
Architecture of Pervasive.SQL
There are two configurations for Pervasive.SQL, depending on whether the underlying engine configuration is a
client/server or a workstation engine configuration.

ODBC With a Client/Server Configuration
ODBC Interface uses two different client/server configurations. In these configurations, IBM PCs and compatibles
running Windows, Windows 95, or Windows NT operating systems communicate with MicroKernel Database Engine
database servers across a network such as Windows NT or NetWare. The two configurations differ in where the SQL
statements are actually processed, as follows:

• Applications can access data in a MicroKernel database through Pervasive.SQL, which makes calls across
the network to the Pervasive.SQL client/server engine. Pervasive.SQL communicates over the network
through the Scalable SQL client Requester. SQL statement processing occurs on the server. Of the different
ODBC Interface configurations, this approach uses the smallest amount of client-side CPU, disk, and
memory resources. Figure 1-1 illustrates this configuration.

• Applications can also access server-based data in a MicroKernel database through ODBC Interface using
the Pervasive.SQL workstation engine. This engine parses SQL statements locally, but accesses data in a
MicroKernel database on the server using the Btrieve client Requester. Figure 1-2 illustrates this
configuration.

Figure 1-1
Application Interface Architecture Using a Pervasive.SQL Server Engine

Figure 1-2
Application Interface Architecture Using a Pervasive.SQL Workstation Engine

ODBC and Workstation Engine Configurations

In workstation engine configurations, IBM PCs and compatibles running Windows, Windows 95, or Windows NT
communicate with a MicroKernel engine running on the same machine. The ODBC Interface enables applications to
access data in a MicroKernel database.
Figure 1-3 shows the application interface architecture for a workstation engine configuration:

Figure 1-3
Application Interface Architecture for Workstation Engines

Both the client/server and workstation engines rely on the underlying MicroKernel technology to provide fast, reliable
access to data stored using the MicroKernel.

ODBC Interfaces for Windows, Windows 9X, and Windows
NT
The ODBC Interface v2.5 for Windows NT/Windows 9X (W32BTINT.DLL) supports both 16- and 32-bit Windows NT
and Windows 9X applications. The ODBC Driver Manager for Windows NT and Windows 9X is called ODBC32.DLL.
16-bit applications are supported via a thunking layer that is supplied as part of ODBC.
Use the ODBC Interface v2.5 for Windows (WINBTINT.DLL) for 16-bit Windows applications. The ODBC Driver
Manager for Windows is called ODBC.DLL.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Borland Delphi
With the ODBC Interface 2.5, you must recreate Delphi aliases to ODBC data sources, because of a problem in the
way Delphi handles ODBC data sources. When using the Delphi Refresh call to refresh the displayed rowset contents
of a table in a grid, duplicate copies of some rows may appear. Future releases of Delphi should contain a fix.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Cognos Impromptu
When Impromptu performs an SQLDescribeCol call to determine the column name for a created column, the name is
truncated at 20 characters. If the returned name needs a larger buffer, a “data truncated” error is returned. A
workaround is to add the following line to the Cognos system file (COGDMOD.INI):

[Maximum Identifiers Name Length].dll=256

This change allows Impromtu to pass up to 256 characters to the ODBC Interface for retrieval. An alternate
workaround is to edit the created name in the Impromtu expression editor.

Cognos Impromptu 3.5 is a 16-bit application and limits users to using only 16-bit ODBC data sources in 32-bit
Windows environments. Cognos Impromptu 4.0 is a 32-bit application.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Compiling C/C++ Applications

To compile ODBC.C, perform the following steps:

1. Refer to your compiler’s documentation for details about the particular compiler you are using.

2. Set up your project as a standard input/output application (a QuickWin application under Microsoft Visual C+
+, or an EasyWin application under Borland C++).

3. Choose the Large memory model. Although ODBC.C supports all memory models, Windows protected-
mode programs operate best using the large memory model.

Sample make files are included for Microsoft Visual C++ v1.52 (Win16) and v4.0 (Win32) and for Watcom C v10.5
(Win16 and Win32 samples). These files are found in suitably named subdirectories under the samples directory. In
the subdirectory, you may find a Readme file containing further instructions specific to that compiler.

Linking C/C++ Applications
Include the ODBC import library file, ODBC.LIB, in the list of libraries to be compiled into your application.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Configuring ODBC Interface
The following sections describe how to configure ODBC Interface and how to configure data sources that ODBC-
enabled applications can use to access the information stored in your MicroKernel databases.

Configuration Issues
In Win16 environments, the ODBC Interface installs its configuration information in the following files:

• BTI.INI, the Pervasive Software product configuration information file

• ODBCINST.INI, the shared ODBC driver configuration information file

• ODBC.INI, the shared data source configuration information file

In Windows 9X and Windows NT, shared configuration information regarding ODBC drivers and data sources is
stored in the Registry.

