
Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

About This Manual
This    manual    contains information about Pervasive.SQL version 7 utilities for both server and workstation products.
These utilities allow you to perform tasks such as configuring server and workstation components, maintaining data
files, and creating and updating DDFs.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Who Should Read This Manual
This manual provides information for users who install and run Pervasive.SQL 7 server and workstation products.
This manual is also useful for system administrators who are responsible for maintaining databases on a network and
for programmers who are using Pervasive.SQL to develop applications.

Pervasive Software would appreciate your comments and suggestions about this manual. As a user of our
documentation, you are in a unique position to provide ideas that can have a direct impact on future releases of this
and other manuals. Please complete the User Comments form that appears on our Web site and fill in part number
100-003441-003.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Manual Organization
• Chapter 1—“Introduction to Pervasive.SQL Utilities”

This chapter provides a summary of the Pervasive.SQL utilities.

• Chapter 2—“Component Architecture”

This chapter discusses smart component architecture, a new feature in Pervasive.SQL.

• Chapter 3—“Configuring Components Using the Setup Utility”

This chapter describes the Configuration utility, which allows you to configure all Pervasive components.

• Chapter 4—“Creating and Maintaining DDFs with DDF Ease”

This chapter provides detailed information about creating and maintaining DDFs for existing Btrieve data
files.

• Chapter 5—“Monitoring Pervasive.SQL Database Resources”

This chapter describes the Monitor utility, which monitors activities of the Btrieve and SQL engines.

• Chapter 6—“Testing Btrieve Operations Using the Function Executor”

This chapter describes the Function Executor, which allows you to execute Btrieve operations one at a time.

• Chapter 7—“Manipulating Btrieve Data Files with the Maintenance Utility”

This chapter describes the interactive and command-line Btrieve Maintenance utilities. These utilities allow
you to perform common file and data manipulations on MicroKernel data files.

• Chapter 8—“Manipulating Scalable SQL Data Files with the Maintenance Utility”

This chapter describes the SQL Interface Maintenance utility (SQLUTIL), a command-line utility that allows
you to perform common file and data manipulation on relational data files.

• Chapter 9—“Executing SQL Statements with SQLScope”

This chapter describes SQLScope, a Win16 interactive SQL script file editor and handler. SQLScope allows
you to query data files using SQL statements and display the results on the screen. In addition, SQLScope
allows you to perform database management tasks, such as importing and exporting SQL scripts.

• Chapter 10—“Checking and Repairing Referential Integrity”

This chapter describes the RI utility, which allows you to check the consistency of data files containing
referential constraints.

• Chapter 11—“Converting MicroKernel Data Files”

This chapter describes how to rebuild previous versions of MicroKernel files into version 7.0 format.

• Appendix A—“Smart Component Type Codes”

This appendix lists each smart component and type by group in tabular format.

• Appendix B—“Description Files”

This appendix documents description files, which are used with the Btrieve Maintenance utilities. The

appendix explains the rules for creating description files, provides description file examples, and describes
the individual description file elements.

The manual also includes a glossary and index.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Conventions
Unless otherwise noted, command syntax, code, and examples use the following conventions:

 Case Commands and reserved words typically appear in
uppercase letters. Unless the manual states otherwise, you
can enter these items using uppercase, lowercase, or both.
For example, you can type MYPROG, myprog, or MYprog.

[] Square brackets enclose optional information, as in
[log_name]. If information is not enclosed in square
brackets, it is required.

| A vertical bar indicates a choice of information to enter, as in
[file name | @file name].

< > Angle brackets enclose multiple choices for a required item,
as in /D=<5|6|7> .

variable Words appearing in italics are variables that you must
replace with appropriate values, as in file name .

... An ellipsis following information indicates you can repeat the
information more than one time, as in [parameter ...].

::= The symbol ::= means one item is defined in terms of
another. For example, a::=b means the item a is defined in
terms of b .

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Introduction to Pervasive.SQL Utilities
Pervasive.SQL is a comprehensive database management system built around Pervasive Software’s MicroKernel
Database Engine. Pervasive.SQL 7 offers easy installation, uncomplicated maintenance, and high levels of
performance and reliability. This manual describes the Pervasive.SQL 7 utilities you can use to configure and manage
your Pervasive.SQL database.

• “Utility Summary”

• “File System Security”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Utility Summary
The following table summarizes these utilities.

Table 1-1
Summary of Pervasive.SQL 7 Utilities

 Utility Platforms Description Server or Workstation

Setup Win16, Win32,
and OS/2

Manipulates settings for
Pervasive client and server
components.

Windows NT and
NetWare servers

Windows 9X /NT
workstations for Win16
and Win32 versions

Monitor Win16, Win32,
and OS/2

Monitors server engine activity,
useful for database
administration and programming
diagnostics.

Windows NT servers
and Netware servers
from any platform other
than NLM

Function Executor Win16 and
OS/2

Executes Btrieve operations,
enabling you to learn how Btrieve
works or test and debug an
application.

Windows NT and
NetWare servers

Windows 9X /NT
workstations for Win16
version

Btrieve
Maintenance

DOS, NLM,
Win16, Win32,
and OS/2

Performs common Btrieve file
and data manipulations, such as
importing and exporting data.

Windows NT and
NetWare servers

Windows 9X /NT
workstations for
command-line and
Win32 versions

Scalable SQL
Maintenance

Win32 and
NLM

Performs common SQL Interface
file and data manipulations, such
as importing and exporting data.

Windows NT and
NetWare servers

Windows 9X /NT
workstations for
command-line version

SQLScope Win16 and
Win32

Allows you to execute SQL
Statements interactively.

Windows NT and
NetWare servers

Windows 9X /NT
workstations

RI utility NLM only Checks and lists RI constraints
on named databases.

NetWare Server only

Rebuild Win16, Win32,
OS/2, and NLM

Converts previous versions of
MicroKernel files into version 7.0
format.

Windows NT and
NetWare servers

Windows 9X /NT
workstations for Win32
version

View Conversion Win32, DOS Migrates Scalable SQL 3.x view
to Scalable SQL 4.x .

Windows NT servers

Windows 9X /NT
workstations for Win32
version

DDF Ease Win32 Creates and maintains Data
Dictionary Files (DDFs) and
database files.

Windows NT and
NetWare servers

Windows 9X /NT
workstations

User Count
Administrator

Win16 and
Win32

Increases the Pervasive.SQL
user count incrementally with a
software key you obtain from
Pervasive Software. This utility is
documented in Getting Started
with    Pervasive.SQL (Server
Edition).

Windows NT and
NetWare servers

InstallScout Win16 and
Win32

To ensure that your system
meets network communication
requirements before installation
and that    your new software is
performing correctly after
installation. For more
information, see the InstallScout
Help file (INSSCT.HLP).

Windows NT and
NetWare servers

Windows 9X /NT
workstations

SmartScout Win16 and
Win32

A troubleshooting utility that
analyzes components, runs
system tests, and allows you to
display registry and .INI file
settings. This utility is
documented in Getting    Started
with Pervasive.SQL.

Windows NT and
NetWare servers

Windows 9X /NT
workstations

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

File System Security
Pervasive.SQL engines adhere to the file system security defined by the specific operating system, such as NTFS
and Novell’s NSS.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Component Architecture
This chapter discusses the following topics:

• “Smart Components”

• “Component Identification”

• “Unique Component Naming”

• “Dynamic Binding”

• “Pervasive.SQL Event Logging”

• “Error Code Clarification”

• “Diagnosing Load Errors”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Smart Components
Pervasive.SQL 7 offers a new component architecture called Smart Components, which improves installation and
run-time reliability and makes application troubleshooting easier.

In earlier Pervasive software releases, some developers experienced one or more of the following problems:

• Installation of a new application (with old client Requester components) overwrote new Requester
components in shared locations, causing old applications to fail the next time they ran.

• Installation of a new workstation engine was incompatible with existing client Requesters. Existing client
Requesters loaded the old engine, failing to provide features required by the new application.

• Difficulty identifying the function, version, and patch level of installed components.

• Difficulty determining the root cause of run-time operational failures, especially in client/server operation.

The Smart Components architecture is designed to reduce or eliminate these problems by providing the following
features and benefits:

• Component Identification. Component function, major, and minor functional level are easily identified to aid
in problem resolution.

• Unique Component Naming. Each release of a given component has a unique file name, so that updated
versions of a component never overwrite previous versions. A Pervasive upgrade will not damage existing
Pervasive-based applications.

• Dynamic Binding. Pervasive.SQL no longer loads a fixed set of program files into memory. Dependent
components are loaded only if another component specifically requires its functionality, major, and minor
functional level. Incompatible components are never accidentally loaded, reducing or eliminating version-
related failures.

• Pervasive.SQL Event Logging. All components report errors and messages to a central log, easing the
burden of troubleshooting.

• Error Code Clarification. Error conditions from underlying layers are now logged through to the
Pervasive.SQL Event Log, rather than hidden within an umbrella status code. Because the root causes of
certain errors can now be more quickly determined, troubleshooting is much easier.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Component Identification
Each component contains a unique embedded Component ID. The Component ID is a string containing information
such as:

• Designated operating system

• Functionality

• Major functional level

• Minor functional level

• Build site

• Build number

• Timestamp

• Checksum

Pervasive Software Customer Support representatives can browse the file image of a component to locate the
Component ID and verify that it is the correct component.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Unique Component Naming
Pervasive.SQL components have new unique names that reflect the platform, type, and functional level of the
component. Each subsequent release of a component (even patches) will have a slightly different name, so that no
two releases of the same functional component have the same file name.

This feature both identifies the exact functionality of a file and prevents different versions of a file from overwriting
each other during installation of a new version or uninstall to a previous version.

Components are named using a well-defined scheme. All component names adhere to 8.3 notation for compatibility
on systems that do not support long file names (such as Windows 3.1). The first two characters of the prefix identify
the designated run-time platform. The next three characters identify the component functionality—its type. The sixth
character identifies the major functional level (hexadecimal, range 1 to F), and the final two characters identify the
minor functional level (hexadecimal, range 00 to FF).

The major functional level defines the version of the component, which began at one (1) with the first release of
Pervasive.SQL. The minor functional level begins at zero (0) for each major functional level. Whenever the major
functional level is incremented, the minor functional level is reset to zero. The minor functional level increases with
each patch or public release of the component if it contains any changes whatsoever. The following tables show the
Platform Codes and a sampling of Component Type Codes.

Table 2-1
Platform Codes

 Platform Code

Windows 3.1, Windows for Workgroups (Win16) W1

Extended Windows (32-bit Watcom Extender) W2

Windows 95, Windows NT (Win32) W3

Windows 9X W9

Windows NT WT

NetWare 3.x and 4.x NW

OS/2 (32-bit) O3

 

Table 2-2
Component Type Codes**1

 Component Type Code

Btrieve Interface DLL BIF

Network Services Layer NSL

MicroKernel Interface DLL MIF

SQL Interface DLL SIF

 **1 This table lists a sampling of Component Types. For a complete listing, refer to Appendix A, “Smart Component Type Codes.”

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Dynamic Binding
Rather than load a hard-coded file name, upstream components that require the functionality of a downstream
component now can specify what functionality and what revision they require. An upstream component loads before a
downstream component. For example, the application loads the Btrieve interface component, or .BIF. The .BIF then
loads the .MIF, or the MicroKernel interface module. In this example, the .BIF is an upstream component, and
the .MIF is a downstream component.

Upstream components load their downstream components with the help of a new component, the Abstract OS
Services DLL (Services DLL). The upstream component provides the Services DLL with a binding rule , specifying the
type and minimum functional level of the required downstream component. Based on the binding rule, the Services
DLL constructs a file name template and searches for a file that can deliver at least the required functionality. When it
finds such a file, it returns the full path to the calling component, which then loads the specified downstream
component.

When searching for a downstream component, the Services DLL first explores the directory or directories specified in
the PERVASIVE_PATH environment variable. If PERVASIVE_PATH is not set or the requested component is not
found, the Services DLL then searches on the platform’s default path. (For OS/2, the Services DLL does not search
LIBPATH.)

 Note: The Services DLL does not search for the Glue DLLs and the initial
Services DLL. Instead, the operating system uses the platform’s default path.

The Services DLL employs a best first match search algorithm, meaning that it stops in the first directory where it
finds an acceptable match and then returns the highest minor functional level of the specified component that exists
in that directory.

For example, if a component requires W1MIF101.DLL or later, the Services DLL searches until it finds an instance of
W1MIF1xx .DLL, where xx is 01 or greater. Then, the Services DLL searches that directory for the instance of
W1MIF1xx .DLL with the greatest value of xx . This file name is then returned to the calling component. For example,
if W1MIF101.DLL and W1MIF102.DLL are present in that directory, W1MIF102.DLL is returned. If there is an instance
of W1MIF103.DLL in a different directory later on the search path, it is never reached.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Pervasive.SQL Event Logging
With the release of Pervasive.SQL 7, the MicroKernel message log is replaced by a new centralized event log. All
Pervasive.SQL 7 and later components write status and error messages to the same log file. In addition, if two or
more Pervasive-based applications are running on the same machine, they share a single event log.

The event log, called PVSW.LOG, is located in the Windows root directory of each machine that is running a
Pervasive-based application. This location cannot be changed or customized. In the following table, C: represents the
drive letter where your operating system is installed.

 Platform Event log location

Windows 9X and Windows 3.1x C:\WINDOWS

Windows NT C:\WINNT

NetWare SYS:SYSTEM

OS/2 C:\OS2

 

Syntax

The event log consists of ASCII text messages that adhere to the following syntax description:

Table 2-3
Event Log Fields

 Field Length (in Bytes) Contents

Date 10 Automatic date-stamp in mm/dd/yyyy format.

Time 8 Automatic time-stamp in hh:mm:ss format.

Component 15 File name of component returning the error (prefix only, no
extension).

Process 8 Instance ID of the component, which is either the process ID
of the component or the thread group ID in NetWare.

Process Name Up to 15 Path and name of the component, truncated to the last 15
characters.

Computer
Name

Up to 15 Name assigned to the machine hosting the process,
truncated to the first 15 characters.

Type 1 A single character: I for Information, W for Warning, or E for
Error.

Category Up to 10 A component-specific text field. Components are not
required to provide a value in this field.

Msg ID Up to 8 A numeric message identifier that corresponds to a
message string within a resource file associated with the
calling component.

Message Up to 1,024 The message text which may be either a string retrieved
from a resource associated with the calling component or a
text string passed directly from the calling component.

 

An entry may be followed by binary data in standard ASCII hexadecimal format. There is no limit to the length of the
binary data.

Sample Entry

The following shows an example of the type of data contained in the event log.
 Date Time Component Process Process

Name

11-04-1997 14:01:0
5

NTMKDE 000000D
D

W3DBSMG
R.EXE

 

 Computer
Name

Type
Category

Msg
ID

Message

LABSERVER I MicroKernel is using
default settings.

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Error Code Clarification
In earlier Btrieve and SQL Interface releases, top-level components occasionally subsumed error codes from
underlying components into an umbrella error code returned by the top level component. In some cases, this situation
could make troubleshooting difficult because a single error code could have a wide range of possible root causes.

Starting with Pervasive.SQL 7, most top level components have been redesigned to pass through error codes from
underlying components so that the actual source of the error is clearly identified to the calling application and/or in the
log file.

In situations where an error code remains overloaded, specific information in the Pervasive.SQL event log should
identify the root cause of the error.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Diagnosing Load Errors
Pervasive.SQL provides the following types of information you can use in diagnosing module load errors:

• Status codes. You can refer to the Status Codes and Messages manual for more information about the
specific status code returned.

• Event log. You can look for the following information in the Pervasive.SQL Event Log to get additional
information about a specific module load error:

 Component
Name

The logical or physical name of the module that
received the load failure. Logical names used
are:ServicesIfc—Abstract OS Services
BtrvIfc—Btrieve
MKDEIfc—MicroKernel
SSQLIfc—Scalable SQL

The physical name is logged if the calling module
attempted to load a component using a binding rule.
For example, a physical name is W3BIF102.

Type The type of load error, as follows:

E (Error)—The module could not be found or an
operating system-specific error occurred while
loading the module.

W (Warning)—A symbol could not be found or was
not exported by the module.

Message The message depends on the type of module load
error.    If the module could not be found, the event
log contains the binding rule that specified the
downstream component. If an operating system-
specific error occurred, the event log contains that
operating system error. If a symbol could not be
found or was not exported, the event log contains
that symbol.

 

• On-screen errors. The event log is not functional until the Services DLL loads. Therefore, if a load error
occurs while binding to the Services DLL, the event log does not log the error. Instead, Pervasive.SQL can
display an on-screen error.

You must enable the Services DLL to display on-screen module load errors by setting the
PVSW_DISP_LOAD_ERRS environment variable. Its format is as follows:

PVSW_DISP_LOAD_ERRS=AIF

This environment variable should only be set to diagnose module load errors.    In all other cases, it should
not be set.

To diagnose an error, set this variable as specified and perform the operation. The load error is displayed in
a message box on your system.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Configuring Components Using the Setup Utility
This chapter discusses the following topics:

• “Setup Utility Overview”

• “Special Notes on the Setup Utility”

• “Setup Utility Main Window”

Client-side components:

• “Scalable SQL Requester for Windows, Windows 95, and Windows NT Options”

• “DBNames Interface Options”

• “Btrieve Requester Options”

• “MicroKernel Router Options”

• “Communication Requester Settings”

Server and workstation components:

• “Scalable SQL Engine Options”

• “Scalable SQL Communications Manager Options”

• “MicroKernel Database Engine Options”

• “Btrieve Communications Manager Options”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Setup Utility Overview
The Setup utility manipulates settings for the Pervasive.SQL 7 workstation, client and server components.

Configuring these components is optional. If you do not configure them, each component loads with default
configuration settings. The Setup utility works only with Pervasive.SQL 7 or later.

You can use the Setup utility for the following reasons:

• Your system or your Pervasive.SQL application requires you to adjust the settings. Refer to your
application’s documentation for recommended values. If you are running multiple applications concurrently,
add the recommended values together. If you are running multiple applications sequentially, use the highest
recommended value.

• You want to optimize the settings so that Pervasive.SQL provides the services you need without using more
memory than necessary. (The stated memory requirements provide guidelines for optimizing your
computer’s resources.)

For your changes to take effect, you must shut down and then restart the Pervasive.SQL components. For more
information, refer to Getting Started    with Pervasive.SQL.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Special Notes on the Setup Utility
This section contains information to help you understand the Setup utility, which is described in the following sections:

• “Connecting to Different Environments”

• “Configuring Pervasive.SQL for Distributed Databases”

• “Performance Issues”

• “Archival Logging vs. Transaction Durability”

• “Interpreting Setting Parameters”

Connecting to Different Environments
The Setup utility can configure both local and remote environments depending on whether you have a server or
workstation product. When you start the Setup utility, it is ready to configure a local environment.

To configure a remote environment, click the Connect button and enter the name of a server. To disconnect from a
remote server, click the Disconnect button. When you are connected to a remote environment, you can view and
change only server components. When using a Windows NT server as both a client and a server, the NT client can
only be configured locally at the server.

Configuring Pervasive.SQL for Distributed Databases
You may configure Pervasive.SQL to run in a distributed environment such that the data dictionary resides on one
server, and one or more data files reside on remote servers. To successfully operate in this environment, you must
meet the following requirements:

• For full read and write access, your Scalable SQL or Btrieve servers must be version 4 or 7 or later,
respectively. Otherwise, you can only perform read-only transactions (for example, if you are accessing data
on a remote server running Scalable SQL 3.x    or Btrieve 6.x).

• Your engine’s user name must be a valid user name across servers with the same password. On your
primary server, the user must have administrative privileges.

• You must set the Accept Remote Requests setting of the Scalable SQL Communications Manager
component to On .

• Scalable SQL must be loaded on the machine where the data dictionary files (DDF) reside and the machine
where the data files are located.    If only Btrieve is loaded on the machine where the data files reside, you
will receive a Status Code 20, “The MicroKernel or Btrieve Requester is inactive.” To resolve this situation,
load the Scalable SQL engine on the machine where the data files reside.

Performance Issues
This section contains notes on settings that can affect performance.

The configuration setting Cache Allocation has a default value of 1,024 KB. You may find that you get better
performance with the Cache Allocation setting set to 2,048 KB or larger. If possible, set the cache size to the total size
of all the Pervasive.SQL data files that will be accessed concurrently or the size of the largest data file that will be
accessed sequentially.

Archival Logging vs. Transaction Durability

The Setup Utility allows you to specify two different logs that are written to the MicroKernel:

• Archival Logging

• Transaction Durability

The archival log facilitates the recovery of data files in case a system failure or crash occurs. (You can also use the
roll forward feature in BUTIL or Btrieve Interactive Maintenance utilities to recover changes made to a data file
between the time of the last backup and a system crash.)

A transaction durability log includes all transaction operations submitted to the MicroKernel from the time the
application received the successful status from the END_TRANSACTION operation and any changes the engine
wrote into the data file. See “Transaction Durability”

These two logs are never applied together. The archival log is used for restoring the current state from archives in
case a hardware error or file corruption occurs. It can also be used for auditing purposes. The transaction log is used
to provide better performance while ensuring that committed transactions do not get lost in case of a system crash.

For more information about Archival Logging or Transaction Durability, see Part I of the Pervasive.SQL Programmer’s
Guide .

Interpreting Setting Parameters
Under each option, there are a number of specifications, which are displayed in the following table:

 Range The valid values the setting can take.

Default The value that Pervasive.SQL assigns if you do not modify it.

Approximate
memory required

If applicable, this value gives you an estimate of the memory price of using
this option.

Applicable to clients This field lists the Pervasive.SQL client requester versions that are appropriate
to this option.

If this field contains “Not Applicable,” this is a remote engine setting only and
any Setup utility can be used to change the setting on a remote machine.

If this field contains “Win32 only,” only Win32 Requesters are affected by this
setting and you must use the Win32 Setup utility to change this option.

If this field contains “Win16 only,” only Win16 Requesters are affected by this
setting and you must use the Win16 Setup utility to change this option.

If this field contains a list of clients, the setting applies to multiple requester
versions and you must use the applicable Setup utility to change the option for
each client you use. For example, use Win32 Configuration to change the
setting for Win32 client requesters and the OS/2 Setup utility to change the
setting for OS/2 client requesters.

Applicable to
servers or
workstations

This field lists the Pervasive.SQL server or workstation to which this setting
applies, such as Windows NT or NetWare for the server, and Windows 9X/NT
for the workstation.

 

The following table outlines the functionality of the three versions of the Setup utility:

Table 3-1
Pervasive.SQL Win16, Win32, and OS/2 Setup Utilities

 Setup utility Components that it can configure Where changed

Win32 Setup utility

(Runs on Windows 9X/NT
workstations or Windows NT
servers.)

Local Win32 components Windows Registry on
local machine

NT Server components (local or remote
machines)

Windows Registry

NetWare Server components (remote
machines only)

BTI.CFG on NetWare server

Win16 Setup utility

(Runs on Windows 3.x,
Windows 9X/NT
workstations and Windows
NT servers.)

Local Win16 components

NT Server components (remote machine
only)

NetWare Server components (remote
machines only)

BTI.INI on local
machine

Windows Registry on
Windows NT server

BTI.CFG on NetWare
server

OS/2 Setup utility

(Runs on OS/2 client
workstations)

Local OS/2 componentsNT Server
components (remote machines only)

NetWare Server components (remote
machines only)

OS2.INI (binary)

Windows Registry

BTI.CFG

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Setup Utility Main Window
Figure 3-1 shows the Setup utility’s main window when it is connected to a remote server.

Figure 3-1
Setup Utility Main Window

Table 3-2 describes the elements in the Setup utility’s main window.

Table 3-2
Elements in the Setup Utility Main Window

 Configuration Element Description

Target Machine Displays LOCAL when configuring the local environment (a Windows
3.x, Windows 9X, or Windows NT client or a Windows 9X or Windows
NT workstation) or a server name when configuring a remote
environment.

Component Lists the components available for configuration.

Note: If a component is not loaded or not present, it does not appear in
the list. Local components must be installed in a search path location;
remote components must be loaded and running.

Categories Lists the categories of configuration options for the current component.

Settings Lists the configuration options you can change in the current category.
Below the Settings list, the Setup utility displays the default and current
settings for the highlighted option. The utility also displays the minimum
and maximum values for the settings, where applicable.

Connect/Disconnect Allows you to connect to or disconnect from a remote server.

Maintain Named
Databases

Allows you to create bound databases. This button only appears when
you select the Scalable SQL Engine component.

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Scalable SQL Engine Options
This section describes the SQL engine configuration options in order by category:

• System Configuration

• Trace File Control

System Configuration
The System Configuration category includes six settings, which are described as follows:

Enable External Procedures
 Range Default Memory Req Clients Engines

On or Off Off N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting allows you to enable or disable Inscribe support. Inscribe lets you to create and run external procedures
from a Pervasive.SQL database engine.

For the SQL server engine for the NetWare, if you select Off , the SQL engine does not make calls to Inscribe. If you
select On , the SQL engine provides Inscribe support, allowing you to use external Inscribe procedures.

For the SQL engine for Windows NT server or Win32 workstation engines, if you select Off, the SQL engine does not
load with Inscribe support. If you select On, the SQL engine loads with Inscribe support.

For more information about Inscribe, refer to the Inscribe User’s Guide . For the Pervasive.SQL 7 Workstation, this
manual is only available in a WinHelp file (INSCRIBE.HLP).

External Sort File Directory
 Range Default Memory Req Clients Engines

Any valid
directory path

NetWare:
SYS:SYSTEM

Windows NT:
default Windows
directory

N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies where the SQL engine stores the temporary files it creates during certain processes. This
directory must exist before the SQL engine accesses it and must be on the same server where the SQL engine is
installed.

You can create a directory to hold the temporary files and then specify that directory as the external sort file directory.
When specifying a path, use one of the following formats:

 NetWare Format Windows NT Format

vol :directory

drive:directory

 

The SQL engine assigns a coded name to each temporary file and deletes the temporary files upon completion of the

processes that require those files. If you do not enter a path for this parameter, the SQL engine places the temporary
files in the default directory of the server on which the SQL engine is installed.

Isolation Level
 Range Default Memory Req Clients Engines

Cursor Stability or
Exclusive

Cursor Stability N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting allows you to specify the engine’s default isolation level (locking) for the SQL Interface. If you specify
Exclusive , the default is exclusive, file-level locking; an exclusive lock is not released until the transaction is
complete. Other users cannot access a file that another user has locked. If you specify Cursor Stability , the default is
cursor stability locking, which locks either the row or page you are accessing. Other users cannot access a page or
record that another user has locked.

You can use cursor stability locking only with 6.x or later data files.

Communications Buffer Size
 Range Default Memory Req Clients Engines

4,096 through
32,767 bytes

16,384 bytes Specified value
*Maximum
number of worker
threads

N/A Windows NT Server

 

This setting specifies the length in bytes of the longest block of data that can be transferred between a Windows NT
application running on the server and the SQL engine for Windows NT. Each worker thread allocates a memory buffer
large enough to accommodate this maximum length of data. Worker threads are the elements that actually perform
file operations on behalf of the requesting client process.

If you set this value lower than the number of bytes your application requires, the SQL engine returns an error
message at run time. However, setting a value higher than you need does not improve performance.

Worker Threads
 Range Default Memory Req Clients Engines

2 through 64
threads

3 threads N/A N/A Windows NT Server

Windows 9X/NT
workstations

 

This setting specifies the number of worker threads the SQL engine initially spawns to handle client requests. Worker
threads are the elements that actually perform file operations on behalf of the requesting client process. (The SQL
engine may dynamically spawn additional worker threads as needed.)

Check Table Definitions
 Range Default Memory Req Clients Engines

On or Off Off N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies whether the SQL engine checks the table definitions stored in the DDFs against the actual data
file definitions. The SQL engine returns Status Code 353 when you attempt to query a table for which the data file
definitions do not match the DDFs.

Trace File Control
The Trace File Control category includes five settings, which are described as follows:

Scalable SQL Logins/Logouts
 Range Default Memory Req Clients Engines

On or Off Off N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies whether to record database login and logout activity to a trace file. If you enable this option, you
must specify a trace file using the Trace File option.

Failed Scalable SQL Logins
 Range Default Memory Req Clients Engines

On or Off Off N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies whether to record failed database login attempts to a trace file. If you enable this option, you
must specify a trace file using the Trace File option.

All Other Scalable SQL Calls
 Range Default Memory Req Clients Engines

On or Off Off N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies whether to record all data definition and data manipulation activity to a trace file. Developers
can use tracing to debug applications. If you enable this option, you must specify a trace file using the Trace File
option.

Trace File
 Range Default Memory Req Clients Engines

Any valid path NetWare:
directory from
which the SQL
engine is started
+ SSQL.LOG

N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT

Windows NT:
directory in which
the SQL engine is
installed +
SSQL.LOG

workstations

 

This setting specifies the file to which the SQL engine writes trace information. The path and file name must be valid.

 Note: Do not use the same trace file name for Scalable SQL and MicroKernel
Database engines.

Maintain Named Databases
 Range Default Memory Req Clients Engines

N/A N/A N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

A named database has a logical name that allows users to identify it without knowing its actual location. When you
name a database, you associate that name with a particular dictionary directory path and one or more data file paths.
When you log in to the SQL engine using a database name, the SQL engine uses the name to find the database’s
dictionary and data files. A named database enables you to do the following:

• Define triggers

• Define primary and foreign keys

• Bind a database

• Suspend a database’s integrity constraints

You use the Maintain Named Database feature to bind and name databases. Table 3-3 describes the elements in
the Maintain Named Databases dialog.

Table 3-3
Elements in the Maintain Named Databases Dialog

 Element Description

Database Names Lists the available named databases.

Dictionary Location Displays the location of the DDF files for the selected database name.

Integrity Enforced Displays whether Pervasive.SQL is enforcing integrity constraints
(including security, referential integrity, and triggers) on the database.

Bound Displays whether the database is bound. Binding a database ensures
that the MicroKernel enforces the database’s defined security,
referential integrity (RI), and triggers, regardless of the method you
use to access the data.

For more information about bound databases, refer to the

Pervasive.SQL    Programmer’s Guide.

Data File Locations Displays the location of data files for the database.

Create Allows you to create a new named database.

Modify Allows you to change the properties of the current database.

Delete Deletes the database name from the DBNAMES.CFG file. For bound
databases, this operation also deletes the associated dictionary files.
For unbound databases, this operation does not delete any files.

Bind Makes the database a bound database.

Note: To bind successfully, an existing database cannot reference
dictionary or data files referenced by another named database. If your
database does share dictionary or data files, you must ensure that all
named databases sharing the dictionary files are unbound.

Unbind Makes the database an unbound database and changes the status of
each dictionary and data file to unbound.

Note: Because the engine automatically stamps a file as bound if it
has a trigger, a foreign key, or a primary key referenced by a foreign
key, you may unbind the database, but have some files that remain
bound.

For more information about bound databases, refer to the
Pervasive.SQL    Programmer’s Guide.

Check Determines whether the entry for this database in the DBNAMES.CFG
file accurately reflects the existing dictionary and data files.

 

Creating New Bound Databases

To create a bound database:

1. From the Setup utility dialog, click Maintain Named Databases .

 The Maintain Named Databases dialog appears.

Figure 3-2
Maintain Named Databases Dialog

2. Click Create . The Create Database Name dialog appears.

Figure 3-3
Create Named Database Dialog

3. In the Database Name    field, enter the name of the database. Do not specify a database name that
includes spaces. The SQL engine displays the name only up to the embedded space, so the name My DB is
advertised as My .

4. By default, Integrity Enforced setting is enabled. This setting determines whether Pervasive.SQL enforces
integrity constraints (including security, referential integrity, and triggers) on the database, regardless of
whether the database is bound.

 In general, you should not disable integrity enforcement. However, you may want to suspend integrity
constraints to facilitate bulk data loads.

5. By default, the Bound setting is enabled which determines that a database is bound. When you create a
bound database, the SQL engine creates the appropriate dictionary files.

 Note: You cannot create a bound database for which the dictionary files already
exist. If you have existing dictionary files, first create an unbound database, then
use the Bind button in the Maintain Named Databases dialog (see Figure 3-2).

6. Specify the dictionary location for the database in the Dictionary Location field. This location must be on
the same server to which you are connected.

 For NetWare, enter a path in the form of vol:\path . For Windows NT, enter a path in the form drive:\path
where drive should be a local drive letter.

7. Specify the location of the data file(s) in the Data File Locations field. Click Add to enter a location in the
Location pop-up dialog.

 If you are specifying paths to data files on this server, specify paths the same as you did in the Dictionary
Location field. If you are entering paths to data files on another server, specify the full name. For NetWare,
specify the path in the form \\server\vol1\ path (UNC format) or server\vol1:\ path.. For Windows NT, specify
the path in the form \\server\sharename\path .

 You can click Delete if you decide not include a specific data file location.

8. Click OK to create the named database and close the dialog, or click Cancel to close the dialog without
saving changes.

 The newly created named database and its data file locations are displayed in the Maintain Named
Databases dialog. If you named a database but did not bind it, you can click the Bind button.

Modifying Named Databases

To modify a named database:

1. Either highlight the database name in the Database Names list and click Modify or double-click the
database name. The following dialog appears.

Figure 3-4
Modify Database Name Dialog

2. Add or modify data file locations.

 Note: You cannot modify the Database Name or Dictionary Location for bound
databases or for databases that contain triggers or foreign keys.

3. Click OK    to save your modifications. Otherwise, click Cancel to close this dialog without saving changes.

Deleting Named Databases

To delete a named database:

• Highlight the database name in the Database Names list and click Delete . The named database is removed
from the list of database names.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Scalable SQL Communications Manager Options
This section describes the SQL Communications Manager configuration options for Pervasive.SQL server engines.

Server Communications Configuration
The Server Communications Configuration category includes seven settings, which are described as follows:

Number of Sessions
 Range Default Memory Req Clients Engines

1 through 4,096
sessions

15 sessions 32 KB per
session for
Windows NT

N/A for NetWare

N/A WinNT and
Netware only

 

This setting specifies the maximum number of network connections that can access the server engine at any given
time. You cannot improve performance by specifying a value higher than you need. If you have multiple SQL
applications running on one workstation, each application may generate one or more sessions to the SQL engine.

NetWare users only: The amount of memory this option uses impacts the memory required for the Receive Packet
Size option. Those two options work together.

Communications sessions are related to SQL engine logins, but they are not the same. A SQL engine login always
generates a new SQL engine session. Whether it generates a new communications session depends on the location
of the database being logged into. If the same task logs into a database on the same server, the task has two
different SQL engine sessions, but only one communications session. This is because the Requester reuses the
network connection for the second login.

Communications Buffer Size
 Range Default Memory Req Clients Servers

4,096 through
32,767 bytes
(Windows NT)

512 through
65,116 bytes
(NetWare)

16,384 bytes Communications
Buffer Size *
(Number of
Communications
Threads + 1) +
385 bytes

N/A WinNT and
Netware servers

 

This setting specifies the size of the buffer (in bytes) that the SQL engine communications layer allocates for
database requests from remote clients. This value should be at least as large as the largest data length parameter for
your SQL Requesters.

 Note: System Administrators : Refer to the documentation for your
Pervasive.SQL application to get an appropriate value for this option.

Application Developers : If your application requires a communications buffer
larger than the default, note the appropriate size in the documentation for your
application.

Number of Communications Threads
 Range Default Memory Req Clients Servers

2 through 64
threads (Windows
NT)

1 through 200
threads
(NetWare)

3 threads N/A N/A Both

 

This setting specifies how many communications threads the SQL engine Communications Manager spawns to
handle client requests. Communications threads are the server processes that actually perform file operations on
behalf of the requesting client process. The number you should specify depends on the amount of communications
activity. For light usage, the number can be smaller than the default. For heavy concurrent usage, use one thread per
workstation, up to 64.

Accept Remote Requests
 Range Default Memory Req Clients Servers

On or Off On N/A N/A Windows NT only

 

This setting is only used by the SQL engine for Windows NT; the SQL engine for NetWare ignores this option.

The setting specifies whether the Communications Manager accepts requests from remote servers and workstations.
If you turn this option on, the Communications Manager advertises its presence on the network.

Supported Protocols
 Range Default Memory Req Clients Servers

TCP/IP or SPXII TCP/IP, if the protocol is
available on both the client and
the server. Both protocols are
enabled by default, but TCP/IP
is attempted first. If TCP/IP is
not available, then SPXII is
used.

N/A N/A Windows
NT only

 

This setting specifies the protocols the Communications Manager uses. If you specify both protocols, the
Communications Manager attempts to use TCP/IP first. If TCP/IP is not available, the Communications Manager uses
SPXII.

Read Buffer Size
 Range Default Memory Req Clients Servers

2 through 32,767
bytes

4,096 bytes Amount of memory allocated for
each currently active remote
session

N/A Windows NT
only

 

This setting is only used by the SQL engine for Windows NT; the SQL engine for NetWare ignores this option.

The option specifies the size of the buffer (in bytes) that the SQL engine reads on packets from the operating
system’s communication layer. You set this value in bytes. Any value you enter is rounded up to the nearest multiple
of the system page size (4 KB on Intel platforms) at the time that the engine allocates the buffer.

You should set this option equal to the Communications Buffer Size plus an allowance for system overhead (about
400 bytes). However, be aware that setting this option to a higher value than the default carries a memory penalty,
because the system allocates a buffer of the specified size for each active remote client connection. For example, if
you have 100 active remote clients and you have the buffer size set to 4 KB, the system allocates 400 KB of memory.
If you have the buffer size set to 16 KB, the system allocates 1600 KB of memory.

Receive Packet Size
 Range Default Memory Req Clients Servers

532 through
4,096 bytes

1,500 bytes (See the formula below.) N/A NetWare only

 

Approximate Memory Required: The setting has a memory requirement that uses the following formula:
 of receive packets * Receive packet size    where Number of receive packets = whichever is greater of the following:
or (2 * Number of sessions) or
{Number of sessions * (Communications buffer size / Receive packet size)    + 1}

This setting is only used by the SQL engine for NetWare; SQL engine for Windows NT ignores this option.

The option specifies the size of the individual network packets that this component receives. The default Receive
Packet Size varies, depending on your network card and hardware capabilities. If you are using the Windows NT or
Windows 95 SQL Requester on an Ethernet topology, use at least the default value for this option. If you are on a
Token Ring topology, set this value to 4,096 bytes. Setting the value too low may result in workstation hangs or a
Status Code 95, “The session is no longer valid.”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Scalable SQL Requester for Windows 3.x, Windows
9X, and Windows NT Options
This section describes configuration options for the Scalable SQL Requester for Windows, Windows 9X, and
Windows NT platforms.

Access Control
The Access Control category includes 10 settings, described as follows:

Local Target Engine
 Range Default Memory Req Clients Engines

Local Workstation
only or Local
Server Only

Server (default
for server engine)

Workstation only
(default for
workstation
engine)

N/A Win32 only Windows NT Server

Windows 9X/NT
workstations

 

This option specifies which connection to use when more than one engine is available on the local machine. When an
application attempts to access a local file, the SQL Interface checks the setting of the Target Engine option. If this
option is set to Workstation only, the SQL Interface passes the request to the workstation, which processes the
request and returns the appropriate information. If this option is set to Server, the SQL Interface passes the request to
the local server engine. If the SQL Interface cannot find the target engine, you receive one of the following status
codes:

• Status Code 2103 (if Remote Usage is enabled)

• Status Code 802 (if Remote Usage is disabled)

Local Usage
 Range Default Memory Req Clients Engines

On or Off On Not applicable Win16, Win32 Windows NT Server

Windows 9X/NT
workstations

 

This setting tells the Scalable SQL Requester whether the local workstation or the local Server Engine (on Windows
NT) should be used to access a file. If you have the Pervasive.SQL server product, the local SQL engine runs on the
client workstation of a user, not on a server.

 Note: If you configure both Local Usage and Remote Usage settings to On , the
client tries the remote engine first, then tries the local engine.    It also tries
Scalable SQL first, then tries Btrieve if all the requester settings are enabled.

Remote Usage
 Range Default Memory Req Clients Engines

On or Off On N/A Win16, Win32 Windows NT Server

Windows 9X/NT
workstations

 

This setting specifies whether the SQL Requester allows access to a server engine running on a remote server.

Use Thunk
 Range Default Memory Req Clients Engines

Yes or NoOn or
Off

No (for Server
engine)
On (for
Workstation
engine, 16 bit
only)

N/A Win16 only Windows NT Server

Windows 9X/NT
workstations

 

This setting specifies whether the Win16 client requester uses thunking to access Win32 components. Thunking is
the transition from executing 32-bit code to executing 16-bit code, or from executing 16-bit code to executing 32-bit
code. This option can only be set using the Win16 Setup utility.

Number of Concurrent Tasks
 Range Default Memory Req Clients Engines

5 through 2,000
tasks

10 tasks Number of tasks *
20 bytes

Win16, Win32 Windows NT Server

Windows 9X/NT
workstations

 

This setting specifies how many tasks the SQL Interface can service at one time. (A single application can have
multiple tasks.) This number is limited, in part, by the amount of memory available on the workstation.

The number of tasks you should specify depends on the number of SQL applications you anticipate using
concurrently. Specifying a number of tasks that is much higher than you need wastes memory. Specifying a number
that is lower than you need may keep some applications from accessing the SQL engine.

If you plan to use Microsoft Access to operate on SQL engine data, set this option to at least 15. Microsoft Access
often generates multiple tasks.

 Note: For Windows 3.x , this is the number of applications allowed to access
Scalable SQL. For Windows NT and Windows 95, this is the number of threads
allowed to access Scalable SQL from one application.

Number of Concurrent Sessions
 Range Default Memory Req Clients Engines

3 through 2,000
sessions

10 sessions (Number of tasks *
Number of sessions *   
bytes)

Win16, Win32 Windows NT Server

Windows 9X/NT
workstations

 

This setting configures the maximum number of sessions the SQL engine allows per task. The number of sessions
you can specify is limited, in part, by the amount of memory available on the workstation.

Communications sessions are related to SQL engine logins, but they are not the same. A SQL engine login always
generates a new SQL engine session; whether it generates a new communications session depends on the location
of the database being logged into. If the same task logs into a database on the same server, the task has two
different SQL engine sessions, but only one communications session. This is because the Requester reuses the
network connection for the second login.

If you plan to use Microsoft Access to operate on SQL data, set this option to at least 10. Microsoft Access often
generates multiple tasks.

 Note: For 16-bit applications, the total number of sessions (number of tasks *
number of sessions) is limited internally to 2,000 sessions. Thunking doubles the
amount of memory required, because the Win16 and Win32 DLLs must be
loaded and their respective tables allocated.

Support Scalable SQL Callback Yield
 Range Default Memory Req Clients Engines

On or Off On N/A Win16 only Windows NT Server

Windows 9X/NT
workstations

 

This setting applies to Win16 applications, even those running on a Win32 operating system.

This option specifies whether the SQL engine yields CPU support to other applications during a SQL Interface
callback.

Support Enhanced XQLVersion
 Range Default Memory Req Clients Engines

On or Off On N/A Win16, Win32 Windows NT Server

Windows 9X/NT
workstations

 

This setting specifies whether to support the enhanced XQLVersion call added with the Scalable SQL 3.01.

Communications Buffer Size
 Range Default Memory Req Clients Engines

4,096 through
32,767 bytes

32,767 bytes N/A Win16, Win32 Windows NT Server

Windows 9X/NT
workstations

 

This setting specifies the maximum data length transferable between the application and the SQL engine.

Local Convert/Mask

 Range Default Memory Req Clients Engines

On or Off On N/A W16 and W32 Windows NT Server

Windows 9X/NT
workstations

 

This setting specifies whether the APIs are processed by the SQL engine running on your server. If you are going to
use any of the new SQL data types and you are configured to use a local Scalable SQL 3.01 engine, you must set
this option to On . By default the SQL requesters for Windows, Windows NT, and Windows 95 handle certain calls
such as XQLConvert and XQLMask locally. Setting this option to Off sends all API processing to the Scalable SQL
4.0 engine running on your server.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

DBNames Interface Options
This section describes the Database Names Interface configuration options in order by category. These options apply
to clients and are only applicable if you run the SQL engine in your environment.

Access Control
The Access Control category includes the following four settings:

Alternate Infobase
 Range Default Memory Req Clients Engines

Any valid file path N/A N/A Win32, Win16 Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

Infobases aid network administrators by allowing workstations to use a centralized location for Database Names
configuration information. Depending on your operating system, the Database Names Interface uses one of the
following default infobases:

 Windows NT and
Windows 95

Registry on the machine that contains the
entries used to configure the Database Names
Interface

Windows 3.x BTI.INI in the Windows directory

 

This setting specifies the path to an alternate infobase. The alternate infobase is a text file in the format of the BTI.INI
and BTI.CFG files.

Transport
 Range Default Memory Req Clients Engines

Named Pipes or
Requester

Named Pipes N/A Win32, Win16 Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the transport mechanism to use to connect to the servers listed in the Scalable SQL Servers
option. Use this option if you specified any server names for the Scalable SQL Servers option. If any Database
Names are located on NetWare servers, specify Requester. Otherwise, specify Named Pipes.

Scalable SQL Servers
 Range Default Memory Req Clients Engines

List of available
SQL Interface
servers

Not applicable N/A Win32, Win16 Windows NT and
NetWare Servers

 

This setting lists the names of Windows NT and NetWare servers you want to query for Database Names. Use this
option if your environment meets any of the following criteria:

• Your network has a Windows NT server that is advertising Database Names using a SAP Agent.

• Your network contains no NetWare servers providing Bindery Services.

• Your client machine uses the Microsoft client software.

• You are attempting to use a database name to access the SQL Interface via TCP/IP. (This applies to both
Windows NT and NetWare servers.)

