
documentation draft - 8 - c++ low-level interface

 b_value = 2020;

 cout << "in B::B, a_value = " << a_value << "b_value = " << b_value << "\n";

}

3.5. compilation and Execution

lang8{comar}84: /usr/local/gnu/bin/make ex6_main

gcc -c -g ex6_main.adb

gcc -c -g ex6_if.adb

/usr/local/bin/gcc -c -g ex6.C

gnatbl ex6_main.ali -o ex6_main ex6.o -lg++

lang8{comar}80: ex6_main

in A::A, a_value = 1010

in A::A, a_value = 1010

in B::B, a_value = 1010b_value = 2020

in A::A, a_value = 1010

in B::B, a_value = 1010b_value = 2020

in A::overridden, a_value = 1010

in A::not_overridden, a_value = 1010

in B::overridden, a_value = 1010b_value = 2020

in A::not_overridden, a_value = 1010

in Ex6_If.Ada_Extension.Overridden, a_value = 1010, b_value = 2020, c_value = 3030

in A::not_overridden, a_value = 1010

documentation draft - 7 - c++ low-level interface

3.4. The bodies

with Gnat.IO; use Gnat.IO;

package body Ex6_If is

 package body Ada_Extension is

 procedure Overridden (This : in C) is

 begin

 Put ("in Ex6_If.Ada_Extension.Overridden, a_value = ");

 Put (This.A_Value);

 Put (", b_value = ");

 Put (This.B_Value);

 Put (", c_value = ");

 Put (This.C_Value);

 New_Line;

 end Overridden;

 end Ada_Extension;

end Ex6_If;

#include "ex6.h"

#include <fstream.h>

void A::non_virtual (void)

{

 cout << "in A::non_virtual, a_value = " << a_value << "\n";

}

void A::overridden(void)

{

 cout << "in A::overridden, a_value = " << a_value << "\n";

}

void A::not_overridden(void)

{

 cout << "in A::not_overridden, a_value = " << a_value << "\n";

}

A::A(void)

{

 a_value = 1010;

 cout << "in A::A, a_value = " << a_value << "\n";

}

void B::overridden (void)

{

 cout << "in B::overridden, a_value = " << a_value << "b_value = " << b_value

<< "\n";

}

B::B(void)

{

documentation draft - 6 - c++ low-level interface

 function Constructor return B’Class;

 pragma CPP_Constructor (Entity => Constructor);

 pragma Import (CPP, Constructor, "B", "___1B");

 procedure Overridden (This : in B);

 pragma CPP_Virtual (Overridden, Vptr, 1);

 pragma Import (CPP, Overridden, "overridden", "_overridden__1B");

 end B_Class;

 package Ada_Extension is

 type C is new B_Class.B with

 record

 C_Value : Integer := 3030;

 end record;

 -- no more pragma CPP_Class, CPP_Vtable; or CPP_Virtual:

 -- this is a regular Ada tagged type

 procedure Overridden (This : in C);

 procedure Not_Overridden (This : in C);

 pragma CPP_Virtual (Not_Overridden, Vptr, 2);

 pragma Import (CPP, Not_Overridden, "", "_not_overridden__1A");

 end Ada_Extension;

end Ex6_If;

3.3. an Ada main program

with ex6_if;

procedure ex6_main is

 use ex6_if;

 use ex6_if.A_Class;

 use ex6_if.B_Class;

 A_Obj : A_Class.A;

 B_Obj : B_Class.B;

 C_Obj : Ada_Extension.C;

 procedure Dispatch (Obj : A_Class.A’Class) is

 begin

 Overridden (Obj);

 Not_Overridden (Obj);

 end Dispatch;

begin

 Dispatch (A_Obj);

 Dispatch (B_Obj);

 Dispatch (C_Obj);

end ex6_main;

documentation draft - 5 - c++ low-level interface

 virtual void overridden (void);

 B();

 int b_value;

};

3.2. The Ada interface

with Interfaces.CPP;

use Interfaces.CPP;

package ex6_if is

 package A_Class is

 --

 -- Translation of C++ class A

 --

 type A is tagged

 record

 O_Value : Integer;

 A_Value : Integer;

 Vptr : Interfaces.CPP.Vtable_Ptr;

 end record;

 pragma CPP_Class (Entity => A);

 pragma CPP_Vtable (Entity => A, Vtable_Ptr => Vptr, Entry_Count => 2);

