
About This Manual
This manual explains how the Pervasive.SQL relational data access system implements Structured Query Language
(SQL).

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Who Should Read This Manual
This manual is intended for software developers using Pervasive.SQL statements to develop database applications. It
assumes that you understand the basic concepts of SQL and relational database design.

Pervasive Software would appreciate your comments and suggestions about this manual. As a user of our
documentation, you are in a unique position to provide ideas that can have a direct impact on future releases of this
and other manuals. Please complete the User Comments form that appears on our Web site and fill in part number
100-003039-006.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Manual Organization
• Chapter 1—“SQL Overview”

This chapter describes the types of SQL statements you can create using Pervasive.SQL.

• Chapter 2—“Scalable SQL Syntax”

This chapter describes each command that Pervasive.SQL supports and provides the syntax for
constructing valid SQL statements using these commands.

• Appendix A—“Data Types”

This appendix provides detailed information about the data types that Pervasive.SQL supports.

• Appendix B—“Scalable SQL Keywords”

This apppendix lists Pervasive.SQL keywords.

• Appendix C—“System Tables”

This appendix describes the system tables that comprise the Pervasive.SQL data dictionary.

• Appendix D—“SQLSTATE Classes and Values”

This appendix describes the different classes and values for the SQLSTATE session variable.

This manual also contains an index.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Conventions
Unless otherwise noted, command syntax, code, and code examples use the following conventions:

Case Commands and reserved words typically appear in uppercase
letters. Unless the manual states otherwise, you can enter
these
items using uppercase, lowercase, or both. For example, you
can
type MYPROG, myprog, or MYprog.

[] Square brackets enclose optional information, as in
[log_name].
If information is not enclosed in square brackets, it is required.

| A vertical bar indicates a choice of information to enter, as in
[file
name | @file name].

< > Angle brackets enclose multiple choices for a required item, as
in
/D=<5|6|7>.

variable Words appearing in italics are variables that you must replace
with appropriate values, as in file name.

... An ellipsis following information indicates you can repeat the
information more than one time, as in [parameter ...].

::= The symbol ::= means one item is defined in terms of another.
For
example, a::=b means the item a is defined in terms of b.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SQL Overview
Structured Query Language (SQL) is a database language consisting of English-like statements you can use to
perform database operations. Both the American National Standards Institute (ANSI) and IBM have defined
standards for SQL. (The IBM standard is the Systems Application Architecture [SAA].) The Pervasive.SQL product
implements most of the features of both ANSI SQL and IBM SAA SQL and provides additional extensions that neither
standard specifies.

Pervasive.SQL allows you to create different types of SQL statements. The following table lists the types of SQL
statements you can create and the tasks you can accomplish using each type of statement:

SQL Statement Type Tasks

Data Definition Create and delete dictionaries.

Create, modify, and delete tables.

Define column attributes.

Create and delete indexes.

Create and drop triggers.

Data Manipulation Retrieve, insert, update, and delete data in
tables.

Define transactions.

Define and delete views.

Create, delete, and execute stored SQL
procedures.

Data Control Enable and disable security for a dictionary.

Create users and groups.

Grant and revoke table access rights.

Data Administration Specify Pervasive.SQL session values that
define
isolation levels, file open modes, and file owner
names.

The rest of this chapter briefly describes the SQL statements used in each statement category. For detailed
information about each statement, refer to Chapter 2, “Scalable SQL Syntax.”

The following are the statement category overview sections found in this chapter:

• “Data Definition Statements”

• “Data Manipulation Statements”

• “Data Control Statements”

• “Data Administration Statements”

• “Data File Paths”

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Data Definition Statements
Data definition statements let you specify the characteristics of your database. When you execute data definition
statements, Pervasive.SQL stores the description of your database in a data dictionary. You must define your
database in the dictionary before you can store or retrieve information.

Pervasive.SQL allows you to construct data definition statements to do the following:

• Create and delete dictionaries.

• Create, modify, and delete tables.

• Define column attributes.

• Create and delete indexes.

• Create and delete triggers.

The following sections briefly describe the SQL statements associated with each of these tasks. For general
information about defining the characteristics of your database, refer to the Pervasive.SQL Programmer’s Guide.

Creating and Deleting Dictionaries
You can create and delete dictionaries by constructing statements using the following statements:

CREATE
DICTIONARY

Creates a data dictionary.

DROP
DICTIONARY

Deletes a data dictionary and the associated data
files.

Creating, Modifying, and Deleting Tables
You can create, modify, and delete tables from a database by constructing statements using the following statements:

CREATE
TABLE

Defines a table and creates the corresponding data
file.

ALTER
TABLE

Makes a single change to a table definition. With an
ALTER TABLE statement, you can change the path
or file
name of the corresponding data file, add a column to
the
table definition, remove a column from the table
definition, change a column’s data type or length,
and add
or remove a primary key or a foreign key.

DROP
TABLE

Deletes a table from the data dictionary and deletes
the
associated data file from the disk.

Defining Column Attributes
You can define certain column attributes by constructing statements using the following statements:

SET MASK Specifies the display format of a column.

SET RANGE Specifies one or more acceptable ranges of values
for a
column.

SET VALUES Specifies all acceptable values for a column.

SET CHAR Specifies a list of valid input characters for a string
column.

SET DEFAULT Specifies the value to which Pervasive.SQL
defaults if
you do not specify a column value.

SET (global
null
value)

Specifies the value (such as an ASCII character) to
use
as the null value in all columns of a certain data
type.

Creating and Deleting Indexes
You can create and delete indexes from a database by constructing statements using the following statements:

CREATE INDEX Defines a new index (a named index) for an
existing
table.

DROP INDEX Deletes a named index.

Creating and Deleting Triggers
You can create and delete triggers from a database by constructing statements using the following statements:

CREATE TRIGGER Defines a trigger for an existing table.

DROP TRIGGER Deletes a trigger.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Data Manipulation Statements
Data manipulation statements let you access and modify the contents of your database. Pervasive.SQL allows you to
construct data manipulation statements to do the following:

• Retrieve data from tables.

• Modify data in tables.

• Define transactions.

• Create and delete views.

• Create, delete, and execute stored procedures.

The following sections briefly describe the SQL statements associated with each of these tasks. For general
information about accessing and modifying the contents of your database, see the Pervasive.SQL Programmer’s
Guide.

Retrieving Data
All statements you use to retrieve information from a database are based on the SELECT statement.

SELECT Retrieves data from one or more tables in the database.

When you create a SELECT statement, you can use various clauses to specify different options. (See the entry for
the SELECT statement in Chapter 2, “Scalable SQL Syntax” for detailed information about each type of clause.) The
types of clauses you use in a SELECT statement are as follows:

FROM Specifies the tables or views from which to retrieve data.

WHERE Defines search criteria that qualify the data a SELECT
statement retrieves.

GROUP
BY

Combines sets of rows according to the criteria you specify
and
allows you to determine aggregate values for one or more
columns in a group.

HAVING Allows you to limit a view by specifying criteria that the
aggregate values of a group must meet.

ORDER
BY

Determines the order in which Pervasive.SQL returns
selected
rows.

In addition, you can use the UNION keyword to obtain a single result table from multiple SELECT queries.

Modifying Data

You can add, change, or delete data from tables and views by issuing statements such as the following:

INSERT Adds rows to one or more tables or a view.

UPDATE Changes data in a table or a view.

DELETE Deletes rows from a table or a view.

When you create a DELETE or UPDATE statement, you can use a WHERE clause to define search criteria that
restrict the data upon which the statement acts.

Defining Transactions
To update the data in a database, you can issue SQL statements individually or you can define transactions (logical
units of related statements). By defining transactions, you can ensure that either all the statements in a unit of work
are executed successfully or none are executed. You can use transactions to group statements to ensure the logical
integrity of your database.

Pervasive.SQL provides the following statements to allow you to use transactions:

COMMIT WORK Ends a transaction and makes the changes that
occurred
during that transaction permanent.

ROLLBACK
WORK

Ends a transaction and reverses all the changes that
the
previous statements made in the transaction.

START
TRANSACTION

Begins a transaction, except in implicit transaction
processing, in which a transaction begins with the first
statement following a COMMIT WORK or
ROLLBACK WORK statement.

SAVEPOINT Provides markers in a SQL transaction that allow you
to undo a partial set of changes in a transaction and
continue with additional changes before requesting
the
final commit or abort of the entire transaction.
Working
in conjunction with the ROLLBACK TO SAVEPOINT
statement, savepoints provide a way to nest
transactions.

Creating and Deleting Views
You can create and delete views by constructing statements using the following statements:

CREATE VIEW Defines a database view and stores the definition

in the
dictionary.

DROP VIEW Deletes a view from the data dictionary.

Creating, Deleting, and Executing Stored Procedures
A stored procedure consists of statements you can precompile and save in the dictionary. To create, delete, and
execute stored procedures, construct statements using the following:

CREATE
PROCEDURE

Stores a new procedure in the data dictionary.

DROP
PROCEDURE

Deletes a stored procedure from the data dictionary.

CALL Recalls a previously compiled procedure and executes
it.

Pervasive.SQL provides additional SQL control statements, which you can only use in the body of a stored procedure
or trigger. You can use the following statements in stored procedures and triggers:

BEGIN...END
(compound
statement)

Called a compound statement; allows you to group
other statements together.

IF...THEN...ELSE Provides conditional execution based on the truth
value of a condition.

LEAVE Continues execution by leaving a block or loop
statement.

LOOP Repeats the execution of a block of statements.

WHILE Repeats the execution of a block of statements
while
a specified condition is true.

The following statements allow you to retrieve information about the last statement that completed execution and
provide a means to handle exception conditions:

DECLARE
CONDITION

Allows you to declare a warning or exception condition in
a
stored procedure by associating a condition name with a
SQLSTATE value. SQLSTATE is a system variable that

contains the status of the last completed statement.

DECLARE
HANDLER

Allows you to assign a condition handler to a named
condition.

SIGNAL Allows you to signal an exception condition or a
completion
condition other than successful completion.

RESIGNAL Allows you to resignal an exception condition or a
completion condition other than successful completion
when you don’t know what the original condition was.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Data Control Statements
Data control statements let you define security for your database. When you create a dictionary, no security is defined
for it until you explicitly enable security for that dictionary. Pervasive.SQL allows you to construct data control
statements to do the following:

• Enable and disable security.

• Create users and groups.

• Grant and revoke rights.

The following sections briefly describe the SQL statements associated with each of these tasks. For general
information about Pervasive.SQL security, see the Pervasive.SQL Programmer’s Guide.

Enabling and Disabling Security
You can enable or disable security for a database by issuing statements using the following statement:

SET
SECURITY

Enables or disables security for the database and sets the
master password.

Creating and Deleting Users and Groups
You can create or delete users and user groups for the database by constructing statements using the following
statements:

CREATE
GROUP

Creates a new group of users.

DROP
GROUP

Deletes a group of users.

GRANT
LOGIN

Creates users and passwords, or adds users to
groups.

REVOKE
LOGIN

Removes a user from the dictionary.

Granting and Revoking Rights
You can assign or remove rights from users or groups by issuing statements using the following:

GRANT (access
rights)

Grants a specific type of rights to a user or a
group. The rights you can grant with a
GRANT
(access rights) statement are All, Insert,
Delete,
Alter, Select, Update, and References.

GRANT CREATETAB Grants the right to create tables to a user or
a
group.

REVOKE (access
rights)

Revokes access rights from a user or a
group.

REVOKE
CREATETAB

Revokes the right to create tables from a
user or a
group.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Data Administration Statements
Data administration statements let you specify settings for some special Pervasive.SQL session variables. You can
construct data administration statements to specify the following:

• Isolation level.

• File open mode.

• File owner names.

You can set the special Pervasive.SQL session variables by issuing statements using the following:

SET
ISOLATION

Restricts access to tables from other tasks or users.

SET
OPENMODE

Specifies the file open mode for accessing your
database.
The open modes are Normal, Accelerated, Read-Only,
Verify, and Exclusive.

SET OWNER Specifies file owner names so that Pervasive.SQL can
access data in files that have owner names.

Data administration statements do not set any operating system variables; they set variables only for a specific
Pervasive.SQL session. The values you assign with these statements apply only during a single login session. Once
you log out of the dictionary, Pervasive.SQL clears the settings you made and does not store them in the data
dictionary.

For more information, see the discussions of the SET ISOLATION, SET OPENMODE, and SET OWNER statements
in Chapter 2, “Scalable SQL Syntax.”

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Data File Paths
When you create a table in Pervasive.SQL, you can specify a physical file name (DOS formatted) with or without
directory locations. Pervasive.SQL stores the path information you specify at creation in the Xf$Loc column of the
X$File system table.

 Note: When you use named databases, the paths in Xf$Loc must be simple file
names or relative paths. For more information about these system tables, refer to
Appendix C, “System Tables.”

Pervasive.SQL combines the physical file name with the first directory you list in the data file path. You specify the
data file path either when logging in with paths or when setting up a database name with the Setup utility. Refer to the
Pervasive.SQL User’s Guide for more information about this utility.

The resulting path tells Pervasive.SQL where to create the data file associated with the table. Although the current
data file path may contain as many as eight entries for opening existing tables, Pervasive.SQL always uses the first
path when creating a table.

Table 1-1 shows the maximum length you can specify for the data file path, Xf$Loc path, and the resulting full path.

Table 1-1
Maximum Data File Path Lengths

Path Type Maximum Path Length

Data file path (single entry) 64

Xf$Loc path 64

Resulting full path 80

When you use a CREATE TABLE statement to create a table, the physical file name is optional. If you do not specify
a file name in the USING clause, Pervasive.SQL generates a unique name, appends the extension.MKD to it, and
creates the data file in the first directory specified in the data file path.

When applications subsequently attempt to access the table, Pervasive.SQL combines the session’s current data file
path with the Xf$Loc column to obtain the data file’s full path. When multiple data file path entries exist,
Pervasive.SQL attempts to open the file in each successive location until it succeeds or no file is located. If Scalable
SQL cannot find the file, you receive a Status Code 12.

Database Names
A database name is a name you associate with the location of a dictionary and its data files. An application can log in
to a database using either the database name or a path. Database names are stored in the database names
configuration file (DBNAMES.CFG). If you add a primary key, foreign key, or trigger to a table, the database name is
also written to the data file associated with the table. Bound named databases also force the database name to be
written to the data file for every table in the database. (For more information about bound databases, refer to the

Pervasive.SQL Programmer’s Guide.)

You can pass database names as strings when logging in or using the database names functions. Database names
must follow these conventions:

• Begin with a letter.

• Cannot contain blanks.

• Cannot be a reserved keyword.

• Must not exceed 20 characters.

• Database names are not case-sensitive.

• When logging in to a database using a database name, you must precede the name with an @ character.

Path Strings
If you do not use a database name when logging in, you must specify a path to the dictionary, and possibly one or
more paths to the data files. You may also specify a path for a data file inside a SQL statement when creating or
altering a table.

You must specify an operating system path as a string. The string can be up to 64 characters long. If you specify a
dictionary path or a single data file path that is shorter than 64 characters, you must terminate the string with a
binary 0. If you specify multiple data file paths, you must separate each path with a semicolon and terminate the
string with a binary 0.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Scalable SQL Syntax
This chapter discusses the statements that Scalable SQL supports and explains how to construct valid SQL
statements using these statements. The SQL statements are listed alphabetically. Each statement description
provides valid syntax, discusses the statement’s purpose and use, and shows examples of valid SQL statements that
use the statement.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Comments in SQL Statements
Scalable SQL allows you to embed comments in your statements. Comments begin with a delimiter (--) and end with
a carriage return. You can place a comment on any line of your statement as long as the comment follows all the
statement text on that line. The following example illustrates the use of comments; the <CR> symbol shows where
carriage returns terminate the lines:

Figure 2-1
Embedded Comments in SQL Statements

--generate local mailing list<CR>

SELECT Last_Name, First_Name, Street, City, State, Zip<CR>

      FROM Person<CR>

      WHERE Zip >= ’78730’

      AND Zip <= '78797' --
limit the list to the immediate area<CR>

When Scalable SQL compiles the statement, it treats any text between the comment delimiter and the carriage return
as a comment. Scalable SQL does not compile comments.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

ALTER TABLE
ALTER TABLE table_name [IN DICTIONARY]

< USING 'path_name' [WITH REPLACE]

| ADD

    < column_definition

    | PRIMARY KEY primary_key_definition

    | FOREIGN KEY foreign_key_definition

    >

| MODIFY column_definition

| DROP

    < column_name

    | PRIMARY KEY

    | FOREIGN KEY foreign_key_name

    >

>

where

column_definition ::= column_name
data_specification

[CASE]

data_specification ::= data_type [(data_length)]

data_type ::=

< AUTOINC | BFLOAT | BIT | CHAR | CHARACTER

| CURRENCY | DATE | DEC | DECIMAL | FLOAT |
INT

| INTEGER | LOGICAL | LSTRING | LVAR | MONEY
| NOTE | NUMERIC | NUMERICSA | NUMERICSTS
| TIME | TIMESTAMP | UNSIGNED | ZSTRING >

data_length ::= length [, decimal]

primary_key_definition ::= (column_name_list)

column_name_list ::= column_name [, column_name]
...

foreign_key_definition ::=

[foreign_key_name] (column_name_list)

REFERENCES table_name

[ON DELETE < CASCADE | RESTRICT >]

[ON UPDATE RESTRICT]

The ALTER TABLE statement allows you to change a table definition as follows:

• Change the path or file name associated with the table (with a USING clause).

• Add a column, primary key, or foreign key to the table definition (with an ADD clause).

• Change a column’s data type or length (with a MODIFY clause).

• Remove a column, primary key, or foreign key from the table definition (with a DROP clause).

You can specify only one of these operations with each ALTER TABLE statement. Also, if security is enabled, you
must have the Alter right on a table in order to change it with an ALTER TABLE statement.

Scalable SQL does not retain the owner name or the owner name access type when you issue an ALTER TABLE
statement that adds, modifies, or drops a column definition.

Under certain circumstances, an ALTER TABLE statement causes Scalable SQL to discard the page size
specification of the table and calculate the optimal page size. If you specify a data file page size when you create the
table (see “Specifying Data File Options”), issuing an ALTER TABLE statement that adds or drops a column or
modifies a column definition causes Scalable SQL to adjust the page size.

 Note: Scalable SQL commits the changes specified in an ALTER TABLE
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

You cannot alter a table definition during a transaction if you have previously referred to the table during the
transaction. For example, if you start a transaction, insert a row into the Person table, and then try to alter the Person
table definition, the ALTER TABLE statement fails. You must commit or roll back the work from the transaction first,
and then alter the table definition.

IN DICTIONARY
To change only the dictionary definition of a table, include IN DICTIONARY in your ALTER TABLE statement. This
can be useful when you want to put a definition in the dictionary to match an existing data file, or when you want to
use a USING clause to change the data file pathname for a table.

Including IN DICTIONARY causes Scalable SQL to modify only the table’s dictionary definition, not the actual data
file. If you do not include IN DICTIONARY, Scalable SQL attempts to modify the existing data file to match the new
table definition. On a large file, this process may be lengthy.

IN DICTIONARY is effective when you add, modify, or delete columns, but Scalable SQL ignores it when you add or
delete a primary or foreign key.

 Note: You cannot use the IN DICTIONARY clause on tables in a bound named

database. For more information about bound databases, refer to the Database
Design Guide.

USING
Include a USING clause to specify the physical location and name of the data file to associate with the table. A
USING clause also allows you to create a new data file at a particular location using an existing dictionary definition.
(The string supplied in the USING clause is stored in the Xf$Loc column of the dictionary file X$File.)

In the sample database, the Person table is associated with the file PERSON.MKD. If you create a new file named
PERSON2.MKD, the statement in the following example changes the dictionary definition of the Person table so that
the table is associated with the new file.

ALTER TABLE Person IN DICTIONARY USING
'person2.mkd';

If you are altering a table definition that is part of a named database, you must use either a simple file name or a
relative path in the USING clause. If you specify a relative path, Scalable SQL interprets it relative to the data file path
associated with the database name.

WITH REPLACE
Include WITH REPLACE in a USING clause to instruct Scalable SQL to replace an existing file (the file must reside at
the location you specified in the USING clause). If you include WITH REPLACE, Scalable SQL creates a new file,
discarding any data stored in the original file with the same name. If you do not include WITH REPLACE and a file
exists at the specified location, Scalable SQL returns a status code and does not create the new file.

ADD
Include an ADD clause to add a column, primary key, or foreign key to a table definition.

Adding a Column

To add a new column to a table, define the column in an ADD clause using the same format you use when defining
columns with the CREATE TABLE statement (see “Defining Columns”).

The names you specify for column definitions are the column names that Scalable SQL stores in the dictionary.
Column names must be unique within a table, but you can use the same name in more than one table.

You must always specify the column’s data type. However, the internal storage length is mandatory only for the LVAR
and NOTE data types. If you do not specify the length for any other data type, Scalable SQL creates the column with
the default length. For detailed information about each data type, refer to Appendix A, “Data Types.”

To specify data_length for the DECIMAL, NUMERIC, NUMERICSA, and NUMERICSTS data types, use the following
length notation:

length,decimal

In this notation, length is the total internal length in bytes, and decimal is the number of displayable decimal places to
the right of the decimal point. (The number of digits represented by length depends on the data type. Refer to
Appendix A, “Data Types.” for information about the internal storage formats of these data types.) Because the
decimal places are implied, they are also included in the overall length of the column. The value of decimal is
optional, and Scalable SQL uses the default values that are shown in Appendix A, “Data Types.”

For the rest of the data types, you can only specify one value, the total internal length in bytes, as data_length.

The following statement adds the Emergency_Phone column to the Department table:

ALTER TABLE Department ADD Emergency_Phone NUMERIC
(10,0);

a. When you add a column to an existing table, Scalable SQL always places the column at the end of
the column list; the new column becomes the last column of your table. This is especially important
if the table you are altering contains a variablelength column. Because a variablelength column
must be the last column in a table, if you attempt to add a column to a table that contains a
variable-length column,    rScalable SQLeturns Status Code 261. You must drop the variablelength
column before adding new columns to the table.

 Note: When you add a column, Scalable SQL modifies both the table definition
and the data file associated with the table, unless you include IN DICTIONARY.

CASE

When you add a string column with an ADD clause, include the CASE keyword if you want Scalable SQL to ignore
case when evaluating restriction clauses involving the column.

Adding a Primary Key

To add a primary key to a table definition, include PRIMARY KEY in the ADD clause and define the key using the
same format as defining keys with the CREATE TABLE statement (see “Defining the Primary Key”). Before adding
the primary key, you must ensure that the columns in the primary key column list are defined as a unique index that
does not include null values. If such an index does not exist, create one with the CREATE INDEX statement.

The following statement defines a primary key on a table called Faculty. (The ID column is defined as a unique index
that does not include null values.)

ALTER TABLE Faculty ADD PRIMARY KEY (ID);

Because a table can have only one primary key, you cannot add a primary key to a table that already has a primary
key defined. To change the primary key of a table, delete the existing key using a DROP clause in an ALTER TABLE
statement and add the new primary key.

 Note: You must be logged in to the database using a database name before you
can add a primary key or conduct any other referential integrity (RI) operation.

Adding a Foreign Key

To add a foreign key to a table definition, include FOREIGN KEY in the ADD clause and define the key using the
same format as defining foreign keys with the CREATE TABLE statement (see “Defining Foreign Keys”). Before
adding the foreign key, you must ensure that the columns in the foreign key column list are defined as an index that
does not include null values. If such an index does not exist, create one with the CREATE INDEX statement.

The following statement adds a new foreign key to the Class table. (The Faculty column is defined as an index that
does not include null values.)

ALTER TABLE Class ADD FOREIGN KEY Teacher
(Faculty_ID)

 REFERENCES Faculty ON DELETE RESTRICT;

In this example, the restrict rule for deletions prevents someone from removing a faculty member from the database
without first either changing or deleting all of that faculty’s classes.

If you add a foreign key to a table that already contains data, use the SQLScope or RI utility to find any data that does
not conform to the new referential constraint. See the Pervasive.SQL User’s Guide for information about these
utilities.

 Note: You must be logged in to the database using a database name before you
can add a foreign key or conduct any other RI operation. Also, when security is
enabled, you must have the Reference right on the table to which the foreign key
refers before you can add the key.

MODIFY
Include a MODIFY clause to change a column’s data type or length. Use the same format you use when specifying
the data type and length in a CREATE TABLE statement (see “Defining Columns”). If Scalable SQL detects an
incompatibility between the old and new data types (for example, if you try to change a LOGICAL column to a FLOAT
column), it returns Status Code 850 and does not change the database.

 Note: When you modify a column, Scalable SQL modifies both the table
definition and the data file associated with the table unless you include IN
DICTIONARY. (See “IN DICTIONARY” for more information about this
clause.)

When you change a string column definition with a MODIFY clause, include the CASE keyword if you want Scalable
SQL to ignore case when evaluating restriction clauses involving the column.

DROP
Include a DROP clause to delete a column, primary key, or foreign key from a table definition.

Dropping a Column

To drop a column from a table definition, specify the name of the column in a DROP clause. The following statement
drops the emergency phone column from the Person table:

ALTER TABLE Person DROP Emergency_Phone;

 Note: When you drop a column, Scalable SQL modifies both the table definition
and the data file associated with the table unless you include IN DICTIONARY.

(See “IN DICTIONARY” for more information about this clause.)

Dropping a Primary Key

To drop a table’s primary key, include PRIMARY KEY in a DROP clause. You must be logged in to the database using
a database name before you can drop a primary key or conduct any other RI operation.

The following statement drops the primary key from a table called Faculty:

ALTER TABLE Faculty DROP PRIMARY KEY;

Before you can drop a primary key from a parent table, you must drop any corresponding foreign keys from
dependent tables.

Dropping a Foreign Key

To drop a foreign key, include a DROP clause with FOREIGN KEY followed by the foreign key name. Scalable SQL
drops the foreign key from the dependent table and eliminates the referential constraints between the dependent
table and the parent table.

 Note: You must be logged in to the database using a database name before you
can drop a foreign key or conduct any other RI operation.

The following statement drops the foreign key Faculty from the Class table:

ALTER TABLE Class

DROP FOREIGN KEY Teacher;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

BEGIN...END (compound statement)
 [beginning_label :]

BEGIN [[NOT] ATOMIC]

 [local_declaration_list]

 [handler_declaration_list]

 SQL_statement_list

END [ending_label]

where

local_declaration_list ::= { local_declaration ; }
...

local_declaration ::=

< SQL_variable_declaration

| SQL_cursor_declaration

| condition_declaration

>

handler_declaration_list ::= { handler_declaration ;
} ...

SQL_statement_list ::= { SQL_statement ; } ...

SQL_variable_declaration ::= see DECLARE (variable)

SQL_cursor_declaration ::= see DECLARE CURSOR

condition_declaration ::= see DECLARE CONDITION

A compound statement groups other statements together. You can only use a compound statement in the body of a
stored procedure or in a trigger declaration.

If you specify a beginning label for a compound statement, it is called a labeled compound statement.

Rules for Creating Compound Statements
The following rules apply to creating compound statements.

• When a compound statement is the body of a stored procedure and you do not specify an explicit beginning
label, the procedure name of that procedure is the beginning label by default. When a compound statement
is the body of a stored procedure and you do not specify an ending label, the procedure name of that
procedure is the ending label by default. When you use a compound statement in a trigger, you can still
specify the beginning label; however, if you do not, then the beginning label is undefined.

• If you specify an ending label, you must specify an identical explicit or implicit beginning label. When you use
a compound statement in a trigger and specify an ending label, then you must provide an identical beginning
label.

• A specified or implicit (default) beginning label must be different from all other statement labels inside that
compound statement.

• If a compound statement is the body of a stored procedure, no SQL variable name declared in that
procedure can be identical to a parameter name in the parameter list of that procedure.

• No two declarations (variable, cursor, or condition) in a local declaration list can have the same declared
name.

• If you do not specify ATOMIC or NOT ATOMIC, then NOT ATOMIC is the default.

• If you specify ATOMIC, then the SQL statement list must not contain either a COMMIT or a ROLLBACK
statement.

• No regular SELECT statement is allowed in a compound statement.

• The SQL statements of the SQL statement list are executed in the order in which you specify them.

• Although you may nest BEGIN...END statements within other BEGIN...END statements, only the outermost
BEGIN...END statement can contain DECLARE statements.

• If an exception condition occurs during the execution of a SQL statement of the SQL statement list, then the
execution of the SQL statement list terminates. If the compound statement contains a handler declaration
associated with the raised exception condition, the handler activates; otherwise, the compound statement
terminates with the unhandled exception condition.

• If a completion condition other than successful completion occurs during the execution of a SQL statement
and the compound statement contains a handler declaration associated with the raised completion
condition, then the handler activates; otherwise, execution resumes with the next SQL statement of the SQL
statement list.

• If you specify ATOMIC and either a compound statement terminates with an unhandled exception condition,
or an activated handler resignals an exception condition for which no handler is defined (causing the
compound statement to terminate with the unhandled condition), then all changes to SQL data resulting from
execution of the compound statement are cancelled. All savepoints established during the execution of the
compound statement are rolled back.

• For any SQL cursor that is declared in a stored procedure and is in an open state at the time of completion
or termination of the procedure, a CLOSE statement is executed by default.

Example

The following BEGIN...END statement inserts values for the student ID, class ID, and grade into the Enrolls table.

BEGIN

SET studID = '450-52-0400';

SET studclassID = 43;

SET studGrade = 0.0000;

INSERT INTO Enrolls

 VALUES ('450-52-0400', 43, 0.0000);

END

For more examples using the BEGIN...END statement, refer to the CREATE PROCEDURE examples on page 2-37
and the CREATE TRIGGER example on page 2-57.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

CALL
CALL procedure_name (

[< positional_argument_list

    [, keyword_argument_list]

 | keyword_argument_list

 >

])

where

positional_argument_list ::=

argument [, argument] ...

keyword_argument_list ::=

keyword_argument [, keyword_argument] ...

keyword_argument ::= : parameter_name => argument

argument ::= simple_value

simple_value ::=

< literal

| SQL_variable_name

| parameter_name

| column_reference

>

column_reference ::= [column_qualifier.]
column_name

column_qualifier ::= < table_name | view_name |
alias_name >

Use the CALL statement to invoke a stored procedure.

Rules for Using the CALL Statement
The following rules apply to using the CALL statement:

• You must define a value for every parameter in the procedure declaration. You can assign a value to a
parameter using the associated argument in the CALL statement or with the associated default clause in the
CREATE PROCEDURE statement. An argument value for a parameter in a CALL statement overrides any
associated default value.

• You cannot assign a parameter value twice in the argument list. If you use both positional arguments and

keyword arguments, the keyword arguments must not refer to a parameter that receives its value through
the positional arguments. Also, when using keyword arguments, the same parameter name must not occur
twice.

• If you submit a CALL through an XQLCompile and provide a SQL variable as an argument, then you must
declare the variable as a session variable. If you issue a CALL in a procedure and provide a SQL variable as
an argument, then the variable must be either a session variable or a variable that the calling procedure
owns.

• If you provide a parameter name as an argument, you must declare it as a parameter of the same procedure
in which you issue the CALL statement. A CALL submitted through an XQLCompile must not contain a
parameter name.

• If you specify a constant or a column reference as an argument for a parameter that has been declared with
parameter mode OUT or INOUT, you receive Status Code 904 as a result of the call.

• If you specify a constant or a column reference as an argument for a parameter that has been declared with
parameter mode IN or with no parameter mode, you receive an error status if the parameter is needed as a
target (for example, in a SET statement) during the execution of the procedure. The effects of any
statements executed in the procedure up to this point are rolled back only if you declare the compound
statement of the procedure to be ATOMIC or if a declared condition handler handles the roll back.

 Note: You should declare the parameter mode for each parameter in order to
avoid this kind of error.

• An argument passed into a parameter has to be a compatible data type. Refer to Table 2-5 for a list of data
type conversions.

Examples

The following example calls a procedure without parameters:

CALL NoParms()

The following examples call a procedure with parameters:

CALL Parms(vParm1, vParm2);

CALL CheckMax (N.Class_ID);

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

CLOSE (cursor)
CLOSE cursor_name

A CLOSE CURSOR statement closes a SQL cursor.