Named Pipes Read Timeout
 Range Default Memory Req Clients Engines

0 - 65,535
milliseconds

500 milliseconds N/A Win32, Win16 Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting is used only if the Transport option is set to Named Pipes. The option specifies the time in milliseconds
that a Named Pipe read waits before timing out.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Btrieve Requester Options
This section describes the options for the Btrieve client requester.

Client Configuration
The Client Configuration category includes the following two settings:

Splash Screen
 Range Default Memory Req Clients Engines

On or Off On N/A Win32, Win16,
OS2

Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting controls whether or not the Btrieve Interface splash screen displays. The splash screen displays the first
time a Btrieve Requester loads.

 Note: The 32-bit Setup utility enables/disables the splash screen for 32-bit
applications and 16-bit applications when thunking is set to On .
16-bit applications, if thunking is set to Off , use the 16-bit Setup utility to
enable/disable the splash screen.

Check Parameters
 Range Default Memory Req Clients Engines

On or Off Off N/A Win16 Only Windows NT and
NetWare Servers

 

This setting controls whether the Win16 components verify their pointers. Use this option only during development.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

MicroKernel Router Options
This section describes the MicroKernel Router configuration options in order by category.

Access Control
The Access Control category includes the following five settings:

Local
 Range Default Memory Req Clients Engines

On or Off On N/A Win32, Win16,
OS2

Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies whether to use the local engine to access data files.

Requester
 Range Default Memory Req Clients Engines

On or Off On N/A Win32, Win16,
OS2

Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies whether the MicroKernel Router allows access to a MicroKernel server engine running on a
remote server.

 Note: It is recommended that you keep the default Requester setting of Yes on
Microsoft’s File and Print Services for Netware (FPNW) servers running
Pervasive.SQL. You may receive a Status Code 94, “The application encountered
a permission error,” if you change this setting to No when you are running the
Btrieve Interface locally on the FPNW server and are using a local FPNW drive
mapping or local FPNW UNC path.

Local Target Engine
 Range Default Memory Req Clients Engines

Try Local Server,
then Workstation,

Local Server only,

or

Workstation only

Try Server, then
Workstation for
server engin

Workstation only
for workstation
engine**1

N/A Win32, OS2 only Windows NT
Server

Windows 9X/NT
workstations

 #For Windows 9X platforms, this setting is disabled for the workstation engine and is set to Workstation only by default.

This setting specifies where the MicroKernel Router passes requests when both a workstation and a server engine
are available.

 Note: Do not use the same trace file name for Scalable SQL and MicroKernel
Database engines.

Use Thunk
 Range Default Memory Req Clients Engines

Yes or No Yes N/A Win16 only Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies whether the Win16 client requester uses thunking to access Win32 components. You must use
the Win16 Setup utility to set this option.

Number of Load Retries
 Range Default Memory Req Clients Engines

0 - 65,536 retries 5 retries N/A Win32, OS2 only Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the number of times the MicroKernel Router attempts to connect to the target engine.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Communication Requester Settings
This section describes the settings for the Pervasive.SQL client-side Communications Requester.

Access Control
The Access Control category includes the following three settings:

Supported Protocols
 Range Default Memory Req Clients Engines

TCP/IP or SPXII Both N/A W32, W16, OS2 Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the protocols the Communications Requester uses. If you specify both protocols, the
Communications Requester attempts to use TCP/IP first. If TCP/IP is not available, it uses SPXII.

TCP/IP Timeout
 Range Default Memory Req Clients Engines

1 - 2147483687 15 N/A W32, W16, OS2 Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the number of seconds the requester should wait for a TCP/IP connect request to succeed
before timing out.

Runtime Server Support
 Range Default Memory Req Clients Engines

Yes or No Yes N/A W32, W16, OS2 Windows NT and
NetWare Servers

 

This setting controls run-time server support. If enabled, the user name for the drive on which you are presently
running will be used. Enter a user name and password, to be used for Runtime Server Support.

SUPERVISOR and ADMIN are not valid user names, even if supplied with the correct password. If the requester
cannot find a login user name other than SUPERVISOR or ADMIN, there is no valid name to pass.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

MicroKernel Database Engine Options
This section describes the MicroKernel configuration options in order by category:

• File Settings

• Memory Resources

• Client/System Transactions

• System Resources/Directories

• Trace Btrieve Operations

• NetWare Only Settings

File Settings
The File Settings category includes the following seven settings:

Open Files
 Range Default Memory Req Clients Engines

1 through 64,000
files

50 files 1,024 bytes per
file

N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the maximum number of unique files, including SQL Interface data dictionary files (.DDF), that
can be open at one time on the server. This value determines the size of the internal tables used to track active files.

Handles
 Range Default Memory Req Clients Engines

1 through Limited
by Memory

200 handles 256 bytes per
handle

N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the maximum number of logical file handles that the MicroKernel uses at one time. The number
of handles is different from the number of Open Files. For example, if an application opens the same file twice, it has
one file but two handles.

Index Balancing
 Range Default Memory Req Clients Engines

On or Off Off N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting controls whether the MicroKernel performs index balancing. Index balancing increases performance on
read operations; however, when you enable this option, the MicroKernel requires extra time and may require more
disk I/O during insert, update, and delete operations. For more information about index balancing, refer to Part III of
the Pervasive.SQL    Programmer’s Guide.

Archival Logging of Selected Files
 Range Default Memory Req Clients Engines

On or Off Off N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting controls whether the MicroKernel performs archival logging, which can facilitate your file backup
activities. If a system failure occurs, you can use the archival log files and the BUTIL -ROLLFWD or SQLUTIL
-ROLLFWD command to recover changes made to a file between the time of the last backup and a system failure.

You must specify the files for which the MicroKernel is to perform archival logging by adding entries to an archival log
configuration file you create on the volume that contains the files. For more information about archival logging, refer
to the Pervasive.SQL Programmer’s Guide .

Create File Version
 Range Default Memory Req Clients Engines

7.x, 6.x, or 5.x 7.x N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

The 7.x MicroKernel can read files created in 5.x and 6.x versions of the MicroKernel. In addition, the 7.x version can
write to files using the existing file format. In other words, it writes to 5.x files using the 5.x file format, writes to 6.x
files using the 6.x file format, and writes to 7.x files using the 7.x file format.

This setting specifies the format in which all new files are created. Specify 5.x or v.6x only if you need backward
compatibility with a previous version of the MicroKernel. Specifying 5.x or 6.x does not affect any existing 7.x files.

System Data
 Range Default Memory Req Clients Engines

None,
If needed, or
Always

If needed N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

The MicroKernel uses system data to ensure transaction durability. The options are as follows:

• None. System data is not included on file creation.

• If needed. System data is added to the file on file creation if the file does not have a unique key.

• Always. System data is always added on file creation, regardless of whether the file has a unique key.

Even if a file has a unique key, you may want to include system data, because users can drop indexes. For more

information about system data, refer to the Pervasive.SQL Programmer’s Guide .

Maximum Databases
 Range Default Memory Req Clients Engines

0 through the
maximum limited
by memory

10 800 bytes per
database

N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the limit for the maximum number of databases this MicroKernel can open.

Memory Resources
The Memory Resources category includes the following five settings:

Cache Allocation
 Range Default Memory Req Clients Engines

64 KB through
Limited by
Memory or
4,194,303 KB
(in multiples of 16
KB)

1,024 KB Size specified N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the size of the cache (in kilobytes) that the MicroKernel allocates; the MicroKernel uses this
cache for all data file accesses. The MicroKernel uses options that are multiples of 16 KB. If you specify a number
that is not a multiple of 16 KB, the MicroKernel rounds that number down to the nearest multiple of 16 KB. This
number is multiplied by the number of I/O threads.

To achieve best performance, allocate a cache size no larger than the sum of the sizes of the files you are using.
However, be careful not to take all available cache, especially when the server is running other applications. You
cannot improve performance—and may waste memory—by specifying a value higher than you need.

Communication Buffer Size
 Range Default Memory Req Clients Engines

1 - 64 KB 16 KB Number of
workers threads   
* (Comm buffer
size + 400)

N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

To calculate the required memory for this option, you need to know the settings of your Worker Threads and
Communication Buffer Size options.

This setting specifies the length in bytes of the longest block of data that can be transferred between an application
running on the server and the MicroKernel server engine. Each worker thread allocates a memory buffer large
enough to accommodate this maximum length of data. (A message is a unit of related data that the MicroKernel or
the application passes over the network.)

 Note: System Administrators : Refer to the documentation for your
Pervasive.SQL application to get an appropriate value for this option. If you use
multiple applications, use the largest value.
Developers : If your application requires a communications buffer larger than the
default, note the appropriate size in the documentation for your application.

Setting a value higher than you need does not improve performance.

Largest Compressed Record Size
 Range Default Memory Req Clients Engines

0 - 64,000 KB 5 KB 2,048 bytes *
Largest
compressed
record size

N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the size of a compression buffer that the MicroKernel uses when you access records in a file
created with the Data Compression file attribute enabled. The MicroKernel allocates a compression buffer with a size
of 2,048 bytes multiplied by the value you specify for this option. (You can determine this specified value by either the
record size or the page size.)

Use the following guidelines when specifying the value for this option:

• If you use compressed files, determine the size (in bytes) of the largest record in any of your compressed
files. Round any uneven values up to the next whole kilobyte.

For example, if the largest record you will access is 1,800 bytes, specify a value of 2 for this option. The
MicroKernel allocates 4,096 bytes (that is, 2,048 * 2) of memory for its compression buffer.

• If you do not use compressed files but you have at least one 7.0 file with a record length greater than 4,076
bytes, set this value to at least 5.

• If you do not use compressed files and you have no files with a record length greater than 4,076 bytes, set
this value to 0. You cannot improve performance—and may waste memory—by specifying a value higher
than you need.

Extended Operation Buffer Size
 Range Default Memory Req Clients Engines

0 - 64,000 KB 16 KB Size specified N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the size (in kilobytes) of the buffer required to handle extended (multiple record) operations.

Sort Buffer Size
 Range Default Memory Req Clients Engines

0 KB through
memory limitation

0 KB Size specified N/A Windows NT and
NetWare Servers

of your system or
4,194,303 KB Windows 9X/NT

workstations

 

This setting specifies the maximum amount of memory (in kilobytes) that the MicroKernel dynamically allocates and
deallocates for sorting purposes during run-time creation of indexes. If the memory required for sorting exceeds the
size specified or is greater than 60 percent of the available process memory, the MicroKernel creates a temporary
file. The amount of available memory for a process is a dynamic value and varies according to system configuration
and load. If you specify 0, the MicroKernel allocates as much memory as needed, up to 60 percent of the available
memory.

Client/System Transactions

Transaction Durability
 Range Default Memory Req Clients Engines

On or Off On N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting controls whether the MicroKernel performs transaction durability by logging all transactional operations to
a single transaction log. A transactional operation is a set of operations that occur after a Begin Transaction (19) and
before either an End Transaction (20) or Abort Transaction (21). Transaction durability only applies to transactional
operations.

Transaction durability is the assurance that the MicroKernel finishes writing to the log before returning a successful
status code. This option also guarantees transaction atomicity, which ensures that if a given statement does not
execute to completion, then the statement does not leave partial or ambiguous effects in the database.

Even when you turn Transaction Durability on, some files may not be transaction durable. A file must contain at least
one unique key. For files that do not contain a unique key, you can use a system-defined log key. For more
information about transaction durability and system data, refer to the Pervasive.SQL Programmer’s Guide .

Operation Bundle Limit
 Range Default Memory Req Clients Engines

1 - 65,535
operations

1,000 operations N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This option specifies the maximum number of operations (performed on any one file) required to trigger a system
transaction. The MicroKernel initiates a system transaction when it reaches the bundle limit or the Initiation Time
Limit, whichever comes first, or when it needs to reuse cache.

The MicroKernel Database Engine treats each user transaction (starting with Begin Transaction until End Transaction
or Abort Transaction) as one operation.    For example, if there are 100 Btrieve operations between the Begin
Transaction and the End Transaction operation, then all the 102 Btrieve operations together will be treated as one
single operation.

Initiation Time Limit

 Range Default Memory Req Clients Engines

1 - 65,535
milliseconds

1,000
milliseconds

N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the time limit (in milliseconds) that triggers a system transaction. The MicroKernel initiates a
system transaction when it reaches the Operation Bundle Limit or the time limit, whichever comes first, or when it
needs to reuse cache.

Log Buffer Size
 Range Default Memory Req Clients Engines

64 KB through
the upper limit of
your system
memory

64 KB N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the size (in kilobytes) of both the transaction log buffer and the archival log buffer that the
MicroKernel uses. You can enhance performance by increasing the log buffer size, because the MicroKernel writes
the log information to disk less frequently.

 Note: If you set the Log Buffer Size to a value greater than that of your
Transaction Log Size, then the MicroKernel automatically increments the
Transaction Log Size to the value you specified for the Log Buffer Size.

Transaction Log Size
 Range Default Memory Req Clients Engines

64 KB through
smallest of the
following:

–Available disk
space

–Operating
system file limit

–4,096 MB

512 KB N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the maximum size of a transaction log segment. When the log file reaches its size limit, the
MicroKernel closes the old log segment file and starts a new one. You might want to limit the size of your transaction
log segments, as this reduces the disk space that the MicroKernel uses temporarily. However, limiting the size of the
transaction log segments does entail more processing by the MicroKernel, because it has to close and create log
segments more frequently. This can decrease performance.

 Note: If you set the value for this option less than the value you specified for
the Log Buffer Size, the MicroKernel Database Engine automatically adjusts the
Transaction Log Size by setting it to the value of the Log Buffer Size option.

System Resources/Directories
The System Resources/Directories category includes the following 11 settings:

Active Clients
 Range Default Memory Req Clients Engines

1 - 65,535 clients 30 clients 250 bytes per
client

N/A Windows NT and
NetWare Servers

 

This setting specifies the maximum number of clients that can access the MicroKernel at one time.

 Note: You cannot improve performance by specifying a value higher than you
need. However, if you receive Status Code 162, “Client table is full,” increase the
value for this option.

I/O Threads
 Range Default Memory Req Clients Engines

1 - 128 threads 4 threads 8 KB per thread N/A Windows NT and
NetWare Servers

 

This setting specifies how many background I/O threads the MicroKernel spawns. These threads perform disk I/O on
a file and manage the MicroKernel’s cache. When the MicroKernel updates or writes to data files, it assigns each file
to a particular I/O thread sequentially. When it reaches the last thread, the MicroKernel starts over until all data files
have been assigned to a background thread. Because the MicroKernel does not spawn additional I/O threads as
needed, specify the maximum number of I/O threads you anticipate needing.

For best performance, set this value to the number of Open Files or 8 , whichever is less. Specifying a value higher
than 8 may degrade performance. Do not set this value higher than the number of Open Files.

 Note: Application Developers: There is no accurate way to calculate the
appropriate number of I/O threads as this setting depends on the machine’s
characteristics, OS configuration, and the MicroKernel Database Engine’s
planned work load.

Wait Lock Timeout
 Range Default Memory Req Clients Engines

0 - 4,294,967
seconds

(49.7 days)

30 seconds N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT

workstations

 

This setting specifies the wait lock timeout for the MicroKernel. When you fetch records with a wait lock, the
MicroKernel does not return control until it has obtained the lock on every record you requested. If another application
has locked one of the records you requested, the MicroKernel waits until that application releases the record before
proceeding with the lock request. If the wait lock timeout has been reached and the MicroKernel could not lock the
record, the MicroKernel returns control to its caller with the appropriate status code.

The purpose of this option is to significantly reduce network traffic, therefore improving network performance in case
of a conflict caused by locking. With one exception (as stated in the following note), this configuration option does not
have any effect on your application if there is a requester (such as W3BIFxyy.DLL) between your application and the
MicroKernel. In this case, even if the wait lock timeout is reached, the requester retries the operation (except for
Win16 applications) without notifying your application. The control is returned to your code only if the lock has been
granted or a deadlock has been detected.

 Note: If you have Win16 applications working with Pervasive.SQL, you may
want to set this option to a value lower than the default (such as 1 second). For
more information on how the MicroKernel handles wait locks with Win16
applications running on Windows 3.x , Windows 95, or Windows NT, refer to the
Pervasive.SQL Programmer’s Guide .

System Cache
 Range Default Memory Req Clients Engines

On or Off On N/A N/A Windows NT
Server

Windows 9X/NT
workstations

 

This setting is only used by the Windows NT MicroKernel; the NetWare MicroKernel ignores it.

The option specifies whether the MicroKernel should use the Windows NT system cache in addition to the
MicroKernel’s own Cache Allocation. In most cases, performance is enhanced by turning on the System Cache.
However, if your computer’s total memory is relatively small, you can turn off this option. You can use the Paging File
and Process objects in the Windows NT Performance Monitor utility to determine whether the Windows NT system
cache is being used effectively. For the NTDBSMGR instance, monitor the % Usage and % Usage Peak in the Page
File object and the Page Faults/Second and Page File Bytes in the Process object.

 Note: Application Developers: If you are experiencing poor performance and
the available bytes are low and stay low (especially during activity with the
MicroKernel), turn off the System Cache. However, if you turn this setting off,
your application must meet the following requirements:

– File access must begin with multiples of the volume’s sector size;

– File access must be for the number of bytes that are multiples of the volume’s

sector size. For example, if the sector size is 512 bytes, an application can
request reads and writes of 512, 1024, or 2048 bytes, but not 335, 981, or 7171
bytes; and

– Buffer addresses for read and write operations must be aligned on addresses in
memory that are multiples of the volume’s sector size.

Allocate Resources At Startup
 Range Default Memory Req Clients Engines

On or Off Off N/A N/A Windows NT
Server

Windows 9X/NT
workstations

 

This setting instructs the MicroKernel to allocate resources, including threads and memory buffers, when the
MicroKernel is started. If you turn this option off, the MicroKernel does not allocate any resources until the first
operation request. Pervasive.SQL applications automatically allocate resources as needed. Therefore, in most cases
you do not need to do so explicitly.

Back To Minimal State If Inactive
 Range Default Memory Req Clients Engines

On or Off On N/A N/A Windows NT
Server

Windows 9X/NT
workstations

 

This setting causes the MicroKernel to free considerable memory and thread resources to the system and return to a
minimal state when there are no active clients. (This is the initial state in which the MicroKernel begins.) The
MicroKernel reallocates resources when another client becomes active.

Minimal State Delay
 Range Default Memory Req Clients Engines

0 - 4,294,967
seconds

(49.7 days)

30 seconds N/A N/A Windows NT
Server

Windows 9X/NT
workstations

 

This setting specifies a time interval for the MicroKernel to wait before returning to a minimal state. (This is the initial
state in which the MicroKernel begins.) By returning to a minimal state, the MicroKernel frees considerable memory
and thread resources to the system. In some cases, you may not want the MicroKernel to return to a minimal state.
For example, you may be running a batch file that uses the MicroKernel repeatedly. The MicroKernel reallocates
resources when another client becomes active.

 Note: This setting is ignored if the Accept Remote Requests option is set to Off

.

Worker Threads
 Range Default Memory Req Clients Engines

1 - 128 threads 1 thread Worker Threads   
* (Maximum
record size    +
400)

N/A Windows NT
Server

Windows 9X/NT
workstations

 

This setting specifies how many worker threads the MicroKernel initially spawns to handle client requests. Worker
threads are the elements that actually perform file operations on behalf of the requesting client process. The
MicroKernel may dynamically spawn additional worker threads as needed to handle operation requests when all
other workers are busy.

 Note: These worker threads serve local clients only. A separate pool of threads
serves remote clients.

Windows NT developers: There are two Worker Threads parameters: one under the System Resources/Directories
category of the MicroKernel Database Engine component and one under the Server Communication Configuration
category of the Btrieve Communications Manager component.

Worker threads for the System Resources category applies to local clients only (for example, applications running
on Windows NT servers where the MicroKernel is running). This setting determines the number of worker threads the
MicroKernel Database Engine should initially spawn during startup to handle local requests. The MicroKernel
dynamically spawns additional worker threads when necessary to perform file operations for the local client(s).

The default setting is 1. If local applications require this setting to be higher, the MicroKernel can initially be
configured to allocate the proper number of threads at startup. This may improve performance because the
MicroKernel does not need to take the time to spawn additional threads dynamically after the applications have been
started.

You use the NT Performance Monitor to verify the maximum number of threads the MicroKernel needs when
processing local clients’ requests. From the Performance Monitor, choose Thread and then look for the number of
NTMKDE threads displayed in the Instance field.

 Note: The MicroKernel by default starts with six total threads (five
MicroKernel threads plus one worker thread). If the total number of threads is
more than six (after running the local applications), the MicroKernel used more
than one worker thread. To calculate the maximum number of worker threads
needed for the local clients, subtract five from the total number of NT
MicroKernel Database Engine threads. You can use the Pervasive.SQL Setup
utility to modify the System Resources worker threads.

The Number of Communications Threads setting of the Btrieve Communications Manager component has the same
purpose as the System Resources worker threads. These threads are used to handle file operation for remote clients
(workstation applications). However, Communications Server threads do not get spawned dynamically.

Although it may be optimal to have one thread for each remote session, this is not feasible in most multi-user

environments. According to Microsoft guidelines on the architecture used in the Btrieve Communications Manager,
starting more than 2-3 worker threads per processor will not provide significant gain in performance and eventually
could make the overall performance worse.

Home Directory
 Range Default Memory Req Clients Engines

Any valid fully-
qualified path

Directory from
which the engine
was loaded

N/A N/A Windows NT
Server

Windows 9X/NT
workstations

 

This setting specifies the location the MicroKernel uses to store some system files and uses as a default location for
other items, such as temporary work files. The path must include a drive specification or a UNC path.

 Note: You can use the BTRINTF environment variable to temporarily override
the home directory specification, as follows:

SET BTRINTF=/H: drive:\ path
drive is a drive letter and path is the path for the home directory.

Transaction Log Directory
 Range Default Memory Req Clients Engines

Any valid fully-
qualified path

Directory from
which the engine
was loaded

N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the location the MicroKernel uses to store the transaction log. The path must include a drive or
volume specification or UNC path. The directory must exist.

Working Directory
 Range Default Memory Req Clients Engines

Any valid fully-
qualified path

None N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the location of the MicroKernel working directory, which is used to store temporary files in
operations such as building large repeating-duplicatable indexes. If disk space is limited on certain volumes, you can
use this option to specify a working directory on a volume with adequate space. To specify a working directory, enter
the path in the Current text box. The path must include a drive or volume specification or a UNC path. If you do not
specify a working directory, the default is the location of the data file.

Trace Btrieve Operations

The Trace Btrieve Operations category includes the following eight settings:

Trace Operations
 Range Default Memory Req Clients Engines

On or Off Off N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting enables or disables the trace feature, which allows you to trace each Btrieve API call and save the results
to a file. Developers can use tracing to debug applications. The MicroKernel writes to the trace file using forced write
mode, which ensures that data gets written to the file even if the MicroKernel unloads abnormally. The MicroKernel’s
performance can be severely impacted, depending on the frequency of incoming requests. If you enable this option,
you must specify a Trace File.

Trace File
 Range Default Memory Req Clients Engines

Any valid fully-
qualified file name

NT: the directory
from which the
engine was
loaded

NetWare: sys:
\system\
mkde.tra

N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the trace file to which the MicroKernel writes trace information. The file name must include a
drive or volume specification and path or use a UNC path.

 Note: Do not use the same trace file name for Scalable SQL and MicroKernel
Database engines.

Select Operations
 Range Default Memory Req Clients Engines

Any valid Btrieve
operation code

All N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

The Available Operations scrollable list displays the available Btrieve Interface operation codes that you can trace. To
choose the code(s), select it from the list and then click the Add button. To add all of the Btrieve Interface operation
codes, click the Add All button. The added operation code appears in the Traced Operations scrollable list.

You can remove a Btrieve Interface operation code or codes from the Traced Operations list by selecting it and
clicking the Del button. To remove all the Btrieve Interface operation codes, click the Del All button. The removed
operation code appears in the Available Operations scrollable list.

Number of Bytes from Data Buffer
 Range Default Memory Req Clients Engines

0 - 65,535 bytes 32 bytes N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the size of the data buffer that the MicroKernel writes to the trace file when you enable the
tracing feature to write to a file. The size you specify depends on the nature of your tracing needs (whether you need
to see the entire data buffer contents or just enough of the buffer contents to identify a record).

Number of Bytes from Key Buffer
 Range Default Memory Req Clients Engines

0 - 255 bytes 32 bytes N/A N/A Windows NT and
NetWare Servers

Windows 9X/NT
workstations

 

This setting specifies the size of the key buffer that the MicroKernel writes to the trace file when you enable the
tracing feature to write to a file. The size you specify depends on the nature of your tracing needs (whether you need
to see the entire key buffer contents or just enough of the buffer contents to identify a key).

NetWare Only Settings
This category contains settings available only on NetWare. These include BROUTER and Runtime Server Support
settings.

Load BROUTER
 Range Default Memory Req Clients Servers

On or Off Off N/A N/A NetWare only

 

This setting controls whether the Message router (BROUTER.NLM) is loaded during the execution of the BSTART
command. The Message Router allows other applications running as NLMs on the server (such as the SQL Interface)
to communicate with remote servers on which the MicroKernel is loaded. To access data on a remote server, set this
option to On .

BROUTER Communications Buffer Size
 Range Default Memory Req Clients Servers

1 - 64 KB 16 KB (BufferSize + 355
bytes) * 4

N/A NetWare only

 

This setting specifies the maximum length of the user data that any local server MicroKernel application can access
at a remote server via BROUTER. Specify the length of the user data in bytes. Specifying a value higher than you
need does not improve performance and may waste memory.

Runtime Server Support
 Range Default Memory Req Clients Servers

Complete,
Disabled, or Pre-
Authorized

Complete N/A N/A NetWare only

 

This setting specifies the level of Runtime Server Support provided by the MicroKernel.

When you specify Complete , a user is required to provide a valid user name; you can also specify a password,
although not required.

If you specify Pre-Authorized , you are required to enter a valid user name and password. When you specify
Disabled , you must have a connection to the NetWare server to access any Btrieve files. If you are not connected to
the server, you will receive a Status Code 99, “The Btrieve Requester is unable to access the NetWare Runtime
server.”

SUPERVISOR and ADMIN are not valid user names, even if supplied with the correct password. If the Requester
cannot find a login user name other than SUPERVISOR or ADMIN, there is no valid name to pass. For more
information about Runtime Server Support, see your Novell documentation.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Btrieve Communications Manager Options
This section describes the Btrieve Communications Manager configuration options for Pervasive.SQL servers.

Server Communication Configuration
The Server Communication Configuration category includes the following eight settings:

Number of Sessions
 Range Default Memory Req Clients Servers

Windows NT:
0 through upper
limit of your
system memory

NetWare:
1 - 4,906

15 sessions Windows NT:
32 KB per
session

N/A Both

 

This setting specifies the maximum number of network connections that can access the server at any given time. You
cannot improve performance by specifying a value higher than you need. The amount of memory this option uses
impacts the memory required for the Receive Packet Size option; the two of these options work together.

If you have multiple applications running on one client, each application may generate one or more sessions to the
MicroKernel. On NetWare, you can have the same number of sessions for each protocol. For example, if you set this
to 10, you can have 10 SPX and 10 TCP/IP sessions, making a total of 20 sessions.

Communications Buffer Size
 Range Default Memory Req Clients Servers

Windows NT:
512 - 65,116
bytes

NetWare:
1 - 63 KB

Windows NT:
16,384 bytes

NetWare:
16 KB

Comm buffer size
* (Number of
Communications
Threads + 1)

N/A Both

 

This setting specifies the size of the buffer (in bytes) that the Btrieve communications layer allocates for database
requests from remote clients. This value should be at least as large as the largest data length parameter for your
Btrieve Requester.

Number of Communications Threads
 Range Default Memory Req Clients Servers

Windows NT:
1 - 128 threads

NetWare:
1 - 200

3 threads 8 KB per worker
thread

N/A Both

 

This setting specifies how many communications threads the Btrieve Communications Manager dynamically spawns
to handle client requests. Communications threads are the server processes that actually perform file operations on
behalf of the requesting client process. On NetWare, each supported protocol spawns the number of communications
threads.

Accept Remote Requests
 Range Default Memory Req Clients Servers

On or Off On N/A N/A Windows NT

 

This setting specifies whether the Communications Manager accepts requests from remote servers and client
workstations. If you turn this option to On , the Communications Manager advertises its presence on the network.

Supported Protocols
 Range Default Memory Req Clients Servers

TCP/IP and SPXII Both N/A N/A Both

 

This setting specifies the protocols the Communications Manager uses. If you specify both protocols, the
Communications Manager attempts to use TCP/IP first. If TCP/IP is not available, the Communications Manager uses
SPXII.

Read Buffer Size
 Range Default Memory Req Clients Servers

4 - 64 KB 4 KB Amount of
memory allocated
for each currently
active remote
session

N/A Windows NT

 

This setting specifies the size of the buffer (in kilobytes) that the MicroKernel reads on packets from the operating
system’s communication layer. You set this value in kilobytes. Any value you enter is rounded up to the nearest
multiple of the system page size (4 KB on Intel platforms) at the time that the engine allocates the buffer.

You should set this option equal to the Communications Buffer Size plus an allowance for system overhead (about
400 bytes). However, be aware that setting this option to a higher value than the default carries a memory penalty,
because the system allocates a buffer of the specified size for each active remote client connection. For example, if
you have 100 active remote clients and you have the buffer size set to 4 KB, the system allocates 400 KB of memory.
If you have the buffer size set to 16 KB, the system allocates 1600 KB of memory.

NetWare Settings Only

Receive Packet Size
 Range Default Memory Req Clients Servers

532 - 4,096 bytes 1,500 bytes (See the following
formula.)

N/A NetWare

 

Approximate Memory Required:
As indicated in the Memory Required field, this setting has the following formula:

Number of receive packets * Receive packet size
where Number of receive packets = (Communications Buffer Size / Receive packets) + 1, or 45, whichever is greater

This setting only applies to the SPX protocol and specifies the size of the individual network packets this component
receives. For the approximate memory required, the number of receive packets can grow dynamically during
execution, but starts with the number indicated.

The default Receive Packet Size varies depending on your network card and hardware capabilities. If you are using
the Win32 client Requester on an Ethernet topology, use the default value for this option. If you are on a Token Ring
topology, set this value to 4,096 bytes. Setting the value too low may result in workstation hangs or a Status Code 95,
“The session is no longer valid.”

Use SAP
 Range Default Memory Req Clients Servers

Auto Detect, Yes,
No

Auto Detect N/A N/A NetWare

 

This setting specifies whether the Btrieve Communications Manager should use the Service Advertising Protocol
(SAP). This setting applies to SPX communications only.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Creating and Maintaining DDFs with DDF Ease
This chapter provides detailed information about creating and maintaining DDFs for existing Btrieve data files. This
chapter includes the following sections:

• “DDF Ease Overview”

• “Starting DDF Ease”

• “Creating DDFs for Existing Btrieve Files”

• “Creating a Relational Database”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

DDF Ease Overview
This section introduces DDF Ease and provides conceptual information about data dictionary files.

What are DDFs
Data Dictionary Files (DDFs) describe data in your Btrieve database in terms of tables, columns, and indexes (in
Btrieve terminology, this is Files, Fields, and Indexes).

A Btrieve database does not explicitly contain information that describes the format and meaning of the data in the
database (this information is defined within a Btrieve application). DDFs provide a way of defining the fields in the
database so that ODBC, Scalable SQL, and a variety of other commercial tools and applications can access the data
in your Btrieve database. The format used to describe the structure and meaning of the data changed from Scalable
SQL 3.01 to Scalable SQL 4.

What is DDF Ease
DDF Ease is a Win32 application that allows Pervasive database developers to create and maintain Data Dictionary
Files (DDFs) and database files. With DDF Ease, you can add relational capabilities to an existing Btrieve
navigational database, create new databases, design new tables, check your database for inconsistencies with table
definitions, and convert your dictionary from Scalable SQL 3.x to Scalable SQL 4.x dictionary format. DDF Ease
performs Btrieve calls to obtain table statistics and other information. This means that you should have at least read
permission on the server.

DDF Ease creates and maintains DDFs that are standard to Scalable SQL and ODBC. These DDFs are FILE.DDF,
FIELD.DDF, and INDEX.DDF.

Because DDF Ease uses ODBC and Scalable SQL (also referred to as the SQL Interface) to create and maintain
dictionary and table definitions, your database is able to work with Scalable SQL, ODBC, and ODBC-based third-
party tools.

DDF Ease provides the following capabilities:

• Support for Scalable SQL v3.x and Scalable SQL v4 DDF file formats.

• 100% compatible with ODBC and Scalable SQL.

• Create, open, and delete DDFs.

• Create new table definitions.

• Create table definitions for existing Btrieve data files.

• Drop table definitions.

• Alter table column and index definitions.

• Alter table location.

• Add/Drop table columns.

• Add/Drop named indexes.

• Display/print table data, table definitions, and statistics.

• Convert database dictionary formats.

• Check the database for inconsistencies.

• Enable/disable database security.

System Requirements
DDF Ease is installed as part of the default Pervasive.SQL Win32 Client installation. This utility requires that you have
ODBC Interface 2.5 installed, which is also a part of the typical installation. However, if you choose to uninstall
ODBC, you will not be able to run DDF Ease.

We recommend that you use the default Pervasive.SQL components included in the Pervasive.SQL installation
program.    However, you can use the Scalable SQL 3.01 engine, with the limitation that DDF Ease will not support
adding and removing table columns and indexes.    Other configurations, such as using a remote Btrieve 6.15 server
engine with a Pervasive.SQL client, should work but have not been tested.    The Btrieve file format of the DDF files
must be 6.x or higher, but the table data files can be of pre-6.x Btrieve file formats.

Btrieve 7 engines are backward compatible with previous file format versions. To modify the Btrieve file version, use
the Win32 Setup utility that is included with your Pervasive.SQL product and configure the following:

Microkernel Database Engine: File Settings: Create File Version: 7.x | 6.x

Choose 7.x as the setting if your database is of Btrieve 7.x file format, and choose 6.x if your Btrieve database is of
6.x format.

 Note: WARNING! Be aware that the "Create File Version" setting affects all
applications running on the server. If your production applications require that
your server is configured for 6.x and you need to create DDFs for 7.x, you will
need to either (1) schedule a time to change the setting and restart your server for
the DDF Ease work and then reset it when you've finished, or (2) install the
appropriate software on a non-production server and do the work there so that
there are no side affects from production applications and the Create File Version
setting.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Starting DDF Ease

To start DDF Ease:

1. From the Start menu, select Programs and then select Pervasive SQL 7 .

2. Select DDF Ease (Win32) to open the DDF Ease main window.

Figure 4-1
DDF Ease Main Window

 The following table lists the menus on the main window:

Table 4-1
DDF Ease Main Window Features

 Menu Contents

File From the file menu, you can perform the following functions:#•
Create a new database.

• Open a database.

• Close a database.

• Delete a database.

• Save a database

• Check a database.

• Convert a data dictionary.

• Set database security.

• Print current table information.

• Print preview of current table information.

• Set Printer options.

• Exit DDF Ease.

Edit Allows you to perform Undo, Cut, Copy and Paste functions.

Table From this menu, you can create a table, drop a table, or show the system
tables for the current database (X$File, X$Field, X$Index).

View This menu gives the option of viewing the toolbar and status bar.

Help You can access DDF Ease online Help or view information about DDF
Ease. DDF Ease also incorporates context-sensitive help.

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Creating DDFs for Existing Btrieve Files
This section takes you through the process of creating data dictionary files for existing Btrieve files. In this example,
you are going to create the sample Patients database, copy Btrieve files into the database directory, and then create
table definitions for each Btrieve file. The Patients database includes the following tables:

Table 4-2
Example Patients Database Tables

 Patients The patients who go to the same doctor's office.The Btrieve data file is
patients.dta.

Appointments Appointments for each patient. The Btrieve data file is patapp.dta.

Procedures Procedures performed on each patient.The Btrieve data file is patproc.dta.

 

To create the Patients database:

1. Click on the toolbar or select New Database from the File menu. The New Database dialog box
(Figure 4-2) is displayed.

Figure 4-2
New Database Dialog Box

2. If you are running DDF Ease from a Windows 95/NT client, enter the name of the remote directory where
you want the database to reside in the DDF Path field and name it “Patients”.

 Although optional, you can specify the directory where you want the data files to reside in the Data File Path
field.

3. Click OK to create the database. If the directory does not exist, you are prompted to create it. Click OK in
the message pop-up dialog box.

 Note: The DDF Path is the directory where you want your data dictionary files
(e.g., file.ddf, index.ddf, field.ddf) to reside. The Data File Path is the directory
where your Btrieve data files (e.g., *.dta, *.mkd, etc.)    reside.

4. Copy the following files from your c:\Pvsw\demodata\odbc directory (or the local directory that contains your
Pervasive.SQL 7 software) to your Patients directory:

 PATIENTS.DTA

 PATAPP.DTA

 PATPROC.DTA

5. Create table definitions for each of these Btrieve files.

a. In the DDF Ease main window, click on the Patients database and then select Create from the
Table menu. In the Create Table Wizard, Step 1 dialog box (Figure 4-3), enter “Patients” in the
Table Name field and then use the Browse button to select the Patients.dta from the newly created
Patients database directory. Click Next .

Figure 4-3
Create Table Wizard, Step 1 Dialog Box

A message is displayed indicating that your Btrieve file is in v6 format and your database dictionary
v7 format.

b. Click Yes to confirm this message.

The Create Table Wizard, Step 2 – Patients dialog box is displayed. Because you have created a
table with an existing Btrieve file, DDF Ease can deduce some information about the data in the file.
The dialog box displays index and column information.

c. Specify the column names in the Columns Found section of the dialog box using the information in
the following figure.

Notice that the newly entered column names are displayed in the Indexes Found and the Column
Data sections.

d. Click Next when you have specified each column name.

Notice the new names appear in the Column Data section after you enter them. For more
information about this dialog box, click Help or press F1.

Figure 4-4
Create Table Wizard, Step 2 - Patients Dialog Box

e. The Create Table Wizard, Step 3 – Patients dialog box (Figure 4-6) is displayed.

This dialog box directs you to specify column definitions for columns that have an “Unknown” data
type. Because Btrieve data files are strings of bytes and some contain indexes, you may want to
view the data to decide whether to split the column. You can view the data by clicking in a column
name that has a data type that you can change and then clicking Split Column to actually see the
data in hex and ASCII formats. When you view the data in the Split Column dialog box (Figure 4-5),
you may notice the data is hard to recognize. For this example, the only column you will split is the
third Unnamed column (which you will later name “City”).

In the Split Column dialog box, you will notice that the data looks like more address information: city
and state.

f. Split the column into two sections by marking the appropriate break. For this example, you are
going to mark the “T” in TX (position 16). Click Split when you are finished.

For more information about splitting columns, see “Helpful Hints for Splitting Columns” in the DDF
Ease Online Help system.

Figure 4-5
Split Column Dialog Box

g. Use the information in Figure 4-6 to complete the column definitions.

Figure 4-6
Create Table Wizard, Step 3 - Patients Dialog Box

h. When you have finished naming the columns and specifying data types, click Create Table . The
new table is displayed in the directory tree of the main window. The default view displays the
Statistics tab. Click the Columns tab to view the table structure as illustrated in Figure 4-7. For
more information about data types supported in Pervasive.SQL 7 refer to SQL Language Reference
or the DDF Ease online help system (press F1 or click Help from any dialog box).

Figure 4-7
DDF Ease Main Window - Patients Database Example

6. Repeat the procedures in the previous step to create tables for Appointments using the PATAPP.DTA file. In
the Create Table Wizard, Step 2 dialog box, name the columns as illustrated in Figure 4-8.

Figure 4-8
Create Table Wizard, Step 2 - Appointments Dialog Box

a. Click Next . The Create Table Wizard, Step 3 dialog box is displayed.

Figure 4-9
Create Table Wizard, Step 2 - Appointments Dialog Box

b. Notice that there are only two columns that are labeled "Unnamed" (columns 5 and 7). Before you
can specify a data type, you may need to look at the data in the column. For column 5, click on its
row and then select Split Column .

You will see that the data contains last names, which means this is a Char data type. Click Cancel
on the Split Column dialog box, name the column "Doctor" and select char from the drop-down list.
For column 7, look at the data in the Split Column dialog box. There is an obvious pattern of HEX
0F for all data at position 8. For the Appointments table, you will split the seventh column at the
position 9 as illustrated in Figure 4-10.

Figure 4-10
Split Column Dialog Box

c. Name column 7 AmtPaid and specify it as money data type. For column 8, click Split Column to
view the data. Because it is a four byte data type and the Hex values show a variation of numbers,
it is a good candidate for a Date data type. Click Cancel , name this column “DatePaid”, and
specify it as a Date data type.    Click Create Table    to create the Appointments table.

7. Repeat the previous steps for the Procedures table, using the PATPROC.DTA file. In the Create Table
Wizard, Step 2 dialog box, name the column “Code” and then click Next .

a. In the Create Table Wizard, Step 3 dialog box, click in the Unnamed_1 column and then click Split
Column to view the data so that you can decide whether to split the column. When you view the
data in the Split Column dialog box, you will notice the first 14 bytes of data are easy to recognize
words (in this case, names of procedures). Split the column at position 16 as this is the start of a
new character set and then click Split Column .

Notice there are now two columns, Unnamed_1 and Unnamed_2. Name Unnamed_1
“ProcedureName” and define it as a char data type. Because Unnamed_2 contains characters that
are not printable as ASCII, it is not Numeric, Numericsa, or Numericsts; however, in this example, it
is money. Ensure the data in dialog box reflects the information illustrated in Figure 4-11.

Figure 4-11
Create Table Wizard, Step 3 - Procedures Dialog Box

b. Click Create Table .

8. Once you have created these three tables, you can display different views of the data. If you select Tables in
the database directory tree, you see a summary of the three tables you created as indicated in Figure 4-12.

Figure 4-12
DDF Ease Main Window - Patients Database Example

 Use the horizontal scroll bar to view more information. Click on a specific table name and then select a Tab
(Statistics, Columns, Indexes, Data) to display more information.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Creating a Relational Database
This section gives you specific instructions for creating a simple relational database (using the SQL Interface
[formerly Scalable SQL 4.x]) that keeps track of customer orders for a small company. The Customer Order database
has the following tables:

 Customers The customers that purchase the company’s products.

Orders Orders placed by customers.

SalesRep The sales representatives that take customer orders.

SalesOffices The sales office where the sales representative works.

 

To create a customer order database:

1. Create the Order Entry Database.

a. To create the database, select New Database    from the File menu, or you click the new file icon on
the toolbar. The New Database dialog box is displayed.

Figure 4-13
DDF Ease New Database Dialog Box

b. You now have an empty database shown in the main tree view, as indicated in Figure 4-14. Next
define the Customers, Orders, SalesReps, and SalesOffices tables.

Figure 4-14
.DDF Ease Main Window – Customer Orders Example

2. Create the Customers Table.

a. To create the Customers table, select Create from the Table menu. Enter the table name
“Customers” and then click Next .

b. Enter the columns and indexes as shown in Figure 4-15.

Figure 4-15
Create Table Wizard, Step 2 – Customers

To enter a column name, double-click the default “Unnamed” so that it is highlighted and then type
the new name. To insert another column below the first column, press Tab or the down-arrow key.
Repeat these steps for inserting indexes.

To insert a segmented index, first insert a new index and then click Add Segment . Scalable SQL 4
allows you to create segmented indexes with Autoinc. However, this is not supported in Scalable
SQL 3.01. Also, remember that you cannot have the same index name as the column name; these
names must be unique.

For specific information about completing column and index information, click Help on the Create
Table Wizard, Step 2 dialog box. Click Create Table to create the table.

c. Suppose that later you want to add an index on Company_Name. In the main tree view, select the
Customers table and then the Indexes tab. Click in the last row of the Indexes view and press the
Down Arrow.

Notice in Figure 4-16 the row is highlighted in blue until you save the changes. Enter the index
name “Comp_Name” and select the column “Company_Name”. Click Save from the toolbar.

Figure 4-16
DDF Ease Main Window – Insert Index Example

3. Create the Orders Table.

 To create the Orders table, select Create from the Table menu. Enter “Orders” as the table name and click
Next . Then enter column and index information as shown in Figure 4-17, and click Create Table . (For help,
press F1 or the Help    button on this dialog box.)

Figure 4-17
Create Table Wizard, Step 2 – Orders

4. Create the SalesRep Table.

 To create the SalesRep table, select Create from the Table menu. Enter the following information as shown
in Figure 4-18:

Figure 4-18
Create Table Wizard, Step 2 – SalesRep

5. Create the SalesOffices Table.

d. To create the SalesOffices table, select Create from the Table menu. Enter the following
information as shown in Figure 4-19.

Figure 4-19
Create Table Wizard, Step 2 – SalesOffices

e. The following screen shows the tree view after adding tables. Some of the subfolders have been
expanded to display columns and indexes. Notice how some of the information is not visible in this
window. Use the horizontal scroll bar to the right of the tabs to view more information.

Figure 4-20
DDF Ease Main Window – Order Entry Database Example

6. Add Data to the Database.

 At this time, DDF Ease does not support adding data to the database. However, you can execute
statements in Pervasive's SQLScope utility to add new data to the database. (Refer to Chapter 9, “Executing
SQL Statements with SQLScope,” for more information.)

 For example, suppose you want to add data for the sales offices. Here are the INSERT statements to add
the sales office to the database:

INSERT INTO SalesOffices (City, State, Country, Target)

VALUES ('Austin', 'TX', 'USA', 800000)

INSERT INTO SalesOffices (City, State, Country, Target)

VALUES ('Boston', 'MA', 'USA', 510000)

INSERT INTO SalesOffices (City, State, Country, Target)

VALUES ('San Francisco', 'CA', 'USA', 500000)

 Here is an INSERT statement to add the sales representative Andy Woodrif to the Austin sales office.

