
Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 28 Tri-Ada 94

Interfaces.CPP

package Interfaces.CPP is

type Vtable_Ptr is private;

private

procedure Set_Vfunction_Address (...);
function Get_Vfunction_Address (...) return Address;
procedure Set_Idepth (...);
function Get_Idepth (...) return Natural;
procedure Set_Ancestor_Vptrs (...);
function Get_Ancestor_Vptrs (...) return Address;
function Vtable_Size (...) return Storage_Count;
procedure Inherit_Vtable (...);
function CPP_Membership (...) return Boolean;

function Displaced_This (This : Address;
Vptr : Vtable_Ptr;
 Pos : Positive) return Address;

type Vtable;
type Vtable_Ptr is access all Vtable;

pragma Inline (Get_Vfunction_Address);
pragma Inline (...);

end Interfaces.CPP;

Same structure as Ada.Tags

to accomodate Multiple Inheritance

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 27 Tri-Ada 94

pragma CPP_Constructor (
Entity => Fname,
Link_Name => “mangled name”);

pragma CPP_Destructor (
Entity => Fname,
Link_Name => “mangled name”);

pragma Import (
Convention => CPP,
Entity => Entity,
External_Name => Whatever,
Link_Name => “mangled name”);

this function can only be used
in declaration and allocation}

this subprogram will be called
on scope exit}

no need to provide mangled
name for disp. operations}

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 26 Tri-Ada 94

The GNAT specific Pragmas

pragma CPP_Class (Entity => Typ);

pragma CPP_Vtable (
Entity => Typ,
Vtable_Ptr => Field_Name,
Entry_Count => Static_Number);

pragma CPP_Virtual (
 Entity => Subprogram,
Vtable_Ptr => Field_Name,
Position => Static_Number)

Makes the type “limited”
disable ‘tag, aggregates,

tell the compiler where is the
Vtable and its size}

tell the compiler where is the
virtual func.tion in the Vtable}

}
membership...

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 25 Tri-Ada 94

To make it work

type C1 is tagged record

V1 : C.Int;
Vptr : CPP.Vtable_Ptr;

end record;

pragma CPP_Class (C1);

pragma Vtable (C1, Vptr, 1);

function F (This: C1’Class) return C.Int;
pragma Import (CPP, F, “F”, “f_3C1”);

procedure P (This: in out C1’Class; V: C.Int);
pragma Import (CPP, P, “P”, “p_3C1”);

procedure Disp (This: C1);
pragma Import (CPP, Disp, “P”, “p_3C1”);
pragma CPP_Virtual (Disp, 1);

function Init return C1’Class;
pragma CPP_Constructor (Init, “C1”, “___3C1”);

Default constructor is automatically applied

mangling is

provide information for
dispatching

done by hand

to CPP objects

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 24 Tri-Ada 94

Class C1 {

public:

int F (void);

void P (int v);

virtual void Disp (void);

C1 ();

int v1;

};

type C1 is tagged record

V1 : C.Int;
end record;

function F (This: C1’Class) return C.Int;
procedure P (This: in out C1’Class; V: C.Int);

function Init return C1’Class;

procedure Disp (This: C1);

Basic Mapping

data member

non-virtual function

virtual function
=

primitive operation

 =
classwide subprogram

=
record component

constructor
=

initialization function

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 23 Tri-Ada 94

The Low-Level C++ Interface

Goals :

* Import and use C++ Classes as Tagged Types

* Derive from C++ Classes

* Avoid coupling with a specific C++ compiler

Technical problems :

* Semantic differences

* Compatibility of the dispatch tables

* Mangling of names

* Run-time type information

* Layout of objects

dispatching accross languages

customizing C++ libraries

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 22 Tri-Ada 94

Advantages of Black Box Dispatch Table
Approach

The user can modify Ada.Tags without changing the compiler in
order to :

- customize the implementation of type Tag :

type Tag is null record;

type Tag is new Array_OF_DT_Index_Type;