The cursor that the cursor name specifies must be open.

Example

The following example closes the cursor BTUCursor.

CLOSE BTUCursor;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

COMMIT WORK
COMMIT [WORK][AND [NO] CHAIN]

The COMMIT WORK statement signals the end of a logical transaction. When you issue this statement, the keyword
WORK is optional. You can issue a COMMIT WORK statement only after issuing a START TRANSACTION
statement.

Issuing a COMMIT WORK statement commits to the tables all the operations you have performed since the
preceding START TRANSACTION statement; you can no longer use a ROLLBACK WORK statement to undo the
operations performed within that transaction. All changes made during the committed transaction become visible to
other clients.

 Note: If you start a transaction and then log out of the dictionary before issuing
a COMMIT WORK or ROLLBACK WORK statement, Scalable SQL
automatically issues a ROLLBACK WORK statement before completing the
logout.

Rules for Using the COMMIT WORK Statement
The following rules apply to using the COMMIT WORK statement:

• The keyword WORK is optional.

• AND NO CHAIN is the default clause in a COMMIT WORK statement.

• A SQL transaction must be currently active before you can issue this statement.

• All savepoints that the current SQL transaction defines are destroyed.

• All cursors opened during the current transaction are closed, and the current SQL transaction is terminated.

• The current SQL transaction is terminated after you issue the COMMIT WORK statement. If you specify
AND CHAIN, a new transaction begins.

Example

The following statement begins a transaction which updates the Amount_Owed column in the Billing table. This work
is committed; the AND CHAIN clause begins another transaction that updates the Amount_Paid column and sets it to
zero. The final COMMIT WORK statement ends the second transaction.

START TRANSACTION;

UPDATE Billing B

SET Amount_Owed = Amount_Owed - Amount_Paid

WHERE Student_ID IN

 (SELECT DISTINCT E.Student_ID

 FROM Enrolls E, Billing B

 WHERE E.Student_ID = B.Student_ID);

COMMIT WORK AND CHAIN;

UPDATE Billing B

SET Amount_Paid = 0

WHERE Student_ID IN

 (SELECT DISTINCT E.Student_ID

 FROM Enrolls E, Billing B

 WHERE E.Student_ID = B.Student_ID);

COMMIT WORK;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

CREATE DICTIONARY
CREATE DICTIONARY USING 'path_name' [WITH
REPLACE]

The CREATE DICTIONARY statement allows you to create a dictionary or replace an existing one. When you create
a dictionary, you must specify a valid directory path for the dictionary in a USING clause. In the directory you specify,
Scalable SQL creates three files in which to store the dictionary information: FILE.DDF, FIELD.DDF, and INDEX.DDF.

Scalable SQL creates more dictionary files when you enable security and define column attributes, views, stored
procedures, triggers, or referential integrity constraints. For more information about the dictionary files and their
related system tables, refer to Appendix C, “System Tables.” For more information about creating bound databases,
refer to the Database Design Guide.

If you specify WITH REPLACE, Scalable SQL creates the dictionary even if one already exists in the specified
directory, which destroys the existing dictionary. If you do not include WITH REPLACE, Scalable SQL does not create
a new dictionary if one already exists.

You must be logged in to an existing dictionary before you can create a new dictionary. Also, you cannot create a new
dictionary in the directory that contains the dictionary to which you are logged in. The Demodata directory, which is
created by the Pervasive Database installation program, contains an initial set of dictionary files to which you can log
in to create your own dictionaries.

To access a new dictionary after creating it, you must log into the dictionary.

To assign referential constraints, your database must be a named database. Use the Scalable SQL Setup utility to
name the database. For information about the Scalable SQL Setup utility, see the Pervasive.SQL User’s Guide.

Example

The following statement replaces a dictionary in the C:\DEMODATA directory.

CREATE DICTIONARY USING 'c:\demodata' WITH REPLACE

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

CREATE GROUP
CREATE GROUP group_name [, group_name] ...

The CREATE GROUP statement allows you to create one or more security groups. Use a group_name list to specify
the names of the groups to add. Each name must be unique in the dictionary for which you are creating the groups.

Security must be enabled in order to create a group.

After you create a group, use a GRANT (access rights) statement to define the rights for the members of the group.

 Note: Scalable SQL commits the changes specified in a CREATE GROUP
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

Example

The following statement creates a group named Top_Students:

CREATE GROUP Top_Students;

The next statement uses a list to create several groups at once:

CREATE GROUP Admin, Instructors, Registrars;

If an error occurs and Scalable SQL is unable to create a group, it does not create any group in the list. For example,
if Scalable SQL is unable to create the Instructors group, then it does not create the Admin or Registrars group.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

CREATE INDEX
CREATE [UNIQUE] INDEX index_name ON table_name
index_definition

where

index_definition ::=

(segment_definition [, segment_definition] ...
)

segment_definition ::= column_name [attribute] ...

['alternate_sequence']

attribute ::= < NULL | CASE | MOD | DESC | ASC >

The CREATE INDEX statement creates a named index for a table. The name cannot exceed 20 characters and must
differ from all other index and column names in the dictionary. Also, the table name you specify must be of a table that
already exists in the dictionary.

If the index name contains a blank, you must use double quotes (") around the name when you pass the name to
Scalable SQL to allow Scalable SQL to distinguish between the blanks in index names and the blanks between
elements in restriction clauses. For more information about naming indexes, refer to the Database Design Guide.

When you no longer need a named index, use a DROP INDEX statement to delete it. In contrast, you cannot drop
unnamed indexes (those you created using a WITH INDEX clause in a CREATE TABLE statement).

When you create an index, Scalable SQL indexes every row in the table. The length of time Scalable SQL requires to
execute a CREATE INDEX statement depends on the number of rows in the table.

 Note: Scalable SQL commits the changes specified in a CREATE INDEX
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

Index Columns and Attributes
In a CREATE INDEX statement, you specify a single column or multiple columns (in the case of a segmented index)
that compose the index and define the index attributes for each column. You cannot use a column of data type BIT,
NOTE, or LVAR in an index. For more information on segmented indexes, refer to “AUTOINC” on page A-6.

 Note: If you create a Scalable SQL 4.0 table using an unsigned binary data type,
this data type must be converted to integer before you can use the table with
Scalable SQL 3.01, because Scalable SQL 3.0.1 does not support the unsigned
binary type.

Unless you specify otherwise, an index is collated in ascending order, includes null values, and can contain the same

value in multiple rows. In addition, it is case-sensitive and non-modifiable. To change the defaults, you can use the
following keywords in your CREATE INDEX statement:

Attribute
Keyword

Description

DESC Collate in descending order.

NULL Do not index null values. Applying this attribute to one
segment of a segmented index is equivalent to applying
this
attribute to all segments of the given index.

CASE Index is not case-sensitive.

MOD Data is modifiable.

ASC Collate in ascending order (this is the default behavior).

UNIQUE Multiple rows cannot have the same index column value.
Applying this attribute to one segment of a segmented
index
is equivalent to applying this attribute to all segments of
the
given index.

Because you can create only one index at a time with a CREATE INDEX statement, you do not need to use the SEG
keyword to specify a segmented index. If you specify more than one column, Scalable SQL creates a segmented
index using the columns in the order in which you specify them.

You can specify a column as a segment in more than one index. For example, you can specify a person’s last name
and first name as one segmented index, and a person’s last name and ID as another segmented index.

To specify that the index not allow duplicate values, include the UNIQUE keyword. If the column or columns that
make up the index contains duplicate values when you execute the CREATE INDEX statement with the UNIQUE
keyword, Scalable SQL returns Status Code 5 and does not create the index.

 Note: You should not include the UNIQUE keyword in the list of index
attributes following the column name you specify; the preferred syntax is
CREATE UNIQUE INDEX.

Alternate Collating Sequence
You can specify an alternate collating sequence (ACS) for columns that are string data types. Specify the ACS as a
DOS-formatted path to an ASCII file that contains a valid alternate collating sequence. However, it is recommended
that you do not specify an explicit path for the ACS file in the CREATE statement. The Server assumes that the ACS
file is in the same directory as the database currently in use. If you must specify a path explicitly, ensure the path is

relative to the Server and not to the Client. For example, if you want to create an index using an ACS file that is on
the Client’s path "M:\newdata" and M: is mapped to the server’s local C: drive, then the CREATE statement should
include the path to "c:\newdata" (a path the server understands) as the path to the ASC file. Otherwise, the Scalable
SQL engine may return a Status Code 557.

Additionally, you cannot specify an ACS for a column that is case-insensitive, because case-insensitivity itself
designates a special collating sequence.

Alternate Collating Sequence File

The 265 bytes of an alternate collating sequence file contain the definition of a collating sequence other than the
standard ASCII sequence. You can create a file for the alternate collating sequence for an index in either a CREATE
INDEX statement or a CREATE TABLE statement. Following are the directories that are searched for this ACS file:

1. The dictionary location.

2. The data file location.

3. The current directory.

To create an alternate collating sequence file, generate a file in the format specified in Table 2-1.

Table 2-1
Alternate Collating Sequence File Format

Offset Length Description

 0     1 Signature byte. This byte should contain AC hex.

1     8 An 8byte name that uniquely identifies the
alternate -
collating sequence to the .MicroKernel Database

 9 256 A 256byte map. Each 1byte position in the map -
corresponds to the code point that has the same
value
as the position’s offset in the map. The value of the
byte at that position is the collating weight
assigned to
the code point.

For example, to insert a character with 5Dh between the letters U (55h) and V (56h) in the following sequence, byte
5Dh in the sequence contains the value 56h, and bytes 56h through 5Ch in the sequence contain the values 57h
through 5Dh:

Figure 2-2
Sample Alternate Collating Sequence

Following is a 9byte header and a 256byte body that represent a collating sequence named UPPER. The header
appears as follows:

AC 55 50 50 45 52 20 20 20

The 256byte body appears as follows (with the exception of the offset values in the leftmost column):

00: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20: 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30: 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40: 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50: 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60: 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

70: 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F

80: 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90: 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0: A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0: B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0: C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0: D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0: E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

The header and body forming this ACS are shipped with Pervasive.SQL as the file UPPER.ALT. UPPER.ALT provides
a way to sort keys without regard to case. You can use the UPPER ACS as an example when writing your own ACS.

Offset 61h through 7Ah in the example have been altered from the standard ASCII collating sequence. In the
standard ASCII collating sequence, offset 61h contains a value of 61h (representing lowercase a). When a key is
sorted with the UPPER ACS, the MicroKernel sorts lowercase a (61h) with the collation weight at offset 61h: 41h. The
lowercase a is sorted as if it were uppercase A (41h). Therefore, for sorting purposes, UPPER converts all lowercase
letters to their uppercase equivalents when sorting a key.

Each 1byte position in the map corresponds to the code point that has the same value as the position’s offset in the
map. The value of the byte at that position is the collating weight assigned to the code point. For example, to force
code point 61h (a) to sort with the same weight as code point 41h (A), place the same values at offsets 61h and 41h.

The following 256-byte body basically performs the same function as UPPER.ALT’s body, except that ASCII

characters preceding the ASCII space (20h) are sorted after all other ASCII characters:

00: E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

10: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

20: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

30: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

40: 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

50: 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

60: 40 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

70: 30 31 32 33 34 35 36 37 38 39 3A 5B 5C 5D 5E 5F

80: 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

90: 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

A0: 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

B0: 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

C0: A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

D0: B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

E0: C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

F0: D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

In this body, different collating weights have been assigned so that a character’s weight no longer equals its ASCII
value. For example, offset 20h, representing the ASCII space character, has a collating weight of 00h; offset 41h,
representing the ASCII uppercase A, has a collating weight of 21h.

To sort keys without regard to case, offset 61h through 7Ah in this example have been altered. As in the body for
UPPER.ALT, offset 61h has the same collating weight as offset 41h: 21h. By having the same collating weight, offset
41h (uppercase A) sorts the same as offset 61h (lowercase a).

Using an Alternate Collating Sequence for a Segmented Index

On a segmented index, you can specify an alternate collating sequence for the segments that are string data types.
In such an index, you can use the alternate sequence for some string segments and the standard sequence for
others.

Scalable SQL uses the standard collating sequence for all segments of nonstring data types. Scalable SQL supports
only one alternate collating sequence for an index. Therefore, when you specify an alternate collating sequence for
more than one segment, you must use the same sequence for each.

Examples

The following statement creates a modifiable, case-insensitive index for the Person table, based on the Perm_Zip
column:

CREATE INDEX Zipcode

ON Person (Perm_Zip MOD CASE);

The following statement adds a segmented index (consisting of the City and State columns) to the Person table.
(Such an index improves performance if you frequently look up students by city and state.)

CREATE INDEX Citystate

ON Person (City CASE MOD, State CASE MOD);

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

CREATE PROCEDURE
CREATE PROCEDURE procedure_name parameter_list ;
procedure_body

where

parameter_list ::= ([parameter_declaration

[, parameter_declaration] ...])

parameter_declaration ::=

[parameter_mode] parameter_name

data_specification [default_clause]

parameter_mode ::= < IN | OUT | INOUT >

data_specification ::= data_type [(data_length)]

data_type ::= < AUTOINC | BFLOAT | BIT | CHAR |
CHARACTER

| CURRENCY | DATE | DEC | DECIMAL | FLOAT |
INT

| INTEGER | LOGICAL | LSTRING | LVAR | MONEY
| NOTE | NUMERIC

| NUMERICSA | NUMERICSTS | TIME | TIMESTAMP
| UNSIGNED | ZSTRING >

data_length ::= length [, decimal]

default_clause ::= < = | DEFAULT > literal

procedure_body ::= < SQL_procedure_statement |
EXTERNAL >

SQL_procedure_statement ::=

< single_SQL_statement | compound_statement >

compound_statement ::= see “BEGIN...END (compound
statement)”

The CREATE PROCEDURE statement allows you to create a new stored procedure. This statement does not
implicitly drop an existing stored procedure of the same name; instead, Scalable SQL returns Status Code 366 to
inform you that the procedure name already exists. (Scalable SQL also returns Status Code 366 if you attempt to
create a stored statement in place of an existing stored procedure or create a stored procedure in place of an existing
stored statement. Note that stored statements are a v3.0 construct and may not be supported in future versions of
Scalable SQL.)

To execute stored procedures, use the CALL statement.

 Note: Scalable SQL creates the procedure upon successful execution of the
CREATE PROCEDURE statement. Even if you include the statement in a
transaction, you cannot roll back the creation of the procedure.

There are some Scalable SQL statements that you can only use in the body of a stored procedure or trigger; these
are SQL control statements:

• Compound statements (BEGIN...END)

• If statements (IF...THEN...ELSE)

• Loop statements (LOOP and WHILE)

• Leave statements (LEAVE)

For more information, refer to the syntax descriptions of each SQL control statement.

You can create external stored procedures using Inscribe, Pervasive Software’s scripting language. The EXTERNAL
keyword in the CREATE PROCEDURE statement is used to define external Inscribe procedures. For more
information about using Inscribe to write external stored procedures, refer to the Inscribe User’s Guide.

Rules for Creating Stored Procedures
The following rules apply to creating stored procedures:

• Do not include the following types of statements within a stored procedure:

CREATE DICTIONARY DROP DICTIONARY

CREATE PROCEDURE DROP PROCEDURE

CREATE TRIGGER DROP TRIGGER

CREATE VIEW DROP VIEW

• SELECT statements are allowed in stored statements but not in stored procedures. See “Use of SELECT
Statements in Stored Procedures” .

• Parentheses are required in the parameter list. Parameter names do not require a prefix.

• You cannot reference a cursor, variable, or condition name without declaring it first.

• You cannot use duplicate names for cursors, variables, and conditions. (For example, a variable cannot
have the same name as a condition.)

• If a procedure is EXTERNAL, then the default parameter mode of a parameter is IN.

• If a procedure is INTERNAL, then the default parameter mode is undefined. If you specify a constant or a
column reference as an argument for a parameter that has been declared with no parameter mode, you

receive an error status if the parameter is needed as a target during the execution of the procedure.

 Note: To avoid this error, declare the parameter mode for each parameter.

• You cannot use clauses that specify referential constraints within a stored procedure.

When you create a stored procedure, Scalable SQL performs a cursory semantic check only. Compiling a CREATE
PROCEDURE statement does not assume that necessary tables have been created or that necessary variables or
cursors have been declared. If you execute a stored procedure and have not declared or created the necessary
objects, you will receive an error. Test your procedures thoroughly before using them in a production environment.

Using Data Definition and Data Modification Statements with Stored
Procedures

You can use data definition (DDL) and data modification (DML) statements within a stored procedure with the
following restrictions:

• You cannot execute a DDL statement in a loop. If a procedure executes a DDL statement, then the
procedure must be recalled via a CALL statement before executing it again.

• You cannot execute a DML statement prior to a DDL statement if both statements refer to the same table.

• If a SQL DDL statement refers to a table to which a DECLARE CURSOR statement also refers, you must
execute the DDL statement prior to opening the cursor for the first time.

Several layers of looping may exist within the outermost loop; however, every statement that executes after the outer
loop begins and before it ends is within the same loop, including any stored procedures being called from within the
loop.

For more information about data definition and data modification statements, refer to “Data Definition Statements” in
Chapter 1, “SQL Overview.”

Use of SELECT Statements in Stored Procedures

SELECT statements are allowed in stored procedures, but only if the SELECT statement is the only statement in the
body of the procedure.

SELECT statements are allowed in stored statements but not in stored procedures because the ANSI standard does
not allow stand-alone SELECT statements.

Valid Syntax for Stored Procedure with SELECT

CREATE PROCEDURE <procedure name> <parameter list> ;

                    <SELECT statement>

where <procedure name> and <parameter list> are as defined for current stored procedures.

 Note: if you run this statement through an interactive SQL utility that requires

statement separators (such as SQLScope), then change the statement separator in
the utility to a character other than the semicolon.    (In SQLScope, the only other
option is the pound sign [#])

Notice that the BEGIN and END as allowed in the procedure body of current stored procedures are not allowed for
this special case stored procedure. The BEGIN and END are not needed and not allowing them reinforces the
restriction that a SELECT statement may appear in a stored procedure only if it is the only statement in the body of
the stored procedure.

 Note: If a SELECT statement appears in the body of a CREATE PROCEDURE
statement other than according to the above syntax, then XQLCompile of the
statement will return status 902.

Example of Incorrect Usage of SELECT in Stored Statements

A stored procedure consisting of a SELECT statement is not allowed to be called from within another stored
procedure. A stored procedure that calls a stored procedure that consists of a SELECT statement will return status
902 during at run time, as shown in the following example:

              XQLCompile ("CREATE PROCEDURE proc1 ();

  SELECT * FROM X$File");

              XQLCompile ("CREATE PROCEDURE proc2 ();

  BEGIN

  INSERT INTO t VALUES (1);

  CALL proc1 ();

  END");

              XQLCompile ("CALL proc2 ()");

The third XQLCompile() will execute the INSERT statement in stored procedure proc2 and attempt to execute the
CALL to proc1 with will cause an error and a status 902 to be returned.

The status 902 is returned at run time as opposed to the time the procedure is created (the second XQLCompile() in
the above example) because at creation time, a stored procedure can contain a call to a stored procedure that does
not yet exist or to a stored procedure that will be dropped and recreated (and redefined) between the time a stored
procedure is created and then executed.

SELECT Statement Behavior

The behavior of a stored procedure consisting of a SELECT statement is identical to that of the SELECT statement
alone.

Continuing from the previous example:

• Use XQLCompile() to call the stored procedure,    XQLCompile ("CALL proc1 ()"); returns status 0 just as
XQLCompile() of SELECT statement.

• Use xDescribe() or XQLDescribe() to retrieve view information.

• Use xFetch() and XQLFetch() to fetch records.

• Use xInsert(), xRemove(), xUpdate(); just as you would if SELECT statement had been used with
XQLCompile().

Table 2-2
Status Codes Returned when using SELECT Statements in Stored Procedures

Type of
Statement

XQL Compile of
"EXEC
proc" or
"CALL proc
()"

XQLExec Second XQLExec

stored statement with
SELECT

-115 0

(executes until
SELECT
encountered)

-116 (continues
execution with
statement
following the SELECT)

stored procedure
without
SELECT

-125 -125

(reexecutes the
procedure)

-125

(reexecutes the
procedure)

stored procedure with
SELECT

0 0 0

Parameters of Stored Procedures
In a stored procedure, you can define parameters that allow you to pass values to the procedure when you execute it.
When you create a stored procedure that uses parameters, you must declare each parameter. If you call a procedure
and use keyword arguments, the parameter names must be those used when the procedure was created.

If you do not specify the data type for the parameters, Scalable SQL returns an error. However, if you do not specify a
size, Scalable SQL uses the default size for the data type. For more information about default lengths for data types,
refer to Appendix A, “Data Types.”

Stored procedures have four possible parameter modes. These modes determine when Scalable SQL checks the
validity of the parameter. The available parameter modes are as follows:

• IN

• OUT

• INOUT

• None of the above (default)

If you do not specify a parameter mode, only the execution path of the procedure determines whether or not it is a
valid parameter.

If you do not specify a default value for an IN parameter in a CREATE PROCEDURE statement, you must supply an
argument for this parameter when calling the procedure; otherwise, Scalable SQL returns Status Code 808. Values
supplied at execution time always take precedence over default values.

If you specify a parameter mode of OUT or INOUT, then the parameter must be a variable, whether you actually
assign a value to it or not; you cannot specify a constant.

Examples for CREATE PROCEDURE

The following example creates stored procedure EnrollStudent, which inserts a record into the Enrolls table, given the
Student ID and the Class ID. If you execute the following statement in SQLScope, change the statement separator
under environment settings.

CREATE PROCEDURE EnrollStudent (Stud_id INT(4),
Class_Id INT(4));

INSERT INTO Enrolls VALUES (Stud_id, Class_Id, 0.0);

The following example procedure is called by the trigger CheckCourseLimit (see page 2-57 for an example of this
trigger). The procedure reads the Class table, using the classId parameter passed in by the caller and validates that
the course enrollment is not already at its limit before updating the Enrolls table.

CREATE PROCEDURE CheckMax (classId INT(4));

BEGIN

DECLARE NumEnrolled INT(4);

DECLARE MaxEnrollment INT(4);

DECLARE failEnrollment CONDITION FOR SQLSTATE
'09000';

-- Get number currently enrolled for this class.

SET NumEnrolled = (SELECT COUNT (*)

 FROM enrolls

 WHERE Class_ID = classId);

-- Get maximum allowed for this class.

SET MaxEnrollment = (SELECT Max_Size

 FROM class

 WHERE ID = classId);

-- Test that current enrollment is less than the
maximum allowed.

IF (NumEnrolled >= MaxEnrollment) THEN

 SIGNAL failEnrollment;

END IF;

END

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

CREATE TABLE
CREATE TABLE table_name [option] ...

([PRIMARY KEY primary_key_definition,]

[FOREIGN KEY foreign_key_definition,] ...

column_definition_list

)

[WITH INDEX (index_definition)]

where

option ::=

< USING 'path_name' [WITH REPLACE]

| DCOMPRESS

| PAGESIZE page_size

| PREALLOCATE number_of_pages

| THRESHOLD < 0|1|2|3 >]

| OWNER 'owner_name'

| OWNERACCESS < 0|1|2|3 >

>

primary_key_definition ::= (column_name_list)

column_name_list ::= column_name [, column_name]
...

foreign_key_definition ::=

[foreign_key_name] (column_name_list)

REFERENCES table_name

[ON DELETE < CASCADE | RESTRICT >]

[ON UPDATE RESTRICT]

column_definition_list ::=

column_definition [, column_definition] ...

column_definition ::= column_name
data_specification [CASE]

data_specification ::= data_type [(data_length)]

data_type ::=< AUTOINC | BFLOAT | BIT | CHAR |
CHARACTER

| CURRENCY | DATE | DEC | DECIMAL | FLOAT |
INT

| INTEGER | LOGICAL | LVAR | LSTRING | MONEY
| NOTE | NUMERIC

| NUMERICSA | NUMERICSTS | TIME | TIMESTAMP
| UNSIGNED | ZSTRING >

data_length ::= length [, decimal]

index_definition ::=

(segment_definition [, segment_definition] ...
)

segment_definition ::= column_name [attribute] ...

['alternate_sequence']

attribute ::= < NULL | CASE | MOD | DESC | ASC |
SEG | UNIQUE >

The CREATE TABLE statement allows you to define a table and create the corresponding data file. The table name
must be unique within the dictionary. If security is enabled, you must have the Create Table right for the dictionary.

 Note: Scalable SQL commits the changes specified in a CREATE TABLE
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

Defining the Data File Location
Include a USING clause to specify the physical location of the data file associated with the table. This is necessary
when you are creating a table definition for an existing data file, or when you want to specify explicitly the name or
physical location of a new data file.

If you do not include a USING clause, Scalable SQL generates a unique file name (with the extension .MKD) and
creates the data file in the first directory specified in the data path directory list. (This is the path that the application
you are using specifies, or, if the database is named, the first data file path associated with the database name.)

If you include in the USING clause the name of an existing data file, the MicroKernel returns Status Code 59,
indicating that the specified file already exists.    Scalable SQL creates the data table anyway; the Status Code 59 is
simply a warning that the file exists, and Scalable SQL assumes that you specified the appropriate table.

If you are creating a table in a named database, you must use either a simple file name or a relative path in the
USING clause. If you specify a relative path, Scalable SQL interprets it relative to the first data file path associated
with the database name.

Specifying Data File Options
The options in a CREATE TABLE statement allow you to define physical parameters, an owner name, and owner

access options for the data file.

Using Physical Parameters

The following keywords allow you to specify physical data file parameters in a CREATE TABLE statement:

• DCOMPRESS – Creates the file with the data compression flag set. The default is no compression.

• PAGESIZE – Specifies the data file page size. The pageSize parameter must be a valid page size. Valid
page sizes are increments of 512 bytes (e.g., 512, 1024, 1536, etc.). If you do not include the PAGESIZE
keyword, Scalable SQL uses a default page size of 4096 bytes.

• PREALLOCATE – Sets the preallocation flag to ON and the allocation word to numberOfPages, where
number_of_pages is the number of preallocated pages. The default setting is no preallocation. The valid
range for numberOfPages is 1 through 65,535.

• THRESHOLD – Sets the corresponding data file free space flag to the setting you specify (where
0 = 5%, 1 = 10%, 2 = 20%, and 3 = 30%). Include the THRESHOLD keyword only if the file contains a
variablelength data type. The default setting is 0.

For more information about checking these parameter settings, refer to the Pervasive.SQL User’s Guide.

Specifying the Owner Name

To assign a file owner name to a table’s data file, include the OWNER keyword followed by the appropriate owner
name. A file owner name works like a password at the MicroKernel level. A user must provide it (using the SET
OWNER statement) before the MicroKernel allows access to the data file. You can use file owner names to protect
files from unauthorized access by Btrieve applications or other Scalable SQL applications.

Specifying the Owner Access Restriction

Include the OWNERACCESS keyword followed by the appropriate owner flag value to specify the access restriction
placed on the data file. The access restriction applies only if you also assign a file owner name for the file. Table 2-3
shows the meanings of the different flag values.

Table 2-3
File Owner Flag Values

Flag
Value

Access Restriction

0 Requires the owner name for any type of access to the file;
does not
enable data encryption.

1 Permits readonly access without the owner name; does not
enable data -
encryption.

2 Requires the owner name for any type of access to the file;
enables data
encryption.

3 Permits readonly access without the owner name; enables data
-
encryption.

WITH REPLACE
If you include WITH REPLACE in your CREATE TABLE statement, Scalable SQL creates a new data file to replace
the existing file (if the file exists at the location you specified in the USING clause). Scalable SQL discards any data
stored in the original file with the same name. If you do not include WITH REPLACE and a file exists at the specified
location, Scalable SQL returns Status Code 257 and does not create a new file.

 Note: WITH REPLACE affects only the data file; it does not affect the table
definition in the dictionary.

Defining Columns
Separate each column definition with a comma. The names you specify for column definitions are the column names
that Scalable SQL stores in the dictionary. Column names must be unique within a table, but you can use the same
name in more than one table.

For each column name, specify the column’s data type and internal storage length in bytes. If you do not specify the
length, Scalable SQL creates the column with the default length. For detailed information about each data type, refer
to Appendix A, “Data Types.”

To specify dataLength for the DECIMAL, NUMERIC, NUMERICSA, and NUMERICSTS data types, use the following
length notation:

length,decimal

In this notation, length is the total internal length in bytes, and decimal is the number of displayable decimal places to
the right of the decimal point. (The number of digits represented by length depends on the data type. Refer to
Appendix A, “Data Types.” for information about the internal storage formats of these data types.) Because the
decimal places are implied, they are also included in the overall length of the column. You are required to supply a
data length for LVAR (maximum length is 32,761 bytes) and NOTE data types. All other data types do not require a
data length value.

The column in the following example allows a maximum value of 9.99, using 3 internal bytes:

grade_point_average NUMERIC (3,2)

Because decimal values are stored with two digits per byte (with a half-byte reserved for the sign), the column in the
following example allows a maximum value of 999.99, but uses only 3 internal bytes.

interest_rate DECIMAL (3,2)

The MONEY data type is equivalent to a DECIMAL type with a predefined decimal specification of 2. The following
two definitions have the same internal representation:

Current_Balance DECIMAL(6,2)

Current_Balance MONEY(6)

The default display mask for the MONEY type includes a dollar sign.

Use the CASE keyword when defining a CHARACTER or STRING column if you want Scalable SQL to ignore case
when evaluating restriction clauses involving the column.

 Note: Use double quotes (") to specify a reserved word as a column name.

Defining the Primary Key
To define referential constraints on your database, you must include a PRIMARY KEY clause to specify the primary
key on the parent table. The primary key can consist of one column or multiple columns. The columns you specify
must also appear in the columnDefinitions list of the CREATE TABLE statement.

You must define the columns that make up a primary key as a unique index that does not include null values. When
you specify a primary key, Scalable SQL creates an index with the specified attributes on the defined group of
columns, even if you do not include a WITH INDEX clause.

For more information about primary keys, see the Database Design Guide.

 Note: You must be logged in to the database using a database name before you
can define a primary key or perform any other RI operation.

Defining Foreign Keys
To define a foreign key on a dependent table, include a FOREIGN KEY clause in your CREATE TABLE statement. In
addition to specifying a list of columns for the key, you can define a name for the key.

 Note: The foreign key name must be unique in the dictionary. If you omit the
foreign key name, Scalable SQL uses the name of the first column in the key as
the foreign key name. This can cause a duplicate foreign key name error if your
dictionary already contains a foreign key with that name.

When you specify a foreign key, Scalable SQL creates an index on the columns that make up the key, even if you do
not include a WITH INDEX clause. This index has the same attributes as the index on the corresponding primary key
except that it allows duplicate values. To assign other attributes to the index, create it explicitly using a CREATE
INDEX statement or a WITH INDEX clause. Then, define the foreign key with an ALTER TABLE statement. When you
create the index, ensure that it does not allow null values and that its case and collating sequence attributes match
those of the index on the corresponding primary key column.

The columns in a foreign key must be the same data types and lengths and in the same order as the referenced
columns in the primary key. The only exception is that you can use an integer column in the foreign key to refer to an
AUTOINC column in the primary key. In this case, the two columns must be the same length.

You must be logged in to the database using a database name before you can define a foreign key or perform any
other RI operation.

Scalable SQL checks for anomalies in the foreign keys before it creates the table. If it finds conditions that violate
previously defined RI constraints, it generates a status code and does not create the table. For more information
about RI anomalies, refer to the Database Design Guide.

When you define a foreign key, you must include a REFERENCES clause indicating the name of the table that
contains the corresponding primary key. The primary key in the parent table must already be defined. In addition, if
security is enabled on the database, you must have the Reference right on the table that contains the primary key.

You cannot create a self-referencing foreign key with the CREATE TABLE statement. Use an ALTER TABLE
statement to create a foreign key that references the primary key in the same table.

Also, you cannot create a primary key and a foreign key on the same set of columns in a single statement. Therefore,
if the primary key of the table you are creating is also a foreign key on another table, you must use an ALTER TABLE
statement to create the foreign key.