INSERT INTO SalesRep (FirstName, LastName, Office_ID, Quota, Sales)

VALUES ('Andy', 'Woodrif', 1, 250000, 0)

 In SQLScope, insert this information (make sure to include separator (;) after each statement) and then
select Run All from the Run menu. You should also save these statements into a .sql file and write it to the
orders database directory.

 After these statements finish running, return to DDF Ease and click on the SalesOffices table and then
select the Data tab as discussed in the next step.

7. View Table Data.

a. DDF Ease is currently limited to displaying the first 100 rows of data for each table. To view the

table data, select the table from the tree view and then select the Data tab.

For example, to view the data for the SalesOffices table that you added with SQLScope, select the
SalesOffices table and then select the Data tab. If you make changes to table data and want to
refresh the view, simply select another table, then reselect the table to force rereading of the data
and table definitions.

Figure 4-21 displays the data we added to the SalesOffices table.

Figure 4-21
DDF Ease Main Window – Viewing Data Additions Example

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Monitoring Pervasive.SQL Database Resources
This chapter includes the following sections:

• “Monitor Utility Overview”

• “Starting the Monitor Utility”

• “Setting Monitor Utility Options”

• “Monitoring MicroKernel Resources”

• “Monitoring SQL Interface Resources”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Monitor Utility Overview
The Monitor utility allows you to monitor Pervasive.SQL activities on a server. It provides information that is useful for
both database administration and application programming diagnostics.

 Note: The Monitor utility works only with client/server releases of
Pervasive.SQL 7 or later. It is not included in the Pervasive.SQL workstation
product and will not connect to it from a client requester.

The following table shows the versions of the Monitor utility and the supported platforms.
 Monitor Utility Supported Platforms

Win16 Windows NT servers

Windows 3.x, Windows 9X, and
Windows NT clients

Win32 Windows NT servers

Windows 9X and Windows NT
clients

 

There is also an OS/2 version of this utility that runs on an OS/2 client. However, this chapter provides instructions for
the Windows version.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Starting the Monitor Utility
The Monitor utility provides a “snapshot” of server activity at a given point in time.

To start either the Win16 or Win32 Monitor utility from Windows 3.x or Windows
95/98/NT:

• Click Start, select Pervasive SQL 7, and then choose either Monitor (Win16) or Monitor (Win32).

The Pervasive.SQL Monitor Utility main dialog screen is displayed.

Figure 5-1
Monitor Settings Dialog

When you start the Monitor utility, it connects to the local server by default. However, you can also monitor
remote server engine resources by connecting to the remote server.

 Note: If dialogs are currently open in the Monitor utility window, you cannot
connect to or disconnect from a remote server. Close the open dialogs before
proceeding.

To connect to a remote server:

1. Choose Connect on the Options menu. The Connect to Remote Server dialog appears, as shown in Figure
5-2 on page 5-4.

Figure 5-2
Connect to Remote Server Dialog

2. Enter the server name in the Server Name box.

3. To disconnect from a server, choose Disconnect on the Options menu.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Setting Monitor Utility Options

To configure the Monitor utility options:

1. Choose Settings from the Options menu. The Monitor Settings dialog appears, displaying the current
settings.

Figure 5-3
Monitor Settings Dialog

2. You can specify the following options:
 Save Settings on

Exit
Select this check box to save all configuration
settings when you close the Monitor utility. The
Monitor utility saves both the settings in this dialog
and the automatic-refresh option in the various
dialog boxes.

Save Window
Layout on Exit

Select this check box to save the state (open or
closed) and screen location of all open windows.
When you start the Monitor utility again, these
windows are automatically opened and positioned
for local file server monitoring. This enables you to
easily reproduce your preferred layout.

Refresh Rate
(Seconds)

Specifies the frequency with which the Monitor
utility’s display refreshes itself. The refresh rate is
measured in seconds. The default setting is 4. You
can enter integer numbers only.

 

3. Click OK to save the settings or Cancel to close the dialog without saving changes.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Monitoring MicroKernel Resources
This section describes the following options for monitoring the MicroKernel:

• “Setting Screen Refresh Options”

• “Viewing Active Files”

• “Viewing User Information”

• “Viewing MicroKernel Resource Usage”

• “Viewing MicroKernel Communications Statistics”

•

Setting Screen Refresh Options
You can refresh the information in the Monitor utility dialogs either automatically or manually, as follows.

• Automatically: select the Automatic Refresh check box. The utility updates the dialogs at the Refresh Rate
specified in the Monitor options (available via Settings on the Options menu).

• Manually: Click Refresh.

Viewing Active Files

To view active MicroKernel files:

• Choose Active Files from the MicroKernel menu. The MicroKernel Active Files dialog appears, as shown in
Figure 5-4 on page 5-7. This dialog shows you all the active files for the MicroKernel.

Figure 5-4
MicroKernel Active Files Dialog

In the upper left of the dialog, the Monitor utility displays the Active MicroKernel Files list. This scrollable list
contains the complete path of all open files in alphabetic order.

To view more information about a particular file:

• Select the desired file in the list.

In the upper right of the MicroKernel Active Files dialog, the Monitor utility displays the Selected File’s
Handles list. This scrollable list contains the active handles (users) associated with the selected file. Each
handle is represented by a user name (typically the login ID of the user), or by an index into the engine’s
client (user) list.

To view more information about a particular user:

• Select the desired handle in the Selected File’s Handles list.

The SQL Engine handle is specified as ssql:scalable sql. The Database Services client handle is specified
as ssql:database services. SQL Interface logins and Database Services logins are specified as
ssql:username or ssql:sessionNumber. Some handles have an agent identifier, a two letter code that
specifies the application that initiated the session.

Table 5-1 lists the agent IDs used by Pervasive.SQL components.

Table 5-1
Agent IDs

 Agent ID Application or Component

BT Maintenance utility for the Btrieve Interface (BUTIL)

DE Database Services client

DC Database Services login

DR DOS client Requester

ML MicroKernel logging and roll forward

NR Windows 95 and Windows NT client Requester

NX Maintenance utility for the SQL Interface (SQLUTIL)

OR OS/2 client Requester

PU Pervasive.SQL utilities

RU RI Utility (RIUTIL)

SC SQL Interface login

SE SQL Engine

WR Windows client Requester

 

The File Information box displays detailed information about the selected file. The Handle Information box
displays detailed information about the selected handle.

File Information

The File Information box displays the following information about each file:
 Page Size Indicates the size in bytes of each page in the file.

Read-Only
Flag

Indicates whether the file is flagged as read-only by the
operating system.

Record Locks Indicates whether any of the active handles for the
selected file have record locks. Any application can read
a locked record, but only the application that placed the
lock can modify or delete the record. A record lock exists
only as long as the application that opened the file is
updating a record. Yes indicates that one or more record
locks are applied to the file; No indicates that no records
are locked.

Transaction
Lock

Indicates whether any of the active handles for the
selected file have a transaction lock. A transactional file
lock exists only as long as the application that opened
the file is processing a transaction.

 

Handle Information

The Handle Information box displays the following information about each file:
 Connection

Number
Displays the network connection number of the client. If
the client does not have a network connection, this field
displays NA (for not applicable).

Task Number Displays the process-supplied task number for
processes originating at the server, a Windows client, or

an OS/2 client. If the process originates at a DOS client,
this field contains the communications protocol socket
number.

Site Specifies the location of the user process (local or
remote).

Network
Address

Identifies the location of the calling process on the
network. If the calling process is SPX, then network
node/network address is preceded by S: such as S:
65666768 00000000001. If the calling process is
TCP/IP, the dotted-decimal notation of the IP number is
preceded by T: such as T: 180.150.1.24.

Open Mode Indicates the method the application uses to open the
specified handle of the file. Valid open modes
are:Normal—The application that opened the file has
normal shared, read/write access to it.

Accelerated—The application that opened the file has
shared read/write access.

Read-only—The application that opened the file has
read-only access; it cannot modify the file.

Exclusive—The application that opened the file has
exclusive access. Other applications cannot open the
file until the calling application closes it.

 Verify—The application that opened the file also ensures
that the operating system stores all write operations in a
file.

The Monitor utility also specifies all open modes as non-
transactional or shared locking when applicable.

Record Lock
Type

Displays the type of record lock(s) currently held by the
handle. The possible record lock types are Single,
Multiple, and None.

Single-record locks enable a user to lock only one
record at a time. Multiple-record locks enable a user to
lock more than one record at a time.

Wait State Indicates whether the user is waiting due to some type
of lock on this handle: Waits for Record Lock, Waits for
File Lock, or None.

Transaction
State

Displays the state of the transaction lock currently held
by the handle. The possible transaction types are
Exclusive, Concurrent, or None.

 

Viewing User Information
You can view a list of current users and files, as well as file handles for each user.

To view MicroKernel user information:

• Choose Active Users on the MicroKernel menu. The MicroKernel Active Users dialog appears, as shown in
Figure 5-5 on page 5-11.

Figure 5-5
MicroKernel Active Users Dialog

In the upper left of the dialog, the Monitor utility displays the Active MicroKernel Users list. This scrollable list
contains the names of active users in alphabetic order. Each user is represented by a user name (typically
the login ID of the user) or by an index into the engine’s client (user) list.

To receive more information about a particular user:

• Highlight the desired user in the list.

Each client is represented by either a user name (typically the login ID of the user) or an index into the
engines client (user) list. Table 5-1 lists the agent IDs used by Pervasive.SQL components.

In the upper right of the MicroKernel Active Users dialog, the Monitor utility displays the Selected User’s
Handles list. This scrollable list contains the active handles (files) associated with the selected user. The
MicroKernel creates a handle each time a user opens a file; therefore, a single user can have several
handles for the same file.

To view more information about a particular file:

• Highlight the desired handle in the list.

The User Information box displays the following detailed information for the selected user file handle (for a
description of the Connection Number, Task Number, Site, and Network Address fields and the Handle
Information box, refer to “Handle Information”):

 Locks Used Indicates the number of locks the user is currently
using.

Transaction
State

Displays the type of transaction lock the user currently
holds. The possible transaction types are Exclusive,
Concurrent, or None.

Records Read Displays the number of records read since the user
first opened a file.

Records
Inserted

Displays the number of records the user has inserted.

Records
Deleted

Displays the number of records the user has deleted.

Records
Updated

Displays the number of records the user has updated.

Disk Accesses Indicates the number of times the user required a disk
access. You will not see any information for disk
accesses for files that have just been opened.

Cache
Accesses

Displays the number of times the user required a
cache access.

 

Deleting Current Users

To delete a user:

• Highlight the user name and click Delete Current User button. Deleting the current user removes the user
from the list of active users of the MicroKernel and terminates the user’s connection to the Communications
Server.

• You can also click Delete All Users which deletes all of the current MicroKernel users.

Viewing MicroKernel Resource Usage

To view MicroKernel resource usage:

1. Choose Resource Usage from the MicroKernel menu. The MicroKernel Resource Usage dialog appears, as
shown in Figure 5-6 on page 5-13.

Figure 5-6
MicroKernel Resource Usage Dialog

This dialog allows you to view the total resources in use by the MicroKernel since it was loaded.The
MicroKernel Resource Usage dialog shows the following statistics for each resource:

• Current – Shows the present value for the field.

• Peak – Shows the highest value for the field since the MicroKernel was started.

• Maximum – Shows the highest value allowed for the field.
 Files Indicates the number of active files. You set the

maximum for this field with the Setup utility (see
“Open Files” on page 3-39).

Handles Indicates the number of active handles. The
MicroKernel creates a handle each time a user
opens a file; therefore, a single user can have
several handles for the same file. You set the
maximum for this field with the Setup utility (see
“Handles” on page 3-40).

Clients Indicates the number of clients accessing the
MicroKernel. A workstation can have multiple clients
accessing the engine simultaneously. You set the
maximum for this field with the Setup utility (see
“Active Clients” on page 3-50).

I/O Threads Indicates the number of concurrent MicroKernel
processes. You configure this setting with the Setup
utility (see “I/O Threads” on page 3-50).

Licenses in
Use

Indicates the number of users of the Btrieve
interfaces as defined by your licensing agreement.
In this case, the maximum shows the number of
users your licensing agreement allows.

Transactions Indicates the number of transactions. The maximum
for this field is unlimited.

Locks Indicates the number of record locks. The maximum
for this field is unlimited.

 

Viewing MicroKernel Communications Statistics

To view MicroKernel communications statistics:

1. Choose Communications from the MicroKernel menu. The MicroKernel Communications Statistics dialog
appears, as shown in Figure 5-7 on page 5-15. This dialog shows you the network requests, worker threads,
and sessions in use by the Communications Server since it was loaded.

Figure 5-7
MicroKernel Communications Statistics Dialog

The MicroKernel Communications Statistics dialog shows the following statistics for several of the
communications resources:

• Current – Shows the present value for each field.

• Peak – Shows the highest value for the field since the Communications Manager was started.

• Maximum – Shows the highest value allowed for the field.

You can monitor the activity of the following communications resources in the MicroKernel Communications
Statistics dialog:

 Total Requests
Processed

Indicates the number of requests the
Communications Manager handles from
workstations or remote, server-based
applications.

SPX Requests
Processed

Indicates the number of SPX requests the
Communications Manager handles from clients
or remote, server-based applications.

TCP/IP Requests
Processed

Indicates the number of TCP/IP requests the
Communications Manager handles from clients
or remote, server-based applications.

Total – Indicates the number of requests
processed since the Communications server

was loaded.

Delta – Indicates the number of requests since
you first invoked the Communications Statistics
dialog. To reset this number to zero, click Reset
Delta.

Worker Threads Indicates the number of remote requests that
the MicroKernel is currently processing. Local
requests are not included in this statistic. For
the total number of remote and local threads
being processed, see the Resource Usage
dialog. You set the maximum for this field with
the Setup utility (the Number of
Communications Threads option).

Worker threads are also used to process
Monitor utility requests, so you may not see the
number of current worker threads drop below
one. This is normal.

Remote Sessions Indicates the number of remote clients
connected to the Communications Manager.
You set the maximum for this field with the
Setup utility (the Number of Sessions option).

SPX Remote
Sessions

Indicates the number of remote clients
connected via SPX to the Communications
Manager.

TCP/IP Remote
Sessions

Indicates the number of remote clients
connected via TCP/IP to the Communications
Manager.

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Monitoring SQL Interface Resources
This section describes the following options for monitoring the SQL Engine:

• “Setting Screen Refresh Options”

• “Viewing Active SQL Sessions” on page 5-17

• “Viewing SQL Resource Usage” on page 5-21

• “Viewing SQL Communications Statistics” on page 5-23

Setting Screen Refresh Options
You can refresh the information the Monitor utility dialogs either automatically or manually, as follows.

• Automatically: select the Automatic Refresh check box. The utility updates the dialogs at the Refresh Rate
specified in the Monitor options (available via Settings on the Options menu).

• Manually: Click Refresh.

Viewing Active SQL Sessions

To view active SQL Interface sessions:

• Choosing Active Sessions from the SQL menu. The Scalable SQL Active Sessions dialog appears, as shown
in Figure 5-8 on page 5-18.

Figure 5-8
Scalable SQL Active Sessions Dialog

This dialog provides information for any of the active SQL Interface sessions, as well as information about
the views a selected session is currently accessing. You can filter the list of sessions either by the database
name or by the dictionary location.

Filtering Active Sessions

To filter the active sessions:

1. Select the Filter Sessions by Login Access check box.

Select all sessions either from one database name or from one dictionary.

2. Click the database name in the Database Names list or the dictionary location in the Dictionary Locations
list, and the corresponding active sessions appear in the Active Sessions list. (Dictionary locations list the full
path and appear in alphabetic order.)

3. If you clear the Filter Sessions by Login Access check box, the dialog displays all sessions and disables the
database name and dictionary location controls.

Session Information

The top of the Active Sessions box displays the number of active SQL Interface sessions for the currently selected

user name in the Active Sessions list. If you applied a filter, the number of active sessions displayed pertains only to
the specified database name or dictionary. (A session is formed when an application or task logs in to a database.)

The Session Information box provides the following information about the currently selected session in the Active
Sessions list.

 Login Time Specifies when the session was established via a
login operation. The time appears in the following
format: month/day followed by
hour:minute:second.

Login Access Indicates the access path for this session’s login.
This field displays either Database Name or
Dictionary Location.

Database Name Displays the database name, if the user logged
into this session either using a database name or
using a dictionary path to a named database.

Dictionary Location Displays the dictionary location, if the user logged
into this session using a dictionary path to either
an unnamed database or a database that has
multiple names. This field is empty if the user
logged in either using a database name or a
dictionary path to a named database.

Compatibility Mode Displays the compatibility mode being used in the
current session. Possible values are 3.01 (for
SQL Interface v3.01 compatibility) or 4.0. For
more information about compatibility modes, refer
to the What’s New.

Integrity Enforcement Indicates whether Pervasive.SQL is enforcing
integrity constraints (including security, referential
integrity, and triggers) on the database. To use
the integrity enforcement option, refer to
”Maintain Named Databases” on page 3-15.

Bound Indicates whether the database accessed by the
current session is a bound database. For more
information about bound databases, refer to the
Pervasive.SQL Programmer’s Guide.

Current Operation Indicates the SQL API function that this session
called most recently.

MicroKernel Calls Indicates the number of function calls that this
session has made to the MicroKernel.

Active Transactions Indicates whether this session is currently within
a transaction.

Network Address Identifies the location of the calling process on
the network. If the calling process is SPX, then
network node/network address is preceded by S:
such as S: 65666768 00000000001. If the calling
process is TCP/IP, the dotted-decimal notation of
the IP number is preceded by T: such as T:
180.150.1.24. For local access, this field displays
Local.

Number of Views Indicates the number of active views, which are
shown in the list box.

 

View Information

The View Information box displays current information about all the views the selected session is accessing. It
provides the following information about the currently selected view in the Number of Views list.

 Temporary Sort Indicates whether a temporary sort order is active for
the view.

Explicit Lock Indicates whether explicit locks have been issued for
the view.

Table Names Lists the number of tables and the name of each table
in the view.

 

Refreshing Session List

To periodically refresh the session listing:

• Click Refresh Session List whether or not the Automatic Refresh is enabled.

Deleting SQL Interface Sessions

To delete a SQL Interface session:

• Click Delete Session; the SQL Engine kills the session you delete.

Viewing SQL Resource Usage

To view SQL Interface resource usage:

1. Choose Resource Usage from the SQL menu. The Scalable SQL Resource Usage dialog appears, as
shown in Figure 5-9 on page 5-21.

Figure 5-9
Scalable SQL Resource Usage Dialog

The Scalable SQL Resource Usage dialog shows the following statistics for each resource:

• Current – Shows the present value for the field.

• Peak – Shows the highest value for the field since the SQL Engine was started.

• Maximum – Shows the highest value allowed for the field.

A horizontal bar chart for some of the following fields shows the current and peak values in relation to the
maximum value; the Monitor utility does not display a bar chart if the maximum value for a field is unlimited.

 Sessions Indicates the total number of active SQL Interface
sessions. Each session corresponds to a login
operation.

Dictionaries Indicates the number of databases with at least
one active session. The maximum number of
dictionaries is unlimited.

Views Indicates the total number of active views. The
maximum number of views is unlimited.

Active
Requests

Indicates the number of concurrent requests being
processed.

Total Logins Indicates the total number of sessions since the
SQL Engine was loaded. Each login operation
corresponds to a session.

 

Viewing SQL Communications Statistics

To view SQL Interface communications statistics:

• Choose Communications on the SQL menu. The Scalable SQL Communications Statistics dialog appears.

Figure 5-10
Scalable SQL Communications Statistics Dialog

This dialog displays the following information:
 Requests Processed Indicates the number of SQL requests that

the communications component handled
since it was loaded. Delta indicates the
count since you first invoked the dialog or
the delta was reset.

SPX Requests Processed Indicates the number of SPX requests the
Communications Manager handles from
clients or remote, server-based
applications.

TCP/IP Requests
Processed

Indicates the number of TCP/IP requests
the Communications Manager handles from
clients or remote, server-based
applications.

Total – Indicates the number of requests
processed since the Communications
server was loaded.

Delta – Indicates the number of requests
since you first invoked the Communications
Statistics dialog. To reset this number to
zero, click Reset Delta.

Worker Threads Indicates the number of remote requests
that the SQL Engine is currently processing.

 Also, local requests being processed may
not be included in this statistic. See the
Scalable SQL Resource Usage Dialog for
the total (remote and local) number of
threads being processed.

Worker threads are also used to process
Monitor utility requests, so you may not see

the number of current worker threads drop
below one. This is normal.

Remote Sessions Indicates the number of remote
workstations connected to the
communications component.

SPX Remote Sessions Indicates the number of remote clients
connected via SPX to the Communications
Manager.

TCP/IP Remote Sessions Indicates the number of remote clients
connected via TCP/IP to the
Communications Manager.

 

Resetting the Delta Count

To reset the delta count to zero:

• Click Reset Delta.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Testing Btrieve Operations Using the Function
Executor
This chapter discusses the following topics:

• “Function Executor Overiew”

• “Starting the Function Executor Utility”

• “Overview of the Function Executor Main Window”

• “Editing the Key or Data Buffer (OS/2 Clients only)”

• “Performing Operations”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Function Executor Overiew
The 16-bit Function Executor runs on Win16, Win32 and OS/2 platforms for Pervasive.SQL server and workstation
products. With this interactive utility, you can learn how Btrieve operations work. By allowing you to execute Btrieve
operations one at a time, the Function Executor enables application developers to simulate the operations of a
Btrieve application, which can help in testing and debugging your program.

The Function Executor is primarily a tool for application developers; this chapter assumes a basic knowledge of
Btrieve operations. For more information about Btrieve operations, refer to the Pervasive.SQL Programmer’s
Reference.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Starting the Function Executor Utility

To start the Function Executor utility on Win16 platforms:

• Double-click the Function Executor icon in the PVSW/Bin program group.

To start the Function Executor utility on Win32 platforms:

1. From the Start menu, select Programs and then Pervasive SQL 7.

2. Select Function Executor (Win16). The main window (Figure 6-1) appears.

To start the Function Executor utility on an OS/2 client:

1. From the Start menu, select Pervasive SQL 7.

2. Select Function Executor (Win16). The main window (Figure 6-2) appears.

Figure 6-1
Function Executor Main Window

Figure 6-2
Function Executor Main Window (OS/2 version)

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Overview of the Function Executor Main Window
Table 6-1 lists the controls in the Win16 main window. Some of the controls correspond to Btrieve Interface function
parameters.

Table 6-1
Function Executor Controls for Win16

 Control Description

File Lists the full path of all open data files and displays the current open file. You can
move among open files, but you cannot open a file using this box. To open a file,
refer to “Opening a File”.This control corresponds with the Position Block
parameter. Because each file name represents a position block, a file name can
appear more than once in the list if the file has been opened more than once.

Transaction Indicates whether the current operation occurs inside a transaction and the type of
transaction, as follows:

Exclusive – Exclusive transaction.
Concurrent – Concurrent transaction.
Conc+ModLk – Concurrent transaction with Modify Lock (+500) bias.

Operation

Current Specifies the current operation code plus its bias (if any). The default is 0. If you
are familiar with Btrieve operation codes, you can enter the desired code.
Otherwise, use the List box to specify an operation. This control corresponds with
the Operation Code parameter.

Last Displays the code of the last operation that was executed on the current file.

List Lists all Btrieve operations and their codes. The default is Open (0). You can
move quickly through the list by entering the first letter of the operation you want
to perform.

Get Key Bias
(+50)

Instructs the MicroKernel to return only a key value, not a data record, on the
current Get operation.

Modify Lock
Bias (+500)

Instructs the MicroKernel to set a no-wait lock bias on an insert, update, or delete
operation executed within a concurrent transaction.

Read Lock Bias Adds one of five biases to the current operation, as follows. For files in exclusive
transactions, the MicroKernel ignores any lock bias values you specify explicitly.

No Lock – Performs no locking. (Default)
Single Wait (+100) – Attempts to lock a single record; if the record is already
locked, it waits until the record is free.
Single No Wait (+200) – Attempts to lock a single record and returns control if the
record is already locked.
Multiple Wait (+300) – Attempts to lock multiple records in the same file; if the
records are already locked, it waits until the records are free.
Multiple No Wait (+400) – Attempts to lock multiple records in the same file and
returns control if the records are already locked.

Key

Number For most Get operations, specifies a key number, or index path, to follow for the
current operation. For other operations, specifies such information as file open
mode, encryption, or logical disk drive. This control corresponds with the Key
Number parameter.

Buffer Specify the path for the data file for which you want to perform a Btrieve
operation.

Position Indicates the position of the cursor within the Key buffer.

Hex Display Click this check box to view the data in Hex format.

Clear Click this button to clear the buffer field so that you can enter another data file.

Data

Length Specifies the length (in bytes) of the Data Buffer. The default is 100. For every
operation that requires a data buffer, you must specify a buffer length. On many
operations, the MicroKernel returns a value to the Data Length. Generally, you
should always specify a Data Length before you execute an operation. This
control corresponds with the Data Buffer Length parameter.

Buffer Specifies a data value. For read and write operations, the Data Buffer contains
records. For other operations, the Data Buffer contains file specifications, filtering
conditions, and other information the MicroKernel needs for processing the
operation. This control corresponds with the Data Buffer parameter.

Position Indicates the position of the cursor within the Key or Data Buffer.

Hex Display Click this check box to view the data in Hex format.

Status Displays a numeric status code returned by the MicroKernel and a brief message
explaining the result of a Btrieve operation. For detailed information about these
status codes and messages, refer to the Status Codes and Messages manual.

Execute Performs the currently specified operation.

 

 Note: The Win16 version of the utility performs wait lock simulation. Win16
applications cannot go into a wait loop. If you ask for a record lock using a Wait
Bias and the record is locked by someone else, the engine returns Status Code 84
or 85 immediately to the application.
Win16 Function Executor utility retries the operation until it gets the record or
you click Abort which is displayed in the lower right corner of the Main window.

Table 6-2 on page 6-8 lists the controls in the OS/2 main windows.

Table 6-2
Function Executor Controls for OS/2

 Control Description

Open File Lists the full path of all open data files and displays the current open file. You can
move among open files, but you cannot open a file using this box. To open a file,
refer to “Opening a File”.

This control corresponds with the Position Block parameter. Because each file
name represents a position block, a file name can appear more than once in the
list if the file has been opened more than once.

In the Open Files list, the Scratch Buffers entry corresponds to a set of buffers that
are always available, but never updated by Btrieve operations. Use this set of
buffers to open additional files without affecting the key buffer of an already open
file.

Transaction Indicates whether the current operation occurs inside a transaction and the type of
transaction, as follows:

Exclusive – Exclusive transaction.
Concurrent – Concurrent transaction.
Conc+ModLk – Concurrent transaction with Modify Lock (+500) bias.

Operation

Current Specifies the current operation code plus its bias (if any). The default is 0. If you
are familiar with Btrieve operation codes, you can enter the desired code.
Otherwise, use the List box to specify an operation. This control corresponds with
the Operation Code parameter.

Last Displays the code of the last operation that was executed on the current file.

List Lists all Btrieve operations and their codes. The default is Open (0). You can
move quickly through the list by entering the first letter of the operation you want
to perform.

Get Key Bias
(+50)

Instructs the MicroKernel to return only a key value, not a data record, on the
current Get operation.

Modify Lock
Bias (+500)

Instructs the MicroKernel to set a no-wait lock bias on an insert, update, or delete
operation executed within a concurrent transaction.

Read Lock Bias Adds one of five biases to the current operation, as follows. For files in exclusive
transactions, the MicroKernel ignores any lock bias values you specify explicitly.

No Lock – Performs no locking. (Default)
Single Wait (+100) – Attempts to lock a single record; if the record is already
locked, it waits until the record is free.
Single No Wait (+200) – Attempts to lock a single record and returns control if the
record is already locked.
Multiple Wait (+300) – Attempts to lock multiple records in the same file; if the
records are already locked, it waits until the records are free.
Multiple No Wait (+400) – Attempts to lock multiple records in the same file and
returns control if the records are already locked.

Browse Available with the Open operation, this button allows you to choose a file to open.
The file name you select is copied to the Key Buffer.

To Do Allows you to perform the same operation a specified number of times. This option
is helpful when you want to perform repetitive operations. For example, if you
want to insert the same record 100 times, select the Insert operation and specify
100 in this field.

Done Contains the number of times the MicroKernel has executed the operation.

Key

Number For most Get operations, specifies a key number, or index path, to follow for the
current operation. For other operations, specifies such information as file open
mode, encryption, or logical disk drive. This control corresponds with the Key
Number parameter.

Buffer Specify the path for the data file for which you want to perform a Btrieve
operation.

Position Indicates the position of the cursor within the Key Buffer.

Data

Length Specifies the length (in bytes) of the Data Buffer. The default is 100. For every
operation that requires a data buffer, you must specify a buffer length. On many
operations, the MicroKernel returns a value to the Data Length. Generally, you
should always specify a Data Length before you execute an operation. This

control corresponds with the Data Buffer Length parameter.

Buffer Specifies a data value. For read and write operations, the Data Buffer contains
records. For other operations, the Data Buffer contains file specifications, filtering
conditions, and other information the MicroKernel needs for processing the
operation. This control corresponds with the Data Buffer parameter.

Position Indicates the position of the cursor within the Key or Data Buffer.

Edit Key Displays a dialog that allows you to edit the Key Buffer using ASCII or
hexadecimal values. For more information, refer to “Editing the Key or Data Buffer
(OS/2 Clients only)”.

Edit Data Displays a dialog that allows you to edit the Data Buffer using ASCII or
hexadecimal values. For more information, refer to “Editing the Key or Data Buffer
(OS/2 Clients only)”.

Status Displays a numeric status code returned by the MicroKernel and a brief message
explaining the result of a Btrieve operation. For detailed information about these
status codes and messages, refer to the Status Codes and Messages manual.

Status Help Provides help for all status codes.

Execute Performs the currently specified operation.

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Editing the Key or Data Buffer (OS/2 Clients only)
In the OS/2 version of the Function Executor, you can edit the contents of the Key and Data buffers from the utility’s
main window. However, the Function Executor offers separate dialog boxes that provide more information about the
buffers and allow you to perform more extensive editing. If you have multiple files open, these dialog boxes reflect the
contents of the buffers for the current file. As you switch among open files, the contents of these dialog boxes
change.

To use the other dialog boxes in the Function Executor utility:

• Click Edit Key or Edit Data on the main window. Figure 6-3 shows the Edit Data Buffer dialog box.

Figure 6-3
Edit Data Buffer Dialog

Table 6-3 lists the controls in this dialog box.

Table 6-3
Edit Data Buffer Dialog Controls

 Control Description

Hex Offset Displays the position of the first byte in the row, relative to the beginning of the
buffer (Position 1).

Hex Format Displays the contents of the Key or Data buffer in hexadecimal values.

ASCII Format Displays the contents of the Key or Data buffer in ASCII values.

Go To Offset Allows you to specify an offset value in the buffer and go to that position
quickly.

Data Length Specifies the length of the Data buffer.

Execute Executes the current operation.

Clear Clears the contents of the buffer.

Close Closes the dialog.

Help Provides help for the dialog.

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Performing Operations
To perform an operation, specify values for the appropriate controls and click Execute. Because Btrieve provides
many operations, this chapter cannot explain them all. The following sections discuss some common operations.

Opening a File
You can open only Pervasive.SQL data files using the Function Executor.

To open a data file:

1. Use the List box to select the Open (0) operation or enter 0 in the Current box.

2. Enter the path of a data file in the Key buffer.

3. Click Execute or press Enter.

Detecting the Presence of a Specific Key Value

To detect the presence of a specific key value in a data file:

1. Open the data file or select it from the list of open files.

2. Specify the Get Equal (5) operation with a Get Key (+50) bias.

You can use one of the following methods to specify this operation:

• Use the List box to select the Get Equal (5) operation and select the Get Key Bias (+50) check box.

• Enter 55 in the Current box.

3. In the Key Number box, enter the number of the key you want to verify.

4. In the Key Buffer, enter the key value you want to detect.

5. Click Execute or press Enter.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Manipulating Btrieve Data Files with the Maintenance
Utility
This chapter discusses the following topics:

• “Maintenance Utility Overview”

• “Btrieve Interactive Maintenance Utility”

• “Btrieve Command-Line Maintenance Utility (BUTIL)”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Maintenance Utility Overview
Pervasive.SQL provides both an interactive Maintenance utility and a command-line Maintenance utility. Both
Maintenance utilities perform the following common file and data manipulations:

• Create new data files based on file and key specifications you define.

• Provide file and key specifications for existing data files.

• Set and clear owner names for data files.

• Create and drop indexes on data files.

• Import and export ASCII sequential data.

• Copy data between Pervasive.SQL data files.

• Recover changes made to a file between the time of the last backup and a system failure.

While both utilities provide the same core functionality, minor differences exist. For example, the interactive
Maintenance utility allows you to create description files based on file and key specifications you define. The
command-line Maintenance utility allows you to start and stop continuous operation on a file or set of files locally on
the server.

Before you use either Maintenance utility, you should be familiar with Btrieve fundamentals, such as files, records,
keys, and segments. For information about these topics, refer to the Pervasive.SQL Programmer’s    Guide.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Btrieve Interactive Maintenance Utility
The Interactive Maintenance utility runs on Win16 (client/server only), Win32 (Pervasive.SQL client/server and
workstation products), and OS/2 (client/server only) platforms. Use this utility if you prefer a graphical interface or if
you want to create a description file. This section provides the following information:

• “Starting the Btrieve Maintenance Utility”

• “Extended File Support”

• “File Information Editor Overview”

• “Loading Information From an Existing File”

• “Creating a New File”

• “Compacting Btrieve Data Files”

• “Showing and Hiding 6.x Data”

• “Specifying a Key’s Alternate Collating Sequence”

• “Generating a Statistics Report”

• “Setting and Clearing Owner Names”

• “Creating and Dropping Indexes”

• “Importing, Exporting, and Copying Records”

• “Recovering Data After a System Failure”

Starting the Btrieve Maintenance Utility

To start the Btrieve Maintenance utility:

• From the Start menu, select Programs and then Pervasive SQL 7 Server , and then click Maintenance
(Win16) or Maintenance (Win32) .

The Btrieve Maintenance utility’s main window displays as illustrated in Figure 7-1.

Figure 7-1
Btrieve Maintenance Utility Main Window

Menu Options

The interactive Maintenance utility provides the following menus:
 Optio

ns
Allows you to display the File Information Editor, set and clear
owner names, generate statistics reports, and exit the utility.

Index Allows you to create and drop indexes.

Data Allows you to load data from ASCII files, save data to ASCII
files, copy records between data files, and perform a roll forward
operation to recover changes made to a data file between the
time of the last backup and a system failure.

Help Provides access to the Maintenance utility help system.

 

Getting Help

To access the Maintenance utility help system, choose a command from the Help menu, as follows:
 Getting Help Explains how to use the Maintenance utility help

system.

Index Provides a list of Maintenance utility help topics.

Help on Help Explains how to use the help system.

About Displays copyright information and the version
number. It also provides the version number of the
MicroKernel Database Engine and Btrieve client
Requester, if they are loaded.

 

In addition, you can display help for a particular dialog box by clicking the Help button contained in that dialog box.

Extended File Support
The size of the MicroKernel data file can be larger than the operating system file size limit. When you export data
from an extended MicroKernel file to an unformatted file, the size of the unformatted file can exceed the MicroKernel
file size limit because of the differences in the physical format.

The Interactive Maintenance utility detects that the unformatted file has exceeded the file size limit (2 GB) and starts
creating extension files. This process is transparent. Extension files and the original unformatted file must reside on
the same volume. The extension file uses a naming scheme similar to the MicroKernel Database Engine. The first
extension file is the same base file name with ‘.~01’ extension. The second extension file is ‘.~02,’ and so on. These
numbers are printed in hex. The maximum number of extension files is 255; the 255th extension file (the last
extension file) has an extension of '.~ff'.

Additionally, when you import data from an unformatted file, the utility detects if the file has extensions and loads the
data from the extension file.

File Information Editor Overview
This section provides general information about the File Information Editor dialog where you can create new files
based on file and key specifications you construct. Because this dialog box allows you to load information based on
an existing file, it is also useful for viewing file and key specifications on existing data files. You can also create a new
file based on the file and key specifications of an existing file (similar to “CLONE” in the command-line Maintenance
utility).

To open the File Information Editor dialog:

1. Start the Btrieve Maintenance utility.

2. From the utility’s main window, select Show Information Editor from the Options menu.

 The File Information Editor (Figure 7-2) opens.

Figure 7-2
File Information Editor

File Information Editor Dialog Elements

At the top of the dialog box, the following buttons appear:
 Load

Information
Loads information based on an existing file. When you
load information, you are not editing the existing file.
Instead, you are loading a copy of the information
about that file.

Create File Creates a new file based on current information in the
dialog box.

Set to Defaults Sets the controls to default values.

Description
Comments

If you are creating a description file, allows you to
enter notes about the file.

Show 6.x
Attributes

Displays controls specific to 6.x and later files, which
are unavailable when you load information based on a
pre-6.0 file. (This button is unavailable unless you load
information based on a pre-6.x file.)

Help Displays help for the File Information Editor dialog.

 

The Data File Info box, also at the top of the File Information Editor, contains the following controls:
 Owner Name Provides a text box you can use to specify the owner

name, if applicable, for an existing file.

Version Earliest version of the MicroKernel that can read all
the attributes of the file. For example, if you created a
file using the 6.15 MicroKernel but did not use any
attributes specific to 6.15, the Maintenance utility

displays 6.0 as the version number.

Total Records Total number of records in the file.

 

The File Specification box is in the middle of the File Information Editor. Table 7-1 describes the controls in this box.

Table 7-1
File Specification Controls

 Control Description Range Defaul
t

Record Length Specifies the logical data record length (in bytes)
of the fixed-length records in a file.

4–4,088 100

Page Size Specifies the physical page size (in bytes) for the
file.

512–4,096 4,096

Keys Indicates the number of distinct keys (as opposed
to key segments) currently defined in the Editor.
Reflects the number of keys in the Key list.

0–119 0

Segments Indicates the number of key segments currently
defined in the Editor. Reflects the number of
segments in the Segment list.

0–119 0

Available Linked Keys Specifies how many 8-byte place holders you
want to reserve for future linked-duplicatable
keys. If you are loading information based on an
existing data file, this value reflects the number of
place holders currently available in that file. (The
number of originally reserved place holders is not
stored in the file.)

0–119 3

Key-Only Indicates whether the file is key-only. Not
applicable if you turn Data Compression on, if you
turn Variable Records on, or if you define more
than one key for the file.

On or Off Off

Balanced Indexing Specifies that the file uses the balanced indexing
method of managing key pages.

On or Off Off

Pre-allocation Specifies that the file uses preallocated pages. On or Off Off

Pages Specifies the number of pages you want
preallocated when you create the file. Applicable
only if Pre-allocation is turned on. If you are
loading information based on an existing data file,
this value reflects the number of unused,
preallocated pages left in that file. (The number of
originally preallocated pages is not stored in the
file.)

1–65,535 0

Data Compression Specifies that the file uses data compression. Not
applicable for key-only files or files that use blank
truncation.

On or Off Off

Variable Records Specifies that the file can contain variable-length
records.

On or Off Off

Blank Truncation Specifies whether the file uses blank truncation
on variable records to conserve disk space.

On or Off Off

Applicable only if Variable Records is turned on.

Include VATs Specifies whether the file supports Variable-tail
Allocation Tables for faster access to data in very
long records. Applicable only if Variable Records
is turned on.

On or Off Off

% Free Space Specifies the amount of unused space a file’s
variable pages must have available before the
MicroKernel creates a new variable page.
Applicable only if Data Compression or Variable
Records are turned on.

5, 10, 20, or
30

5

 

At the bottom middle of the dialog box, the Key list shows the key numbers defined in a file. (For 6.x and later files,
these key numbers do not have to be consecutive; they can have gaps between them.) The Maintenance utility
displays the highlighted key’s specifications in the Key box at the bottom left of the dialog box.

Also at the bottom middle of the dialog box, the Segment list shows the key segment numbers defined for the key
highlighted in the Key list. The Maintenance utility displays the highlighted segment’s specifications in the Segment
box at the bottom right of the dialog box.

In addition, the following buttons appear under the Key and Segment lists:
 Insert Defines a new key or segment.

Delete Removes the highlighted key or segment specification.

Compress Renumbers the keys consecutively. You can use this
button to remove gaps that result from deleting a key
specification.

 

 Note: Because these buttons control key specifications for a file you want to
create, you cannot use them to operate on keys in an existing file. If you want to
create or drop an index on an existing file, refer to “Creating and Dropping
Indexes”.

At the bottom left in the dialog box is the Key group box. Table 7-2 describes the controls in this area. These controls
are specific to the designated key (that is, the key highlighted in the Key list), not just to the current key segment.
When you change the setting for one of these controls, the change affects all segments of the specified key.

Table 7-2
Key Specification Controls

 Control Description Default

Duplicates Specifies that the key can have duplicate values. On

Modifiable Specifies that the key value can be modified after creation. On

Repeating
Duplicates

Specifies that the MicroKernel uses the repeating-duplicatable method
of storing duplicate key values.

Off

Null Key Specifies that the key has a null value. Off

All Segments Specifies that if all key segments in the record contain the null value, Off

(Null) the MicroKernel does not include that record in the key path.
Applicable only if Null Key is turned on.

Any Segment
(Manual)

Specifies that if one or more key segments contain the null value, the
MicroKernel does not include that record in the key path. Applicable
only if Null Key is turned on.

Off

ACS Information Allows you to specify an alternate collating sequence (ACS) for the
key. Applicable only if the Use ACS check box is selected for a
segment of the key.

Off

Unique Values Indicates the number of unique key values in the file. Applicable only if
you are loading information based on an existing data file.

N/A

 

At the bottom right in the dialog box is the Key Segment group box. Table 7-3 describes the controls in this area.
These controls are specific to the designated key segment (that is, the segment highlighted in the Segment list),

Table 7-3
Key Segment Specification Controls

 Control Description Default

Data Type Specifies a data type for the key segment. string

Position Specifies by number the relative starting position of the beginning of
this key segment in the record. The value cannot exceed the record
length.

1

Length Specifies the length (in bytes) of the key segment. This value cannot
exceed the limit dictated by the data type for the segment. The total of
key position and key length cannot exceed the record length.

10

Null Value Specifies the null character value (in hexadecimal) for the key
segment. Applicable only if the Null Key check box is selected for the
key.

Binary
zero

Case Insensitive Specifies whether the segment is sensitive to case. Applicable only for
STRING, LSTRING, and ZSTRING data types or for keys that do not
use an ACS.

On

Descending Specifies that the MicroKernel sort the key segment values in
descending order (that is, from highest to lowest).

Off

Use ACS Specifies that the segment uses the alternate collating sequence
defined for the key. Applicable only for string, lstring and zstring data
types that are case sensitive.

Off

 

Loading Information From an Existing File

To load information from an existing data file into the File Information Editor:

1. Click Load Information at the top of the File Information Editor dialog box. The Select File dialog box
(Figure 7-3) appears.

Figure 7-3
Select File Dialog

2. Specify the name and path of the file for which you want to load information. (By default, data files have
a .mkd extension.)

 The Maintenance utility first attempts to open the specified file as a data file. If the file requires an owner
name, the utility prompts you for one. (Because owner names are optional, the file you open may not require
an owner name.) If the specified file is not a data file, the utility then attempts to open the file as a description
file.

Creating a New File

To create a new file based on the current information in the File Information Editor:

1. Click Create File at the top of the File Information Editor dialog box. The Create File dialog box (Figure 7-
4) appears.

Figure 7-4
Create File Dialog

2. Specify the controls in the Create File dialog, which are described in Table 7-4.

Table 7-4
Create File Dialog Controls

 Control Description Default

File Name Specifies a name and path for the file. By default, data
files have a .mkd extension.

N/A

File Type Specifies the type of file to create. If you are creating a
description file, you can use the Index Only option, which
creates a description file you can use with the BUTIL
utility to add an index to an existing data file. (For more
information, refer to “Creating Indexes”.)

MicroKernel-
compatible

System Data Determines whether the utility includes system data in the
file. If you choose Use Engine Setting, the utility uses the
setting for the “System Data” configuration option. If you
choose No System Data, the utility does not create
system data, regardless of the engine configuration. If
you choose Force System Data, the utility creates system
data, regardless of the engine configuration.This is
applicable only if the file type is MicroKernel-compatible.

Use Engine Setting

 

Adding Comments to a Description File

To add comments to a description file you are creating:

1. Click Description Comments . The Description File Comments dialog box (Figure 7-5) appears.

Figure 7-5
Description File Comments Dialog

2. Enter a block of comments up to 5,120 characters long.

3. Click OK when you are finished entering comments.

Compacting Btrieve Data Files
This section describes how to remove unused space in a Btrieve data file, which ultimately decreases the file’s size.
You can also perform this procedure using the command-line Maintenance utility (BUTIL).

To compact a Btrieve file:

1. Start the Maintenance utility.

2. Select Show Information Editor from the Options menu.

3. Choose Load Information and select the file you want to compact.

4. Select Create File , give the file a new name (which creates a clone) in the Create File dialog, and click OK .

5. From the Data menu on the main window, select Save . In the Save Data dialog, enter the name of the
original file in the From MicroKernel File box and then specify a name for the output file (for example,
<original file>.out) in the To Sequential File box.

6. Click Execute . The Save Data dialog displays the results of the save. Click Close .

7. From the Data menu, select Load . In the Load Data dialog, enter the name of the sequential data file you
just saved in the From Sequential File box. Then enter the name of the clone file you created in Step 4 in
the To MicroKernel File box.

8. Click Execute . The Loading Data dialog displays the results of the load. Click Close .

 You can now compare the size of the original file to the clone file to verify the reduction in size.