- modify the format of the Dispatch Table

* to match a foreign Dispatch Table format

* to take advantage of a specific architecture

when dispatching is not needed

to trade efficiency for more compact objects

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 21 Tri-Ada 94

package Ada.Tags is

type Tag is private;

...

private

procedure Set_Prim_Op_Addr (T: Tag; P: Pos; V: Address);
function Get_Prim_Op_Addr (T: Tag; P: Pos) return Address;

procedure Set_Inheritance_Depth (T : Tag; V : Natural);
function Get_Inheritance_Depth (T : Tag) return Natural;

procedure Set_Ancestor_Tags (T : Tag; V : Address);
function Get_Ancestor_Tags (T : Tag) return Address;

function DT_Size (C : Natural) return Storage_Count;

procedure Inherit_DT (OldT, NewT: Tag; C: Natural);

function CW_Membership (ObjT, TypT : Tag) return Boolean;

type Dispatch_Table;
type Tag is access all Dispatch_Table;

Pragma Inline (Get_Inheritance_Depth);
Pragma Inline (...);

end Ada.Tags;
Taft amendment type

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 20 Tri-Ada 94

Dispatch Table

The Procedural Interface to the Dispatch

Set_Prim_Op_Address

Set_Inheritance_Depth

Inherit_DT

DT_Size

Set_Ancestor_Tags

Get_Prim_Op_Address

Get_Inheritance_Depth

Get_Ancestor_Tags

Dispatch Table

Dispatch Table

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 19 Tri-Ada 94

Name

Expression

_Tag

Sloc

Inheritance_Depth

Access_Size

Access_Equal

Access_Analyze

Access_Expand

Ancestor_Tags

Tag of Node

Tag of Assignment_Statement

Dispatch Table for type

object

Table of Ancestor Tags

Assignment_Statement

{

{

{

for
membership

predefined
primitives

user-defined
primitives

The Strongly Typed View of the Dispatch

_parent :

_parent :

Entity Simple_Type

_parent :

Simple_Type;

_parent :

Composite_Type;

Composite_Type Record_Type

Chars

Etype

Init_Proc
Unconstrained

Discriminated
Components

Discriminants

S
im

p
le_

T
yp

e’C
la

ss

C
o
m

p
o
site_

T
yp

e’C
la

ss

R
eco

rd
_
T

yp
e’C

la
ss

N
o
d
e’C

la
ss

E
n

tity’C
la

ss

Discriminants

Entity;

Node;

Layouts of root tagged types

Layouts of extensions

_Tag

Sloc

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 17 Tri-Ada 94

3. Basic Implementation Techniques

Problems that had to be solved:

* Layout of objects

* Structure of the Dispatch Table

* Membership Test

* Visibility issues with private extensions and primitives

where to put the new discriminants

how to allocate classwide objects

The strongly typed approach

The black box approach

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 16 Tri-Ada 94

package Error3 is

type Node is tagged null record;
type Node_Id is access all Node’Class;
Empty: constant Node_Id := new Node’(null record);

|
warning: no primitive operations for “Node” after this line

procedure Analyze (N : access Node);
|

this primitive operation is declared too late

type Expr is abstract new Node with null record;
type Op_Add is new Expr with null record;

|
warning: no primitive operations for “Expr” after this line

procedure Analyze (N : access Expr) is abstract;
|

this primitive operation is declared too late

procedure Analyze (N : access Op_Add);

GNAT messages

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 15 Tri-Ada 94

The problematic notion of Freezing

RM 13.14

...A noninstance body causes freezing ...

...The occurence of an object_declaration... causes freezing...

...The declaration of a record extention causes freezing ...

...At the place where an allocator causes freezing, the desig-

nated subtype of its type is frozen

package Error3 is

type Node is tagged null record;
type Node_Id is access all Node’Class;
Empty: constant Node_Id := new Node’(null record);
procedure Analyze (N : access Node);

type Expr is abstract new Node with null record;
type Op_Add is new Expr with null record;
procedure Analyze (N : access Expr) is abstract;
procedure Analyze (N : access Op_Add);

end Error3;

where are the mistakes???

