matrices (dense or sparse), or set types, as in the next example.

The specification of an Abstract_Sets package might be

-— Given
subtype Set_Element is Natural;

package Abstract_Sets is
type Set is abstract tagged private;

—— empty set
function Empty return Set is abstract;

—— build set with 1 element
function Unit (Element: Set_FElement) return Set is abstract;

—-— union of two sets
function Union(Left, Right: Set) return Set is abstract;

—— intersection of two sets

Ada 95 Rationale: Core Object Oriented Programming: 4-25

function Intersection(Left, Right: Set) return Set is abstract;

—-— remove an element from a set
procedure Take (From: in out Set;
Element: out Set_Element) is abstract;

Element_Too_Large: exception;
private

type Set is abstract tagged null record;
end Abstract_Sets;

The package provides an abstract specification of sets. The Set type definition is an abstract
tagged private type, whose full type declaration is a null record. It defines a set of primitive
operations on Set that are abstract subprograms. Abstract subprograms do not have bodies and
cannot be called directly. However, as primitive operations, they are inherited. Derivatives of Set
must override these abstract operations to provide their own implementations. Derivatives of Set
can extend the root type with components providing the desired data representation, and can then
implement the primitive operations for that representation.

As an example, one might build an implementation using bit vectors

with Abstract_Sets;
package Bit_Vector_Sets is

type Bit_Set is new Abstract_Sets.Set with private;

—-— Override the abstract operations
function Empty return Bit_Set;
function Unit (Element: Set_Element) return Bit_Set;
function Union (Left, Right: Bit_Set) return Bit_Set;
function Intersection(Left, Right: Bit_Set) return Bit_Set;
procedure Take (From: in out Bit_Set;

Element: out Set_Element);

private
Bit_Set_Size: constant := 64;
type Bit_Vector is
array (Set_Element range 0 .. Bit_Set_Size-1) of Boolean;

pragma Pack (Bit_Vector);

type Bit_Set is new Abstract_Sets.Set with
record
Data: Bit_Vector;
end record;
end Bit_Vector_Sets;

package body Bit_Vector_Sets is
function Empty return Bit_Set is
begin
return (Data => (others => False));

end;

function Unit (Element: Set_Element) return Bit_Set is

S: Bit_Set := Empty;
begin
S.Data (Element) := True;

return S;

4-26 Object Oriented Programming Ada 95 Rationale: Core

end;

function Union (Left, Right: Bit_Set) return Bit_Set is
begin

return (Data => Left.Data or Right.Data);
end;

end Bit_Vector_ Sets;

An alternative implementation more appropriate to very sparse sets might be based on using
linked records containing the elements present in a set. We could then write a program which
contained both forms of sets; we could convert from one representation to any other by using

procedure Convert (From: in Set'Class; To: out Set'Class) is

Temp: Set'Class := From;
Elem: Set_Element;
begin
—— build up target set, one element at a time
To := Empty;

while Temp /= Empty loop
Take (Temp, Elem);
To := Union(To, Unit (Elem));
end loop;
end Convert;

This procedure dispatches onto the appropriate operations according to the specific type of its
parameters. Remember that all variables of class-wide types (such as Temp) have to be initialized
since class-wide subtypes are indefinite and the tag is given by the tag of the initial value. Note
that the equality operators are also dispatching operations so that the expression Temp /= Empty
uses the equality operation for the type of From. Furthermore, assignment is also a dispatching
operation although this is not often apparent. In this example, however, if the type of From were a
linked list then a deep copy would be required otherwise the original value could be damaged
when the copy is decomposed. Such a deep copy can be performed by using a controlled type for
the inner implementation of the list as explained in 7.4.

Finally, note that the abstract sets package could have been generic

generic
type Set_Element is private;
package Abstract_Sets is

and this would have added an extra dimension for the possibility of reuse.

4.4.4 lterators

It is a common requirement to wish to apply some operation over all members of a set. One
approach was discussed in 3.7.1 using access discriminants. In this section we show a rather
different technique using type extension and dispatching. (We start by assuming the example is
not generic and consider the impact of genericity later.)

Consider

type Element is
package Sets is

type Set is limited private;
—— various set operations

Ada 95 Rationale: Core Object Oriented Programming:

type Iterator is abstract tagged null record;
procedure Iterate(S: Set; IC: Iterator'Class);
procedure Action(E: in out Element;
I: in out Iterator) is abstract;
private
type Node;
type Ptr is access Node;
type Node is
record
E: Element;
Next: Ptr;
end record;
type Set is new Ptr; —-— implement as singly-linked 1list
end Sets;

package body Sets is
. —-— bodies of the various set operations

procedure Iterate(S: Set; IC: Iterator'Class) is

This: Ptr := Ptr(S);
begin
while This /= null loop
Action(This.E, IC); —-— dispatch
This := This.Next;
end loop;

end Iterate:

end Sets;

This introduces an abstract type Iterator which has a primitive subprogram Action.

4-27

The

procedure Iterate loops over the set and calls by dispatching the procedure Action
corresponding to the specific type of the object of the Iterator class. The main purpose of the

Iterator type therefore is to identify by dispatching the particular Action to be performed.

The simple example of counting the number of elements in a set can now be written as

follows.

package Sets.Stuff is
function Count (S: Set) return Natural;
end Sets.Stuff;

package body Sets.Stuff is

type Count_Iterator is new Iterator with
record
Result: Natural := 0;
end record;

procedure Action(E: in out Element;
I: in out Count_Iterator) is
begin
I.Result := I.Result + 1;
end Action;

function Count (S: Set) return Natural is
I: Count_Iterator;

begin
Iterate (S, I);

4-28 Object Oriented Programming Ada 95 Rationale: Core

return I.Result;
end Count;
end Sets.Stuff;

The type Count_Iterator is an extension of the abstract type Iterator and the specific
procedure Action does the counting. The result is accumulated in a component of the type
Count_Iterator and is thereby made accessible to the procedure Action; this component is
initialized to zero when the Count_Iterator is declared inside the function Count.

Observe that the type extension is not immediately within a package specification and so it is
not possible to add new primitive operations to it. Nevertheless it is possible to override inherited
operations such as Action as explained in 4.3. If, for some reason, we wanted to declare
additional primitive operations then we would have to introduce an internal package. Note also
that we cannot put the type extension inside the function Count because this would break the
accessibility rules by making the type extension at a deeper level than the parent type as explained
in 3.4.

A further point is that if the parent package Sets were generic with the type Element being a
formal parameter as in the example with access discriminants in 3.7.1, then the child package
Sets.stuff would also have to be generic. In that case it would be necessary to move the type
extension and the overriding operation Action into the private part of Sets.Stuff for reasons
explained in 12.5.

More general actions can be written in a similar manner. Any parameters or results for the
action are passed as components in the iterator type. A general procedure to perform some action
might be

procedure General (S: Set; P: Parameters) is

I: General_Iterator;
begin

.. —— copy parameters into iterator

Iterate (S, I);

.. —-— copy any results from iterator back to parameters
end General;

and the type General_Iterator and the corresponding Action procedure take the form

type General_ Iterator is new Iterator with
record
. —— components for parameters and workspace
end record;

procedure Action(E: in out Element;
I: in out General_TIterator) is
begin
E := ...; —-—- do something to element using data from iterator
end Action;

It is instructive to compare this example with the corresponding example using access
discriminants in 3.7.1. Wherever possible similar identifiers have been used to make the analogy
easier. The analogy could be made closer by putting the function Sets.Count of 3.7.1 inside a
package as here.