Showing and Hiding 6.x Data
When you load a pre-6.0 file, all the controls in the File Information Editor that are specific to 6.x and later are
unavailable unless you click the Show 6. x Data button. For example, one feature that is specific to 6.x and later is
the use of variable-tail allocation tables, or VATs.

This button is useful for users working in environments that use both pre-6.0 and 6.x and later MicroKernels. By
hiding the 6.x-specific controls, you can avoid unintentionally creating a 6.x file. (Pre-6.0 MicroKernels cannot access
6.x files.)

To display the 6.x-specific controls:

• Click Show 6. x Data .

The Show 6.x Data button is unavailable unless you are working with pre-6.0 files.

Specifying a Key’s Alternate Collating Sequence

To specify a key’s alternate collating sequence:

1. Click ACS Information .

 The Maintenance utility displays the Specify ACS Information dialog box (Figure 7-6).

Figure 7-6
Specify ACS Information Dialog

2. You can specify either a country ID and code page, an ACS file name, or an International Sorting Rule (ISR)
as follows:

Table 7-5
ACS Information Controls

 Control Description Default

ACS Country/Code

Country ID An Intel-format number that identifies your country. Refer to
your operating system’s documentation for specific
information.

-1

Code Page An Intel-format number that identifies the code page you
want to use. Refer to your operating system’s documentation
for specific information.

-1

ACS File Specifies the fully qualified file name of the alternate collating
sequence file.

N/A

International Sorting Rule When you click this radio button you can specify a specific
ISR table for sorting international data. Pervasive.SQL 7
provides a set of pre-generated ISR tables,**1 which are
listed in the Pervasive.SQL Programmer’s Guide .

 **1 Subsequent releases of Pervasive.SQL will include more ISR tables for the various languages supported.

3. When you specify a country ID and code page ID, the MicroKernel stores the locale-specific collating
sequence in the data file. Moreover, the MicroKernel can insert new key values correctly, even if the locale
changes.

4. When you specify an ACS file name for a data file, the MicroKernel copies the contents of the ACS file into

the data file. (That is, the data file does not contain the file name of the ACS file.) The ACS identifies itself
using an eight-digit name (such as UPPER). Subsequently, when you view the ACS information for a data
file, the Maintenance utility displays this eight-digit name, not the file name of the original ACS.

5. When you specify an ACS file name for a description file, the Maintenance utility copies the actual path and
file name of the ACS file into the description file. Subsequently, when you view the ACS information for a
description file, the Maintenance utility attempts to locate the specified ACS file.

 To specify an ACS that sorts string values using an ISO-defined, language-specific collating sequence, you
must specify an ISR table name. The Table Name field is limited to 16 characters. For more information on
ISRs, refer to the Pervasive.SQL Programmer’s Guide .

Generating a Statistics Report
Generating a statistics report is a good way to determine whether a file can be logged by the MicroKernel’s
transaction durability feature.

To examine a statistics report for an existing data file:

1. Choose Create Stat Report from the Options menu on the main window. The Maintenance utility displays
the Statistics Report dialog box (Figure 7-7).

Figure 7-7
Statistics Report Dialog

2. Specify a data file to use and a report file name. If you want to view the report when it is created, select the
View Report check box.

 If you choose to view the report, the Maintenance utility displays the View File window as shown in Figure 7-
8.

Figure 7-8
Statistics Report Example

 The informational headings in a status report correspond to the controls in the File Information Editor, which
is described in the “File Information Editor Overview”.

 The legend at the bottom of the statistics report, shown in Figure 7-9, explains the symbols used in the
key/segment portion of the report. This information includes items such as the number of keys and key
segments, the position of the key in the file, and the length of the key.

Figure 7-9
Statistics Report Key/Segment Information and Legend

Setting and Clearing Owner Names

To set or clear an owner name:

1. Choose Set/Clear Owner from the Options menu. The Set/Clear Owner Name dialog box (Figure 7-10)
appears.

Figure 7-10
Set/Clear Owner Name Dialog

2. In the MicroKernel File box, specify the file for which you want to set or clear an owner name. Then, to
clear the owner name, click Clear Owner and specify the file’s owner name in the Current Owner box.

3. To set the owner name, click Set Owner and specify the file’s new owner name in the New Owner box.
Select the Permit read-only access without an owner name checkbox to allow anyone to read-only
access to the records.

 Select the Encrypt data in file checkbox to ensure that unauthorized users do not examine your data using
a debugger or a file dump utility. Only select this option if data security is important to your environment as
this requires additional processing time.

Creating and Dropping Indexes
An index is a structure that sorts all the key values for a specific key. You can use the Maintenance utility to create or
drop indexes on a data file.

Creating Indexes

You cannot create an index for a file unless the file has at least one key defined.

To create an index:

1. Choose Create from the Index menu, which opens the Create Index dialog box (Figure 7-11).

Figure 7-11
Create Index Dialog

2. Complete the following data boxes in the Create Index dialog box.

 Index Type Specify whether to create an internal or external index. Internal
indexes are dynamically maintained as part of the data file.
External indexes are separate files you generate as
needed.An external index file is a standard data file that
contains records sorted by the key you specify. Each record
consists of the following:#• A 4-byte address identifying the
physical position of the record in the original data file

• A key value

Data File Specify the name of the data file for which you want to create the

index.

External Index File Specify the name of the file to generate for an external index. Not
applicable for internal indexes.

Key Specification Number
in Information Editor to Use

Lists the key numbers defined in the File Information Editor. If the file
contains a system-defined log key (also called system data) but the
key has been dropped, this list includes SYSKEY, which you can select
to re-add the system-defined log key to the file.

Existing Key Numbers in
Data File

Click Refresh Lists    to display the key number defined for the file. If
the file contains a system-defined log key, this list includes SYSKEY.

Key Number to Use
For Create

Click Refresh Lists    to display the key numbers available (that is, not
defined for the file). Highlight the key number you want to use when

creating the index.

 

3. You can click Go To Editor to display the File Information Editor dialog box, which shows more complete
information about the key. You can click Refresh Lists to read key information from the data file and refresh
the Existing Key Numbers in Data File and Key Number to Use For Create lists. You must click Refresh
Lists before you can create an index.

4. When you have completed the Create Index dialog box, click Execute to create the index. The amount of
time required to create the index depends on how much data the file contains.

Dropping Indexes

To drop an index:

1. Choose Drop from the Index menu. The Drop Index dialog box (Figure 7-12) appears.

Figure 7-12
Drop Index Dialog

2. Complete the following data boxes in the Drop Index dialog box.

 MicroKernel File Specify the name of the data file from which you want to drop the
index.

Existing Key Numbers Click Refresh List    to display the key number defined for the file.
Highlight the number of the key whose index you want to drop. If the
file contains a system-defined log key, this list includes SYSKEY, which
you can select to drop the system-defined log key from the file.

Renumber Keys Renumbers the keys consecutively. Click this button to remove gaps

that result from deleting an index.

 

3. Click Refresh List to get the key information from the file you have specified.

Importing, Exporting, and Copying Records
The Load, Save, and Copy commands in the Data menu allow you to import, export, and copy records in data files.
You can also recover data after a system failure with the Roll Forward feature.

Importing and Exporting ASCII File Format

When you save data, records in the ASCII file have the following format. You can use an ASCII text editor to create
files that you can load, as long as they adhere to these specifications. Note that most text editors do not support
editing binary data.

• The first field is a left-adjusted integer (in ASCII) that specifies the length of the record. (When calculating
this value, ignore the carriage return/line feed that terminates each line.) The value in this first field matches
the record length specified in the data file.

• For files with    fixed-length records, the length you specify should equal the record length of the
data file.

• For files with    variable-length records, the length you specify must be at least as long as the fixed-
record length of the data file.

• A separator (a comma or a blank) follows the length field.

• The record data follows the separator. The length of the data is the exact number of bytes specified by the
length field. If you are creating an import ASCII file using a text editor, pad each record with blank spaces as
necessary to fill the record to the appropriate length.

• A carriage return/line feed (0D0A hexadecimal) terminates each line. The Maintenance utility does not insert
the carriage return/line feed into the data file.

• The last line in the file must be the end-of-file character (CTRL+Z or 1A hexadecimal). Most text editors
automatically insert this character at the end of a file.

Figure 7-13 shows the correct format for records in the input ASCII file. For this example, the data file has a defined
record length of 40 bytes.

Figure 7-13
Format for Records in Input Sequential Files

Importing Records From an ASCII File

You can use the Maintenance utility to import records from an ASCII file to a standard data file. This operation does
not perform any conversions on the data. You can create an import file using a text editor or the Maintenance utility
(see “Exporting Records to an ASCII File”).

To import ASCII data

1. Choose Load from the Data menu:

2. The Load dialog box (Figure 7-14) appears.

Figure 7-14
Load Dialog

 The ASCII file you specify must adhere to the specifications explained in “Importing and Exporting ASCII
File Format” . The record length of the standard data file you specify must be compatible with the records in
the ASCII file.

3. Click Execute to import the records.

 While importing data, the Maintenance utility shows the number of records being imported, the percentage
of records imported, and a status message. You can continue working in the Maintenance utility (for
example, you can open another Load dialog box).

Exporting Records to an ASCII File

You can use the Maintenance utility to export records from a data file to an ASCII file.

To export ASCII records:

1. Choose Save from the Data menu. The Save Data dialog box (Figure 7-15) appears.

Figure 7-15
Save Data Dialog

2. In the Save Data dialog box, specify the following options.

 From MicroKernel File Specifies the name of the existing MicroKernel-compatible file you
want to save.

To Sequential File Specifies the name of the sequential file to create.

Use An Index Uses a specified index when sorting the records for export. By default,
the Maintenance utility does not use an index, meaning that records
are exported according to their physical position in the data file.

 Internal Index # :
Uses the specified key number. Click Refresh Index List to update
the available indexes if you change file in the From MicroKernel File
box.

 External Index File :
Uses the specified external index. (To create an external index, refer
to “Creating Indexes”.)

Direction Forward: This is the default setting and indicates the utility recovers
the file from the beginning.Backward: This option recovers data from
the end of the file.Forward and Backward: This option reads the file
forward until it fails. Then it starts at the end of the file and reads the
file backward until it reaches the record that failed previously or
encounters another failure.Backward and Forward: Indicates the utility
reads the file backward until it fails. Then it starts at the beginning of
the file and reads the file forward until it reaches the record that failed
previously or encounters another failure.

 

3. Click Execute to export the data. The Maintenance utility creates the specified ASCII file using the format
described in “Importing and Exporting ASCII File Format” . You can then edit the ASCII file and use the Load
command to import the edited text to another standard data file, as described in “Importing Records From an
ASCII File”.

Copying Records Between Data Files

You can use the Maintenance utility to copy data from one standard data file to another.

To copy data:

1. Choose Copy from the Data menu. The Copy Data dialog box (Figure 7-16) appears.

Figure 7-16
Copy Data Dialog

2. Enter the name of the file you want to copy in the From MicroKernel File box and then specify the path
where you want to copy the file in the To MicroKernel File box.

 The record lengths for both data files you specify must be the same.

Recovering Data After a System Failure
The Roll Forward feature enables you to recover changes made to a data file between the time of the last backup and
a system failure. The MicroKernel stores the changes in an archival log file. If a system failure occurs, you can
restore the backup copy of your data file and then use the Roll Forward feature, which applies all changes stored in
the log to your backup copy.

 Note: You cannot take advantage of the Roll Forward feature command unless
you both enable the MicroKernel’s “Archival Logging of Selected Files” option
and back up your files before a system failure occurs. For information about
backing up your files, refer to “Backing Up Your Files”.

If a system failure occurs, restore your backup, start the MicroKernel, and immediately perform the Roll Forward

feature. You must run the Roll Forward feature command before you access the files. Doing so guarantees that the
data written to the data files is consistent up to the point of the system failure. In particular, you must perform the roll
forward before you write to, lock, or get an exclusive handle on any of the files.

To perform a roll forward operation:

1. Select Roll Forward from the Data menu. The Roll Forward dialog (Figure 7-17) appears.

Figure 7-17
Roll Forward Dialog

2. Select the specific operation type: single file, list of files, volume name, or drive letter. When you select either
volume name or drive letter, you must insert a back slash (\) or forward slash (/) at the end (for example, \
\server\vol1\ or D:\).

3. You can generate a log file, called a dump file, of all the Btrieve operations required to perform the roll
forward tasks.

 By default, this file is not created. Select the Generate Dump File check box to generate a file. You can
also specify the following options:

 Only Create Dump File Indicates that only the dump file is to be created, and the roll
forward operation is not to be performed.

Dump File Name Contains the name of the dump file, which must begin with a

slash and not contain a drive letter or server/volume name.

Data Buffer Length Indicates the number of data buffer bytes to write to the dump file
for each Btrieve operation.

Key Buffer Length Indicates the number of key buffer bytes to write to the dump file
for each Btrieve operation.

Display Numbers as HEX If you select this option, the numbers in the dump file output are
formatted as hexadecimal. If you do not select this checkbox, the
numbers are displayed in ASCII format.

Verbose Includes additional information like user name, network address,
and time stamp in the dump file.

 

 Note: If the key buffer or the data buffer is not an input parameter for the
particular Btrieve operation, nothing is written to the dump file.

4. Click Execute to generate the dump file and/or perform the roll forward operation. If the data is valid, the
Roll Forward Status    dialog (Figure 7-18) box appears.

Figure 7-18
Roll Forward Status Dialog

 As files are processed, they are added to the scrolling list box which displays the file name and the
Pervasive.SQL status code returned from the roll forward operation.

 If an error occurs during processing, the Roll Forward Continue on Error dialog box appears. This dialog
allows you to continue without being prompted again, to continue and be prompted again, or to stop
processing files.

Figure 7-19
File Format for Import ASCII Files

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Btrieve Command-Line Maintenance Utility (BUTIL)
Use this utility if you prefer a command-line interface or if you want to start or stop continuous operation. The Btrieve
Maintenance utility is also available in a command-line format that runs on the server (as an NLM on NetWare or from
a DOS command prompt on Windows NT) or locally on DOS, Win32 and OS/2 clients. You can execute Maintenance
utility commands from the command line or through a command file you create. Before you perform commands in the
Btrieve Maintenance utility, also referred to as BUTIL, it is important you understand some concepts and elements
addressed in the

The Btrieve Command-Line Maintenance utility performs the following common file and data manipulations:

• “Importing and Exporting Data”

• “Creating and Modifying Data Files”

• “Backing Up a Database”

• “Recovering Changes After a System Failure”

• “Viewing Data File Statistics”

• “Displaying Btrieve Interface Module Version”

• “Unloading the Btrieve Engine and Requester (DOS only)”

BUTIL Overview
This section provides information you need to know before using the command-line Maintenance utility commands. It
discusses the following:

• “Commands”

• “Command Format”

• “BUTIL Concepts”

Commands
Table 7-6

Command-Line Maintenance Utility Commands

 Command Description

CLONE Creates a new, empty data file using an existing file’s specifications.

CLROWNER Clears the owner name of a data file.

COPY Copies the contents of one data file to another.

CREATE Creates a data file.

DROP Drops an index.

ENDBU Ends continuous operation on data files defined for backup in Win32
and NLM versions only.

INDEX Creates an external index file.

LOAD Loads the contents of an unformatted file into a data file.

RECOVER Reads data sequentially from a data file and writes the results to an

unformatted file. (The DOS version does not support ROLLFWD.)
Use this command if you have a damaged file.

ROLLFWD Recovers changes made to a data file between the time of the last
backup and a system failure.

SAVE Reads data along a key path and writes the results to a sequential
file.

SETOWNER Assigns an owner name to a data file.

SINDEX Creates an index.

STARTBU Starts continuous operation on files defined for backup in Win32 and
NLM versions only.

STAT Reports statistics about file attributes and current sizes of data files.

(DOS only) Unloads the Btrieve engine and requester.

VER Displays the version of the MicroKernel Database Engine and Btrieve
Interface Module that is loaded at the server.

 

Viewing Command Usage Syntax

To view a summary of each command usage, enter the following command at the file server:

BUTIL

The utility displays usage syntax for each command as illustrated in Figure 7-20.

Figure 7-20
Maintenance Utility Command Screen on NetWare

 The command syntax is as follows:

BUTIL -CLONE <outputFile> <sourceFile> [/O<owner | *>] [/S]

BUTIL -CLROWNER <sourceFile> </O<owner | *>> [/S]

BUTIL @commandFile [commandOutputFile]

BUTIL -COPY <sourceFile> <outputFile> [/O<owner1 | *> [/O<owner2 | *>]] [/S]

BUTIL -CREATE <outputFile> <descriptionFile> [Y|N] [/S]

BUTIL -DROP <sourceFile> <keyNumber | SYSKEY> [/O<owner |*>] [/S]

BUTIL -ENDBU </A | sourceFile | @listFile> [/S]

BUTIL -INDEX <sourceFile> <indexFile> <descriptionFile> [/O<owner |*>] [/S]

BUTIL -LOAD <unformattedFile> <outputFile> [/O<owner |*>] [/S]

BUTIL -RECOVER <sourceFile> <unformattedFile> [/O<owner |*>] [/S]

BUTIL -ROLLFWD <sourceFile | volume | drive | @listFile> [</L[dumpFile]
| /W[dumpFile]> [/T<dataLength>] [/E<keyLength>] [/H] [/V]]
[/O<ownerList | owner | *>] [/A] [/S]

BUTIL -SAVE <sourceFile> <unformattedFile> [Y indexFile | N
<keyNumber | -1>] [/O<owner1 |*> [/O<owner2 |*>]] [/S]

BUTIL -SETOWNER <sourceFile> </O<owner |*>> <level> [/S]

BUTIL -SINDEX <sourceFile> <descriptionFile | SYSKEY> [keyNumber]
[/O<owner |*>] [/S]

BUTIL -STARTBU <sourceFile | @listFile> [/S]

BUTIL -STAT <sourceFile> [/O<owner |*>] [/S]

BUTIL -VER [/S]

 

 Note: The /S option applies only to the NetWare version of the command-line
utility. Also, on NetWare you always have to specify the full path of the file name
such as sys:\demodata\tuition.mkd.

Command Format

The format for the Maintenance utility command line is as follows:

BUTIL [-command [parameter ...]] | @commandFile
 –command A Maintenance utility command, such as COPY. You must precede the

command with a dash (–), and you must enter a space before the dash.
Table 7-6 lists the commands.

parameter Information that the command may require. Discussions of the individual
commands provide details when applicable.

commandFile fully qualified file name of a command file.

 

BUTIL Concepts

Command Files

You can use a command file to do the following:

• Execute a command that is too long to fit on the command line.

• Execute a command that you use often (by entering the command once in the command file and then
executing the command file as often as you want).

• Execute a command and write the output to a file, using the following command format:

BUTIL @commandFile [commandOutputFile]

For each command executed, the resulting output file shows the command followed by its results. All
messages appear on the server console screen, as well.

• Execute multiple commands sequentially.

Command files contain the same information as that required on the command line.

Rules for Command Files

Observe the following rules when creating a Maintenance utility command file:

• You cannot split a single parameter across two lines.

• You must end each command with <end> or [end] .

Command File Example

The following is an example command file, COPYCRS.CMD. The file calls the BUTIL -CLONE command to create
the NEWCRS.MKD file by cloning the COURSE.MKD file, and the -CREATE command to create the NEWFILE.DTA
file by using the description provided in the NEWFILES.DES description file.

-clone newcrs.mkd course.mkd <end>

-create newfile.dta newfiles.des <end>

The following command uses the COPYPATS.CMD file and writes the output to the COPYPATS.OUT file:

butil @copypats.cmd copypats.out

Description Files

Description files are ASCII text files that contain descriptions of file and key specifications that the Maintenance utility
can use to create data files and indexes. Some users employ description files as a vehicle for archiving information
about the data files they have created. For more information about the description file format, see Appendix B,
“Description Files.”

Extended File Support

The size of the MicroKernel data file can be larger than the operating system file size limit. When you export data
from an extended MicroKernel file to an unformatted file, the size of the unformatted file can exceed the MicroKernel
file size limit because of the differences in the physical format.

The Interactive Maintenance utility detects that the unformatted file has exceeded the file size limit (2 GB) and starts
creating extension files. This process is transparent. Extension files and the original unformatted file must reside on
the same volume. The extension file uses a naming scheme similar to the MicroKernel Database Engine. The first
extension file is the same base file name with ‘.~01’ extension. The second extension file is ‘.~02,’ and so on. These
numbers are printed in hex. The maximum number of extension files is 255; the 255th extension file (the last
extension file) has an extension of '.~ff'.

To SAVE or RECOVER huge files to unformatted files, see the respective command. Also, when you import data from
an unformatted file, the utility detects if the file has extensions and loads the data from the extension file.

Owner Names

The MicroKernel allows you to restrict access to files by specifying an owner name. Because owner names are
optional, the files you use with the utility may or may not require an owner name. If the file requires an owner name,
you must specify it using the /O option. You can specify one of the following:

• Single owner name.

• List of up to eight owner names. Separate the owner names with commas.

• Asterisk (*). The utility prompts you for the owner name. With the ROLLFWD command, the utility prompts
you for a list of owner names separated by commas.

Owner names are case-sensitive; Sandy and SANDY are not considered to be the same. If you enter owner names
on the command line, the utility discards leading blanks. If you specify an asterisk, the utility does not discard leading
blanks.

Redirecting Error Messages

Be sure that you specify a fully qualified file name (including a drive letter or UNC path) when redirecting error
messages.

To redirect error messages to a file on a Windows NT server:

• Use the following command format.

BUTIL -command commandParameters > filePath

To redirect error messages to a file on a NetWare server:

• Use the following command format.

LOAD BUTIL -command commandParameters (CLIB_OPT)
/>filepath

ASCII File Format

See “Importing and Exporting ASCII File Format” in the Interactive Maintenance utility section.

Rules for Specifying File Names on Different Platforms

When you run BUTIL for Windows NT/95 or OS/2, you do not need to specify the name of the path if the data file
resides in the same directory as your current directory.

Importing and Exporting Data
This section provides detailed information on importing and exporting data using the following BUTIL commands:
COPY, LOAD, RECOVER, and SAVE.

Table 7-7
Commands to Import and Export Data

 Command Description

COPY Copies the contents of one data file to another.

LOAD Loads the contents of a sequential file into a data file.

RECOVER Reads data sequentially from a data file and writes the results to a
sequential file.

SAVE Reads data along a key path and writes the results to a sequential file.

 

COPY

The COPY command copies the contents of one MicroKernel file to another. COPY retrieves each record in the input
data file and inserts it into the output data file. The record size must be the same in both files. After copying the
records, COPY displays the total number of records inserted into the new data file.

 Note: COPY performs in a single step the same function as a RECOVER
command followed by a LOAD command.

Using the COPY command, you can create a data file that contains data from an old file, but has new key
characteristics.

To copy a MicroKernel data file:

1. Use the CREATE command to create an empty data file with the desired key characteristics (key position,
key length, or duplicate key values).

 or

 Use CLONE to create an empty data file using the characteristics of an existing file.

2. Use the COPY command to copy the contents of the existing data file into the newly created data file.

Format

BUTIL -COPY <sourceFile > <outputFile > [/O<owner1 |*>
[/O<owner2 |*>]] [/S]

 sourceFile The fully qualified name of the data file from which to transfer records.
When you run BUTIL for Windows NT/95 or OS/2, you do not need to
specify the name of the path if the data file resides in the same directory as
your current directory.

outputFile The fully qualified name of the data file into which to insert records. The
output data file can contain data or be empty. When you run BUTIL for
Windows NT/95 or OS/2, you do not need to specify the name of the path if
the data file resides in the same directory as your current directory.

/Oowner1 The owner name of the source data file, if required. If only the output data
file requires an owner name, specify /O followed by a blank for owner1 (as
illustrated in the example).

/Oowner2 The owner name of the output data file, if required.

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the

command line if you specify a command file, but you can specify /S with a
command inside a command file.

 

Example

The following command copies the records in COURSE.MKD to NEWCRS.MKD. The COURSE.MKD input file does
not require an owner name, but the NEWCRS.MKD output file uses the owner name Pam.

butil -copy course.mkd newcrs.mkd /o /oPam

If you omit the first /O from this example, the utility assumes that the owner name Pam belongs to the input data file,
not the output data file.

LOAD

The LOAD command inserts records from an input ASCII file into a file. The input ASCII file can be a single file or an
extended file (the base file plus several extension files). LOAD performs no conversion on the data in the input ASCII
file. After the utility transfers the records to the data file, it displays the total number of records loaded.

 Note: The LOAD command opens the output file in Accelerated mode; during a
LOAD operation, the MicroKernel does not log the file. If you are using archival
logging, back up your data files again after using the LOAD command.

Extended files: If the utility finds the next extension file, it continues the load
process. Do not delete any extension file created earlier by the SAVE and
RECOVER commands. If the file has three extensions and the user deletes the
second one, LOAD stops loading records after processing the first extension file.
SAVE or RECOVER created three extension files and a fourth one exists from a
previous SAVE or RECOVER, LOAD reads the records from the fourth
extension and inserts them into the MicroKernel file. If a fourth file exists, then
you need to delete it before starting the LOAD process.

Before running the LOAD command, you must create the input ASCII file and the data file. You can create the input
ASCII file using a standard text editor or an application; the input ASCII file must have the required file format (as
explained in “Importing and Exporting ASCII File Format”). You can create the data file using either the CREATE or
the CLONE command.

Format

BUTIL -LOAD <unformattedFile > <outputFile > [/O<owner    |*>]
[/S]

 unformattedFile The fully qualified name of the ASCII file containing the records to load into
a data file. For Windows NT, you do not need to specify the name of the
path if the data file resides in the same directory as your current directory.

outputFile The fully qualified name of the data file into which to insert the records.
When you run BUTIL for Windows NT/95 or OS/2, you do not need to
specify the name of the path if the data file resides in the same directory
as your current directory.

/Oowner The owner name for the data file, if required.

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output and

waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with a
command inside a command file.

 

Example

The following example loads sequential records from the COURSE.TXT file into the COURSE.MKD file. The owner
name of the COURSE.MKD file is Sandy.

butil -load course.txt course.mkd /oSandy

RECOVER

The RECOVER command extracts data from a MicroKernel file and places it in an ASCII file that has the same format
as the input ASCII file that the LOAD command uses. This is often useful for extracting some or all of the data from a
damaged MicroKernel file. The RECOVER command may be able to retrieve many, if not all, of the file’s records. You
can then use the LOAD command to insert the recovered records into a new, undamaged MicroKernel file.

 Note: The Maintenance utility performs no conversion on the data in the
records. Therefore, if you use a text editor to modify an output file containing
binary data, be aware that some text editors may change the binary data, causing
the results to be unpredictable.

Format

BUTIL -RECOVER <sourceFile > <unformattedFile > [/O<owner |*>] [/S] [/Q] [/J] [/I]
 sourceFile The fully qualified name of the data file from which to recover data. When

you run BUTIL for Windows NT/95 or OS/2, you do not need to specify the
name of the path if the data file resides in the same directory as your
current directory.

unformattedFile The fully qualified name of the ASCII file where the utility should store the
recovered records.

/Oowner The owner name for the data file, if required.

/S    (NetWare only) By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with a
command inside a command file.

/Q Indicates whether to replace an existing unformatted file. By default, the
Maintenance utility overwrites the existing files. If you specify this option
and a file with the same name exists, the utility returns an error
message.The utility also checks whether the MicroKernel file to be
recovered is extended. If the file is extended, the utility checks for files with
the same name as the potential unformatted extension file. If one of those
files exists, the utility returns an error message.

/J Indicates BACKWARD reading of the file. If you specify this option, the
utility recovers data from the MicroKernel file using STEP LAST and
PREVIOUS operations. The default is forward reading, using STEP FIRST
and NEXT operations.

/I Indicates FORWARD reading of the file. Although the default is forward
reading, you can use this option to indicate FORWARD and BACKWARD
reading. This means that if you specify both /I and /J, respectively, the
utility reads the file forward until it fails. Then it starts at the end of the file
and reads backwards until it reaches the record that failed previously or
encounters another failure.If you specify /J first, the utility reads backwards
and then reads forward.

 

For each record in the source file, if the RECOVER command receives a variable page error (Status Code 54), it
places all the data it can obtain from the current record in the unformatted file and continues the recovery process.

The utility produces the following messages:

• informs you about the name of the last extension file created

• checks if the next extension file exists, and if so, tells you to delete it

• if you move the extended unformatted files to a different location, you are prompted to move the base file
and all of its extension files

Example

The following example extracts records from the COURSE.MKD file and writes them into the COURSE.TXT file.

butil -recover course.mkd course.txt

SAVE

The SAVE command retrieves records from a MicroKernel file using a specified index path and places them in an
ASCII file that is compatible with the required format for the LOAD command. You can then edit the ASCII file and use
the LOAD command to store the edited data in another data file. (See “Importing and Exporting ASCII File Format”for
more information about the ASCII file format.)

SAVE generates a single record in the output ASCII file for each record in the input data file. Upon completion, SAVE
displays the total number of records saved.

 Note: The Maintenance utility performs no conversion on the data in the
records. Therefore, if you use a text editor to modify an output file containing
binary data, be aware that some text editors may change the binary data, causing
the results to be unpredictable.

Format

BUTIL -SAVE <sourceFile > <unformattedFile > [Y indexFile
| N <keyNumber | -1>] [/O<owner1 |*> [/O<owner2 |*>]] [/S] [/Q] [/J] [/I]

 sourceFile The fully qualified name of the data file containing the records to save.
When you run BUTIL for Windows NT/95 or OS/2, you do not need to
specify the name of the path if the data file resides in the same directory as
your current directory.

unformattedFile The fully qualified name of the ASCII file where you want the utility to store
the records.

indexFile The fully qualified name of an external index file by which to save records if
you do not want to save records using the default of the lowest key number.

keyNumber The key number (other than 0) by which to save records if you do not want
to save records using the default of the lowest key number.

-1 The specification for saving the records in physical order using the Btrieve
Step operations.

/Oowner1 The owner name for the source file, if required. If only the index file requires
an owner name, specify /O followed by a blank for owner1 .

/Oowner2 The owner name for the index file, if required.

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with a
command inside a command file.

/Q Indicates whether to replace an existing unformatted file. By default, the
Maintenance utility overwrites the existing files. If you specify this option
and a file with the same name exists, the utility returns an error
message.The utility also checks whether the MicroKernel file to be saved is
extended. If the file is extended, the utility checks for files with the same
name as the potential unformatted extension files. If one of those files
exists, the utility returns an error message.

/J Indicates BACKWARD reading of the file. If you specify this option, the
utility recovers data from the MicroKernel file using GET LAST and
PREVIOUS operations. The default is forward reading, using GET FIRST
and NEXT operations.

/I Indicates FORWARD reading of the file. Although the default is forward
reading, you can use this option to indicate FORWARD and BACKWARD
reading. This means that if you specify both /I and /J, respectively, the utility
reads the file forward until it fails. Then it starts at the end of the file and
reads backwards until it reaches the record that failed previously or
encounters another failure.If you specify /J first, the utility reads backwards
and then reads forward.

 

The utility produces the following messages:

• informs you about the name of the last extension file created

• checks if the next extension file exists, and if so, tells you to delete it

• if you move the extended unformatted files to a different location, you are prompted to move the base file
and all of its extension files

Examples

The following two examples illustrate how to use the SAVE command to retrieve records from a data file.

This example uses a NEWCRS.IDX external index file to retrieve records from the COURSE.MKD file and store them
in an unformatted text file called COURSE.TXT:

butil save course.mkd course.txt newcrs.idx

The following example retrieves records from the COURSE.MKD file using key number 3 and stores them in an
unformatted text file called COURSE.TXT:

butil -save course.mkd course.txt n 3

Creating and Modifying Data Files
This section includes detailed information on creating and modifying data files using the following BUTIL commands:
CLONE, CLROWNER, CREATE, DROP, INDEX, SETOWNER, and SINDEX. This section also includes information
about removing unused space in a Btrieve data file, which is discussed in “Compacting Btrieve Data Files”

Table 7-8
Commands to Create and Modify Data Files

 Command Description

CLONE Creates a new, empty data file using an existing file’s specifications.

CLROWNER Clears the owner name of a data file.

CREATE Creates a data file.

DROP Drops an index.

INDEX Creates an external index file.

SETOWNER Assigns an owner name to a data file.

SINDEX Creates an index.

 

CLONE

The CLONE command creates a new, empty file with the same file specifications as an existing file (including any
supplemental indexes, but excluding the owner name). The new data file includes all the defined key characteristics
(such as key position, key length, or duplicate key values) contained in the existing file.

The CLONE command ignores all MicroKernel configuration options that affect file statistics (such as “System Data”)
except file version. The CLONE command creates a new file using the MicroKernel file version you specify with the
Create File Version option.

Format

BUTIL -CLONE <outputFile > <sourceFile > [/O<owner | *>] [/S]
 outputFile The fully qualified file name to use for the new, empty data file. When you

run BUTIL for Windows NT/95 or OS/2, you do not need to specify the
name of the path if the data file resides in the same directory as your
current directory.

sourceFile The fully qualified file name of the existing data file to replicate.When you
run BUTIL for Windows NT/95 or OS/2, you do not need to specify the
name of the path if the data file resides in the same directory as your
current directory.

/Oowner The owner name, if any, for the source data file. The new data file does not
have an owner name. See “Owner Names”for more information.

/S
 (NetWare only)

By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with a
command inside a command file.

 

Remarks

Btrieve 6.0 and later allows a maximum of 23 key segments in a data file with a page size of 1,024 bytes. Therefore,
the CLONE command sets the page size in the new data file to 2,048 bytes if the existing data file contains 24 key
segments and has a page size of 1,024 bytes. This occurs if the existing data file has a format earlier than 6.0 and
the MicroKernel was not loaded with the “Create File Version” option set to 5.x or 6.x .

If you are cloning a pre-7.x file, ensure that the MicroKernel is configured to create the file format version that you
want the new file to be. For example, if you want to clone a 6.15 file in 7.x format, ensure that the MicroKernel File
Format Version option is set to 7.x .

 Note: If your source file is in 7.x format and it does not contain system data,
your output file will not contain system data, regardless of the MicroKernel
configuration. To add system data to an existing file, refer to Getting Started with
Pervasive.SQL.

If you are trying to recover from receiving Status Code 30 (The file specified is not a MicroKernel file) and you
suspect that the header page of the source file might be damaged, try creating the new MicroKernel file using the
CREATE command with a description file.

Example

The following command creates the NEWCRS.MKD file by cloning the COURSE.MKD file.

butil -clone newcrs.mkd course.mkd

CLROWNER

The CLROWNER command clears the owner name of a MicroKernel file.

Format

BUTIL -CLROWNER <sourceFile > </O<owner |*>> [/S]
 sourceFile The fully qualified file name of the data file. When you run BUTIL for

Windows NT/95 or OS/2, you do not need to specify the name of the path if
the data file resides in the same directory as your current directory.

/Oowner The owner name to clear. See “Owner Names”    for more information.

/S
(NetWare only)

By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with a
command inside a command file.

 

Example

The following command clears the owner name for the TUITION.MKD file. The owner name for the file is Sandy.

butil -clrowner tuition.mkd /oSandy

CREATE

The CREATE command generates an empty MicroKernel file using the characteristics you specify in a description
file. Before you can use the CREATE command, you must create a description file to specify the new key
characteristics. For more information, see Appendix B, “Description Files.”

Format

BUTIL -CREATE <outputFile > <descriptionFile > [Y|N] [/S]
 outputFile The fully qualified file name of the MicroKernel file to create. If the file name

is the name of an existing MicroKernel file, this command creates a new,
empty file in place of the existing file. Any data that was stored in the
existing file is lost and cannot be recovered. When you run BUTIL for
Windows NT/95 or OS/2, you do not need to specify the name of the path if
the data file resides in the same directory as your current directory.

descriptionFile The fully qualified name of the description file containing the specifications
for the new MicroKernel file.

Y|N Indicates whether to replace an existing file. If you specify N but a
MicroKernel file with the same name exists, the utility returns an error
message. The default is Y.

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with a
command inside a command file.

 

Example

The following command creates a file named COURSE.MKD using the description provided in the CREATE.DES
description file.

butil -create course.mkd create.des

Sample Description File for the CREATE Command

The sample description file shown in Figure 7-21creates a MicroKernel formatted file. The file is specified to have a
page size of 512 bytes and 2 keys. The fixed-length portion of each record in the file is set to 98 bytes. The file
specifies variable-length records with no blank truncation, data compression, and variable-tail allocation tables
(VATs). The free space threshold is set to 20 percent. Allocation is set to 100 pages. The MicroKernel preallocates
100 pages, or 51,200 bytes, when it creates the file.

Figure 7-21
Sample Description File for the CREATE Command

Key 0 is a segmented key with two duplicatable, nonmodifiable string segments and a null value of 20 hexadecimal
(space) specified for both segments. Key 0 uses the collating sequence UPPER.ALT.

Key 1 is a numeric, nonsegmented key that does not allow duplicates but permits modification. It is sorted in
descending order.

DROP

The DROP command removes an index from a file and adjusts the key numbers of any remaining indexes,
subtracting 1 from each subsequent key number. If you do not want to renumber the keys, you can add 128 to the
key number you specify to be dropped. This renumbering feature is available only for 6.0 and later files.

Format

BUTIL -DROP <sourceFile > <keyNumber | SYSKEY> [/O<owner |*>] [/S]
 sourceFile The fully qualified name of the file from which you are dropping the index. When

you run BUTIL for Windows NT/95 or OS/2, you do not need to specify the name
of the path if the data file resides in the same directory as your current directory.

keyNumber The number of the key to remove. To preserve the original key numbers, add a
128 bias to the key number you specify.

SYSKEY Instructs the utility to drop the system-defined log key (also called system data).
Dropping the system-defined log key does not delete values from the records;
the MicroKernel still assigns unique system-defined log key values to newly
inserted records.

 However, the MicroKernel cannot perform logging for a file from which the
system-defined log key is dropped, if no user-defined unique keys exist. For this
reason, you should use this option only if you suspect that the system-defined
log key is corrupt and you intend to re-add it.The SINDEX command allows you
to re-use the system-defined log key once you have dropped it.

/Oowner The owner name for the file, if required.

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output and waits
for a keystroke before continuing. With the /S option, the utility continuously
scrolls output on the screen. You cannot use /S on the command line if you
specify a command file, but you can specify
/S with a command inside a command file.

 

Examples

In both of the following examples, COURSE.MKD has three keys. The original keys in the file are numbered 0, 1, and
2.

In the first example, the BUTIL -DROP command drops key number 1 from the COURSE.MKD file and renumbers the
remaining key numbers as 0 and 1.

butil -drop course.mkd 1

In the following example, the BUTIL –DROP command drops key number 1, but does not renumber the keys. The key
numbers remain 0 and 2.

butil -drop course.mkd 129

INDEX

The INDEX command builds an external index file for an existing MicroKernel file, based on a field not previously
specified as a key in the existing file. Before you can use the INDEX command, you must create a description file to

specify the new key characteristics. For more information about description files, see Appendix B, “Description Files.”

The records in the new file consist of the following:

• The 4byte address of each record in the existing data file.

• The new key value on which to sort.

 Note: If the key length you specify in the description file is 10 bytes, the record
length of the external index file is 14 bytes (10 plus the 4byte address).

Format

BUTIL -INDEX <sourceFile > <indexFile > <descriptionFile >
[/O<owner    |*>] [/S]

 sourceFile The fully qualified name of the existing file for which to build an external
index. When you run BUTIL for Windows NT/95 or OS/2, you do not need to
specify the name of the path if the data file resides in the same directory as
your current directory.

indexFile The fully qualified name of the index file in which the MicroKernel should
store the external index.

descriptionFile The fully qualified name of the description file you have created containing
the new key definition. The description file should contain a definition for
each segment of the new key.

/Oowner The owner name for the data file, if required.

/S
(NetWare only)

By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with a
command inside a command file.

 

Remarks

The INDEX command creates the external index file and then displays the number of records that were indexed. To
retrieve the data file’s records using the external index file, use the SAVE command.

Sample Description File for the INDEX Command

The description file shown in the following illustration defines a new key with one segment. The key begins at byte 30
of the record and is 10 bytes long. It enables duplicates, is modifiable, is a STRING type, and uses no alternate
collating sequence.

Figure 7-22
Sample Description File for INDEX Command

Example

The following command creates an external index file called NEWCRS.IDX using a data file called COURSE.MKD.
The COURSE.MKD file does not require an owner name. The description file containing the definition for the new key
is called NEWCRS.DES.

butil -index course.mkd newcrs.idx newcrs.des

SETOWNER

The SETOWNER command sets an owner name for a MicroKernel file.

Format

BUTIL -SETOWNER <sourceFile > </O<owner    |*>> < level > [/S]
 sourceFile The fully qualified name of the data file. When you run BUTIL for

Windows NT/95 or OS/2, you do not need to specify the name of the
path if the data file resides in the same directory as your current
directory.

/Oowner The owner name to be set

level The type of access restriction for the data file. The possible values for
this parameter are as follows

 0: Requires an owner name for any access mode (no data encryption)

 1: Permits read access without an owner name (no data encryption)

 2: Requires an owner name for any access mode (with data
encryption)

 3: Permits read access without an owner name (with data encryption)

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output
and waits for a keystroke before continuing. With the /S option, the
utility continuously scrolls output on the screen. You cannot use /S on
the command line if you specify a command file, but you can
specify /S with a command inside a command file.

 

Example

The following example creates an owner for the COURSE.MKD file. The owner name is Sandy, and the restriction
level is 1.

butil -setowner course.mkd /oSandy 1

SINDEX

The SINDEX command creates an additional index for an existing MicroKernel file. By default, the key number of the
new index is one higher than the previous highest key number for the data file, or you can instruct the MicroKernel to
use a specific key number. An exception is if a DROP command previously removed an index without renumbering
the remaining keys, thus producing an unused key number; in this case, the new index receives the first unused
number.

You can instruct the MicroKernel to use a specific key number for the new index with the key number option. The key
number you specify must be a valid key number that is not yet used in the file. If you specify an invalid key number,
you receive Status Code 6.

If you do not use the SYSKEY option with this command, you must create a description file that defines key
specifications for the index before you can use the SINDEX command. For more information about description files,
see Appendix B, “Description Files.”

Format

BUTIL -SINDEX <sourceFile > <descriptionFile | SYSKEY> [keyNumber] [/O<owner    |*>] [/S]
 sourceFile The fully qualified name of the data file for which you are creating the

index. When you run BUTIL for Windows NT/95 or OS/2, you do not need
to specify the name of the path if the data file resides in the same
directory as your current directory.

descriptionFile The fully qualified name of the description file containing the description
of the index to create.

SYSKEY Instructs the utility to re-add the system key on a file in which the system
key was dropped.

/Oowner The owner name for the data file, if required.

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with
a command inside a command file.

 

Examples

The following example adds an index to the COURSE.MKD file. The name of the description file is NEWIDX.DES.

butil -sindex course.mkd newidx.des

The following example adds the system-defined key to the COURSE.MKD file. The system-defined key was dropped.

butil -sindex course.mkd syskey

Compacting Btrieve Data Files

You can use several commands in the BUTIL (CLONE, RECOVER, and LOAD, respectively) to remove unused
space in a data file to decrease its size.

To compact a Btrieve data file:

1. Rename your data file and then use the CLONE option to create a blank data file using the original file
name.

2. Use RECOVER to save the data from the clone file to an unformatted text file in sequential order.

3. Use LOAD to load the recovered data into the clone.

 Every record containing data will load into the newly created data file without blank records.

 Note: You can also perform this operation in the Btrieve Interactive
Maintenance utility.

Backing Up a Database

This section provides detailed information on backing up a database using following BUTIL commands: STARTBU
and ENDBU.

Table 7-9
Commands to Start and Stop Continuous Operation

 Command Description

STARTBU Starts continuous operation on files defined for backup.

ENDBU Ends continuous operation on data files defined for backup.

 

Continuous Operation

Continuous operation is a MicroKernel feature that enables you to back up files while they are in use by an
application. During continuous operation, the MicroKernel creates a temporary data file (called a delta file) for each
file in continuous operation to record any changes made to the data file while the backup is taking place. The
temporary delta file may surpass the size of the original data file if users make extensive changes to the file during
continuous operation.

 Note: Temporary delta files have the same name as the data files but with a .^^^
extension. Therefore, do not create multiple data files with the same names but
different extensions. For example, do not use a naming scheme such as
INVOICE.HDR and INVOICE.DET for your data files.

When continuous operation ends, the MicroKernel updates the master data files with the changes stored in the delta
files. The MicroKernel deletes the delta files when the master data files have been updated. You place files into
continuous operation using STARTBU command. You end continuous operation on files using ENDBU command.
The best time to place data files into continuous operation for backup is when the fewest users will be making
modifications to the files.

Continuous operation mode does not significantly affect MicroKernel performance; however, using a server to back
up files can affect performance.

If you are not using the MicroKernel’s Archival Logging feature, perform the following steps. This procedure allows
you to take advantage of the MicroKernel’s continuous operation feature, which allows you to back up files while they
are still in use by an application. However, if a system failure occurs, you cannot use the ROLLFWD command to
recover changes since the last backup.

To protect against data loss using Continuous Operation:

1. Use the BUTIL -STARTBU command to put your files in continuous operation.

2. Back up your data files.

3. Use the BUTIL -ENDBU command to take your files out of continuous operation.

STARTBU

The STARTBU command places a file or set of files into continuous operation for backup purposes. You can perform

this command on a Pervasive.SQL server engine with the Win32 and NLM versions of the utility, or a workstation
engine on Windows 9X and NT platforms.