Pervasive.SQL

In Windows 9X and Windows NT client environments, the Microsoft Client for NetWare does not support the Novell
APIs used by the Pervasive.SQL Database Names browser. If you are using the Microsoft Client for NetWare,
Pervasive.SQL database names do not appear in the database names list box. An edit box has been added to the
ODBC Administrator so users can target a specific Pervasive.SQL database name. (The Novell Client32 for Windows
95/Windows NT provides the necessary support and a list of available Pervasive.SQL remote database names
appears in the ODBC Administrator Data Source Name setup dialog.)

Scalable SQL

NetWare

If you are using Scalable SQL v3.01 for NetWare and want to run the 32-bit ODBC driver, you must have the Scalable
SQL v3.01.100 update. This patch includes an updated NetWare communication component and a 32-bit workstation
interface.

On NetWare servers, you might encounter problems with the buffer size being too small when calling SQLTables. This
problem commonly appears in list boxes that do not show all the tables that exist in the viewed database. To correct
this problem, use the Scalable SQL Setup utility to increase either the Maximum Message Length (v3.01) or the
Communications Buffer Size (v4.0).

Scalable SQL 4

If you are using Scalable SQL v4.x, the ODBC driver is unable to create ODBC data sources using long path names
when connecting to Scalable SQL v4.x remote tables.

Applications

When attempting to update a table using a third-party front-end application (such as Microsoft Access) via ODBC
Interface, you can receive Status Code 849. To correct this problem, use the Setup utility to increase the
Pervasive.SQL engine’s Communications Buffer Size.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

ODBC Interface Reference - Contents

About This Manual

Who Should Read This Manual
Manual Organization
Conventions

1 ODBC Overview

What is ODBC?
Supported Versions
New Features in ODBC Interface 2.04 and 2.5

Features Added
Architecture of Scalable SQL

ODBC With a Client/Server Configuration
ODBC and Workstation Engine Configurations
ODBC Interfaces for Windows, Windows 95, and Windows NT

ODBC Conformance Levels
SQL Grammar Conformance
API Conformance

2 Getting Started

Hardware and Software Requirements
ODBC Interface
Network Software

Installing on Windows NT or Windows 95
Installing on Windows 3.x
Configuring ODBC Interface

Configuration Issues
Pervasive.SQL
Scalable SQL
Applications

Specifying your Configuration
Windows 3.x Applications on Windows 95/NT Systems

Thunking
Using a local Btrieve workstation engine
Selecting Your Remote Access Path

Running Applications on the Server (Windows NT only)
Configuring Data Sources

Adding a Data Source
Modifying a Data Source
Deleting a Data Source
Connecting to an ODBC Data Source
ODBC Driver Options

Named Databases
Login Scripts
Scalable SQL-style Null Handling

ODBC and the Web

3 Creating DDFs for Btrieve Files

Creating Default DDFs
Defining a New Database
Modifying DDFs to Describe Existing Data Files

Determining the Table Definition of an Existing File
Step 1: Determine Fixed Record Length and Whether a Variable-length Field Exists
Step 2: Determine Known Fields and Indexes from the Btrieve File
Step 3: Complete the Non-Indexed Field Definitions
Step 4: Translate Index and Field Information to a Create Table Statement

How to Add a Table Definition to the Database
Connecting to a data source
Creating the Table Definition
Verifying That the Table Definition is Correct

4 ODBC SQL Grammar

SQL Preprocessor
Variations From the ODBC SQL Grammar

Variable Length Fields as the Last Field in Views and Tables
Qualify Index Names with Table Names
Scalar Functions

Data Types
Data Type Support is Dependent on the SQL Engine Version
ODBC and Data Type Masks
Nullability Varies By Data Type
Implementation of the AUTOINC Data Type In ODBC
Using the NOTE and LVAR Data Types

5 Programming via ODBC

Development Software Requirements
Data Type Differences

String Types
SQLGetInfo Return Values
SQLDriverConnect Connection Strings

Named Database Example
DDF Path Example
DATAPATH Keyword
LOGINSCRIPT Keyword
NULLENABLED Keyword
ACCESSFRIENDLY Keyword
DATEFORMAT Keyword
CREATEDDF Keyword
Invoking Driver-specific Features using SQLDriverConnect

Basic set-up
Providing a Database Name
Invoking Other Features

ODBC Procedure (Stored Statement) Support
Using SQLRowCount and SQLMoreResults in Procedure Processing
Limitations

Performing Bulk Operations Using Parameter Arrays

Operation
Error Handling
Limitations

Using SQLSetPos
Using Bookmarks

Controlling Bookmark Memory Usage
Programming With Bookmarks

Positioned Updates and Deletes Using SQL Statements
Limitations

SQLExtendedFetch With Relative and Absolute Positioning
OEM Character Translation
Supplying Btrieve Owner Names
General Programming Notes

PRIMARY KEY not supported with Btrieve
INI settings for debugging
Optimizing Order By Client/Server Query Performance
Thunking with Pervasive ODBC 2.04

Recommended Thunking Path
Thunking to Scalable SQL without the 32-bit ODBC Driver Manager
Thunking to Btrieve without the 32-bit ODBC Driver Manager