Perhaps the most striking difference is that the two mechanisms are "inside out" to each other
in some sense. A notable thing about the access discriminant approach is that the looping
mechanism has to be written out for each action. Using type extension the loop is written out once
and the dispatching call of Act ion reaches out to the specific routine required.

The type extension approach has a close similarity to the potential method using an access to
subprogram value as a parameter. We would like to write something like

Ada 95 Rationale: Core Object Oriented Programming: 4-29

procedure Iterate(S: Set;
Action: access procedure(E: in out Element)) is
This: Ptr := Ptr(S);
begin
while This /= null loop
Action(This.E);
This := This.Next;
end loop;
end Iterate;

and then

function Count (S: Set) return Natural is
Result: Natural := 0;

procedure Count_Action(E: in out Element) is
begin

Result := Result + 1;
end Count_Action;

begin
Iterate (S, Count_Action'Access);
return Result;

end Count;

but unfortunately we cannot have anonymous access to subprogram parameters as explained in
3.7.2. Declaring a named access type so that the above starts

type Action_Type is access procedure(E: in out Element);
procedure Iterate(S: Set; Action: Action_Type) is

does not work either because then the access to the internal procedure Count_Action is illegal.
We have to make the procedure internal so that it can manipulate the variable Result. Note that
we would not wish to make Result global because that would not work in multitasking programs.
See the further discussion in 3.7.2 which also shows how the difficulties can be overcome with
generics.

The reason for disallowing more general access to subprogram values is that they would
require extra information regarding the environment of the procedure (in this case giving
addressability of the variable Result). The call of the formal procedure and the dispatching call
both serve similar purposes; they enable the iterate procedure to call out to the specific action
procedure. In both cases extra information is required; the type extension method enables it to be
passed in the type itself. The formal procedure method needs it within the underlying
implementation and for a number of reasons this is considered too heavy a burden in the general
case.

As mentioned earlier, there is a close analogy between the restrictions which ensure that a
procedure value is (nearly) always a single address and those which ensure that a dispatching value
is always a single address.

4.5 Dispatching and Redispatching

It is important to understand exactly when dispatching (dynamic binding) is used as opposed to the
static resolution of binding familiar from Ada 83. The basic principle is that dispatching is used
only when a controlling operand is of a class-wide type. In order to facilitate the discussion we
will reconsider the New_Alert_System introduced in II.1. The call

4-30 Object Oriented Programming Ada 95 Rationale: Core

Handle (A) ; —-— A of type Alert'Class

in the procedure Process_Alerts in II.2 is a dispatching call. The value of the tag of A is used
to determine which procedure Handle to call and this is determined at run time.
On the other hand a call such as

Handle (Alert (MA));

in the procedure Handle belonging to the type Medium Alert is not a dispatching call because
the type of the operand is the specific type Alert as a result of the explicit type conversion.

It is also possible to dispatch on the result of a function when the context of the call
determines the tag. Such a result is called a controlling result.

It is an important principle that all controlling operands and results of a call must have the
same tag. If they are statically determined then, of course, this is checked at compile time. If they
are dynamically determined (for example, variables of a class-wide type) then again the actual
values must all have the same tag and of course this check has to be made at run time;
Constraint_Error is raised if the check fails. In order to avoid confusion a mixed situation
whereby some tags are statically determined and some are dynamically determined is not allowed.
Thus in the case of the sets example in the previous section, it is illegal to write

S: Bit_Set :=
T: Set'Class :=

S := Union (S, T); -— illegal

even though at run-time it might be the case that the tag of the value of T might be Bit_Set'Tag.
But we could write

S := Union (S, Bit_Set (T));

and the view conversion will check that T is in Bit_Set'Class (the tag of T does not have to be
Bit_Set'Tag; it could be of any specific type that can be converted to Bit_Set).
A special case arises when the tag is indeterminate. Consider for example the statement

To := Empty;

in the procedure Convert. The parameterless function Empty has a controlling result but there is
no controlling operand to determine the tag. Consequently the tag is determined from the class-
wide parameter To which is the destination of the assignment. Of course, the tag of To is
dynamically determined and this value is used for dispatching on Empty. The statement

To := Union(To, Unit (Elem));

similarly causes dispatching on both Union and Unit according to the tag of To.

Another rule designed to avoid complexity is that it is not legal for a subprogram to have
controlling operands or result of different tagged types. Although it is legal to declare two tagged
types in the same package, it is not legal to declare a subprogram that has operands or result of
both types in that same package. This can, of course, be done outside the package but then the
subprogram is not a primitive operation of the types and does not dispatch anyway.

The difficulty with allowing such mixed controlling operands is that it would not be clear how
to achieve the various possible combinations of derived operations if both types were derived. If
the effect of such mixed operands is required then one type can be replaced by the corresponding
class-wide type. See [RM95 3.9.2].

The rules for type conversion (see 3.8) are also designed for clarity. Type conversion is
always allowed towards the root of a tree of tagged types and so we can convert a Medium_Alert
into an Alert as in the call

Ada 95 Rationale: Core Object Oriented Programming: 4-31

Handle (Alert (MA));

On the other hand we cannot convert a specific type away from the root (there might be missing
components); we have to use an extension aggregate even if there are no extra components. So we
can "extend" an Alert into a Low_Alert by

LA := (A with null record);

where we have to write null record because there are no extra components.
We can however convert a value of a class-wide type to a specific type as in

MA: Medium_Alert := Medium_Alert (AC);

where AC is of the type Alert'Class. In such a case there is a run-time check that the current
value of the class-wide parameter AC has a tag that identifies a specific type for which the
conversion is possible. Hence it must identify the type Medium_Alert or a type derived from it
so that the conversion is not away from the root of the tree. In other words we check that the
value of AC is actually in Medium_Alert'Class.

As mentioned in 3.8 some conversions are what is known as view conversions. This means
that the underlying object is not changed but we merely get a different view of it.

Almost all conversions of tagged types are view conversions. For example the conversion in

Handle (Alert (MA));

is a view conversion. The value passed on to the call of Handle (that with parameter of type
Alert) is in fact the same value as held in MA but the components relating to the type
Medium_Alert are no longer visible. And in fact the tag still relates to the underlying value and
this might even be the tag for High_Alert because it could have been view converted all the way
down the tree. Remember also that tagged types are passed by reference.

However, if we did an assignment as in

MA := Medium_Alert (HA);

then the tag of MA would not be changed and would not reflect that of the value in HA. All that
happens is that the values of the components appropriate to the type of MA are copied from the
object HA. Other components are of course ignored.

Furthermore, if MA were not a locally declared variable but an out or in out parameter, then
again the tag of MA would not be changed. Remember, however, that the tag of MA in this case
need not itself be Medium Alert'Tag since a formal parameter is simply giving a view of the
actual parameter and the tag of that could be of any type derived from Medium_Alert. But we do
know that both sides of the assignment have the components appropriate to Medium_Alert and so
the assignment works.