Delete Rule

You can include an ON DELETE clause to define the delete rule Scalable SQL enforces if a user attempts to delete
the parent row to which a foreign key value refers. The delete rules you can choose are as follows:

• If you specify CASCADE, Scalable SQL uses the delete cascade rule. When a user deletes a row in the
parent table, Scalable SQL deletes the corresponding row in the dependent table.

• If you specify RESTRICT, Scalable SQL enforces the delete restrict rule. A user cannot delete a row in the
parent table if a foreign key value refers to it.

If you do not specify a delete rule, Scalable SQL applies the restrict rule by default.

Update Rule

Scalable SQL enforces the update restrict rule. This rule prevents the addition of a row containing a foreign key value
if the parent table does not contain the corresponding primary key value. Scalable SQL enforces this rule whether or
not you use the optional ON UPDATE clause, which allows you to specify the update rule explicitly.

For further discussion of delete and update rules, see the Database Design Guide.

Defining Indexes
You can define one or more unnamed indexes for a table by including a WITH INDEX clause in your CREATE TABLE
statement. If you do not include a WITH INDEX clause, Scalable SQL creates a table without indexes. However, you
may add named indexes to that table later using a CREATE INDEX statement.

You cannot delete an unnamed index. (You can delete named indexes.)

In a CREATE TABLE statement that creates a primary or foreign key, Scalable SQL creates the required index
automatically. Do not use a WITH INDEX clause to create this index because doing so creates a redundant index on
the table.

Index Columns and Attributes

In a WITH INDEX clause, you specify the columns that compose the index and define the index attributes for each
column.

 Note: You cannot use a column of data type BIT, NOTE, or LVAR in an index.
For more information on segmented indexes, refer to ”AUTOINC” on page -6.

Unless you specify otherwise, an index is collated in ascending order, includes null values, and can contain the same
value in multiple rows. In addition, it is case-sensitive, nonsegmented, and non-modifiable. To change the defaults,
you can use the following keywords in your WITH INDEX clause:

Attribut
e
Keywor
d

Description Default

DESC Collate in descending order. Collate in ascending order.

NULL Do not index null values. Applying this attribute to one
segment of a segmented index is equivalent to
applying
this attribute to all segments of the given index.

Index null values.

CASE Index is not case-sensitive. Index is case-sensitive.

SEG Index consists of multiple columns. Index consists of one column.

MOD Data is modifiable. Data is non-modifiable.

UNIQUE Multiple rows cannot have the same index column
value.Applying this attribute to one segment of a
segmented index is equivalent to applying this
attribute to
all segments of the given index.

Multiple rows can have the
same
index column value.

ASC Collate in ascending order. Collate in ascending order.

To define a segmented index, specify the SEG keyword for each column in the index except the last one (see
“Example 2” on page 2-51).

You can specify a column as a segment in more than one index. For example, you can specify a person’s last name
and first name as one segmented index, and a person’s last name and ID as another segmented index.

Alternate Collating Sequence

You can specify an alternate collating sequence for indexes provided the indexes are of a string data type. You
cannot, however, specify an alternate collating sequence for an index that is case-insensitive because case-
insensitivity is a special instance of an alternate collating sequence.

Specify the alternate collating sequence as a DOS-formatted pathname to an ASCII file that contains a valid alternate
collating sequence. Create the alternate collating sequence file as specified in “Alternate Collating Sequence File” .

However, it is recommended that you do not specify an explicit path for the ACS file in the CREATE statement. The
Server assumes that the ACS file is in the same directory as the database currently in use. If you must specify a path
explicitly, ensure the path is relative to the Server and not to the Client. For example, if you want to create an index
using an ACS file that is on the Client’s path "M:\newdata" and M: is mapped to the server’s local C: drive, then the
CREATE statement should include the path to "c:\newdata" (a path the server understands) as the path to the ASC
file. Otherwise, the Scalable SQL engine may return a Status Code 557.

On a segmented index, you can specify an alternate collating sequence for the segments that are of string data
types. In such an index, you can use the alternate sequence for some string segments and the standard sequence for
others. Scalable SQL uses the standard collating sequence for all segments of nonstring data types.

Scalable SQL supports only one alternate collating sequence for an index. Therefore, when you specify an alternate
collating sequence for more than one segment, use the same sequence for each. Otherwise, Scalable SQL uses the
first alternate collating sequence you specify.

Example 1

The following statement creates a table that contains four columns, an index that does not allow duplicate values, and
a modifiable index that is case-insensitive.

CREATE TABLE Course USING 'Course.mkd'

(Name CHAR(7) CASE,

 Description CHAR(50) CASE,

 Credit_Hours UNSIGNED(2),

 Dept_Name CHAR(20))

WITH INDEX (Name UNIQUE CASE, Dept_Name CASE
MOD);

You can create a file for the alternate collating sequence for an index in either a CREATE INDEX statement or a
CREATE TABLE statement. Following are the directories that are searched for in this ACS file:

1. The dictionary location.

2. The data file location.

3. The current directory.

 Note: The current directory in Windows may be unpredictable. The Scalable
SQL for Windows engine may change the current directory unpredictably.

Example 2

The following example creates multiple indexes using a single WITH INDEX clause. The first index is segmented, and
the second index assumes all of the default attributes.

CREATE TABLE Room USING 'Room.mkd'

(Building_Name CHAR(25) CASE,

 Number UNSIGNED(4),

 Capacity INTEGER(2),

 "Type" CHAR(20) CASE)

WITH INDEX (Building_Name SEG,

 Number UNIQUE, "Type");

The SEG (segmentation) keyword following the Building_Name column in the WITH INDEX clause notifies Scalable
SQL that this index contains more than one column. Therefore, Scalable SQL creates a segmented index using the
Building_Name column and the next column listed, Number. Because the SEG keyword does not follow the Number
column, Scalable SQL begins a new index with the next column listed, the Type column.

Example 3

The statements in the following example define three tables and apply RI constraints to them.

CREATE TABLE Room USING 'Room.mkd'

(PRIMARY KEY (Building_Name, Number),

 Building_Name CHAR(25) CASE,

 Number UNSIGNED(4),

 Capacity INTEGER(2),

 "Type" CHAR(20) CASE)

WITH INDEX ("Type");

CREATE TABLE Department USING 'Dept.mkd'

(PRIMARY KEY (Name),

FOREIGN KEY DeptLocation (Building_Name,

 Room_Number)

REFERENCES Room ON DELETE RESTRICT,

 Name CHAR(20) CASE,

 Phone_Number NUMERIC(10,0),

 Building_Name CHAR(25) CASE,

 Room_Number UNSIGNED (4),

 Head_Of_Dept UNSIGNED(8))

WITH INDEX (Name UNIQUE CASE,

Building_Name MOD CASE SEG,

Room_Number MOD,

Head_Of_Dept UNIQUE MOD);

The Name column is included in the WITH INDEX clause to set additional key attributes. Also, because the primary
key for Faculty.Head_Of_Dept does not exist yet, you must add that foreign key to the Department table using an

ALTER TABLE statement after creating the Faculty table.

CREATE TABLE Faculty USING 'Faculty.mkd'

(PRIMARY KEY (ID),

FOREIGN KEY Dept (Dept_Name)

REFERENCES Department ON DELETE RESTRICT,

FOREIGN KEY FacultyLocation (Building_Name,

 Room_Number)

REFERENCES Room ON DELETE RESTRICT,

 ID UNSIGNED(8),

 Dept_Name CHAR(20) CASE,

 Designation CHAR(10) CASE,

 Salary CURRENCY(8),

 Building_Name CHAR(25) CASE,

 Room_Number UNSIGNED(8),

 Rsch_Grant_Amount BFLOAT(8))

WITH INDEX (Dept_Name CASE,

Building_Name SEG, Room_Number);

ALTER TABLE Department

ADD FOREIGN KEY DeptHead (Head_Of_Dept)

REFERENCES Faculty ON DELETE RESTRICT;

The preceding example creates the foreign key Dept on the Department table. This foreign key refers to the primary
keys Building_Name and Room_Number on the Room table. If a user deletes a row from the Room table and a
department uses that location, Scalable SQL prevents the row from being deleted (applying the delete restrict rule).

This statement also creates the foreign key FacultyLocation on the Faculty table. This foreign key refers to the
primary keys Building_Name and Room_Number on the Room table. If a user attempts to delete a row from the
Room table and a faculty member uses that room as an office, Scalable SQL prevents the row from being deleted
(applying the delete restrict rule).

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

CREATE TRIGGER
CREATE TRIGGER [trigger_name]
triggered_action_time trigger_event

ON table_name

[ORDER order_value]

[REFERENCING

 < OLD [AS] old_correlation_name

 | NEW [AS] new_correlation_name

 >

FOR EACH ROW triggered_action

where

triggered_action_time ::= < BEFORE | AFTER >

trigger_event ::= < INSERT | DELETE | UPDATE >

order_value ::= unsigned_integer

triggered_action ::=

[WHEN (Boolean_value_expression)]
SQL_procedure_statement

SQL_procedure_statement ::=

< single_SQL_statement | compound_statement >

Boolean_value_expression ::= see page 2-121

compound_statement ::= see ”BEGIN...END (compound
statement)” on page 2-12.

You use the CREATE TRIGGER statement to declare triggers. This statement does not implicitly drop an existing
trigger of the same name; instead, Scalable SQL returns Status Code 364 to inform you that the trigger name already
exists.

When a SQL data change statement (INSERT, DELETE, or UPDATE) executes on a table, Scalable SQL checks for
triggers defined for that table that contain a trigger event corresponding to the statement. If there is such a trigger,
Scalable SQL activates it. If there are multiple such triggers, Scalable SQL activates them in the order that the
unsigned integer in the ORDER clause specifies.

No table can have DELETE triggers defined on it if that table already has a foreign key whose primary key has a
DELETE rule of CASCADE. No table can have a foreign key defined on it if it already has a DELETE trigger defined
on it and its primary key’s DELETE rule is CASCADE. Whichever is defined first blocks the other, and Scalable SQL
returns Status Code 368.

When Scalable SQL activates a trigger, the triggered action is executed once for each row: either before the row
operation (with BEFORE specified) or after the row operation (with AFTER specified). The triggered action includes
the effects of any procedures that it invokes.

Rules for Creating Triggers
The following rules apply to creating triggers:

• The maximum size for a trigger name is 30.

• There is no pre-defined limit on the nesting or cascading of triggers.

• The triggered action must not modify the subject table.

• You cannot use the old correlation name for an INSERT trigger; there is no old image.

• You cannot use the new correlation name for a DELETE trigger; there is no new image.

• The scope of the old correlation name, new correlation name, and subject table name is the entire trigger
definition.

• The order number specified by ORDER must be unique. If a duplicate order occurs in conjunction with a
duplicate time and event, Scalable SQL returns an error. If you anticipate inserting new triggers within a
current ordering scheme, leave gaps in the numbering.

• If you do not designate an order for a trigger, then the trigger is created with a unique order value that is
higher than that of any trigger currently defined for that table, time, and event.

• Do not include the following types of statements within a trigger (or within any stored procedure directly or
indirectly invoked by a trigger):

ALTER TABLE BEGIN ATOMIC...END CREATE DICTIONARY

CREATE GROUP CREATE INDEX CREATE PROCEDURE

CREATE TABLE CREATE TRIGGER CREATE VIEW

DROP DICTIONARY DROP GROUP DROP INDEX

DROP PROCEDURE DROP TABLE DROP TRIGGER

DROP VIEW GRANT access rights GRANT CREATETAB

GRANT LOGIN REVOKE access rights REVOKE CREATETAB

REVOKE LOGIN SELECT

• A trigger body cannot reference a session-level cursor or variable.

• You cannot use a cursor, variable, or condition label without declaring it first.

• You cannot use duplicate names for cursors, variables, and conditions. (For example, a variable cannot
have the same name as a condition.)

• With a DELETE trigger, the subject table cannot be the referencing table in any referential integrity definition
that specifies ON DELETE CASCADE.

• Use the old correlation name when a column of the old row image is referenced in the triggered action; use
the new correlation name for referencing columns of the new row image.

• If the triggered action includes a WHEN clause, then the triggered statement executes only if the Boolean
value expression in the WHEN clause evaluates to true. If the Boolean value expression is not true, the
triggered SQL statement is not executed. If no WHEN clause is present, the triggered SQL statement
executes unconditionally.

• When you create a trigger, any database elements referred to within the triggered action (namely
procedures, views, or tables other than the subject table) become dependent elements for that trigger, and
you cannot drop or alter them as long as that trigger is defined.

• You must be logged into the database using a database name before you can create a trigger.

Invoking a Trigger
You do not invoke a trigger directly. Scalable SQL automatically invokes triggers as necessary when executing
INSERT, UPDATE, or DELETE statements.

Examples
The following example creates a trigger that records any new values inserted into the Tuition table in TuitionIDTable.

CREATE TABLE TuitionIDTable USING ’TuitID.mkd’

(Primary Key (ID),

ID unsigned (8))

CREATE TRIGGER InsTrig

BEFORE INSERT ON Tuition

REFERENCING NEW AS InData

FOR EACH ROW

INSERT INTO TuitionIDTable VALUES(InData.ID);

The following example is a BEFORE INSERT trigger on the Enrolls table. It invokes the stored procedure CheckMax
to ensure that the specified course is not already at its maximum. (Refer to page 2-37 for the example of the
CheckMax stored procedure.) The Class_ID column is passed to the stored procedure for purposes of performing the
check.

CREATE TRIGGER CheckCourseLimit

BEFORE INSERT

ON Enrolls

ORDER 1

REFERENCING NEW AS N

FOR EACH ROW

BEGIN

 CALL CheckMax (N.Class_ID);

END

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

CREATE VIEW
CREATE VIEW view_name

[(column_heading_name [, column_heading_name]
...)]

AS select_statement

where

select_statement ::= see “SELECT” on page 2-117

The CREATE VIEW statement allows you to define a stored view. The name you specify for the view can be a string
up to 20 characters long. View names must be unique within a dictionary.

A SELECT statement following the AS keyword defines the data that the view includes. Create the SELECT
statement using the same syntax you use in a plain SELECT statement. (See page 2-117 for more information about
the SELECT statement.)

 Note: Scalable SQL commits the changes specified in a CREATE VIEW
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

The SELECT statement in a CREATE VIEW statement can contain only one query. You cannot use the UNION
keyword to combine multiple queries in a single stored view.

Column Headings
If the SELECT statement selects only simple column names from other tables or views, Scalable SQL uses these
names as the view headings. However, if any of the selection list items are computed columns, you must define
column headings. In all cases, heading names must be unique within the view you are creating.

If you specify a heading for any column in your view, you must specify headings for all the columns. List the headings
in the same order that you list their corresponding columns in the SELECT statement.

ReadOnly Views
Generally, you can update and delete rows in views like those in a table. However, you cannot update or delete rows
in readonly views. A read-only view is one that contains data from a table that has been opened in readonly mode, or
one whose SELECT statement meets certain criteria. For more information, refer to ”Read-Only Views” on page 2-
148.

Example

The following statement creates a view named Phones, which creates a phone list of all the people in the university.
This view lists the persons’ last names, first names, and telephone numbers, with a heading for each column.

CREATE VIEW phones (lastn, firstn, phone)

AS SELECT Last_Name, First_Name, Phone

FROM Person;

In a subsequent query on the view, you may use the column headings in your SELECT statement:

SELECT lastn, firstn

FROM phones;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DECLARE (variable)
DECLARE SQL_variable_name data_specification [
default_clause]

where

data_specification ::= data_type [(data_length)]

data_type ::= < AUTOINC | BFLOAT | BIT | CHAR |
CHARACTER

| CURRENCY | DATE | DEC | DECIMAL | FLOAT |
INT

| INTEGER | LOGICAL | LSTRING | LVAR | MONEY
| NOTE | NUMERIC

| NUMERICSA | NUMERICSTS | TIME | TIMESTAMP
| UNSIGNED | ZSTRING >

data_length ::= length [, decimal]

default_clause ::= < = | DEFAULT > literal

You use the DECLARE (variable) statement to define a SQL variable. Once declared, you can use a SQL variable in
other statements within its defined scope to refer to the current value of the variable. You can also change the value
of the variable using SET or FETCH statements.

See the section "Naming Conventions" in the Database Design Guide for information regarding the syntax
requirements of variable names.

Rules for Declaring a SQL Variable
The following rules apply to declaring a SQL variable:

• A SQL variable defined inside a stored procedure is a procedure-owned variable. Its scope is that procedure
in which it is declared, and you can only reference it within that procedure.

• If a procedure calls another procedure, you cannot use a procedure-owned variable of the caller procedure
directly in the called procedure; it must be passed as a parameter.

• You must not declare a procedure-owned variable more than once in the same stored procedure; doing so
causes Scalable SQL to return Status Code 807.

• When you use the DECLARE statement outside of a stored procedure, the variable is a session variable. Its
scope is the login session in which it was declared, and you can refer to it anywhere inside or outside of
stored procedures (except within a trigger). You cannot declare a session variable more than once during
the same user’s login session.

• The declaration of a SQL variable must precede any reference to the SQL variable name. (An exception to
this rule is in a DECLARE CURSOR statement. Refer to DECLARE CURSOR for more information.)

• You can declare the same SQL variable name in different procedures as well as declaring that name as a

session variable. If the same SQL variable name is declared both as a procedure-owned variable and as a
session variable, a reference to the variable name within the procedure refers to the procedure-owned
variable. If you wish to refer to a session variable inside a procedure, you must not declare a variable of the
same name inside the procedure.

Examples

The following examples declare the variables Counter and CurrentCapacity.

DECLARE counter INT(2) = 0;

DECLARE CurrentCapacity INT(4) = 0;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DECLARE CONDITION
DECLARE condition_name CONDITION

FOR SQLSTATE [value]
character_string_literal

You use the DECLARE CONDITION statement to declare a condition name and an associated SQLSTATE value.
The SQLSTATE value corresponds to a success, warning, or exception condition. For more information about
SQLSTATE values, refer to Appendix D, “SQLSTATE Classes and Values.”

Rules for Declaring Conditions
The following rules apply to the declaration of conditions:

• You can only declare the same condition name once inside a compound statement.

• No two condition declarations with the same scope can have the same SQLSTATE value associated with
them.

• You cannot use the SQLSTATE value for successful completion as the associated value of a condition
name.

• You can use the condition label anywhere you use the associated SQLSTATE value.

Example

The following partial example declares a warning condition. A handler is defined to insert a value in the TuitionIDTable
table and then continue execution if it encounters the warning.

DECLARE Cond1 CONDITION FOR SQLSTATE '01111';

DECLARE CONTINUE HANDLER FOR Cond1

BEGIN

 SET vInteger = vInteger + 1;

 INSERT INTO TuitionIDTable

 VALUES(vInteger);

END;

For other examples that use the DECLARE CONDITION statement, refer to the DECLARE HANDLER examples on
page 2-69.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DECLARE CURSOR
DECLARE cursor_name [SCROLL] CURSOR

FOR select_statement [updatability_clause]

where

select statement ::= see “SELECT”

updatability_clause ::= FOR < READ ONLY | UPDATE
>

You use the DECLARE CURSOR statement to define a SQL cursor. A declared cursor logically ties a SELECT
statement to a cursor name.

As the syntax diagram shows, the SELECT statement may or may not include an ORDER BY specification, which
has certain implications for the ability to scroll and update the cursor, as described in the rules that follow.

Rules for Declaring Cursors
The following rules apply to declaring cursors:

• A SQL cursor defined inside a stored procedure is a procedure-owned cursor. Its scope is the procedure
itself; therefore, it can only be referenced within the procedure. Any procedure may refer to cursors declared
within the procedure or to session-level cursors. Cursors declared in procedures are undefined for
procedures other than the one in which the cursor is declared.

• A SQL cursor defined outside of any procedure is a session cursor. Its scope is the user’s login session. You
can refer to it anywhere inside or outside of procedures.

• A SQL cursor declaration must precede any reference to the cursor name.

• You can declare the same cursor name in different procedures as well as declaring that name as a session
cursor.

• If the same SQL cursor name appears in a procedure and as a session cursor, then a reference to the
cursor name within the procedure references the procedure-owned cursor.

• If you specify SCROLL in a SQL cursor declaration, you can use additional syntax options on a cursor-based
FETCH statement.

• Scalable SQL checks a cursor semantically only when it is used in an OPEN statement; therefore, it can
contain undeclared variables at the time of its declaration. However, you must define all unresolved
references either in a SQL variable declaration or in a parameter declaration of the stored procedure when
the cursor is used in an OPEN statement.

• While a cursor is open, it is sensitive to changes committed by other cursors and non-cursor-based
statements made by the same and other applications.

Updatability Clause for SQL Cursor Declaration

Table 2-4 illustrates the ability to update SQL cursors based on how the cursor is defined. You may not specify a non-
updatable cursor as FOR UPDATE or use it in an UPDATE or DELETE statement.

Table 2-4
Cursor Updatability

Cursor is Updatable No Yes No No

View is inherently updatable N Y Y Y

SCROLL specified N/A N/A Y N/A

ORDER BY specified N/A N/A N/A Y

FOR UPDATE specified N/A Y N N

As Table 2-4 shows, a cursor’s updatability is based on a combination of the characteristics of the view’s query
expression and the manner in which you declare the cursor. The following rules apply:

• If the view the query expression defines is not inherently updatable (if it is read-only), then the cursor is non-
updatable, regardless of how you specify it.

• If the view is inherently updatable and you specify FOR UPDATE, then the cursor is updatable.

• If the view is inherently updatable and you do not specify FOR UPDATE, then the presence of SCROLL or
ORDER BY has the effect of making the cursor non-updatable.

• If the cursor is updatable by the previous criteria, then the presence of FOR READ ONLY makes it non-
updatable.

A read-only view is one that contains data from a table that has been opened in readonly mode, or one whose
SELECT clause meets certain criteria. For more information, refer to ”Read-Only Views” on page 2-148. .

Example

The following example creates a cursor that selects values from the Degree, Residency, and Cost_Per_Credit
columns in the Tuition table and orders them by ID number.

DECLARE BTUCursor CURSOR

FOR SELECT Degree, Residency, Cost_Per_Credit

FROM Tuition

ORDER BY ID;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DECLARE HANDLER
DECLARE handler_type HANDLER

FOR condition_value [, condition_value] ...
handler_action

where

handler_type ::= < CONTINUE | EXIT >

condition_value ::= SQLSTATE [VALUE]

< character_string

| condition_name

| SQLEXCEPTION

| SQLWARNING

| NOT FOUND

>

handler_action ::= SQL_procedure_statement

You can use the DECLARE HANDLER statement to provide handlers for exception or completion conditions in a
compound statement. You can only use compound statements and condition handlers in the body of a stored
procedure or trigger declaration.

The SQLSTATE value corresponds to a success, warning, or exception condition. For more information about the
SQLSTATE session variable, refer to Appendix D, “SQLSTATE Classes and Values.”

In Scalable SQL, execution proceeds until one of the following occurs:

• The procedure terminates normally, based on the procedure logic.

• The procedure encounters an unhandled exception condition.

• The procedure encounters an EXIT handler.

A statement only has the possibility of continuing if no unhandled condition occurs.

Rules for Declaring Handlers
The following rules apply to the declaration of handlers:

• No two handler declarations with the same scope can have components (condition name or character string)
in their condition value list that represent the same SQLSTATE value.

• A character string contained in a condition value must not represent the condition for successful completion.

• SQLEXCEPTION corresponds to SQLSTATE values with a class value other than "00", "01", and "02". NOT
FOUND and SQLWARNING corresponds to SQLSTATE values with class values of "02" and "01",

respectively.

• If there is a general handler (such as SQLEXCEPTION, NOT FOUND, or SQLWARNING) and a specific
handler for the same SQLSTATE value, then only the specific handler is associated with that SQLSTATE
value.

• A handler action must not contain a SQL schema statement or a SQL transaction statement.

• During the execution of a compound statement, if an exception condition or a completion condition other
than successful completion occurs and there is a declared handler in the compound statement that is
associated with the generated SQLSTATE value, then the corresponding handler activates.

A handler effectively extends the execution of any statement that raised the handler’s condition value by
appending the operations of the handler to those of the statement. Once activated, the handler and
statements within the handler follow the same rules as all other statements:

• Unhandled exceptions cause execution of the compound statement to terminate.

• Unhandled, non-exception conditions cause execution to continue to the next logical step (as
though the originating statement had caused the most recent condition).

• No handler can reinvoke itself either due to resignalling or raising some other handled condition.

• The type of handler (EXIT or CONTINUE) is only taken into account when it causes a non-
exception condition to have the same terminating effect as an exception condition. A handler of type
CONTINUE cannot cause execution to continue in spite of an exception condition having been
raised.

• The final condition after the execution of all relevant handlers is an unhandled condition that
remains after the last statement executed the last handler. This condition may itself be an exception
or a non-exception. Successful completion is always unhandled.

Examples for DECLARE HANDLER

The following partial example declares a continue handler for Cond1. If the SQLSTATE warning condition occurs,
execution continues.

DECLARE Cond1 CONDITION FOR SQLSTATE '01111';

DECLARE CONTINUE HANDLER FOR Cond1

BEGIN

 SET vInteger = vInteger + 1;

 INSERT INTO TuitionIDTable

 VALUES(vInteger);

END;

The following example returns the total capacity of the largest rooms on campus in the university database. (This
example provides the same results as the LargeRooms procedure used for the WHILE example on page 2-174 and
the LargeRooms2 procedure used for the LOOP example on page 2-101. The following procedure illustrates a
different way of achieving the same results, this time using an exit handler with a LOOP statement.)

CREATE PROCEDURE LargeRooms3

(IN NumRooms INT(4), OUT TotalCapacity INT(4));

BEGIN

DECLARE counter INT(2) = 0;

DECLARE CurrentCapacity INT(4) = 0;

DECLARE tempCapacity INT(4) = 0;

DECLARE cRooms CURSOR

 FOR SELECT Capacity

 FROM Room

 ORDER BY Capacity DESC;

DECLARE endData CONDITION

 FOR SQLSTATE '02000';

DECLARE EXIT HANDLER

 FOR endData

BEGIN

 SET TotalCapacity = tempCapacity;

END;

OPEN cRooms;

SET tempCapacity = 0;

LOOP

 FETCH NEXT FROM cRooms INTO CurrentCapacity;

 IF (counter = NumRooms) THEN

    SIGNAL endData;

 END IF;

 SET counter = counter + 1;

 SET tempCapacity = tempCapacity +
CurrentCapacity;

END LOOP;

CLOSE cRooms;

END

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DELETE
DELETE FROM table_reference

[WHERE restriction_clause]

where

table_reference ::= < table_name | view_name > [
alias_name]

The DELETE statement allows you to remove rows from a table or an updatable view. When you delete a row from a
view, Scalable SQL deletes the corresponding row(s) from the table(s) that makes up the view. You must specify the
name of the table or view from which to delete rows. To restrict the rows deleted to those that meet certain criteria,
include a WHERE clause in your DELETE statement. (See page 2-121 for the valid syntax of a WHERE clause.)

 Note: If you do not specify a WHERE clause, Scalable SQL deletes all the rows
in the table or view.

If you define referential integrity (RI) constraints on your database, and if the table (or a table in the view) from which
to delete rows is a parent table in a reference path, Scalable SQL enforces the defined delete rules before deleting
any rows.

 Note: Exercise care when deleting rows from a self-referencing table. If many
rows are dependent on the row you delete, the delete cascade rule could cause
Scalable SQL to delete all or most of the rows in the table.

For more information about delete rules when RI is enforced, see the Database Design Guide.

Example

The following statement deletes the row for Modern European History (HIS 305) from the course table in the sample
database:

DELETE FROM Course WHERE Name = 'HIS 305';

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DELETE: positioned
DELETE [FROM table_reference]

WHERE CURRENT OF cursor_name

where

table_reference ::= < table_name | view_name > [
alias_name]

The Positioned DELETE statement deletes the current row of a view associated with a SQL cursor.

Rules for Using the Positioned DELETE Statement
The following rules apply using the Positioned DELETE statement.

• The specified cursor name must be an updatable cursor, and it must be open.

• The FROM table reference clause is optional; the underlying tables to be modified are specified by the
declaration of the cursor.

• You must establish a valid position with the FETCH statement before executing a positioned DELETE. If a
cursor is not positioned to a row, Scalable SQL returns Status Code 8 (invalid positioning).

• All concurrency controls and rules apply to positioned DELETE statements, including isolation levels,
locking, and passive control.

• When the Positioned DELETE statement deletes a row, the new position of the cursor is before the next row.
If the Positioned DELETE statement deletes the last row of the table, the new position of the cursor is after
the last row.

• All security constraints are enforced as usual.

Example

The following sequence of statements provide the setting for the Positioned DELETE statement. The required
statements for the Positioned DELETE statement are DECLARE CURSOR, OPEN CURSOR, and FETCH FROM
cursorname.

The Modern European History class has been dropped from the schedule, so this example deletes the row for
Modern European History (HIS 305) from the Course table in the sample database:

DECLARE CourseName CHAR(7);

DECLARE c1 CURSOR

FOR SELECT Name

FROM Course

WHERE Name = CourseName;

SET CourseName = 'HIS 305';

OPEN c1;

FETCH NEXT FROM c1 INTO CourseName;

DELETE WHERE CURRENT OF c1;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DROP DICTIONARY
DROP DICTIONARY USING 'path_name'

The DROP DICTIONARY statement allows you to delete a dictionary from your database. In a USING clause, specify
the directory path associated with the dictionary to be dropped. When you drop a dictionary, Scalable SQL drops the
dictionary files from the disk, but does not drop the associated data files.

 Note: You cannot drop a dictionary if someone is logged into it. Also, Scalable
SQL commits the changes specified in a DROP DICTIONARY statement upon
successful execution of the statement. Even if you include the statement in a
transaction, you cannot roll back the changes from the statement. For more
information about bound databases, refer to the Database Design Guide.

Example

The following statement drops the dictionary located in the \TEST directory:

DROP DICTIONARY USING '\test'

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DROP GROUP
DROP GROUP group_name [, group_name] ...

The DROP GROUP statement allows you to delete one or more groups from the dictionary. Specify the names of the
groups to drop, separating the names with a comma.

Scalable SQL does not drop a group that has members. Before issuing a DROP GROUP statement, you must first
revoke the Login right from each user in the group.

 Note: Scalable SQL commits the changes specified in a DROP GROUP
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

Examples

If the university decides to move the Registrar group to the Admin group, it should drop the Registrar group. The
following statement removes the Registrar group from the dictionary:

DROP GROUP Registrar;

The following statement removes the Registrar and Instructors group from the dictionary:

DROP GROUP Registrar, Instructors;

If an error occurs and Scalable SQL is unable to drop a group, it does not drop any group in the list. For example, if
Scalable SQL is unable to drop the Instructors group, then it does not drop the Registrar group.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DROP INDEX
DROP INDEX index_name

The DROP INDEX statement allows you to delete a named index. Named indexes are those you create with a
CREATE INDEX statement. Specify the name of the index to drop. Because index names are unique in the dictionary,
you do not have to specify the corresponding table name.

 Note: You cannot drop indexes that are created with a CREATE TABLE
statement because these are not named indexes.

The length of time required to drop an index depends on the number of rows in the table. After you drop an index, any
subsequent SELECT statement that orders rows by the columns that were indexed requires Scalable SQL to build a
temporary index during the SELECT operation.

 Note: Scalable SQL commits the changes specified in a DROP INDEX
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.
Also, you cannot drop an index that a foreign or primary key uses. You must drop
the key (using an ALTER TABLE statement) first.

Example

The following statement drops the Birthday named index from the Person table:

DROP INDEX Birthday;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DROP PROCEDURE
DROP PROCEDURE procedure_name

The DROP PROCEDURE statement allows you to delete a stored procedure from the data dictionary. You cannot call
a DROP PROCEDURE statement from within a stored procedure.

If you drop a stored procedure that you call from within another stored procedure, Scalable SQL returns Status Code
862 when you execute the other statement.

 Note: Scalable SQL commits the changes specified in a DROP PROCEDURE
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

You can drop a stored procedure only if no trigger calls that statement or procedure as its triggered SQL statement.

Example

The following statement drops the stored procedure CheckMax from the dictionary:

DROP PROCEDURE CheckMax;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DROP TABLE
DROP TABLE table_name

The DROP TABLE statement allows you to delete a table definition from the data dictionary. Specify the name of the
table to drop. Scalable SQL drops both the table definition and the corresponding data file.