Thunking with Pervasive ODBC 2.5
Recommended Thunking Path
Thunking to Scalable SQL without the 32-bit ODBC Driver Manager
Thunking to Btrieve without the 32-bit ODBC Driver Manager

A Extensions to ODBC

Performing Scalable SQL Operations Without ODBC Equivalents
Using SQLSetConnectOption and SQLGetConnectOption
Calling SQLGetConnectOption

Parameter Summary
Error Conditions

Calling SQLSetConnectOption
Parameter Summary
Error Conditions

Option 1000: Giving the ODBC Interface a List of Owner Names
Parameter Summary
Passing a List of Owner Names
Error Conditions

Option 1001: Retrieving Version Information
Parameter Summary
Retrieving Version Information
Error Conditions

Option 1002: Identifying the Current Session ID
Parameter Summary
Retrieving Version Information
Error Conditions

Option 1003: Setting or Removing a Callback Function (Windows Only)
Parameter Summary
Installing or Removing a Callback Function
Error Conditions

Option 1004: Converting Data
Parameter Summary
Converting Data

Error Conditions
Option 1005: Validate Mask

Parameter Summary
Validating a Mask
Error Conditions

Option 1006: Get Default Mask
Parameter Summary
Obtaining the Default Mask
Error Conditions

Option 1007: Validate Values
Parameter Summary
Validating a Value
Error Conditions

B Sample Program

Interface Modules
SQL.H and SQLEXT.H
ODBC.LIB
ODBC32.LIB

Compiling C/C++ Applications
Linking C/C++ Applications

Sample Program

C Programming Considerations

Borland Delphi
Cognos Impromptu
Crystal Reports
Microsoft Visual BASIC
Microsoft Access

Designing for Access
Compatibility Problems
#Name Problems
#Deleted Problems
Updating Data
Inserting Data
Exporting Data
Low Memory Condition

Procedure
Status Code 833 in ORDER BY Clauses

Powersoft PowerBuilder
Managing Rowsets

Setting the BLOCK Parameter

Conventions
Unless otherwise noted, command syntax and code examples use the following conventions:

 Case Commands and reserved words typically appear in uppercase
letters. Unless the manual states otherwise, you can enter
these items using uppercase, lowercase, or both. For example,
you can type MYPROG, myprog, or MYprog.

 [] Square brackets enclose optional information, as in [log_name
]. If information is not enclosed in square brackets, it is
required.

 | A vertical bar indicates a choice of information to enter, as in
[filename | @filename].

 < > Angle brackets enclose multiple choices for a required item, as
in /D=<5|6|7> .

 variable Words appearing in italics are variables that you must replace
with appropriate values, as in filename .

 ... An ellipsis following information indicates you can repeat the
information more than one time, as in [parameter ...].

 ::= The symbol ::= means one item is defined in terms of another.
For example, a::=b means the item a is defined in terms of b .

 

Creating DDFs for Btrieve Files
This section describes how to create DDFs for existing Btrieve files using ODBC. If you have existing Btrieve files,
you cannot connect to them using ODBC unless you have created appropriate Data Dictionary Files (DDFs) for them.
Without DDFs, ODBC does not know what tables, columns, and fields are contained in the data files.

 Note: Scalable SQL data files already have DDFs created, so you do not need to
read this section if you wish to connect to a Scalable SQL database.

You must perform two major steps to build proper DDFs for your Btrieve files. First, you must create a set of default
(“empty”) DDFs. Then you must either define a brand new database and populate the DDFs with those definitions, or
else analyze a set of existing Btrieve files and modify the DDFs to correctly describe the structure of those files. DDF
Ease can assist you with both of these tasks.

This section requires a basic understanding of SQL and possibly some programming expertise. It consists of the
following topics:

• “Creating Default DDFs”

• “Defining a New Database”

• “Modifying DDFs to Describe Existing Data Files”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Creating Default DDFs
There are several ways to create a set of default DDFs. The first way is to follow the instructions for “Adding a Data
Source” . Creating a new ODBC data source causes a default set of DDFs to be created, if DDFs do not already exist
in the specified DDF Directory .

You can also use DDF Ease to create DDFs. When you create a new database using DDF Ease, you create a set of
default DDFs. See the User’s Guide for more information on using DDF Ease.

The other ways to create a set of DDFs require that you have installed Scalable SQL or Pervasive.SQL. If you have
Scalable SQL or Pervasive.SQL, you can create the database using the "CREATE DICTIONARY" SQL statement.   
However, to issue this call you must already be logged into an existing database, so there may be situations where
you cannot use it.

 Note: You can run SQLScope, a utility included with Scalable SQL and
Pervasive.SQL, and log into the ‘demodata’ sample database, also included with
these products.    After logging into the ‘demodata’ database, you can create a new
database with the “CREATE DICTIONARY” SQL statement. For more
information on SQL statements, see the documentation provided with your
software.