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 14 Tri-Ada 94

package body Error2 is

type Ctrl is new Controlled with null record;
procedure Finalize (Obj : in out Ctrl) is

|
“Finalization” conflicts with declaration at line 3

What you could have got

package body Error2 is

type Ctrl is new Controlled with null record;
procedure Finalize (Obj : in out Ctrl) is

|
overriding too late (subprogram spec should appear immediately after type)

begin

...
end Finalize;

end Error2;

GNAT message

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 13 Tri-Ada 94

althrough RM 3.2.3 (7) says :

it also says somewhere else (RM 13.14 (15))

and RM 13.14 (4)

package body Error2 is

type Ctrl is new Controlled with null record;
 procedure Finalize (Obj : in out Ctrl) is

begin

...
end Finalize;

end Error2;

case2

The primitive subprograms of a specific type are defined

as follows: ... For a specific type declared outside a packag-

e_Specification, any subprograms that are explicitly

declared immediately within the same declarative region

and that override other implicitly declared subprograms of

the type

The explicit declaration of a primitive subprogram of a

tagged type shall occur before the type is frozen.

A noninstance body causes freezing of each entity

declared before it within the same declarative_part..

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 12 Tri-Ada 94

Analyze (N);
|

type ‘access to Node’ expected, found Node_Id

end Error1;

What you could have got

procedure Error1 is

type Node is tagged null record;
type Node_Id is access all Node’Class;
procedure Analyze (N : access Node) is separate;

|
warning: not a dispatching operation (must be defined in a package spec)

 N : Node_Id;

begin

Analyze (N);
|

access to class-wide argument not allowed here
“Analyze” is not a primitive operation of “Node”

GNAT message

The warning is only issued when an error occurs later

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 11 Tri-Ada 94

2. Dealing With Common User Mistakes

Find the Mistake ???

Hints : RM 3.9.2 (9)

RM 3.2.3

procedure Error1 is

type Node is tagged null record;
type Node_Id is access all Node’Class;
procedure Analyze (N : access Node) is separate;
 N : Node_Id;

begin

...
Analyze (N);

end Error1;

case1

if the expected type of an expression or

name is some specific tagged type, then

the expression shall not be dynamically

tagged unless it is a controlling operand in

a call on a dispatching operation

The primitive subprograms of a specific type are defined

as follows: ... For a specific type declared immediately

within a package_Specification, any subprogram that are

explicitly declared immediately within the same packag-

e_specification and that operate on the type...

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 10 Tri-Ada 94

Private Extensions and New Discriminants

type Composite_Type (Unconstrained : Boolean) is

abstract new Simple_Type with null record;

type Record_Type (Discriminated : Boolean) is

new Composite_Type (Unconstrained => Discriminated)
with private;

.

.

.

type Tagged_Type is new Record_Type with

record

Dispatch_Table : Entity_Id;
Is_Controlled : Boolean;

end record;

.
private

type Record_Type (Discriminated : Boolean) is

new Composite_Type (Unconstrained => Discriminated)
with

record

Components : Entity_List;
case Discriminated is

when True => Discriminants : Entity_List;
when False => null;

end case;

end record;

new discriminant

discriminant renaming

discriminant inheritance

private extension

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 9 Tri-Ada 94

Record and Extension Aggregates

Assign_Stmt_Ptr : Node_Id :=

new Assignement_Statement’(
Sloc => Current_Location,
Name => new Selected_Component,
Expression =>

new Op_Add’(Node with

Etype => Standard_Integer,
Left_Opnd => new Function_Call,
Right_Opnd => new Universal_Integer’(Expr with 1)));

Rec_Variable.Field := Funct (X) + 1;

Record Aggregate

Extension Aggregates

(Ancestor_Type with [comp_associations])

(Ancestor_Expression with [comp_associations])