To back up files using continuous operation:

1. Issue the STARTBU command, followed by the data file or set of data files.

2. Run your backup program.

3. Issue the ENDBU command to stop continuous operation.

Format

BUTIL -STARTBU <sourceFile | @listFile > [/S]
 sourceFile The fully qualified name of the data file (including the drive specification for

Windows NT and volume specification for NetWare) on which to begin
continuous operation for backup.

listFile The name of a text file containing the fully qualified names of files on which
to begin continuous operation. Separate these file names with a carriage
return/line feed. (Although the utility accepts a blank space separator as
well, future versions of Pervasive.SQL may accept blank characters in file
names. For compatibility with future versions of Pervasive.SQL, use the
carriage return/line feed separator.)If the Maintenance utility cannot put all
of the specified files in continuous operation, the utility does not put any of
the files in continuous operation.

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with a
command inside a command file.

 

 Note: This command begins continuous operation only on the files you specify.
You cannot use wildcards with the STARTBU command.

Examples for Windows NT Server

The first example starts continuous operation on the COURSE.MKD file.

For Windows NT:

butil -startbu f:\demodata\course.mkd

The following example starts continuous operation on all files listed in the STARTLST.FIL file.

butil -startbu @startlst.fil

The STARTLST.FIL file might consist of the following entries:

f:\demodata\course.mkd

f:\demodata\tuition.mkd

f:\demodata\dept.mkd

Examples for NetWare Server

The first example starts continuous operation on the COURSE.MKD file.

butil -startbu sys:\demodata\course.mkd

The following example starts continuous operation on all files listed in the STARTLST.FIL file.

butil -startbu @sys:\test\startlst.fil

The STARTLST.FIL file might consist of the following entries:

sys:\demodata\course.mkd

sys:\demodata\tuition.mkd

sys:\demodata\dept.mkd

ENDBU

The ENDBU command ends continuous operation on a data file or set of data files previously defined for backup.
Issue this command after using the STARTBU command to begin continuous operation and after performing your
backup.

You can perform this command on a Pervasive.SQL server engine with the Win32 and NLM versions of the utility, or a
workstation engine on Windows 9X and NT platforms.

Format

BUTIL -ENDBU </A |sourceFile | @listFile > [/S]
 /A If you specify /A , the utility stops continuous operation on all data files

initialized by BUTIL –STARTBU and currently running in continuous
operation mode.

sourceFile The fully qualified name of the data file (including the drive specification for
Windows NT and volume specification for NetWare) for which to end
continuous operation.

@listFile The name of a text file containing a list of data files for which to end
continuous operation. The text file must contain the fully qualified file name
for each data file, and you must separate these file names with a carriage
return/line feed. (Although the utility accepts a blank space separator as
well, future versions of Pervasive.SQL may accept blank characters in file
names. For compatibility with future versions of Pervasive.SQL, use the
carriage return/line feed separator.)Typically, this list of data files is the
same as the list used with the STARTBU command.

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the
command line if you specify a command file, but you can specify /S with a
command inside a command file.

 

Example for Windows NT Server

The following example ends continuous operation on the COURSE.MKD file.

butil -endbu f:\demodata\course.mkd

However, you can also just enter butil -endbu course.mkd instead of the full path if your current directory is f:\demodata.

Example for NetWare Server

The following example ends continuous operation on the COURSE.MKD file.

butil -endbu sys:\demodata\course.mkd

Recovering Changes After a System Failure
This section provides detailed information on recovering changes made to a data file between the time of the last
backup and a system failure using the ROLLFWD command.

Archival Logging

You can configure the MicroKernel to perform archival logging, which can facilitate your file backup activities. If a
system failure occurs, you can use the archival log files and the BUTIL -ROLLFWD command or Roll Forward feature
in the interactive Maintenance utility to recover changes made to a file between the time of the last backup and the
system failure. You turn archival logging on using the Archival Logging of Selected Files option in the Configuration
utility.

You specify the files for which you want the MicroKernel to perform archival logging by adding entries to an archival
log configuration file you create on the volume that contains the files. To set up the configuration file, follow these
steps:

1. Create a \BLOG directory in a real root directory of the physical drive that contains data files you want to log.
(That is, do not use a mapped root directory.) If your files are on multiple volumes, create a \BLOG directory
on each volume.

2. In each \BLOG directory, create an empty BLOG.CFG file. You can use any text editor to create the
BLOG.CFG file.

3. In each BLOG.CFG file, create entries for the data files on that drive for which you want to perform archival
logging. The entries in the log file must be in 6.x format. Use the following format to create the entries:

\path1\dataFile[=\path2\logFile]
 path1 The path to the data file to be logged. The path cannot

include a drive letter.

dataFile The name of the data file to be logged.

path2 The path to the log file. Because the log file and the data
file can be on different drives, the path can include a drive
letter.

logFile The name of the log file.

 

A single entry cannot contain spaces and must fit completely on one line. (Each line can contain up to 256
characters.) If you have room, you can place multiple entries on the same line; separate each entry with at
least one space.

If you do not provide a name for the log file, the MicroKernel assigns the original file name plus a .LOG
extension to the log file when you first open it. For example, for the file B.BTR, the MicroKernel would assign
the name B.LOG to the log file.

The following examples show three sample entries in the BLOG.CFG file on drive C. All three entries
produce the same result: activity in the file C:\DATA\B.BTI is logged to the file C:\DATA\B.LOG.

\data\b.bti

\data\b.bti=\data\b.log

\data\b.bti=c:\data\b.log

The next example directs the engine to log activity in the file C:\DATA\B.BTI to the log file D:\DATA\B.LGF.
This example shows that archival log files do not have to reside on the same drive as the data file and do
not require a .LOG extension. (The .LOG extension is the default.)

\data\b.bti=d:\data\b.lgf

Backing Up Your Files

Backing up your files regularly is an important step in protecting your data.

If you are using the MicroKernel’s “Archival Logging” feature, perform the following steps. This procedure allows you
to take advantage of the ROLLFWD command or the Roll Forward feature in the interactive Maintenance utility if a
system failure occurs.

To protect against data loss using Archival Logging:

1. Turn on the MicroKernel’s Archival Logging of Selected Files option.

2. Create BLOG.CFG log configuration files for the volumes containing data files you want to log (as discussed
in “Archival Logging”).

3. Shut down the MicroKernel.

4. Back up your data files and delete existing log files. Deleting the existing log files keeps the archival log files
from becoming too large. After each backup, delete the corresponding log files before you resume working
with the data files. Synchronizing the backup data files and the corresponding log files is critical to
recovering operations successfully.

5. Restart the MicroKernel.

If you are not using the MicroKernel’s archival logging feature, perform the following steps. This procedure allows you
to take advantage of the MicroKernel’s Continuous Operation feature, which allows you to back up files while they are
still in use by an application. However, if a system failure occurs, you cannot use BUTIL -ROLLFWD to recover
changes since the last backup.

ROLLFWD

The ROLLFWD command recovers changes made to a data file between the time of the last backup and a system
failure. The MicroKernel stores the changes in an archival log file. If a system failure occurs, you can restore the
backup copy of your data file and then use the ROLLFWD command, which applies all changes stored in the log to
your backup copy.

 Note: You cannot take advantage of the ROLLFWD command unless you both
enable the MicroKernel’s Archival Logging of Selected Files option (see
“Archival Logging of Selected Files”) and back up your files before a system
failure occurs.

If a system failure occurs, restore your backup and immediately run the ROLLFWD command. You must run the
ROLLFWD command before you access the files. Doing so guarantees that the data written to the data files is
consistent up to the point of the system failure. In particular, you must perform the roll forward before you write to,
lock, or get an exclusive handle on any of the files.

You can also use the ROLLFWD command to produce an output file of logged operations. The ROLLFWD command

can produce the output file either before you roll changes forward or at the same time as the roll forward.

Format

BUTIL -ROLLFWD <sourceFile | volume | drive | @listFile >
[</L[dumpFile] | /W[dumpFile]> [/T<dataLength>]
[/E<keyLength>]    [/H] [/V] [/O<ownerList >|<owner >|*]]
[/A] [/S]

 sourceFile The fully qualified name of the data file for which to roll forward changes. For
Windows NT, you do not need to specify the name of the path if the data file
resides in the same directory as your current directory.

volume A volume for which to roll forward changes. End the volume name with a
backslash (\) or forward slash (/), as in SYS:\ , //SERVER/SYS/ , or \
\SERVER\SYS:\ .

drive A drive letter for which to roll forward changes. End the volume name with a
backslash (\) or forward slash (/), as in F:\ or F:/ .

listFile The fully qualified name of a text file containing the paths of files, volumes, or
drives for which to roll forward changes. Separate these paths with a carriage
return/line feed. If the Maintenance utility encounters an error, the utility stops
rolling forward the current file, but does not roll back the changes already
made. If you specify the /A option, the utility continues rolling forward with the
next file.

/L Produces an output file, but does not roll forward.

/W Rolls forward and produces an output file.

dumpFile The file name of the output file to which the Maintenance utility writes a list of
logged operations. The default is \BLOG\BROLL.LST. The file name cannot
contain a drive letter or volume name and must start with a forward slash (/) or
backslash (\). The Maintenance utility places the file on the same volume as
the BLOG.CFG file.

/TdataLength Specifies the length of the operation’s data buffer to write to the output file. If
you do not specify this option, the utility does not include data buffer contents
in the output file.

/EkeyLength Specifies the length of the operation’s key buffer to write to the output file. If
you do not specify this option, the utility does not include key buffer contents
in the output file.

/H Instructs the utility to show numbers in the output file in hexadecimal notation.
If you do not specify this option, numbers in the output file are in ASCII format.
This option affects the format of the Entry Count, Op Code, Key Number, and
Data Length fields.

/V Instructs the utility to include additional information (such as the user name,
network address, and time stamp) in the output file.

/O Specifies the owner name of the data file, if required. An owner name is
required if you request an output file of logged operations and the backup
copy of the data file has an owner name for read-only access. See “Owner
Names” for more information.

/A Specifies that if you are rolling back more than one file and the Maintenance
utility encounters an error, the utility continues rolling forward with the next
file.When you do not specify this option, the utility stops rolling forward if it
encounters an error. (The utility does not roll back the changes already
made.)Note: When you use the /A option, you might want to redirect output to

a file, as described in “Redirecting Error Messages” and “Command Files”

/S (NetWare only) By default, the Maintenance utility stops at each full screen of output and
waits for a keystroke before continuing. With the /S option, the utility
continuously scrolls output on the screen. You cannot use /S on the command
line if you specify a command file, but you can specify /S with a command
inside a command file.

 

 Note: If the key buffer or the data buffer is not an input parameter for the
particular Btrieve operation, nothing is written to the dump file.

Examples

The following example recovers changes to the CLASS.MKD file.

butil -rollfwd sys:pvsw\demodata\class.mkd

This example recovers changes and outputs them to all files on the sys: volume with the following options:

• use default dump file

• dump 32 bytes of the data buffer

• dump 4 bytes of the key buffer

• dump in hex mode

butil -rollfwd sys:\ /W /H /T32 /E4

The following example does not perform roll forward but only outputs the changes to the files listed in files.txt with the
following dump options:

• use sys:\temp\files.lst as the dump file

• use verbose mode

• data files have owner names: own123 and own321

• do not dump data or key buffer

butil -rollfwd @sys:\temp\files.txt /L\temp\files.lst /V /Oown123,own321

Viewing Data File Statistics
This section includes information about generating a report that contains a data file’s characteristics and statistics
using STAT.

STAT

The STAT command generates a report that contains defined characteristics of a data file and statistics about the
file’s contents. Using the STAT command is a good way to determine if a file can be logged by the MicroKernel’s
transaction durability feature. The STAT command reports indexes the same whether they were created by the
Create Supplemental Index operation (in Btrieve 6.0 and later) or the Create operation.

Format

BUTIL -STAT <sourceFile > [/O<owner    |*>] [/S]
 sourceFile The fully qualified name of the data file for which to report statistics. For

Windows NT, you do not need to specify the name of the path if the data file
resides in the same directory as your current directory.

/Oowner The owner name for the data file, if required.

/S
(NetWare only)

By default, the Maintenance utility stops at each full screen of output and waits
for a keystroke before continuing. With the /S option, the utility continuously
scrolls output on the screen. You cannot use /S on the command line if you
specify a command file, but you can specify /S with a command inside a
command file.

 

Example

The following example reports file statistics for the PATIENTS.DTA file. The data file does not have an owner name.

butil -stat patients.dta

However for NetWare, you must specify the full path such as:

butil -stat sys:\demodata\patients.dta .

The following example shows the resulting report:
 File Statistics for PATIENTS.DTA

File Version = 7.00

Page Size = 2048

Page Preallocation = No

Key Only = No

Extended = No

Total Number of Records = 16

Record Length = 104

Data Compression = No

Variable Records = No

Available Linked Duplicate Keys = 0

Balanced Key = No

Log Key = 1

 System Data = No

Total Number of Keys = 3

Total Number of Segments = 4

Key Segment Position Length Type Flags Null Values* Unique ACS Values

 

0 1 21 20 String MD -- 16 0

0 2 7 12 String MD -- 16 0

1 1 1 6 String M -- 16 0

2 1 83 10 String MD -- 7 0

Alternate Collating Sequence(ACS) List:

 0 UPPER

Legend:

 < = Descending Order

 D = Duplicates Allowed

 I = Case Insensitive

 M = Modifiable

 R = Repeat Duplicate

 A = Any Segment (Manual)

 L = All Segments (Null)

 * = The values in this column are hexadecimal.

?? = Unknown

-- = Not Specified

 

This example shows that the file called PATIENTS.DTA is a 7.0 file. (The version number indicates the earliest Btrieve
version that can read the file format.) The file has a page size of 2,048 bytes and has no preallocated pages. This is
not a key-only file, nor is it an extended file.

Sixteen records have been inserted into the file. The file was defined with a record length of 104 bytes, does not use
data compression, and does not allow variable-length records.

There are no linked duplicate keys available in the file. The file does not use balanced indexing. The MicroKernel
performs logging using Key 1, and the file contains no system-defined data. The file has three keys comprised of four
key segments.

 Note: Indexes created with SINDEX are designated with the letter R by default
unless you specified the Reserved Duplicate Pointer element.

The STAT report also provides information about specific keys. For example, the report shows that Key 0 allows
duplicates, is modifiable, and consists of two segments:

• The first segment starts in position 21, is 20 characters long, allows duplicates, is modifiable, and will be
sorted as a STRING type. The dashes indicate that a null value was not defined. The Unique Values column
indicates that 16 unique values were inserted for this segment. This segment uses the UPPER.ALT alternate
collating sequence file.

• The second segment starts in position 7, is 12 characters long, allows duplicates, is modifiable, and will be
sorted as a STRING type. Sixteen unique values were inserted for this segment. This segment uses the
UPPER.ALT alternate collating sequence file.

Key 1 is the key the MicroKernel uses in logging this file. Key 1 consists of one segment. It starts in position 1, is six
characters long, does not allow duplicates, is modifiable, and will be sorted as a STRING type. Sixteen unique values
were inserted for this key. This key uses the UPPER.ALT alternate collating sequence file.

Key 2 consists of one segment. It starts in position 83, is 10 characters long, allows duplicates, is modifiable, and will
be sorted as a STRING type. Seven unique key values were inserted for this key. This key uses the UPPER.ALT
alternate collating sequence file.

Displaying Btrieve Interface Module Version
This section includes detailed information about displaying the version of the Btrieve Interface module using the VER
command.

VER

The VER command returns the version number of both the MicroKernel and the Btrieve Access Module.

Format

BUTIL -VER [/S]
 /S

(NetWare only)
By default, the Maintenance utility stops at each full screen of output and waits
for a keystroke before continuing. With the /S option, the utility continuously
scrolls output on the screen. You cannot use /S on the command line if you
specify a command file, but you can specify /S with a command inside a
command file.

 

Remarks

When you run the VER command, the utility displays messages similar to the following (for Windows NT):

The Btrieve Requester version is 7.00.

The Btrieve Version is 7.00.

Unloading the Btrieve Engine and Requester (DOS only)

STOP

Use the STOP command to unload the Btrieve engine and, if applicable, the requester.

Format

butil -stop

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Manipulating Scalable SQL Data Files with the
Maintenance Utility
The Scalable SQL Maintenance utility performs the following common file and data manipulations:

• “Scalable SQL Maintenance Utility Overview”

• “Importing and Exporting Data”

• “Backing Up a Database”

• “Recovering Changes After a System Failure”

• “Displaying SQL Interface Module Version”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Scalable SQL Maintenance Utility Overview
The Scalable SQL Maintenance utility is a command-line utility that runs on the server (as an NLM on NetWare or
from a DOS command prompt on Windows NT) and workstation engines (Windows 95/98/NT). You can execute
Maintenance utility commands from the command line or through a command file you create. Before you perform
commands in the Scalable SQL Maintenance utility, it is important you understand some concepts and elements
addressed in this section. It discusses the following:

• “Commands”

• “Command Format”

• “Command Options”

• “Scalable SQL Maintenance Utility Concepts”

• “Command Files”

Commands
Table 8-1

Scalable SQL Maintenance Utility Commands

 Command Description Platform

BLOAD Inserts records in bulk from a sequential file
into a SQL data file.

NT, NetWare

COPY Copies selected data from one data file to
another data file using SQL statements to
specify input and output.

NetWare only

ENDBU Ends continuous operation on database
names defined for backup.

NT, NetWare

LOAD Loads and updates data from a sequential file
into a data file using SQL statements to specify
input.

NetWare only

ROLLFWD Recovers changes made to data files within a
database between the time of the last backup
and a system failure.

NT, NetWare

SAVE Saves selected data from a data file to a
sequential file using SQL statements to specify
export.

NetWare only

STARTBU Starts continuous operation on database
names defined for backup.

NT, NetWare

VER Displays the version of the Scalable SQL
Interface Module that is loaded at the server,
including enhanced version information.

NetWare only

 

 Note: Windows NT Users: Use the SQLScope utility to perform import and
export operations.

Viewing Command Usage Syntax

To view a summary of each command usage, enter the following command at the file server:

sqlutil

The utility responds with usage syntax for each command.

NetWare

sqlutil -bload <TableName> <InputFile> <{UNF | SDF | ASC}>
 [/o:<ownerlist> | <owner> | <*>] [options]

sqlutil @CommandFileName

sqlutil -copy <SQL InputFile> <SQL OutputFile>
 [/o:<ownerlist> | <owner> | <*>] [options]

sqlutil -endbu <DatabaseName | @ListFile> [/s]

sqlutil -load <SQLFile> <InputFile> <{UNF | SDF | ASC}>
 [/o:<ownerlist> | <owner> | <*>] [options]

sqlutil –rollfwd < DatabaseName | @ListFile    > [</l:[dumpFile]
| /w:[dumpFile]> [/t:<dataLength>] [/e:<keyLength>] [/h] [/v]
 [/o:<ownerlist > | <owner > | <*>]] [/a] [/s]

sqlutil -save <SQL file> <OutputFile> <{UNF | SDF | ASC}> [/o:<ownerlist>      | <owner> | <*>] [options]

sqlutil -startbu <DatabaseName | @ListFile> [/s]

sqlutil -ver [/s]

Windows NT

sqlutil -bload <TableName> <InputFile> <{UNF | SDF | ASC}>
 [/o:<owner> | <*>] [options]

sqlutil @CommandFileName

sqlutil -endbu <DatabaseName | @ListFile> [/s]

sqlutil –rollfwd < DatabaseName | @ListFile    > [</l:[dumpFile] | /w:[dumpFile]> [/t:<dataLength>]
 [/e:<keyLength>] [/h] [/v][/o:<ownerlist > | <owner > | <*>]] [/a] [/s]

sqlutil -startbu <DatabaseName | @ListFile> [/s]

Command Format
The format for the Scalable SQL Maintenance utility command line is as follows:

SQLUTIL [< –command [parameter ...] | @commandFile >
[option ...]]

option ::= < /B:specialBlankCharacter
| /C:
| /D:< dictionaryPath | databaseName >
| /F:dataFilePath
| /O:< ownerList | ownerName | *>
| /P:< userPassword | * >
| /R:numberOfRecords
| /S:
| /U:< username | * >
| /X:
>

 –command A Scalable SQL Maintenance utility command,
such as COPY. You must precede the command
with a dash (–), and you must enter a space before
the dash. Table 8-1 on page 8-3 lists the
commands.

parameter Information that the command may require.

command_file path of a command file.

 

For a description of command options, refer to the following list.

Command Options
You can specify options in uppercase or lowercase. The options are as follows:

 /B: Valid only in v3.01 compatibility mode. This option specifies the
blank replacement character you want the utility to use. For
example, to use a tilde (~) as the blank replacement character,
specify the following:/B:~

/C: Tells the Scalable SQL Maintenance utility to run in v3.01
compatibility mode. By default, the Maintenance utility runs in
v4.0 compatibility mode.This option is not valid on the input of
the command file name but is a valid option for a command
within a command file.

/D: Specifies either the database name or the directory in which
the dictionary files reside. For example, to specify the university
named database, enter /D:@BTU. To use the dictionary
location, specify a path, such as /D:G:\SSQL\DEMODATA or
/D:SYS:\SSQL\DEMODATA. The NLM version of this utility
requires the /D: option. If you specify a named database, you
do not need to use the /F: option to specify data file locations.

/F: Specifies the directory in which the data files reside, if
necessary. Use this parameter only if you explicitly specify the
dictionary location using the /D: option and the data file location
is not fully defined in the dictionary. For example, if the data file
location is specified in the dictionary only as FACULTY.MKD
and the file is in the SSQL directory on drive G, specify /F:G:
\SSQL. If you do not specify the /F: option and you do not
specify a database name with the /D: option, the utility attempts
to open the data file at the location stored in the dictionary.

/O: Specifies the owner name of the data file, if required. You can
also specify a list of owner names, up to eight, separated by
commas. See Owner Names for more information.

/P: Specifies the password, if necessary, of the user you named
with the /U: option. Enter the password exactly as it is stored. If
you want the utility to prompt you for the password, specify an
asterisk (*) instead of a password.

/R: (For use with the BLOAD command only.) Specifies the number
of records to load at one time. For example, to load 50 records
at a time, specify /R:50. The default number of records is 100.
In general, performance increases when you load larger
numbers of records at one time. However, the block of records
you load at one time cannot use more than 64 KB of memory.

/S By default, the Scalable SQL Maintenance utility stops at each

full screen of output and waits for a keystroke before
continuing. With the /S option, the utility continuously scrolls
output on the screen. You cannot use /S on the command line if
you specify a command file, but you can specify /S with a
command inside a command file.

/U: Specifies a username, if necessary, for the dictionary you want
to access. Specify a valid username for this option, such as
/U:Charles. If you want the utility to prompt you for the
username, specify an asterisk (*) instead of a username.

/X: Enables you to print only the total records processed (on –
COPY, –LOAD, and –SAVE commands). When output from the
Scalable SQL Maintenance utility is redirected, the utility also
redirects the verifications from individual operations (such as
inserts).

 

Scalable SQL Maintenance Utility Concepts
The following sections describe concepts you should understand before using the Scalable SQL Maintenance utility
commands.

File Names

For commands that require a file path, you specify the volume name and directory path. The syntax is as follows:
 NetWare Form Windows NT Form

volume :\directoryPath \file name drive:\directoryPath\file name

 

Owner Names

The MicroKernel allows you to restrict access to files by specifying an owner name. Because owner names are
optional, the files you use with the utility may or may not require an owner name. If the file requires an owner name,
you must specify it using the /O option. You can specify one of the following:

• Single owner name.

• List of up to eight owner names. Separate the owner names with commas. Except in the ROLLFWD
command, if an owner name begins with a nonalphabetic character, enclose the owner name in single
quotes.

• Asterisk (*)

Owner names are case-sensitive; Sandy and SANDY are not considered to be the same. If you enter owner names
on the command line, the utility discards leading blanks. If you specify an asterisk, the utility prompts you for the
owner name and does not discard leading blanks.

Redirecting Error Messages

To redirect error messages to a file, use one of the following command formats.

For NetWare, the command is as follows:

sqlutil -command commandParameters (CLIB_OPT)/> filePath

For Windows NT, the command is as follows:

sqlutil -command commandParameters > filePath

Be sure that you specify the full path when redirecting error messages.

Command Files
You can use a command file to do the following:

• Execute a command that is too long to fit on the command line.

• Execute a command that you use often (by entering the command once in the command file and then
executing the command file as often as you want).

• Execute a command and write the output to a file, using the following command format:

SQLUTIL @commandFile [commandOutputFile]

For each command executed, the resulting output file shows the command followed by its results. All
messages appear on the screen, as well.

Command files contain the same information as that required on the command line.

Rules for Command Files

Observe the following rules when creating a Scalable SQL Maintenance utility command file:

• You must limit each line to 130 characters.

• You must limit the command file size to no more than 1,000 bytes.

• You cannot split a single parameter across two lines.

• Only one command is valid per command file; you cannot use multiple commands in a single command file.

Command File Example

The following is an example command file, LOADSTDT.CMD. The file calls the SQLUTIL –LOAD command to load
data from a sequential file (STUDENTS.ASC) into a data file specified by the SQL statements contained in the
STUDENTS.SQL file.

-load:\ssql\demodata\students.sql:\ssql\demodata\students.asc
/d:\ssql\demodata
/f:\ssql\demodata

The following command uses the LOADSTDT.CMD file to run the utility as an NLM on a file server. At the file server,
you must specify the full path name of the command file, including the volume.

sqlutil @sys:\ssql\demodata\loadstdt.cmd

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Importing and Exporting Data
This section provides detailed information on importing and exporting data using the following Scalable SQL
Maintenance utility commands: BLOAD, COPY, LOAD, and SAVE.

 Command Description Platform

BLOAD Inserts records in bulk from a sequential file into a
SQL data file.

NT, NetWare

COPY Copies selected data from one data file to another
data file using SQL statements to specify input and
output.

NetWare only

LOAD Loads and updates data from a sequential file into
a data file using SQL statements to specify input.

NetWare only

SAVE Saves selected data from a data file to a sequential
file using SQL statements to specify export.

NetWare only

 

 Note: Windows NT Users: Use the SQLScope utility to import and export data,
which is discussed in “Importing and Exporting Data” .

Import and Export File Formats

The Scalable SQL Maintenance utility supports three different file formats for importing or exporting data. These
formats are shown in Table 8-2.

Table 8-2
External Data Formats

Optio
n

Description

UNF Unformatted format. The utility does not convert the data to ASCII. Numeric columns remain
in binary form and are not converted to printable ASCII characters. Each record is preceded
by its length in ASCII and is followed by a comma delimiter. A carriage return/line feed
terminates each record.

SDF Standard Data Format. The data is represented as standard ASCII characters, the columns
are separated by commas, and quotation marks enclose all columns. A carriage return/line
feed terminates each record. This is a common format for exchanging data between
applications or databases.

ASC ASCII format. Each record in the input file must be preceded by the length of the record
followed by a delimiter (either a comma or a space). The data follows the delimiter and
should be the exact length given. Each column in the row must be the length of the display
size of the column. Terminate each record with a carriage return/line feed.

 

Rules for Importing and Exporting Data

The following rules apply to importing and exporting data:

• When importing data, the Scalable SQL Maintenance utility does not accept keywords in SQL statements in
place of substitution variables. You can import the data using substitution variables and then use SQLScope
to perform an update on the columns using SQL statements that contain keywords.

• You can import or export variable-length columns (data types NOTE and LVAR) in unformatted (UNF) format
only.

• The Scalable SQL Maintenance utility exports SDF data with double quotes (“) around all columns; this is
required to handle data that contains a comma in the mask, when importing or exporting SDF data.

For more information about importing data, refer to the description of the INSERT statement in the SQL Language
Reference .

BLOAD
The BLOAD command, which is available on NT and NetWare, inserts records in bulk from a sequential file into a
SQL data file. (This operation drops indexes and re-adds them.) This provides a convenient way to transfer large
amounts of data from a sequential file created by another program into a data file. The sequential file must contain
input data for all the columns defined in the table; if you do not have input data for all columns, use the LOAD
command.

You can import some data types using UNF format only. For more information, refer to “Rules for Importing and
Exporting Data”“Rules for Importing and Exporting Data” on page 8-10.

When using the BLOAD command, data files are opened in Accelerated mode. This makes the BLOAD command
faster than the LOAD command, but it also means that your transaction may not be durable if a failure occurs.

Format

SQLUTIL -BLOAD table sequentialInputFile    < UNF | SDF | ASC >
[options ...]

 table The dictionary name of an existing Scalable SQL table into which to
insert records.

sequentialInputFile The sequential input file containing the records to load into the data
file. This file must contain all the columns defined in the dictionary for
the specified table.

< UNF | SDF | ASC > The format of the data in the sequential input file.

options Any utility options.

 

Example

The following command loads 10 records at a time from the ASCII file NEWSTDNT.ASC and inserts them into the
Person table of the BTU database.

sqlutil -bload person newstdnt.asc asc /d:@btu /r:10

COPY
The COPY command, which is available only on NetWare, copies the contents of one data file to another. You can
use the COPY command to change a column from one data type to a different, compatible data type. You can convert
any data type to one of the string data types.

Using the COPY command, you can create a data file that contains data from an old file, but has new characteristics.

To create a data file with information from a historical file:

1. Create an empty data file with the desired dictionary definition using SQL statements in SQLScope.

2. Use the COPY command to copy the contents of the existing data file into the newly created data file.

You cannot copy data that contains variable-length data types (LVAR and NOTE). You must either export the data in
UNF format and then import it in UNF format, or remove the column from the view in the SQL statement and then use
the COPY command.

Format

SQLUTIL –COPY SQLInputFile SQLOutputFile    [options ...]
 SQLInputFile An ASCII text file that contains a valid SQL SELECT statement. This

statement specifies the names of the columns to select, the SQL data file
or files from which to select data, and any other join or restrict conditions
to place on the SELECT statement.

SQLOutputFile An ASCII text file that contains a valid SQL INSERT or UPDATE statement
with substitution variables. The substitution variable values you specify
must correspond with the column names you specified in the SELECT
statement.

option Any utility options.

 

Example

The following command copies data in the BTU named database using the previous input and output SQL files.

sqlutil -copy getnames.sql putnames.sql /d:@btu

This example copies the ID and Last Name of all records in the Students table to another, existing table called
Names. It uses two files containing SQL statements. The input file, GETNAMES.SQL, contains the following text:

select id, last_namestudents

The output file, PUTNAMES.SQL, contains the following text:

insert into names (id, last_name)(@v1, @v2)

The SELECT statement in the input file supplies the values for the substitution variables V1 and V2 that the output file
uses. For more information about using substitution variables, refer to the SQL Language Reference    .

LOAD
The LOAD command inserts rows from an input sequential file into a SQL data file. This provides a convenient way to
transfer data from a sequential file created by another program into a SQL file. The LOAD command is available on
NetWare only.

 Note: Windows NT Users: Use the SQLScope utility to import and export data,
which is discussed in “Importing and Exporting Data” .

This command performs the following actions:

1. Reads a SQL statement with substitution variables from an ASCII text file and passes it to Scalable SQL,
which compiles it.

2. Reads data from an input file and passes it to Scalable SQL, which substitutes the values and executes the
SQL statement.

As Scalable SQL loads data from the input file, the utility displays the total number of records loaded. The utility also
displays a message when it has successfully loaded all records from the input file.

If you are loading data into NOTE or LVAR columns, your input file must be UNF format. If you are loading UNF data,
you must use a SELECT statement.

For more information, refer to the SQL Language Reference .

The LOAD command opens files in Normal mode, so that your transaction is durable.

Format

SQLUTIL –LOAD SQLFile inputFile    < UNF | SDF | ASC > [option ...]
 SQLFile A text file containing a valid INSERT, UPDATE, or DELETE statement with

substitution variables. The SQL statement must specify the data file, the applicable
column names, and the substitution variables. For the UNF format, you must use a
SELECT statement, and you cannot specify substitution variables. For more
information about SQL syntax, refer to the SQL Language Reference .

inputFile The sequential file containing the data you want to load into the SQL data file.

<UNF|SDF|
ASC>

The format of the data in the input file. For more information about sequential file
format, refer to “ASCII File Format”.For more information about SDF data format,
refer to “SDF File Format”

option Any utility options, as described in “Command Options”

 

Example

The following command inserts a row into the Billing table in the BTU named database:

sqlutil –load amtowed.sql amtowed.sdf sdf /d:@btu

The SQL file, AMTOWED.SQL, contains the following statement:

insert into billing (student_id, amount_owed)(@v1, @v2);

The input file, AMTOWED.SDF, contains values for the substitution variables V1 and V2, as follows:

“116221385”,”$1500.00”

For more information about using substitution variables, refer to the SQL    Language Reference.

SAVE
The SAVE command retrieves data from a database file and stores it in a sequential file. You can only perform this
command on NetWare; however, Windows NT customers can use the SQLScope utility to import and export data as
described in “Importing and Exporting Data” . You can use this command to extract data from one or more database
files using a valid SQL SELECT statement. You can then edit the data and use the LOAD command to insert it into
another database file.

SAVE generates a single row for each set of data the SELECT statement retrieves and exports the data in its current
mask or the default mask, if one does not exist. You can specify the format of the output file with a command line
parameter. As Scalable SQL inserts or saves the data into the output file, it displays the total number of rows saved.

 Note: The Scalable SQL Maintenance utility performs no conversion on the
data in the rows. Therefore, if you use a text editor to modify an output file
containing binary data, be aware that some text editors may change the binary
data, causing the results to be unpredictable.

You can save variable-length data types using UNF format only. For more information, refer to “Rules for Importing
and Exporting Data”.

Format

SQLUTIL –SAVE SQLFile outputFile    < UNF | SDF | ASC > [option ...]
 SQLFile The ASCII text file that contains a SQL SELECT statement. The SELECT

statement is any valid SQL SELECT statement that does not contain
substitution variables.

outputFile The file to which to SAVE the data.

< UNF | SDF | ASC > The format in which to store the data. For more information about
sequential file format, refer to“ASCII File Format”For more information
about SDF data format, refer to “SDF File Format”

option Any utility options, as described in “Command Options”

 

Example

The following example extracts data from the BTU named database and saves the extracted data to an SDF data file.

sqlutil -save amtowed.sql amtowed.sdf sdf /d:@btu

The SQL file, AMTOWED.SQL, uses the CAST function to export the data in the default column format, as follows:

select cast(student_id as type of student_id),
cast(amount_owed as type of amount_owed)billing

The resulting output file, AMTOWED.SDF, would contain the following values:

“116221385”,”$1500.00”

ASCII File Format
When you use the LOAD or SAVE command, records in an ASCII file have the following format. You can use an
ASCII text editor to create import files, as long as they adhere to these specifications. Most text editors do not support
editing binary data.

• The first column is a left-adjusted integer (in ASCII) that specifies the length of the record. (When calculating
this value, ignore the carriage return/line feed that terminates each line.) The value in this first column
matches the record length specified in the data file.

• For files with    fixed-length records, the length you specify should equal the record length of the
data file.

• For files with    variable-length records, the length you specify must be at least as long as the
minimum fixed length of the data file.

• A separator (a comma or a blank) follows the length column.

• The record data follows the separator. The length of the data is the exact number of bytes specified by the
length column. If you are creating an import ASCII (sequential) file using a text editor, pad each record with
blank spaces as necessary to fill the record to the appropriate length.

• A carriage return/line feed terminates each line. The Scalable SQL Maintenance utility does not insert the
carriage return/line feed into the data file.

• The last line in the file is the end-of-file character (Ctrl+Z or 1A hexadecimal). Most text editors automatically
insert this character at the end of a file.

Figure 8-1 shows the correct format for records in the input sequential file. For this example, the data file has a
defined record length of 40 bytes.

Figure 8-1
Format for Records in Input Sequential Files

SDF File Format
When you use the LOAD or SAVE command, records in an SDF (Standard Data Format) file have the following
format. You can use an ASCII text editor to create import files, as long as they adhere to these specifications. Most
text editors do not support editing binary data.

• All columns must be enclosed in double quotes (“ ”).

• A comma must separate all columns.

• A carriage return/line feed terminates each record.

The following example shows the correct format for records in the input sequential file:

“ART305”,”Sculpture”,”3” <CR/LF>

“ART406”,”Modern Art”,”3” <CR/LF>

“ART 407”,”Baroque Art”,”3” <CR/LF>

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Backing Up a Database
This section provides detailed information on backing up databases using STARTBU and ENDBU commands.

 Command Description Platform

STARTBU Starts continuous operation on database
names defined for backup.

NT, NetWare

ENDBU Ends continuous operation on database
names defined for backup.

NT, NetWare

 

STARTBU
The STARTBU command specifies a named database on which to begin continuous operation for backup purposes.
To back up files using continuous operation, first issue the STARTBU command, followed by the database name or
set of database names. Next, run your backup program. Then, issue the ENDBU command to stop continuous
operation.

This command works locally on Pervasive.SQL server and workstation products.

Format

SQLUTIL –STARTBU < databaseName | @listFile    > [/S]
 databaseName The database name on which to begin continuous

operation for backup. This name must match a
database name previously defined using the
Scalable SQL Setup utility.

@listFile The name of a text file containing a list of the
database names on which to begin continuous
operation. Separate these names with a carriage
return/line feed.If the Scalable SQL Maintenance
utility cannot put all of the files that make up the
database name in continuous operation, the utility
does not put any of the files in continuous operation.

 

 Note: This command begins continuous operation only on the files within a
database name you specify. For more information about continuous operation,
see “Continuous Operation”.

Examples

The following example starts continuous operation on the university database.

sqlutil -startbu btu

The following example starts continuous operation on all databases listed in the DBBACKUP.TXT file.

sqlutil -startbu @dbbackup.txt

ENDBU

The ENDBU command (available on both Windows NT and NetWare) ends continuous operation on a named
database previously defined for backup. Execute this command after you have issued the STARTBU command and
your backup utility has finished running. For more information about the STARTBU command, see page 8-18.

This command works locally on Pervasive.SQL server and workstation products.

Format

SQLUTIL –ENDBU < databaseName | @listFile > [/S]
 databaseName The named database for which to end continuous

operation.

@listFile The name of a text file containing the list of named
databases for which to end continuous operation.
The text file must contain the database names
separated with a carriage return/line feed.

Typically, this list of data files is the same as the list
used with the STARTBU command.

 

Example

The following example ends continuous operation on the university database.

sqlutil –endbu btu

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Recovering Changes After a System Failure
This section provides detailed information on recovering data after a system failure has occurred using ROLLFWD.

 Command Description Platform

ROLLFWD Recovers changes made to data files within a database
between the time of the last backup and a system
failure.

NT, NetWare

 

ROLLFWD
The ROLLFWD command (available on both Windows NT and NetWare) recovers changes made to a data file
between the time of the last backup and a system failure. The MicroKernel stores the changes in an archival log. If a
system failure occurs, you can restore the backup copy of your data file and then use the ROLLFWD command,
which applies all changes stored in the log to your backup copy.

 Note: You cannot take advantage of the ROLLFWD command unless you both
enable the MicroKernel’s Archival Logging of Seleced Files option (see page 3-
41) and back up your files before a system failure occurs. For information about
backing up your files, refer to “Backing Up Your Files”.

If a system failure occurs, restore your backup and immediately run the ROLLFWD command. You must run the
ROLLFWD command before you access the files. Doing so guarantees that the data written to the data files is
consistent up to the point of the system failure. In particular, you must perform the roll forward before you write to,
lock, or get an exclusive handle on any of the files.

You can also use the ROLLFWD command to produce an output file of logged operations. The ROLLFWD command
can produce the output file either before you roll changes forward or at the same time as the roll forward.

Format

SQLUTIL –ROLLFWD < databaseName | @listFile    > [</L:[dumpFile] | /W:[dumpFile]>
[/T:<dataLength>] [/E:<keyLength>] [/H] [/V]
[/O:<ownerList > | <owner > | <*>]] [/A] [/S]

 databaseName The name of the database for which to roll forward
changes.

listFile The path of a text file containing a list of database
names for which to roll forward changes. Separate
these database names with a carriage return/line
feed.

/L: Produces an output file, but does not roll forward.

/W: Rolls forward and produces an output file.

dumpFile The path of the output file to which the Scalable SQL
Maintenance utility writes a list of logged operations.
The default is /BLOG/BROLL.LST. The path cannot
contain a drive letter or volume name and must start
with a forward slash (\) or backslash (/). The Scalable
SQL Maintenance utility places the file on the same

volume as the BLOG.CFG file.

/T:dataLength Specifies the length of the operation’s data buffer to
write to the output file. If you do not specify this
option, the utility does not include data buffer
contents in the output file.

/E:keyLength Specifies the length of the operation’s key buffer to
write to the output file. If you do not specify this
option, the utility does not include key buffer contents
in the output file.

 Note:      If the key buffer or the data buffer is not an input
parameter for the particular Btrieve operation, nothing is
written to the dump file.

/H Instructs the utility to show numbers in the output file

in hexadecimal notation. If you do not specify this
option, numbers in the output file are in ASCII format.
This option affects the format of the Entry Count, Op
Code, Key Number, and Data Length fields.

/V Instructs the utility to include additional information
(such as the username, network address, and time
stamp) in the output file.

/O: Specifies the owner name of the data file, if required.
An owner name is required if you request an output
file of logged operations and the backup copy of the
data file has an owner name for read-only access.
See Owner Names for more information about owner
names.#Note: With the ROLLFWD command, do not
enclose owner names in single quotes, even if they begin
with a nonalphabetic character.

/A Specifies that if you are rolling back more than one

database and the Scalable SQL Maintenance utility
encounters an error, the utility continues rolling
forward with the next database.When you do not
specify this option, the utility stops rolling forward if it
encounters any error other than Status Codes 12,
111, and 113. (The utility does not roll back the
changes already made.)#Note: When you use the /A
option, you may want to redirect output to a file, as
described in “Redirecting Error Messages” and
“Command Files”.

/S By default, the Scalable SQL Maintenance utility

stops at each full screen of output and waits for a
keystroke before continuing. With the /S option, the
utility continuously scrolls output on the screen. You
cannot use /S on the command line if you specify a
command file, but you can specify /S with a
command inside a command file.

 

Examples

The following example rolls forward changes to the BTUDB database:

sqlutil -rollfwd btudb

The next example rolls forward changes to the BTUDB database and produces an output file of logged operations.
The output file uses the default location (/BLOG/BROLL.LST) and includes the first 32 bytes of the data buffer and
the first 4 bytes of the key buffer for each operation. The output file uses hexadecimal format.

sqlutil -rollfwd btudb /w /t:32 /e:4 /h

The next example does not roll forward any changes; it simply produces an output file of logged operations for the
BTUDB database. The output file location is \TEMP\BTUDB.LST and includes a username, network address, and
time stamp for each operation. The data files to be rolled forward have the owner names Sandy and Tom .

sqlutil -rollfwd btudb /l:\temp\btudb.lst /v /o:Sandy,Tom

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Displaying SQL Interface Module Version
This section provides detailed information on displaying the version of the SQL Interface Module using VER.

 Command Description Platform

VER Displays the version of the Scalable SQL Interface
Module that is loaded at the server, including enhanced
version information.

NetWare only

 

VER
The VER command (on NetWare only) returns the version number of the Scalable SQL engine loaded at the server.

Format

SQLUTIL –VER [/S]

Remarks

When you run the VER command, the utility displays messages similar to the following:

Scalable SQL Version 4.0.0 is loaded.

The utility returns the version number, revision number, and patch level of the Scalable SQL engine that is loaded on
the file server where the database name exists.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Executing SQL Statements with SQLScope
SQLScope allows you to execute SQL Statements interactively. This Win16 utility runs on Windows, Windows 95,
and Windows NT operating systems. This chapter discusses the following functions you can perform with SQLScope:

• “SQLScope Overview”

• “Logging in to a Database”

• “Creating and Running SQL Statements”

• “Managing Referential Integrity”

• “Reviewing File-Level Information”

• “Importing and Exporting Data”

• “Recovering Damaged Data Files”

You can also set default login values and environmental settings, which is discussed in “Customizing SQLScope”
later in this chapter.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

SQLScope Overview

To start SQLScope:

• Click Start , highlight Programs , select Pervasive SQL 7 , and choose SQLScope (Win16) . The Login to
Database    dialog appears (see Figure 9-1).

 If you want to use another method to start SQLScope, refer to your Windows, Windows 95, or Windows NT
documentation for information about starting applications.

 Note: While SQLScope loads, it displays a dialog that contains information
about the utility, including its version number. You can also display this
information by choosing the About command from the Help menu.

Getting Help
To access the context-sensitive help system at any time while running SQLScope, do one of the following:

• Press F1–Depending on your cursor position, this key produces help information about the highlighted menu
command, the current dialog, or SQLScope in general.

• Press Shift+F1–This key combination produces the help cursor, a question mark with an arrow. Use the help
cursor to select the item for which you want help.

• Choose a command from the Help menu–The commands in the Help menu provide the following:

• Information about how to use the Windows help system

• An index of SQLScope help topics

• Help for the active SQLScope window

• A list of shortcut keys

• Version and copyright information about SQLScope and version information for Scalable SQL and
the MicroKernel.

Using the Shortcut Keys
When using SQLScope, you may find the shortcut keys useful for quickly performing certain tasks. Table 9-1 shows
the shortcut key assignments.

Table 9-1
SQLScope Shortcut Keys

 Press This Key For This Action

Alt+F4 Exit SQLScope

F1 Get help for highlighted menu command or dialog
box

Shift+F1 Enter help mode

F5 Update database information in Tables or Columns
list box

Ctrl+Z Undo

Ctrl+X Cut

Ctrl+C Copy

Ctrl+V Paste

Ctrl+S Activate SQL text window

Ctrl+D Activate database list

Ctrl+T Activate table list

Ctrl+M Activate column list

Ctrl+P Activate template list

Ctrl+R Activate results window

Ctrl+Shift+F Move to first statement

Ctrl+Shift+P Move to previous statement

Ctrl+Shift+N Move to next statement

Ctrl +Shift+L Move to last statement

Ctrl +F Execute first statement

Ctrl+U Execute current statement

Ctrl+ <keypad +> Execute next statement

Ctrl+ <keypad -> Execute previous statement

Ctrl+A Execute all statements

Ctrl+O Stop executing statements

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Logging in to a Database

To log in to a database:

1. Start SQLScope (see page 9-2), which opens the Login to Database dialog as shown in Figure 9-1.

Figure 9-1
Login to Database Dialog

2. Specify either a database name or a directory that contains data dictionary files, but not both. You must log
in to a database before you can perform most tasks in SQLScope.