 Note: If you attempt to drop a table that contains a primary key, Scalable SQL
returns a status code and does not drop the table. You must first drop the primary
key and then drop the table.

Also, Scalable SQL commits the changes specified in a DROP TABLE statement upon successful execution of the
statement. Even if you include the statement in a transaction, you cannot roll back the changes from the statement.

You cannot drop a table during a transaction if you have previously referred to that table during the transaction. You
must first commit the work from the transaction and then drop the table.

You can drop a table only if no trigger refers to it within the triggered action; you cannot drop dependent elements for
a defined trigger.

 Note: If the associated data file has an owner name defined, use a SET OWNER
statement to pass in the owner name before issuing a DROP TABLE statement.

Example

The following statement drops the Tuition table definition from the dictionary:

DROP TABLE Tuition;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DROP TRIGGER
DROP TRIGGER trigger_name

Use the DROP TRIGGER statement to delete a trigger.

When you drop a trigger, procedures, views, or tables that were flagged as dependent elements are no longer
flagged; therefore, you can drop or alter them, provided they are not still dependent elements for other triggers.

Example

The following example drops the trigger CheckCourseLimit from the dictionary.

DROP TRIGGER CheckCourseLimit;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

DROP VIEW
DROP VIEW view_name

The DROP VIEW statement allows you to delete a view definition from the data dictionary. Specify the name of the
view to drop. Dropping a view definition does not affect the tables referenced in the view.

 Note: Scalable SQL commits the changes specified in a DROP VIEW statement
upon successful execution of the statement. Even if you include the statement in
a transaction, you cannot roll back the changes from the statement.

You can drop a view only if no trigger refers to it within the triggered action; you cannot drop dependent elements for
a defined trigger.

You cannot drop a view during a transaction if you have previously referred to that view (or a table in that view) during
the transaction. You must first commit the work from the transaction and then drop the view.

Example

The following statement drops the Phones view definition from the dictionary:

DROP VIEW Phones;

For an example of how this view was created, refer to the CREATE VIEW example on page 2-59.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

FETCH
FETCH [[fetch_orientation] FROM] cursor_name

INTO target [, target] ...

where

fetch_orientation ::= < NEXT | PRIOR | FIRST |
LAST

| RELATIVE simple_value >

simple_value ::= < literal | SQL_variable_name |
parameter_name

| column_reference >

column_reference ::= [column_qualifier.]
column_name

column_qualifier ::= < table_name | view_name |
alias_name >

target ::= < SQL_variable_name | parameter_name >

A FETCH statement positions a SQL cursor on a specified row of a table and retrieves values from that row by
placing them into the variables in the target list.

Rules for Using the FETCH Statement
The following rules apply to using FETCH statements.

• The cursor denoted by the cursor name must be declared in the current scope and must be in an open state.

• If you do not specify the fetch orientation, NEXT is the default.

• If you specify any option other than NEXT, you must have declared the cursor with SCROLL. The following
table lists the behaviors resulting from different specifications of the fetch orientation:

Fetch
Orientat
ion

Current Cursor Position

NEXT Moved to the next logical row if the view is not empty. For all other conditions,
moved
after the last row of the view and a No Data status returns.

PRIOR Moved to the previous logical row if the view is not empty. For all other
conditions,
moved before the first row of the view and a No Data status returns.

FIRST Moved to the first row of the view if the table is not empty. For all other
conditions,
moved before the first row of the view and a No Data status returns.

LAST Moved to the last row of the view if the table is not empty. For all other
conditions,
moved after the last row of the view and a No Data status returns.

The following table lists the behavior of the RELATIVE fetch orientation and simple value.

Fetch
Orientati
on

Sim
ple
Valu
e

Current Cursor Position

RELATIVE 0 Not changed.

positive N Moved to the nth row following the previous current position if
such a row exists; otherwise, moved after the last row of the view
and a No Data status returns.

negative N Moved to the nth row before the previous current position if such
a row exists; otherwise, moved before the first row of the view and
a No Data status returns.

If setting the current cursor position does not produce Status Code 9 (no data), values from the current row
are assigned to their corresponding targets that the fetch target list identifies.

• The data type of the simple value must be an integer.

• The number of the targets in the fetch target list must be the same as the degree of the table that the cursor
specifies. The i-th target in the fetch target list corresponds with the i-th column of the view.

• The type of each target must match the type of the corresponding column in the view of the cursor.

Examples

Because FETCH statements retrieve data associated with SQL cursors, you use them in the same context as
DECLARE CURSOR, OPEN CURSOR, and other SQL cursor-oriented statements, such as Positioned UPDATE and
DELETE.

The FETCH statement in this example retrieves values from cursor c1 into the CourseName variable. The Positioned
UPDATE statement in this example updates the row for Modern European History (HIS 305) in the Course table in
the sample database:

DECLARE CourseName CHAR(7) = 'HIS 305';

DECLARE OldName CHAR(7);

DECLARE cursor1 CURSOR

FOR SELECT Name

FROM Course

WHERE Name = CourseName;

OPEN cursor1;

FETCH NEXT FROM cursor1 INTO OldName;

UPDATE SET name = 'HIS 306'

WHERE CURRENT OF cursor1;

The following example is the FETCH loop in the stored procedure LargeRooms2. (A full example of this stored
procedure is available on page 2-101.) This example returns the total capacity of the largest rooms on campus.

FETCH_LOOP:

LOOP

 FETCH NEXT FROM cRooms INTO CurrentCapacity;

 IF (SQLSTATE = '02000' OR counter = NumRooms) THEN

    LEAVE FETCH_LOOP;

 END IF;

 SET counter = counter + 1;

 SET TotalCapacity = TotalCapacity +

    CurrentCapacity;

END LOOP;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

GRANT (access rights)
GRANT

< < ALL | INSERT | DELETE | ALTER |
REFERENCES >

| < SELECT | UPDATE > [column_name_list]

>

ON table_name_list TO user_list

where

column_name_list ::= column_name [, column_name]
...

table_name_list ::= table_name [, table_name] ...

user_list ::= < user_name | group_name | PUBLIC >

[, < user_name | group_name >] ...

The GRANT (access rights) statement allows you to assign access rights to the following:

• A group or user.

• A list of groups or users.

• All users defined in the dictionary.

To assign access rights to all users in the dictionary, include the PUBLIC keyword to grant the rights to the PUBLIC
group, as in the following example:

GRANT SELECT ON Course TO PUBLIC;

This statement assigns the Select right on the Course table to all users defined in the dictionary. If you later revoke
the Select right from the PUBLIC group, only users who are granted the Select right explicitly can access the table.

When you grant the Select or Update right to a user, you can specify a list of columns on which the right applies.
Otherwise, Scalable SQL assigns the right on all the columns in the table.

If you specify a list of columns in a statement that grants rights on more than one table, each column you name must
be contained in every table in the table list. You cannot qualify the column names with a table name. The following
statement is valid because the Building_Name column appears in both the Faculty table and the Department table:

GRANT SELECT Building_Name ON Faculty, Department TO
Laura;

However, the next statement is not valid because the column Head_of_Department does not appear in the Faculty
table:

GRANT SELECT Building_Name, Head_of_Department

ON Faculty, Department TO Laura;

When you grant the All, Insert, Delete, Alter, or References right to a group or user, specify a table name or a list of
table names on which to assign access rights. You cannot include a column list in this type of GRANT (access rights)
statement because these rights apply to entire tables.

 Note: Scalable SQL commits the changes specified in a GRANT (access rights)
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

The rights of a user who is part of a group are limited to those that are defined for the group. To change the rights of a
user in a group, you must either change the rights for the entire group or delete the user from the group (using the
REVOKE LOGIN statement) and assign the user individual rights.

If an error occurs and Scalable SQL is unable to grant rights to a user or group, it does not grant rights to any user or
group in the list. For example, in the following statement, if Scalable SQL is unable to grant rights to Laura, then it
does not grant rights to the Registrars group.

GRANT ALTER ON Billing TO Laura, Registrars;

All Right
A GRANT ALL statement grants the Insert, Update, Alter, Select, Delete, and References rights to the specified user
or group. In addition, the user or group is granted the Create Table right for the dictionary.

Insert Right
A GRANT INSERT statement grants the Insert right to the specified user or group. The Insert right allows users to
insert new rows into a table. If you grant the Insert right to a user, Scalable SQL also grants to that user the Select,
Update, and Delete rights on the table.

The following statement gives John the right to insert, select, update, or delete data in the Person table:

GRANT INSERT ON Person TO John;

You cannot specify a column or a list of columns when you grant the Insert right. When you insert values, you insert
an entire row; consequently, you cannot specify individual columns. For example, the following statement returns
Status Code 524:

GRANT INSERT Last_Name, First_Name, Phone ON Person
TO John;

Delete Right
A GRANT DELETE statement grants the Delete right to the specified user or group. The Delete right allows users to
delete rows from a table. If you grant the Delete right to a user, Scalable SQL also grants to that user the Select,
Update, and Insert rights on the table.

As with a GRANT INSERT statement, you cannot specify a column or a list of columns in a GRANT DELETE
statement.

Alter Right
A GRANT ALTER statement grants the Alter right to the specified user or group. The Alter right allows a user to
modify the dictionary definition of a table. When you grant the Alter right, you cannot include a column list in the
statement.

The following statement allows Anna to modify the definition of the Person table:

GRANT ALTER ON Person TO Anna;

When you grant the ALTER right to a user or group, Scalable SQL also grants them the INSERT, UPDATE, and
DELETE rights on the table.

References Right
A GRANT REFERENCES statement grants the References right to the specified user or group. The References right
allows a user to create foreign keys that refer to a specific table. For example, to create a foreign key that refers to
the Person table, you must have the References right on the Person table.

 Note: The creator of a table automatically has the References right on that table.

The following example grants user Lisa the right to create foreign keys that refer to the Person table:

GRANT REFERENCES ON Person TO Lisa;

When you grant the REFERENCES right to a user or group, Scalable SQL also grants them the ALTER right on the
table.

Select Right
A GRANT SELECT statement grants the Select right to the specified user or group. The Select right allows a user to
read the specified columns in the table.

The following statement grants Select rights to Sarah and James on the Last Name, First Name, and Phone columns
in the Person table:

GRANT SELECT Last_Name, First_Name, Phone ON Person
TO Sarah, James;

To grant Select rights on all the columns in a table, do not include a column list in the statement. For example, the
following statement grants Sarah and James the Select right on all the columns in the Person table:

GRANT SELECT ON Person TO Sarah, James;

Update Right

A GRANT UPDATE statement grants the Update right to the specified user or group. The Update right allows a user
to modify the data in the specified columns in the tables. When you grant the Update right, Scalable SQL also grants
the Select right on the specified columns.

The following statement allows Sarah to update only the Last Name, First Name, and Phone columns. She cannot
update any other columns in the Person table, nor can she insert or delete rows.

GRANT UPDATE Last_Name, First_Name, Phone ON Person
TO Sarah;

The next statement allows Sarah to update all the columns in the Person table; consequently, she can insert and
delete rows, too.

GRANT UPDATE ON Person TO Sarah;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

GRANT CREATETAB
GRANT CREATETAB TO user_list

where

user_list ::= < user_name | group_name | PUBLIC >

[, < user_name | group_name >] ...

The GRANT CREATETAB statement allows you to grant a user, a group of users, or all users (the PUBLIC group) the
right to create tables. When you grant the Create Table right to a user, that user has full access rights on any table or
dictionary that he or she creates. However, you must explicitly grant that user access rights on any table that he or
she did not create.

 Note: When you include the ALL keyword in a GRANT (access rights)
statement, Scalable SQL does not assign the Create Table right in addition to the
access rights.

To grant rights to multiple users or groups, list the user or group names in your GRANT CREATETAB statement.

 Note: Scalable SQL commits the changes specified in a GRANT CREATETAB
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

Examples

The following statement grants the Create Table right to Jim and Brian:

GRANT CREATETAB TO Jim, Brian;

The following statement includes the PUBLIC keyword to grant the Create Table right to all the users defined in the
dictionary:

GRANT CREATETAB TO PUBLIC;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

GRANT LOGIN
GRANT LOGIN TO user_name [:] password

[, user_name [:] password] ...

[IN GROUP group_name]

The GRANT LOGIN statement allows you to assign the Login right to a user (to define a user in the dictionary). You
can also add the user to a specific group.

When you grant the Login right to a user, Scalable SQL does not automatically assign to that user access rights to the
tables in the dictionary. However, if you add the user to a group for which access rights are already defined, the user
assumes those rights.

A GRANT LOGIN statement automatically adds the specified user to the group PUBLIC. If you have defined access
rights for the group PUBLIC, the user assumes those rights.

When you issue a GRANT LOGIN statement, you must specify a username and a password for the user. To add the
user to a group, you must also include an IN GROUP clause specifying a group name.

 Note: Scalable SQL commits the changes specified in a GRANT LOGIN
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

Example

The following statement grants the Login right to a user named Cathy and specifies her password as seniors. It also
adds her to the group Registrar.

GRANT LOGIN TO Cathy : seniors

IN GROUP Registrar;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

IF
IF Boolean_value_expression

THEN SQL_statement_list

[if_statement_elseif_clause ...]

[ELSE SQL_statement_list]

END IF

where

if_statement_elseif_clause ::=

ELSEIF Boolean_value_expression

THEN SQL_statement_list

SQL_statement_list ::= { SQL_statement ; } ...

Boolean_value_expression ::= see page 2-121

An IF statement provides conditional execution based on the truth value of a condition. You may use IF statements in
the body of both a stored procedure and a trigger.

The keyword ELSEIF has exactly the same meaning as the two keywords ELSE IF. Both are permitted.

IF Boolean_value_expression

THEN SQL_statement_list

ELSEIF Boolean_value_expression 1

THEN SQL_statement_list 1

[if_statement_elseif_clause ...]

[ELSE SQL_statement_list]

The previous example is equivalent to the following:

IF Boolean_value_expression

THEN SQL_statement_list

ELSE

 IF Boolean_value_expression 1

    THEN SQL_statement_list 1

    [if_statement_elseif_clause ...]

    [ELSE SQL_statement_list]

END IF

END IF

Examples

The following example uses the IF statement to set the variable Negative to either 1 or 0, depending on whether the
value of vInteger is positive or negative.

IF (vInteger < 0) THEN

SET Negative = '1'

ELSE

 SET Negative = '0'

END IF;

The following example uses the IF statement to test the loop for a defined condition (SQLSTATE = '02000'). If it
meets this condition, then the WHILE loop is terminated.

FETCH_LOOP:

WHILE (counter < NumRooms) DO

 FETCH NEXT FROM cRooms into CurrentCapacity;

 IF (SQLSTATE = '02000') THEN

    LEAVE FETCH_LOOP;

 END IF;

 SET counter = counter + 1;

 SET TotalCapacity = TotalCapacity +

    CurrentCapacity;

END WHILE;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

INSERT
INSERT INTO table_list

[(column_list)]

< { VALUES (value_list) } ...

| select_statement

>

where

table_list ::= table_reference [, table_reference]
...

table_reference ::= < table_name | view_name > [
alias_name]

column_list ::= column_reference [,
column_reference] ...

column_reference ::= [column_qualifier.]
column_name

column_qualifier ::= < table_name | view_name |
alias_name >

value_list ::= expression [, expression] ...

The INSERT statement allows you to insert column values into one or more tables. When you issue an INSERT
statement, Scalable SQL validates the data you specify and inserts the values into the designated table or tables.

You must include an INTO clause to specify the name of the view, table, or tables to which to add data. If you are
inserting data into more than one table, you may want to define aliases for the table names; you can then use the
aliases to qualify the column names in the column list.

To specify the columns into which to insert values, list the columns after the table list. Enclose the list of columns in
parentheses, and separate the column names with commas. If you are inserting data into multiple tables that contain
columns with identical names, use a table name or alias to qualify each column name in the list. If you omit the
column list, Scalable SQL assumes you are inserting values into all the columns, in the order they are defined in the
table.

Use either of the following methods to specify the data values to insert:

• Specify the data values explicitly by including one or more VALUES clauses.

• Extract the data values from another table in the database by including a SELECT clause.

If the data values you specify (or those the SELECT clause returns) are invalid, Scalable SQL returns a status code
or message indicating the problem. Any values that were inserted successfully prior to the error are rolled back;
Scalable SQL either executes all data modification (DML) statements to successful completion or leaves the data files

in the same state they were in before execution of the statement.

If you define RI for the database, and if you define the column into which you are inserting values as a foreign key,
Scalable SQL verifies that the parent table contains a primary key value that matches the foreign key value you are
inserting. If the parent table does not contain a corresponding primary key value, the insert fails.

VALUES Clause
Include a VALUES clause to specify a list of data values; you must specify one value for each column in the column
list. When you specify data values, the following rules apply:

• You can specify the values using substitution variables as well as strings or numeric constants. For more
information on substitution variables, see the Database Design Guide.

• If you do not specify a value for a column of DATE, TIME, or TIMESTAMP, Scalable SQL does not insert the
current date or time by default. If you want to insert the current date or time, use the CURDATE and
CURTIME variables as values.

The values you define must correspond to the columns you specify in the column list. You must enclose in single
quotation marks all string values (date and time values may be enclosed in single quotation marks but do not need to
be). If you omit the column list, you must include a value for each column defined in the table or view into which you
are inserting data.

If a constant appears in a VALUES clause in an INSERT statement it must not be too large for the column in which it
is to be placed. For example, if a table consists of a single column of type DECIMAL (8,2), the following statement
fails because the value 1.111 does not fit into the column.

INSERT INTO table

VALUES(1.111)

The following statement adds data to the Course table by directly specifying the values in three VALUES clauses:

INSERT INTO Course(Name, Description, Credit_Hours)

VALUES ('CHE 308', 'Organic Chemistry II', 4)

VALUES ('ENG 409', 'Creative Writing II', 3)

VALUES ('MAT 307', 'Probability II', 4);

If the column list does not contain all the columns in the table, Scalable SQL assigns default values to the columns
not listed. Scalable SQL uses the following guidelines to determine the default value for a given column:

• If you have defined a default value for the column using the SET DEFAULT statement, Scalable SQL inserts
that value.

• If you have issued a SET (global null value) statement to define a null value for all columns of the given
column’s data type, Scalable SQL inserts that value.

• If you have not defined a default value or a global null value, Scalable SQL assigns a default value based on
the column’s data type. Scalable SQL sets STRING data types to blanks, AUTOINC columns to the next
valid increment, and all others to zero.

The Role of Data Types, Defined Masks, and Default Input Formats

A column’s data type and default input format dictate how you can insert and update data using constant values. The
following rules apply:

• You must specify constant values using a default input format. (For more information about default input
formats, refer to Appendix A, “Data Types.”) For data types INTEGER, AUTOINC, and UNSIGNED, Scalable
SQL rounds constants to the nearest whole number value. For data types DATE and TIME, Scalable SQL
does not implicitly align the constant to any default input format; therefore, embedded blanks are important.

• Constants can be either the operand of a cast expression or a direct operand of a non-cast expression.
When the constant is the operand of a cast expression, Scalable SQL interprets the value according to the
mask and data type specified for the CAST expression that contains the constant. Otherwise, Scalable SQL
interprets the value according to a default input format for the target data type.

 Note: For more information on the CAST function and syntax, refer to the
Database Design Guide.

• If an expression contains a substitution variable, then the constant subsequently assigned to the substitution
variable has the same requirements as a constant that would appear at the same position in the expression.

 Note: In some cases, Scalable SQL determines a value to be of a certain type,
such as a DATE constant or NULL value, and attempts to use the value as
interpreted. If the attempt fails, Scalable SQL retries the value as a constant
string. To force the engine to interpret the value as a constant string on the first
attempt, enclose the value in single quotes.

SELECT Clause
By using a SELECT clause instead of a VALUES clause in an INSERT statement, you can retrieve data from one
table or view and insert it into another table or view without any intermediate steps. (A SELECT clause in an INSERT
statement is not a subquery, because the syntax does not require the clause to be closed within parentheses.)

The following INSERT statement uses a SELECT clause to retrieve from the Student table the ID numbers of
students who have taken classes.

The statement then inserts the ID numbers into the Billing table.

INSERT INTO Billing (Student_ID)

SELECT ID

FROM Student

WHERE Cumulative_Hours > 0;

Data Type Compatibility

The data types of the columns in the view defined by the SELECT statement must be compatible with the columns of
the table into which you are inserting data. If you insert data into a STRING column, then you can select from
columns of any data type. If you insert data into a numeric or TIMESTAMP column, then you can select from columns
of any data type except LOGICAL and BIT.

If you insert data into a DATE column, then you can select from columns of any data type except LOGICAL, BIT, and
TIME. If you insert data into a TIME column, then you can select from columns of any data type except LOGICAL,
BIT, and DATE. If you insert data into LOGICAL or BIT columns, then you can select from columns of data type
LOGICAL and BIT or columns of any string data type.

Although you can select any data with the SELECT statement, you can only INSERT that data into a given column if
the data types are compatible. Table 2-5 indicates which data types you can insert into a given type of column.

Table 2-5
Data Type Convertibility

Column
Type
(INSERT)

Expression Type (SELECT)

numeric DATE TIME TIMESTAM
P

string boolean

numeric Yes Yes Yes Yes Yes No

DATE Yes Yes No Yes Yes No

TIME Yes No Yes Yes Yes No

TIMESTAMP Yes Yes Yes Yes Yes No

string Yes Yes Yes Yes Yes Yes

boolean No No No No Yes Yes

If you attempt to insert an invalid data type into a column, Scalable SQL returns Status Code 223.

The following rules apply to the conversion of data types via a SELECT statement in an INSERT or UPDATE
statement:

• When converting a string type to a non-string type, the string value must match the defined mask, if present,
on the column being inserted into or updated. If the column has no defined mask, then the string value must
match the default mask of the column’s data type. If the string value cannot be converted, Scalable SQL
returns Status Code 330 (data not formatted according to mask) or 224 (invalid character in numeric data).

• When converting DATE to numeric, the resulting value is the number of days between January 00 1980 and
the indicated date. If the indicated DATE is prior to January 00 1980, then the resulting numeric value is
negative. For example, if the indicated DATE is January 02 1980, then the numeric value is 2.

• When converting TIME to numeric, the resulting value is the number of one hundredths of a second. For
example, if the indicated TIME is 01:01:01:01, then the numeric value is 366101.

• When converting TIMESTAMP to numeric, the resulting value is determined according to the following

formulae:

The TIMESTAMP value is:

'year-month-day hour:minute:second'

The numeric result is:

= (second * 10,000,000)

+ ((minute + (60 * hour)) * 60 * 10,000,000)

+ ((A+B) * 24 * 60 * 60 * 10,000,000)

- ((C + (60 * D)) * 60 * 10,000,000)

where

A = # of days from Jan 1, 0001 to Jan 1, year
B = # of days from Jan 1, year to day, month, year
C = minute in the current time zone
D = hour in the current time zone

• When converting TIMESTAMP to DATE, the resulting value is the date portion of the TIMESTAMP value. For
example, if TIMESTAMP is '1996-01-01 01:02:03', then the resulting DATE is 01/01/96.

• When converting TIMESTAMP to TIME, the resulting value is the time portion of the TIMESTAMP value. For
example, if TIMESTAMP is '1996-01-01 01:02:03', then the resulting TIME is 01:02:03.

• When converting DATE to TIMESTAMP, the resulting value is the DATE with the time portion of the
TIMESTAMP set to zero.

• When converting TIME to TIMESTAMP, the resulting value is the current date with the time portion of the
TIMESTAMP set to the TIME value.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

LEAVE
LEAVE statement_label

A LEAVE statement continues execution by leaving a block or loop statement. You can use it in the body of both a
stored procedure and a trigger.

Rules for Using the LEAVE Statement
The following rules apply to using the LEAVE statement:

• The statement label must match the label of some labelled statement in the same scope as the LEAVE
statement. This matching label is called the corresponding label.

The body of a stored procedure that is a compound statement can contain a loop statement, and loop
statements can be embedded; therefore, the statement label in a LEAVE statement can match the label of
any of the embedded loops or the label of the body of the stored procedure.

• The labelled statement can be a labelled compound statement, which may be a procedure body or a trigger
body. In all cases, the LEAVE statement causes execution of the labelled statement to terminate as though
the last sequential statement had been executed.

Example

The following example increments the variable vInteger by 1 until it reaches a value of 11, when the loop is ended
with a LEAVE statement.

TestLoop:

LOOP

 IF (vInteger > 10) THEN

    LEAVE TestLoop;

 END IF;

 SET vInteger = vInteger + 1;

END LOOP;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

LOOP
 [beginning_label :]

LOOP [SQL_statement_list]

END LOOP [ending_label]

where

SQL_statement_list ::= { SQL_statement ; } ...

A LOOP statement repeats the execution of a block of statements. You can use it in the body of both a stored
procedure and a trigger.

If a LOOP statement has a beginning label, it is called a labelled loop statement. If you specify the ending label, it
must be identical to the beginning label.

The SQL statement list executes repeatedly, and only a LEAVE statement, an exception condition, or the invocation
of an EXIT handler can terminate it.

Examples

The following example increments the variable vInteger by 1 until it reaches a value of 11, when the loop is ended.

TestLoop:

LOOP

 IF (vInteger > 10) THEN

    LEAVE TestLoop;

 END IF;

SET vInteger = vInteger + 1;

END LOOP;

The following example returns the total capacity of the largest rooms on campus in the university database. (This
example provides the same results as the LargeRooms procedure used for the WHILE example on page 2-174. The
following example illustrates a different way of achieving the same results.)

CREATE PROCEDURE LargeRooms2

(IN NumRooms INT(4), OUT TotalCapacity INT(4));

BEGIN

DECLARE counter INT(2) = 0;

DECLARE CurrentCapacity INT(4) = 0;

DECLARE cRooms CURSOR

 FOR SELECT Capacity

 FROM Room

 ORDER BY Capacity DESC;

OPEN cRooms;

SET TotalCapacity = 0;

FETCH_LOOP:

 LOOP

    FETCH NEXT FROM cRooms

      INTO CurrentCapacity;

    IF (SQLSTATE = '02000' OR counter = NumRooms)

      THEN

      LEAVE FETCH_LOOP;

    END IF;

    SET counter = counter + 1;

    SET TotalCapacity = TotalCapacity +

      CurrentCapacity;

 END LOOP;

CLOSE cRooms;

END;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

OPEN (cursor)
OPEN cursor_name

The OPEN (cursor) statement opens a cursor.

Rules for Opening a Cursor
The following rules apply to opening cursors:

• The cursor specified by cursor name must not already be open when you issue the OPEN statement.

• As a result of executing an OPEN cursor statement, the current position of the cursor is before the first row
of the table.

• All table, column, and variable references in the cursor declaration of a cursor must be valid when you
execute the OPEN statement for the cursor.

• If a cursor is opened inside a procedure, and it is not closed before the procedure execution is finished, the
cursor is implicitly closed at the end of the procedure.

Example

The following example opens the declared cursor BTUCursor.

DECLARE BTUCursor CURSOR

FOR SELECT Degree, Residency, Cost_Per_Credit

FROM Tuition

ORDER BY ID;

OPEN BTUCursor;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

RELEASE SAVEPOINT
RELEASE SAVEPOINT savepoint_name

To delete a savepoint, use the RELEASE SAVEPOINT statement.

The savepoint name must refer to a currently active savepoint in the current transaction.

If a procedure executes without releasing or rolling back a savepoint declared inside it, Scalable SQL automatically
releases all savepoints declared within it. Therefore, a reference to the savepoint in a procedure that follows is not
valid.

Example

The following example releases the savepoint SP1. For a full example of a transaction that uses the RELEASE
SAVEPOINT statement, refer to page 2-115.

RELEASE SAVEPOINT SP1;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

RESIGNAL
RESIGNAL [signal_value]

where

signal_value ::=

< condition_name | SQLSTATE [VALUE]
character_string_literal >

The RESIGNAL statement allows you to resignal an exception condition or a completion condition other than
successful completion. You use this statement in conjunction with declared conditions and declared handlers.

When a handler executes, the statements within it affect the SQLSTATE value in the same way as statements in the
main body of the compound statement. However, a handler that is intended to take specific action for a specific
condition can optionally leave that condition unaffected, by resignalling that condition at its conclusion. This does not
cause the handler to be reinvoked; that would cause a loop. Instead, Scalable SQL treats the exception condition as
an unhandled exception condition, and execution stops.

Rules for Using the RESIGNAL Statement
The following rules apply to using the RESIGNAL statement:

• A RESIGNAL statement can only occur in a handler action or in a procedure that a handler invokes.

• If you specify the signal value as a condition name, you must declare the condition name in the scope of this
statement with a DECLARE CONDITION statement.

• If you do not specify a signal value, the statement terminates the handler by resignalling the condition which
originally caused the handler to be entered. This effectively allows the handler to remember the condition for
which it was entered.

• If you specify the signal value, the statement has exactly the same effect as SIGNAL; i.e., it raises the
specified exception condition or completion condition by setting the value of SQLSTATE to the specified
character string literal or to the value associated with the condition name.

Examples

The following is an example of the RESIGNAL statement.

RESIGNAL Cond1

Any successful statement sets SQLSTATE back to the success value. So, even though the exit handler was signalled
with a '02000', the successful completion of the handler causes the success value to be set and thus to be returned to
the caller of this procedure.

The purpose of the RESIGNAL statement is to preserve an original SQLSTATE value after an attempt to handle the
condition has changed the SQLSTATE value, either by failing or succeeding. Use of the RESIGNAL statement in the
handler below causes the '02000' value to propagate back to the caller, thus indicating the cause of the exit.

CREATE PROCEDURE LargeRooms3

(IN NumRooms INT(4), OUT TotalCapacity INT(4));

BEGIN

DECLARE counter INT(2) = 0;

DECLARE CurrentCapacity INT(4) = 0;

DECLARE tempCapacity INT(4) = 0;

DECLARE cRooms CURSOR

 FOR SELECT Capacity

 FROM Room

 ORDER BY Capacity DESC;

DECLARE endData CONDITION

 FOR SQLSTATE '02000';

DECLARE EXIT HANDLER FOR endData

 BEGIN

    SET TotalCapacity = tempCapacity;

    RESIGNAL;

 END;

OPEN cRooms;

SET TempCapacity = 0;

LOOP

 FETCH NEXT FROM cRooms

    INTO CurrentCapacity;

 IF (counter = NumRooms) THEN

    SIGNAL endData;

 END IF;

 SET counter = counter + 1;

 SET tempCapacity = tempCapacity +
CurrentCapacity;

END LOOP;

CLOSE cRooms;

END

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

REVOKE (access rights)
REVOKE < < ALL | INSERT | DELETE | ALTER |
REFERENCES >

| < SELECT | UPDATE > [column_name_list]

>

ON table_name_list FROM user_list

where

column_name_list ::= column_name [, column_name]
...

table_name_list ::= table_name [, table_name] ...

user_list ::= < user_name | group_name | PUBLIC >

[, < user_name | group_name >] ...

The REVOKE (access rights) statement allows you to remove a group’s or user’s access rights on the specified
tables. To revoke access rights, specify the keyword for the right to remove, and a table name or list of table names.
You can use a column_name list to revoke the Select or Update right on specific columns within a table. For
information about the access rights All, Insert, Delete, Alter, References, Select, and Update, refer to ”GRANT
(access rights)” on page 2-84.

Include a FROM clause to specify the group or user from whom you are revoking rights. You can specify a single
name or a list of names, or you can include the PUBLIC keyword to revoke access rights from all users whose rights
are not explicitly assigned.

When you revoke access rights from a group or user at a particular level, that group or user retains access at all
lower levels.

 Note: Scalable SQL commits the changes specified in a REVOKE (access
rights) statement upon successful execution of the statement. Even if you include
the statement in a transaction, you cannot roll back the changes from the
statement.

You must revoke the Alter right on a table before you can restrict a user’s rights on columns in that table.

Examples

Issue the following statement to assign user Sarah the Insert right (which includes the Select, Update, and Delete
rights) to the Person table:

GRANT INSERT ON Person TO sarah;

To revoke Sarah’s Select right on the ID column, use the following REVOKE statement:

REVOKE SELECT ID ON Person FROM sarah;

After you issue this REVOKE statement, Sarah no longer has the Insert or Delete right on the table, but she retains
the Update and Select rights for all columns in the table except ID.