 -- Member Functions

 procedure Non_Virtual (This : in A’Class);

 pragma Import (CPP, Non_Virtual, "non_virtual", "_non_virtual__1A");

 procedure Overridden (This : in A);

 pragma CPP_Virtual (Entity => Overridden, -- long form

 Vtable_Ptr => Vptr,

 Entry_Count => 1);

 pragma Import (CPP, Overridden, "", "_overridden__1A");

 procedure Not_Overridden (This : in A);

 pragma CPP_Virtual (Not_Overridden); -- short form

 pragma Import (CPP, Not_Overridden, "", "_not_overridden__1A");

 function Constructor return A’Class;

 pragma CPP_Constructor (Entity => Constructor);

 pragma Import (CPP, Constructor, "A", "___1A");

 end A_Class;

 package B_Class is

 type B is new A_Class.A with

 record

 B_Value : Integer;

 end record;

 pragma CPP_Class (Entity => B);

documentation draft - 4 - c++ low-level interface

checks:

- Fname must be the name of a function

- the function must have one of the following profiles:

function Fname return Typ'Class; -- default constructor

function Fname (Ref: Typ'Class) return Typ'Class; -- copy constructor

function Fname (<parameters>) return Typ'Class; -- other constructor

- these functions can only be used as initialization expression of an object declaration

comments:

- the above rules make it impossible to create a CPP object in absence of constructors which

seems a rather nice consequence.

2.6. CPP_Destructor

 pragma CPP_Destructor (Entity => Pname);

meaning:

- this pragma specifies a c++ destructor. This destructor is called automatically upon scope

exit

checks:

- Pname must be the name of a procedure with the following profile:
procedure Pname (Obj : in out Typ);

3. An Example

In this example we have 3 C++ classes: Origin, A and B deriving one from the other. We want

to interface A and B (we don’t need Origin). From the Ada side we define 3 tagged types A, B and

C. The first 2 corresponds to the C++ classes A and B and the third is a regular Ada derivation. We

illustrate partial binding (origin is not interfaced as well as some of the primitives), dispatching

and overriding across languages.

3.1. The C++ class library :

class Origin {

 public:

 int o_value;

};

class A : public Origin {

 public:

 void non_virtual (void);

 virtual void overridden (void);

 virtual void not_overridden (void);

 A();

 int a_value;

};

class B : public A {

 public:

documentation draft - 3 - c++ low-level interface

 meaning:

- same as Pragma_Import (C, ...)

 comment:

 - the mangling has to be done manually through the Link_Name. (a future high-level inter-

face should be able to mangle the External_Name automatically)

 - It is possible to avoid finding out the mangled names of function members when they are

only used in dispatching calls because the external name is not used in this case.

2.4. CPP_Virtual

 pragma CPP_Virtual

 Entity => Subprogram,

 Vtable_Ptr => Field_Name,

 Position => Static_Number)

checks:

- Check that Field_Name is of type Interfaces.CPP.table_Ptr

- Check that the same offset is not used twice (directly or because of defaults)

meaning:

 - provide necessary information for dispatching. Component is the vtable pointer component

in the dispatching type of Subprogram. Offset is the position in the vtable of this subpro-

gram.

comment:

- Vtable_Ptr and Offset optional. By default Vtable_Ptr is the component declared in

the first pragma CPP_Vtable. and Offset is the position corresponding to the order of

declaration of primitive operations.

- A non primitive operation must not have a CPP_Class parameter otherwise it would be

taken for a virtual function with no pragma CPP_Virtual, it must instead have parameter of

type typ'Class.