• If you log in by specifying a database name, select the Use Database Names check box, and then
either select a name from the Database Name list, or enter the name of a database.

The Database Name list contains all available database names on the local workstation and all
available database names on the network if Scalable SQL is running on a file server. If you select a
remote database, your engine usage configuration determines whether requests are processed
locally or remotely.

• If you log in by specifying a dictionary file location, clear the Use Database Name s check box, and
then specify the location of the database’s data dictionary files in the Database Directory text box.
The location must be a valid, full path to a Scalable SQL data dictionary. You can use drive letters in
paths to directories on servers.

3. If necessary, specify the compatibility mode.

• If you log into a database that was created with Scalable SQL 4.0, clear the Version 3.01
Compatible check box.

The compatibility mode check box allows you to log into Scalable SQL 3.01 databases and operate
in 3.01 compatibility mode. If you log into a v4.0 database and you select this check box, you
cannot use 4.0 syntax and data types in the database.

• If you log into a database that was created with Scalable SQL 3.01 and you want the database to
be compatible with applications written for 3.01, select the Version 3.01 Compatible check box.

If you log into a 3.01 database but do not select this check box, you must use v4.0 SQL syntax; if
you then use v4.0 features, you could make the database incompatible with 3.01 statements and
applications.

4. If necessary, specify your user name in the Username text box.

If security is not enabled on the database you specified, the user name is not required.

5. If necessary, specify your password in the Password text box.

If no password is defined for your user name or security is not enabled on the database, the password is not
required. For security purposes, SQLScope does not display the password you specify; instead, it displays
an asterisk (*) for each character.

6. Click Login or press Enter.

If the login is successful, SQLScope Main window appears (see Figure 9-3). If the login fails, refer to the
Status Codes and    Messages manual for an explanation and suggested remedy for the error message or
status code SQLScope displays.

Managing Multiple Logins
You can be logged in to more than one database at a time.

To log in to additional databases:

1. Either choose Login or from the Database menu, or choose from the Database menu and click Login in the
Select Database dialog. Then follow the steps discussed in the previous section, “Logging in to a
Database”.

 Both the Database list in the SQLScope main window (shown in Figure 9-3) and the Select Database
dialog (Figure 9-2) specify all current databases.

Figure 9-2
Select Database Dialog

2. To change the current database, select the desired database from either the Database list or the Select
Database dialog.

Logging Out of Databases

To log out of a database:

1. Ensure that the database is shown in the Database list in the SQLScope main window (Figure 9-3 on page
9-8).

2. Choose Logout from the Database menu.

You can also log out by choosing Select from the Database menu. In the Select Database dialog, highlight
one or more databases and click the Logout button.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Creating and Running SQL Statements
The SQLScope main window (Figure 9-3) allows you to create SQL statements interactively.

Figure 9-3
SQLScope Main Window

The main window allows you to do the following:

• View database information and select SQL templates.

This area comprises the top of the SQLScope window. It contains the databases you are logged into, table
names and column names from the currently selected database, and SQL statement templates you can use
to build SQL statements. The update columns button (>>) allows you to update the columns list with the
column names of the currently highlighted table.

• Compose, navigate, and run SQL statements.

This area contains a text box for entering SQL statements and command buttons for moving among multiple
SQL statements and running those statements.

• View results.

This area displays the results of the statement you just executed.

• View status bar.

This area displays a short description of the currently highlighted command or a progress report on current

statement execution.

You can use your mouse or use commands on the Window menu to move among areas in the SQLScope window.
The selected command reflects the active area. This area remains active until you move to another area.

Showing and Hiding Screen Elements
The View menu commands correspond to the following window areas:

 Lists Shows or hides the Database, Tables, Columns,
and Templates lists.

Status Bar Shows or hides the status bar.

Movement Buttons Shows or hides the Move To buttons at the left of
the SQL Text box.

Run Buttons Shows or hides the Run buttons at the right of the
SQL Text box.

 

Using Templates
The Templates list contains predefined templates of valid SQL syntax. Templates are not available in Version 3.01
Compatible mode.

To copy a template into the SQL Text box:

1. Scroll through the list to find the template you want or press the first letter of that template’s name.

2. When you have located the desired template, double-click the template name. (If multiple templates begin
with the same letter, you can press the first letter of the template name multiple times to reach the template
you want to use.)

 For example, to create a SELECT statement, double-click the Select template option. SQLScope inserts the
following template into the SQL Text box at the text cursor:

SELECT [DISTINCT] < * | $Select_Terms_List >$Join_List
[$Where_Clause]
[$Group_By_Clause]
[$Order_By_Clause]

 Note: Template names begin with a dollar sign ($). As the preceding example
illustrates, template text may contain references to other templates. If you need
help with a statement element, you can insert the referenced template for that
element. For example, if you need help defining a WHERE clause, double-click
on $Where_Clause to highlight that text. Then, double-click on the
Where_Clause template in the Templates list box.

 A second example sets column definitions in a CREATE TABLE statement using the Column_Def template:

#Column_Name #Data_Type (#Data_Length) [CASE]

 Note: Elements preceded by a pound sign (#) are user-defined variables that
should be replaced with table names, column names, or constants. For example,
you can replace the preceding example with values to produce a column
definition such as ID CHAR (10). If you are using the pound sign as the
statement separator, ensure that all extraneous instances of the pound sign are
removed from your SQL script.

Creating SQL Statements
After logging in to a database, you can create and run SQL statements in the Statement Area. The following section
provides information about how to create statements in SQLScope. For information about SQL statement syntax,
refer to the SQL Language Reference .

You can create SQL statements in either of two ways:

• Enter the statement into the SQL Text box.

• Use the Tables, Columns, and Templates lists to assist you in creating the statement.

To use the Tables, Columns, and Templates lists to create a SQL statement:

1. Based on the type of statement you want to run, double-click a template from the Templates list.

2. In the SQL Text box, review the statement text and delete portions you do not want to use.

 The following SELECT statement includes only the required elements; all other data elements have been
deleted.

SELECT $Select_Term$Join_List

3. Insert table and column names where appropriate.

 You can insert names by typing them directly into the SQL Text box, or you can double-click on them in the
Tables or Columns list.

 To update the Columns list, select a table name from the Tables list and then either press the update
columns button (>>), or choose Update Columns List from the Database menu.

 Note: If you select another table but do not update the Columns list, when you
activate a window other than the Columns list box, SQLScope reselects the
previously selected table.

4. If necessary, insert other values, such as constants.

5. Optional : Add comments at the end of any statement, if you wish.

 Comments begin with a delimiter (--) and end with a carriage return/line feed. You can place a comment on
any line of your statement as long as it follows all of the statement text on that line.

 The following example illustrates using comments. (A <CR> symbol indicates the end of a line.):

-- generate a list of people from Texas<CR>

SELECT Last_Name, First_Name, State<CR>Person<CR>State = ’TX’ -- limits the list to<CR>
      -- those who live in Texas<CR>

 When Scalable SQL compiles the statement, it ignores all text between the comment delimiter and the end
of the line (carriage return/line feed).

 You can create multiple statements in the SQL Text box. Separate the statements with a statement
separator; the semicolon (;) is the default. (See “Specifying the Statement Separator Character” for more
information.) The following example creates two statements:

DECLARE BTUCursor CURSOR

FOR SELECT Degree, Residency, Cost_Per_CreditTuition ORDER BY ID;

OPEN BTUCursor;

 Using the commands on the Edit menu, you can cut, copy, and paste text in the SQL Text box. In many
cases, you can also undo the last edit you made.

Running SQL Statements

To run a SQL statement:

1. Position the text cursor in the SQL Text box on any character of the statement.

2. Then, click Current in the Statement Area or choose Current from the Run menu.

 Note: To run the first SQL statement in the SQL Text box, click First in the
Statement Area, or choose First from the Run menu.

To run all statements in the SQL Text box:

1. Choose All from the Run menu. The Run All Statements dialog appears (Figure 9-4).

Figure 9-4
Run All Statements Dialog

2. Using this dialog, you can redirect the results to an external file you specify. The Run All Statements dialog
also allows you to select or clear the following check boxes:

 Stop on Error Stops executing the statements if SQLScope
either encounters an error while accessing the
external file or receives an error from Scalable
SQL.

Include Statement
Text

Includes the text of the statements as well as the
results in the external file.

Append Output Appends the results to an existing file. If you
select the Include Statement Text option, this
option includes the text of the statement in the
output file, as well.

Background Runs the statements in the background, allowing
you to continue working in SQLScope.

 

 Note: Background Mode:    You cannot exit SQLScope while a background
process is running. Additionally, you cannot run SQL statements in the
background connected to a Pervasive.SQL workstation engine. If you try to run
in this mode, a Status Code 265, “The session identifier is invalid,” occurs. You
can run in this mode when you are connected to a Pervasive.SQL server engine
and the SQL Requester Thunk setting is configured to No .

When executing statements, SQLScope hides the Database, Tables, Columns, and Templates lists, enters Run
mode, and does not allow you to change the SQL statements. (You can still scroll through existing SQL statements in
the SQL Text box.) Figure 9-5 shows the SQLScope main window in Run mode.

Figure 9-5
SQLScope Main Window in Run Mode

While SQLScope is in Run mode, if you specified multiple statements, you can also use one of the following Run
buttons in the Statement Area or commands from the Run menu:

 Previous Runs the statement that precedes the current one.

Next Runs the statement that follows the current one.

 

Results appear in the Results Area, as follows:

• For a SELECT statement, SQLScope displays the result table. If the result table is larger than the Results
Area, you can scroll through the data. Also, you can adjust the width of any column. For more information,
refer to “Adjusting Column Widths in the Results Area” .

• For statements other than SELECT, SQLScope displays the status of the statement execution.

After reviewing the Results Area, you can either run another statement or exit Run mode:

• To remain in Run mode and run another statement from the SQL Text box, click the Previous or Next
button.

• To exit Run mode, click the Stop button or choose the Stop command on the Run menu. The hidden lists
reappear, and SQLScope allows you to edit statements in the SQL Text box.

Saving SQL Scripts
If you use a statement or group of statements often, you can save the statement or statements in a script file for later
use. The script file is a text file you can edit using any standard ASCII text editor. Script files cannot exceed 32 KB in
size.

 Note: Do not confuse scripts you save in SQLScope with stored procedures.
Scalable SQL precompiles and saves stored procedures in the X$Proc table,
whereas SQLScope saves SQL scripts to a script file. SQLScope does not
precompile these statements.

To create a new script file and save it:

1. Create one or more statements as described in “Creating and Running SQL Statements”.

2. Choose Save from the File menu.

SQLScope displays the Save SQL Script File dialog.

3. Enter a full path—including drive, directory, and file name.

To recall an existing script file:

1. Choose Open from the File menu.

2. In the Open SQL Script File dialog, enter the full path of the script file you want to recall.

SQLScope opens the script file and displays it in the SQL Text box. In addition, SQLScope displays the full
path of the script file in the title bar.

3. If you make changes to an existing script file, you can save the changes by choosing Save from the File
menu. SQLScope saves your changes and does not display the Save SQL Script File dialog.

To rename an existing script file, follow these steps:

1. Open an existing script file.

2. Choose Save As from the File menu.

SQLScope displays the Save SQL Script File dialog.

3. Enter a full path—including drive, directory, and file name.

Adjusting Column Widths in the Results Area
Once you run a SQL statement and SQLScope displays the results in the Results Area, you can adjust the column
widths. Adjusting the column widths affects their display only for the current statement execution. In other words, if
you run another statement, the columns revert to their default display widths.

SQLScope provides two methods for adjusting column widths:

• Direct manipulation using the mouse cursor

• Numeric settings using Column Widths from the Settings menu

To adjust column widths using direct manipulation:

1. Place the cursor on the margin between two column headings.

2. When the cursor changes to a vertical bar with arrows, you can drag and drop the margin to a new location.

To adjust column widths using the Column Widths command:

1. Choose Column Widths from the Settings menu.

SQLScope displays the Column Widths dialog (Figure 9-6).

Figure 9-6
Column Widths Dialog

2. If necessary, use the Next or Previous button to move to another column.

3. Use the Width text box to specify a new width for the column.

Because SQLScope displays results using proportionally spaced text, the Width value reflects an
approximate number of characters.

4. Click OK to exit, or perform Steps 2 and 3 for another column.

Updating the Lists Area
You can use the Refresh Lists command on the Database menu to reread all the database table names from the
data dictionary and display them in the Tables list. SQLScope maintains highlighting on a table if you highlighted the
table before you chose the Refresh Lists command. SQLScope also refreshes the Columns list, if necessary.

 Note: This command is useful after you execute a series of SQL statements that
change the tables or columns in the current data dictionary.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Managing Referential Integrity

 Note: SQLScope’s RI commands work on Windows NT servers only. If you
want to check the RI of a database on a NetWare server, refer to “Checking and
Repairing Referential Integrity”.

You can use SQLScope to do the following:

• Generate a report about the referential constraints defined for the database.

• Verify or repair RI on the database. You should verify RI when you add referential constraints to tables or
restore a partial backup of a database.

You must log into the database using its database name. Your database must be named, stored on the same
Windows NT server as the SQL Engine, and have referential constraints defined (whether or not RI is enabled). Also,
you must use the 16-bit version of the Setup utility to enable the Use Thunk option for both the SQL Engine and the
MicroKernel Router.

Listing Referential Constraints

To produce a report that lists all foreign key definitions and related information for any
named database:

1. Log in to the database using its database name.

2. Choose List Constraint s from the Database menu.

3. In the Output File text box of the List Referential Integrity dialog box (Figure 9-7), enter the full path of the
report file to which you want SQLScope to write. If the file does not exist, SQLScope creates it.

Figure 9-7
List Referential Integrity Dialog

4. Optional : By default, SQLScope appends output to existing files. If the output file you specified exists and
you want SQLScope to write over the existing file contents, deselect the Append Output check box.

5. Optional : If you want the report to include additional trace information (such as header information about the
options you specified, full paths, and detailed information about each table in the report), select the Trace
Information check box.

6. Optional : Select a sort order for the information presented in the report.

The Sort By options are as follows:
 Foreign Key Name Sorts the output by the names of the foreign

keys defined in the database.

Parent Table Sorts the output by the names of the parent
tables defined in the database.

Dependent Table Sorts the output by the names of the
dependent tables defined in the database.

 

By default, SQLScope sorts the information by foreign key name.

7. Optional : To generate the report in the background so you can continue working in SQLScope, select the
Background check box.

 Note: You cannot exit SQLScope while a background process is running.

8. Choose OK or press enter.

SQLScope generates the report, writes it to the output file you specified, and displays the Listing Referential
Constraints dialog box.

9. If you want to view the report file, choose View . If an error occurred, you can choose Status to display the
status code and error message.

Checking Referential Integrity

To check for orphan rows in a named database or verify the consistency of a data file’s RI
data with the data dictionary’s RI data:

1. Log in to the database using its database name.

2. Choose Check Constraints from the Database menu.

3. In the Output File text box of the Check Referential Integrity dialog box (Figure 9-8), specify the report file
to which you want SQLScope to write.

To specify an output file, you can either enter the full path of the file or choose Browse and choose a path. If
the file does not exist, SQLScope creates it.

Figure 9-8
Check Referential Integrity Dialog

4. Optional : By default, SQLScope appends output to existing files. If the output file you specified exists and
you want SQLScope to write over the existing file contents, deselect the Append Output check box.

5. Optional : If you want the report to include additional trace information (such as header information about the
options you specified, full paths, and detailed information about each table in the report), select the Trace
Information check box.

6. Optional : If you want to check only one table in the database, select the Specific option button and specify a
table name.

Otherwise, SQLScope checks and reports on all tables in the database.

7. Optional : By default, SQLScope checks for orphan rows, writes them to an exception table, and deletes
them.

You can change the relevant settings as follows:
 Orphan Rows If you do not want SQLScope to check for

orphan rows, deselect this option button.

Write to Exception Table If you do not want SQLScope to create an
exception table, deselect this option
button.

Delete If you do not want SQLScope to delete the
orphan rows it finds, deselect this option
button.

 

For more information, refer to “Exception Tables”.

8. Optional : By default, SQLScope checks for and repairs any inconsistencies between the contents of the
data files and the referential constraints contained in the data dictionary.

You can change the relevant settings as follows:
 Inconsistencies If you do not want SQLScope to check for

inconsistencies, deselect this option button.

Repair If you do not want SQLScope to repair
inconsistencies, deselect this option button.

 

For more information, refer to “Database Inconsistencies”.

9. Choose OK or press enter.

SQLScope checks the database’s RI, generates the report, writes it to the output file you specified, and
displays the Checking Referential Constraints dialog box. If you want to view the report file, choose View . If
an error occurred, you can choose the Status button to display the status code and error message.

Exception Tables

By default, SQLScope generates an exception table for each table in which it finds orphan rows. The exception table
becomes part of the database, with the same location and file name as the original data file, but with a .EXC
extension. For example, if SQLScope generated an exception table on the Patients table, the exception table would
be named EXC_Patients and would be stored in a data file named PATIENTS.EXC.

The first field in the exception table is an index and contains the parent table name. The remainder of each row
contains the same field values as the original orphan row and can contain up to 4,090 bytes. SQLScope truncates
rows larger than 4,090 bytes. You can use SQLScope to review the exception table by issuing SQL statements, just
as you would with any other table.

Database Inconsistencies

By default, SQLScope checks for inconsistencies between the information in the data dictionary and that in the
individual data files. For example, you may create an inconsistency if you move a data file from one database to
another, because the old database name stored in the data file does not match the new database name stored in the
data dictionary. SQLScope checks for the following inconsistencies:

 Database
Names

Checks the database name stored in the data file
against the database name stored in the data

dictionary.

Primary Key Checks the number of referencing foreign keys
stored in the data file against the referential
constraints stored in the data dictionary.

Foreign Keys Checks the number of foreign keys defined in the
data file against the referential constraints stored in
the data dictionary.

 

To repair inconsistencies, SQLScope updates the information stored in the individual data files to match that in the
data dictionary.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Reviewing File-Level Information

To display file-level information about Scalable SQL data files:

1. Log in to a database.

2. In the Tables list, highlight the table for which you want to see data file information.

3. Choose Table Statistics from the Database menu. The Table Statistics dialog appears, as shown in Figure
9-9.

You can only view the statistics SQLScope displays; you cannot change them. Table 9-2 describes the
information SQLScope displays in the    Table Statistics dialog.

Figure 9-9
Table Statistics Dialog

4. Optional: To display statistics for another table, use the Table drop-down list to select that table.

5. When you finish reviewing table statistics, click Close .

The following table describes the information SQLScope displays in the Table Statistics dialog.

Table 9-2
Table Statistics and Descriptions

 Statistic Name Description

Column Lists the columns defined for the current table.

Type Shows the data type defined for each column.

Size Shows the size in bytes of each column.

File Shows the data file associated with the current table.

Page Size Shows the page size (in bytes) of your data file. The page size determines
the maximum number of index segments you can define in the
table.Scalable SQL uses a default page size of 4096 bytes when creating
data files. When you use a CREATE TABLE statement, you can specify a
page size other than the default.

Number of Records Shows the number of records the data file contains.

Unused Pages Shows the number of preallocated pages available. If preallocation is
enabled, the MicroKernel preallocates a specified number of pages when it
creates the data file. Preallocation guarantees that disk space for a data file
is available when the MicroKernel needs it.When you use a CREATE TABLE
statement, you can enable preallocation and specify the number of pages to
preallocate.

Compressed Shows whether data compression is enabled. If it is, the MicroKernel
compresses each record it inserts into the data file. When you use a
CREATE TABLE statement, you can enable compression.

Variable Records Shows whether the data file contains variable-length records.

Truncate Blanks Shows whether blank truncation is enabled. If it is, the MicroKernel
truncates the blanks in variable-length records. Blank truncation is
applicable only if the Variable Records statistic is Yes and Data
Compression is set to No.

Free Space
Threshold

Displays a percentage (5%, 10%, 20%, or 30%) if the data file has a free
space threshold. The MicroKernel stores the variable-length portions of
records on their own pages (called variable pages), separate from the fixed-
length portions (which are stored on data pages).The MicroKernel uses the
threshold to determine whether to add data to an existing variable page or to
create a new one. A higher free space threshold reduces fragmentation of
variable-length records across several pages but uses more disk space.The
threshold is applicable only if the Compressed or Variable Records statistic
is Yes. When you use a CREATE TABLE statement, you can specify a free
space threshold.

Key # Lists the key numbers for the current table. The MicroKernel stores Scalable
SQL indexes as keys.

Name Displays the name of the index, if applicable. For more information about
named indexes, refer to the Pervasive.SQL Programmer’s Guide .

Values Displays the number of column values stored for the index.

Segment Displays the column or columns on which the index is defined. For more
information about indexes and index segments, refer to the Pervasive.SQL
Programmer’s Guide.

Attributes Displays the attributes defined for the index. For more information, refer to
the Pervasive.SQL Programmer’s Guide .

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Importing and Exporting Data
SQLScope can import and export data stored in the UNF, SDF, or ASCII data formats. For more information about
these formats and the rules for importing and exporting data, refer to Table 7-2. For information about the role of data
types and defined or default masks, refer to the SQL Language    Reference.

Importing Data
You can use the Import command on the File menu to insert, update, or delete data in an existing Scalable SQL
database. The data you insert, update, or delete must be specified in a data file format discussed in Table 7-2. The
import file must contain the same number of columns referenced by the SQL statement.

To import data from a file in one of the supported file formats:

1. In the SQL Text box, for SDF or ASC data formats create an INSERT, UPDATE, or DELETE statement
containing a substitution variable for each column in the import file. For the UNF format, create a SELECT
statement that contains no substitution variables.

 The following example inserts rows into the Course table in the sample database. In this example, the
import file contains values for the Name, Description, and Credit_Hours columns.

INSERT INTO Course
(Name, Description, Credit_Hours)(@V1, @V2, @V3)

 The following example deletes rows from the Course table in the sample database. In this example, the
SDF or ASC import file contains values for the Name column.

DELETE FROM CourseName = @V1

 The following example selects the course name, description, and credit hours from the Course table. In this
example, the import file must be in UNF format.

SELECT Name, Description, Credit_HoursCourse

 For more information about substitution variables, refer to the    SQL    Language Reference.

2. Choose Import from the File menu.

3. In the Import SQL Data dialog (Figure 9-10), specify the following:

• In the File Type drop-down list, specify the type of the file to import.

• Specify the full path of the file in the Directories box and the File Name text box.

Figure 9-10
Import SQL Data Dialog

4. Optional : To import the file in the background so that you can continue working in SQLScope, select the
Background check box.

 Note: Background Mode: You cannot exit SQLScope while a background
process is running. Additionally, you cannot run SQL statements in the
background if you are connected to a Pervasive.SQL workstation engine. If you
try to run in this mode, a Status Code 265, “The session identifier is invalid,”
occurs. You can run in this mode when you are connected to a Pervasive.SQL
server engine and the SQL Requester Thunk setting is configured to No .

5. Click Import or press enter.

Using the SQL statement you specified, SQLScope imports data from the specified file into the current
database. While importing data, SQLScope displays the SQLScope Import dialog, which shows the path of
the import file and the number of rows imported. You can pause the import by clicking Pause ; you can stop
the import by clicking Stop .

 Note: Once you have started an import operation, you cannot cancel it and
return the database to its state before the import.

6. When you are finished importing data, click Close .

Exporting Data

To export data to a file in one of the supported file formats:

1. In the SQL Text box, create a SELECT statement that selects all the columns to include in the exported file.
SQLScope exports the data in its current mask or in the default mask if a mask does not exist.

For more information about creating statements using SQLScope, refer to “Creating and Running SQL
Statements.” For examples of SELECT statements, refer to “SAVE”. For more information about SQL
statement syntax, refer to the SQL Language    Reference.

2. Choose Export from the File menu.

3. In the Export SQL Data dialog (Figure 9-11), specify the following:

• In the File Type drop-down list, specify the type of the file you want SQLScope to create. Refer to
Table 8-2 for more information about file types.

• In the File Name text box, specify the full path of the file that will contain the exported data.

Figure 9-11
Export SQL Data Dialog

4. Optional : To export the file in the background so that you can continue working in SQLScope, select the
Background check box.

 Note: Background Mode: You cannot exit SQLScope while a background
process is running. Additionally, you cannot run SQL statements in the
background if you are connected to a Pervasive.SQL workstation engine. If you
try to run in this mode, a Status Code 265, “The session identifier is invalid,”
occurs. You can run in this mode when you are connected to a Pervasive.SQL
server engine and the SQL Requester Thunk setting is configured to No .

5. Click Export or press enter.

Using the SQL statement you specified, SQLScope exports data from the current database into the specified
file. While exporting data, SQLScope displays the SQLScope Export dialog, which shows the path of the
export file and the number of rows exported. You can pause the export by clicking Pause ; you can stop the
export by clicking Stop .

 Note: Once you have started an export operation, you cannot cancel it and
return the database to its state before the export.

6. When you are finished exporting data, click Close .

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Recovering Damaged Data Files

To recover a SQL Interface data file with damaged index information:

1. Log in to the database containing the damaged file.

For more information about logging in to databases, refer to “Logging in to a Database”.

2. In the SQL Text box, create a SELECT statement that selects all the columns in the damaged file.

The following example selects all columns from the Course table:

SELECT * FROM Course

 Note: Do not use a WHERE clause in the SELECT statement. Doing so may
cause Scalable SQL to read by an index. (The SQL Interface reads only data
pages when you use SELECT statements without WHERE clauses.)

For more information about creating statements using SQLScope, refer to “Creating and Running SQL
Statements”. For more information about SQL statement syntax, refer to the SQL Language    Reference.

3. Choose Export from the File menu to export the data to a UNF file.

For more information about exporting data, refer to “Exporting Data”.

4. In the SQL Text box, execute an ALTER TABLE statement that replaces the existing data file.

The following example replaces the data file for the Tuition table:

ALTER TABLE Course’course.mkd’REPLACE

 Note: Be sure to specify the existing data file name. Doing so ensures that
Scalable SQL replaces the damaged file.

For more information about ALTER TABLE statements, refer to the SQL    Language Reference.

5. In the SQL Text box, create a SELECT statement with all the columns in the data file. The following example
inserts data into the Student table:

SELECT (ID, Cumulative_GPA, Tuition_ID, Transfer_Credits, Major,
Minor, Scholarship_Amount, Cumulative_Hours)(@id, @cumulative_gpa, @tuition_id, @transfer_credits,
@major, @minor, @scholarship_amount, @cumulative_hours)Students

6. Use the Import command from the File menu to import the data from the UNF file you created in Step 3.

For more information about importing data, refer to “Importing Data”.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Customizing SQLScope
You can customize the following items in SQLScope:

• Default login values

• Environment settings, such as default values in dialogs, screen layout, statement separator characters, and
options for saving the settings

Specifying Default Login Settings
You can customize the Database Login dialog to automatically include a database name or location, set a username,
and set the compatibility mode. The next time you log in, your defaults will be in effect.

To set default login settings:

1. Choose Login Defaults from the Settings menu.

2. In the Database Login Default Settings dialog, enter a database name or data dictionary location.

If the database requires a username, you can also specify your username. For security reasons, SQLScope
does not provide a way to save your password.

You can also specify the default compatibility mode. When you select the Version 3.01 Compatible check
box, you can work in Scalable SQL 3.01 databases and ensure that they remain compatible with 3.01
applications. For more information about the Version 3.01 Compatible check box, refer to page 9-6.

3. Click OK to save your changes, or click Cancel to exit without saving any changes.

The preceding steps save the login settings for your current SQLScope session only.

To save the settings for future SQLScope sessions:

1. Choose Save from the Settings menu.

2. Select the Login check box in the Save Settings dialog.

3. Click Save to save your changes, or click Cancel to exit without saving any changes.

Specifying Environment Settings
You can customize SQLScope to automatically include certain values in dialog boxes and to alter screen layout. You
can also set up SQLScope to automatically save the settings for future SQLScope sessions.

To specify environment settings:

• Choose Environment from the Settings menu. The Environment Settings dialog appears (Figure 9-12).

Figure 9-12

Environment Settings Dialog

Setting Default Values for Dialogs

You can set default values for the Run All Statements and the Import SQL Data and Export SQL Data dialogs.

To set a default value for any of these dialogs:

• Click the corresponding button in the Dialogs box and enter the values.

 For information about the options in each dialog, refer to the following:
 Run All Figure 9-4

Import/Export SQL Data Figure 9-10

 

Automatically Saving Settings

To automatically save the settings you specify during your current SQLScope session for
use in future SQLScope sessions:

• Use the check boxes in the Auto Save Settings box.

 If you select a check box, SQLScope saves the appropriate settings and uses them in subsequent
SQLScope sessions.

Setting the Default Screen Layout

You can specify some basic defaults for the SQLScope window layout in the View box in the Environment Settings
dialog.

To show or hide screen elements:

1. Use the check boxes in the View box.

2. If you select a check box, that element appears on the screen. If you clear a check box, SQLScope hides
that screen element. You can show or hide the following screen elements:

 Status Bar Shows or hides the Status Bar at the bottom of the
screen.

Lists Area Shows or hides the Tables, Columns, and Templates
drop-down lists.

Movement
Buttons

Shows or hides the Move To buttons at the left of the
SQL Text box.

Run Buttons Shows or hides the Run buttons at the right of the SQL
Text box.

 

3. To change the height of the Lists Area , enter a value in the Height text box. The default height is 4 lines.

4. To change the height of the SQL Text window, enter a value in the Statement Area Height text box. The
number you enter sets the number of text lines SQLScope displays at one time. The default height is 11
lines.

5. If you want the SQLScope window to automatically expand to the maximum window size for your screen in
subsequent SQLScope sessions, select the Maximize at Startup check box.

Specifying the Statement Separator Character

You can specify the character to use to separate SQL statements. The default separator is a semicolon (;). However,
because the syntax of stored procedure declarations include a semicolon, you can specify a different character to
separate your SQL statements.

To change the statement separator character:

1. Select a new character from the Statement Separator drop-down list.

2. Choose either the pound sign (#) or a semicolon (;).

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Checking and Repairing Referential Integrity

 Note: Windows NT Users and Workstation Engine Users : You can use the RI
commands in SQLScope to perform the operations of the RI Utility, which are
described in “Managing Referential Integrity” in Chapter 8.

The Referential Integrity (RI) utility is a command-line utility that runs as an NLM at the file server. You can access it
at the file server console or through the RCONSOLE remote file server console utility. Refer to the RI Utility Overview
for details on running the utility and for conceptual information you need to know before using the RI utility.

This chapter includes the following sections:

• “RI Utility Overview”

• “Verifying and Re-establishing RI on a Named Database”

 Note: This utility works only on named databases with referential constraints
defined. For more information about referential integrity and referential
constraints, refer to the Pervasive.SQL Programmer’s Guide .

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

RI Utility Overview

To run the RI utility:

• Enter the following command at the file server console prompt:

RIUTIL [-command [parameter ...]] | @file
 command An RIUTIL command, as follows:

LIST:

Lists all foreign key definitions and related information.

CHECK:

Verifies the consistency of data files and checks for orphan records.

parameter Information the RI utility may need to perform the
command you enter. The detailed description of each
RI utility command (in the following sections) includes a
discussion of the parameters it requires.

file Full path of a command file.

 

To view a brief explanation of commands:

• Enter the following command:

riutil

 Note: You cannot run the RIUTIL CHECK command on a database in which
any users have files open. However, you can run the RIUTIL LIST command on
such a database. If you run the RIUTIL LIST command with users logged in, any
changes they make do not appear in the LIST reports.

RI Utility Command Files
You can use command files to do the following:

• Execute commands that are too long to fit on the command line.

• Enter commands that you use often. These command files contain the same information required on the
command line.

Command File Rules

Observe the following rules when creating a command file:

• Limit each line to 130 characters.

 Note: Lines longer than 130 characters could cause the file server to abnormally
end. For this reason, do not place long RIUTIL commands in a file server
command (.NCF) file.

• Do not split a single parameter across two lines.

• Use no more than one command per command file.

• Limit the command file size to no more than 1,000 bytes.

Example

The following is an example command file, LIST.CMD. It calls the RIUTIL –LIST command to list all foreign key
definitions and related information for the BTU named database. It redirects the output to the INFO.TXT file.

-list

btu

/O:sys:\SSQL\demodata\info.txt

The following command uses the LIST.CMD file.

riutil @sys:\ssql\demodata\list.cmd

RI Utility Commands

The following paragraphs describe concepts you should understand before using the RI utility.

Named Databases

The RI utility works with named databases only; it relies on information stored in the data dictionary to find data files.
When scanning the dictionary, the utility accepts only the following path formats:

 vol : dir\ file Absolute path

file or dir \file Relative path

 

An absolute path specifies the exact location of the file. Absolute path must specify a volume.

A relative path is a file name or path that is appended to each data file location associated with the named database,
until the file is found. Suppose the database named BTU has two data file locations defined in this order:
\SSQL\DEMODATA1 and \SSQL\DEMODATA2.

If you specify a relative file name such as FACULTY.MKD, the utility searches for that file first in the
\SSQL\DEMODATA1 directory. If the utility does not find the file, it searches next in the \SSQL\DEMODATA2
directory.

 Note: Because the server environment in which RIUTIL operates does not
support the use of drive letters or implied drives, specifying either one results in
a Status Code 11. The only instance in which the RI utility uses an assumed
volume is when the file resides on the SYS: volume.

Referential Constraints

Referential integrity is the assurance that when a column (or group of columns) in one table references a column (or
group of columns) in another table, changes to these columns are synchronized. Referential constraints are the rules
that define the relationships between tables.

This discussion of the RI utility includes references to the following terms:
 Dependent

table
A table containing at least one foreign key.

Foreign key A column or group of columns that reference a primary
key in the same or a different table.

Orphan record A record whose foreign key value does not have a
matching value in its parent table.

Parent table A table containing a primary key that is referenced by
foreign keys in dependent tables.

RI data Information on referential constraints used internally by
the SQL Interface and stored in both the data files and
the dictionary files.

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Verifying and Re-establishing RI on a Named Database
This section includes the following functions:

• “Generating a Referential Constraints Report Using LIST”

• “Checking for Orphan Records and Repairing Inconsistent RI Information”

• “Generating a List of Orphan Records or Inconsistencies”

• “Generating Exception Tables”

LIST
The LIST command lists all foreign key definitions and related information for any named database on the current
server.

Format

RIUTIL -LIST [database_name]/O:vol:path    [option...]
 database_name The name of the database for which you want to see referential integrity

information. If you enter an asterisk (*) for this parameter, the RI utility
produces referential integrity information for all named databases on the
server.

/O: vol: path The full path of the file in which you want the RI utility to place the generated
information.

 

For option , you can specify any of the following options in any order:
 /P: password The master password of dictionary files associated with

the specified named database. The SQL Interface
requires a password if security is enabled for the
database. If you specify the /P: option followed by an
asterisk (*), the RI utility prompts you for each password
as it opens the database.

/A Appends the generated information to an existing file, if
you specify an existing file with the /O: option.

/S: sort The order in which you want information listed in the
report. Specify one of the following:

N:
 Foreign key name

P:
 Parent table

D:
 Dependent table

/T Displays additional trace information. This option is
helpful in diagnosing database problems.

/? Displays the syntax for the LIST command.

 

If you do not specify a database name, the LIST command shows all available named databases, as in the following
example.

Database Names on This Server

BTU

BTUDEMO

The command also displays a short usage message.

Generating a Referential Constraints Report Using LIST

To place the report information in a text file:

1. Use the LIST command and specify the /O: option as in the following example:

RIUTIL -LIST btu /O:sys:\ssql\demodata\info.txt

 The output file contains information about the relationships between tables in a database upon which
referential constraints are enforced.

 For example, the LIST command might generate the following output (see Example 10-1) on the BTU
database.

Example 10-1
 Referential Constraints Report

 Foreign Key

: BILLINGBYREGISTRAR

Parent Table

: Person

Key #: 0

Column(s): ID

Dependent Table

: BILLING

Key #: 2

Column(s):
REGISTRAR_ID

Delete Rule

: Restrict

Update Rule

: Restrict

Foreign Key

: BILLINGFORASTUDENT

Parent Table

: STUDENT

Key #: 0

Column(s): ID

Dependent Table

BILLING

Key #: 3

Column(s):
STUDENT_ID

Delete Rule

Restrict

Update Rule

Restrict

 

2. By default, the RI utility sorts the information by foreign key name. Use the /S:P option to group the foreign
keys by parent table name or the /S:D option to group the foreign keys by dependent table name.

3. By default, the RI utility overwrites any existing information in the output file. Specify the /A option to append
new information to the existing file.

4. Specify the /T option to include additional trace information, such as header information about the command
line options specified, full paths, and additional information on each table in the report.

Report Examples

The following command reports the referential constraints on the BTU named database. It redirects the output to the
INFO.TXT file and appends it to that file. In addition, the referential constraints are sorted by parent table names.

riutil -list btu /o:sys:\ssql\demodata\info.txt /a /s:p

The following command reports the referential constraints on all named databases on the current server. It redirects
the output to the INFO.TXT file.

riutil -list * /o:sys:\ssql\demodata\info.txt

CHECK
The CHECK command checks for orphan records and verifies the consistency of the files’ referential integrity data
(stored in each data file) and the dictionary’s RI data (stored in the data dictionary files). CHECK can also log and
delete orphan records, as well as repair inconsistent RI information.

Format

RIUTIL -CHECK database_name dependent_table /O:vol:path [option ...]
 database_name The name of the database for which to check

referential integrity information.

dependent_table The name of the dependent table to check. If
you enter an asterisk (*) for this parameter,
RIUTIL checks RI for all dependent tables in
the specified named database. If the table
name contains a space, you must enclose the
table name in double quotes (“).

/O: vol: path The full path of the file you want RIUTIL to use
in producing the CHECK report.

 

For option , you can specify any of the following options in any order:
 /P: password The master password of dictionary files associated

with the specified named database. The SQL Interface
requires a password if security is enabled for the
database.

/A Appends the generated list to an existing file, if you
specify an existing file with the /O: option.

/T Displays additional trace information in the output file.
This option is helpful in diagnosing database problems.

/C Checks for orphan records in the specified dependent
table.

/W Writes to an exception table up to 4 KB of each orphan
record located in the specified dependent table. If you
specify this option, you do not need to explicitly specify
the /C option; it is implied.

/D Deletes all orphan records from the dependent table. If
you specify this option, you do not need to explicitly
specify the /C option; it is implied.

/I Checks for inconsistent file and dictionary RI data.

/R Repairs inconsistent dependent table RI data in the
data file, using the RI information stored in the data
dictionary as the standard. If you specify this option,
you do not need to explicitly specify the /I option; it is
implied.

/? Displays the syntax for the CHECK command.

 

If you do not specify a database name or dependent table, this command displays all available named databases, as
in the following example.

Database Names on This Server

BTU

BTUDEMO

The command also displays a short usage message.

Checking for Orphan Records and Repairing Inconsistent RI Information

If you receive the message “Error opening table. Status = 73,” RIUTIL has detected inconsistencies in the RI
information for the specified named database.

To check for orphan records and inconsistent RI data in all dependent tables of a database:

• Enter the following command sequence:

riutil -check [file] * /o:[path] /c /i

 This command sequence does not affect the original database.

To check for orphan records, write them to an exception table, and delete them from the
original table:

• Enter the following command sequence:

riutil -check btu * /o:sys\ssql\demodata\student.mkd /w /d /r

 In addition, this command checks and repairs any inconsistent RI data it detects.

To repair the inconsistencies, follow these steps:

1. Use the Pervasive.SQL Setup utility (see “Modifying Named Databases”) to disable the Integrity Enforced
flag on the named database.

2. Run the CHECK command using the /R option to repair inconsistencies.

3. Use the Setup utility again to enable integrity enforcement on the named database.

Generating a List of Orphan Records or Inconsistencies

You use the /O: option to tell the utility how to direct the report information to an output file.

To generate a report that includes orphan records and/or inconsistencies:

1. Specify option /C and or option /I.The following report example output displays information on a named
database with inconsistencies; it also repaired the RI data and checked for orphan records.

Example 10-2
 Inconsistency and Orphan Record Verification Report

 **Foreign Key
STUDENTHASATUITION for Table STUDENT

Parent Table Tuition
Checking RI Data in Parent Table Tuition

  Dictionary Data      File Data
 Version #                          : 7.00                          7.00

 Database Name                  : BTU1                          BTU2
 Table Name                        : Tuition                    Tuition

 Parent to Other Keys    : 1                                1
 # Foreign Key Defs        : 0                                0

 RI Data is NOT consistent.
 RI Data Repaired.

Beginning Orphan Check.
 Total records in dependent table                                  :1404
 Total orphan records  : 0
 Total orphan records written to exception table    : 0

 Total orphan records deleted from dependent table: 0
End of Orphan Check.of check for Foreign Key: STUDENTHASATUITION

 

2. By default, the RI utility overwrites any existing information in the output file. Specify the /A option to append
new information to the existing file.

3. Specify the /T option to include additional trace information, such as header information about the command
line options specified, full paths, and additional information on each table in the report.

Generating Exception Tables

To generate an exception table and add it to the database dictionary:

• Specify the /W option.

 The exception table has the same location and file name as the original file, but with a .EXC extension. For
example, if the RI utility generated an exception table on the Billing table in the BILLING.MKD file, the
exception table would be named EXC_Billing and would be stored in a file named BILLING.EXC.

 In the following example, the CHECK /W command might generate the following output if the Billing table
contained four orphan records. The orphan records would be written to an exception table, but they would
not be deleted.

Example 10-3
 Sample Exception Table

 ***Foreign Key
BILLINGBYREGISTRAR for Table BILLING

Parent Table Person
Checking RI Data in Parent Table Person

 RI Data is consistent.

Beginning Orphan Check.
 Exception table EXC_BILLING added to database.

 Total records in dependent table                                  :1319
 Total orphan records  : 4
 Total orphan records written to exception table    : 4

 Total orphan records deleted from dependent table: 0
End of Orphan Check.of check for Foreign Key: BILLINGBYREGISTRAR

 

 The first column in the exception table record is an index column, and it contains the parent table name.
The remainder of each record contains the same columns as each original orphan record, up to 4,090 bytes.
The RI utility truncates records larger than 4,090 bytes in the exception table.

To generate a table containing the complete orphan records:

1. Execute a SQL statement that selects the orphan records from the original table and inserts them into
another exception table, as in the following example:

INSERT INTO Orph_Billing* FROM BillingID = (SELECT ID FROM EXC_Billing);

2. Use a SQL Interface application such as SQLScope to view the contents of an exception table.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Converting MicroKernel Data Files
This chapter describes how to rebuild previous versions of MicroKernel files into version 7.0 format using the Rebuild
utility. It also explains how to migrate Scalable SQL version 3.01 views to version 4.0 with the View Conversion utility.

For information about performing either of these operations, refer to the following sections:

• “Converting MicroKernel Data Files”

• “Migrating Scalable SQL 3.01 Views to 4.x”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Converting MicroKernel Data Files
Pervasive.SQL includes two versions of the Rebuild utility: an interactive version runs on Windows 95/Windows NT,
Windows 3.x and OS/2, and a command-line version that runs as an NLM on NetWare. The Pervasive.SQL
workstation engine only uses the Win32 version of the Rebuild utility.

The Rebuild utility can convert MicroKernel data files as shown in the following table.

Table 11-1
Rebuild Utility Conversions

 Original File
Format

Converted File
Format

Reason for Conversion

pre-6.0 7.x Take advantage of 7.x features and improve general
performance.

6.x 7.x Take advantage of 7.x features and improve general
performance.

7.x 7.x Original file does not have a system key.

pre-6.0 6.x Take advantage of 6.x features and improve general
performance. Use this option only if you are still
running the 7.x engine with other 6.x engines.

 

The file format that results from the conversion depends on the value you set for the MicroKernel’s Create File
Version configuration option (see “Create File Version”), which you specify using the Setup utility. For example, if you
set the Create File Version to 7.x and you run the Rebuild utility on 6.x files, the utility converts the files to 7.x format.

When you convert files to the 7.x format, the MicroKernel’s System Data option (see “System Data”) controls whether
the command-line Rebuild utility adds a system-defined log key in files that do not contain a unique key.

Before you run the Rebuild utility, back up all the data files you plan to convert. Having backup copies ensures
against data loss if a power interruption occurs while you are running the utility. To ensure that your backup is
successful, perform any one of the following operations:

• Close all data files before running the backup utility.

• Use continuous operations.

• Use a backup utility that opens the files in exclusive write mode so that other processes cannot write to the
files. Ensure that the backup utility has exclusive rights to the files.

 Note: You cannot run the Rebuild utility on a file that is in continuous operation
mode.

The remainder of this section discusses the two versions of the utility:

• “Interactive Rebuild Utility”

• “Command-Line Rebuild Utility”

Interactive Rebuild Utility
This section provides instructions for using the interactive Rebuild utility which runs on Windows 3.x, Windows 95,

Windows NT, and OS/2. The descriptions in this section are written from the Windows perspective, however, the OS/2
version is similar.

Running the Rebuild Utility

To run the Rebuild utility for Windows 3.x:

• In the Pervasive.SQL 7 program group, double-click the Rebuild utility icon. The Rebuild utility’s main
window appears similar to Figure 11-1.