Alternatively, you can use the xDD API as documented in the Pervasive.SQL Programmer’s Reference .

After creating the empty database, you should connect to it using an ODBC application, such as Microsoft’s ODBC
Test. You can also connect using DDF Ease. For further information about DDF Ease, refer to the User’s Guide . If
you have not defined a data source using the ODBC Administrator, then use the function SQLDriverConnect. If the
new empty database is defined in the ODBC Administrator, then you can use the function SQLConnect.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Crystal Reports
Crystal Reports does not display TIME data fields correctly.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Data Types
ODBC Interface maps Scalable SQL and Btrieve data types to ODBC SQL data types. The following table lists
Pervasive.SQL data types and shows the corresponding ODBC data types to which they are mapped.

Data Type Support is Dependent on the SQL Engine Version
The ODBC Interface supports all the data types supported by the SQL engine in use on a given connection. When
using the Scalable SQL v3.01 engine as the back end, all Btrieve data types are supported except for UNSIGNED
BINARY; with Scalable SQL v4.0 and Pervasive.SQL back ends, all Btrieve data types are supported. The Scalable
SQL v4.0 and Pervasive.SQLengine supports several new data types in addition to those supported by the v3.01
engine.

ODBC and Data Type Masks
The Microsoft ODBC specification contains no concept of a display mask. When accessing data via ODBC, the
application must take on the burden of displaying the data to meet end user expectations. For example, Microsoft
Access neither sends nor receives masked data. Instead, as an ODBC application, it handles any display mask at the
table view layer.

The ability to create a display mask for data returned by ODBC depends on the application that is formatting the data
for screen or print presentation. Many applications, such as Microsoft Access, allow you to define a display mask for a
column. Just keep in mind the mask only applies to display and is never communicated to the underlying database.

Nullability Varies By Data Type
Some Pervasive.SQL data types are not nullable. This means, for example, that if you use a conditional clause such
as WHERE COL1 IS NULL and COL1 is a non-nullable type, the test evaluates to false. Non-nullable types should be
tested for specific values or ranges of values instead of using IS NULL or IS NOT NULL in WHERE and HAVING
clauses.

Table 4-2
Data type Characteristics

Pervasive.SQL Data
Type

ODBC Data Type CREATE TABLE Parameters Nullabl
e?

 AUTOINC(2) SQL_SMALLINT Use as shown in column 1 No

 AUTOINC(4) SQL_INTEGER Use as shown in column 1 No

 BFLOAT(4) SQL_REAL Use as shown in column 1 No

 BFLOAT(8) SQL_DOUBLE Use as shown in column 1 No

 BIT SQL_BIT N/A No

 CURRENCY**1 SQL_BIGINT Use as shown in column 1 Yes

 LOGICAL(1)
LOGICAL(2)

SQL_BIT
SQL_SMALLINT

Use as shown in column 1 No

 CHAR (STRING in
Btrieve)

SQL_CHAR Max Length Yes

 DATE SQL_DATE N/A Yes

 DECIMAL SQL_DECIMAL Precision, Scale Yes

 FLOAT(4) SQL_REAL Use as shown in column 1 No

 FLOAT(8) SQL_FLOAT
or SQL_DOUBLE

Use as shown in column 1 No

 INT(1) SQL_TINYINT Use as shown in column 1 No

 INT(2) SQL_SMALLINT Use as shown in column 1 No

 INT(4) SQL_INTEGER Use as shown in column 1 No

 INT(8)* SQL_BIGINT Use as shown in column 1 No

 LSTRING SQL_VARCHAR Max Length Yes

 LVAR SQL_LONGVARBINARY Max Length No

 MONEY SQL_DECIMAL Precision Yes

 NOTE SQL_LONGVARCHAR Max Length No

 NUMERIC SQL_NUMERIC Precision, Scale Yes

 NUMERICSA
(NUMERIC SIGNED
ASCII in Btrieve)

SQL_NUMERIC Precision, Scale Yes

 NUMERICSTS
(NUMERIC SIGNED
TRAILING SEPARATE in
Btrieve)

SQL_NUMERIC Precision, Scale Yes

 TIME SQL_TIME N/A No

 TIMESTAMP* SQL_TIMESTAMP Timestamp precision Yes

 UNSIGNED(1)* SQL_TINYINT Use as shown in column 1 No

 UNSIGNED(2)* SQL_SMALLINT Use as shown in column 1 No

 UNSIGNED(4)* SQL_INTEGER Use as shown in column 1 No

 UNSIGNED(8)* SQL_BIGINT Use as shown in column 1 No

 ZSTRING SQL_VARCHAR Max Length Yes

    **1 Types marked with an asterisk in this table are available only on connections supported by a Scalable SQL v4.0 or Pervasive.SQL engine.

 Note: All conversions in Appendix D of the Microsoft ODBC 2.0 Programmer's
Reference are supported for the ODBC SQL data types listed in this table.