Note moreover that conversions of tagged types are allowed as the target of an assignment;
thus

AC: Alert'Class :=
Medium_Alert (AC) := MA;

will check that the tag of AC corresponds to Medium_Alert or a type derived from it (or in other
words checks that AC in Medium_Alert'Class is true) and then copies just those components
corresponding to the Medium_Alert view from the right hand side to the left hand side.

It might help to summarize the golden rules

. the tag of an object never changes; this applies to both specific and class-wide types,

4-32 Object Oriented Programming Ada 95 Rationale: Core

. conversion can never be away from the root, conversion never changes the tag.

The fact that a view conversion does not change the tag is absolutely vital for the
implementation of what is known as redispatching.

There are often situations where one would like "multiple dispatch" either within a class, or
between two or more classes. Ingalls cites a number of canonical examples such as displaying
various kinds of graphical objects on different kinds of displays, event types and handlers, and
unification and pattern matching [Ingalls 86]; he suggests a solution for Smalltalk-80 that is more
modular than a single dispatch on one parameter, followed by a case statement on the dynamic
type of a second parameter. Multiple dispatch is possible in Ada 95 via class-wide types. We first
consider the simple case of redispatching within the same class.

It often happens that after one dispatching operation we apply a further common (and
inherited) operation and so need to dispatch once more to an operation of the original type. If the
original tag were lost then this would not be possible.

Consider again (from II.1)

procedure Handle (MA: in out Medium_Alert) is

begin
Handle (Alert (MA)) ; —— handle as plain Alert
MA.Action_Officer := Assign_Volunteer;

Display (MA, Console);
end Handle;

in which there is a call of the procedure Display. This call is not a dispatching call because the
parameter is of a specific type (and indeed there is only one procedure Display which is inherited
by all the types).

As written it has been assumed that the display operation is the same for all alerts. However,
suppose that in fact it was desired to express the message in different ways according to the level
of the alert (in different colors perhaps or flashing).

It would be possible to do this by using the Tag attribute to look at the original value of the
tag by writing

procedure Display (A: Alert; On: Device) is
AC: Alert'Class renames Alert'Class (A);
begin
if AC'Tag = Low_Alert'Tag then
—— display a low alert
elsif AC'Tag = Medium_Alert'Tag then
—-— display a medium alert
else
—-— display a high alert
end if;
end Display;

Note that we could have written
AC: Alert'Class := A;

rather than the renaming but this would cause an unnecessary assignment. Note moreover that we
cannot apply the Tag attribute to an object of a specific type; it would be rather surprising for
A'Tagnottobe Alert 'Tag.

However, using tags in this way inside the body of Display is quite inappropriate since it has
reintroduced the rigid nature of variant programming and could not specifically recognize an alert
which is a later extension.

Ada 95 Rationale: Core Object Oriented Programming: 4-33

The proper approach is to use redispatching. If we need a different display mechanism for the
different alert levels then we write distinct procedures for each one (thus overriding the procedure
inherited from the root level) and then redispatch in the various procedures Handle as follows

procedure Handle (MA: in out Medium_Alert) is

begin
Handle (Alert (MA)) ; —— handle as plain Alert
MA.Action_Officer := Assign_Volunteer;
Display (Medium Alert'Class (MA), Console); ——- redispatch

end Handle;

This will work properly and the message will be displayed according to the specific type of the
original alert.

Another possibility is that the type Device might not be represented as a simple enumeration,
but instead as a record type, with components representing various aspects of the device. A class
of device types could be constructed using tagged types and type extension. Each kind of device
must implement an Output operation that each kind of alert will use to implement its Display
operation. In order to call the appropriate Output procedure two dispatching operations are
involved. First, the type of the alert parameter controls the dispatch to the Display procedure,
and then within that procedure a dispatch on the Device parameter will select the appropriate
output operation for the device being used as a display. This double dispatching can be
accommodated by making Display a class-wide operation of the device class. The Display
procedure for Alert then becomes

procedure Display (A: Alert; On: Device'Class) is
begin

Output (On); ——- dispatch on On
end Display;

so that within each Display procedure, a call to Output, with parameter on will dispatch to the
appropriate operation for the Device.

Note once more that it would not have been legal for the specification of Display to have
been

procedure Display (A: Alert; On: Device);

since a procedure cannot have controlling operands of more than one tagged type.

4.6 Multiple Inheritance

Some languages permit a derived type, or class, to have more than one parent. These languages are
said to support "multiple inheritance". Multiple inheritance is a second-generation object oriented
programming mechanism. It originated in MIT's FLAVORS extension to LISP; a precursor to the
Common Lisp Object System.

Multiple inheritance poses awkward problems if approached naively, as pointed out by [Budd
91]. There are two conceptual difficulties; what to do if an operation with a given profile belongs
to both parents — which, if any, is inherited and how could we distinguish them; and what to do if
the same component belongs to both parents from a common ancestor — are there two copies or
only one? There are also implementation difficulties associated with these conceptual difficulties.

However, most uses of multiple inheritance fall into one of three idioms each of which can be
implemented in Ada 95 using facilities such as access discriminants, generic units and type
composition in conjunction with the Ada 95 type extension as will be illustrated in the next few
sections.

4-34 Object Oriented Programming Ada 95 Rationale: Core

Given the need to balance the benefits of language defined multiple inheritance with the
complexity of the revised language, the potential for distributed overhead caused by multiple
inheritance, and the scope of the revision, we chose to support multiple inheritance with a building
block approach rather than an extra language construct.

4.6.1 Combining Implementation and Abstraction

The first form of multiple inheritance is, to quote N. Guimaraes of AT&T, "to combine two
classes, one that defines the protocol of the component, and another that provides an
implementation” [Guimaraes 91]. In languages such as Eiffel and C++, where classes are the only
form of module, inheritance is the most common mechanism for combining abstractions. For
instance, an Eiffel class Bounded_Stack[T], could be constructed by inheriting from an abstract
class Stack[T] and a second class Array[T]. Class Array[T] would then be used to
implement the abstract operations not defined by class Stack [T]. The programmer must specify
the implementation of each such operation, and ideally, the array operations should also be hidden
from users of Bounded_Stack[T]. The effect of this idiom of multiple inheritance could be
achieved in Ada 83 through type composition — inheritance is not required. In Ada, one may
implement one type in terms of another, and hide that implementation as a private type.

package Bounded is
type Bounded_Stack(Size: Natural := 0) is private;
procedure Push(S: in out Bounded_Stack; Element: T);
procedure Pop (S: in out Bounded_Stack);
function Top (S: Bounded_Stack) return T;

private
type T_Array is array (Integer range <>) of T;
type Bounded_Stack (Size: Natural := 0) is
record

Data: T_Array(l..Size);
end record;
end Bounded;

Using the idiom of section 4.4.3 where we discussed the set abstraction, we could derive from
a tagged abstract type Stack, and implement bounded stacks as arrays. In either case, the
operations on Bounded_Stack must be explicitly declared, whether being defined or overridden.