Syntax can be of a private type

can be an abstract type

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 8 Tri-Ada 94

Example of recursive definition

type Entity;
type Entity_Id is access Entity’Class;

type Entity is abstract new Node with

record

Chars : Name_Table_Ptr;
Etype : Type_Id;

end record;

procedure Analyze (N : access Entity);
procedure Expand (N : access Entity);

type Simple_Type is abstract new Entity with

record

Init_Proc : Entity_Id;
end record;

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 7 Tri-Ada 94

Hierarchy of Tagged Types

Expr

Node

Entity

Assignment_Statement

Op_Add

Simple_Type

Record_Type

Indentifier

Selected_Component

Composite_Type

Tagged_Type

Entity’Class

abstract classes

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 6 Tri-Ada 94

Primitive Operations
versus

Operations on Classwide Types

procedure Analyze_Node (N : Node_Id) is

begin

Analyze (N);
if Code_Generation
and then N.all not in Expr’Class
then

Expand (N);
end if;

end Analyze_Node;

procedure Analyze (N : access Assignment_Statement) is

Typ : Type_Id;
begin

Analyze_Node (N.Name);
Analyze_Node (N.Expression);
Typ := Find_Matching_Type (N.Name, N.Expression);
Resolve_Expr (N.Name, Typ);
Resolve_Expr (N.Expression, Typ);

end Analyze;

This is a general algorithm, valid for all Nodes

This is the specific algorithm for analyzing Assignments

Dispatching Calls:
the formal has a specific tagged type
the actual has a classwide type

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 5 Tri-Ada 94

type Assignment_Statement is new Node with

record

Name : Expr_Id;
Expression : Expr_Id;

end record;

procedure Analyze (N : access Assignment_Statement);
procedure Expand (N : access Assignment_Statement);

type Simple_Type;
type Type_Id is access Simple_Type’Class;

type Expr is abstract new Node with

record

Etype : Type_Id;
end record;

-- Inherited:

-- procedure Analyze (N : access Expr) is abstract;
-- procedure Expand (N : access Expr) is abstract;

procedure Resolve_Expr (E : Expr_Id; Typ : Type_Id);
procedure Resolve (E : access Expr; Typ : Type_Id)
is abstract;

concrete type extension

Overriding of primitive operations

abstract type extension

class of an incomplete type

inheritance

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 4 Tri-Ada 94

Basic Syntax and Concepts

package Definitions is

type Node is abstract tagged

record

Sloc : Source_Ptr;
end record;

type Node_Id is access Node’Class;

procedure Analyze_Node (N : Node_Id);

procedure Analyze (N : access Node) is abstract;
procedure Expand (N : access Node) is abstract;

abstract tagged type

The corresponding
classwide type

primitive operations

polymorphic pointer

classwide operation

Rec_Variable.Field := Funct (X) + 1;a GNAT tree for

Identifier
Sloc : line 2, col 3
Etype : record_type
Chars : Rec_Variable

Identifier
Sloc : line 2, col 16
Etype : Integer
Chars : Field

Selected_Component
Sloc : line 2, col 15
Etype : record_type

Assignment_Statement
sloc : line 2, col 22

Op_Add
Sloc : line 2, col 35
Etype : integer

Function_Call
Sloc : line 2, col 25
Etype : Integer
Chars : Funct

Universal_Integer
Sloc : line 2, col 37
Etype : Integer
Val : 1

Identifier
Sloc : line 2, col 32
Etype : String

Nodes

Ada 9x Tagged Types and their Implementation in GNAT

GNAT Project 2 Tri-Ada 94

OUTLINE

1. Ada 9x Object-Oriented Concepts Through An Example

- The main GNAT Data-Structures with Tagged Types
- Extending and Dispatching

2. Dealing With Common User Mistakes

- Tagged types outside Package Specs.
- Freezing point Issues

3. Basic Implementation Techniques

- Layout of Tagged Objects
- Structure of the Dispatch Table

4. The Low-Level C++ Interface

- Goals and Limitations
- The Gnat-specific Pragmas supporting the interface

Ada 9x Tagged Types

 and their Implementation

in GNAT

Cyrille Comar & Brett Porter

Gnat Project

