
NEW YORK UNIVERSITY GNAT Project-28

Points of Contact

• addresses:

- dewar@cs.nyu.edu

- schonberg@cs.nyu.edu

- gnat-report@cs.nyu.edu

• To obtain system:

- ftp to cs.nyu.edu, directory pub/gnat

• sources always available

• binaries for SPARC-SunOS and Solaris, for i86-

OS/2 - DOS - NT, Linux, Alpha/OSF, RS6000,

SGI, pointers to others.

• ports elsewhere to Amiga-DOS, 1750A, etc.

NEW YORK UNIVERSITY GNAT Project-27

GNAT in the NYU Classroom

• In CS2: using Feldman’s Ada95 text. Other

sections still use Pascal. Evaluation pending

(good students loved it!).

• In Programming Languages courses: graduate

and undergraduate. Ada is the one mainstream

language studied in depth. Also used when

discussing concurrency.

• In Compiler construction: sources of GNAT make

it possible for students to modify an industrial

compiler (language extensions, optimizations,

borrowings from C++, CLOS, etc).

• In Robotics: device drivers for miniature vision

system (cross-compiled to 68881 controller).

Device drivers for DNA sequencing equipement.

NEW YORK UNIVERSITY GNAT Project-26

A long-lived GNAT

• Current developement supported by Ada9X

project office and US Air Force, contract ending

June 30,1995.

• Commitment to free distribution of system with

sources.

• Need maintenance organization to provide user

support, ports to new architectures, hand-holding

for new users, maintenance vis-a-vis of

interpretations of future ARG, etc.

• Industrial users need to know product is

maintained.

• Commercial Entity: Ada Core Technologies

• Software remains free, support is not.

• ACT provides maintenance contracts to OEMs

and to individuals. Other maintenance provided

by LABTEK (NT) and SGI (IRIX).

NEW YORK UNIVERSITY GNAT Project-25

The GNAT Team

• At New York University: Bernard Banner, Cyrille Comar, Robert

Dewar, Sam Figueroa, Richard Kenner (GCC), Brett Porter, Ed

Schonberg, Gail Schenker.

• At Florida State University : Ted Giering, Ted Baker, Dong-Ik

Oh, Chris Bray (tasking, protected objects)

• at Telecom Paris: Franco Gasperoni, Laurent Pautet, Patrick

Bazire (cross-reference tools, distribution, gnatmake, Emacs

tools)

• at Telecom Bretagne: Yvon Kermarrec, Laurent Nana

(distribution)

• Elsewhere: Doug Rupp (Washington), Michael Feldman and

Chuck McCann (the other Washington) Paul Hilfinger

(Berkeley), Jean-Pierre Rosen (Paris), Jon Squires (GE) many

others to whom thanks are due.

• your name here.............

•

NEW YORK UNIVERSITY GNAT Project-24

Status of Language Annexes

• Interface to other languages: available for C and

FORTRAN.

• Systems programming: ongoing collaboration

with FSU team.

• Real-time systems: ongoing collaboration with

FSU team.

• Distributed systems: PVM-based prototype

developed by ENST-Bretagne. Ada version

developed at ENST-Paris. Configuration tool

being developed at Texas A & M.

• Information systems: collaboration with MITRE.

• Numerics: collaboration with ANL and GE.

• Safety and security

NEW YORK UNIVERSITY GNAT Project-23

GNAT Maintenance Today

• Several thousand users

• Total problem reports received: 6000

• 80% immediately dealt with:

• pilot error

• already fixed

• immediately fixed

• about 1400 filed bugs

•1200 fixed

•200 open (6/9/95)

NEW YORK UNIVERSITY GNAT Project-22

GNAT Status

• Current release version: 2.06

• Ports to SUN workstations: SunOS*+, Sun/

Solaris*+

• ports to DEC/Alpha: OSF2.0 - 3.0+, DEC/MIPS

• ports to SGI: IRIX 4, IRIX 5.4+

• port to HP: HPUX

• port to RS6000: AIX+

• others: AmigaDOS, 1750A (cross), DG/Avion.