Implementation of the AUTOINC Data Type In ODBC
Although AUTOINC is mapped to the SQL_INTEGER and SQL_SMALLINT data types, AUTOINC fields require
special handling under Pervasive.SQL with regard to INSERT and UPDATE statements. On insert, a zero value
causes Pervasive.SQL to insert a unique value in the row for that field. A non-zero value is inserted as is, unless it
causes a duplicate value to appear in that field in the table. Pervasive.SQL only inserts a unique value for the
AUTOINC field if it is defined as a key.

Although treated as a signed INTEGER, AUTOINC types collate as absolute values, acting in a way as a 15- or 31-bit

unsigned INTEGER for purposes of collation. Therefore, a database user can use negative values as a bit-flag on the
rows for selection purposes. To change the value to a negative value, use the UPDATE statement.

Using the NOTE and LVAR Data Types
Pervasive.SQL allows only a single field per table or view of type NOTE or LVAR, and that field must always be the
last field defined in the table in CREATE TABLE statements and the last field listed in SELECT field lists.

Defining a New Database
If you are not trying to connect to an existing Btrieve file, then you can simply use an ODBC application (such as DDF
Ease or Microsoft’s ODBC Test (32-bit)) to execute CREATE statements to build the new database. Refer to the
online or printed document SQL Language Reference for more information on CREATE.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Development Software Requirements
Programming to the ODBC API requires the following software:

• The ODBC Software Development Kit v2.10 for Win16 development, or v2.5 for Win32 development,
available from Microsoft Corporation.

• A C or C++ compiler such as Watcom C/C++, Microsoft Visual C++, Symantec C++, or Borland C++. For the
ODBC Interface for Windows NT/Windows 9X, the compiler must be capable of developing applications
targeted to the Windows NT or Windows 95 environment.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Extensions to ODBC
This appendix describes using the ODBC Interface to perform certain Pervasive.SQL operations that do not have
direct equivalents in the Open Database Connectivity Applications Programming Interface (ODBC API). The following
topics are covered in this appendix:

• “Using SQLSetConnectOption and SQLGetConnectOption”

• “Calling SQLGetConnectOption”

• “Calling SQLSetConnectOption”

• “Option 1000: Giving the ODBC Interface a List of Owner Names”

• “Option 1001: Retrieving Version Information”

• “Option 1002: Identifying the Current Session ID”

• “Option 1003: Setting or Removing a Callback Function (Windows Only)”

• “Option 1004: Converting Data”

• “Option 1005: Validate Mask”

• “Option 1006: Get Default Mask”

• “Option 1007: Validate Values”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

General Programming Notes
This section provides information that may be useful in general when programming with ODBC Interface.

PRIMARY KEY not supported with Btrieve
ODBC 2.5 only supports the PRIMARY KEY keyword if you are using Pervasive.SQL and are logged into a named
database.

If you attempt to use this keyword only with the Btrieve engine, Status Code 877 is generated.    This limitation is fully
explained in the SQL Language Reference .

INI settings for debugging
The following excerpt from BTI.INI shows the settings that can be used to generate a trace log for debugging ODBC
operations:

[ODBC Interface]

ShowParserOutput=1

ShowParamsSent=1

LogFileName=c:\odbc.trc

ShowGetDataReturns=1

ShowCvtMaskFailures=1

ShowCvtMaskSuccesses=1

ShowConnects=1

The log file, as specified by LogFileName, contains a trace of the actual SQL statements that are sent to the engine.

 Note: There is system overhead associated with these trace settings. They can be
turned off by inserting a semi-colon “;” at the front of the line.

Optimizing “Order By” Client/Server Query Performance
When connecting as a Btrieve client to a remote Btrieve server, the ODBC Interface relies on included SQL engine
components to process SQL statements.

When a query contains an order by clause using a non-indexed column, the engine creates a temporary external sort
file. The ODBC Interface creates this file at the "external sort path" location, using the available Btrieve engine.

The external sort path is configured as follows:

For 32-bit applications, in the Win32 registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Pervasive Software\Scalable SQL Engine\Version 3.01\Workstation
Edition\Settings\external sort path = "D:\Winnt"

For 16-bit applications, in the BTI.INI file (located in the C:\WINDOWS directory):

[Scalable SQL Engine]

external sort path=D:\WINNT

The default location for the external sort path is the client machine's C:\WINDOWS directory.

The following query requires an external sort file since the order by column (“state”) is not indexed.

select * from patients order by state [from the ODBC ‘demodata’ sample]

If no Btrieve engine is available locally, the above query will return Status Code 234 “Scalable SQL cannot create an
external sort file.”

If a local Btrieve engine is available on the client, then the local Btrieve engine creates the external sort file.

To correct the Status Code 234 and to ensure optimum performance when executing order by queries using non-
index columns, you should change the external sort path directory to the location of the remote Btrieve server engine,
by using a mapped drive to the server volume, as shown by drive “L:” in the example below. (In this usage, UNC
paths are not supported).

