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Interfaces.CPP

package Interfaces.CPP is

type Vtable_Ptr is private;

private

procedure Set_Vfunction_Address (...);
function Get_Vfunction_Address (...) return Address;
procedure Set_Idepth (...);
function Get_Idepth (...) return Natural;
procedure Set_Ancestor_Vptrs (...);
function Get_Ancestor_Vptrs (...) return Address;
function Vtable_Size (...) return Storage_Count;
procedure Inherit_Vtable (...);
function CPP_Membership (...) return Boolean;

function Displaced_This (This : Address;
Vptr : Vtable_Ptr;
 Pos  : Positive) return Address;

type Vtable;
type Vtable_Ptr is access all Vtable;

pragma Inline (Get_Vfunction_Address);
pragma Inline (...);

end Interfaces.CPP;

Same structure as Ada.Tags

to accomodate Multiple Inheritance
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pragma CPP_Constructor (
Entity => Fname,
Link_Name => “mangled name”);

pragma CPP_Destructor (
Entity => Fname,
Link_Name => “mangled name”);

pragma Import (
Convention => CPP,
Entity => Entity,
External_Name => Whatever,
Link_Name => “mangled name”);

this function can only be used
in declaration and allocation}

this subprogram will be called
on scope exit}

no need to provide mangled
name for disp. operations}
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The GNAT specific Pragmas

pragma CPP_Class (Entity => Typ);

pragma CPP_Vtable (
Entity => Typ,
Vtable_Ptr => Field_Name,
Entry_Count => Static_Number);

pragma CPP_Virtual (
 Entity => Subprogram,
Vtable_Ptr => Field_Name,
Position => Static_Number)

Makes the type “limited”
disable ‘tag, aggregates,

tell the compiler where is the
Vtable and its size}

tell the compiler where is the
virtual func.tion in the Vtable}

}
membership...
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To make it work

type C1 is tagged record

V1 : C.Int;
Vptr : CPP.Vtable_Ptr;

end record;

pragma CPP_Class (C1);

pragma Vtable (C1, Vptr, 1);

function F (This: C1’Class) return C.Int;
pragma Import (CPP, F, “F”, “f_3C1”);

procedure P (This: in out C1’Class; V: C.Int);
pragma Import (CPP, P, “P”, “p_3C1”);

procedure Disp (This: C1);
pragma Import (CPP, Disp, “P”, “p_3C1”);
pragma CPP_Virtual (Disp, 1);

function Init return C1’Class;
pragma CPP_Constructor (Init, “C1”, “___3C1”);

Default constructor is automatically applied

mangling is

provide information for
dispatching

done by hand

to CPP objects
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Class C1 {

public:

int F (void);

void P (int v);

virtual void Disp (void);

C1 ();

int v1;

};

type C1 is tagged record

V1 : C.Int;
end record;

function F (This: C1’Class) return C.Int;
procedure P (This: in out C1’Class; V: C.Int);

function Init return C1’Class;

procedure Disp (This: C1);

Basic Mapping

data member

non-virtual function

virtual function
=

primitive operation

 =
classwide subprogram

=
record component

constructor
=

initialization function
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The Low-Level C++ Interface

Goals :

* Import and use C++ Classes as Tagged Types

* Derive from C++ Classes

* Avoid coupling with a specific C++ compiler

Technical problems :

* Semantic differences

* Compatibility of the dispatch tables

* Mangling of names

* Run-time type information

* Layout of objects

dispatching accross languages

customizing C++ libraries
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Advantages of Black Box Dispatch Table
Approach

The user can modify Ada.Tags without changing the compiler in
order to :

- customize the implementation of type Tag :

type Tag is null record;

type Tag is new Array_OF_DT_Index_Type;

- modify the format of the Dispatch Table

* to match a foreign Dispatch Table format

* to take advantage of a specific architecture

when dispatching is not needed

to trade efficiency for more compact objects
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package Ada.Tags is

type Tag is private;

...

private

procedure Set_Prim_Op_Addr (T: Tag; P: Pos; V: Address);
function Get_Prim_Op_Addr (T: Tag; P: Pos) return Address;

procedure Set_Inheritance_Depth (T : Tag; V : Natural);
function Get_Inheritance_Depth (T : Tag) return Natural;

procedure Set_Ancestor_Tags (T : Tag; V  : Address);
function Get_Ancestor_Tags (T : Tag) return Address;

function DT_Size (C : Natural) return Storage_Count;

procedure Inherit_DT (OldT, NewT: Tag; C: Natural);

function CW_Membership (ObjT, TypT : Tag) return Boolean;

type Dispatch_Table;
type Tag is access all Dispatch_Table;