4.6.2 Mixin Inheritance

A second idiomatic use of multiple inheritance can be termed mixin inheritance. In mixin

inheritance, one of the parent classes cannot have instances of its own and exists only to provide a

set of properties for classes inheriting from it. Typically, this abstract, mixin class has been

isolated solely for the purpose of combining with other classes. Ada 95 can provide mixin

inheritance using tagged type extension (single inheritance) and generic units. The generic

template defines the mixin. The type supplied as generic actual parameter determines the parent.
Thus we can write

generic
type S is abstract tagged private;
package P is
type T is abstract new S with private;
—-— operations on T
private
type T is abstract new S with
record
—-— additional components

Ada 95 Rationale: Core Object Oriented Programming: 4-35

end record;
end P;

where the body provides the operations and the specification exports the extended type.

We can then use an instantiation of P to add the operations of T to any existing tagged type
and the resulting type will of course still be in the class of the type passed as actual parameter.
Note that in this idiom we have specified both the formal type and the exported type as abstract.
This enables the supplied actual type to be abstract. We could declare a cascade of types in this
manner thereby adding an unbounded sequence of properties to the original type. We would
finally make one further extension in order to declare a type which was not abstract.

As a concrete example, the following generic package adds the property of having multiple
versions to any tagged type.

with OM; -- Object Manager provides unique object IDs
with VM; -- Version Manager provides version control
generic

type Parent is abstract tagged private;
package Versioned is

-— A versioned object has an ID, which identifies

—— the set of versions of that object, plus a version

—— number that, combined with the ID, identifies an

—— object uniquely.

type Versioned_Object is abstract new Parent with private;

—-— given an object, return a new version of that object
procedure Create_New_Version (O : in Versioned_Object
New_O: out Versioned_Obiject);
-— given an object, returns its version number
function Version_Number (O: Versioned_Object)
return VM.Version_Number;

—-— given an object and a version number, return that
-— version of the object
procedure Get_Version (

ID_From: in Versioned_Obiject;

Version: in VM.Version_Number;

Object : out Versioned_Object);

private

type Versioned_Object is abstract new Parent with

record
ID : OM.Object_ID := OM.Unique_1ID;
Version: VM.Version_Number := VM.Initial_ Version;

end record;
end Versioned;

An important variation on this approach allows us to extend a type privately with generic
operations that the client cannot see. This relies on the fact that the full type corresponding to a
private extension need not be directly derived from the given ancestor. Thus the full type
corresponding to

type Special Object is new Ancestor with private;

need not be directly derived from Ancestor; it could be indirectly derived from Ancestor. We
can therefore write

4-36 Object Oriented Programming Ada 95 Rationale: Core

private
package Q is new P (Ancestor);
type Special_Object is new Q.T with null record;

and then the type Special_Object will also have all the components and properties of the type T
in the generic package P. As written, these are, of course, not visible to the client but subprograms
in the visible part of the package in which Special_Object is declared could be implemented in
terms of them. Note also that the type Special_Object is not abstract even though the type 0. T
is abstract.

As another example of mixin inheritance reconsider the second queue package in 4.4.1. We
could make it generic thus

generic
type Data(<>) is abstract tagged private;

package Queues is
type Queue is limited private;
type Queue_Element is abstract new Data with private;
type Element_Ptr is access all Queue_Element'Class;
function Is_Empty (Q: Queue) return Boolean;
procedure Add_To_Queue (Q: access Queue; E: in Element_Ptr);
function Remove_From_Queue (Q: access Queue) return Element_Ptr;
Queue_Error: exception;

private

and then the modified base of the alert system could be

with Queues;
package Base_Alert_System is
type Root_Alert is abstract tagged null record;
package Alert_Queues is new Queues (Root_Alert);
subtype Alert_Queue is Alert_Queues.Queue;
type Alert is
abstract new Alert_Queues.Queue_Element with null record;
procedure Handle (A in out Alert) is abstract;
end Base_Alert_System;

with the rest of the structure much as before. The major difference is that only alerts can be placed
on an alert queue declared as

type Alert_Queue_Ptr is access all Alert_Queue;
The_Queue: Alert_Queue_Ptr := new Alert_Queue;

whereas previously all queues were quite general. With this formulation there is no risk of placing
an alert on a queue of some other type such as animals. Thus although the queue is heterogeneous,
nevertheless it is constrained to accept only objects of the appropriate class.

This example also illustrates the use of a series of abstract types. We start with Root_Alert
which is abstract and exists in order to characterize the queues; add the queue element property and
thus export Queue_Element which is itself abstract; we then derive the abstract Alert which
forms the true base of the alert system and provides the ability to declare the dispatching operation
Handle. Only then do we develop specific types for the alerts themselves.

Our final example shows how a window system could be constructed and illustrates the
cascade of mixins mentioned above. We start with a basic window and various operations

type Basic_Window is tagged limited private;
procedure Display (W: in Basic_Window) ;
procedure Mouse_Click (W: in out Basic_Window;

Ada 95 Rationale: Core Object Oriented Programming: 4-37

Where: in Mouse_Coords);

and then we define a number of mixin generics of the familiar pattern such as

generic
type Some_Window is abstract new Basic_Window with private;
package Label_Mixin is
type Window_With_Label is abstract new Some_Window with private;
—— override some operations
procedure Display (W: in Window_With_Label);

—— add some new ones
procedure Set_Label (W: in out Window_With_TLabel;
S: in String);
function Label (W: Window_With_Label) return String;
private
type Window_With_TLabel is abstract new Some_Window with
record
Label: String_Quark := Null_Quark;
—— an X-Windows like unique ID for a string
end record;
end Label Mixin;

Note that this is slightly different to our previous examples since it can only be applied to the
type Basic_Window or a type derived from Basic_Window.

In the generic body we can implement the overriden and new operations, using any inherited
operations as necessary. Thus the new version of Display applicable to a Window_With_Label
might be

procedure Display (W: Window_With_Label) is
begin
Display (Some_Window (W)) ;
—— display normally using operation of parent type
if W.Label /= Null_Quark then
—-— now display the label if not null
Display_On_Screen (XCoord (W), YCoord(W)-5, Value (W.Label));
end if;
end Display;

where the functions XCoord and YCoord are inherited from Basic_Window and give the
coordinates for where to display the label.
We might declare a whole series of such packages and then finally write

package Frame is
type My_Window is new Basic_Window with private;
.—— exported operations
private
package Add_Label is new Label Mixin (Basic_Window) ;
package Add_Border is
new Border_Mixin (Add_Label.Window_With_Label) ;
package Add_Menu_Bar is
new Menu_Bar_ Mixin (Add_Border.Window_With_Border) ;

type My_Window is
new Add_Menu_Bar.Window_With_ Menu_Bar with null record;
end Frame;

4-38 Object Oriented Programming Ada 95 Rationale: Core

Observe that the final declaration has a null extension; it could add further components if required.
The various operations exported from the individual mixins can be exported selectively from the
package Frame by suitable renamings in the package body.