• ports to i86 machines: DOS/Windows+,

Windows95, OS/2*+, NT+, Solaris86+, Nextstep,

FreeBSD, NetBSD*, SCO Unix, Linux+

• * indicates support for tasking

• + indicates use by GNAT team.

NEW YORK UNIVERSITY GNAT Project-21

GCC learns some Ada

• Some aspects of Ada semantics must be known to

the back-end

• The GCC approach: if it’s good for more than one

language it belongs in the code generator.

• Discriminants and record layout (in Gigi)

• Constraint-checking. (in Gigi)

• Trapping arithmetic (in machine description

tables)

• Exception management (in RTS, with stack

management)

• GCC is becoming more strongly-typed.

NEW YORK UNIVERSITY GNAT Project-20

The Runtime

• Portable tasking support, written in Ada.

• Two interfaces:

• GNARL (GNU Ada Run-time Library) between

compiler and RTS.

• GNULL (GNU low-level library) between RTS and

underlying OS.

• Based on POSIX threads.

• Minimal assembly glue.

• Source-based compilation allows inlining of RTS

routines without forcing knowledge of RTS into

compiler.

• User (if well-informed) can replace run-time

modules.

NEW YORK UNIVERSITY GNAT Project-19

The Binder

• Build main program and code to invoke all

elaboration procedures in proper order.

• Verify semantics of library management

• Flexible enforcement:

- full: recompile object if any source on which it

depends is more recent.

- permissive: assemble available objects,

ignore time stamps.

• Basis for a sophisticated AdaMake tool.

• Allows foreign language main program.

NEW YORK UNIVERSITY GNAT Project-18

 File Organization

• One compilation unit per file.

• Uniform naming conventions:

- test.ads denotes a specification

- test.adb denotes a body

- test.ali denotes library information

- test-subtest.adb denotes a subunit or a child

unit.

• Environment variables for paths to predefined

units, eg. system and family, and for multiple

libraries (e.g. multi-partition vs. single partition

versions of categorized packages)..

NEW YORK UNIVERSITY GNAT Project-17

Advantages of a source-based library

• No required order of compilation

• No complex library structures: cost of

"recompilation" of package declarations is not

significant.

• No accidental obsolescence (familiar mishap:

accidental compilation removes dependents from

library, even when source did not change).

• Consistent with typical use of make tools: familiar

to programmers of other persuasions, eases

multilanguage programming.

• Consistent with GNU philosophy: a program is its

sources.

• More complex inlining is possible.

• Library management in GNAT is almost invisible:

< 2000 lines to read/write dependency

information.

NEW YORK UNIVERSITY GNAT Project-16

Library Management

• Compilation rules are source-based

• No centralized library structure, no intermediate

representations for semantic analysis.

• Object files only depend on source files, never on

other object files

• Dependency information (time-stamps of semantic

dependences) is embedded in object file.

NEW YORK UNIVERSITY GNAT Project-15

GIGI : GNAT to GCC

• Impratical to use GCC data structure in the front-

end, and vice-versa.

• Gigi traverses GNAT tree fragments and calls

tree-building procedures in GCC.

• Code generation invoked on each tree fragment at

once: there is no full tree representation of

program in GCC.

• Gigi needs some knowledge of Ada semantics,

and accesses syntactic and semantic information

modules.

• Written in C (15,000 lines) to simplify interface with

back-end,but calls common syntax and semantic

information packages.

NEW YORK UNIVERSITY GNAT Project-14

Generic Analysis and Instantiation

• Standard model: macro expansion.

• Need to perform limited semantic analysis, and

inhibit tree expansion.

• Repeat most semantic analysis at instantiation

time, except name resolution

generic unitgeneric copy

tree copy

global refs

instance
semantic analysis

tree copy
 +
renamings

NEW YORK UNIVERSITY GNAT Project-13

Expansion

• The semantics of Ada are more complex than

those of C. Higher-level constructs must be

expanded to ease translation.

- Aggregates

- Tasking / protected types constructs

- Logical operations on boolean arrays

- Equality and comparisons on composite

types

- Discriminant references in expressions

- Initialization procedures.

- Distribution annex.

• Build tree fragments, call semantics recursively on

them

• A good hacker can write LISP in any language!