In the Win32 registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Pervasive Software\Scalable SQL Engine\Version 3.01\Workstation
Edition\Settings\external sort path = "L:\Winnt"

In the BTI.INI (located in the C:\WINDOWS directory):

[Scalable SQL Engine]

external sort path=L:\WINNT

Directing the external sort path to the same location as the Btrieve server can increase order by query performance
by 100%.

Remember that you can achieve the best performance by adding an index to all columns that are named in an order
by query, thus eliminating the need for an external sort file.

For example, the following query against the sample database does not require an external sort file because the
column “Last^Name” is indexed.

select * from patients order by Last^Name

Thunking with Pervasive ODBC 2.04
Pervasive ODBC provides several execution paths for thunking. The recommended path, thunking at the Microsoft
ODBC Driver Manager level, is described below. Also described below are alternate paths that permit thunking to
occur.

Recommended Thunking Path

The recommended thunking path requires installation of both Microsoft drivers, 16-bit and 32-bit. If both drivers are
properly installed, then thunking occurs automatically by default and you do not need to change any configuration
attributes.

Figure 5-1
ODBC 2.04 Thunking through the Driver Manager

Thunking to Pervasive.SQL without the 32-bit ODBC Driver Manager
If you cannot or do not wish to install Microsoft ODBC-32, and you wish to use the SQL engine provided in
Pervasive.SQL, you can specify thunking without the Microsoft ODBC-32 components. The following settings must be
specified in your BTI.INI file:
[Scalable SQL]

local=no

requester=no

thunk=yes

In the diagram below, note that component attributes are controlled by Registry keys from wssql32.dll to the bottom of
the diagram. See “Windows 3.x Applications on Windows 9X/NT Systems” on page 2-12 for instructions on how to
specify the path to your selected target engine.

Figure 5-2
ODBC 2.04 SQL Thunking without 32-bit Driver Manager

Thunking to Btrieve without the 32-bit ODBC Driver Manager
If you cannot or do not wish to install Microsoft ODBC-32, and you do not wish to use the SQL engine provided in
Pervasive.SQL, you can specify thunking without the Microsoft ODBC-32 components. The following settings must be
specified in your BTI.INI file:
[Scalable SQL]

local=yes

requester=no

thunk=no

[Btrieve] (BTRV 6.15 component)

local=no

requester=no

Thunk=yes

[Microkernel Router] (BTRV 7.0 / SSQL 4 component)

local=no

requester=no

thunk=yes

In the following diagram, note that component attributes are controlled by Registry keys from wbtrv32.dll to the
bottom of the diagram. See “Windows 3.x Applications on Windows 9X/NT Systems” on page 2-12 for instructions on
how to specify the path to your selected target engine.

Figure 5-3
ODBC 2.04 Btrieve Thunking without the 32-bit Driver Manager

Thunking with Pervasive ODBC 2.5
Pervasive ODBC provides several execution paths for thunking. The recommended path, thunking at the Microsoft
ODBC Driver Manager level, is described below. Also described below are alternate paths that permit thunking to
occur.

Recommended Thunking Path

The recommended thunking path requires installation of both Microsoft drivers, 16-bit and 32-bit. If both drivers are
properly installed, then thunking occurs automatically by default and you do not need to change any configuration
attributes.

Figure 5-4
ODBC 2.5 Thunking through the ODBC Driver Managers

Thunking to Pervasive.SQL without the 32-bit ODBC Driver Manager
If you cannot or do not wish to install Microsoft ODBC-32, and you wish to use the SQL engine provided in
Pervasive.SQL, you can specify thunking without the Microsoft ODBC-32 components. The following settings must be
specified in your BTI.INI file:
[Scalable SQL]

local=no

requester=no

thunk=yes

In the diagram below, note that component attributes are controlled by Registry keys from w3sifxxx.dll to the bottom
of the diagram. See “Windows 3.x Applications on Windows 9X/NT Systems” on page 2-12 for instructions on how to
specify the path to your selected target engine.

Figure 5-5
ODBC 2.5 SQL Thunking without the 32-bit Driver Manager

Thunking to Btrieve without the 32-bit ODBC Driver Manager
If you cannot or do not wish to install Microsoft ODBC-32, and you do not wish to use the SQL engine provided in
Pervasive.SQL, you can specify thunking without the Microsoft ODBC-32 components. The following settings must be
specified in your BTI.INI file:
[Scalable SQL]

local=yes

requester=no

thunk=no

[Btrieve] (BTRV 6.15 component)

local=no

requester=no

Thunk=yes

[Microkernel Router] (BTRV 7.0 / SSQL 4 component)

local=no

requester=no

thunk=yes

In the diagram below, note that component attributes are controlled by Registry keys from w3mifxxx.dll to the bottom
of the diagram. See “Windows 3.x Applications on Windows 9X/NT Systems” on page 2-12 for instructions on how to
specify the path to your selected target engine.