- A primitive operation with a CPP_Class parameter must have a pragma CPP_Virtual

2.5. CPP_Constructor

 pragma CPP_Constructor (

 Entity => Fname,

 Link_Name => "manually mangled name");

meaning:

- this pragma specifies a c++ constructor. Those constructors appear as regular functions to

the Ada user althrough they an only be used to initialize objects. The initialization expres-

sion of objects whose type is CPP_Class must be a constructor call. If no init expression the

default constructor is called.

documentation draft - 2 - c++ low-level interface

CPP_Constructors for details) because '=' is not provided and assignment has a different

semantics in the two languages. If necessary, a c++ user-defined assignement can be imported

and used as a regular operation.

checks:

- typ is a type mark designating a record or a private type

- if Underlying_Type of 'typ' is tagged then at least one of its field is of type Interfaces.CP-

P.Vtable_Ptr

- if Underlying_Type of 'typ' is not tagged then no field has that type

Comment:

 If the c++ class has no vtable pointer it cannot be associated to a tagged type, because it is

not easy to solve the problem of where to put the vtable pointer in derived types. We could change

this rule by specifying that if a cpp_class has no Vtable pointer, then its descendants must be cpp_-

class too. That is to say you can begin to derive regular tagged types only when a vtable pointer is

present.

2.2. CPP_Vtable

 pragma CPP_Vtable (

 Entity => Typ,

 Vtable_Ptr => Field_Name,

 Entry_Count => Static_Number);

meaning:

- allows dynamic dispatching trough the vtable pointer Field_Name

- the first CPP_Vtable pragma defines the vtable to be extended in further derivations

- Static_Number specify the number of entries in the Vtable. It is used to extend the the

vtable during derivations

checks :

- Typ must be tagged and CPP_Class

- Field_Name must be of type Interfaces.CPP.Vtable_Ptr

comment:

if no pragma CPP_Vtable is defined on a type, the first component of type Interfaces.CP-

P.Vtable_Ptr is considered the only vtable pointer its Entry_Count is the number of primitive

operations of the type.

2.3. Import

 pragma Import (

 Convention => CPP,

 Entity => Subprogram_or_Variable,

 External_Name => Whatever,

 Link_Name => "manually mangled name");

documentation draft - 1 - c++ low-level interface

GNAT / C++ Low-Level Interface

Cyrille Comar, GNAT project (comar@cs.nyu.edu)

1. Introduction

This document presents a design for a low-level interface to C++ classes. The basic idea is to

map a C++ class to a tagged type with specific characteristic in order to be compatible with the C++

semantics. Such a tagged type can in turn be used as the root of a hierarchy of regular tagged types.

Inheritance and dispatching can then cross the language boundary from C++ to Ada and, why not,

from Ada to C++. The obvious advantage of such an interface is to open the gigantic world of C++

libraries to Ada users.

The main goal of this proposal is to define the minimum set of pragmas and semantic process-

ing that have to be added to the GNAT compiler for making such an interface not only possible but

also fully functionnal. Our goal is not to make the process of interfacing C++ code as easy as pos-

sible to the user. In particular, in our model, we assume that the interfacer has some knowledge

about the internals of the C++ compiler. The kind of interface we provide is more likely to be used

by third-party tools specialized in interface binding generation than by direct users.

Every C++ compiler has a different implementation scheme and it is not possible to design a

completely compiler independant interface, nevertheless we have triedis to avoid as much as pos-

sible to base the interface on the behavior of a particular C++ compiler and to isolate most com-

piler dependancies in a frun-time file that is possible to change without rebuilding a complete

compiler. We also want to be able to partially interface a huge c++ library, that is to say,interface

just the classes we are planning to use without needing to interface all their ancestors. Our last goal

is to make it possible to interface a library using multiple inheritance even if such a concept is not

available ion the Ada side..Some general assumptions are made on the way the C++ compiler

works. For instance, we suppose that dispatching is implemented by means of a hidden pointer bur-

ied in any object pointing to a table containing the address of virtual members: the Vtable.

All the information GNAT needs to know about how a particular C++ compiler works is

grouped in the package Interfaces.CPP. The body of this package can be customized in order to

interface to a new compiler..Customizing this package requires precise information about the lay-

out of the Vtable, and a scheme for implementing the membership test.

Interfacing a C++ library requires to know the layout of C++ class instances, including the

position og thr Vtable pointer which appears explicitly in the equivalent Ada object. The user needs

also to be able to provide the mangled names of member functions that are interfaced to.

2. Pragmas supporting the interface

2.1. CPP_Class

pragma CPP_Class (Entity => Typ);

meaning:

Typ is the Ada9x version of a c++ class. If typ is defined as a tagge type then it must contain

one or more explicit vtable pointer. If typ is a non tagged record then it cannot contain a vtable

pointer. Those types are considered limited from the Ada-side (except for initialization, see