Pragma Inline (Get_Inheritance_Depth);
Pragma Inline (...);

end Ada.Tags;
Taft amendment type



Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 20 Tri-Ada 94

Dispatch Table

The Procedural Interface to the Dispatch

Set_Prim_Op_Address

Set_Inheritance_Depth

Inherit_DT

DT_Size

Set_Ancestor_Tags

Get_Prim_Op_Address

Get_Inheritance_Depth

Get_Ancestor_Tags

Dispatch Table

Dispatch Table
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Name

Expression

_Tag

Sloc

Inheritance_Depth

Access_Size

Access_Equal

Access_Analyze

Access_Expand

Ancestor_Tags

Tag of Node

Tag of Assignment_Statement

Dispatch Table for type

object

Table of Ancestor Tags

Assignment_Statement

{

{

{

for
membership

predefined
primitives

user-defined
primitives

The Strongly Typed View of the Dispatch
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Entity;

Node;

Layouts of root tagged types

Layouts of extensions

_Tag

Sloc
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3. Basic Implementation Techniques

Problems that had to be solved:

* Layout of objects

* Structure of the Dispatch Table

* Membership Test

* Visibility issues with private extensions and primitives

where to put the new discriminants

how to allocate classwide objects

The strongly typed approach

The black box approach
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package Error3 is

type Node is tagged null record;
type Node_Id is access all Node’Class;
Empty: constant Node_Id := new Node’(null record);

|
warning: no primitive operations for “Node” after this line

procedure Analyze (N : access Node);
|

this primitive operation is declared too late

type Expr is abstract new Node with null record;
type Op_Add is new Expr with null record;

|
warning: no primitive operations for “Expr” after this line

procedure Analyze (N : access Expr) is abstract;
|

this primitive operation is declared too late

procedure Analyze (N : access Op_Add);

GNAT messages
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The problematic notion of Freezing

RM 13.14

...A noninstance body causes freezing ...

...The occurence of an object_declaration... causes freezing...

...The declaration of a record extention causes freezing ...

...At the place where an allocator causes freezing, the desig-

nated subtype of its type is frozen

package Error3 is

type Node is tagged null record;
type Node_Id is access all Node’Class;
Empty: constant Node_Id := new Node’(null record);
procedure Analyze (N : access Node);

type Expr is abstract new Node with null record;
type Op_Add is new Expr with null record;
procedure Analyze (N : access Expr) is abstract;
procedure Analyze (N : access Op_Add);

end Error3;

where are the mistakes???
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package body Error2 is

type Ctrl is new Controlled with null record;
procedure Finalize (Obj : in out Ctrl) is

|
“Finalization” conflicts with declaration at line 3

What you could have got

package body Error2 is

type Ctrl is new Controlled with null record;
procedure Finalize (Obj : in out Ctrl) is

|
overriding too late (subprogram spec should appear immediately after type)

begin

...
end Finalize;

end Error2;

GNAT message
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althrough RM 3.2.3 (7) says :

it also says somewhere else (RM 13.14 (15))

and RM 13.14 (4)

package body Error2 is

type Ctrl is new Controlled with null record;
 procedure Finalize (Obj : in out Ctrl) is

begin

...
end Finalize;

end Error2;

case2

The primitive subprograms of a specific type are defined

as follows: ... For a specific type declared outside a packag-

e_Specification, any subprograms that are explicitly

declared immediately within the same declarative region

and that override other implicitly declared subprograms of

the type

The explicit declaration of a primitive subprogram of a

tagged type shall occur before the type is frozen.

A noninstance body causes freezing of each entity

declared before it within the same declarative_part..
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Analyze (N);
|

type ‘access to Node’ expected, found Node_Id

end Error1;

What you could have got

procedure Error1 is

type Node is tagged null record;
type Node_Id is access all Node’Class;
procedure Analyze (N : access Node) is separate;

|
warning: not a dispatching operation (must be defined in a package spec)

 N : Node_Id;

begin

Analyze (N);
|

access to class-wide argument not allowed here
“Analyze” is not a primitive operation of “Node”

GNAT message

The warning is only issued when an error occurs later
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2. Dealing With Common User Mistakes

Find the Mistake ???

Hints : RM 3.9.2 (9)

RM 3.2.3

procedure Error1 is

type Node is tagged null record;
type Node_Id is access all Node’Class;
procedure Analyze (N : access Node) is separate;
 N : Node_Id;

begin

...
Analyze (N);

end Error1;

case1

if the expected type of an expression or

name is some specific tagged type, then

the expression shall not be dynamically

tagged unless it is a controlling operand in

a call on a dispatching operation

The primitive subprograms of a specific type are defined

as follows: ... For a specific type declared immediately

within a package_Specification, any subprogram that are

explicitly declared immediately within the same packag-

e_specification and that operate on the type...
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Private Extensions and New Discriminants

type Composite_Type (Unconstrained : Boolean) is

abstract new Simple_Type with null record;

type Record_Type (Discriminated : Boolean) is

new Composite_Type (Unconstrained => Discriminated)
with private;

.