Figure 5-6
ODBC 2.5 Btrieve Thunking without the 32-bit Driver Manager

Getting Started
This chapter describes using the Open Database Connectivity (ODBC) Application Programming Interface via the
ODBC Interface, an alternative API for Pervasive.SQL. The following topics are covered in this chapter:

• “Hardware and Software Requirements”

• “Installing on Windows NT or Windows 9X”

• “Installing on Windows 3.x”

• “Configuring ODBC Interface”

• “Specifying your Configuration”

• “Configuring Data Sources”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Hardware and Software Requirements
This section describes the hardware and software that the ODBC Interface requires.

ODBC Interface
The ODBC Interface requires the following hardware:

• An 80386 or higher microprocessor.

• At least 8 MB of RAM (12 MB RAM recommended) for the Win16 ODBC Interface.

• At least 16 MB of RAM (20 MB RAM recommended) for the Win32 ODBC Interface.

• A fixed disk drive and 5 MB of hard disk space for a complete installation.

The ODBC Interface running on DOS or Windows 3.x (16-bit) requires the following software:

• PC-DOS or MS-DOS v5.0 (or later).

• Windows 3.1 or later.

• For client/server engine configurations, one of the following:

• Btrieve server engine 6.15 or later for NetWare or Windows NT

• Scalable SQL server engine 3.01 or later for NetWare or Windows NT

• Scalable SQL Windows NT 3.01 OEM release

• Scalable SQL 3.01 or later for NetWare or Windows NT

• Pervasive.SQL 7 or later (server) for NetWare or Windows NT

• For workstation engine configurations, one of the following:

• Btrieve 6.15 for Windows or Windows 9X/NT

• Scalable SQL workstation engine 3.01

• Scalable SQL server engine 4.0 or later for Windows NT, configured for use as a workstation
engine on Windows NT

• Pervasive.SQL 7 or later (workstation) for Windows 9X or Windows NT

The ODBC Interface running on Windows NT or Windows 9X (Win32) requires the following software:

• Windows NT 4.0 or Windows 9X.

• If you are using a client/server configuration, you must have the following installed:

• Btrieve 6.15 client Requester, Scalable SQL 3.01 or later client Requester, or Pervasive.SQL client
Requester(s), on the same machine where you wish to install the ODBC Interface.

• Btrieve 6.15 server engine, Scalable SQL 3.01 or later server engine, or Pervasive.SQL server
engine(s), accessible over the network.

• For workstation engine configurations, Scalable SQL 3.01 or 4.0 for Windows NT/Windows 95 or Btrieve

6.15 for Windows NT/Windows 95 or Pervasive.SQL Workstation.

Network Software
In client/server configurations, a network is required to connect the client machine running the application using the
ODBC Interface with its database server.

With these configurations, the ODBC Interface and Pervasive.SQL use a common network interface. You can use the
ODBC Interface on any machine that is capable of a connection (for example, when using SQLScope or the
Pervasive.SQL 4.0 Monitor utility) from a computer running Windows v3.x, Windows 9X, or Windows NT to a
Pervasive.SQL database server engine running on a network server.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Installing on Windows 3.x
This section describes the steps to follow in order to install ODBC Interface on Windows 3.1 or Windows for
Workgroups.

 Note: ODBC Interface (16-bit) is provided on the CD with Pervasive.SQL
Server, and it is included in the Typical client installation process. You only need
to install ODBC Interface separately if:

you chose a Custom client install and did not install ODBC Interface, or
you chose a Minimum client install, or
you do not have Pervasive.SQL, and/or you have purchased an ODBC Interface
license or upgrade.

Customers using older versions of Pervasive products can obtain ODBC Interface on diskette. You may also use the
diskette install if you are upgrading from a previous version of ODBC Interface.

 Note: You must have Pervasive.SQL, Btrieve, or Scalable SQL installed on a
server or your computer before you can use ODBC Interface.

To install ODBC Interface

1. Insert the first diskette or the CD.

Insert the diskette labelled “Disk 1”, or the Pervasive.SQL CD.

2. Start the installation.

Diskette installation:

a. On your desktop, double-click “My Computer” and then double-click on the disk drive icon where
the ODBC Interface software is.

b. Double-click on “Setup.exe.”

c. Click Next to bypass the Welcome screen. Now proceed to the next step.

CD installation:

a. On your desktop, double-click “My Computer” and then double-click on the CD drive icon where the
Pervasive.SQL CD is located.

b. Double-click on the folder labeled “Clients.” Then double-click on the folder labeled “ODBC.” Then
double click on the folder labeled “16.” Then double-click on “setup.exe” to start the installation.

c. Click Next to bypass the Welcome screen.

3. Choose the installation directory.

a. As shown in Figure 2-2, you must choose the directory in which to install ODBC.

b. If you do not want to install in the default location, click Browse to select a different location.

Figure 2-2
Choosing the ODBC Installation Directory

c. When you have selected your desired destination directory, click Next to continue the installation of

the ODBC files.

 Note: Please wait while the ODBC Interface files are installed onto your hard
disk.
Users : The Installation utility attempts to copy a file called CTL3DV2.DLL to
the default Windows SYSTEM directory. If you are currently using a Windows
program (such as MS Office) that accesses this DLL, the Installation utility
displays a message box indicating that it cannot copy this file. Choose the
IGNORE option and continue the install process.