The following statement revokes from user George the right to create foreign keys that refer to the tables Billing and
Tuition:

REVOKE REFERENCES ON Billing, Tuition FROM George;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

REVOKE CREATETAB
REVOKE CREATETAB FROM user_list

where

user_list ::= < user_name | group_name | PUBLIC >

[, < user_name | group_name >] ...

The REVOKE CREATETAB statement allows you to revoke the right of one or more groups or users to create tables
in a dictionary. Include a FROM clause to specify the user or group names. You can include the PUBLIC keyword in
the FROM clause to revoke the Create Table right from all the users to whom the right was not explicitly assigned.

 Note: Scalable SQL commits the changes specified in a REVOKE
CREATETAB statement upon successful execution of the statement. Even if you
include the statement in a transaction, you cannot roll back the changes from the
statement.

Example

The following statement revokes the Create Table right from users John and Carol:

REVOKE CREATETAB FROM John, Carol;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

REVOKE LOGIN
REVOKE LOGIN FROM user_name [, user_name] ...

The REVOKE LOGIN statement allows you to revoke the Login right from a user (to remove a user from the
dictionary). As long as security is active, that user can no longer access any tables defined in the dictionary.

You must also use a REVOKE LOGIN statement when removing a user from a group. You begin by revoking the
user’s Login right; you then issue a GRANT LOGIN statement to recreate the user without a group assignment.

 Note: Scalable SQL commits the changes specified in a REVOKE LOGIN
statement upon successful execution of the statement. Even if you include the
statement in a transaction, you cannot roll back the changes from the statement.

Example

The following statement revokes the Login right from user Susan:

REVOKE LOGIN FROM Susan;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

ROLLBACK WORK
ROLLBACK [WORK] [AND [NO] CHAIN] [
savepoint_clause]

where

savepoint_clause ::= TO SAVEPOINT savepoint_name

The ROLLBACK WORK statement allows you to undo all the changes made to your database since the beginning of
a transaction, leaving your database in the state it was in before the transaction began. When you issue this
statement, the keyword WORK is optional, and a SQL transaction must be active.

Rules for Using the ROLLBACK WORK Statement
The following rules apply to using the ROLLBACK WORK statement:

• If you do not specify AND CHAIN, the default is AND NO CHAIN.

• If you do not specify a savepoint clause, the following conditions occur:

• All changes made during the current transaction are cancelled.

• All savepoints defined during the current transaction are destroyed.

• All open cursors are closed.

• The current transaction is terminated.

• If you specify AND CHAIN, a new transaction is issued.

• If you do specify a savepoint clause, the following rules apply:

• The savepoint name must specify a currently active savepoint in the current SQL transaction.

• Any changes made during the current transaction after establishing the specified savepoint are
cancelled.

• Any additional savepoints established subsequent to the savepoint identified in the savepoint name
during the current transaction are deleted.

• All cursors opened after you establish the savepoint are closed.

• All cursors opened before you establish the savepoint remain open.

• If you specify a savepoint clause, you cannot specify the AND CHAIN option.

 Note: If you start a transaction and then log out of the dictionary before issuing
a COMMIT WORK or ROLLBACK WORK statement, Scalable SQL
automatically issues a ROLLBACK WORK statement before completing the
logout.

Examples

The following statement undoes the changes made to the database since the beginning of a transaction.

ROLLBACK WORK;

The following statement undoes the changes made to the database since the last savepoint.

ROLLBACK TO SAVEPOINT SP1;

For a full example of a transaction that uses the ROLLBACK TO SAVEPOINT statement, see the SAVEPOINT
example on page 2-115.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SAVEPOINT
SAVEPOINT savepoint_name

Use the SAVEPOINT statement to establish a savepoint. Savepoints are markers in a SQL transaction. Using
savepoints allows you to undo a partial set of changes in a transaction and continue with additional changes before
requesting the final commit or abort of the entire transaction.

Rules for Creating Savepoints
The following rules apply to creating savepoints.

• The savepoint name must conform to the rules of an identifier. Refer to the Database Design Guide for more
information about naming database elements.

• You can only use the SAVEPOINT statement if a SQL transaction is currently active. See “START
TRANSACTION” for more information about transactions.

• If you use a savepoint name that is associated with a currently active savepoint in the current SQL
transaction, Scalable SQL returns Status Code 892 (invalid savepoint specification).

• The MicroKernel allows each transaction a total of 255 internal nesting levels. However, Scalable SQL uses
some of these levels internally to enforce atomicity on INSERT, UPDATE, and DELETE statements.
Therefore, a session can effectively define no more than 253 savepoints to be active at one time. This limit
may be further reduced by triggers that contain additional INSERT, UPDATE, or DELETE statements. If your
operation reaches this limit, you must reduce the number of savepoints or the number of atomic statements
contained within it.

Example

This example enrolls a student, student, into a class classNum. Because the first section of the class may be full, this
example uses a stored procedure that checks for alternate sections in which to enroll the student. To do so, the
stored procedure follows these steps:

1. Establish a savepoint, SP1.

2. Insert the record into the Enrolls table.

3. Determine the current enrollment for the class by assigning the result of a query to currentEnrollment.

4. Obtain the maximum size for the class and assign this value to 'maxEnrollment'.

5. Compare this to the maximum size for the class.

6. If the comparison fails, it rolls back to SP1. If the comparison succeeds, it releases SP1.

The calling program or procedure must issue a START TRANSACTION statement before invoking this procedure,
because savepoints are only permitted within a transaction. By the same token, however, the caller may issue a
COMMIT WORK, regardless of the outcome of this procedure, because no class is ever allowed to exceed its
enrollment limit.

CREATE PROCEDURE ENROLL_STUDENT

(student UNSIGNED(8), classNum INT(4));

BEGIN

DECLARE currentEnrollment INT(4);

DECLARE maxEnrollment INT(4);

SAVEPOINT SP1;

 INSERT INTO Enrolls

    VALUES (student, classNum);

 SET currentEnrollment =

    (SELECT COUNT (*) FROM Enrolls

    WHERE class_id = classNum);

 SET maxEnrollment =

    (SELECT Max_Size FROM Class

    WHERE ID = classNum);

 IF (currentEnrollment >= maxEnrollment) THEN

    ROLLBACK TO SAVEPOINT SP1;

 ELSE

    RELEASE SAVEPOINT SP1;

 END IF;

END

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SELECT
SELECT [DISTINCT] < * | select_list >

FROM < table_name | view_name > [alias]

 [, table_name [alias]] ...

[WHERE restriction_clause]

[GROUP BY control_column_list]

[HAVING aggregate_value_restriction_clause]

[ORDER BY < column_reference | position > [
DESC]

 [, < column_reference | position > [DESC] ...
]

select_list ::= select_term [, select_term] ...

select_term ::= < column_reference | expression

| aggregate_value_function > [AS item_name]

column_reference ::=

[column_qualifier.] column_name [[edit_mask]
]

column_qualifier ::= < table_name | view_name |
alias_name >

The SELECT statement allows you to retrieve data from the database. To specify the columns to retrieve, replace
select_list with one or more column names, expressions, or group aggregate functions, using commas to separate
the items. To retrieve all the columns in a table, you can specify an asterisk (*) instead.

A SELECT statement creates a temporary view. To save a view in order to recall it later, create the view using a
SELECT clause in a CREATE VIEW statement; Scalable SQL stores the view in the dictionary.

Example

The following SELECT statement retrieves all the data in the Person table:

SELECT * FROM Person;

The following statement retrieves only the first and last names from the Person table:

SELECT First_Name, Last_Name FROM Person;

DISTINCT
Include the DISTINCT keyword in your SELECT statement to direct Scalable SQL to remove duplicate values from
the result. By using DISTINCT, you can retrieve all unique rows that match the SELECT statement’s specifications.

The following rules apply to using the DISTINCT keyword:

• You can use DISTINCT in any statement that includes subqueries.

• The DISTINCT keyword is ignored if the selection list contains an aggregate; the aggregate guarantees that
no duplicate rows will result.

• The following usage of DISTINCT is not allowed:

SELECT DISTINCT column1, DISTINCT column2

Example

The following statement retrieves all the unique courses taught by Professor Beer (who has a Faculty ID of
111191115):

SELECT DISTINCT Name

FROM Course c, class cl

WHERE c.name = cl.name AND cl.faculty_id =
'111191115';

The result of the query is as follows:

Course

CHE203

CHE205

Select List
The select term in the select list can be a column reference or expression. Because session variable names, local
variable names, and column names can be the same, Scalable SQL uses the following order of precedence to
determine the intent of the name:

1. Local variable names

2. Session variable names

3. Column names

For example, if you issue the statement SELECT C FROM T and C designates both a local variable and a column,
Scalable SQL returns the value of the local variable C. Similarly, if C designates both a session variable and a local
variable, Scalable SQL returns the value of the local variable.

To avoid naming conflicts with local and session variable names, you can use a qualified column name, as in the
statement SELECT T.C FROM T.

AS
Include an AS clause to assign a name to a select term. You can use this name elsewhere in the statement to

reference the select term. When you use the AS clause on a non-aggregate column, you can reference the name in
WHERE, ORDER BY, GROUP BY, and HAVING clauses. When you use the AS clause on an aggregate column, you
can reference the name only in an ORDER BY clause.

The name you define must be unique in the SELECT list.

Example

The AS clause in the following statement instructs Scalable SQL to assign the name Total to the select term SUM
(Amount_Paid) and order the results by the total for each student:

SELECT Student_ID, SUM (Amount_Paid) AS Total

FROM Billing

GROUP BY Student_ID

ORDER BY Total

FROM
Include a FROM clause to specify the table or view to query. The valid syntax for a FROM clause is as follows:

FROM < table_name | view_name > [alias]

[, table_name [alias] ...]

You can specify a single table or view, multiple tables, or a single view and multiple tables. When you specify more
than one table in a FROM clause, the tables are said to be joined. For more information about joins, see the
Database Design Guide.

If you are retrieving data from a view, you can apply restriction conditions to the query just as you would if you were
querying a table. However, any restrictions you defined when you created the view apply in addition to the restrictions
you specify in the SELECT statement.

You can assign an alternate name, or alias, to the view or tables from which you are retrieving data. When you refer
to the view or tables elsewhere in the SELECT statement, you can use the alias instead of the actual table or view
name. For example, you can assign a short name to a table and use that short name to qualify column names in the
select list, in a WHERE clause, or in an ORDER BY clause.

Example

The FROM clause in the following statement instructs Scalable SQL to retrieve data from both the Person table and
the Faculty table, using the aliases p and f to distinguish between the two tables:

SELECT p.id, f.salary

FROM Person p, Faculty f

WHERE p.id = f.id;

WHERE
Include a WHERE clause in your SELECT statement to define one or more search criteria that qualify the data
returned. The valid syntax for a WHERE clause is as follows:

WHERE < Boolean_value_expression | expression
relational_operator

 [< ALL | ANY | SOME >] subquery

| expression [NOT] IN subquery

| [NOT] EXISTS subquery

>

Boolean_value_expression ::= condition

[Boolean_operator condition] ...

condition ::= expression < relational_operator |
range_operator >

expression

expression ::= < column_reference | constant |
scalar_function >

[expression_operator

 < column_reference

 | constant

 | scalar_function

 >] ...

column_reference ::= [column_qualifier.]
column_name

column_qualifier ::= < table_name | view_name |
alias >

You can also use a WHERE clause in UPDATE and DELETE statements.

A restriction clause can define restriction conditions, join conditions, or both:

• A restriction condition compares an expression that references a column value either to a constant or to
another expression that references a column value in the same table.

• A join condition compares an expression that references a column value from one table to an expression
that references a column value from another table.

A restriction clause can also contain a SELECT subquery that allows you to base search criteria on the contents of
other tables in the database. For information about how to include a subquery in a WHERE clause, refer to
”Subqueries” on page 2-125.

Expressions

An expression can be a numeric value, a string, or any operation that evaluates to a numeric value or a string. The
following rules apply to Scalable SQL expressions:

• The maximum length of a Scalable SQL expression is limited only by available memory.

• You must enclose strings in single quotes.

• You must enter all values as ASCII values.

• Parentheses define the precedence of operations in an expression. If none of the operations in the
expression are enclosed within parentheses, Scalable SQL evaluates the expression according to ANSI
standards.

Arithmetic precedence is as follows:

b. Unary operator

c. Modulo, division, multiplication, append, and integer division

d. Addition, subtraction, concatenate, and concatenate with spaces

Boolean precedence is as follows:

a. AND

b. OR

Operators of the same precedence cause left to right evaluation of the affected expressions, as follows:

10 - 10 + 3 is evaluated the same as (10 - 10) + 3

• With the IN and NOT IN keywords, the second expression can be a subquery instead of a numeric value, a
string, or an operation that evaluates to a numeric value or a string. (See ”Subqueries” on page 2-125.)

• You must specify constant values using a default input format. (For more information about default input
formats, refer to Appendix A, “Data Types.”) For data types INTEGER, AUTOINC, and UNSIGNED, Scalable
SQL rounds constants to the nearest whole number value. For data types DATE and TIME, Scalable SQL
does not implicitly align the constant to any default input format; therefore, embedded blanks are important.

• Constants can be either the operand of a cast expression or a direct operand of a non-cast expression.
When the constant is the operand of a cast expression, Scalable SQL interprets the value according to the
mask and data type specified for the CAST expression that contains the constant. Otherwise, Scalable SQL
interprets the value according to a default input format for the target data type.

• If an expression contains a substitution variable, then the constant subsequently assigned to the substitution
variable has the same requirements as a constant that would appear at the same position in the expression.

 Note: In some cases, Scalable SQL determines a value to be of a certain type,
such as a DATE constant or NULL value, and attempts to use the value as
interpreted. If the attempt fails, Scalable SQL retries the value as a constant
string. To force the engine to interpret the value as a constant string on the first
attempt, enclose the value in single quotes.

• When you specify a WHERE clause using an application that supports substitution variables, you can use
substitution variables to specify constants.

For more information about expressions, refer to the Database Design Guide.

Operators

You can use three categories of operators in restriction clauses:

Boolean
operator

Connects two conditions within a restriction clause. The
Boolean operators are AND and OR.

Condition
operator

Applies to two expressions to form a condition. A condition
operator can be one of the relational operators (<, >, =, <=,
>=, <>, !=) or one of the range operators (IN, NOT IN,
BETWEEN, NOT BETWEEN, BEGINS WITH,
CONTAINS, NOT CONTAINS, IS NULL, IS NOT NULL,
LIKE, NOT LIKE).

Expression
operator

Applies to two expressions to form another expression. An
expression operator can be one of the arithmetic operators
(+,
–, * /, //, %) or one of the string operators (*, +, ++).

For more information about using operators in restriction clauses, refer to the Database Design Guide.

Subqueries

To base search criteria on the contents of a table other than the table you are querying, include a SELECT subquery
in the WHERE clause.

 Note: You can include a subquery in the WHERE clause of a SELECT,
UPDATE, or DELETE statement, or in the HAVING clause of a SELECT
statement. However, HAVING clauses cannot contain correlated subqueries.

The following rules apply when you create a subquery:

• You must enclose the subquery in parentheses.

• Unless you use the EXISTS or NOT EXISTS keyword in the WHERE clause of the outer query, the select list
of the subquery can contain only one column name expression.

• The subquery cannot contain the UNION keyword.

Scalable SQL processes the subquery first and passes the results to the outer query, except in the case of correlated
subqueries. A correlated subquery contains a WHERE or HAVING clause that references a table from the outer
query’s FROM clause. Use a correlated subquery to do either of the following:

• To test the results that a subquery returns against the results that the outer query returns.

• To test for the existence of a particular value in a query.

When you issue a statement with a correlated subquery, Scalable SQL tests the subquery against the result of each
row being evaluated by the outer query. The statement returns a row only if the specified correlation exists between
the returned values of the subquery and those of the outer query.

Scalable SQL allows you to nest several levels of subqueries in a statement. The amount of memory available to
Scalable SQL determines the number of subqueries you can nest in a single statement.

The way Scalable SQL processes a statement containing a subquery depends on how you specify the subquery in
the WHERE clause. If you precede the subquery with an expression and a relational operator, you can use the ALL,
ANY, and SOME keywords to affect the result. Alternatively, you can precede the subquery with EXISTS or NOT
EXISTS, or with an expression and the IN or NOT IN operator.

ALL

When you specify the ALL keyword before a subquery, Scalable SQL performs the subquery and uses the result to
evaluate the condition in the outer query. If all the rows the subquery returns meet the outer query’s condition for a
particular row, Scalable SQL includes that row in the final result table of the statement.

Generally, you can use the EXISTS or NOT EXISTS keyword instead of the ALL keyword.

The following SELECT statement compares the ID column from the Person table to the ID columns in the result table
of the subquery:

SELECT ID, Last_Name

FROM Person

WHERE ID <> ALL

 (SELECT ID FROM Faculty WHERE Dept_Name =
'Chemistry');

If the ID value from Person does not equal any of the ID values in the subquery result table, Scalable SQL includes
the row from Person in the final result table of the statement.

ANY and SOME

The ANY and SOME keywords are equivalent. They work similarly to the ALL keyword except that Scalable SQL
includes the compared row in the result table if the condition is true for any row in the subquery result table.

The following statement compares the ID column from Person to the ID columns in the result table of the subquery. If
the ID value from Person is equal to any of the ID values in the subquery result table, Scalable SQL includes the row
from Person in the result table of the SELECT statement.

SELECT ID, Last_Name

FROM Person p

WHERE p.id = ANY

 (SELECT ID FROM Faculty WHERE Dept_Name =
'Chemistry');

EXISTS and NOT EXISTS

Use the EXISTS keyword to test whether rows exist in the result of the subquery. For every row the outer query
evaluates, Scalable SQL tests for the existence of a related row from the subquery. Scalable SQL includes in the
statement’s result table each row from the outer query that corresponds to a related row from the subquery.

Conversely, the NOT EXISTS keyword allows you to test whether rows do not exist in the result of the subquery. For
every row the outer query evaluates, Scalable SQL tests for the existence of a related row from the subquery.
Scalable SQL excludes from the statement’s result table each row from the outer query that corresponds to a related

row from the subquery.

For example, the following statement returns a list containing only persons who have a 4.0 grade point average:

SELECT * FROM Person p WHERE EXISTS

(SELECT * FROM Enrolls e WHERE e.Student_ID = p.id

 AND Grade = 4.0);

The following statement returns a list of students who are not enrolled in any classes:

SELECT * FROM Person p WHERE NOT EXISTS

(SELECT * FROM Student s WHERE s.id = p.id

 AND Cumulative_Hours = 0);

IN and NOT IN

Use the IN operator to test whether the result of the outer query is included in the result of the subquery. The result
table for the statement includes only rows the outer query returns that have a related row from the subquery.

Conversely, the NOT IN operator allows you to test whether the result of the outer query is not included in the result
of the subquery. The result table for the statement includes only rows the outer query returns that do not have a
related row from the subquery.

For example, the following statement lists the names of all students who have taken Chemistry 408:

SELECT First_Name * Last_Name

FROM Person p, Enrolls e

WHERE (p.id = e.student_id)

AND (e.class_id IN

 (SELECT ID FROM Class WHERE Name = 'CHE 408'));

Scalable SQL first evaluates the subquery to retrieve the ID for Chemistry 408 from the Class table. It then performs
the outer query, restricting the results to only those students who have an entry in the Enrolls table for that course.

The preceding query returns these results:

Person.First_Name * Person.Last_Name

Erik Domaas

Cathy Duda

Dana Dyer

Herbert Eburne

Richard Egyud

Lee Ragin

William Rejincos

Craig Rideau

Ladislao Ruksenas

Rebecka Ryiz

Fabian Ipock

Bruno Ippolite

Ernest Ipsen

Donald Ittner

Tarmo Jaaskelainen

Often, you can perform IN queries more efficiently using either the EXISTS keyword or a simple join condition with a
restriction clause. Unless the purpose of the query is to determine the existence of a value in a subset of the
database, it is more efficient to use the simple join condition because Scalable SQL optimizes joins more efficiently
than it does subqueries.

GROUP BY
Include a GROUP BY clause to group rows and determine the aggregate values for one or more columns in the
group. The valid syntax for a GROUP BY clause is as follows:

GROUP BY control_column_list

control_column_list ::= < column_reference |
position >

[, < column_reference | position > ...]

column_reference ::= [column_qualifier.]
column_name

column_qualifier ::= < table_name | view_name |
alias >

The aggregate values you can calculate for a column are minimum (MIN), maximum (MAX), average (AVG), sum
(SUM), or count (COUNT). For information about using the group aggregate functions, refer to ”Group Aggregate
Functions” on page 2-135.

In the GROUP BY clause, specify one or more control columns (the columns by which to group rows). You must also
specify the control columns in the select list of the statement. Otherwise, Scalable SQL returns Status Code 827.

You can specify a control column in either of two ways:

• Specify the name of the column (qualified by the table name, view name, or alias, if necessary).

• Specify the column by its position in the view (based on where it appears in the select list). The column
positions are numbered from 1 to the number of columns returned in the view. The integer value you specify
must be in that range.

If the select list contains a computed column, you must use the column position (not the column name) to specify the
columns by which to group rows.

The select list must contain the name of any column you specified as a control column; all other select items in the list
must be aggregate value functions. Also, the control columns cannot be group aggregate functions (but they can be
computed columns).

You can apply the DISTINCT keyword to a group aggregate function. In response, Scalable SQL includes only the
unique occurrences of a value when it calculates the result.

Example

You can determine the number of classes per student and the grade average for each with the following statement:

SELECT p.ID, COUNT(e.Class_ID), AVG(Grade)

FROM Person p, Enrolls e

WHERE (p.ID = e.Student_ID)

GROUP BY p.ID;

The preceding example uses these aggregate value functions:

COUNT(e.Class_ID)

AVG(Grade)

The DISTINCT keyword in the following statement causes Scalable SQL to retrieve only unique occurrences of the
values in the Name column. Thus, the following statement retrieves the number of types of classes a faculty member
teaches.

SELECT COUNT (DISTINCT Name), Class.Faculty_ID

FROM Class

GROUP BY Faculty_ID;

HAVING
Use a HAVING clause in conjunction with a GROUP BY clause (see page 2-129) to limit your view to groups whose
aggregate values meet specific criteria.

 Note: Although you can specify a HAVING clause without a GROUP BY
clause, doing so causes Scalable SQL to treat the entire table as a single group.

The valid syntax for a HAVING clause is as follows:

HAVING aggregate_value_restriction_clause

aggregate_value_restriction_clause ::=

condition [< AND | OR > condition ...]

condition ::= aggregate_value_function <
relational_operator >

< value | subquery >

The value you specify for aggregate_value_restriction_clause can contain multiple conditions. The first expression in
a condition must be an aggregate value function. (For information about specifying an aggregate value function, see
”Group Aggregate Functions” on page 2-135.) The second expression can be a substitution variable, a string or
numeric constant, or a subquery. Although HAVING clauses can contain subqueries, they cannot contain correlated
subqueries.

Example

In the following statement, the HAVING clause limits the returned data to students who paid at least $100:

SELECT Student_ID, SUM(Amount_Paid)

FROM Billing

GROUP BY Student_ID

HAVING SUM(Amount_Paid) >= $100.00;

ORDER BY
Include an ORDER BY clause to specify the order in which Scalable SQL returns the rows you request. The valid
syntax for an ORDER BY clause is as follows:

ORDER BY < column_reference | position > [< ASC
| DESC >]

[, < column_reference | position > [< ASC |
DESC >]] ...

column_reference ::= [column_qualifier.]
column_name

column_qualifier ::= < table_name | view_name |
alias_name >

If you do not specify an ORDER BY clause, Scalable SQL returns the rows in an undefined order. This is because
Scalable SQL may change the order to optimize performance. An ORDER BY clause overrides any order Scalable
SQL may otherwise use.

You can specify the column or columns by which to order the resulting view in either of two ways:

• Specify the name of the column (qualified by the table name, view name, or alias, if necessary).

• Specify the column by its position in the view (based on where it appears in the select list). The column
positions are numbered from 1 to the number of columns returned in the view. The integer value you specify
must be in that range.

• If the ORDER BY clause is part of a SELECT clause in a union, or if the select list contains a
computed column, you must use the column position (not the column name) to specify the columns
by which to order rows.

• The ORDER BY clause is ignored in all SELECT clauses except the last SELECT in the union. If
the ORDER BY clause in the last SELECT clause contains a column name rather than a column
position, then Scalable SQL returns Status Code 859.

When you specify an ORDER BY clause, its effect on performance depends on the table’s defined indexes.

If the column is not defined as an index, Scalable SQL must build a temporary sort file to contain the new index. In
this case, there may be a delay before Scalable SQL returns the row you request, depending on the total size of your
data file. For any column you specify in an ORDER BY clause, you have the option of sorting the column in
ascending (ASC) or descending (DESC) order.

 Note: By default, an ORDER BY clause returns rows in ascending order, even if
the index is in descending order. Specify the DESC keyword to retrieve rows in
descending order.

Examples

The following statement returns a list of classes ordered by their instructor’s name. All the classes of one instructor
are listed, followed by all the courses of another instructor, and so forth.

SELECT DISTINCT Name, First_Name +' ' + Last_Name

FROM Class c, Person P

WHERE c.Faculty_ID = p.ID

ORDER BY Faculty_ID;

The next statement further sorts the data obtained by the preceding statement so that the courses for each instructor
appear in alphabetic order:

SELECT DISTINCT Name, First_Name +' ' + Last_Name

FROM Class c, Person P

WHERE c.Faculty_ID = p.ID

ORDER BY Faculty_ID, Name;

The following statement uses the DESC keyword to list classes, beginning with the highest in credit hours:

SELECT Name, Description, Credit_Hours

FROM Course

ORDER BY Credit_Hours DESC;

You can specify a sort column by giving its position in the select list. Thus, the following two statements produce the
same result table, because Credit Hours is the third column in the select list:

SELECT Name, Description, Credit_Hours

FROM Course

ORDER BY Credit_Hours DESC;

SELECT Name, Description, Credit_Hours

FROM Course

ORDER BY 3 DESC;

Specifying a sort column by giving its position in the select list is essential if the select item on which to sort is not a
column name. For example, the following statement retrieves people’s names in alphabetic order, by full name:

SELECT Last_Name ++ ', ' * First_Name

FROM Person

ORDER BY 1;

Group Aggregate Functions
The group aggregate functions allow you to determine the minimum (MIN), maximum (MAX), average (AVG), sum
(SUM), or count (COUNT) of one or more columns. You can use a group aggregate function in a selection list or in a
HAVING clause. For general information about using group aggregate functions, see the Database Design Guide.

AVG

AVG (< [DISTINCT] column_name | expression >)

Use the AVG function in a SELECT statement to calculate the average value of a column containing numeric values,
or the average value of a numeric expression. If you include the DISTINCT keyword, Scalable SQL calculates the
average of distinct values only.

Example

The following statement finds the average grade of students:

SELECT AVG (Grade) FROM Enrolls;

COUNT

COUNT ([DISTINCT] column_name)    or COUNT (*)

Use the COUNT function in a SELECT statement to count the number of values in the specified column. When you
use the DISTINCT keyword with the COUNT function, Scalable SQL does not include duplicate values in the result.

If you use COUNT (*) in a selection list, Scalable SQL counts all the rows in the result table. However, if the SELECT
statement contains a GROUP BY clause and you include COUNT (*) in the selection list, Scalable SQL counts all the
values in the column specified in the GROUP BY clause.

Example

The following statement finds the number of different departments listed in the Course table:

SELECT COUNT (DISTINCT Dept_Name) FROM Course;

The result of this statement is 22.

MAX

MAX (< column_name | expression >)

You can use the MAX function in a SELECT statement to determine the largest value in a column or expression.

Example

The following statement finds the highest outstanding balance:

SELECT MAX (Amount_Owed) FROM Billing;

The result of this statement is $6000.00.

MIN

MIN (< column_name | expression >)

You can use the MIN function in a SELECT statement to determine the smallest value in a column or expression.

Example

The following statement finds the lowest outstanding balance:

SELECT MIN (Amount_Owed)

FROM Billing;

The result of this statement is $1200.00.

SUM

SUM (< [DISTINCT] column_name | expression >)

You can use the SUM function in a SELECT statement to calculate the sum of the values in a column containing
numeric values, or the sum of the values of a numeric expression. If you include the DISTINCT keyword, Scalable
SQL calculates the sum of distinct values only.

Example

The following example determines the total amount of money each student has paid:

SELECT Student_ID, SUM (Amount_Paid)

FROM Billing

GROUP BY Student_ID;

Combining Multiple Queries with UNION
The UNION keyword allows you to obtain a single result table from multiple SELECT queries. The valid syntax is as
follows:

select_statement

UNION [ALL]

select_statement

[UNION [ALL]

select_statement ...]

You can combine the result of any legal SELECT clause with that of another legal SELECT clause, provided the
clauses return comparable columns.

If one of the SELECT clauses contains an ORDER BY clause, you must specify the ordering column by its position in
the selection list, not by its column name.

Scalable SQL uses the column names from the first query as the name of the result columns. For example, the result
of the following statement is a view of one column (all the values in Column1 and all the values in Column2); the
column name of the result column is Column1.

SELECT column1 FROM table1

UNION

SELECT column2 FROM table2

By default, the result column does not include duplicate values. Even if a value appears in more than one of the

columns you are combining, the value appears only once in the result column. To include duplicate values in the
result column, follow the UNION keyword with ALL.

Scalable SQL can create a result table of combined columns only if the SELECT clauses return comparable columns.
If you attempt to combine columns whose data types are not compatible, Scalable SQL returns Status Code 839.
Although the columns can be of different specific data types and sizes, their data types must be of the same category.
For example, you cannot combine a column that is a string data type (like LSTRING) with a column that is a numeric
data type (like MONEY).

Scalable SQL determines the format of the result column based on the characteristics of the columns you combine.
The following basic types of combinations are possible:

• Columns of the same data type and size.

• String columns with other string columns.

• Numeric columns with other numeric columns.

• Boolean columns with other boolean columns.

• Date columns with other date columns.

• Time columns with other time columns.

 Note: Scalable SQL can apply an edit mask to the result column only if the
mask is defined in the first SELECT clause in the union. Scalable SQL ignores
an edit mask specified in any SELECT clause other than the first.

Combining Same Type and Size Columns

If the columns you are combining are of the same type and size, the result column has that type and size, too.

If the columns you are combining are of type MONEY, DECIMAL, NUMERIC, NUMERICSA, or NUMERICSTS, they
must also have the same number of decimal places. If they do not, the result column’s size is determined using the
formula discussed in “Determining the Size of the Result Column” .

Examples of Combining Same Type and Size Columns

The following examples use the tables in the sample database.

Unions with Distinct Rows

The following statement lists the ID numbers of each student whose last name begins with M or who has a 4.0 grade
point average. The result table does not include duplicate rows.

SELECT ID FROM Person WHERE Last_Name begins with 'M'

UNION SELECT ID FROM Student WHERE Cumulative_GPA
= 4.0;

The following statement lists the names of all classes that begin with P or that were taught by Professor Vugrinac
(Faculty_ID = 193644951). Scalable SQL orders the result table by the first column in the result table (the Name
column) and does not include duplicate rows.

SELECT Name FROM Class WHERE Faculty_ID =
'193644951'

UNION SELECT Name FROM Class WHERE Name BEGINS
WITH 'P' ORDER BY 1;

Union with Duplicate Rows

The following statement also lists the names of all classes that begin with P or that were taught by Professor Vugrinac
(Faculty_ID = 193644951). However, because the statement includes the ALL keyword, the result table includes
duplicate rows.

SELECT Name FROM Class WHERE Faculty_ID =
'193644951'

UNION ALL

 SELECT Name FROM Class WHERE Name BEGINS WITH 'P'
ORDER BY 1;

Combining String Type Columns

The string data types are divided into two groups: fixed length (CHARACTER, LSTRING, ZSTRING), and variable
length (LVAR and NOTE). Scalable SQL combines columns of these data types as follows:

• If all the columns you are combining are of variablelength string types, the result column has the type, size,
and mask of the column that contains the longest data item.

• If one of the columns is variable length, the result column has the type of the variablelength column, and it
has the size and mask of the column that contains the longest data item.

• If none of the columns are variable length, the result column has the type and size of the longest column.