4.6.3 Multiple Views

Finally, there are uses of multiple inheritance where the derived type or class is truly a derivative
of more than one parent and clients of that type want to "view it" as any of its parents. This may
be accomplished in Ada 95 using access discriminants which effectively enable us to parameterize
one record with another.

An access discriminant can be used to enable a component of a record to obtain the identity of
the record in which it is embedded (see 3.4.1). This enables complex chained structures to be
created and can provide multiple views of a structure. Consider

type Outer is limited private;
private
type Inner (Ptr: access Outer) is limited ...

type Outer is limited
record

Component: Inner (Outer'Access);
end record;

The Component of type Inner has an access discriminant Ptr which refers back to the
enclosing instance of the record outer. This is because the attribute Access applied to the name
of a record type inside its declaration refers to the current instance of the type. This is similar to
the way in which the name of a task type refers to the current task inside its own body rather than
to the type itself; see [RM83 9.1(4)]. If we now declare an object of the type Outer

Obj: Outer;

then the self-referential structure created is as shown in Figure 4-3. Note that the structure
becomes self-referential automatically. This is not the same as the effect that would be obtained
with a record in which an instance might happen to have a component referring to itself as a
consequence of an assignment. All instances of the type Outer will refer to themselves; Ptr
cannot change because discriminants are constant.

This simple example on its own is of little interest. However, the types Inner and Outer can
both be extensions of other types and these other types might themselves be chained structures.
For example, the type Inner might be an extension of some type Node containing components
which access other objects of the type Node in order to create a tree. Note in particular that Inner
could also be

type Inner (Ptr: access Outer'Class) is new Node with

so that heterogeneous chains can be constructed. (Outer has to be tagged in this case.) The
important point is that we can navigate over the tree which consists of the components of type
Inner linked together but at any point in the tree we can reach to the enclosing Outer record as a
whole by the access discriminant Pt r.

It should be noted that an access discriminant is only allowed for a limited type. This avoids
copying problems with the self-referring components and dangling references.

Ada 95 Rationale: Core Object Oriented Programming: 4-39

We now return to the window example of the previous section and show how access
discriminants can be used to effectively mix together two hierarchies.

Suppose that as well as the hierarchy of windows which concern areas on the screen, we also
have a hierarchy of monitors.

>
Ptr
Component
Oof type — = ||eeeeceecooeenes Object
Inner — of type
............. Outer

Figure 4-3: A Self-Referential Structure

A monitor is a type which is designed to respond to change; it has a primitive operation
Update which is called to perform the response. An object that wishes to be monitored keeps a
linked list of monitors and calls their Update operation whenever necessary; the chain may
contain many different monitors according to what might need to be updated. If we were doing a
complex modelling application concerned with molecular structure then when we change the
object we might wish to redraw some representation on the screen, make a record of the previous
state, recompute the molecular weight and so on. The various monitors each contain a reference to
the monitored object. The type monitored object itself contains a pointer to the start of the chain
and is extended with additional information as needed by the application. Thus we have

type Monitor;
type Monitor_ Ptr is access all Monitor'Class;

type Monitored_Object is abstract tagged limited
record
First: Monitor_Ptr; —-- 1list of monitors
—-— more components to be added by extension
—— according to the needs of the specific application
end record;

type Monitored_ Object_Ptr is access all Monitored_Object'Class;

type Monitor is abstract tagged limited
record
Next: Monitor_Ptr;
Obj: Monitored_Object_Ptr;
—-— more components to be added by extension
—— according to the needs of the specific monitor
end record;

4-40 Object Oriented Programming Ada 95 Rationale: Core

procedure Update (M: in out Monitor) is abstract;

procedure Notify (MO: Monitored_ Object'Class) is

This_Mon: Monitor_ Ptr := MO.First;
begin
while This_Mon /= null loop
Update (This_Mon.all); —— dispatch for each monitor
This_Mon := This_Mon.Next;
end loop;

end Notify;
where Notify is a class wide operation of the type Monitored_Object and calls all the Update
operations of the monitors on the chain. If our object representing the molecule has type
Molecule then we would write
type Monitored_Molecule is new Monitored_Object with
record
M: Molecule;
end record;

Proposed_Immortality_Drug: Monitored Molecule;

and then perform all our work on the monitored molecule and from time to time invoke the updates
by calling

Notify (Proposed_Immortality_Drug);

The configuration might be as in Figure 4-4.

<
—> First ———> | Next _—
The Obj —
molecule
Special
data for
this
monitor
The object Two monitors on the chain

Figure 4-4: A Monitor Chain

Now suppose we want to use one of our windows as part of the updating process so that, for
example, the picture of the molecule is displayed within a window rather than directly on the raw
screen. In order to do this we need to hang the window display mechanism on the monitor chain
so that an appropriate update causes the Display operation to be called. In other words we need
to create a Window that can act as a Monitor as well as a Window. First we define a mixin that is
a monitor and override its Update operation thus

Ada 95 Rationale: Core Object Oriented Programming: 4-41

type Monitor Mixin(Win: access Basic_Window'Class) is
new Monitor with null record;
procedure Update (M: in out Monitor_Mixin);

The body for this might be

procedure Update (M: in out Monitor_Mixin) is

—-— simply redisplay the window
begin

Display (M.Win.all); -- this is a dispatching call
end Update;

and now we can mix this Monitor_Mixin into any window type by writing

type Window_That_Monitors is new My_Window with
record
Mon: Monitor_Mixin (Window_That_Monitors'Access);
end record;

where the inner component Mon has a discriminant that refers to the outer type. The monitor
component of this can now be linked into the chain as shown in Figure 4-5. Calling Notify on
the monitored molecule results in the various procedures Update being called. The Update for
the type Monitor_Mixin calls the Display for the type Window_That_Monitors of which it is
part and this has access to all the information about the window as well as the information about
being a monitor.

> | These

are the
components
for
My_Window

Win E—

L—>| First ——F—> | Next >

The — | Obj
molecule

Figure 4-5: The Window-that-Monitors in the Chain

We could of course define a more sophisticated type Monitor_Mixin that did other things as
well as simply calling the Display operation of the associated window.

The examples in this and the previous section show that Ada 95 provides support for the
construction of effectively arbitrary multiple inheritance hierarchies. This has been achieved
without having intrinsic multiple inheritance which could be a pervasive implementation burden on
simple single inheritance applications.

4-42 Object Oriented Programming Ada 95 Rationale: Core

4.7 Relationship with Previous Work

Object oriented programming originated with Simula [Birtwistle 73]. Simula was designed to be
an almost upward compatible extension of Algol 60, inspired by the application domain of
simulation, although it is really a general purpose programming language. The key insights from
simulation were that it is useful to think of a complex simulation as being organized around a
collection of autonomous, interacting objects, and that the construction of such simulations could
be facilitated by abstracting this notion of object into a language construct.

Simula introduced the notion of a class as an abstraction mechanism over objects. A class is a
template for creating objects with a common data structure and operations on that data structure.
These operations determine the possible behavior of the objects of the class. Operations may be
sensitive to the current state of the object, and may update that state by changing the values of the
data structure.