• 35,000 lines in 45 files.

NEW YORK UNIVERSITY GNAT Project-12

Recursion solves everything!

• Need to analyze context clause: call the parser to

process package declaration,call the semantics

to analyze it, and return to processing of main

program.

• Need to process stub: call parser to analyze

subunit, call semantics, insert in place of stub,

continue with main program.

• Need to perform generic expansion: call parser to

process body of enclosing unit, call semantics to

analyze it, perform in-line expansion.

NEW YORK UNIVERSITY GNAT Project-11

Semantic Analysis

• Name resolution

• Type and overload resolution

• Dispatching and controlling arguments.

• Static expression evaluation.

• Legality checks: currently 770 error messages

(still incomplete)

• 54,000 lines of code in 44 files.

NEW YORK UNIVERSITY GNAT Project-10

Why not LALR (k)?

• Clarity: corresponds exactly to grammar of

Reference Manual.

• Performance: an order of magnitude better than

table driven.

• Error recovery: always superior in top-down

parsing. Heuristics cannot be encoded easily in

table-driven methods. Special cases are

constantly added to the system, at users’ request.

NEW YORK UNIVERSITY GNAT Project-9

Syntax Analysis

• Hand-coded top-down parser.

• No complex buffering: source file fully in memory.

• Sophisticated error recovery:

- Keyword spelling correction

- Recognize indentation

- Excellent scope recovery (";" vs. "is")

- Internal style rules enforced.

• Fastest portion of compiler

• 22,000 lines: one parent unit, 13 subunits.

• scanner: 3,000 lines. Tightly coded for keyword

recognition, and skipping blanks and comments.

syntax
analysis

semantic
analysis expander Gigi

 Gcc
back-end

In Ada
In C

AST Decorated
AST

The Phases of the GNAT Compiler

procedural

interface

Ada

source

GNAT
compiler

code
object GNAT

binder
assembler
& loader executable

 GNARL
source of
runtime

z.o

a.o

The GNAT system

NEW YORK UNIVERSITY GNAT Project-6

The Structure of GCC

• A multi-language retargettable compiler.

• Currently 30 hardware targets,180 configurations.

• Front-ends for C, C++, Objective C, Pascal,

Modula-3, Fortran77, others in preparation.

• Code generator mostly machine-independent,

uses RTL description of target architecture.

• Extensive optimization, 17 passes.

• Excellent code quality for both CISC and RISC

architectures (68K, i86, RIOS, Alpha, 88K,...)

• Common code-generator eases multi-language

support.

• > 400,000 lines of C.

NEW YORK UNIVERSITY GNAT Project-5

Anatomy of a GNAT

• The structure of GCC

• The GNAT front-end

• Gigi

• Library Management

• Binder

• The runtime

• An improved GCC

NEW YORK UNIVERSITY GNAT Project-4

 FSF Policies

• Embodied in two software licensing mechanisms:

FSF software is not in the public domain.

• GPL : GNU public licence.

• Complete freedom to copy and modify. However,

if modified version is distributed, sources with

their modification must be made available on

request.

• GLPL : GNU library public license. Used for RTL

components that can be incorporated into

proprietary products without having them fall

under the GPL license. For example, use of

Atan2 does not apply GPL to a program compiled

with GCC

NEW YORK UNIVERSITY GNAT Project-3

 The Free Software Foundation

• A not-for-profit organization dedicated to the

production of quality software to be distributed

freely with source code.

• Created by Richard Stallman

• Main products: GCC,GDB, Emacs, utilities

• Goal: GNU, a UNIX-compatible operating system

NEW YORK UNIVERSITY GNAT Project-2

GNAT

The GNU NYU Ada Translator

• A high-quality Ada9X compiler.

• Part of the GCC compiler system

• Multiple targets and cross-compilers.

• Distributed under the guidelines of the Free

Software Foundation

• Full availability of sources

• Latest version 2.6 just released.

• Expected completion: 2d quarter, 1995

NEW YORK UNIVERSITY GNAT Project-1

GNAT:

 An Ada-9X compiler for everyone

The Gnat Project

New York University

June 1995