.

.

type Tagged_Type is new Record_Type with

record

Dispatch_Table : Entity_Id;
Is_Controlled : Boolean;

end record;

.
private

type Record_Type (Discriminated : Boolean) is

new Composite_Type (Unconstrained => Discriminated)
with

record

Components : Entity_List;
case Discriminated is

when True => Discriminants : Entity_List;
when False => null;

end case;

end record;

new discriminant

discriminant renaming

discriminant inheritance

private extension
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Record and Extension Aggregates

Assign_Stmt_Ptr : Node_Id :=

new Assignement_Statement’(
Sloc => Current_Location,
Name => new Selected_Component,
Expression =>

new Op_Add’(Node with

Etype => Standard_Integer,
Left_Opnd => new Function_Call,
Right_Opnd => new Universal_Integer’(Expr with 1)));

Rec_Variable.Field := Funct (X) + 1;

Record Aggregate

Extension Aggregates

(Ancestor_Type with [comp_associations])

(Ancestor_Expression with [comp_associations])

Syntax can be of a private type

can be an abstract type
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Example of recursive definition

type Entity;
type Entity_Id is access Entity’Class;

type Entity is abstract new Node with

record

Chars : Name_Table_Ptr;
Etype : Type_Id;

end record;

procedure Analyze (N : access Entity);
procedure Expand (N : access Entity);

type Simple_Type is abstract new Entity with

record

Init_Proc : Entity_Id;
end record;
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Hierarchy of Tagged Types

Expr

Node

Entity

Assignment_Statement

Op_Add

Simple_Type

Record_Type

Indentifier

Selected_Component

Composite_Type

Tagged_Type

Entity’Class

abstract classes
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Primitive Operations
versus

Operations on Classwide Types

procedure Analyze_Node (N : Node_Id) is

begin

Analyze (N);
if Code_Generation
and then N.all not in Expr’Class
then

Expand (N);
end if;

end Analyze_Node;

procedure Analyze (N : access Assignment_Statement) is

Typ : Type_Id;
begin

Analyze_Node (N.Name);
Analyze_Node (N.Expression);
Typ := Find_Matching_Type (N.Name, N.Expression);
Resolve_Expr (N.Name, Typ);
Resolve_Expr (N.Expression, Typ);

end Analyze;

This is a general algorithm, valid for all Nodes

This is the specific algorithm for analyzing Assignments

Dispatching Calls:
the formal has a specific tagged type
the actual has a classwide type
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type Assignment_Statement is new Node with

record

Name : Expr_Id;
Expression : Expr_Id;

end record;

procedure Analyze (N : access Assignment_Statement);
procedure Expand (N : access Assignment_Statement);

type Simple_Type;
type Type_Id is access Simple_Type’Class;

type Expr is abstract new Node with

record

Etype : Type_Id;
end record;

-- Inherited:

-- procedure Analyze (N : access Expr) is abstract;
-- procedure Expand  (N : access Expr) is abstract;

procedure Resolve_Expr (E : Expr_Id; Typ : Type_Id);
procedure Resolve (E : access Expr; Typ : Type_Id)
is abstract;

concrete type extension

Overriding of primitive operations

abstract type extension

class of an incomplete type

inheritance
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Basic Syntax and Concepts

package Definitions is

type Node is abstract tagged

record

Sloc : Source_Ptr;
end record;

type Node_Id is access Node’Class;

procedure Analyze_Node (N : Node_Id);

procedure Analyze (N : access Node) is abstract;
procedure Expand (N : access Node) is abstract;

abstract tagged type

The corresponding
classwide type

primitive operations

polymorphic pointer

classwide operation



Rec_Variable.Field := Funct (X) + 1;a GNAT tree for

Identifier
Sloc : line 2, col 3
Etype : record_type
Chars : Rec_Variable

Identifier
Sloc : line 2, col 16
Etype : Integer
Chars : Field

Selected_Component
Sloc : line 2, col 15
Etype : record_type

Assignment_Statement
sloc : line 2, col 22

Op_Add
Sloc : line 2, col 35
Etype : integer

Function_Call
Sloc : line 2, col 25
Etype : Integer
Chars : Funct

Universal_Integer
Sloc :  line 2, col 37
Etype : Integer
Val : 1

Identifier
Sloc : line 2, col 32
Etype : String

Nodes
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OUTLINE

1. Ada 9x Object-Oriented Concepts Through An Example

- The main GNAT Data-Structures with Tagged Types
- Extending and Dispatching

2. Dealing With Common User Mistakes

- Tagged types outside Package Specs.
- Freezing point Issues

3. Basic Implementation Techniques

- Layout of Tagged Objects
- Structure of the Dispatch Table

4. The Low-Level C++ Interface

- Goals and Limitations
- The Gnat-specific Pragmas supporting the interface
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