Combining Numeric Type Columns

The numeric data types are divided into three groups: integer (AUTOINC and INTEGER), decimal (DECIMAL,
NUMERIC, NUMERICSA, NUMERICSTS, and MONEY), and float (FLOAT and BFLOAT). Scalable SQL allows you
to combine columns of these data types as follows:

• If the data types of all the columns you are combining are of the integer group, the result column has the
same type, size, and mask as the largest column.

• If all the columns’ data types are of the FLOAT group, the result column has the same type, size, and mask
as the largest column.

• If the columns are of different types and one column’s data type is of the FLOAT group, the result column
has that column’s type, size, and mask.

• If the data type of one column is of the DECIMAL group and the data type of another column is of the
INTEGER group, the result column is of the same type as the DECIMAL column. The result column’s size
and mask are based on the sizes of the columns you are combining.

• If all the columns’ data types are of the decimal group, the result column’s size, type, and mask are
determined as described in the following sections, “Determining the Size of the Result Column” and
“Determining the Mask of the Result Column” .

Determining the Size of the Result Column

In some cases, Scalable SQL must calculate the size of the result column based on the types and sizes of the
columns you are combining. This occurs in either of the following situations:

• When you are combining columns whose data types are of the decimal group but whose sizes are different.

• When you are combining a column whose data type is of the decimal group with one whose data type is of
the integer group.

The result column must be large enough to contain the largest possible number of digits to the left and right of the
decimal point in all columns. In addition, Scalable SQL limits the length of the result column to 19 digits. Scalable
SQL uses a formula to determine the exact size of the result column so that it meets these constraints.

In the formula, precision is the total number of digits possible in the column, and scale is the number of digits to the
right of the decimal point. Consequently, the number of digits to the left of the decimal point is precision minus scale.
The formula uses these variables:

p1 Precision of the first column you are combining.

p2 Precision of the second column you are combining.

p3 Precision of the result column.

s1 Scale of the first column you are combining.

s2 Scale of the second column you are combining.

s3 Scale of the result column.

The formula is as follows:

IF (maximum (p1 – s1, p2 – s2) + maximum (s1, s2
)) <= 19

 p3 = maximum (p1 – s1, p2 – s2) + maximum (s1,
s2)

 s3 = maximum (s1, s2)

ELSE

 p3 = 19

 s3 = 19 – maximum (p1 – s1, p2 – s2)

Using this formula, the result column has a size of (p3/2 + 1), with s3 decimal places.

Determining the Mask of the Result Column

The mask Scalable SQL uses for the result column varies depending on the data types of the columns you are
combining and certain characteristics of the result column. For example, assume Scalable SQL combines two
columns whose data types are of the decimal group:

• If the result column has the same size and number of decimal places as one of the two columns, the result
column has the same type and mask as that column.

• If the result column does not have the same size and number of decimal places as one of the two columns,
the result column has the same type and mask as the column that has the largest number of places to the
left of the decimal point.

In contrast, if Scalable SQL combines a column whose data type is of the decimal group with a column whose data
type is of the integer group, the following rules apply:

• If the number of places to the left of the decimal point in the result column is the same as that for the decimal
type column, the result column has the decimal type column’s mask.

• If the number of places to the left of the decimal point in the result column is not the same as that for the
decimal type column, the result column uses the default mask for its data type.

Combining Boolean Type Columns

The Boolean data types are LOGICAL and BIT. Scalable SQL combines columns of these data types as follows:

• If one column is LOGICAL and one is BIT, the data type of the result column is LOGICAL, and the result
column has the same size and mask as the LOGICAL type column.

• If both columns are LOGICAL, the result column has the same size and mask as the larger of the columns
you are combining.

• If both columns are BIT, the result column has the same mask as the column returned by the first query of
the union.

Combining Date and Time Columns

If one of the columns you are combining is of type DATE or TIME, the other columns must be of the same type and
size. Otherwise, Scalable SQL returns a Status Code 839.

Examples of Combining Comparable Columns

The examples in this section use the following tables:

Table 1

Int2 (2 bytes) Zstring11 (11 bytes) Zstring15 (15 bytes) Float8 (8 bytes)

1 zstring11a zstring15a 1.11000E+000

2 zstring11b zstring15b 2.22000E+000

3 zstring11c zstring15c 3.33000E+000

Table 2

Float4 (4 bytes) Char15 (15 bytes) Char11 (11 bytes) Decimal104 (10 bytes)

1.110000E+00 char15a char11a 4.44400

2.220000E+00 char15b char11b 5.55500

3.330000E+00 char15c char11c 6.66600

Union Combining Comparable Data Types

The following union combines several comparable data types:

SELECT * FROM table1

UNION

SELECT * FROM table2

The result table for this union is as follows:

Int2

float (4 bytes)

Zstring11
character (15 bytes)

Zstring15
zstring (15 bytes)

Float8
float (8 bytes)

1.000000E+00 zstring11a zstring15a 1.110

1.110000E+00 char15a char11a 4.444

2.000000E+00 zstring11b zstring15b 2.220

2.220000E+00 char15b char11b 5.555

3.000000E+00 zstring11c zstring15c 3.330

3.330000E+00 char15c char11c 6.666

 Note: Scalable SQL uses the column names from the first query in the union as
the column names in the result table.

The statement combines Table1.Int2 with Table2.Float4, Table1.Zstring11 with Table2.Char15, and so forth. The result
table demonstrates the following:

• When combining the Int2 column and the Float4 column, Scalable SQL converts the data from the Int2
column to type FLOAT, size 4.

• When combining the Zstring15 column and the Char11 column, Scalable SQL converts the data from the
Char11 column to type ZSTRING, size 15 because the longer string column determines the type and size of
the result. For the same reason, Scalable SQL changes the format of data in the Zstring11 column to
CHARACTER, size 15.

• When combining the Float8 column and the Decimal104 column, Scalable SQL converts the data from the
Decimal104 column to type FLOAT, size 8.

• Scalable SQL displays the results using the default masks for the Float4, Char15, Zstring15, and Float8
columns.

Union Using Defined Masks

The union in this example combines columns and uses a mask for one of the columns:

SET MASK table1.FLOAT8 = 'ZZZZ.ZZZ';

SELECT FLOAT8 FROM table1

UNION

SELECT DECIMAL104 FROM table2;

The result table combines the data from both tables and displays it using the mask for Table1.FLOAT8:

FLOAT8

1.110

2.220

3.330

4.444

5.555

6.666

Union Showing an Integer-to-Decimal Conversion

The following statement combines Table1.FLOAT8 with Table2.FLOAT4, and Table1.INT2 with Table2.DECIMAL104:

SELECT FLOAT8, INT2 FROM table1

UNION SELECT FLOAT4, DECIMAL104 FROM table2

The result table is as follows:

FLOAT8 INT2

1.110 1.0000

2.220 2.0000

3.330 3.0000

1.110 4.4440

2.220 5.5550

3.330 6.6660

The result table demonstrates the following:

• When combining the FLOAT8 and FLOAT4 columns, Scalable SQL converts the data from the FLOAT4
column to type FLOAT, size 8.

• When combining the INT2 column and the DECIMAL104 column, Scalable SQL converts the data from the
INT2 column to type DECIMAL, size 10, with 4 decimal places.

• Scalable SQL displays the results using the FLOAT8 column’s defined mask and the DECIMAL104 column’s
default mask.

Union Using Temporary Edit Masks

The following union defines two temporary masks:

SELECT INT2 [ZZZZ.ZZZ], FLOAT8 FROM table1

UNION SELECT FLOAT4, DECIMAL104 [ZZZZ.ZZZZZ] FROM
table2

The result table is as follows:

INT2 FLOAT8

1.0000 1.110

2.0000 2.220

3.0000 3.330

4.4440 1.110

5.5550 2.220

6.6660 3.330

This table demonstrates the following:

• When combining the INT2 column and the FLOAT4 column, Scalable SQL converts the data from the INT2
column to type FLOAT, size 4. Scalable SQL displays the results using the temporary mask for INT2 instead
of the default mask for FLOAT4.

• Similarly, when combining the FLOAT8 column and the DECIMAL104 column, Scalable SQL converts the
data from the DECIMAL104 column to type FLOAT, size 8.

• Scalable SQL displays the result using the FLOAT8 column’s defined mask (set in “Union Using Defined
Masks”) instead of the temporary mask defined for DECIMAL104. The temporary mask for DECIMAL104
does not override FLOAT8’s defined mask, nor would it override FLOAT8’s default mask if FLOAT8 did not
have a defined mask. This is because the temporary mask must be defined in the first query of the union.

Read-Only Views
Generally, you can update and delete rows in views like those in a table. However, you cannot update or delete rows
in readonly views. A read-only view is one that contains data from a table that has been opened in readonly mode, or
one whose SELECT clause meets certain criteria (for more information about read-only views, refer to the).Database
Design Guide

The following rules apply to read-only views:

• If the open mode is Read Only due to executing a SET OPENMODE = READONLY statement, then you
cannot update the view.

• You cannot update a UNION.

• If an aggregate appears in the selection list, you cannot update the view.

 Note: If you specify GROUP BY or HAVING, an aggregate must appear in the
selection list.

• If the DISTINCT keyword is present, you cannot update the view.

• An INSERT, UPDATE, or DELETE statement cannot contain a system table. However, a subquery in the
statement may contain a system table. Tables in subqueries are not a target for an update in a statement.

• An INSERT, UPDATE, or DELETE statement cannot contain a non-mergeable stored view. For more
information about mergeable views, refer to the Database Design Guide.

• You cannot perform an operation on a table or column if you do not have the necessary rights.

Scalable SQL allows you to update views with the following characteristics:

• Contains a self join.

• Contains a cartesian product.

• Contains an inequality join condition.

• Contains a correlated subquery.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET
SET SQL_variable_name = < value_expression | NULL >

Use the SET statement to initialize or change the value of SQL variables.

The value expression may be a SELECT statement or a computed expression involving constants, operators, and
this or other SQL variables. For more information about computed expressions, refer to the Database Design Guide.

Example

The following example sets the variable Negative to either 1 or 0, depending on whether vInteger is a positive or
negative number.

IF (vInteger < 0) THEN SET Negative = '1'

ELSE SET Negative = '0'

END IF;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET CHAR
SET CHAR [table_name.] column_name =

< char_value [, char_value] ... | NULL >

where

char_value ::= < 'single_char' | char_range >

char_range ::= 'single_char' - 'single_char'

The SET CHAR statement allows you to define valid input characters for a string column. Unless you specify NULL,
Scalable SQL stores the definition in the X$Attrib system table.

When you issue a SET CHAR statement, specify the name of the column for which to define input validation criteria.
If the column name is unique in the dictionary, you can specify just the name. If the column name is used in more
than one table definition, be sure to qualify the column name in the following way:

table_name.column_name

Replace value with the string to define as valid input. You can specify a range or specific characters. Enclose each
value in single quotation marks; if you are specifying a range, enclose in quotation marks both characters that define
the range, and include a hyphen between them. If you specify multiple values, separate them with commas.

To remove a validation criteria from the dictionary, set the validation criteria for that column to NULL.

Example

The following statement specifies that only uppercase and lowercase alphabetic characters, the digits 0 through 9,
and the pound sign (#) are valid as input to the Address column:

SET CHAR Address = 'A'-'Z', 'a'-'z', '0'-'9', '#';

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET DATAPATH

 Note: This statement is provided for support of existing applications. New
applications should use database names to provide locations of files. See the
Database Design Guide for more information about database names.

SET DATAPATH = < 'pathname' | NULL >

The SET DATAPATH statement is valid only when you log in using a path, and not a named database.

The SET DATAPATH statement specifies the prefix to the file path that is defined for the data files in the dictionary. If
the definition of the data files in the dictionary does not contain a complete pathname to the files, use the SET
DATAPATH statement to specify a prefix to the file path. You can also specify a list of directories by separating each
prefix with a semicolon. Enclose the entire list in quotation marks.

If you set a data path, Scalable SQL sequentially searches through the directory list when it is locating a data file. If
you are creating a data file, Scalable SQL creates the file in the first directory listed in the SET DATAPATH statement.

When you specify NULL, Scalable SQL looks for the data files only in the current directory.

The SET DATAPATH statement is in effect only for the current login session. Scalable SQL does not store the new
path in the data dictionary.

Examples

The following examples illustrate the use of the SET DATAPATH statement:

SET DATAPATH = 'f:\bti\win\demodata';

SET DATAPATH = '\\servername\sys:demodata';

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET DATEFORMAT
SET DATEFORMAT [=] <format>

where

format ::= [mdy | myd | dmy | dym | ymd | ydm | NULL
| DEFAULT]

The SET DATEFORMAT statement allows you to change the default input and display format for DATE values. The
default input format is used to interpret DATE constants and DATE data values; the default display format is used to
display DATE constants and DATE data values for which there is no mask defined.

 Note: The SET DATEFORMAT statement changes the ordering of the three
DATE value parts: day, month, and year. This statement does not define masks
for date values. For information about defining masks, refer to “SET MASK” .

The format parameter is case-insensitive.

NULL and DEFAULT revert the input format to month, day, year and revert the display format to two-digit month, two-
digit day, and two-digit year. (For all other formats, the display format contains a four-digit year.)

All input values can include a two- or four-digit year value, a one- or two-digit month value, and a one- or two-digit day
value, regardless of the ordering you specify (even if you do not use the SET DATEFORMAT statement or if you
specify NULL or DEFAULT).

Example

To specify that all date values and date constants must indicate the year value, then the month value, and then the
day value, issue the following statement:

SET DATEFORMAT = ymd;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET DEFAULT
SET DEFAULT [table_name.] column_name = <
literal | NULL >

The SET DEFAULT statement allows you to define the value Scalable SQL uses for a certain column if you insert a
row without specifying a value for that column. Unless you specify NULL, Scalable SQL stores the definition in the
X$Attrib system table.

The values in SET DEFAULT statements can match either the column’s user-defined edit mask or the column’s data
type default mask, except in the case of types DATE, TIME, and TIMESTAMP. The values must match the column’s
user-defined edit mask for columns of type DATE, TIME, and TIMESTAMP.

When you issue a SET DEFAULT statement, specify the name of the column for which to define a default value. If the
column name is unique in the dictionary, you can specify just the name. If the column name is used in more than one
table definition, be sure to qualify the column name in the following way:

table_name.column_name

Replace value with the default value you want to define for the column. If you are specifying a default value for a
string type column, enclose the value in single quotes.

To cancel a previously defined default value, specify NULL instead of a value.

Example

To direct Scalable SQL to insert the characters TX into the State column if you do not specify another value in an
INSERT statement, issue the following statement:

SET DEFAULT Person.State = 'TX';

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET (global null value)
SET < STRINGNULL = 'single_char' | < BINARYNULL
| DECIMALNULL >

= numeric_literal >

The SET (global null value) statement allows you to specify a null value for a particular group of data types. You can
define the null value for all columns of certain data types. Scalable SQL does not store the setting in the dictionary;
the null value you specify is in effect only for the current login session.

Depending on the keyword you include in a SET (global null value) statement, Scalable SQL sets the null value as
follows:

• SET STRINGNULL defines a null value for all columns of data type CHARACTER.

• SET DECIMALNULL defines a null value for all columns of data type CURRENCY, DECIMAL, MONEY,
NUMERIC, NUMERICSA, or NUMERICSTS.

• SET BINARYNULL defines a null value for columns of all other data types (AUTOINC, BFLOAT, BIT, DATE,
FLOAT, INTEGER, LOGICAL, LSTRING, TIME, TIMESTAMP, UNSIGNED, and ZSTRING).

 Note: A SET (global null value) statement has no effect on NOTE and LVAR
type columns.

To specify a value with a SET STRINGNULL statement, enclose the value in single quotes. However, do not use
quotation marks around the values in SET DECIMALNULL and SET BINARYNULL statements.

Example

The following statement directs Scalable SQL to insert the asterisk character into each byte of any string column for
which you do not specify a value in an INSERT statement and for which you have not defined a default value:

SET STRINGNULL = '*';

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET ISOLATION
SET ISOLATION = < CS | EX >

The SET ISOLATION statement allows you to control a session’s isolation level. The isolation level is the level of
MicroKernel data locking that Scalable SQL employs to provide isolation from changes to the data during a
transaction. In other words, it is the degree to which a user’s transaction affects the ability of other users to read and
update data in the same table.

Scalable SQL does not store the isolation level setting in the dictionary; the isolation level you specify is in effect only
for the current login session.

You can choose either of the following isolation levels:

• CS – Cursor Stability
Scalable SQL causes the MicroKernel Database Engine to lock individual pages during a transaction instead
of locking the entire file, thus allowing concurrent updates. When the MicroKernel locks a data page during a
transaction, users can still read and update the other pages in the file. The MicroKernel locks the pages as
follows:

• Each page from which you read data is locked until your next read operation or until you end the
transaction, whichever occurs first.

• If you update, delete, or insert data, each affected page is locked until the end of the transaction
(regardless of subsequent read operations).

Users within a transaction cannot update or read data from any locked page until the transaction that locked
the page ends. This is because the user’s transaction attempts to lock pages that are already locked. Users
outside a transaction can read data from the locked pages, but they cannot write data to them.

• EX – Exclusive Access
Scalable SQL causes the MicroKernel Database Engine to use the entire data file as the locking unit for
transactions. Users within a transaction cannot update or read data from any locked file until the transaction
that locked the file ends. Users outside a transaction can read data from the locked files, but they cannot
write data to them.

If you do not issue a SET ISOLATION statement, Scalable SQL uses the default isolation level that was defined when
Scalable SQL was loaded.

 Note: If you change the isolation level during a transaction, the change does not
take effect until the transaction ends.

Example

The following statement instructs Scalable SQL to use cursor stability:

SET ISOLATION = cs;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET MASK
SET MASK [table_name.] column_name = < edit_mask
| NULL >

The SET MASK statement allows you to define the display format of the specified column. You can specify either a
mask or, for string columns, the display length of the column. Unless you specify NULL, Scalable SQL stores the
definition in the X$Attrib system table.

 Note: You cannot define a display format for columns of data type NOTE or
LVAR. These data types are variable-length, user-defined types and their internal
format is unknown.

When you issue a SET MASK statement, specify the name of the column for which to define a display format. If the
column name is unique in the dictionary, you can specify just the name. If the column name is used in more than one
table definition, qualify the column name.

To define a mask for the column, replace edit_mask with the desired mask. For information about the correct method
of specifying masks for the various data types, see the Database Design Guide.

To specify the display length of a string column, replace edit_mask with xn, where n is the desired display length. For
example, the following statement limits the display length of the City column to 10 characters:

SET MASK Person.City = 'x10';

If a column value is longer than the display length you specify, Scalable SQL truncates the value from the right. To
cancel a previously defined display format, specify NULL instead of a mask or display length.

Example

The following example defines a mask for the Amount Paid column in the billing table of the sample database:

SET MASK Billing.Amount_Paid = '$Z,ZZZ.99';

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET OPENMODE
SET OPENMODE =

< NORMAL | ACCELERATED | READONLY | VERIFY
| EXCLUSIVE >

The SET OPENMODE statement allows you to specify the file open mode for the data files associated with the tables
in your database. The open modes you can specify through Scalable SQL correspond directly to the MicroKernel
Database Engine open modes.

Scalable SQL does not store the file open mode setting in the dictionary; the open mode you specify is in effect only
for the current login session.

 Note: If you change the file open mode during a transaction, the change does not
take effect until the next file is opened.

Normal Mode
Including the NORMAL keyword in the statement sets the data files’ open mode to Normal, which is the default open
mode. Using a server-based MicroKernel Database Engine, Normal mode allows shared read/write access to data
files. In Normal mode, the MicroKernel performs its standard integrity processing when it updates the data files.

Accelerated Mode
Including the ACCELERATED keyword in the statement sets the data files’ open mode to Accelerated.

Using a post-v5.x and pre-v7.0 MicroKernel Database Engine, Accelerated mode is equivalent to Normal mode,
except that opening a data file in Accelerated mode with the server-based MicroKernel cancels the effect of flagging a
file as transactional.

With the v7.x MicroKernel Database Engine, Accelerated mode provides improved response time over Normal mode
when updating data files. However, you may lose durability if a crash occurs while you have a file open in Accelerated
mode. In this event, changes to a single data file are durable, but the file may then be out of sync with other files in
the database.

ReadOnly Mode
Including the READONLY keyword in the statement sets the data files’ open mode to ReadOnly, which means
Scalable SQL can read data files but cannot write to them. After you set this open mode, you cannot issue an
INSERT, UPDATE, or DELETE statement for any of the tables in your database until you reset the open mode to
Normal, Accelerated, Verify, or Exclusive.

Verify Mode
Including the VERIFY keyword in the statement sets the data files’ open mode to Verify. This enables operating
system verification during each write operation to the data files. After each write operation, the operating system
rereads the data to ensure that it has been recorded correctly on the disk. The operating system does not support
verification on a network disk; files on a network disk are opened in Normal mode.

Exclusive Mode

Including the EXCLUSIVE keyword in the statement sets the data files’ open mode to Exclusive, which means access
to the data files is restricted to only one task. If a file is opened in Exclusive mode, no other task can open that file
until the file is closed.

Example

The following statement sets the file open mode to Normal:

SET OPENMODE = NORMAL;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET OWNER
SET OWNER = owner [, owner] ...

where

owner ::= ['] owner_name [']

The SET OWNER statement allows you to specify a list of owner names for data files that have owner names
assigned through the MicroKernel Database Engine. Scalable SQL passes the owner names to the MicroKernel,
enabling it to open the data files.

If you have data files that were created with file owner names, you may be required to specify the owner names to
Scalable SQL before accessing the files, depending on the type of access required and the owner access restriction
specified for the files. (For more information, refer to “Specifying the Owner Access Restriction”)

You can specify as many as eight owner names with a SET OWNER statement. If an owner name begins with a
nonalphabetic character, you must enclose the name in single quotes (‘ ’).

A SET OWNER statement cancels the effect of any previous SET OWNER statement. Also, a SET OWNER
statement provides owner names for the current session only. The next time you log in, you must specify the owner
names again.

 Note: If you set the owner name during a transaction, the change does not take
effect until the next file is opened.

Example

The following statement specifies three data file owner names to Scalable SQL:

SET OWNER = George, Marie, '123xx';

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET RANGE
SET RANGE [table_name.] column_name =

< value_range [, value_range] ... | NULL >

where

value_range ::= literal - literal

The SET RANGE statement allows you to define one or more acceptable ranges for the specified column. Unless you
specify NULL, Scalable SQL stores the definition in the X$Attrib system table.

When you issue a SET RANGE statement, specify the name of the column for which to define acceptable ranges. If
the column name is unique in the dictionary, you can specify just the name. If more than one table definition uses the
column name, be sure to qualify the column name in the following way:

table_name.column_name

Replace value with a range specification consisting of two values separated by a dash (–). Surround the dash with
spaces to distinguish it from a negative sign. Separate multiple range specifications with commas.

The values in SET RANGE statements can match either the column’s user-defined edit mask or the column’s data
type default mask, except in the case of types DATE, TIME, and TIMESTAMP. The values must match the column’s
user-defined edit mask for columns of type DATE, TIME, and TIMESTAMP.

To cancel a previous range definition, specify NULL instead of a range.

Example

The following statement sets ranges for the AcctNum column:

SET RANGE Acct_Num = 1000 - 1999, 5000 - 5999;

This statement tells Scalable SQL to accept account number values from 1,000 through 1,999 and from 5,000
through 5,999 only.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET SECURITY
SET SECURITY = < master_password | NULL >

The SET SECURITY statement allows you to enable and disable security for the database to which you are currently
logged in.

To enable security for a dictionary, you must first log in to that dictionary. Then, issue a SET SECURITY statement
specifying a master password for the dictionary. Scalable SQL creates a user named Master, gives the master user
full rights to the dictionary, and assigns the password you specify to the master user. (Both the master password and
the Master username are case-sensitive.) Once the master user exists, no other users have access to the dictionary
until they are granted rights. For more information about granting rights, see “GRANT (access rights)” , “GRANT
CREATETAB” , and “GRANT LOGIN” .

To disable security for a dictionary, specify NULL instead of a password.

Example

The following statement enables security for a dictionary and defines Secure as the master password:

SET SECURITY = Secure;

The following statement disables security:

SET SECURITY = NULL;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SET VALUES
SET VALUES [table_name.] column_name =

< literal [, literal] ... | NULL >

The SET VALUES statement allows you to specify all acceptable values for a column. Unless you specify NULL,
Scalable SQL stores the definition in the X$Attrib system table.

When you issue a SET VALUES statement, specify the name of the column for which to define acceptable values. If
the column name is unique in the dictionary, you can specify just the name. If more than one table definition uses the
column name, be sure to qualify the column name in the following way:

table_name.column_name

Replace value with the acceptable value, enclosed in single quotes. If you specify multiple values, separate them with
commas.

The values in SET VALUES statements can match either the column’s user-defined edit mask or the column’s data
type default mask, except in the case of types DATE, TIME, and TIMESTAMP. The values must match the column’s
user-defined edit mask for columns of type DATE, TIME, and TIMESTAMP.

To cancel a previously acceptable value definition, specify NULL instead of a value.

Example

The following statement tells Scalable SQL to accept only the two-character abbreviation for Texas and Louisiana in
the State column:

SET VALUES State = 'TX','LA';

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SIGNAL
SIGNAL signal_value

where

signal_value ::= < condition_name

| SQLSTATE [VALUE] character_string_literal
>

The SIGNAL statement allows you to signal an exception condition or a completion condition other than successful
completion.

Rules for Using the SIGNAL Statement
The following rules apply to using the SIGNAL statement:

• You must declare the condition name in the scope of this statement with a DECLARE CONDITION
statement.

• The SIGNAL statement raises the specified exception condition or completion condition by setting the value
of SQLSTATE to the specified character string literal or to the value that is associated with the condition
name.

Example

The following examples use the SIGNAL statement to signal a SQLSTATE condition and a declared a condition,
respectively.

SIGNAL '01111'

SIGNAL Cond1

For more examples using the SIGNAL statement, refer to the CREATE PROCEDURE example on page 2-37 and the
DECLARE HANDLER example on page 2-69. Both examples use the SIGNAL statement to signal declared
conditions.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

START TRANSACTION
START TRANSACTION

The START TRANSACTION statement allows you to specify the beginning of a transaction. All subsequent
statements you issue are part of the transaction until you end it with either a COMMIT WORK or a ROLLBACK
WORK statement. Scalable SQL executes either all the statements or none of them.

After issuing a START TRANSACTION statement, issue the statements to execute as a logical unit.

 Note: If you issue a SET ISOLATION statement during a transaction, the
change does not take effect until the transaction ends.

Statements that change the dictionary files are not affected by transactions. These include the following types of
statements: ALTER TABLE; CREATE TABLE; CREATE INDEX; CREATE PROCEDURE; CREATE VIEW; and
statements containing the DROP, GRANT, or REVOKE keywords. If Scalable SQL executes one of these types of
statements within a transaction, you cannot roll back the changes from that statement.

 Note: If you start a transaction and then log out of the dictionary before issuing
a COMMIT WORK or ROLLBACK WORK statement, Scalable SQL
automatically issues a ROLLBACK WORK statement before completing the
logout.

Examples

To signify the beginning of a logical transaction, issue the following statement:

START TRANSACTION;

The following example begins a transaction which updates the Amount_Owed column in the Billing table. This work is
committed; the AND CHAIN clause begins another transaction that updates the log in the Billing table. The final
COMMIT WORK statement ends the second transaction.

START TRANSACTION;

UPDATE Billing B

SET Amount_Owed = Amount_Owed - Amount_Paid

WHERE Student_ID IN

 (SELECT DISTINCT E.Student_ID

 FROM Enrolls E, Billing B

 WHERE E.Student_ID = B.Student_ID);

COMMIT WORK AND CHAIN;

UPDATE Billing B

SET Amount_Paid = 0

WHERE Student_ID IN

 (SELECT DISTINCT E.Student_ID

 FROM Enrolls E, Billing B

 WHERE E.Student_ID = B.Student_ID;

COMMIT WORK;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

UPDATE
UPDATE table_list

SET set_clause [, set_clause] ...

[WHERE Boolean_value_expression]

where

table_list ::= table_reference [, table_reference]
...

table_reference ::= < table_name | view_name > [
alias_name]

set_clause ::= column_reference = expression

column_reference ::= [column_qualifier.]
column_name

column_qualifier ::= < table_name | view_name |
alias_name >

Boolean_value_expression ::= see page 2-121

The UPDATE statement allows you to modify column values in a database. Scalable SQL modifies only the columns
you list in the SET clause.

If you do not want to change all the values in the specified column, you can include a WHERE clause (see page 2-
121 for the valid syntax) to define which rows in the table to modify. When you issue an UPDATE statement, Scalable
SQL applies any input validation that you specified in the dictionary for the table. It rejects statements containing
invalid data.

If you define referential integrity (RI) for the database and you update the value of a foreign key, Scalable SQL
verifies that the parent table contains a corresponding primary key whose value matches the new foreign key value. If
the parent table does not contain a corresponding primary key, the update fails.

You can use either of the following methods to specify the values to use in the update:

• Specify the data values directly in the SET clause.

• Extract the data values from the database by including a SELECT clause in the SET clause.

Specifying Data Values Directly
To specify the new data values directly, use the SET clause to define the name of each column to modify and the new
value to assign to the column. The value you specify can be a constant or an expression. For example, the following
statement changes the credit hours for Economics 305 in the Course table from 3 to 4:

UPDATE Course SET Credit_Hours = 4 WHERE Name = 'ECO
305'

In the following statement, an expression specifies the new data value. The statement sets the start date in the Class
table to 10 days after January 1, 1996.

UPDATE Class SET Start_Date = (01/01/96 + 10)

If you specify the data values directly, you can use an UPDATE statement to update columns in more than one table.
You may want to assign aliases to the table names and use the aliases when you refer to the columns in the SET
clause. For more information about specifying constant values, refer to “The Role of Data Types, Defined Masks, and
Default Input Formats”

When you use an UPDATE statement with an application that supports substitution variables, you can use variables
to specify the values. For example, the following statement uses substitution variables to determine both the course
to update and the new credit hours:

UPDATE Course SET Credit_Hours = @credithours

WHERE Course = @course;

For more information about using substitution variables, see the Database Design Guide.

Extracting Data Values with a SELECT Clause
Including a SELECT clause in an UPDATE statement allows you to update data based on a column value in another
table. Instead of specifying a new data value directly in the SET clause, you can use the SELECT clause to retrieve
the value from the database.

A SELECT clause included in an UPDATE statement usually contains a WHERE clause that references the table you
are updating.

When you use the results of a SELECT statement to update a column, the data types of the columns in the view
defined by the SELECT statement must be compatible with the data types of the columns you are updating. (These
same rules also apply to the use of a SELECT clause with an INSERT statement.) For more information about data
type compatibility rules, refer to “Data Type Compatibility” .

Example

The following statement updates the address for a person in the Person table:

UPDATE Person p

SET p.Street = '123 Lamar',

 p.zip = '78758',

 p.phone = 5123334444

WHERE p.ID = 131542520;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

UPDATE: positioned
UPDATE [table_list]

SET set_clause [, set_clause] ...

WHERE CURRENT OF cursor_name

where

table_list ::= table_reference [, table_reference]
...

table_reference ::= < table_name | view_name > [
alias_name]

set_clause ::= column_reference = value

column_reference ::= [column_qualifier.]
column_name

column_qualifier ::= < table_name | view_name |
alias_name >

The Positioned UPDATE statement updates the current row of a view associated with a SQL cursor.

Rules for Using the Positioned UPDATE Statement
The following rules apply to using the Positioned UPDATE statement.

• The specified cursor must be an updatable cursor, and it must be open. For more information about
declaring cursors, see “DECLARE CURSOR” .

• Each specified column name must identify a column in one of the tables in the view declared by the
specified cursor.

• If the declaration of the specified cursor contains a sort specification, then no column name in the Positioned
UPDATE statement can identify a column used in the sort specification.

• The same column name must not appear more than once.

• If you specify a query expression in a value expression, the table defined by the query expression must have
a degree and cardinality of 1 or 0. If the cardinality is 0, the column is set to NULL.

• The table reference clause is optional; the underlying tables to be updated are specified by the declaration
of the cursor.