To run the Rebuild utility on Windows 95/Windows NT:

1. From the Start    menu, select Programs and then Pervasive SQL 7 Server .

2. Click Rebuild (Win32) . The main window displays as illustrated in Figure 11-1.

Figure 11-1
Rebuild Utility Main Window

Getting Help

You can access a Help file from either the Help menu or by clicking Help in any dialog box.

Converting a Data File

To convert a data file:

1. Choose Select Files from the Options menu. The Select Files dialog box appears (Figure 11-2.)

Figure 11-2
Select Files Dialog

2. Click Add and select the file you want to rebuild. You can select more than one file to rebuild at a time. Click
OK when you have finished adding files to rebuild.

 The Rebuild utility deletes the original file after rebuilding it if the file is being rebuilt in the same directory. If
the new file is in a different directory, the original file is not deleted.

3. Before you rebuild the file(s), you may want to specify settings. Choose Settings from the Options menu.
The Settings dialog displays as illustrated in Figure 11-3.

Figure 11-3
Settings Dialog

 You can change the configuration options for the Rebuild utility before you rebuild your selected file or files.
These options are defined in Table 11-2.

Table 11-2
Controls in the Settings Dialog

 Control Description

Output Directory Specifies an alternate location for the rebuilt files. (The default location is the
current directory.) You must specify a directory that already exists.

This option lets you rebuild large files on a different server. The MicroKernel
and its communications components must be loaded on the server that
contains the rebuilt files. Do not use wildcard characters in the path.

If the Output Directory location is different than the original file’s location, the
original file is not deleted during the rebuild. If the output directory is the same
as the original file, the original file is deleted upon completion of the rebuild.

Status File Path Specifies a location for the rebuild log file. (The default location is the current
working directory.) Do not use wildcard characters in the path.

Continue on Error Determines whether the Rebuild utility continues if it encounters an error
during the rebuild process. If you select Yes, the utility continues with the next
file even if an error occurs. The utility notifies you of non-MicroKernel data
files or other errors but continues rebuilding data files. If you select No, the
utility halts the rebuild if it encounters an error.

This option is useful if you have specified wildcard characters for the rebuilt
files.

Save Settings Upon
Exit

Saves the current values in this dialog for use in subsequent Rebuild
sessions.

System Data Specifies whether files are rebuilt with system data. The MicroKernel cannot

perform logging for a file with no system-defined log key when no user-
defined unique key exists.

Page Size Specifies the page size (in bytes) of the new files. Choose either EXISTING,
512, 1024, 2048, 3072, or 4096. If you select EXISTING, the utility uses the
existing page size. The utility changes the page size if the original size does
not work.

For example, assume you have a v5.x file with a page size of 1,024 and 24
keys. Because Btrieve 6.0 and later supports only 23 keys for a page size of
1,024, the utility automatically selects a new page size for the file and writes
an informative message to the status file.

Key Number Specifies the key by which the utility reads when rebuilding a file. If you
specify NONE for this option, the utility clones the files, drops the indexes,
copies the records into the new files, and rebuilds the indexes. Because this
method is faster and creates smaller files than specifying a key number, use it
whenever possible.

This method may create a new file in which the records are in a different
physical order than in the original file.

If you specify a key number, the utility clones and copies the files without
dropping and replacing indexes. While this method is slower than specifying
NONE, it is available in case you do not want to rebuild your indexes.

 

4. After you specify the settings, you need to start the file conversion process. Select Start Rebuild from the
Run menu. The Start Rebuild dialog displays as indicated in Figure 11-4.

Figure 11-4
Start Rebuild Dialog

5. Select the file you want to convert and then click Start to begin the rebuild process.

 When the process completes, a message dialog informs of the success or failure of the conversion and
prompts you to view the results.

6. Click Close when you have finished converting files.

7. To display the results, select View Status File from the Run menu. The REBUILD.LOG file is displayed as
illustrated in Figure 11-5.

Figure 11-5
Start Rebuild Dialog

 The Rebuild utility writes to the status file for every file it attempts to convert. The log file (REBUILD.LOG by
default) is an ASCII text file that is placed by default in the directory in which you run the Rebuild utility from.

 You can examine the log file by selecting the View Status File command from the Run menu. The rebuild
settings are listed for every file. If you disabled the Continue on Error setting, the status file contains the
information up to the point of the error. If the rebuild was not successful, the status file contains error
messages explaining why the rebuild failed.

Command-Line Rebuild Utility
This section provides detailed instructions for using the command-line Rebuild utility which runs only as an NLM on
NetWare.

Running the Rebuild Utility on Netware

To run the Rebuild utility for NetWare:

1. Run RCONSOLE from a workstation, or go to the server’s console.

2. Enter one of the following commands at the prompt:

LOAD BREBUILD [–option ...] file

or

LOAD BREBUILD @command_file

Changing Configuration Options

To change the configuration options for the Rebuild utility for NetWare:

 The Option command specifies the configuration options for the utility. Precede each option letter with a
dash (–). Do not place a space between the dash and the option letter or between the option letter and its
value. You can enter the option letter in either uppercase or lowercase.

 –B[path] Specifies an alternate location for the rebuilt files. (The default location is the
current directory.) You can also specify a different server with this option. On
your local server, you must have the MicroKernel Database Engine and the
Message Router loaded. On a remote server, you need the MicroKernel
Database Engine and communications components loaded. Do not use
wildcard characters in the path you specify.

–C Instructs the utility to continue with the next file even if an error occurs. The
utility notifies you of non-MicroKernel data files or other errors but continues
rebuilding data files.

This option is useful if you have specified wildcard characters for the rebuilt
files.

–D Converts pre-6.0 supplemental indexes (which allow duplicates) to 6.x or 7.x
indexes with linked-duplicatable keys. (By default, the utility preserves the
indexes as repeating-duplicatable keys.) If you access your data files only
through Btrieve and your files have a relatively large number of duplicate
keys, you can use this option to enhance the performance of the Get Next
and Get Previous operations.

If you are using Scalable SQL to access your data files, do not use the –D
option.

–M0 | –M2 Specifies the conversion method, as follows:

 –
M0

Clones and copies the files without dropping and replacing indexes. While
this method is slower than M2, it is available in case you do not want to
rebuild your indexes.

 –
M2

(Default) Clones the files, drops the indexes, copies the records into the new
files, and rebuilds the indexes. Since this method is faster and creates
smaller files than the M0 method, use it whenever possible.

The M2 method may create a new file in which the records are in a different
physical order than in the original file.

–P[nnn] Specifies the page size (in bytes) of the new files. If you specify –P with no
page size, the utility chooses the optimum page size for your file.

If you do not specify the –P parameter, the utility changes the page size if
the original size does not work.

For example, assume you have a v5.x file with a page size of 1024 and 24
keys. Since Btrieve 6.0 and later supports only 23 keys for a page size of
1024, the utility automatically selects a new page size for the file and
displays an informative message on the screen.

–K[nn] Specifies the key by which the utility reads when rebuilding a file. If you do
not specify this option, the utility reads the file in physical order.

–T Does not preserve the Transaction Tracking System (TTS) bit during
conversion. If you specify this option, the utility clears the TTS bit if it was
set. If you do not specify this option, the utility sets the TTS bit when
creating the new file if the original file had the TTS bit set.

 

 File and @command_file are defined as follows:
 file Specifies the set of files to convert. Use full directory names, including the

volume name. You may use wildcards (* and ?) in these file names. The
Rebuild utility applies the original file’s owner name and level to the new
file.

@command_file Specifies a command file for the utility to execute. You can include multiple
entries in one command file. Each entry in the command file contains the
utility options (if any) and the set of files to convert, followed by <end> or
[end]. When specifying the files to convert, be sure to use full directory
names, including the volume name. You can use wildcards (* and ?) in
these file names.

The following is an example of a Rebuild utility command file:

–C sys:\mydir*.* <end>
–C –P1024 dta:\dir*.* <end>
–M0 –K0 sys:\ssql*.* <end>

 

 The following example places the rebuilt files in a different directory on the server:

LOAD BREBUILD –Bsys:\newfiles –C –P4096 sys:\oldfiles*.mkd

Viewing the BREBUILD.LOG File

After rebuilding your files, check the utility’s log file to see if any errors occurred during the conversion. The
BREBUILD.LOG is an ASCII text file, which is placed in the SYS:\SYSTEM directory. You can examine the log file
using a text editor.

Deleting Temporary Files
By default, the Rebuild utility creates temporary files in the same directory in which the conversion takes place.
Therefore, you need enough disk space in that directory (while the Rebuild utility is running) to accommodate both
the original file and the new file. You can specify a different directory for storing these files using the Output Directory
option in the interactive version of the utility or using /B option in the NetWare version.

Normally, the Rebuild utility deletes temporary files when the conversion is complete. However, if a power failure or
other serious interruption occurs, the Rebuild utility may not delete the temporary files. If this occurs, look for file
names such as _T-xxxxx .TMP and delete them.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Migrating Scalable SQL 3.01 Views to 4.x
The View Conversion utilities are a pair of Win32 programs running on    Win32 platforms that enable existing
Scalable SQL users to display Scalable SQL 3.01 views and migrate those views to Scalable SQL 4.x. This utility
resides in your c:\pvsw\bin directory and only is installed if you choose the SQL Client installation. The following
subsections describe the various elements of the utilities:

• “Special Notes on the View Conversion Utilities”

• “Starting the View Conversion Utilities”

• “Converting Stored View Definitions to Text”

Special Notes on the View Conversion Utilities
You must convert all existing views in order to use them with Scalable SQL 4.x. The utilities are as follows:

 VTEXT32.EXE Displays the definition for a stored view.

VCONV32.EXE Converts a stored view definition into a view you can use in a Scalable SQL v4.0
database.

 

The SQL Engine creates views for the API level at which you created them in Scalable SQL v3.01. Therefore, if you
issue a CREATE VIEW statement and attempt to recall the view using an application that uses the relational
primitives, you receive an error. However, if the View Conversion utility stored the view as a relational primitive view,
you can use the view name in a SQL statement.

Generating a List of Views in a Dictionary

The View Conversion utilities operate on a single view at a time. For a list of all views defined in your dictionary,
execute the following statement using SQLScope:

SELECT DISTINCT Xv$Name FROM X$View

Using the View Conversion Utilities on Windows NT

Windows NT strips out special characters, such as the caret (^) when it processes the command line request.
Therefore, if you run the View Conversion utility from an NT DOS session and the view names contain special
characters, such as ^, you need to enclose the view name in double quotes when you run the VTEXT32 or VCONV32
utility. Also, enclose the command-line setting for the blank replacement character, -B in double quotes. For example,
if your blank replacement character is the caret (^), enter “-B^”.

Starting the View Conversion Utilities

For NetWare:

1. Enter either:

VTEXT32 [options] <view name>

 or

VCONV32 [options] <view name>

For Windows NT:

1. Enter either:

VTEXT32 [options] <view name>

 or

VCONV32 [options] <view name>

 Note: If you are using Pervasive.SQL for Windows NT, you must run this
utility from a workstation connected to Windows NT.

Converting Stored View Definitions to Text
The VTEXT32 utility converts a stored view definition to a text string and displays the string. Optionally, you can store
the string in a file. You can display only one view at a time. VTEXT32 works only with pre-v4.0 Scalable SQL
databases.

The syntax for VTEXT32 is as follows:

VTEXT32 [options] <view name>

<view name> is the name of a view in a Scalable SQL database.

The following table lists valid options you can use with VTEXT32:

Table 11-3
VTEXT32 Utility Options

 Option Description

-<type> Where <type> can be
one of the following:

 0 SQL views return the CREATE VIEW statement, and
primitive stored views return only primitive-level
information. This is the default option.

 1 Generate SQL text.

 2 Generates information about the primitive-level stored
view.

 3 Returns stored view version number.

 4 Generates information about columns in the view.

-B<c> <c> is the character
to use for blank
replacement. The
default is a caret (^).

-O<name> <name> is the name
of the output file.

-D<name> <name> is the
directory containing

the dictionary files.
The default is the
current directory.

-P<name> Where <name> is the
master user’s
password.

-V<name> <name> is the
directory containing
VIEW.DDF. The
default is the current
directory.

 

Example

For a database that contains a view called “COMP_ADDR_ORPHANS,” the following command produces output at
your console in the form of a valid SQL statement that defines the view.

VTEXT32 -1 -UMYNAME -PMYPASS COMP_ADDR_ORPHANS

Result:

CREATE VIEW COMP_ADDR_ORPHANS AS SELECT Company_Id,Address_IdCompany ANOT EXISTS (SELECT *
FROM ADDRESS B WHERE A.ADDRESS_ID =            B.ADDRESS_ID)

The following command stores the same output in the file VTEXT32.OUT instead of displaying it at your console.

VTEXT32 -1 -UMYNAME -PMYPASS -OVTEXT32.OUT COMP_ADDR_ORPHANS

Converting Stored View Definitions to Scalable SQL 4.x
The VCONV32 utility converts a stored view definition to a Scalable SQL 4.x view. VCONV32 works only with pre-4.0
Scalable SQL databases.

The primary purpose of VCONV32 is to convert the views in a pre-4.x Scalable SQL database to Scalable SQL 4.x
format. Scalable SQL 4.x and Btrieve must be running on the Windows NT or NetWare file server in order to run
VCONV32.

Following is the syntax for VCONV32:

VCONV32 [options] <viewname>

The <viewname> is the name of a view in a Scalable SQL database.

The following table displays a list of the valid options you can use with VCONV32:

Table 11-4
VCONV32 Utility Options

 Option Description

-<type> Where <type> can be one of the following:

 0: Creates view in the format of the existing view
definition.

 1: Creates SQL format view.

 2: Generates primitive format view.

 5: Generates primitive format view; however, if the view
requires SQL functionality, it stores it in SQL format. This
is the default option

-B<c> <c> is the character to use for blank replacement.

-D<name> <name> is the directory containing the dictionary files.
The default is the current directory.

-F<paths> Where paths are the directories to locate table data files
with paths separated by ‘;’.

-N<name> Where <name> is the new view name. The default is the
original view name.

-P<name> Where <name> is the Master user’s password.

-V<name> <name> is the directory containing VIEW.DDF. The
default is the current directory.

 

Running VCONV32

The following steps describe a typical procedure for running VCONV32:

1. Back up your dictionary files.

2. Copy the VIEW.DDF file to another directory and delete the copy of VIEW.DDF in the directory with the rest
of your DDFs.

 Note: During operation, the view conversion utility, VCONV32.EXE, creates a
new copy of VIEW.DDF in Scalable SQL v4.0 format in the directory in which
the other DDF files are located.

3. Enter the following command (all on one line) to execute the view conversion process:

VCONV32 -V<directory location of old VIEW.DDF>
D<directory location of other DDF files>
P<password>
<VIEWNAME>

You can convert only one view at a time. If you have several views to convert, create a batch file that invokes
VCONV32 on each view defined in the database, and redirect the output to a text file. Doing so allows you to review
the results later to determine if the view conversion process was successful.

For example, if you were in a directory containing the DDF and data files with views you wanted to convert, and you
copied your VIEW.DDF file to a subdirectory called SAVEVIEW, and you had a batch file called DOVIEWS.BAT
containing these lines:

VCONV32 -VSAVEVIEW ADDRESS_ORPHANS-VSAVEVIEW COMP_ADDR_ORPHANS-VSAVEVIEW
COMP_ADD_ORPHANS-VSAVEVIEW CONTACT_ORPHANS-VSAVEVIEW CONT_ADD_ORPHANS

Executing the following batch file would convert the views ADDRESS_ORPHANS, COMP_ADDR_ORPHANS,
COMP_ADD_ORPHANS, CONTACT_ORPHANS, and CONT_ADD_ORPHANS to Scalable SQL 4.0 compatible
views, saving the output from the conversion process in the file DOVIEWS.OUT.

DOVIEWS >DOVIEWS.OUT

If the VCONV32 utility returns an error that it is unable to convert a view, use the VTEXT32 utility (option 0 or 1) to
display the view definition. This may help determine the cause of the error in the VCONV32 utility. If you are unable to
resolve the problem, please contact Pervasive Customer Support for assistance in converting your views.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Smart Component Type Codes
This appendix displays the type codes for Pervasive.SQL components.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Component Type Codes Table

Table A-1
Component Type Codes

 Component Group Component Component Type

Abstract OS Services Interface DLL AIF

 Glue DLL SCM

Btrieve Interface DLL BIF

 Glue DLL BTR

Communications Client Requester NSL

 Requester Win95 Support NSR

 BSPXCOM.NLM BSP

 SSPXCOM.NLM SSP

 BTCPCOM.NLM BIP

 STCPCOM.NLM SIP

 NWBSRVCM.NLM BSV

 NWSSRVCM.NLM SSV

Database Names Interface DLL DIF

 Glue DLL DBN

Install Scout Resource DLL (English) IRE

 API Test and Analysis ATA

 Communication Diagnosis and Analysis CDA

MKDE Interface DLL MIF

 Server Engine MSE

 Server Engine Resource File MSR

 Local System File MLC

Scalable SQL Interface DLL SIF

 Glue DLL SQL

 Server Engine SSE

 Workstation Engine SCE

 Scalable SQL Stub (e.g. NTSSQL.EXE) SST

 Scalable SQL Convert/Mask DLL SFM

 Scalable SQL Local Engine Access Module SLC

 Scalable SQL 16-32 Thunking DLL STK

User Count Manager UCM

 Manager Resource File UCR

 Sys File UCS

 User Interface UUI

 Resource URC

 SQLScope SCP

 SQLScope BG Export SPE

 SQLScope BG Import SPI

 SQLScope BG Run All SPA

 SQLScope BG RI Check SPC

 SQLScope BG RI List SPL

 SQLScope SQLUTIL DLL SPD

 SQLScope SQLUTIL Resource SPR

 RIUTIL (Referential Integrity) RMC

 SQLUTIL (Scalable SQL Maintenance) SMC

 SQLUtil Resource SMR

 DDF Ease DDF

 DDF Ease Resource DLL DDR

 SmartScout SSC

 InstallScout ISC

 Utilities Services DLL (BTISC.DLL) SVD

 Utilities Services Executable (BTISC.EXE) SVC

 User Count Initialization UCI

 User Count Initialization Resource DLL UIR

 User Count Administrator UCA

 User Count Administrator Resource DLL UAR

 Rebuild RBD

 Rebuild Resource DLL RBR

 Btrieve Interactive Maintenance BMG

 Btrieve Interactive Maintenance Resource DLL BGR

 BUTIL (Command-Line Maintenance) BMC

 BUTIL Resource DLL BCR

 Btrieve Function Executor FEX

 Btrieve Function Executor Resource DLL FER

 Monitor MON

 Monitor Resource DLL MOR

 Setup SET

 Setup Resource DLL SER

Utilities Requester Interface DLL UPI

Misc. Client Components Client Resource Strings CRS

 Splash Screen EXE LGO

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Description Files
 A description file is an ASCII text file that contains descriptions of file and key specifications that the Maintenance
utility can use to create data files and indexes. Some users employ description files as a vehicle for archiving
information about the data files they have created. Description files are not the same as DDFs, or Data Dictionary
Files, which are used with the SQL Interface and the ODBC Interface.

Description files contain one or more elements. An element consists of a keyword, followed by an equal sign (=),
followed by a value (with no space). Each element in a description file corresponds to a particular characteristic of a
data file or key specification.

 Note: Before using description files, you should be familiar with Btrieve
fundamentals, such as data compression and index balancing. For information
about these topics, refer to the Pervasive.SQL    Programmer’s Guide.

This appendix discusses the following topics:

• “Rules for Description Files”

• “Description File Examples”

• “Description File Elements”

•

•

•

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Rules for Description Files
Use the following rules when creating a description file.

• Enter elements in either uppercase or lowercase.

• Separate elements from each other with a separator (blank space, tab, or carriage return/line feed), as in the
following example:

record=4000

key=24

• Specify the description file elements in the proper order. Table B-1 presents the elements in the appropriate
order.

• Address all element dependencies. For example, if you specify nullkey=allsegs in your description file, you
must also specify a value for the value= element.

• Define as many keys as you specify with the Key Count element. For example, if you specify key=12 , you
must define 12 keys in the description file.

• For a key that consists of multiple segments, you must define the following elements for each key segment:

• Key Position

• Key Length

• Duplicate Key Values

• Modifiable Key Values

• Key Type

The Descending Sort Order element is optional for each segment.

• If any key in the file uses an ACS, you must specify an ACS file name, a country ID and code page ID, or an
ISR table name. You can include this information as either the last element of the key (applies to current key
only) or the last element in the description file (applies to entire data file).

• You can specify only one ACS per key, and you must provide an ACS file name, country ID and
code page ID, or an ISR table name. Different keys in the same file can use different types of
ACSs; for example, Key 0 can use an ACS file name, and Key 1 can use a country ID and code
page ID.

• Different segments of the same key cannot have different ACSs.

• If you specify an ACS at the end of a description file, it is used as the default ACS. That is, if you
specify alternate=y for a given key but do not include an ACS file name, country ID and code page
ID, or an ISR table name for that key, the MicroKernel uses the ACS file name, country ID and code
page ID, or ISR table name specified at the end of the file.

• If you are creating a new key and you specify alternate=y but you omit the ACS file name, country
ID and code page ID, or ISR table name, the MicroKernel does not create the key.

• If a description file element is optional, you can omit it.

• Make sure the description file contains no text formatting characters. Some word processors embed
formatting characters in a text file.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Description File Examples
The sample description files shown in this section describe a data file. This data file has a page size of 512 bytes and
2 keys. The fixed-length portion of the record is 98 bytes long. The file allows variable-length records but does not
use blank truncation.

The file uses data compression, allows for Variable-tail Allocation Tables (VATs), and has the free space threshold set
to 20 percent. The MicroKernel Database Engine preallocates 100 pages, or 51,200 bytes, when it creates the file.
The file has two keys: Key 0 and Key 1. Key 0 is a segmented key with two segments.

In Figure B-1, both keys use the same ACS file name (UPPER.ALT). In Figure B-2, both keys use the same country
ID (–1) and code page ID (–1). In Figure B-3, Key 0 and Key 1 use different ACS file names (LOWER.ALT and
UPPER.ALT, respectively). In Figure B-4, the file has no keys except the system-defined key used for logging.

Figure B-1
Sample Description File Using Alternate Collating Sequence File Name

Figure B-2
Sample Description File Using Alternate Collating Sequence ID

Figure B-3
Sample Description File Using Alternate Collating Sequence File Name on a Key Segment

Figure B-4
Sample Description File Using System-Defined Key for Logging

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Description File Elements
Description file elements must appear in a particular order. Table B-1 lists the description file elements in the
appropriate order. For each element, the table specifies the required format and the range of acceptable values.

• An asterisk (*) indicates that the element is optional.

• A pound sign (#) indicates that it is not applicable in the current MicroKernel version but is retained for
backward compatibility with previous MicroKernel versions.

• A percent sign (%) indicates that the element is applicable only to the current MicroKernel version.

Table B-1
Summary of Description File Elements

 Element Keyword and Format Range Comments

File Specification
Information

Comment Block* /*. */ 5,120
bytes

None.

Record Length record=nnnn 4–4,088 None.

Variable-Length
Records

variable=<y|n> N/A Not applicable to key-only
files.

Reserved Duplicate
Pointer*

dupkey=<nnn > 0–119 Applicable only to files for
which you plan to add linked-
duplicatable keys.

Blank Truncation* truncate=<y|n> N/A Not applicable for files that
use data compression.

Data Compression* compress=<y|n> N/A Not applicable to key-only
files.

Key Count key=nnn 0–119 Specify 0 to create a data-
only file.

Page Size page=nnnn 512–4,096 Must be a multiple of 512.

Page Preallocation* allocation=nnnnn 1–65,535 None.

Replace Existing
File*#

replace=<y|n> N/A None.

Include Data* data=<y|n> N/A Specify n to create a key-only
file. Cannot create a key-only
file that both allows duplicates
and uses a system-defined
key.

Free Space
Threshold*

fthreshold=<5|10|20|30> N/A Applicable only for files that
have variable-length records.
The default is 5.

Variable-Tail Allocation
Tables (VATs)

huge=<y|n> #
vats=<y|n>

N/A Applicable only for files that
have variable-length records.

Balanced Index* balance=<y|n> N/A None.

Use Key Number * usekeynum=<y|n> N/A Used with the Key Number
element.

**1Use System
Data*%

sysdataonrecord=<n|
loggable>

N/A If no element specified,
MicroKernel configuration is
used. If creating a key-only
file, MicroKernel configuration
is used and this element is
ignored. Also, you cannot
create a key-only file that both
allows duplicates and uses a
system-defined key.

Key Specification
Information

Key Number * keynum=nnnn 0–118 Must be unique to the file,
specified in ascending order,
and valid for the file’s Page
Size. Applicable only when
creating a file.

Key Position position=nnnn 1–4,088 Cannot exceed the Record
Length.

Key Length length=nnn key type
limit

Cannot exceed the limit
dictated by the Key Type. For
binary keys, the key length
must be an even number. The
total of the Key Position and
Key Length cannot exceed
the file’s Record Length.

Duplicate Key Values duplicates=<y|n> N/A Cannot create a key-only file
that allows duplicates and
uses a system-defined key.

Modifiable Key Values modifiable=<y|n> N/A None.

Key Type type=validMKDEKeyType N/A Can enter the entire word (as
in float) or just the first three
letters (as in flo).

Descending Sort
Order*

descending=<y|n> N/A None.

Alternate Collating
Sequence

alternate=<y|n> N/A Applicable only for case
sensitive STRING, LSTRING,
or ZSTRING keys. When
creating an additional index
for an existing file, if you want
the index to use an ACS other
than the first one in the data
file, use with caseinsensitive=y .

Case-Insensitive Key* caseinsensitive=<y|n> N/A Applicable only for STRING,
LSTRING, or ZSTRING keys
that do not use an ACS.

Repeating Duplicates* repeatdup=<y|n> N/A If creating a key-only file, use
repeating duplicates. If using
this element, you must use
duplicates=y.

Null Segments* nullkey=<allsegs | n | anyseg
|>

N/A None.

Null Key Value value=nn 1-byte hex Used with the Null Segments
element.

Segmented Key segment=<y|n> N/A None.

Alternate Collating
Sequence File
Name/ID

name=sequenceFile or
countryid=nnn and
codepageid=nnn
isr=table name (%)

valid path
or     
values
valid to
operating
system or
–1

Used with the Alternate
Collating Sequence element.

 **1 When the MicroKernel adds a system key, the resulting records may be too large to fit in the file’s existing page size. In such cases, the
MicroKernel automatically increases the file’s page size to the next accommodating size.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Glossary
This glossary contains terms referenced throughout the Pervasive.SQL product documentation set.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Pervasive.SQL Terms
Accelerated

In Btrieve 7.x, a file open mode that provides improved response time over Normal mode when updating data files.
However, Accelerated mode disables the MicroKernel’s logging capability. Therefore, the MicroKernel cannot
guarantee transaction durability or atomicity on files opened in Accelerated mode.

If you are using Btrieve 6.x, Accelerated mode is equivalent to Normal mode, except that opening a data file in
Accelerated mode cancels the effect of flagging a file as transactional.

If you are using a Btrieve 6.x workstation engine, the MicroKernel opens the file in Single Engine File Sharing (SEFS)
mode (regardless of any other file sharing modes specified either implicitly or explicitly). A file opened in Accelerated
mode allows only one workstation MicroKernel (and therefore only the tasks associated with that engine) to access
the file. Also, the 6.x workstation MicroKernel ignores the NetWare Transaction Tracking System (TTS) flag on a file.

In pre-6.0 Btrieve, this file open mode disabled the engine’s data recovery capability. Also, once a file was opened in
Accelerated mode, other tasks could open the file only in Accelerated mode.

See also Exclusive, file open mode, file sharing, Normal, Read-Only, and Verify.

access modules

Implementations of specific data models that provide appropriate data structures and access techniques. Access
modules receive requests from application programs and make calls to the MicroKernel to perform the required core
data operations.

access path

See index path.

access right

A security right that determines a user’s ability to access tables or individual columns. The access rights are Select,
Update, Insert, Delete, Alter, References, and All.

See also All right, Alter right, Delete right, Insert right, References right, Security right, Select right, and Update right.

aggregate column value

A column value which is determined by a group aggregate function. This value is based on a set of column values
selected from a table. See also    group aggregate function.

aggregate function

One of a group of SQL functions you use to return a single result for a given set of column values. The aggregate
functions are AVG, COUNT, MIN, MAX, and SUM. You can use aggregate functions in a select list or a HAVING
clause.

aggregate value restriction clause

A type of restriction clause that follows the HAVING keyword in which the first expression of each condition must be a
group aggregate function. The second expression can be a constant, a substitution variable, a string or numeric
literal, or a subquery. An aggregate value restriction clause can contain multiple conditions. See also group aggregate
function and restriction clause.

alias

A temporary name you can assign to a table or view in any of the following:

• The FROM clause of a SELECT or DELETE statement

• The INTO clause of an INSERT statement

• The table list in an UPDATE statement

Once you define an alias for a particular table or view, you can use the alias elsewhere in the same statement to
qualify column names in that table or view.

All right

A Scalable SQL security right that includes the Select, Insert, Update, Delete, Alter, References, and Create Table
rights.

all-segment null

A key attribute that instructs the MicroKernel to exclude a particular record from the index only if the value of all key
segments of that record matches the specified null value. In pre-6.0 Btrieve, all-segment null keys are known as
manual keys. See also null key and any-segment null.

Alter right

A Scalable SQL security right that allows users or user groups to modify table definitions. See also      table definition.

alternate collating sequence

A sorting sequence that the MicroKernel uses to sort string values differently from the way that the standard ASCII
collating sequence sorts them. Alternate collating sequences (ACSs) can be locale-specific, user-defined, or an
international sort rule (ISR). See also collation table and International Sorting Rules (ISR).

alternate key

In Scalable SQL, a candidate key that is not a primary key. It also uniquely identifies a row in a table.

anomaly

An illegal RI definition that, if permitted, could result in the inconsistent handling of certain update, insert, or delete
operations, thus harming the integrity of the data.

any-segment null

A key attribute that instructs the MicroKernel to exclude a particular record from the index if the value of any key
segment of that record matches the specified null value. In pre-6.0 versions of Btrieve, any-segment null keys are
known simply as null keys. See also null key and all-segment null.

API

See Application Programming Interface (API).

application

A program or set of programs, such as a spreadsheet or a payroll application, that performs a task or a group of
related tasks. Also, a program written by or for users to assist them in their work. See also task.

application interface

A particular programming language interface (such as C or Pascal) that allows access to data files from an
application.

Application Programming Interface (API)

A set of functions that an application uses to access a database or initiate system-level routines. A particular
programming language interface (such as C or Pascal) to an API. A program that allows access to MicroKernel files
from an application program.

archival logging

A MicroKernel capability that, when activated, records all the operations that change a specified data file. These
changes are recorded in an archival log file. In the event of a system failure, you can configure the MicroKernel to use
the archival log file to roll forward (recover) changes made to the data file between the time archival logging was
initiated and the time of the system failure.

arithmetic operator

An expression operator you can apply to two expressions that represent numeric data (either numeric constants or
numeric columns). The arithmetic operators are addition (+), subtraction (–), multiplication (*), division (/), integer
division (//), and MOD (%).

ascending

In Scalable SQL, the default collating order for an index. In Btrieve, the default collating order for a key. See also sort
order.

ASCII

An acronym for American Standard Code for Information Interchange. ASCII is an 8bit information code with which
computers can translate letters, numbers, control codes, and punctuation into digital form.

attribute

See column attribute and    index attribute.

back end

A program that provides computationally intensive processing and relies on a front end to provide a user interface.
For example, a back end may specialize in calculation, communication services, or data management. Back ends are
also called engines . See also database server and front end.

base column

A column containing data from a base table.

base table

A table directly associated with a physical data file that contains the actual rows and columns of the table. Unlike a

virtual table, whose data may or may not be directly associated with a physical table. See also data dictionary and
table.

blank fill

To add a series of blanks to the end of a character string to make it a desired number of characters in length.

blank replacement character

A character you must use to replace blanks in a dictionary name when you pass the name to Scalable SQL.
Otherwise, Scalable SQL cannot distinguish between the blanks in dictionary names and the blanks between
elements in an expression. Valid blank replacement characters are the caret (^), underscore (_), and tilde (~). Do not
use one of these characters when defining a name if you intend to use that character as the blank replacement
character.

blank truncation

A method for conserving disk space by not storing the trailing blanks in the variable-length portions of records when
the records are written to the file.

Boolean

A category of data types you can use to represent true/false logical values, or any two-valued data. The Boolean data
types include BIT and LOGICAL.

Boolean operator

An operator that specifies a logical condition: NOT, AND, and OR. See also condition.

bound database

A named database in which all files (both dictionary and data files) are stamped with the database name. Binding
ensures that the MicroKernel enforces the database’s defined security, triggers, and referential integrity, regardless of
the method (such as Btrieve or Scalable SQL) you use to access the data.

bound file

A data file associated with a single table in a specific named database. Scalable SQL automatically binds a file to a
named database if the file meets any of the following criteria:

• Is part of a bound database

• Has a trigger

• Has a foreign key

• Has a primary key that is referenced by a foreign key

Scalable SQL requires a bound file to be bound to only one table; that is, no other tables in the database and no other
databases can bind to the bound file.

browse

A mode of operation that allows you to query part of a database without making additions or changes. A browsing
application lets you scroll forward and backward, examining the data before deciding what operation to perform.

b-tree

A multi-level or tree-structured index that provides a quick search path for data. Each branch and non-terminal node
of the b-tree contains a range of possibilities within the index. During a search, the MicroKernel makes an evaluation
at each node and chooses the path in the b-tree that falls within the range of its search. It follows this path through
the b-tree until the desired data is located. This method is fast and efficient because the MicroKernel does not have to
scan the entire index to find the requested information.

Btrieve

A complete navigational database management system, based on the architecture of the MicroKernel, designed for
high-performance data handling and improved programming productivity.

Btrieve extended operation

An operation that returns or inserts multiple records on one Btrieve call (for example, Get Next Extended or Insert
Extended).

Btrieve file

See data file.

Btrieve operation

A specific action (such as Delete, Create, or Get Equal) that manipulates a file.

Btrieve Requester

A program for the applicable DOS, OS/2, Win16, or Win32 environment that resides at a client machine and provides
communication between the Btrieve server engine and a client application making Btrieve calls.

buffer

A storage area in memory that holds data temporarily.

cache

The area of memory that stores images of physical disk pages (or blocks of data). Using cache reduces the number
of physical disk I/O requests and improves the MicroKernel’s performance.

callback function

A function that is called from outside the code segment of a program. To yield time so that other tasks can run in the
Windows 3.x environment, a Scalable SQL or Btrieve task must define and register a callback function with the
respective engine. See also chaining callbacks.

candidate key

A column or group of columns whose column value (or collective column value) uniquely identifies each row in a
table. Tables that have RI defined can have one or more candidate keys. For Scalable SQL, all candidate keys must
be unique, non-null indexes. See also primary key, alternate key, referential integrity (RI).

Cartesian product join

See join.

cascade

A form of the delete rule. The cascade rule causes dependent rows to be deleted upon deletion of their parent rows.
See also delete rule.

case sensitivity

An index attribute that determines how Scalable SQL evaluates uppercase and lowercase letters during sorting.

A key attribute that determines how Btrieve evaluates uppercase and lowercase letters during sorting.

See also index attribute and key attribute.

chaining callbacks

Linking more than one callback function together so that each callback is executed. A task can register as many
callbacks as needed, but Scalable SQL and Btrieve keep track of only the last callback registered for that task. If the
task needs to chain callbacks, the task is responsible for chaining each call to the previous callback from the current
callback. See also callback function.

character set

A collection of characters and symbols, along with their computer representations, that are necessary to support a
specific language (such as French or German).

character validation

See validation.

chunk

Any arbitrary portion of a record, specified by its offset and length. Btrieve enables applications to update and retrieve
portions of very large records, called chunks, rather than the entire record.

clause

In a SQL statement, a substructure that contains a group of related items, such as keywords, values, subclauses, and
conditions. For example, in the following SQL statement, the FROM clause contains the keyword FROM and a value
(Person) for its associated table or view name:

SELECT * FROM Person

A clause may or may not be required in a SQL statement. For example, a SELECT statement requires a FROM
clause.

Usually, a clause begins with keywords that are not the SQL command name. However, an entire SELECT statement
can be a clause within another SQL statement, such as INSERT. Also, a restriction clause does not begin with a
keyword, but contains conditions that define the search criteria for the data that the SQL statement affects.

See also keyword, restriction clause, SQL command, and SQL statement.

client

A task; also, a computer process that accesses the services and resources of other computer processes. In NetWare
and Windows NT environments, a client typically is an application that accesses a server-based application. A client
may also be a server-based application that accesses another server-based application. See also requester.

client/server configuration

A widely used computer system architecture in which machines designated as servers handle requests from
numerous machines designated as clients. This configuration requires a requester module on the client, which
communicates with a similar module on the server. Client/server configurations are necessary when controlled
sharing of centralized data is required.

collation table

A table that maps a character set to an alternate collating sequence and changes the sort order of characters. See
also alternate collating sequence and character set.

column

In Scalable SQL, a subdivision of the rows of a table. Columns define a vertical collection of values in a table. All the
values in a particular column represent the same type of information.

column attribute

A characteristic assigned to a column and stored in the data dictionary. These characteristics include default value,
edit mask, heading, null, and validation. See also default, edit mask, heading, null, and validation.

column list

A list of column names.

column name

The name you assign to a column in a table or a view when you create the table or view. See also qualified column
name, table, and view.

column qualifier

A base table name, view name, or alias that unambiguously associates a column name with a table. A column
qualifier is required when the column name is not unique in a SQL statement.

column value

The actual data stored in a column’s portion of a row. See also column, row, and table.

command

See SQL command.

command file

A user-defined file containing a sequence of commands that perform common operations.

commit

To save all the changes you have made to the database during a transaction. See also roll back and transaction.

computed column

A column that does not exist in the base table definition but is created in a view. A computed column can be a
constant or it can be calculated from other columns in the view or from scalar functions. You can use a computed
column in select lists. When you use a computed column in a restriction clause, it is referred to as an expression .
See also expression.

conceptual design

The first phase of database design that involves determining and modeling database requirements.

concurrency

The ability of multiple tasks to access the same data simultaneously while preserving data integrity. See also
concurrency controls.

concurrency controls

The methods the MicroKernel uses to resolve possible conflicts when two tasks attempt to access the same data at
the same time. Concurrency controls in Scalable SQL include isolation levels for transactions, explicit record locks
with XQLFetch, and passive control. Concurrency controls in Btrieve include passive control, record locking, and
transaction control. See also explicit record locks, isolation level, and passive control.

concurrent transaction

A type of transaction that allows other transactions to take place simultaneously in different parts of the designated
file. A concurrent transaction locks only the portions of the file (record or pages) that are accessed during that
transaction, allowing other transactions to do the same in other portions of the file. See also exclusive transaction and
implicit locks.

condition

An element of a restriction clause consisting of a condition operator and two expressions. The condition operator
defines the criterion for comparing the expressions. You can combine multiple conditions using Boolean operators.   
See also Boolean operator, condition operator, expression, and restriction clause.

condition operator

An element of a restriction clause that defines the criterion for comparing two expressions. A condition operator can
be either a range operator or a relational operator. See also range operator and relational operator.

configuration

The customization of various parts of a computer system for specific use. For example, you can use the Setup utility
to configure MicroKernel options such as the number of open files and transaction durability.

constant

A nonchanging value that you specify in a SQL statement. For example, you can specify a numeric constant such as
3.14, a MONEY constant such as $40.00, or a string constant such as George .

You can compare a constant to another value (as in a condition), or you can apply an expression operator to a
constant (as in a computed column definition that adds a numeric constant to another value). See also literal.

continuous operation

A MicroKernel feature that allows you to back up data files while they are open and in use. The MicroKernel opens
the files in Read-Only mode to allow back up utilities to access the files’ static images. The MicroKernel stores
changes to the original files in temporary files called delta files. When the backup is complete, the MicroKernel
automatically updates the original files with the changes stored in the delta files and deletes the temporary files as
soon as all applications close the data file corresponding to that delta file.

control column

A column you specify in a GROUP BY clause to indicate how to group rows. Rows that have the same column value
in the control column are grouped.

correlated subquery

A subquery that contains a WHERE or HAVING clause that references a table from the outer query’s FROM clause.
See also outer query and subquery.

Create Table right

A Scalable SQL security right that allows users or user groups to create new tables.

current row

The last row Scalable SQL returned on the previous XQLFetch operation. See also first row, last row, next row, and
previous row.

cursor

An identifier obtained through a Scalable SQL function call that identifies a particular database operation to perform.

A named virtual table defined through the DECLARE CURSOR statement that allows controlled reading and writing of
data through SQL.

See also cursor ID and view.

cursor ID

An integer value that references a cursor. You can use the SQL-level function XQLCursor to allocate a cursor ID. See
also    cursor and view.

cursor stability

An isolation level in which Scalable SQL locks portions (rows or pages) of a file during a transaction instead of locking
the entire data file, thus allowing concurrent updates. Cursor stability is implemented using the concurrent transaction
feature of the MicroKernel Database Engine. See also concurrency controls, concurrent transaction, Exclusive,
implicit locks, and transaction.

cursor transaction

A type of nested transaction that enables you to selectively include files in transactions without subjecting other files
to transaction control. With cursor transactions, you can diverge your views to see different stages of the same file
simultaneously. You can use the cursor transaction in either Exclusive or Concurrent mode.

cycle

A reference path in which a parent table is its own descendant. See also      descendant, parent table, reference path,
and referential integrity (RI).

data abstraction

A DBMS can present data to an application in a form that is very different from the physical data structures. The form
in which data is presented is called the data abstraction and determines the data model of the DBMS.

data administration statement

One of a group of SQL statements you can use to specify Scalable SQL session variables. These variables define
blank replacement characters, isolation levels, file open modes, and file owner names. See also data control
statement, data definition statement, data manipulation statement, and session variable.

data buffer

A Btrieve function parameter that you use to transfer various information depending on the operation being
performed. A data buffer can contain all or part of a record, a file specification, and so forth.

data buffer length

A Scalable SQL or Btrieve function parameter that you use to specify how much data is in the data buffer parameter
or how much data you expect to be in the data buffer when the function completes.

data compression

A method for reducing the space that a set of data occupies by encoding repeated information in a smaller form. The
MicroKernel uses data compression to reduce the disk space of files that are appropriately configured.

data control statement

One of a group of SQL statements you can use to enable and disable security for a database, create users and user
groups, and grant and revoke security rights. See also data administration statement, data definition statement, data
manipulation statement, security, user, and user group.

data definition statement

One of a group of SQL statements you can use to create and delete dictionaries and indexes; create, modify, and
delete tables; and define column attributes. See also data administration statement, data control statement, and data
manipulation statement.

data dictionary

A set of tables, called system tables , that contain the complete description of a database. This description includes
table and column names, data types, column attributes, index attributes, referential constraints, and security rights.
The data dictionary is also called the system catalog .    See also system tables.

data dictionary file

The physical file associated with a system table. In Scalable SQL, data dictionary files have a .DDF extension and
are stored in a format compatible with the MicroKernel. See also    system tables.

data file

A collection of related records stored on a disk. A data file is also referred to as a physical file, a MicroKernel data file,
or simply a file. In Scalable SQL, a data file is presented as a table.

The MicroKernel creates and uses data files in which data is stored in different types of pages. These types include
header, data, key, page allocation table (PAT), and variable-allocation table (VAT).

data file location

A directory path that Scalable SQL and Btrieve use to locate data files. Each maintains a list of directory paths in a
data file path. When you specify a file name or a relative path, Scalable SQL and Btrieve locate the data file by
appending the file name or relative path to the end of the appropriate directory path in the data file path. See also
data file path.

data file path

A path that contains a list of data file locations (directory paths). When you search for a data file, Scalable SQL and
Btrieve combine the data file name or relative path along with one of the directory paths in the data file path. When
you create a data file, Scalable SQL and Btrieve combine the data file name or relative path along with the first
directory path in the data file path. You specify the data file path when naming a database in the Setup utility or when
logging in using paths in the XQLLogin function. See also data file location.

data manipulation statement

One of a group of SQL statements you can use to retrieve, insert, update, and delete data in tables; define
transactions; create and delete views; and create, delete, and execute stored SQL statements. See also data
administration statement, data control statement, and data definition statement.

data modification statement

One of a group of SQL statements you can use to add, change, or remove data.

data-only file

A data file in which no keys (and therefore no index pages) exist.

data page

See    page.

data type

In Scalable SQL, an internal format for a column, such as INTEGER, DATE, or DECIMAL. The data type specifies
what kind of data a column contains. For example, a column of data type DECIMAL stores numeric data with a fixed
number of decimal places.

database

A set of one or more records or files that contain information on a related subject.

A collection of related information, such as employee data. See also relational database.

database administrator (DBA)

The individual or department responsible for managing databases and for granting user access rights.

database management system (DBMS)

A program or set of programs that create and manipulate database tables and associated files.

database name

A logical name for a database that allows you to refer to it without knowing its actual physical location. The
Pervasive.SQL Setup utility allows you to manage database names.

database server

A database management system that runs on a server. A database server is a type of back end . See also back end
and database management system (DBMS).

DBA

See     database administrator (DBA).

DBMS

See     database management system (DBMS).

deadlock

A condition that occurs when each of two or more tasks is retrying operations on files, pages, or records that the other
task has already locked. See also concurrency controls.

default

A preset value or option that a program chooses automatically when no other value is specified. For example, the
default directory is the one in which you are currently working.

Default is also a column attribute specifying a value that is consistent with the data type of the column. Scalable SQL
inserts this value in the column when no other value is specified. See also column attribute.

default mask

An edit mask that Scalable SQL defines for the data type of a column. See also edit mask, permanent mask, and
temporary mask.

delete-connected

A table is delete-connected to another table if the deletion of rows in the first table causes the deletion of rows in the
second table. Referential constraints determine whether a table is delete-connected.