A Simula class definition specifies a data structure for the class, the operations on that data,
and a body used to initialize objects of the class upon their creation, like the sequence of
statements in a package body. The data definition and procedure declarations constitute the class's
interface to programmers. The Simula class is somewhere between a data type and a module.
Instances of the class may be declared, assigned to variables, and passed as parameters, like values
of a typical data type.

Simula introduced a means to define new classes from old ones; a class could "inherit" from
another class, deriving its structure and operations from that "parent". The new class could
augment or override its inheritance, adding new data and new operations, or replacing one or more
of its operations. Data could not be removed.

Smalltalk [Goldberg 83] was influenced by Simula's notion of class and subclassing. While
Simula was a compiled language, Smalltalk was interpreted. It was originally intended as an
interactive, systems programming language for Alan Kay's Dynabook project.

Smalltalk introduced the "message-passing” style of invoking operations. A message is a
request to an object to invoke an operation. The set of messages that an object recognizes and is
capable of responding to is called its "protocol" and is determined by the class of the object. When
an object is sent a message, a search begins in the class of the object class for a method (operation
definition) corresponding to the message. If not found, the search continues in the parent class
(superclass), this continues upward in the class hierarchy until either an appropriate method is
found or the root of the hierarchy is reached without success, in which case an error is signaled.

The historical fact that some early object oriented languages were interpreted has contributed
to the impression that their mechanisms are necessarily too inefficient for real-time or production
use. Many object oriented languages (including Simula) also use implicit reference semantics (in
which all variables are really pointers), thereby raising the issue of run-time storage management.
It was these efficiency considerations that apparently prevented Ada 83 from providing inheritance
and polymorphism, given Ada's overriding concerns with run-time efficiency, and type safety
[Brosgol 89]. More recently, there have been a number of languages developed that support object
oriented programming in a relatively safe, compiled, and efficient style, including Trellis/Owl
[Schaffert 86], Eiffel [Meyer 88], Modula-3 [Nelson 91] and C++ [Ellis 90].

The essence of the evolution of OOPLs has thus been to obtain an appropriate balance
between compile-time and run-time identification of the operations to be performed. If the
identification is at run-time then the operations are usually called methods; alternative terms are
virtual functions (C++, Simula) and dispatching operations (the Ada 95 term).

In Smalltalk-80, for example, method invocations have the form

receiver Methodname Argstomethod

where receiver is the name of the target object.
This syntax simplifies dispatch; the dispatch is determined solely by the class of the receiver
of the message. FEiffel and C++ also use the "distinguished receiver" approach.

Ada 95 Rationale: Core Object Oriented Programming: 4-43

In languages where a function or procedure call syntax is permitted, and where more than one
argument of the call may be of the class, the situation is more complex. Trellis/fOwl [Schaffert
86]) follows the Smalltalk-80 tradition and arbitrarily designates the first parameter of the call as
determining the dispatch. Some languages distinguish this parameter by its appearance as a prefix
in the call.

Other possible schemes include

1 All controlled parameters within the class must share the same type tag.

2 The programmer must select a parameter as the controlling one, as a part of the declaration
of the parameter's mode.

3 All controlled parameters must share the same code for the operation (their dispatch tables
must all point to the same code body for that operation).

4 The most specific type within the class ("nearest ancestor") applicable to all of the
parameters is used.

5 The most general type within the class ("furthest ancestor", the root) applicable to all of
the parameters is used.

Ada 95 has adopted (1). This is a logical choice, given that the dispatching operations of a
type are the primitive operations of that type and are derived from those of the root type with
systematic replacement. So, in Ada 95, more than one operand, or even the result, may control the
dispatch. For a primitive operation of a type T, the dispatching is controlled by the operands of
type T, and the result if it is of type T.

There are a number of other important differences between Ada 95 and other languages; these
differences are designed to add clarity (which encourages programmers to write the correct code)
and safety (which prevents disaster if they do not).

The first difference is that in Ada 95, an operation is only dispatching when applied to an
actual parameter of a class-wide type. In other OOPLs, a dispatch is possible whenever an object
reference or pointer is used as the prefix to the operation. In Ada 95 terms, this means that
references/pointers in such OOPLs are always treated as though they designate a class-wide type.
Ada 95 allows a formal parameter or an access value to have a specific type as its "referent" (this is
the default, preserving upward compatibility and safety). Ada 95 also allows an actual parameter
or an access value to have a class-wide type as its referent, in which case dispatching is also
possible.

A second difference is that, in Ada 95, if a type T is tagged, then all of its primitive operations
are dispatching operations; when passed a class-wide operand, they dispatch. In C++, only those
particular member functions identified as virtual involve a run-time dispatch. In Ada 95, a (non-
dispatching) class-wide operation may be defined by explicitly declaring it with a formal
parameter of type T'Class. No dispatch is performed in this case, because the body of a class-
wide operation expects its actual parameter to still be class-wide. Note that, as in C++, a run-time
dispatch may ultimately occur, when such an operation calls a dispatching operation somewhere
within its body. This is illustrated by the procedure Process_Alerts in I1.2.

A final and important difference between Ada 95 and some other OOPLs is that dispatching is
safe in the sense that a call to a dispatching operation always has a well-defined implementation to
dispatch to. In some OOPLs, such as Smalltalk, it is possible to send a message to an object that
has no method for handling that message; a run-time error results. In Ada, such errors are always
detected at compile time.

When a primitive operation is called with class-wide operands in all controlling positions, a
run-time check is made that all of these controlling operands have the same tag value, and the
result is defined to return this same tag value. This common tag value is called the controlling tag

4-44 Object Oriented Programming Ada 95 Rationale: Core

value for the call, and identifies the specific type whose corresponding primitive operation is used
to implement this call.

This requirement that all controlling operands have the same tag value reflects an existing
Ada 83 rule for derived types. The type of all operands of a parent type are systematically
replaced with the derived type when inheriting a primitive operation. A primitive operation can
only be a primitive operation of one tagged type. It is possible but unusual for a primitive
operation to also operate on another type within the same class (but it would not be primitive for
that other type). Typically, each primitive operation operates only on one type within the class,
and may return this same type.

By treating all controlling operands symmetrically, we avoid some of the difficulties and
anomalies encountered in other OOPLs with binary operations. For example, taking the
intersection of two sets is viewed as a symmetric operation as opposed to thinking of one set as
being special (the "receiver"), with the other set being a mere argument.

By allowing the result context to control the dispatch, we allow parameterless functions to be
used to represent type-specific literals, like an empty set in a tagged set class. See the discussion
on the procedure Convert in 4.5.

There is no need to use run-time dispatch when a controlling operand or result has a statically
known specific type. (A mixture of static and dynamically determined tags is not allowed.) In
this case, the specific type's implementation of the primitive operation is then called directly (this
is effectively a case of "static" binding).

As discussed in 4.3, the canonical implementation model for a type tag is a pointer to a run-
time type descriptor, containing pointers to subprogram bodies implementing each of the primitive
operations. This implementation model means that the call on a dispatching operation involves
only tag-equality checks (if there is more than one controlling operand), and then a call through the
appropriate subprogram pointer. The overhead for such a call is bounded, and can be kept to two
or three instructions in most cases, ensuring that dispatching operations can be used even in
demanding real-time applications. Note that this overhead is typically less than the overhead of
using case statements and variant records.