• You must establish a valid position with the FETCH statement before executing a positioned DELETE. If a
cursor is not positioned to a row, Scalable SQL returns Status Code 8 (invalid positioning).

• All concurrency controls and rules apply to positioned DELETE statements, including isolation levels,
locking, and passive control.

• All data constraints are enforced when the columns are updated.

• If the expression used to determine the new value refers to a column from the table being updated, the value
of the column before the update is used. This allows SET clauses such as the following:

SET IntColumn = IntColumn + 1

• The value of each specified column in the object row is replaced by the result of the evaluation of the
associated value expression.

• The cursor remains positioned on the current row, even if an error has occurred during the execution of the
statement.

Example

The following sequence of statements provide the setting for the Positioned UPDATE statement. The required
statements for a positioned UPDATE are DECLARE CURSOR, OPEN CURSOR, and FETCH FROM cursorname.

The Positioned UPDATE statement in this example updates the name of the course HIS 305 to HIS 306.

DECLARE CourseName CHAR(7) = 'HIS 305';

DECLARE OldName CHAR(7);

DECLARE cursor1 CURSOR

FOR SELECT Name

FROM Course

WHERE Name = CourseName;

OPEN cursor1;

FETCH NEXT FROM cursor1 INTO OldName;

UPDATE SET name = 'HIS 306'

WHERE CURRENT OF cursor1;

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

WHILE
 [beginning_label :]

WHILE Boolean_value_expression DO

 SQL_statement_list

END WHILE [ending_label]

where

SQL_statement_list ::= { SQL_statement ; } ...

Boolean_value_expression ::= see page 2-121

A WHILE statement repeats the execution of a block of statements while a specified condition is true.

If a WHILE statement has a beginning label, it is called a labeled WHILE statement. If you specify an ending label, it
must be identical to the beginning label. WHILE statements can appear only in the body of stored procedures and
triggers.

The following occurs in a WHILE statement:

• The Boolean value expression is evaluated.

• If the Boolean value expression is true, the SQL statement list executes, and if each statement in the SQL
statement list executes without error and no LEAVE statement is encountered, the WHILE statement is
repeated until the Boolean expression is false.

• If the Boolean value expression is false or unknown, the WHILE statement is terminated.

Examples

The following example increments the variable vInteger by 1 until it reaches a value of 10, when the loop is ended.

WHILE (vInteger < 10) DO

SET vInteger = vInteger + 1;

END WHILE

The following example returns the total capacity of the largest rooms on campus in the university database. If
NumRooms equals 10, then the result is the capacity of the 10 largest rooms.

CREATE PROCEDURE LargeRooms

(IN NumRooms INT(4), OUT TotalCapacity INT(4));

BEGIN

DECLARE counter INT(2) = 0;

DECLARE CurrentCapacity INT(4) = 0;

DECLARE cRooms CURSOR

 FOR SELECT Capacity

 FROM Room

 ORDER BY Capacity DESC;

OPEN cRooms;

SET TotalCapacity = 0;

FETCH_LOOP:

 WHILE (counter < NumRooms) DO

    FETCH NEXT FROM cRooms INTO CurrentCapacity;

    IF (SQLSTATE = '02000') THEN

      LEAVE FETCH_LOOP;

    END IF;

    SET counter = counter + 1;

    SET TotalCapacity = TotalCapacity +

      CurrentCapacity;

 END WHILE;

CLOSE cRooms;

END

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Data Types
Scalable SQL uses several data types that are divided into two categories: fixed-length and variable-length. All the
Scalable SQL data types are fixed-length except NOTE and LVAR, which are variable length.

• Fixed-length data types have a designated stored length that does not vary from row to row within a table.
Each table must contain at least one column that has a fixed-length data type and the fixed-length column
sizes must combine to at least 4 bytes. See “FixedLength Data Types” .

• Variable-length data types have a stored length that can vary from row to row in a table, and are limited only
by the amount of data the MicroKernel can store. A table or view cannot contain more than one column that
has a variable-length data type. See “VariableLength Data Types” .

You must specify a data type for a column anytime you create or alter a column definition. Following are the types of
statements with which you can create or alter column definitions:

• CREATE TABLE

• ALTER TABLE

Table A-1 lists the code, default display mask, and default input format for each data type. For more information about
masks, refer to the Programmer’s Guide.

Scalable SQL uses the data type codes (rather than the keywords) internally when you create a table. These codes
also appear in the X$Column system table, and you can use them to determine the data type of a particular column.

Table A-1
Data Types, Codes, Default Masks, and Default Input Formats

Data Type Cod
e

Default Display Mask Default Input Formats

AUTOINC 15 –ZZZZZ**1 [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

BFLOAT 9 –Z.ZZZZZZE+ZZ [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

BIT 16 true–false true–false

1–0

CHARACTER 0 none none

CURRENCY 19 –$ZZZZZZZZZZZZZZZ.ZZZZ [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

DATE 3 mm/dd/yy mm/dd/yy

mm/dd/yyyy

mm/d/yy

mm/d/yyyy

m/dd/yy

m/dd/yyyy

m/d/yy

m/d/yyyy

yyyy-mm-dd

DECIMAL 5 –ZZZZZZZZZZZ.ZZZ**2 [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

FLOAT 2 –Z.ZZZZZZE+ZZ [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

INTEGER 1 –ZZZZZ1 [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

LOGICAL 7 true–false true–false

1–0

LSTRING 10 none none

LVAR 13 none none

MONEY 6 –$ZZZZZZZZZ.ZZ1 [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

NOTE 12 none none

NUMERIC 8 –ZZZZZZ.ZZZ2 [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

NUMERICSA 18 –ZZZZZZ.ZZZ2 [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

NUMERICSTS 17 –ZZZZZ.ZZZ2 [+-]$<number>[.<digit><digit>]

[+-]<number>[.<number>]

[+-]<number>[.
[<number>]]e[+-]<number>

TIME 4 hh:mm:ss hh:mm:ss

hh:mm:ss:uu

TIMESTAMP 20 yyyy-mm-ddBhh:tt:ss[.fffffff]**3 yyyy-mm-ddBhh:tt:ss[.fffffff]

UNSIGNED 14 ZZZZZ1 [+]$<number>[.<digit><digit>]

[+]<number>[.<number>]

[+]<number>[.
[<number>]]e[+-]<number>

ZSTRING 11 none none

**1The number of Zs in the mask depends on the size of the value.
**2The number of Zs in the mask depends on the size and scale of the value.
**3The number of fs in the mask depends on the precision of the value.

Table A-2 lists the default length, valid length, and valid value range for each data type.

Table A-2
Data Type Lengths and Ranges

Data Type
Keyword

Default

Length

(in
bytes)

Valid
Length

(in
bytes)

Valid Value Range

AUTOINC 2 2 -32768 – +32767

4 -2147483648 – 2147483647

BFLOAT 4 4 ±(5.8774718E-39 – 1.70141173E+38)

8 ±(5.8774718E-39 – 1.70141183E+38)

BIT 1 1 0 or 1

CHARACTER 1 1–255 N/A

CURRENCY 8 8 -922337203685477.5808 – 922337203685477.5807

DATE 4 4 01-01-0001 – 12-31-9999

DECIMAL 6, 0 1–10 Depends on the length and number of decimal places.

FLOAT 4 4 ±(1.17549E-38 – 3.402823E+38)

8 ±(2.2250738585072E-380 – 1.79769313486232E+308)

INTEGER 2 1 0 – 255

2 -32768 – 32767

4 -2147483648 – 2147483647

8 -9223372036854775808 – 9223372036854775807

LOGICAL 2 1, 2 0 or non-zero

LSTRING 2 2–255 N/A

LVAR 5 5–32761 N/A

MONEY 6, 2 1–10 Depends on the length and number of decimal places.

NOTE 2 2–32761 N/A

NUMERIC 6, 0 1–15 Depends on the length and number of decimal places.

NUMERICSA 6, 0 1–15 Depends on the length and number of decimal places.

NUMERICSTS 6,0 2–15 Depends on the length and number of decimal places.

TIME 4 4 00:00:00:00 – 23:59:59:99

TIMESTAMP 8 8 0001-01-01 00:00:00.0000000 –
9999-12-31 23:59:59.9999999 UTC

UNSIGNED 2 1 0 – 255

2 0 – 65535

4 0 – 4294967295

8 0 – 18446744073709551615

ZSTRING 2 2–255 N/A

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

FixedLength Data Types
The stored length of a fixedlength data type does not vary from row to row within a table. The    Scalable
SQLfixedlength data types correspond to the most useful data types that many programming languages recognize.
The following sections discuss each    fScalable SQLixedlength data type.

AUTOINC
The AUTOINC data type represents a special form of signed 2 or 4byte integers. If you specify an AUTOINC column
value of binary zeros when inserting a row,    Scalable SQLreplaces the specified value by automatically incrementing
the highest existing value in the column and using the result value in the row you are inserting. Specify a nonzero
value only when replacing or updating a row within the existing order.

To automatically increment values in an AUTOINC column, define the column as a unique index. An autoincrement
index can only be part of a segmented index if the index number of the autoincrement index is less than the index
number of the segmented index. If you do not define the column as an index, Scalable SQL treats it as an INTEGER
column.

BFLOAT
The BFLOAT data type represents either a single-precision (4byte) or a double-precision (8byte) real number stored
in a format that the Microsoft BASIC programming language defines. A single-precision real number is stored with a
23bit mantissa, an 8bit exponent biased by 128, and a sign bit.

 Note: This Microsoft Binary Format (MBF) is no longer supported by Microsoft
Visual Basic; it was supported in older versions of Quick Basic only.

The internal layout for a 4byte BFLOAT column is as follows:

The representation of an 8-byte BFLOAT column is the same as that for a 4byte BFLOAT column except the mantissa
is 55 bits instead of 23 bits. The least significant 32 bits are stored in the first 4 bytes.

 Note: In the same way that some values (such as 1/3) cannot be expressed
accurately in decimal terms, some values (such as 1/10) cannot be stored
accurately in FLOAT or BFLOAT format. Therefore, when storing values that
represent precise numbers (such as monetary values), use the CURRENCY,
DECIMAL, MONEY, NUMERIC, NUMERICSA, NUMERICSTS, or
UNSIGNED data types instead. Restrictions using float values may be more
effective using a range (such as column >= 1.501 and column <= 1.502) rather
than an equality (such as column = 1.501).

BIT
The BIT data type is a 1-byte value that allows Scalable SQL to compress logical values into bit flags. The column

values of adjacent BIT columns are packed into as few bytes as possible; up to eight values can be stored in a single
byte. However, if two BIT columns are separated by one or more non-bit columns, the BIT values cannot be stored in
the same byte.

For example, if a table contains two adjacent BIT columns, their values are packed into a single byte. If a third BIT
column in the table is preceded by a non-bit column, the value of the third BIT column cannot be stored in the byte
containing the other two BIT column values.

 Note: A column of the BIT data type may not be defined as an index or index
segment.

CHARACTER
The CHARACTER data type in Scalable SQL represents a sequence of characters ordered from left to right, of fixed
length, and does not have a terminator character. Each character is represented in ASCII format in a single byte.
Scalable SQL pads CHARACTER values with blanks to the defined length of the column.

In comparisons between CHARACTER values and constants, Scalable SQL pads constants with blanks to the length
of the value. Trailing blanks in a CHARACTER value are considered significant for comparisons in restriction clauses
and expressions and when the LENGTH function returns the length of a string column. Use the LTRIM, RTRIM, or
SUBSTRING function to ensure that the lengths of strings you compare are the same.

CURRENCY
The CURRENCY data type represents an 8-byte signed quantity, sorted and stored in Intel binary integer format;
therefore, its internal representation is the same as an 8 byte INTEGER data type. The CURRENCY data type has an
implied four digit scale of decimal places, which represents the fractional component of the currency data value.

DATE
Column values of data type DATE are stored internally as 4byte values in Intel integer format. Day and month values
are each stored in 1byte binary format. Year values are stored as 2byte binary numbers. The day is stored in the first
byte, the month in the second byte, and the year in the two bytes following the month.

The internal layout for a DATE column is as follows:

DECIMAL
Column values of data type DECIMAL are signed or unsigned real numbers stored internally as packed decimal
numbers, with two decimal digits per byte. This format is consistent with the COMP3 data type in ANSI74 standard
COBOL programming language.

For DECIMAL values, each digit takes one half byte of storage and the sign takes one half byte. The internal size is
M/2 + 1, where M is the number of significant displayable digits. Therefore, any DECIMAL value that has an even
number of displayable digits has an extra one half byte of internal storage.

The internal representation for an n-byte DECIMAL column is as follows. (The high-order bit is on the left side.)

The sign digit is either C or F for positive numbers and D for negative numbers. The decimal point is not stored with
the data; its location in the column value is fixed according to the column definition in the dictionary.
Example

The DECIMAL column value 12345678.1234 requires a minimum of 7 bytes (12/2 + 1). The internal storage format
for the value is as follows:

The DECIMAL column value 123456789.1234 also requires a minimum of 7 bytes (13/2 + 1). The internal storage
format for the value is as follows:

FLOAT
The FLOAT data type is consistent with the IEEE standard for single and double-precision real numbers. The internal
format for a 4byte FLOAT consists of a sign bit, an 8bit exponent biased by 127, and a 23bit mantissa. The internal
layout for a 4byte FLOAT value is as follows:

A FLOAT data type column with 8 bytes has a sign bit, an 11bit exponent biased by 1023, and a 52bit mantissa. The
internal layout for an 8byte FLOAT value is as follows:

 Note: In the same way that some values (such as 1/3) cannot be expressed
accurately in decimal terms, some values (such as 1/10) cannot be stored
accurately in FLOAT or BFLOAT format. Therefore, when storing values that
represent precise numbers (such as monetary values), use the CURRENCY,

DECIMAL, MONEY, NUMERIC, NUMERICSA, NUMERICSTS, or
UNSIGNED data types instead. Restrictions using float values may be more
effective using a range (such as column >= 1.501 and column <= 1.502) rather
than an equality (such as column = 1.501).

INTEGER
The INTEGER data type represents a signed or unsigned whole number. Internally, INTEGER values are stored in
Intel binary integer format. The 1 byte INTEGER uses the character extended data type and the 2, 4, and 8 byte
INTEGER use the unsigned extended data type when indexed.

INTEGER columns store values in the following ranges:

Length in Bytes Value Ranges

1 0 – 255

2 -32768 – 32767

4 -2147483648 – 2147483647

8 -9223372036854775808 – 9223372036854775807

LOGICAL
The LOGICAL data type is stored as a 1 or 2 byte binary value representing either the logical value true or the logical
value false. In an INSERT statement, a value of 1 or TRUE are acceptable input values for a true value. A value of 0
or FALSE are acceptable input values for a false value. These input values are valid when the default masks are set
for this LOGICAL column. When a user-defined mask is set on a LOGICAL column, the insert values must match the
mask values.

LSTRING
The LSTRING data type in Scalable SQL corresponds to a Pascal string. It has the same characteristics as the
CHARACTER data type except the first byte of the string contains the binary representation of the string’s length.
Bytes beyond the specified end of the string are undefined.

An LSTRING value may contain significant blanks at the end of the string. The length byte indicates the true length.

Example

For an 8-byte LSTRING column, the value Hello is stored as follows:

MONEY
The data type MONEY has the same characteristics as the DECIMAL data type except the number of decimal digits

is fixed at two. The internal size requirements are the same as for the DECIMAL data type. By default, Scalable SQL
displays MONEY column values with a dollar sign, which increases the display width by one.

NUMERIC
The total display size required for a NUMERIC column value is equal to the maximum number of significant digits,
plus 1 for a decimal point and 1 for a possible sign. Column values of the NUMERIC data type are signed or unsigned
real numbers stored internally as ASCII strings that are right justified and padded with leading zeros. Each digit
occupies 1 byte internally. The rightmost byte of the number can include an embedded sign, which does not require
any additional space. Thus, the internal size of a NUMERIC value is equal to the number of significant digits.

Table A-3 indicates how the rightmost digit is represented when it contains an embedded sign for positive and
negative numbers.

Table A-3
Numeric Embedded Sign Characters

Number Positive Negative

1 A J

2 B K

3 C L

4 D M

5 E N

6 F O

7 G P

8 H Q

9 I R

0 { }

For positive numbers, you can represent the rightmost digit with either 1 through 0 or A through {. When Scalable
SQL returns positive numbers, the rightmost digit is always represented by 1 through 0. Scalable SQL accepts input
from either range.

Example 1

The NUMERIC column value 12345678.4567 requires a minimum of 12 bytes. The storage format is as follows:

The value 47 in the last byte represents the embedded sign character G, a display value of 7 and a positive sign for
the column value.
Example 2

The NUMERIC column value –12345678.4567 also has an internal size of 12 bytes. The storage format is as follows:

The value 50 in the last byte represents the embedded sign character P, a display value of 7 and a negative sign for
the column value.

NUMERICSA
The total display size required for a NUMERICSA column value is equal to the maximum number of significant digits,
plus 1 for a decimal point and 1 for a possible sign. Column values of the NUMERICSA data type are signed or
unsigned real numbers stored internally as ASCII strings that are right justified and padded with leading zeros. Each
digit occupies 1 byte internally. The rightmost byte of the number can include an embedded sign, which does not
require any additional space. Thus, the internal size of a NUMERICSA value is equal to the number of significant
digits.

A NUMERICSA column is consistent with a numeric signed ASCII column in COBOL. The NUMERICSA data type is
identical to the NUMERIC data type except it uses a different embedded sign for negative values.

Table A-4 indicates how the rightmost digit is represented when it contains an embedded sign for negative numbers.

Table A-4
Numericsa Embedded Sign Characters

Number Positive Negative

0 p p

1 Q q

2 R r

3 S s

4 T t

5 U u

6 V v

7 W w

8 X x

9 Y y

For positive numbers, you can represent the rightmost digit with either 0 through 9 or P through Y. When Scalable
SQL returns positive numbers, the rightmost digit is always represented by 1 through 0. Scalable SQL accepts input
from either range.

NUMERICSTS
The total display size required for a NUMERICSTS column value is equal to the maximum number of significant
digits, plus 1 for a decimal point and 1 for a possible sign. The NUMERICSTS data type is consistent with a numeric
sign trailing separate column in COBOL. NUMERICSTS values are signed or unsigned real numbers stored internally
as ASCII strings that are right justified and padded with leading zeros. Each digit occupies 1 byte internally.

 Note: Unlike the NUMERIC data type, the NUMERICSTS data type does not
embed the sign. Instead, the sign is stored in its own byte. Since the sign uses one
byte, the number of digits your application can place in a NUMERICSTS column
is one less than the length you specify when you create the table.

The sign is stored in the rightmost byte. Thus, the internal size for a NUMERICSTS column value is equal to the
number of significant digits, plus one byte to store the sign.

Example

The NUMERICSTS column value 12345678.4567 requires a minimum of 13 bytes. The storage format is as follows:

The value 2B in the last byte indicates a positive sign for the column value.

TIME
Column values of data type TIME are stored internally as 4byte values. Hundredths of a second, seconds, minutes,
and hours are each stored in 1byte binary format. The hundredths of a second value is stored in the first byte,
followed by the second, minute, and hour values.

The internal layout for a TIME column is as follows:

TIMESTAMP
The TIMESTAMP data type represents a time and date value. You use this data type to stamp a record with the time
and date of the last update to the record. The column value is stored in 8-byte unsigned values representing septa
seconds (10-7 second) since January 1, 0001 in a Gregorian calendar.

You specify the TIMESTAMP data type in the following format using a CREATE TABLE or ALTER TABLE statement:

TIMESTAMP [(timestamp precision)]

The timestamp precision is the number of fractional digits in seconds. Valid values of precision are between 0 and 7
inclusive. The following table indicates the valid values of each component of TIMESTAMP:

YEAR 0001 to 9999

MONTH 01 to 12

DAY 01 to 31, constrained by the value of MONTH and YEAR in
the
Gregorian calendar.

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59

The value is stored internally as a TIMESTAMP MicroKernel key, an 8-byte long field that contains the complete date
and time value converted to the fractions of seconds that timestamp precision specifies. For example, it is converted
to microseconds when timestamp precision is 6, and it is converted to milliseconds when timestamp precision is 3.
You provide the value of a TIMESTAMP in local time and the Scalable SQL engine converts it to Coordinated
Universal Time (UTC), formerly Greenwich Mean Time (GMT), before storing it in a MicroKernel record. When you
request the value of a TIMESTAMP, Scalable SQL converts it from UTC to local time before returning the data.

 Note: It is critical that you set time zone information correctly. If you move
across time zones or change time zone information, the returned data will change
when it is converted from UTC to local time. The local time/UTC conversions
occur in Scalable SQL using the time zone information where the Scalable SQL
engine is running. The time zone information for sessions that are in different
time zones than the Scalable SQL engine are not used in the local time/UTC
conversions.

UNSIGNED
The UNSIGNED data type represents an unsigned quantity of 1, 2, 4, or 8 bytes. Internally, INTEGER values are
stored in Intel binary integer format. The 1 byte UNSIGNED uses the character extended data type and the 2, 4 and 8
byte UNSIGNED use the unsigned extended data type when indexed.

Following are the values each column accepts:

Length in Bytes Value Range

1 0 – 255

2 0 – 65535

4 0 – 4294967295

8 0 – 18446744073709551615

ZSTRING
The ZSTRING data type in Scalable SQL corresponds to a C string. It has the same characteristics as the
CHARACTER data type except it is terminated by a byte containing a binary 0. Bytes beyond the specified end of the
string are undefined. A ZSTRING value may contain significant blanks immediately preceding the termination
character.

Example

For an 8-byte ZSTRING column, the value Hello is stored as follows:

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

VariableLength Data Types
Scalable SQL allows you to define columns of variable length using the NOTE and LVAR data types. Columns of data
types NOTE and LVAR can contain any type of data, and the column values can vary in length from row to row within
a table; they are limited only by the maximum amount of data that the MicroKernel is able to store in a data file
record.

Five restrictions apply when you use a variablelength column in a table:

• You cannot insert data in a variablelength column if the data is longer than the length you defined for the
column in the dictionary definition. The size of a column is stored in a 2-byte integer value. You can specify
sizes up to 32,761, or use the default size, which is unlimited.

 Note: Developers only: If you specify an unlimited size, you must use the chunk
operations to fetch or update existing rows. To interact with data in an unlimited
sized column, use the buffer format described in the Programmer’s Guide.

• You cannot include more than one variablelength column when you create a table or a view.

• If you include a variablelength column in a table or a view, you must define the column as the last column in
the table or view.

• You cannot define a variablelength column as an index or sort column.

• A table or a view must contain at least one fixedlength data type.

• Data from a variable-length column is always specified and returned in internal format.

LVAR
The maximum record length in Scalable SQL is 32,765 bytes. The data you insert into an LVAR column must not
exceed the column length you specify. A record can contain a variable length field defined as the last column; the
maximum column length is 32,761 bytes minus the length of any fixed-length data.

The LVAR data type uses length words in conjunction with an end-of-column delimiter. Each variablelength data
segment in the column is preceded by a 2byte length word that indicates the length of that segment. The end-of-
column delimiter is always 2 bytes of binary zeros.

An LVAR column with multiple data segments is structured as follows:

NOTE
The maximum record length in Scalable SQL is 32,765 bytes. The data you insert into a NOTE column must not
exceed the column length you specify. A record can contain a variable length field defined as the last column; the
maximum column length is 32,761 bytes minus the length of any fixed-length data.

The NOTE data type uses a binary zero as a delimiter to denote the end of the column value. To determine the length
of a NOTE column value, Scalable SQL scans from the end of the value until it reaches the delimiter. It then scans
until it reaches a non-delimiter. The last delimiter immediately after the non-delimiter is interpreted as the end of the
data.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Scalable SQL Keywords
Scalable SQL supports the following keywords. Keywords that are marked with an asterisk (*) are Scalable SQL
extensions to the ANSI and IBM SAA SQL standards. Keywords in parentheses are acceptable abbreviations of the
preceding keyword.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

List of Keywords

ABSOLUTE ACCELERATED ADD AFTER

ALL ALTER AND ANY

AS ASC ATOMIC AUTOINC*

AVG BEGIN BEGINS* BEFORE

BETWEEN BFLOAT* BINARYNULL BIND

BIT* BLANK* BY CALL

CASCADE CASE* CAST CHAIN

CHARACTER       (CHAR) CLOSE COMMIT

CONDITION CONTAINS* CONTINUE COUNT

CREATE CREATETAB* CS* CURDATE*

CURRENCY CURRENT CURRENT_TIMESTAMP CURSOR

CURTIME* DATABASE DATE* DATEFORMAT

DAY* DCOMPRESS* DECIMAL (DEC)

DECIMALNULL DECLARE DEFAULT* DELETE

DESC DICTIONARY* DISTINCT DO

DROP EACH ELSE ELSEIF

END EX* EXCLUSIVE* EXEC

EXECUTE EXISTS EXIT EXTERNAL

FETCH FIRST FLOAT FOR

FOREIGN FROM GRANT GROUP

HANDLER HAVING HOUR* IF

IN INCLUDE INDEX* INOUT

INSERT INTEGER (INT) INTO

IS ISOLATION KEY LAST

LEAVE LEFT* LENGTH* LIKE

LOGICAL LOGIN* LOOP LOWER*

LSTRING LTRIM* LVAR* MASK*

MAX MILLISECOND* MIN MINUTE*

MOD* MODIFY MONEY* MONTH*

NEW NEXT NO NORMAL*

NOT NOTE* NOTFOUND NULL

NUMERIC* NUMERCSA* NUMERICSTS* OF

OLD ON ONLY OPEN

OPENMODE* OR ORDER OUT

OWNER* OWNERACCESS* PAGESIZE* PREALLOCATE*

PREPARE PRIMARY PRIOR PROCEDURE

(PROC) PUBLIC RANGE* READ

READONLY* REFERENCES REFERENCING RELATIVE

RELEASE REPLACE* RESIGNAL RESTRICT

REVOKE RIGHT* ROLLBACK ROW

RTRIM* SAVEPOINT SCROLL SECOND*

SECURITY* SEG* SELECT SET

SIGNAL SOME SQLERROR SQLEXCEPTIONS

SQLSTATE SQLWARNINGS START* STATEMENT

STRINGNULL SUBSTRING* (SUBSTR) SUM

TABLE THEN THRESHOLD* TIME*

TIMESTAMP TO TRANSACTION TRIGGER

TYPE UNDO UNION UNIQUE

UNSIGNED* UPDATABLE UPDATE UPPER*

USER USING* VALUE VALUES

VERIFY* VIEW WEEKDAY* WHEN

WHERE WHILE WITH WORK

YEAR* ZSTRING*

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

System Tables
This appendix describes the Scalable SQL system tables. For each system table, the following table indicates the
name of the associated file and briefly describes the system table’s contents.

 Note: Some data in the system tables cannot be displayed. For example,
information about stored views and procedures, other than their names, is
available only to Scalable SQL. In addition, some data (such as user passwords)
displays in encrypted form.

Table C-1
System Tables

System Table Dictionary File Contents

“X$File” FILE.DDF Names and locations of the
tables
in your database.

“X$Field” FIELD.DDF Column and named index
definitions.

“X$Index” INDEX.DDF Index definitions.

“X$Attrib” ATTRIB.DDF Column attributes definitions.

“X$View” VIEW.DDF View definitions.

“X$Proc” PROC.DDF Stored procedure definitions.

“X$User” USER.DDF Usernames, group names, and
passwords.

“X$Rights” RIGHTS.DDF User and group access rights
definitions.

“X$Relate” RELATE.DDF Referential integrity (RI)
information.

“X$Trigger” TRIGGER.DDF Trigger information.

“X$Depend” DEPEND.DDF Trigger dependencies such as

tables, views, and procedures.

When you issue a CREATE DICTIONARY statement, Scalable SQL creates the X$File, X$Field, and X$Index system
tables and the associated dictionary files. Scalable SQL creates the other system tables as follows:

• X$Attrib—When you define column attributes, Scalable SQL creates this table and stores the definitions.

• X$View—When you define views, Scalable SQL creates this table and stores the definitions.

• X$Proc—When you define stored procedures, Scalable SQL creates this table and stores the definitions.

• X$User and X$Rights—When you set up data security on the database, Scalable SQL creates these two
tables. In X$User, Scalable SQL stores information about user names, group names, and passwords. In
X$Rights, Scalable SQL stores information about the access rights assigned to users and groups. When you
disable security, Scalable SQL deletes these two tables.

• X$Relate—When you define RI constraints for the database, Scalable SQL creates this table and stores
information about foreign key references.

• X$Trigger and X$Depend—When you define triggers for tables in the database, Scalable SQL creates these
two tables. In X$Trigger, Scalable SQL stores information about the triggers. In X$Depend, Scalable SQL
stores information about the trigger dependencies.

Because the system tables are part of the database, you can query them to retrieve information about the database.
However, to update the system tables, you must use data definition statements. You cannot update them with data
manipulation statements as you would standard data tables; this may corrupt the dictionary.

Following is a brief discussion of installing system tables and dictionary files; the remainder of this appendix
discusses each system table individually. Each discussion describes the columns and indexes defined for the
designated system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Installing System Tables and Data Dictionary Files
The system tables included with Scalable SQL contain the data dictionary files for the sample database. When you
install Scalable SQL, you can copy this data dictionary to the appropriate device on your system and log in to the
sample database. After logging in, you can create a new data dictionary in another directory of your choice.
Alternatively, you can create a new data dictionary using the Setup utility to define a bound or unbound named
database.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$File
The X$File system table is associated with the file FILE.DDF. For each table defined in the database, X$File contains
the table name, the location of the associated table, and a unique internal ID number that Scalable SQL assigns. The
structure of X$File is as follows:

Column Name Type Size Case
Insensitive

Description

Xf$Id UNSIGNED 2 N/A Internal ID Scalable SQL assigns.

Xf$Name CHARACTER 20 Yes Table name.

Xf$Loc CHARACTER 64 No File location (pathname).

Xf$Flags UNSIGNED 1 N/A File flags. If bit 4=1, the file is a
dictionary file. If bit 4=0, the file is
user-
defined.

Xf$Reserved CHARACTER 10 No Reserved.

Two indexes are defined for the X$File table.

Index
Number

Segment
Number

Column Name Duplicate
s

Case
Insensitive

Segmented

0 0 Xf$Id No N/A No

1 0 Xf$Name No Yes No

 Note: Index Number corresponds to the value stored in the Xi$Number column
in the X$Index system table. Segment Number corresponds to the value stored in
the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$Field
The X$Field system table is associated with the file FIELD.DDF. X$Field contains information about all the columns
and named indexes defined in the database. The structure of X$Field is as follows:

Column Name Type Siz
e

Case
Insensitive

Description

Xe$Id UNSIGNED 2 N/A Internal ID Scalable SQL assigns.

Xe$File UNSIGNED 2 N/A ID of table to which this column or
named
index belongs. It corresponds to Xf$Id
in
X$File.

Xe$Name CHARACTER 20 Yes Column name or index name.

Xe$DataType UNSIGNED 1 N/A Column data type (range 0–20), or
0xFF
for a named index.

Xe$Offset UNSIGNED 2 N/A Column offset in table; index number if
named index.

Xe$Size UNSIGNED 2 N/A Column size.

Xe$Dec UNSIGNED 1 N/A Column decimal place (for DECIMAL,
NUMERIC, NUMERICSA,
NUMERICSTS, MONEY, or
CURRENCY
types). Relative bit positions for
contiguous bit columns. Fractional
seconds for TIMESTAMP data type.

Xe$Flags UNSIGNED 2 N/A Flags word. Bit 0 is the case flag for
string
data types.

The column Xe$File corresponds to the column Xf$Id in the X$File system table and is the link between the tables
and the columns they contain.

The integer values in column Xe$DataType are codes that represent the Scalable SQL data types. Five indexes are
defined for the X$Field table, as follows:

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xe$Id No N/A No

1 0 Xe$File Yes N/A No

2 0 Xe$Name Yes Yes No

3 0 Xe$File No N/A Yes

3 1 Xe$Name No Yes No

4 0 Xe$File Yes N/A Yes

4 1 Xe$Offset Yes N/A Yes

4 2 Xe$Dec Yes N/A No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$Index
The X$Index system table is associated with the file INDEX.DDF. X$Index contains information about all the indexes
defined on the tables in the database. The structure of X$Index is as follows:

Column
Name

Type Size Case
Insensitive

Description

Xi$File UNSIGNED 2 N/A Unique ID of the table to which the index
belongs. It corresponds to Xf$Id in X$File.