Delete right

A Scalable SQL security right that allows users or user groups to delete rows from a table.

delete rule

A referential constraint that specifies how to handle dependent rows when someone attempts to delete their parent
rows. The two forms that the delete rule can take are cascade and restrict. See also      cascade and restrict.

delta file

When continuous operation begins, the MicroKernel creates a temporary data file, called a delta file, for each
formatted data file. The MicroKernel records in the delta file any changes made to the data file while the backup is
taking place. See also continuous operation.

dependent row

In a dependent table, a row whose foreign key value depends on a matching primary key value in the associated
parent row.

dependent table

In a database with referential integrity (RI), a table that contains at least one foreign key. See also foreign key.

descendant

A dependent table on a reference path. A descendant can be one or more references removed from the path’s
original parent table. See also dependent table, parent table, and reference path.

descending

An index attribute that instructs SQL to collate an index in descending order. It is used in CREATE TABLE and
CREATE INDEX statements, and in the ORDER BY clause in SELECT statements. See also index attribute.

A key attribute that instructs the MicroKernel to order key values in descending order. See also key attribute.

description file

A sequential file containing information necessary for certain Btrieve Maintenance utility operations.

development level

See SQL-level functions.

dictionary

See      data dictionary.

dictionary file

See data dictionary file.

dictionary location

A directory containing a data dictionary.

dictionary name

A name stored in a data dictionary to identify a database element such as a table, view, index, or column.

directory

A disk structure that contains files. A directory may also contain subdirectories.

directory specification

A path that tells an application where to find or store information. The specification may include a server name,
volume, drive letter, and directory path.

display mask

See edit mask.

DLL

See     dynamic link library (DLL).

DOS

The DOS, PCDOS, or MSDOS operating system.

drop

To remove an item. For example, you can drop a table, view, index, or user group from a data dictionary.

duplicatable

An index attribute that instructs Scalable SQL to allow multiple rows to have the same column value in the indexed
column. See also index attribute.

A key attribute specifying that multiple records in a file can have the same key value. See also key attribute.

duplicate key

A single key that identifies more than one record within the data file containing that key. The key’s definition specifies
that more than one record in the file can contain the same key value.

dynamic link library (DLL)

A program library that contains related modules of compiled code. At runtime, the application reads the functions in
the DLL. This process is called dynamic linking .

dynamic link routine

In OS/2 and Windows, a program that the operating system loads on demand (dynamically) and terminates
automatically.

edit mask

A column attribute that specifies a display format for a column. For example, you can include commas in a numeric
column to display the data in a more readable format. See also default mask, column attribute, permanent mask, and
temporary mask.

edit mask literal

A character you can embed in an edit mask so that the character also appears in the data. For example, you can
place dashes as literal characters in a social security column, or commas between groups of three numbers in a
numeric column.

equal join

See join.

exception table

A table that contains all the orphan rows for a dependent table.

Exclusive

A file open mode. The user that opens a data file in Exclusive mode is the only user that can access that file. See
also Accelerated, file open mode, Normal, Read-Only, and Verify.

exclusive isolation level

In Scalable SQL, an isolation level in which Scalable SQL causes the MicroKernel Database Engine to use the entire
data file as the locking unit for transactions. The exclusive isolation level is comparable to using exclusive
transactions in Btrieve. See also concurrency controls, cursor stability, Exclusive, exclusive transaction, isolation
level, and transaction.

exclusive transaction

A type of transaction that causes the MicroKernel to lock the entire file when you insert, update, or delete a record.
The file remains locked until the task ends or aborts the transaction. See also concurrent transaction and implicit
locks.

explicit record locks

A type of concurrency control in Scalable SQL and Btrieve in which you explicitly lock records by specifying a lock
bias value on an XQLFetch call or by including the lock request with a Btrieve operation code. Explicit record locks
lock the records for update and delete operations but do not allow you to roll back the operations. These locks have
no effect within a transaction. See also concurrency controls and implicit locks.

explicit transaction processing

A type of transaction processing in which you must indicate the beginning of a transaction by issuing a START
TRANSACTION statement. You end the transaction by issuing a COMMIT WORK or ROLLBACK WORK statement.

expression

An element of a condition in a restriction clause, or an element in a select list. An expression can be one of the
following items:

• A constant value

• A column name (qualified or not)

• A scalar function

• A computed column that uses one or more of the above

See also computed column, condition, constant, column name, restriction clause, scalar function, and select list.

expression operator

An element of a condition that connects two expressions to form another expression. An expression operator can be
an arithmetic operator or a string operator. See also arithmetic operator, Boolean operator, condition, expression, and
string operator.

extended file

The MicroKernel creates an extended file when it processes an operation, such as inserting a record into a file, that
causes a file to add a page that extends the file size beyond the operating system limit.

extended operation

See Btrieve extended operation.

extension file

A physical file logically concatenated with a base file when the MicroKernel creates an extended file. The MicroKernel
treats the base file and extension files as one large file. See also extended file.

field

In Btrieve, the term field has been used historically to refer to portions of a record that have been designated as
segments of a key. Technically speaking however, Btrieve records contain no fields.

file

A collection of records stored on a disk. A file is sometimes also referred to as a physical file .

file control record (FCR)

A page in a data file that contains information1 about the file, such as the file size and page size. The first two pages
in any data file are FCR pages.

file definition

A data file description stored in a data dictionary.

file-level locking

See Exclusive.

file open mode

A method of opening a file that places restrictions on how that file can be accessed. The file open modes are
Accelerated, Exclusive, Normal, Read-Only, and Verify. See also      Accelerated, Exclusive, Normal, Read-Only, and
Verify.

file owner name

A password that protects data files from unauthorized access by MicroKernel applications. In Scalable SQL, you can
assign a file owner name to a file when you use a CREATE TABLE statement. In Btrieve, you can assign an owner
name using the Maintenance utility or by implementing a Set Owner operation.

file preallocation

See preallocation.

file sharing

File sharing is the ability of multiple users or tasks to operate on the same file simultaneously. With the workstation
engine, the MicroKernel provides two file sharing modes:

• Single Engine File Sharing (SEFS) mode—Only users or tasks running under the same MicroKernel can
access or maintain information stored in a shared file. Users or tasks running under different MicroKernels
have no access to the shared file.

By default, the workstation MicroKernel uses SEFS mode if the shared file resides on a local drive. (A local
drive is physically located on the same machine running the MicroKernel.)

• Multi-Engine File Sharing (MEFS) mode—Users or tasks running under different MicroKernels can access or
maintain the shared file.

The workstation MicroKernel uses MEFS mode by default if the shared file resides on a remote drive. (A
remote drive can be a drive on a file server or a drive on a peer machine.)

File sharing is not restricted to these default values.

filter

A restriction you can use when retrieving records with a Btrieve extended operation.

first row

An absolute row position based on the highest index position of the rows in the view. The first and last rows in the
view are absolute positions that remain in effect until you compile a new SQL statement for the cursor ID or release
the cursor ID. Your first XQLFetch operation must position the cursor to either the first or last row in the view, based
on the current sort path. See also current row, last row, next row, previous row, and sort path.

fixed-length data type

A data type with a designated stored length that does not vary from row to row within a table. See also variable-length
data type.

fixed-length record

A record that contains no portions of variable length. See also variablelength record.

foreign key

A column or group of columns that references a primary key. The foreign key can be in the same table as the primary
key or in a different table. A foreign key cannot contain null column values, and the columns it includes must match
the primary key columns in type, length, and order. See also primary key    and referential integrity (RI).

free space threshold

A mechanism the MicroKernel uses to determine whether to add data to an existing variable page or to create a new
one. A higher free space threshold reduces fragmentation of variable-length records across several pages but uses
more disk space. The MicroKernel also stores compressed records (even when fixed-length) on variable pages.

front end

An application that provides an interface between a user and a back end (or engine). For example, SQLScope is a
front end to the Scalable SQL back end. See also back end.

front-end result set

A cache on the client computer that holds the results of a query.

group

See user group.

group aggregate function

One of a group of SQL functions you use to return a single result for a given set of column values. The group
aggregate functions are AVG, COUNT, MIN, MAX, and SUM. You can use group aggregate functions in a select list or
a HAVING clause.

heading

A column attribute that specifies a column name different from the name you defined for the column in the dictionary.
You specify column headings in a CREATE VIEW statement. See also column attribute.

hierarchical data model

A database access method in which the data is represented in the form of a set of tree structures (hierarchies), and
the operators provided for manipulating such structures for traversing hierarchic paths up and down the trees. See
also relational data model    and navigational data model.

implicit locks

The type of locking in which Scalable SQL automatically locks rows, pages, or files according to the isolation level
you specify for your transactions. See also concurrency controls, explicit record locks, isolation level, and transaction.

The type of locking in which the MicroKernel automatically locks a record, page, or file according to the type of
operation and transaction you are using. In general, the MicroKernel locks a file during an exclusive transaction and a
page or record during a concurrent transaction. See also concurrent transaction and exclusive transaction.

index

A column or combination of columns used to sort a table in a particular order and to optimize searches on particular
values. See also segmented index.

A key or group of keys that the MicroKernel uses to sort a file. See also key.

index attribute

A characteristic assigned to an index and stored in the data dictionary. The index attributes are: case-sensitivity,
modifiability, null value indexing, segmentation, sort order, and uniqueness.

See also case sensitivity, modifiable, null value indexing, segmented, sort order, and uniqueness.

index balancing

The process of searching for available space in sibling index pages when a given index page becomes full, and then
rotating values from the full page into the pages that have space available.

index page

See page.

index path

A logical ordering of rows in a table based on indexed column values.

index segment

One column of an index that includes multiple columns. See also index and segmented index.

inner query

See subquery.

Inscribe

A development technology that helps you create and run scripts for use with Scalable SQL’s stored procedure stored
procedure feature. Inscribe uses Softbridge Basic Language (SBL), a programming language compatible with Visual
Basic, to create scripts.

Insert right

A Scalable SQL security right that allows a user or user group to add new rows to a table.

insert rule

A referential constraint that specifies how to apply inserts to dependent tables. The insert rule is always restrict ,
which prevents adding a row to a dependent table if the row contains a foreign key value not contained in the parent
table.

integrity control

A method of ensuring that the data in a file is complete and accurate. Scalable SQL uses referential integrity, security,
and triggers to guarantee data file integrity. The MicroKernel uses shadow paging and concurrency controls to
guarantee data file integrity. See also concurrency controls, referential integrity (RI), security, and shadow paging,
and triggers.

International Sorting Rules (ISR)

A syntax for specifying an external collation sequence for data files, used in translation.

internetwork

Two or more separate, independent networks joined by a communications bridge. The bridge enables the file servers

in separate networks to access each other’s data.

isolation level

The level of data locking that Scalable SQL employs to provide isolation from other changes to the data during a
transaction. The locking level determines the degree to which a task’s transaction affects the ability of other tasks to
read and update data in the same data file. Scalable SQL supports two levels of isolation: cursor stability (in which
the locking unit is a row or page) and exclusive (in which the locking unit is a file). See also      concurrency controls,
cursor stability, Exclusive, implicit locks, and transaction.

join

A basic relational operation between two or more tables that combines data in the tables based on a comparison of
values in specified columns of those tables. Following are the types of joins:

• Equal join—a join that occurs when you specify the two join columns as being equal.

• Nonequal join—a join that is based on a nonequal comparison of two join columns. The types of nonequal
comparisons are less than, greater than, less than or equal, and greater than or equal.

• Null join—a join that allows you to retrieve each row from one table (on the left), regardless of whether there
is a corresponding row in the table to which you are joining (on the right).

• Cartesian product join—a join that associates each row in one table with each row in another table.

• Self join—a join in which you specify a table name in the FROM clause more than once.

See also table and view.

join condition

An expression containing a comparison between columns from two different tables. See also expression, restriction
clause, and restriction condition.

key

A column or group of columns on which a table’s referential integrity (RI) constraints are defined. The types of keys
are primary and foreign. A primary key is a column or group of columns that uniquely identifies each row in a table. A
foreign key is a column or group of columns that references a primary key. See also foreign key, primary key, and   
referential integrity (RI).

A group of bytes (or multiple groups) that is characterized by offset and length (that is, by physical location in a
record) and provides a means of direct access to a data value. In addition, a key provides a means of dynamic
sorting of the records within a data file. See also index and segmented key.

key attribute

A characteristic assigned to a key. The key attributes are: alternate collating sequence, case-insensitive, descending,
duplicatable, manual, modifiable, null, repeating-duplicatable, segmented, and supplemental. See also case
sensitivity.

key buffer

A Btrieve function parameter that usually contains the value of a key identified by the key number parameter.

key number

An identifier associated with a specific key in a data file.

key-only file

A data file in which no data pages exist; that is, all records are stored on index pages.

key segment

One of the groups of bytes that a segmented key includes. See also key and segmented key.

key type

See data type.

keyword

A word that is part of the SQL language. Although keywords appear in uppercase letters in the documentation, they
are not case-sensitive. See also clause, SQL command, and SQL statement.

last row

An absolute row position based on the lowest index position of the rows in the view. The first and last rows in the view
are absolute positions that remain in effect until you compile a new SQL statement for the cursor ID or release the
cursor ID. Your first XQLFetch operation must position the cursor to either the first or last row in the view, based on
the current sort path. See also current row, first row,    next row, previous row, and sort path.

linked-duplicatable

A key attribute that instructs the MicroKernel to store on an index page a key value extracted from the first record of a
duplicatable key. Then, rather than storing the second duplicate for the key on the index page, the MicroKernel places
a pointer to the second duplicate key at the end of the first duplicate key’s record. The MicroKernel places a pointer to
the third duplicate key at the end of the second duplicate key’s record, and so on. See also key attribute and
repeating duplicatable.

literal

A literal is an exact representation of a data value, as opposed to a reference to a column or expression containing
that value. A literal can be any valid data type, such as a character literal (‘Jones’), a numeric literal (123.4 or
6.02E+23), or a date literal (12/06/95).

See also      edit mask literal.

loader

A program that loads another program into memory.

local client

Two clients are local clients relative to each other if they run under the same MicroKernel. A given client can be both
local relative to some clients (those running under the same MicroKernel) and remote relative to other clients (those
running under different MicroKernels) at the same time.

location transparency

A database feature that enables a user to access a database without specifying its physical location.

lock

A mechanism that prevents other tasks from changing the data you currently have locked. See also concurrency
controls, explicit record locks, implicit locks, isolation level, no-wait lock, and wait lock.

locking unit

The amount of data Scalable SQL blocks from other tasks until your transaction is complete. Scalable SQL uses
locking to prevent other tasks from changing the data you are currently changing. See also cursor stability, Exclusive,
isolation level, and transaction.

logger

A task that calls the xShareSessionID function for its login session. xShareSessionID allows a task to flag its login
session as shareable so that other tasks can share the resources associated with this login. See also session and
sharer.

logging in

The act of connecting to a data dictionary. If security is enabled, logging in identifies the user so that Scalable SQL
can enforce the appropriate security rights. Users log in using a task (an instance of an application).

Scalable SQL allows a task to have multiple logins or share the login session of another task. Only one login session
can be active within a particular task. Thus, only the cursor(s) defined for the current login session is active. A
Scalable SQL security right required for logging in to a data dictionary. All users must log in to a dictionary before
accessing data. See also logger, session, and sharer.

logical design

The second phase of database design that involves creating tables, columns, and keys based on the relational model
that meet the requirements identified in the conceptual design.

logical operator

An operator such as AND, OR, or NOT used in an expression that yields a true or false value.

logical unit of work

See transaction.

login identifier

A unique number that identifies a particular application operating at a workstation. Scalable SQL assigns a login
identifier to each application that logs in.

Login right

A Scalable SQL security right required for logging in to a data dictionary. All users must log in to a dictionary before
accessing data.

login session

See session.

log key

The key that the MicroKernel uses to uniquely identify each record in a file for transaction logging purposes. If a file
does not contain a unique (non-duplicatable key), the MicroKernel cannot track the file in the log. Using the Setup
utility, you can configure the MicroKernel to add a unique system-defined log key to files during creation.

log segment

A file that comprises part of the MicroKernel transaction log. All log segments have a.LOG extension. The
MicroKernel names log segments with consecutive, 8-character hexadecimal names, such as 00000001.LOG,
00000002.LOG, and so on.

manual key

See null key.

many-to-many relationship

Occurs when many rows in one table can relate to many rows in another table.

mask

See edit mask.

mask literal

See edit mask literal.

Master user

The user who has all rights to the dictionary after security is enabled. The user name Master is case-sensitive.

MicroKernel Database Architecture

The unique modular framework for Pervasive Software’s database engine products. The architecture consists of
access modules such as Btrieve and Scalable SQL, both of which plug into the MicroKernel. This architecture allows
applications that use different data access methods to share common data.

MicroKernel Database Engine

The foundation of the MicroKernel Database Architecture. Provides low level database functions that include physical
data management, data caching, transaction processing, and data integrity enforcement.

modifiable

An index attribute that determines whether you can modify an index column value after Scalable SQL stores the
associated row. See also index attribute.

A key attribute that determines whether you can modify a key value after Btrieve stores the associated record. See

also key attribute.

multi-byte character set

A character set in which characters may be represented in an arbitrary number of bytes.

Multi-Engine File Sharing (MEFS)

See file sharing.

multithreading

Concurrent, or interleaved, execution of multiple threads of execution.

named database

A database with a logical name that allows users to identify it without knowing its actual location. When you name a
database, you associate that name with a particular dictionary directory path and one or more data file paths. When
you log in to Scalable SQL using a database name, Scalable SQL uses the paths to find the database’s dictionary
and data files. See also database name.

named index

In Scalable SQL, an index you name using the CREATE INDEX command. You can delete a named index, but you
cannot delete an unnamed index (an index you create using a WITH INDEX clause in a CREATE TABLE statement).

native character set

The character set in which text submitted to and generated by the Scalable SQL engine is assumed to be
represented. This set is defined by the host environment of the system on which it is running.

navigational data model

The data access method used to navigate up, down, and sideways through data records. This model provides direct
control and allows a developer to optimize data access based on knowledge of the underlying structure of the data.
Btrieve is a navigational database engine. See also hierarchical data model and relational data model.

NDS

NetWare Directory Services.

nested query

See subquery.

nested transaction

A type of transaction that enables you to divide complex transactions into smaller subtransactions. With nested
transactions, you can partially roll back changes in a transaction by committing or undoing subgroups of transactions
while the main transaction remains unaffected. You can use the nested transaction in either Exclusive or Concurrent
mode.

NetWare Loadable Module (NLM)

A program that runs on a NetWare 3.x or 4.x server. You can load or unload NLMs while the server is running. NLMs
become part of the operating system and access NetWare services directly.

network administrator

The individual or department responsible for the communications link between a user’s computer and network
servers.

next row

Based on the current sort path, the row that follows the set of rows returned on the previous XQLFetch operation for
all XQLFetch options except Option 0 (Fetch Current). If you use Option 0 to fetch multiple rows, the next row for the
subsequent fetch operation is immediately adjacent to the current row. See also current row, first row, last row,
previous row, and sort path.

NLM

See      NetWare Loadable Module (NLM).

nonequal join

See join.

non-null index

An index that does not include null column values. See also null.

Normal

The default file open mode. Using a server MicroKernel, Normal mode allows shared read/write access to data files.
In Normal mode, the MicroKernel performs its standard integrity processing when it updates the data files.

In the Windows environment using the 6.15 workstation MicroKernel, Normal mode is the equivalent of Single Engine
File Sharing (SEFS) mode if the shared file resides on a local drive. A local drive is one that is physically located on
the same machine that is running the local MicroKernel. If the shared file resides on a remote drive, Normal mode is
the equivalent of Multi-Engine File Sharing (MEFS) mode with the 6.15 local MicroKernel. A remote drive can be a
drive on a NetWare server or a drive on a peer machine (if in a peer-to-peer networking environment).

See also Accelerated, Exclusive, file open mode, file sharing, Read-Only, and Verify.

normal form

A set of criteria to measure the level at which a database conforms to certain basic rules of data organization.

normalization

The process of transforming your database into a particular normal form by applying a set of rules.

no-wait lock

A type of explicit record lock in which the MicroKernel returns control to your task if it cannot lock the record for any
reason (for example, because another task has already locked that record).

In Scalable SQL, you request a no-wait lock by specifying a lock bias value on an XQLFetch call.

In Btrieve, you request a no-wait lock by specifying a lock bias value on a Btrieve operation code.

See also explicit record locks and wait lock.

null

Specifies an unknown column value, or specifies that the column value is not applicable.

null join

See join.

null key

A key column that can be a user-defined null character. For null keys, the MicroKernel does not include a record in
the index if each byte of the record’s key matches the null column value.

A key field that can be a user-defined character. The MicroKernel allows two types of null keys: any-segment (called a
manual key in earlier Btrieve versions) and all-segment (simply called a null key in earlier Btrieve versions).

An any-segment null key does not include a particular record in the index if the value of any key segment of that
record matches the null value.

An all-segment null key only excludes a particular record from the index if the value of all key segment of that record
matches the null value.

null value indexing

An index attribute that determines whether Scalable SQL includes those columns that contain the predefined null
value in the index. See also index attribute.

A key attribute that determines whether Btrieve includes those fields that contain the predefined null value in the
index. See also key attribute.

object-oriented data model

The data access method in which data is represented as objects that represent real world entities such as students,
courses, and grades. These objects consist of both data and data functions, such as creating or deleting objects.

one-to-one relationship

Occurs when one row can relate to only one instance of a row in another table.

one-to-many relationship

Occurs when one row can relate to many rows in another table.

Open mode

See file-level locking.

operand

An input value for a restriction clause, condition, expression, or scalar function. Depending on the context, an

operand may be the result of a previous operation.

An operand is also a value to which an operation is applied. See also condition, expression, restriction clause, and
scalar function.

operation

A specific action that manipulates a data file (such as Delete, Create, or Get Equal). An operation is performed when
an application calls one of the Btrieve functions.

operator

Part of a restriction clause, condition, or expression. The types of operators are Boolean operators, condition
operators (which include relational operators and range operators), and expression operators (which include
arithmetic and string operators). See also arithmetic operator, Boolean operator, condition operator, expression
operator, range operator, relational operator, and string operator.

orphan row

In a dependent table, a row with a foreign key value that does not have a corresponding parent key value.

outer join

See join.

outer query

The main query of a SQL statement that contains a subquery. See also correlated subquery and subquery.

owner name

See     file owner name.

page

A unit of a data file. A page is the smallest unit of storage that the MicroKernel moves between main memory and
disk. A page contains a multiple of 512 bytes (up to 4,096 bytes).

The MicroKernel uses the following types of pages:

• Data page—contains fixed-length records (or the fixed-length portions of variable-length records)

• Index page—contains key values and pointers to the associated records for those values (which reside on a
data page)

• Variable page—contains variable-length portions of records

See also data file, fixed-length record, key, and variablelength record.

Page Allocation Table (PAT)

Part of the MicroKernel’s internal implementation for tracking pages in a file. See also shadow paging.

page-level locking

A level of data locking that causes the MicroKernel to lock individual data pages during a transaction instead of
locking the entire file. This permits multiple users to access different pages in the data file from within a transaction. In
Scalable SQL, page-level locking is called cursor stability . See also Exclusive and transaction.

parameter

An item of information that a program, utility, or API may need in order to perform a particular operation. See also     
substitution variable.

parent row

In a parent table, a row whose primary key value currently matches a foreign key value. See also dependent row.

parent table

In a database with referential integrity (RI), a table containing a primary key referenced by a foreign key. See also     
dependent table.

parsing

The mechanism the SQL engine uses to analyze the SQL statements that are passed to it and determine what
internal operations it must perform to execute the SQL statement.

passive control

A type of concurrency control in which your task does not perform any type of locking. If another task modifies a
record since you originally fetched it, you must fetch the record again before you can perform an update or delete
operation. See also concurrency controls.

path

The components that uniquely identify a file or directory. For local files, these components might include a drive letter,
directory levels, and a file name. For network files accessed from a client, these components might include the server
name, volume, directory path, and file name.

peer-to-peer networks

Enable machines to access files that reside on other machines. Multiple users running applications on one machine
can access database files stored on another machine.

permanent mask

An edit mask that you store in the dictionary that becomes part of the column’s data definition. You can specify a
permanent mask using a SET MASK statement. See also default mask, edit mask, and temporary mask.

physical design

The third phase of database design that involves specifying data types, indexes, CREATE statements, and sizes of
the physical files representing the tables.

position block

A MicroKernel data file handle.

positioning

A record’s location relative to the locations of the records preceding and following it. The two types of positioning are
physical and logical. Physical positioning refers to the three relevant record locations in the data portion of a data file;
logical positioning refers to the three relevant record locations in the key index of a data file.

preallocation

A method for allocating a specific amount of disk space for a file when you create the file. This space is reserved for
future expansion of the file.

pre-imaging

Storing the image of a data file page before updating a record on that page. Pre-6.0 engines use preimaging to
provide recovery capabilities in case a file is damaged or a system failure occurs during an update to the file.

previous row

Based on the current sort path, the row that precedes the set of rows returned on the previous fetch operation for all
XQLFetch options except Option 0 (Fetch Current). If you use Option 0 to fetch multiple rows, the previous row for the
subsequent fetch operation is immediately adjacent to the current row. Normally, you use Option 0 to fetch only the
current row. See also current row, first row, last row, next row, and sort path.

primary file

The original part of a partitioned file before a Btrieve Extend operation was performed.

primary key

A column or group of columns whose column value (or collective column value) uniquely identifies each row in a
table. Primary keys must be unique, non-null indexes. See also      foreign key    and referential integrity (RI).

procedure

See stored procedure.

procedure owned cursor

A SQL cursor defined inside a stored procedure.

procedure owned variable

A SQL variable you define inside a stored procedure.

projection

See column list.

Public group

A special user group you can use to specify the minimum set of security rights every user has when accessing a
dictionary on which security is enabled. You cannot delete the Public group. All users are automatically members of
the Public group and cannot be deleted from it.

qualified column name

A column name preceded by a column qualifier. A qualified column name allows you to differentiate between column
names that are repeated in different tables. See also column name and column qualifier.

query

A request for information from a database. Through SQL, you use a SELECT statement to specify the query.

range

A column attribute that defines a range of valid values for a column.

range checking

See validation.

range operator

A type of condition operator that compares the value of an expression to a specified range of values. Examples of
range operators for SQL statements are CONTAINS and IS NULL. See also condition, condition operator, expression,
and restriction clause.

Read-Only

A file open mode that does not allow you to insert, update, or delete records. See also Accelerated, Exclusive, file
open mode, Normal, and Verify.

read-only view

A view in which you cannot insert, update, or delete rows.

record

A set of logically related data items in a MicroKernel data file. For example, a record might contain an employee’s
name, address, phone number, rate of pay, and so forth. Multiple records make up a data file.

record locking

A type of concurrency control that enables an application to lock the record it is accessing within a file. Other users
can read the record, but no other user can lock, update, or delete the record until the application that holds the lock
releases it.

reference

A foreign key referring to a primary key. See also      foreign key, primary key, and referential integrity (RI).

reference path

A particular set of references between dependent and parent tables. See also referential integrity (RI).

References right

A Scalable SQL security right that allows users or user groups to create foreign keys that refer to the primary key of a
table.

referential constraints

A set of rules that define the relationships between tables in a database.

referential integrity (RI)

The assurance that when a column (or group of columns) in one table refers to a column (or group of columns) in
another table, changes to those columns are synchronized. If you define RI on a bound database, the MicroKernel
enforces the database’s defined security, triggers, and referential integrity, regardless of the method (such as Btrieve
or Scalable SQL) you use to access the data. See also bound database.

relation

See table.

relational database

Related data that is systematically organized into a set of tables.

relational database management system (RDBMS)

Organizes and provides access to a relational database. A program for general-purpose data storage and retrieval.

relational data model

The data access method in which data is represented as collections of tables, rows, and columns. The relational
model insulates the developer from the underlying data structure and presents the data in a simple table format. See
also navigational data model and hierarchical data model.

relational operator

A type of condition operator that compares a column value with either another column value or a constant. The
relational operators are less than (<), greater than (>), equal to (=), less than or equal to (<=), greater than or equal to
(>=), and not equal to (!= or <>). See also condition, condition operator, and expression.

relational primitive

One of a group of lower-level Scalable SQL API functions that provide a relational link between a database
application and data files. Relational primitives let you perform relational database operations using function calls
from a standard programming language such as C, BASIC, COBOL, or Pascal.

relative path

A partial path that Scalable SQL and Btrieve append to a data file location in order to locate a data file. See also data
file location.

remote client

Two clients are remote clients relative to each other if they run under different MicroKernels. A given client can be
both local relative to some clients (those running under the same MicroKernel) and remote relative to other clients
(those running under different MicroKernels) at the same time.

repeating duplicatable

A key attribute that instructs the MicroKernel to store key values with the data and in the index. See also key attribute
and linked-duplicatable.

requester

A program that resides on a client machine and passes requests from a client application to a server-based engine.
See also    client.

requester interface

A program that resides on a client machine and passes requests from an application to a requester.

restrict

A form of the delete, insert, or update rule:

• The delete restrict rule prevents a row in a parent table from being deleted if that row is a parent row for a
foreign key in another table.

• The insert restrict rule prevents a row from being added to a dependent table if the foreign key value the row
contains does not have an equivalent primary key value in the applicable parent table.

• The update restrict rule prevents a row in a dependent table from being updated if the foreign key value that
row contains does not have an equivalent primary key value in the applicable parent table.

See also dependent table and parent table.

restricting rows

Limiting the number of rows with which you will work by setting conditions for specific columns. For example, you can
restrict rows in a mailing list to retrieve the rows for only one particular state.

restriction clause

Part of a SQL statement that defines one or more search criteria to qualify the data that the SQL statement affects. A
restriction clause defines either a restriction condition or a join condition. You can include a restriction clause in the
following places:

• The WHERE or HAVING clause of a SELECT statement or SELECT clause

• The WHERE clause of an UPDATE or DELETE statement

See also join condition and restriction condition.

restriction condition

Criteria specified in a restriction clause to compare an expression that references a column value to either a constant
or another expression that references a column value in the same table. See also expression, join condition, and
restriction clause.

result set

A set of rows retrieved from one or more tables or views during a query.

result table

See result set.

RI

See referential integrity (RI).

roll back

Aborting a transaction and undoing all the changes made to a file during the transaction, thus restoring the database
to the state it was in before the transaction began. See also commit and transaction.

roll forward

Recovering changes made to a data file between the time logging is initiated and a system failure occurs. See also
archival logging.

roll in

Writing to an original data file all the changes made to the corresponding temporary file during the continuous
operation backup period. When the backup is complete, the MicroKernel automatically updates the original file with
the changes and deletes the temporary file. See also continuous operation.

router

A program through which a client application communicates with a database or gateway. The router enables a logical
connection between a client and a database or gateway. Once this connection is established, the client application
uses the router to send SQL or Btrieve requests to the database or gateway and to receive results.

row

A set of logically associated columns in a view. For example, a row may contain some or all columns from a single
table. Alternatively, it may contain columns from several tables that are joined to form a view.

savepoint

In a SQL transaction, you can define additional markers called savepoints. Using savepoints you can undo changes
after a savepoint in a transaction and continue with additional changes before requesting the final commit or abort of
the entire transaction.

scalability

The ability of a product to operate in computing environments of varying capabilities. No change to source code or
relinking is necessary to scale from workstation to client/server operation.

Scalable SQL

Pervasive Software’s relational database that allows users to run applications designed to manage shared data files.

scalar function

One of a group of SQL functions you can use to perform an operation on a particular data type, such as returning the

length of a string, truncating a numeric value, or returning the day or hour value. You can specify scalar functions in
statements that allow computed columns in expressions.

scripting

A programming language for developing routines that you can execute directly or within an application. For example,
the scripting language in the Scalable SQL product is compatible with Visual Basic.

security

A means of protecting a database by limiting access to it. You can define data security using SQL statements or
Btrieve owner names. For example, you can allow a user to see only certain columns in a table, or you can allow the
user to see all the columns in a table but not update them.

security group

See user group.

Security right

A right that defines what operations a user can perform on a database. The Login and Create Table rights determine
whether the user can log in to the dictionary and create tables. The access rights determine the user’s ability to
access tables in a dictionary. The access rights are Select, Update, Insert, Delete, Alter, References, and All. See
also access right, All right, Alter right, Create Table right, Delete right,    Insert right, Login right, References right,
Select right, and Update right.

segmented

An index or key attribute that indicates whether the index or key is segmented (whether it consists of a group of
columns combined into a single index or key). See also index, index attribute, key, key attribute, segmented index,
and segmented key.

segmented index

An index consisting of multiple columns. The columns can be of different data types and need not be adjacent in the
table. See also index.

segmented key

A key consisting of multiple groups of bytes characterized by offset and length. Key segments can be of different
extended key types and do not have to be contiguous in the record. See also key.

select list

A list of select terms. See also select term.

Select right

A Scalable SQL security right that allows users or user groups to query tables for information.

select term

A column, computed column, or group aggregate function that a SELECT statement retrieves or computes.

self join

See join.

self-referencing table

A table that is its own parent table. In other words, the table contains a foreign key that references its primary key.
See also parent table and referential integrity (RI).

Sequenced Packet Exchange (SPX)

A Novell communication protocol that monitors network transmission to ensure successful delivery. SPX runs on top
of Novell’s Internetwork Packet Exchange (IPX) protocol.

server

A computer that is on a network and provides services to client applications.

server-based MicroKernel

The server-based version of the MicroKernel Database Engine.

See also MicroKernel Database Engine.

session

The period during which a task is logged in to a database. A task can create multiple login sessions by logging in
more than once, or the task can share the login session of another task. See also logger and sharer.

session cursor

A SQL cursor you define outside of a procedure.

session identifier

An integer value that identifies a Scalable SQL login session. The integer value is a value from 0 to the maximum
number of concurrent login sessions that Scalable SQL allows. See also session.

session variable

A SQL variable you define outside of a stored procedure.

shadow paging

In a data file, the process of changing a copy of a page (called a shadow page) instead of changing the current page.
When the changes are committed, the shadow page becomes the current page and the current page is ready for
reuse. See also Page Allocation Table (PAT).

sharer

A task that shares a logger’s login session. A sharer does not need to be logged in to share the logger’s login
session. However, the sharer can also have its own login session. See also logger and session.

sibling networks

Two or more equal networks branching off the same node in an internetwork.

significant blanks

Blanks that appear at the end of a string and that Scalable SQL treats as part of the data when displaying the string,
determining its size, or comparing it to another string.

Single Engine File Sharing (SEFS)

See file sharing.

sort file

See temporary sort file.

sort order

An index attribute that determines how Scalable SQL sorts index column values. By default, Scalable SQL sorts index
column values in ascending order (from smallest to largest).

A key attribute that determines how the MicroKernel sorts key values.

See also index attributekey attribute.

Sort order is also the order by which you sort a view when using an ORDER BY clause. You can sort the view by one
or more columns, and the columns can be either index columns or nonindex columns. For example, if you sort a view
in ascending order using a string column, the rows that contain a column value beginning with the letter A appear first
in the view.

sort path

The ordering path of the view, which the ORDER BY clause or the optimizer determines if you did not specify an
ORDER BY clause.

SPX

See Sequenced Packet Exchange (SPX).

SQL

See Structured Query Language (SQL).

SQL command

The initial keyword(s) in a SQL statement. For example, in the following SQL statement, SELECT is the SQL
command:

SELECT * FROM Faculty

See also clause, keyword, and SQL statement.

SQL-level functions

A development level that serves as a high-level interface between your application and the MicroKernel Database
Engine. The SQL-level functions allow your application to use SQL statements to create, access, and modify
relational database systems. You can invoke the SQL-level functions from a standard programming language, such
as C/C++, BASIC, COBOL, or Pascal. Examples of SQL-level functions are XQLLogin, XQLCompile, and XQLFetch.

SQL statement

A complete Scalable SQL request that contains a SQL command, any required values, and any required (or optional)
clauses. See also clause, keyword, and SQL command.

statement

See SQL statement.

stored procedure

A group of logically associated programming steps you can invoke with a single SQL statement. Once invoked, SQL
stored procedures are executed in their entirety without internal communication between a host language program
and the SQL engine.

stored view

A view whose definition you have placed in the data dictionary for later retrieval. In most statements, you can use the
name of a stored view in place of a table name.

string

A series of characters (as opposed to a number), or a category of data types used to store strings.

string operator

An expression operator you can apply to fixed-length string columns to form a computed string column. The string
operators are append (*), concatenate without spaces (+), and concatenate with spaces (++). See also expression
operator.

Structured Query Language (SQL)

A standard set of statements you can use to manage information stored in a database. For example, these
statements allow you to retrieve, insert, update, or delete data. The types of SQL statements are as follows:

• Data administration

• Data control

• Data definition

• Data manipulation

See also data administration statement, data control statement,    data definition statement, and data manipulation
statement.

subquery

A SELECT statement that is contained within the WHERE clause of a SELECT, UPDATE, or DELETE statement, or in
the HAVING clause of a SELECT statement. A subquery is also called an inner query or a nested query . See also

correlated subquery and outer query.

substitution variable

In a SQL statement, an identifier that instructs Scalable SQL to substitute a value in place of the identifier when
executing the statement. The symbol @ identifies a substitution variable in a SQL statement.

supervisor

The person responsible for the administration and maintenance of a network, a database, or both. A supervisor has
access rights to all volumes, directories, and files.

supplemental index

In Btrieve 5.x, an index added to a file after the file was created. In 5.x, you can delete a supplemental index, but you
cannot delete an index that was created when the file was created. In Btrieve 6.0 or later, supplemental indexes are
referred to as repeating duplicatable indexes .

symmetric multiprocessing (SMP)

SMP systems consist of multiple CPUs within a single machine that share a common address space. The operating
system can allocate processes and threads to the various processors. Typical SMP systems consist of two to six
CPUs.

SMP support in an application enables the application to use multiple processors. This requires that the application
be multi-threaded so that the different threads of the application can be executed on separate processors.

system catalog

See data dictionary.

system data

A set of bytes the MicroKernel can add to files for logging purposes. System data includes a non-duplicatable
(unique) key that the MicroKernel uses to track individual records for logging.

system-defined log key

A key the MicroKernel can add to files for transaction logging purposes. System keys are 8 bytes long and non-
duplicatable (unique). Using the Setup utility, you can configure the MicroKernel to add system data, including a
system-defined log key, to files upon creation. System-defined log keys are necessary for the MicroKernel to log files
that do not contain at least one unique (non-duplicatable) key.

system tables

In a data dictionary, tables that contain descriptions of the database. For example, these tables contain information
about your data, tables, views, and system security, as well as referential integrity (RI). Each system table is
associated with a data dictionary file. See also data dictionary and data dictionary file.

system transaction

A bundle of successful non-transactional operations and/or exclusive or concurrent transactions that the MicroKernel
uses to gain better performance and to aid data recovery. Unless a system failure occurs, system transactions are
transparent to clients. Unlike user transactions (exclusive or concurrent), users have no control over system
transactions; users cannot abort system transactions.

 Note: Do not confuse system transactions with exclusive or concurrent
transactions. “System transaction” is a term specific to data recovery. Throughout
this manual, the term “transaction” refers to an exclusive or concurrent
transaction (also known as a user transaction).

table

A collection of data formatted in rows, where each row consists of column    values. Vertical collections of column
values in the table form columns, and each column contains one type of information, such as salary or revenue. Each
row contains the same number of items and type of information as every other row in the table. The two types of
tables are    base    tables    and    views. See also base table, column, column value, row, and view.

table definition

A table description stored in a data dictionary. See also data dictionary.

task

An instance of an application. See also application.

Transmission Control Protocol (TCP)

A connection-oriented communication protocol that uses the Internet Protocol (IP) for packet delivery.

temporary mask

An edit mask that remains in effect until you define a new one for the column with XQLFormat, compile a different
SQL statement with the same cursor ID, or release the cursor ID. You create a temporary mask by placing the mask
in square brackets directly following a column name in a SELECT statement or by using the XQLFormat function.
See also default mask, edit mask, and temporary view.

temporary sort file

A temporary file that Scalable SQL builds if you sort a view by a column that is not defined as an index.

temporary file

A transient data file that improves performance for the duration of a task.

temporary view

A view that you do not name or store in the data dictionary. You create a temporary view using a SELECT statement,
and you define a stored view using a SELECT clause within a CREATE VIEW statement. See also view.

thread

A separate unit of execution within a program. See also multithreading.

thunking

Thunking is the transition from executing 32-bit code to executing 16-bit code, or from executing 16-bit code to
executing 32-bit code. The piece of code that makes the transition is called a thunk. This thunk is a mapping layer
that converts data to allow 32-bit code and 16-bit code to communicate with each other. A thunk allows applications to
use controls of another memory model without the application knowing the memory models are different.

transaction

A group of related operations that must be performed together and in a particular order to ensure logical data
integrity.

transaction atomicity

The assurance that the MicroKernel completes all operations of a user transaction. If the MicroKernel cannot
complete all operations, the MicroKernel rolls back all the operations so that the data files are in the same state as
before the transaction began.

transaction control

A type of concurrency control that instructs the MicroKernel to lock a file (or the modified pages of a file) that an
application opens or accesses within a Btrieve transaction. The file remains locked until the transaction ends or
aborts. Other applications can open and read from the file while it is locked but cannot perform write operations or
transactions on the file.

transaction durability

The assurance that the MicroKernel finishes writing to the transaction log when a client ends a transaction and before
the MicroKernel returns a successful status code to the client. Because a user transaction is not necessarily the last
element in a system transaction, following a system failure, the user transaction could be rolled back, even though
the MicroKernel returns Status Code 0 to the client for the End Transaction operation. The MicroKernel does not
guarantee transaction durability on files opened in Accelerated mode.

transaction log

One or more physical files, called log segments, that the MicroKernel uses to ensure transaction durability.

Transaction Tracking System (TTS)

A NetWare fault tolerance system that protects files from corruption by backing out incomplete transactions that result
from a failure in a network component. Pre-6.0 Btrieve uses TTS to protect data files on a NetWare server. TTS must
be active at the server, and the data files must be flagged as transactional.

Btrieve for NetWare 6.0 and later uses TTS somewhat differently. Applications can flag a file as transactional when
they want to signal the MicroKernel that the file's integrity must be guaranteed. However, the MicroKernel does not
actually use TTS to ensure integrity because TTS is not as fast as other means when used in conjunction with
concurrent transactions. Instead, when the MicroKernel notices the TTS flag, it forces pages to be written
chronologically (in order to ensure that Btrieve recovery mechanisms work properly).

Workstation engines disregard the TTS flag.

translation

Mapping characters in one character set to those in another. Translation is necessary for the database engine to
support string types other than the engine’s native character set.

triggers

Dictionary objects that define a specific action for the DBMS to take whenever modifications to a particular data file
take place. For example, you can define a trigger to call a stored procedure when an inventory quantity drops below a
specified minimum.

TTS

See also    transaction control and Transaction Tracking System (TTS).

tuple

See row.

unbound database

A database in which either the dictionary files are not bound or only some files are bound. An unbound database can
be named or unnamed. See also bound database and bound file.

uniqueness

An index attribute that determines whether multiple rows can have the same index column value.

A key attribute that determines whether multiple records can have the same key value.

See also index attribute.

See also key attribute.

Update right

A Scalable SQL security right that allows users or user groups to update information in specified columns or tables.

update rule

A referential constraint that specifies how to apply updates to dependent tables. The update rule is always restrict ,
which prevents the MicroKernel from updating a row in a dependent table if the foreign key value for that row does
not have an equivalent primary key value in the applicable parent table.

user

A person authorized to log in to a database when security is installed. If security is not installed, a user is any person
that logs in to the database.

user group

Multiple users defined as a set. All the users in a group have the same security rights.

validation

A column attribute that specifies criteria for the acceptability of data that you add to a database. Scalable SQL can
ensure that the data you enter is between specified minimum and maximum values (range checking), that it consists
of specified characters (character validation), or that it matches a specified set of values (value validation). See also
column attribute.

value

See    column value.

value validation

See      validation.

variable-length data type

A data type with a stored length that can vary from row to row within a table. See also fixed-length data type.

variablelength record

A record in a data file that contains a variablelength portion and a fixed-length portion. The fixed-length portions must
be the same size in all the records in a given file, but the variablelength portions may vary in size. Consequently, the
overall lengths of variablelength records may vary. See also fixed-length record.

variable page

See    page.

Variable-Tail Allocation Table (VAT)

An array of pointers to the variable-length portion of Btrieve records. The VAT is implemented as a linked list.

Verify

A file open mode that causes the operating system to verify all write operations to a file. See also Accelerated,
Exclusive, file open mode, Normal, and Read-Only.

view

A selection of rows and columns from one or more tables. A view can be treated as if all the data exists in a single
table. The columns in a view can be from the same table or from different tables that have been joined together. You
can create a view for a single use, or you can name and store it in the data dictionary for later retrieval. See also join
and table.

virtual column

See computed column.

virtual table

A view or relation whose rows and columns do not have a one-to-one correspondence with base rows and columns,
due to a join, aggregate, computed field, etc.

wait lock

A type of explicit record lock in which Scalable SQL and Btrieve do not return control to your task until they have
obtained the lock on the record you requested.

In Scalable SQL, you request a wait lock by specifying a lock bias value on an XQLFetch call.

In Btrieve, you request a wait lock by specifying a lock bias value in operation calls.

See also explicit record locks and    no-wait lock.

workstation MicroKernel

A version of the MicroKernel that runs as a standalone engine. All processing is performed on the workstation, and
access to all files is through operating system calls. The operating system calls are either executed locally or
redirected to the server. See also Btrieve and server-based MicroKernel.