For a tagged type T, even the implicitly provided operations (such as Object'size and
assignment if nonlimited) use dispatching internally when applied to a class-wide operand, to
allow for new components that might be added by type extension.

Generally, for each primitive operation of a parent type, a type extension may either inherit
the original implementation, or it may override it. For an operation that had an operand of the
parent type, if not overridden it becomes an operation with an operand of the type extension, which
simply ignores (and does not affect) the extension part of the operand. However, for an operation
that returned a result of the parent type, if not overridden, it becomes an abstract operation that has
no implementation for the extension. This is because the extension part of the result would not be
defined for such an operation.

Abstract operations allow a type to have a specification for an operation but no
implementation for it, effectively requiring that each derivative define its own. Such operations
have no default implementation, preventing a derivative from mistakenly inheriting a meaningless
implementation. Abstract operations correspond to deferred methods or virtual methods in
Smalltalk and C++. The corresponding class is called an abstract superclass.

If a tagged type has an abstract primitive operation, then it must be declared as an abstract
type, and no objects with a tag identifying that type may be created. This means that a call to an
abstract operation will always dispatch to some non-abstract implementation that is defined for
some derivative. No run-time check is needed to detect whether an operation is abstract, because
no objects with the tag for an abstract type can ever be created.

To conclude, the model of type extension and polymorphism in Ada 95 combines efficiency
of implementation, clarity of program text and security in a cohesive manner. It provides the
additional flexibility sought in an object oriented language without compromising the security
which was the cornerstone of Ada 83.

Ada 95 Rationale: Core Object Oriented Programming: 4-45

4.8 Requirements Summary

The three major study topics
S4.1-A(1) — Subprograms as Objects
S$4.3-A(1) — Reducing the Need for Recompilation
S$4.3-B(1) — Programming by Specialization/Extension

are directly addressed and satisfied by the facilities discussed in this chapter.

Ada 95 Rationale: Core Statements: 5-1

5 Statements

There is naturally very little change in this classical area of the language. The only additional
statement is the requeue statement and that is addressed in Chapter 9. There are also additional
forms of the delay and select statements and these are also discussed in Chapter 9. The mechanism
of assignment including user-defined assignment is closely associated with controlled types and
these are discussed in 7.4. The return statement is now moved to Chapter 6 where it properly
belongs.

Ada 95 Rationale: Core Subprograms: 6-1

6 Subprograms

Perhaps the most important change to subprograms and their use in Ada 95 is the fact that they are
more nearly first class types since they may be manipulated as the target of access types.
However, this topic is dealt with in Chapter 3 and we concern ourselves here with other relatively
minor improvements to subprograms. These are

. Various aspects of the parameter and result mechanism are improved. The notions of by-
copy and by-reference parameters are made more formal. Parameters of mode out may
now be read. Subprograms may have parameters of mode out for a limited view of a type.

. A parameter may also be of an anonymous access type.

. A subprogram body may now be provided by renaming; this and other changes increases
the categories of conformance rules.

. The rules for new overloadings of "=" and " /=" are relaxed.

Other related matters are the calling conventions for interfacing with other languages; these are
discussed in Part Three. Abstract subprograms are discussed in Chapter 3.

6.1 Parameter and Result Mechanism

For Ada 95, we define by-copy parameter passing in terms of a subtype conversion and an
assignment. This minimizes the number of special rules associated with parameter passing.

For by-reference parameters, the formal parameter is considered a view of the actual.

Certain types are called by-copy types and are always passed by copy. Some other types are
called by-reference types and are always passed by reference. For the remaining types the
implementation is free to choose either mechanism. Note that the parameter mechanism is
independent of the view; thus a private type is always passed by the mechanism appropriate to the
full view of the type.

Note that tagged types, task types and protected types are by-reference types.

A similar approach is taken with function results. Certain types are classified as return-by-
reference types. Again these include task types and protected types (and most other limited types,
see 7.3). In the case of a result returned by reference the function call denotes a constant view of
the object denoted by the return expression. In other cases a copy is made. Remember that the
result of a function call is treated as an object in Ada 95.

A difference between parameters and results is that tagged types are always by reference as
parameters but only returned by reference if limited.

For all modes and both mechanisms of parameters and for results, a subtype conversion is
performed if necessary (to provide sliding).

Note in particular that sliding is used for array parameters and results whereas Ada 83
required the more restrictive exact matching of bounds. An array aggregate with others is still
allowed as a parameter or as a result and with the same meaning although for different reasons. In
Ada 83 it was allowed because the matching rules provide the bounds whereas in Ada 95 it is

6-2 Subprograms Ada 95 Rationale: Core

allowed because the rules for others in assignment are relaxed but there is the overriding rule that
aggregates with others never slide.

In Ada 95 it is not erroneous to depend on the parameter passing mechanism (by-reference
versus by-copy) for those types that allow both, though it is nonportable. This is an example of
reducing totally unpredictable behavior (see 1.3).

6.1.1 Out Parameters

In Ada 83 a formal parameter of mode out could not be read, even after being initialized within
the procedure. This forced certain algorithms to include a local variable just to accumulate a result
and which was then assigned to the out parameter. Introducing such a local variable is error
prone, because the final assignment may be mistakenly omitted.

Similarly, if an out parameter is passed to a second procedure to be filled in, the value
returned cannot be checked prior to returning from the first procedure.

For Ada 95, we have removed the restrictions on the use of out parameters. Specifying that a
formal parameter is of mode out indicates that the caller need not initialize it prior to the call.
However, within the procedure, once the parameter has been initialized, it may be read and
updated like any other variable. As with a normal variable, it is an error to depend on the value of
an out parameter prior to its being initialized.

The added simplicity and flexibility provided by removing the restrictions on reading an out
parameter allows many of the special cases associated with out parameters to be eliminated,
including the restriction regarding their use with limited types.

Safety is preserved by ensuring that a subcomponent does not become "deinitialized" by being
passed as an out parameter. If any subcomponent of a type passed by copy has default
initialization, then the whole object is copied in at the start of the call so that the value of such a
subcomponent is not lost as a result of a subprogram call during which no assignment is made to
the subcomponent. But in practice records are usually passed by reference anyway.

6.1.2 Access Parameters

A formal in parameter may be specified with an access definition. Such a parameter is of a
general access type that is totally anonymous (has no nameable subtypes), but is convertible to
other general access types with the same designated subtype. Access parameters are valuable
because they allow dispatching on access values; they are also convenient for use with access
discriminants; see 3.7.1.

Access parameters are often an alternative to in out parameters especially for tagged types.
Thus suppose we have a tagged type and an access type referring to it and appropriate variables
such as

type T is tagged
record ...

type Access_T is access T;

Obj: T;

Obj_Ptr: Access_T := new T'(...);
plus subprograms taking parameters thus

procedure P (X: in out T);

procedure PA(XA: access T);

Ada 95 Rationale: Core Subprograms: 6-3

then within the body of both P and PA we have read and write access to the components of the
record. Indeed because of automatic dereferencing the components are referred to in the same
way. And since tagged types are all always passed by reference and never by copy, the effect is
much the same for many situations. For example dispatching is possible in both cases. However,
there are a number of important differences.