Xi$Field UNSIGNED 2 N/A Unique ID of the index column. It
corresponds
to Xe$Id in X$Field.

Xi$Number UNSIGNED 2 N/A Index number (range 0–119).

Xi$Part UNSIGNED 2 N/A Segment number (range 0–119).

Xi$Flags UNSIGNED 2 N/A Index attribute flags.

The Xi$Flags column contains integer values that define the index attributes. The following table describes how
Scalable SQL interprets each bit position when the bit has the binary value of 1. Bit position 0 is the rightmost bit in
the integer.

Bit
Position

Decimal
Equivalent

Description

0 1 Index allows duplicates.

1 2 Index is modifiable.

2 4 Indicates an alternate collating sequence.

3 8 Null values are not indexed.

4 16 Another segment is concatenated to this one in the index.

5 32 Index is case-insensitive.

6 64 Index is collated in descending order.

7 128 Index is a named index.

8 256 Index is a Btrieve extended key type.

13 8192 Index is a foreign key

14 16384 Index is a primary key referenced by some foreign key

The value in the Xi$Flags column for a particular index is the sum of the decimal values that correspond to that
index’s attributes. Three indexes are defined for the X$Index table, as follows:

Index Number Segment
Number

Column Name Duplicate
s

Case
Insensitive

Segmente
d

0 0 Xi$File Yes N/A No

1 0 Xi$Field Yes N/A No

2 0 Xi$File No N/A Yes

2 1 Xi$Number No N/A Yes

2 2 Xi$Part No N/A No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$Attrib
The X$Attrib system table is associated with the file ATTRIB.DDF. X$Attrib contains information about the column
attributes of each column in the database; there is an entry for each column attribute you define. The structure of
X$Attrib is as follows:

Column
Name

Type Size Case
Insensitive

Description

Xa$Id UNSIGNED 2 N/A Corresponds to Xe$Id in X$Field.

Xa$Type CHARACTER 1 No C for character, D for default, H for
heading, M for mask, R for range, or
V
for value.

Xa$ASize UNSIGNED 2 N/A Length of text in Xa$Attrib.

Xa$Attrs NOTE <=2048 N/A Text that defines the column
attribute.

When you define multiple attributes for a single column, the X$Attrib system table contains multiple entries for that
column ID—one for each attribute you define. If you do not define column attributes for a particular column, that
column has no entry in the X$Attrib table. The text in the Xa$Attrs column appears exactly as you define it with
Scalable SQL. One index is defined for the X$Attrib table, as follows:

Index Number Segment
Number

Column Name Duplicate
s

Case
Insensitive

Segmente
d

0 0 Xa$Id No N/A Yes

0 1 Xa$Type No No No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$View
The X$View system table is associated with the file VIEW.DDF. X$View contains view definitions, including
information about joined tables and the restriction conditions that define views. You can query the X$View table to
retrieve the names of the views that are defined in the dictionary.

The first column of the X$View table contains the view name; the second and third columns describe the information
found in the LVAR column, Xv$Misc. The structure of X$View is as follows:

Column
Name

Type Size Case
Insensitive

Description

Xv$Name CHARACTER 20 Yes View name.

Xv$Ver UNSIGNED 1 N/A Version ID.

Xv$Id UNSIGNED 1 N/A Sequence number.

Xv$Misc LVAR <=2000 N/A Scalable SQL internal definitions.

Two indexes are defined for the X$View table, as follows:

Index
Number

Segment Number Column
Name

Duplicate
s

Case
Insensitive

Segmente
d

0 0 Xv$Name Yes Yes No

1 0 Xv$Name No Yes Yes

1 1 Xv$Ver No N/A Yes

1 2 Xv$Id No N/A No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$Proc
The X$Proc system table is associated with the file PROC.DDF. X$Proc contains the compiled structure information
for every stored procedure defined. The structure of X$Proc is as follows:

Column
Name

Type Size Case
Insensitive

Description

Xp$Name CHARACTER 30 Yes Stored procedure name.

Xp$Ver UNSIGNED 1 N/A Version ID.

Xp$Id UNSIGNED 2 N/A 0-based Sequence Number.

Xp$Flags UNSIGNED 1 N/A 1 for stored statement, 2 for stored
procedure or 3 for external procedure.

Xp$Misc LVAR 990 N/A Internal representation of stored
procedure.

One index is defined for the X$Proc table, as follows:

Index
Number

Segment
Number

Column Name Duplicates Case
Insensitive

Segmente
d

0 0 Xp$Name No Yes Yes

0 1 Xp$Id No N/A No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$User
The X$User system table is associated with the file USER.DDF. X$User contains the name and password of each
user and the name of each user group. Scalable SQL uses this table only when you enable the security option. The
structure of X$User is as follows:

Column
Name

Type Size Case
Insensitive

Description

Xu$Id UNSIGNED 2 N/A Internal ID assigned to the user or
group.

Xu$Name CHARACTER 30 Yes User or group name.

Xu$Password CHARACTER 9 No User password.

Xu$Flags UNSIGNED 2 N/A User or group flags.

 Note: For any row in the X$User system table that describes a user group, the
column value for Xu$Password is null.

The Xu$Flags column contains integer values whose rightmost 8 bits define the user or group attributes. The
following table describes how Scalable SQL interprets each bit position when the bit has the binary value of 1. Bit
position 0 is the rightmost bit in the integer.

Bit
Position

Decimal
Equivalent

Description

0 1 Reserved.

1 2 Reserved.

2 4 Reserved.

3 8 Reserved.

4 16 Reserved.

5 32 Reserved.

6 64 Name is a group name.

7 128 User or group has the right to define tables in the dictionary.

The value in the Xu$Flags column for a particular user or group is the sum of the decimal values corresponding to the
attributes that apply to the user or group.

Two indexes are defined for the X$User table, as follows:

Index
Number

Segment
Number

Column
Name

Duplicate
s

Case
Insensitive

Segmented

0 0 Xu$Id Yes N/A No

1 0 Xu$Name No Yes No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$Rights
The X$Rights system table is associated with the file RIGHTS.DDF. X$Rights contains access rights information for
each user. Scalable SQL uses this table only when you enable the security option. The structure of X$Rights is as
follows:

Column
Name

Type Size Case
Insensitive

Description

Xr$User UNSIGNED 2 N/A User ID

Xr$Table UNSIGNED 2 N/A Table ID

Xr$Column UNSIGNED 2 N/A Column ID

Xr$Rights UNSIGNED 1 N/A Table or column rights flag

The Xr$User column corresponds to the Xu$Id column in the X$User table. The Xr$Table column corresponds to the
Xf$Id column in the X$File table. The Xr$Column column corresponds to the Xe$Id column in the X$Field table.

 Note: For any row in the system table that describes table rights, the value for
Xr$Column is null.

The Xr$Rights column contains integer values whose rightmost 8 bits define the users’ access rights. The following
table describes how Scalable SQL interprets each bit position when the bit has the binary value of 1. Bit position 0 is
the rightmost bit in the integer.

Bit Position Decimal
Equivalent

Description

0 1 Reorganization in progress.

1 2 Reserved.

2 4 Reserved.

3 8 Reserved.

4 16 References rights to table.

5 32 Alter Table rights.

6 64 Select rights to table or column.

7 128 Update, Insert, and Delete rights to table or column.

A decimal equivalent of 0 implies no rights.

The value in the Xr$Rights column for a particular user is the sum of the decimal values corresponding to the access
rights that apply to the user.

Three indexes are defined for the X$Rights table, as follows:

Index
Number

Segment
Number

Column Name Duplicates Case
Insensitive

Segmente
d

0 0 Xr$User Yes N/A No

1 0 Xr$User No N/A Yes

1 1 Xr$Table No N/A Yes

1 2 Xr$Column No N/A No

2 0 Xr$Table Yes N/A Yes

2 1 Xr$Column Yes N/A No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$Relate
The X$Relate system table is associated with the file RELATE.DDF. X$Relate contains information about the
referential integrity (RI) constraints defined on the database. The structure of X$Relate is as follows:

Column Name Type Siz
e

Case
Insensitive

Description

Xr$PId UNSIGNED 2 N/A Primary table ID.

Xr$PIndex UNSIGNED 2 N/A Index number of primary key in primary
table.

Xr$FId UNSIGNED 2 N/A Dependent table ID.

Xr$FIndex UNSIGNED 2 N/A Index number of foreign key in
dependent
table.

Xr$Name CHARACTER 20 Yes Foreign key name.

Xr$UpdateRule UNSIGNED 1 N/A 1 for restrict.

Xr$DeleteRule UNSIGNED 1 N/A 1 for restrict, 2 for cascade.

Xr$Reserved CHARACTER 30 No Reserved.

Five indexes are defined for the X$Relate table, as follows:

Index
Number

Segment
Number

Column Name Duplicate
s

Case
Insensitive

Segmented

0 0 Xr$PId Yes N/A No

1 0 Xr$FId Yes N/A No

2 0 Xr$Name No Yes No

3 0 Xr$Pld No N/ANo Yes

3 1 Xr$Name No Yes No

4 0 Xr$Fld No N/A Yes

4 1 Xr$Name No Yes No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$Trigger
The X$Trigger system table is associated with the file TRIGGER.DDF. X$Trigger contains information about the
triggers defined for the database. The structure of X$Trigger is as follows:

Column Name Type Size Case
Insensitive

Description

Xt$Name CHARACTER 30 Yes Trigger name.

Xt$Version UNSIGNED 2 N/A Trigger version; 4 is for Scalable
SQL
v4.0.

Xt$File UNSIGNED 2 N/A File on which trigger is defined.
Corresponds to Xf$Id in X$File.

Xt$Event UNSIGNED 1 N/A 0 for INSERT, 1 for DELETE, 2 for
UPDATE.

Xt$ActionTime UNSIGNED 1 N/A 0 for BEFORE, 1 for AFTER.

Xt$ForEach UNSIGNED 1 N/A 0 for ROW (default), 1 for
STATEMENT.

Xt$Order UNSIGNED 2 N/A Order of execution of trigger.

Xt$Sequence UNSIGNED 2 N/A 0-based sequence number.

Xt$Misc LVAR <=4054 N/A Internal representation of trigger.

Three indexes are defined for the X$Trigger table, as follows:

Index
Number

Segment
Number

Column Name Duplicate
s

Case
Insensitive

Segmente
d

0 0 Xt$Name No Yes Yes

0 1 Xt$Sequence No N/A No

1 0 Xt$File No N/A Yes

1 1 Xt$Name No Yes No

2 0 Xt$File Yes N/A Yes

2 1 Xt$Event Yes N/A Yes

2 2 Xt$ActionTime Yes N/A Yes

2 3 Xt$ForEach Yes N/A Yes

2 4 Xt$Order Yes N/A Yes

2 5 Xt$Sequence Yes N/A No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

X$Depend
The X$Depend system table is associated with the file DEPEND.DDF. X$Depend contains information about trigger
dependencies such as tables, views, and procedures. The structure of X$Depend is as follows:

Column Name Type Siz
e

Case
Insensitive

Description

Xd$Trigger CHARACTER 30 Yes Name of trigger. It corresponds to
Xt$Name in X$Trigger.

Xd$DependType UNSIGNED 1 N/A 1 for Table, 2 for View, 3 for
Procedure.

Xd$DependName CHARACTER 30 Yes Name of dependency with which
the
trigger is associated. It
corresponds
to either Xf$Name in X$File,
Xv$Name in X$View, or Xp$Name
in
X$Proc.

Two indexes are defined for the X$Depend table, as follows:

Index
Number

Segment
Number

Column Name Duplicate
s

Case
Insensitive

Segmente
d

0 0 Xd$Trigger No Yes Yes

0 1 Xd$DependType No N/A Yes

0 2 Xd$DependName No Yes No

1 0 Xd$DependType Yes N/A Yes

1 1 Xd$DependName Yes Yes No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table. Segment
Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SQLSTATE Classes and Values
Scalable SQL 4.0 has a special session variable called SQLSTATE. Based on proposed ANSI SQL3 standards, the
SQLSTATE variable is a five-byte character string that reflects the status of the last statement executed. Previous
versions of Scalable SQL returned a status code only. Scalable SQL 4.0 returns a status code to maintain backward
compatibility, and sets the SQLSTATE value, as well.

Within a stored procedure or trigger, the logic may respond to given SQLSTATE values either via condition handlers
or via explicit SQLSTATE tests, such as:

IF (SQLSTATE='00000')

THEN action

This appendix contains the following topics:

• Example Use of SQLSTATE

• Types of SQLSTATE Values

• SQLSTATE Classes

• SQLSTATE Subclasses

• Application-Defined SQLSTATE Values

• SQLSTATE Values

For more information about stored procedures, triggers, conditions, and condition handlers, refer to Chapter 2,
“Scalable SQL Syntax.”

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Example Use of SQLSTATE
The following example uses the SQLSTATE session variable in a stored procedure. For other examples that use
SQLSTATE, see “Examples for CREATE PROCEDURE” on page 2-37 and “Examples for DECLARE HANDLER” on
page 2-69.

CREATE PROCEDURE c1 (INOUT xx INT (2));

BEGIN

DECLARE c1 CONDITION FOR SQLSTATE '03000';

DECLARE c2 CONDITION FOR SQLSTATE '09000';

DECLARE c3 CONDITION FOR SQLSTATE '01234';

DECLARE CONTINUE HANDLER FOR c1

 BEGIN

    SET xx = xx + 1;

    SIGNAL c2;

 END;

DECLARE CONTINUE HANDLER FOR c2

 BEGIN

    SET xx = xx + 2;

    SIGNAL c3;

 END;

DECLARE EXIT HANDLER FOR SQLEXCEPTION

 BEGIN

    SIGNAL c3;

    SET xx = xx + 4;

 END;

IF (xx < 10) THEN

 SIGNAL c1;

ELSE

 IF (xx = 10) THEN

    SIGNAL c2;

 ELSE

    SIGNAL c3;

 END IF;

END IF;

IF (SQLSTATE = c3) THEN

 SET xx = 2000;

END IF;

END

When the input parameter equals 5, 10, and 12, respectively, the procedure executes as follows:

• When xx = 5:

Because this value is less than 10, condition c1 is immediately signalled.

The handler for c1 is invoked. This increments xx to 6 and signals condition c2.

The handler for c2 is invoked. This increments xx to 8 and signals condition c3.

Because c3 is a warning level condition, execution proceeds to the explicit test of SQLSTATE = c3, which
succeeds, and xx is set to 2000.

• When xx = 10:

Since this value equals 10, condition c2 is immediately signalled.

The handler for c2 is invoked. This increments xx to 12 and signals c3.

Since c3 is a warning level condition, execution proceeds to the explicit test of SQLSTATE = c3, which
succeeds, and xx is set to 2000.

• When xx = 12:

Because this value is greater than 10, condition c3 is immediately signalled.

Because c3 is a warning level condition, execution proceeds to the explicit test of SQLSTATE = c3, which
succeeds, and xx is set to 2000.

The input and output for stored procedure c1 can be summarized as follows:

xx Input xx Output

5 2000

10 2000

12 2000

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Types of SQLSTATE Values
The SQLSTATE variable is a five-byte character string. The first two bytes of the SQLSTATE value form a class value;
the last three bytes form a subclass value.

The ANSI standard reserves class values that begin with 0 through 4 and A through H for standard defined classes.
Class values that begin with any other character are implementation-defined. Within these standard classes, the
ANSI standard reserves subclass values that begin with 0 through 4 and A through H for standard defined
subclasses. Subclass values that begin with any other character are implementation-defined.

SQLSTATE values can indicate success, no data, warning, or exception. The following table lists the types of
SQLSTATE values.

Table D-1
Types of SQLSTATE Values

SQLSTATE ANSI-level Classification DBMS-level
Classification

Class Subclass

00 000 Success

01 000 through 4ZZ Warning

500 through 9ZZ Warning

A00 through HZZ Warning

I00 through ZZZ Warning

02 000 No data

03 through 4Z 000 through 4ZZ Exception

A00 through HZZ Exception

500 through 9ZZ Exception

I00 through ZZZ Exception

A0 through HZ 000 through 4ZZ Exception

A00 through HZZ Exception

500 through 9ZZ Exception

I00 through ZZZ Exception

50 through 9Z 000 Non-subclassed, user-
defined exception

I0 through ZZ 000 Non-subclassed, user-
defined exception

50 through 9Z 001 through ZZZ Subclassed, user-defined
exception

I0 through ZZ 001 through ZZZ Subclassed, user-defined
exception

By default, success, warning, and no data values allow execution to continue, and exception values cause execution
to halt. You can use condition handlers to change this default behavior.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SQLSTATE Classes
The following table summarizes the standard-defined classes that Scalable SQL uses. If a class or range of classes is
not listed, then Scalable SQL does not provide a status code that would map to the missing class or the class is
reserved for future use by the ANSI SQL4 standard.

Table D-2
Standard SQLSTATE Classes Used by Scalable SQL

Class Classification Description

00 Success All statuses less than or equal to 0, except -109.

01 Warning Status Code 80, record conflict. (Defined by the
standard
as “Cursor operation conflict.)

02 No data (such as end-of-file) Status Code 9 or -109.

08 Connection exception Login and communication errors.

09 Triggered action exception Status Code 911.

0A Feature not supported Status Code 362 or 902.

0B Transaction start exception Start transaction errors.

21 Cardinality violation Status Code 844.

22 Data exception Data conversion and constraint errors, mostly status
codes in the 200 and 300 range.

23 Integrity constraint violation
exception

Referential integrity errors.

24 Invalid cursor state exception Declared cursor errors.

2D Transaction termination
exception

Disallowed COMMIT/ROLLBACK errors.

34 Invalid cursor name exception Status Code 893.

38 External routine exception Inscribe errors.

39 External routine invocation
exception

Inscribe errors.

3B Savepoint exception Savepoint errors.

40 Transaction rollback exception Deadlock and lock conflicts.

42 Syntax error or access
violation
exception

Mostly status codes in the 500 and 800 range.

The following table summarizes the classes defined by the standard that Scalable SQL does not use.

Table D-3
Standard SQLSTATE Classes Not Used by Scalable SQL

Class Description

03 SQL statement not yet complete

0D Invalid target type specification

0E Invalid role specification

0F Locator exception

0G Reference to null table value

25 Transaction state exception

26 Invalid SQL statement name

27 Triggered data change violation

28 Invalid authorization specification

2B Dependent privilege descriptors still exist

2C Invalid character set name

2E Invalid connection name

2F SQL routine exception

30 Invalid SQL statement

31 Invalid target specification value

33 Invalid SQL descriptor

35 Invalid condition number

36 Cursor sensitivity exception

3C Ambiguous cursor name

3D Invalid catalog name

3F Invalid schema name

3G Invalid ADT instance

44 With check option violation

H1 through H5 SQL/MM

HZ Remote database access (protocol)

For each status code that does not map to a standard defined SQLSTATE class, Scalable SQL uses the following
process to assign a SQLSTATE value for the status code.    First, Scalable SQL makes the last three digits of the
SQLSTATE value equal to the last three digits of the status code. Next, Scalable SQL makes the first two digits of the
SQLSTATE value equal to one of the classes shown in Table D-4.

The following table lists classes defined by Scalable SQL.

Table D-4
Classes Defined by Scalable SQL

Class Description Associated Status Codes

K0 MicroKernel status codes 1 through 199

S0 Scalable SQL status codes 200 through 999

M0 MicroKernel status codes for Windows
and OS/2 workstations

1000 through 1999

R0 Requester status codes 2000 through 2999

X0 Uncategorized status codes All others

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SQLSTATE Subclasses
The following table lists the subclasses—within the standard classes—that Scalable SQL uses for status codes that
do not map directly to a complete, standard SQLSTATE value.

Table D-5
SQLSTATE Subclasses Defined by Scalable SQL

Subclass Description

I01 through I99 Status Codes 1 through 99

N00 through N99 Status Codes 100 through 199

O00 through O99 Status Codes 200 through 299

P00 through P99 Status Codes 300 through 399

Q00 through Q99 Status Codes 400 through 499

500 through 999 Status Codes 500 through 999

J00 through J99 Status Codes 1000 through 1999

L00 through L99 Status Codes 2000 through 2999

U00 through U99 Status Codes 3000 through 5999 and 7000 through 9999

The first digit of the subclass indicates the range of the status code, and the last two digits of the subclass indicate
the last two digits of the status code.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

Application-Defined SQLSTATE Values
Your application can define its own SQLSTATE classes that begin with the letters W, Y, and Z. For example, your
application could use the SQLSTATE class W9 for exceptions. As with all SQLSTATE values, each application-
specific SQLSTATE value must include a subclass value. Your application can use any subclass value except 000,
which is reserved by the ANSI standard to mean no subclass. If your application uses OOO, ANSI defines this to
mean 000.

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

SQLSTATE Values
The following table provides a comprehensive list of status codes and their associated SQLSTATE values.

Status Code SQLSTATE Value

0 00000

1 K0001

2 K0002

3 K0003

4 K0004

5 22028

6 K0006

7 K0007

8 24I08

9 02000

10 42I10

11 K0011

12 K0012

13 K0013

14 K0014

15 K0015

16 K0016

17 K0017

18 K0018

19 K0019

20 K0020

21 K0021

22 K0022

23 K0023

24 K0024

25 K0025

26 K0026

27 K0027

28 K0028

29 K0029

30 K0030

31 K0031

32 K0032

33 K0033

34 K0034

35 K0035

36 25I36

37 25I37

38 K0038

39 25I39

40 K0040

41 K0041

42 K0042

43 K0043

44 K0044

45 K0045

46 K0046

47 K0047

48 K0048

49 K0049

50 K0050

51 K0051

52 K0052

53 K0053

54 K0054

55 K0055

56 K0056

57 K0057

58 K0058

59 K0059

60 K0060

61 K0061

62 K0062

63 K0063

64 K0064

65 K0065

66 K0066

67 K0067

68 23I68

69 K0069

71 23I71

72 23I72

73 23I73

74 K0074

75 K0075

76 K0076

77 K0077

78 40001

79 K0079

80 K0080

81 K0081

82 K0082

83 K0083

84 40I84

85 40I85

86 K0086

87 K0087

88 K0088

89 K0089

90 K0090

91 08I91

92 K0092

93 K0093

94 K0094

95 08I95

96 08I96

97 K0097

98 K0098

99 K0099

100 K0100

101 K0101

102 K0102

103 K0103

104 K0104

105 K0105

106 K0106

107 K0107

109 K0109

110 K0110

111 K0111

112 K0112

113 K0113

114 K0114

115 K0115

130 K0130

132 K0132

133 K0133

134 K0134

135 K0135

136 K0136

139 K0139

140 K0140

143 K0143

147 K0147

148 K0148

149 K0149

151 K0151

160 K0160

161 K0161

162 K0162

200 S0200

201 S0201

202 S0202

203 08O03

204 42O04

205 08O05

206 S0206

207 42O07

208 S0208

209 08O09

210 S0210

211 S0211

212 S0212

213 42O13

214 42O14

215 S0215

218 S0218

219 S0219

220 S0220

221 42O21

222 42O22

223 22O23

224 22O24

225 42O25

226 S0226

227 S0227

228 S0228

229 42O29

230 S0230

231 S0231

232 S0232

234 S0234

235 S0235

236 42O36

237 42O37

238 S0238

239 42O39

240 42O40

241 42O41

242 42O42

243 42O43

244 42O44

245 42O45

246 42O46

247 42O47

248 22O48

249 S0249

250 42O50

251 42O51

252 42O52

253 42O53

254 42O54

255 S0255

256 S0256

257 42O57

258 42O58

259 42O59

260 42O60

261 42O61

262 42O62

263 42O63

264 S0264

265 08O65

266 08O66

269 42O69

270 42O70

271 42O71

272 42O72

273 42O73

274 42O74

275 42O75

276 S0276

277 S0277

278 S0278

279 42O79

280 42O80

281 S0281

282 42O82

283 42O83

284 42O84

285 S0285

286 42O86

287 S0287

288 S0288

289 S0289

290 42O90

291 42O91

292 22O92

293 22O93

294 22O94

295 S0295

296 S0296

297 S0297

298 S0298

299 S0299

300 S0300

301 S0301

302 S0302

303 S0303

304 S0304

305 S0305

306 42P05

307 S0307

308 42P08

309 S0309

310 42P10

311 S0311

312 S0312

313 0B000

314 S0314

315 S0315

316 S0316

317 S0317

318 42P18

319 22P19

320 22P20

321 22P21

322 22P22

323 42P23

324 S0324

325 42P25

326 42P26

327 S0327

328 S0328

329 S0329

330 22P30

331 42P31

332 S0332

333 S0333

334 42P34

335 S0335

336 S0336

337 42P37

338 42P38

339 S0339

340 42P40

341 42P41

342 42P42

343 42P43

344 S0344

345 S0345

346 22P46

347 S0347

348 S0348

349 22P49

350 42P50

351 25P51

352 S0352

353 S0353

354 S0354

357 S0357

358 S0358

359 S0359

360 S0360

361 S0361

362 0AP62

363 42P63

364 42P64

365 42P65

366 42P66

367 42P67

368 42P68

369 42P69

370 S0370

371 S0371

373 S0373

380 S0380

381 S0381

501 42501

502 42502

503 S0503

504 42504

505 S0505

506 42506

507 42507

508 42508

509 42509

510 42510

511 42511

512 42512

513 42513

514 42514

515 42515

516 42516

517 42517

518 42518

519 42519

520 42520

521 42521

522 42522

523 42523

524 42524

525 42525

526 42526

527 42527

528 42528

529 42529

530 42530

531 42531

532 42532

533 42533

534 S0534

535 42535

536 42536

537 42537

538 42538

539 S0539

540 42540

541 42541

542 42542

543 S0543

544 42544

545 42545

546 42546

547 42547

548 42548

549 42549

550 S0550

551 42551

552 42552

553 42553

554 42554

555 42555

556 42556

557 42557

558 42558

559 42559

560 42560

561 42561

562 42562

563 S0563

564 42564

565 42565

566 42566

567 42567

568 42568

569 42569

570 S0570

571 S0571

800 S0800

802 S0802

803 S0803

804 S0804

805 42805

806 42806

807 S0807

808 42808

809 S0809

810 S0810

811 22811

812 22812

813 22813

815 S0815

816 42816

818 42818

819 S0819

820 S0820

821 S0821

822 S0822

823 42823

824 S0824

825 42825

826 S0826

827 42827

828 S0828

829 S0829

830 42830

831 42831

832 S0832

833 42833

835 S0835

836 42836

837 S0837

838 42838

839 42839

840 S0840

841 S0841

842 42842

843 S0843

844 21000

845 42845

846 42846

847 42847

848 42848

849 S0849

850 S0850

851 42851

852 S0852

853 S0853

854 S0854

856 42856

857 S0857

858 S0858

859 42859

860 S0860

861 S0861

862 42862

863 S0863

864 42864

865 S0865

866 S0866

867 S0867

868 S0868

869 42869

870 42870

871 42871

872 42872

873 42873

874 42874

875 42875

876 42876

877 S0877

878 42878

879 42879

880 42880

881 42881

882 42882

883 42883

884 42884

885 42885

886 S0886

887 42887

888 42888

889 42889

890 42890

891 42891

892 3B001

893 S0893

894 24894

895 24895

896 42896

897 42897

898 42898

899 24899

900 S0900

901 42901

902 0A902

903 42903

904 42904

905 42905

906 42906

907 42907

908 42908

909 42909

910 S0910

911 09000

913 S0913

914 S0914

915 S0915

1001 M1001

1002 M1002

1003 M1003

1004 M1004

1005 M1005

1006 M1006

1007 M1007

1008 M1008

1009 M1009

1010 M1010

1011 M1011

1012 M1012

1013 M1013

1014 M1014

1015 M1015

1016 M1016

1017 M1017

1018 M1018

1019 M1019

1020 M1020

1021 M1021

2000 S0910

2001 S0910

2002 S0910

2003 S0910

2004 S0910

2005 S0910

2006 S0910

2007 S0910

2008 S0910

2009 S0910

2010 S0910

2011 S0910

2012 S0910

2101 08L01

2102 08L02

2103 08L03

2104 08L04

2105 08L05

2106 08L06

2107 08L07

2108 08L08

2109 08L09

2110 08L10

2111 08L11

2112 08L12

2113 08L13

2114 08L14

2115 08L15

2116 08L16

2117 08L17

2118 08L18

2119 08L19

2120 08L20

2121 08L21

2122 08L22

2200 S0910

2201 S0910

2202 S0910

2203 S0910

2204 S0910

2205 S0910

2206 S0910

2300 S0910

2303 S0910

2305 S0910

2306 S0910

2307 S0910

2309 S0910

2310 S0910

2311 S0910

2312 S0910

2313 S0910

2314 S0910

2315 S0910

2316 S0910

2317 S0910

2318 S0910

2319 S0910

2320 S0910

2321 S0910

2322 S0910

2323 S0910

2324 S0910

2325 S0910

2326 S0910

2327 S0910

2328 S0910

2329 S0910

2330 S0910

2900 38L00

2901 38L01

2902 38L02

2903 38L03

2904 39L04

2905 39L05

2906 39L06

2907 39L07

2908 39L08

2909 39L09

2910 39L10

2911 38L11

2912 38L12

2913 38L13

2915 39L15

2916 39L16

2917 38L17

2918 38L18

2919 38L19

3000 08U00

3001 08U01

3002 08U02

3003 08U03

3004 08U04

3005 08U05

3006 08U06

3007 08U07

3008 08U08

3009 08U09

3010 08U10

3011 08U11

3012 08U12

3013 08U13

3014 08U14

3015 08U15

3016 08U16

3017 08U17

3018 08U18

3019 08U19

3020 08U20

3021 08U21

3022 08U22

3023 08U23

3024 08U24

3100 08U00

3101 08U01

3102 08U02

3103 08U03

3104 08U04

3105 08U05

3106 08U06

3107 08U07

3108 08U08

3109 08U09

3110 08U10

3111 08U11

3112 08U12

3113 08U13

3114 08U14

3115 08U15

3116 08U16

3117 08U17

3118 08U18

3119 08U19

3120 08U20

3121 08U21

3122 08U22

7002 X0002

7003 X0003

7004 X0004

7005 X0005

7006 X0006

7007 X0007

7008 X0008

7009 X0009

7010 X0010

7011 X0011

7012 X0012

7013 X0013

7014 X0014

7016 X0016

7017 X0017

7018 X0018

7019 X0019

7020 X0020

7021 X0021

7022 X0022

7023 X0023

7026 X0026

7028 X0028

7029 X0029

7030 X0030

7031 X0031

7032 X0032

7033 X0033

7035 X0035

7036 X0036

7037 X0037

7038 X0038

7039 X0039

7040 X0040

7041 X0041

7042 X0042

7046 X0046

7048 X0048

7049 X0049

7050 X0050

7051 X0051

7052 X0052

7053 X0053

7054 X0054

7061 X0061

7062 X0062

7063 X0063

7064 X0064

7065 X0065

8001 X0001

8002 X0002

8003 X0003

8004 X0004

8005 X0005

8006 X0006

8007 X0007

8008 X0008

8009 X0009

8010 X0010

8011 X0011

8012 X0012

8013 X0013

8014 X0014

8015 X0015

8016 X0016

8017 X0017

8018 X0018

8019 X0019

8020 X0020

8021 X0021

8022 X0022

8023 X0023

8024 X0024

8025 X0025

8026 X0026

8027 X0027

8028 X0028

8029 X0029

8030 X0030

8031 X0031

8032 X0032

8033 X0033

8034 X0034

8035 X0035

8036 X0036

8037 X0037

8038 X0038

8039 X0039

8040 X0040

8041 X0041

8200 X0200

8201 X0201

8202 X0202

8203 X0203

8204 X0204

8205 X0205

8206 X0206

8207 X0207

8208 X0208

8209 X0209

8210 X0210

8211 X0211

8212 X0212

8213 X0213

8214 X0214

8215 X0215

8216 X0216

8217 X0217

8218 X0218

Send comments to docs@pervasive.com.    Copyright © 1998 Pervasive Software Inc.    All rights reserved.