In the case of the in out parameter, the actual parameter could be 0bj or Obj_Ptr.all
thus

P(Obj); P(Obj_Ptr.all);

whereas in the case of the access parameter, the actual parameter has to be Obj'Access or
Obij_Ptr. Moreover in the former case the variable Ob§ must be marked as aliased

Obj: aliased T;
PA(Obj'Access); PA(Obj_Ptr);

Remember also that an actual parameter corresponding to an access parameter cannot be null.
Moreover, accessibility checks for access parameters are dynamic and the parameter carries with it
an indication of its accessibility.

A vital difference is that a function cannot have an in out parameter and so an access
parameter is essential if we need a function. We recall from 4.4.1 that the alternative of a
procedure with an out parameter corresponding to the function result is not possible in some cases
such as where the result type is class wide and we do not know the anticipated specific type.

Other important considerations occur if we have a sequence of nested calls. Thus suppose we
have other procedures Q and QA and that in their bodies we wish to call the procedures P and PA
with the parameter passed on. There are four possible combinations of calls to consider. We have

procedure Q(X: in out T) is

begin
P(X); —-— 1in out passed on to in out
PA (X'"Access); —-— 1in out passed on to access
end Q;

procedure QA (XA: access T) is

begin
P(XA.all); —-— access passed on to in out
PA (XA) ; —— access passed on to access
end QA;

All of these calls are legal. The call of pa from within Q is legal because formal parameters of a
tagged type are considered aliased and treated just like an aliased local variable. Hence X'Access
is allowed but the accessibility level is that of a variable local to Q. This means that the
accessibility level passed to PA indicates that Q. X is local to @ and will not reflect the accessibility
level of the original actual parameter passed to Q (and of course that information was not passed to
Q anyway).

In the reverse situation where QA calls P no accessibility information is passed on. Moreover,
it should be noted that the parameter xA.all creates a view of the original parameter and this
view is passed on; no local object is created. Thus the information passed on is simply the original
"reference” minus the accessibility information.

The uniform cases where Q calls P or QA calls PA are straightforward. The parameter is
passed on unchanged, in the first case there is no accessibility information and in the second it is
passed on intact.

There is a lot of merit in using access parameters because they pass the correct accessibility
level and avoid the risk of an illegal program or unexpectedly raising Program Error when

6-4 Subprograms Ada 95 Rationale: Core

attempting a conversion to a named access type. For example, assuming T and Access_T are
declared at the same level as the procedures and that Q and QA are called with actual parameter Ob ;
or Obj'Access respectively, then it would be illegal to write

Obj_Ptr := Access_T (X'Access);
inside Q since the static accessibility check fails, whereas it is legal to write the corresponding
Obj_Ptr := Access_T(XA);

inside QA, and the dynamic accessibility check succeeds.
Furthermore if we also had a procedure

procedure RA(XA: access T) is
begin

(.)k.)j_Ptr := Access_T (XA);
end . RA,
in which a similar conversion is performed, then calling RA from Q by
RA (X'Access) ;

results in raising Program_Error on the attempted conversion in RA whereas calling RA from QA
by

RA (XA) ;

works successfully because the original accessibility level is preserved.

However, remember that we can always use Unchecked_Access which avoids the
accessibility checks. This would overcome the difficulties in the above examples but of course the
use of Unchecked_Access in general can result in dangling references; the responsibility lies
with the user to ensure that this does not happen.

For a further discussion on access parameters and a comparison between them and parameters
of a named access type see 3.7.1.

6.2 Renaming of Bodies and Conformance

In Ada 95, we allow a subprogram body to be provided by renaming another subprogram. This is
a great convenience in those many cases in Ada 83 where the programmer was forced to provide a
body which simply called some other existing subprogram. In order that the implementation can
be just a jump instruction, the subprogram specification must be "subtype conformant" with the
body used to implement it. Subtype conformance is required because the caller sees only the
subprogram specification, and therefore has prepared the parameters, performed constraint checks,
and followed the parameter passing conventions determined by the specification.

Several different rules existed in Ada 83 governing matching between subprogram
specifications. For the purposes of hiding the name of the subprogram, only the types of the
formal parameters and the result, if any, were relevant (see [RM83 8.3(15)]). For renaming and
generic instantiation, the modes also had to match (see [RM83 8.5(7)] and [RMS83 12.3.6(1)]).
Between a specification and its body, syntactic equivalence was required ([RM83 6.3.1(5)]).

For Ada 95, in order to support access to subprogram types, and to support the provision of a
body by a renaming, an intermediate level of matching is needed. This intermediate level requires
static subtype matching, but allows formal parameter names and defaults to differ.

Ada 95 Rationale: Core Subprograms: 6-5

To improve the presentation in Ada 95, the descriptions of these various levels of subprogram
matching are gathered into the section on Conformance Rules [RM95 6.3.1]. Each level of
matching is given a name and they can be arranged in a strictly ascending order of strength as
follows

Type conformance. This is the matching that controls hiding.
Mode conformance. This is the matching required for renaming and generic formal
subprograms.

Subtype conformance. This is the matching required for access to subprogram types, and for
specifying a body via renaming.

Full conformance. This is the matching required between the declaration and body of a
subprogram, and between multiple specifications of a discriminant part.

In addition to centralizing these definitions, we have also relaxed the full conformance rules,
in order to make them represent static semantic equivalence, rather than syntactic equivalence.
This has the effect of eliminating certain anomalies (such as the non-transitivity of Ada 83
conformance), as well as being more natural for the programmer and easier to implement.

6.3 Overloading of Equality and Inequality Operators

In Ada 83, the "=" operator could be explicitly defined only for limited types (other than via a
devious method based on a curious loophole in generic instantiation). This restriction was justified
largely on methodological grounds. However, experience with Ada has illustrated several
circumstances where it is very natural to provide a user-defined equality operator for nonlimited
types. For example, within a three-value logic abstraction, "=" should return either True, False,
or Unknown. For vector processing, it is natural to define a component-wise "=" operator for
vectors, producing a vector of Boolean values as the result. In such cases, it is also important to be
able to explicitly define " /=", since it is not the simple Boolean complement of "=".

In Ada 95, we allow "=" to be treated like any other relational operator. But note that when
the result type of a user-defined "=" operator is Standard.Boolean, a complementary definition
for " /=" is automatically provided. Explicit definitions for " /=" are also permitted, so long as the
result type is not Standard.Boolean. A "/=" operator with a result type of
Standard.Boolean may thus become defined only as an implicit side-effect of a definition for

Of course, dispatching can occur on "=". For example in the procedure Convert in 4.4.3,
the comparison in

while Temp /= Empty loop

dispatches. Typically the equality will be predefined but of course it might not be.

6.4 Requirements Summary
Many of the changes in this chapter are consequences of the general requirement

R2.2-C(1) — Minimize Special Case Restrictions

6-6 Subprograms Ada 95 Rationale: Core

discussed in [DoD 90 A.3]; this lists three examples which have been met by this chapter. They
are the ability to redefine "=", the ability to read out parameters and the use of sliding (array
subtype conversion).