Your installation is now complete.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Installing on Windows NT or Windows 9X
This section describes the steps for installing ODBC Interface on Windows NT or Windows 9X.

 Note: If you have installed Pervasive.SQL Workstation, you do not need to
follow these instructions. ODBC Interface is automatically installed with
Pervasive.SQL Workstation.
Interface is also provided on the CD with Pervasive.SQL Server, and it is included
in the Typical client installation process. You only need to install ODBC Interface
separately if:

you chose a Custom client installation and did not install ODBC Interface, or
you chose a Minimum client installation, or
you do not have Pervasive.SQL, and/or you have purchased an ODBC Interface
license or upgrade.

Customers using older versions of Pervasive products can obtain ODBC Interface on diskette. You may also use the
diskette install if you are upgrading from a previous version of ODBC Interface.

 Note: You must have either Pervasive.SQL Workstation installed locally or
Pervasive.SQL Server installed on a server before you can use ODBC Interface.

To install ODBC Interface

1. Insert the first diskette or the CD.

Insert the diskette labelled “Disk 1”, or the Pervasive.SQL CD.

2. Start the installation.

Diskette installation:

a. On your desktop, double-click “My Computer” and then double-click on the disk drive icon where
the ODBC Interface software is.

b. Double-click on “Setup.exe.”

c. Click Next to bypass the Welcome screen. Now proceed to the next step.

CD installation:

a. On your desktop, double-click “My Computer” and then double-click on the CD drive icon where the
Pervasive.SQL CD is located.

b. Double-click on the folder labeled “Clients.” Then double-click on the folder labeled “ODBC.” Then
double click on the folder labeled “32.” Then double-click on “setup.exe” to start the installation.

c. Click Next to bypass the Welcome screen.

3. Choose the installation directory.

a. As shown in Figure 2-1, you must choose the directory in which to install ODBC.

b. If you do not want to install in the default location, click Browse to select a different location. If you
plan to install both the Win16 and the Win32 ODBC drivers, DO NOT install them in the same
directory. If they are installed in the same directory, uninstalling one of them later will remove
components required by the other.

Figure 2-1
Choosing the ODBC Installation Directory

c. When you have selected your desired destination directory, click Next to continue the installation of

the ODBC files.

 Note: Please wait while the ODBC Interface files are installed onto your hard
disk.

Your installation is now complete.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Interface Modules
Following are the interface modules. You need the include files for both Win16 and Win32 environments and either
ODBC.LIB or ODBC32.LIB, depending on whether you are targeting a Win16 or Win32 platform for the application.

SQL.H andSQLEXT.H
These files are part of the Microsoft ODBC Software Development Kit (ODBC SDK). This developer kit is included in
the Microsoft Developer Network subscription service. It is also included with Microsoft Visual C++ and most other
Windows-hosted C/C++ compiler packages.

Together, these files declare the ODBC API functions, manifest constants, and platform-independent data types.

ODBC.LIB
This file is part of the ODBC SDK from Microsoft and, like the include files, is part of most Windows C/C++ compiler
packages. It is the import library for the Win16 ODBC Driver Manager, ODBC.DLL.

ODBC32.LIB
This file is part of the ODBC SDK from Microsoft and, like the include files, is part of most Windows C/C++ compiler
packages. It is the import library for the Win32 ODBC Driver Manager, ODBC32.DLL.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

About This Manual
This    manual    contains information about using the Open Database Connectivity Applications Programming
Interface (ODBC API) via the ODBC Interface, an alternative API for Scalable SQL and Btrieve.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Using Bookmarks
Bookmarks allow the programmer to navigate quickly within a large result set. A bookmark is a 32-bit value that
represents a particular row in the result set.

The implementation of bookmarks in the ODBC Interface is powerful, but also memory-intensive, especially if the
bookmarks are obtained by binding column zero in the result set, which results in the retrieval and storage of every
bookmark as it is fetched. Care must be taken when using bookmarks in order to avoid consuming large amounts of
memory needlessly.

Bookmark values persist for the lifetime of a connection. That means they can be used on a single statement handle
even if the statement is closed and re-executed, across transactions, and even on multiple statement handles on the
same connection. In cases where the bookmark is used against a different statement handle or on the same handle
after a query is closed and another query executed, the second query must have the same row structure as the first
and be made against the same table or tables.

Controlling Bookmark Memory Usage
The amount of memory consumed by bookmarks can be calculated as follows:

Number of tables in query * Number of bookmarks fetched * 4

This value is cumulative over the life of a connection.

For each table contributing to a row in the query, a four-byte position value is saved as part of the bookmark. The
value returned as the bookmark is not the position value, because multiple tables may be involved in the query, in
which case the row is represented by an array of such four-byte values. Instead, the bookmark value is a “handle”
that can be used by the application in place of the array of position values.

There is a small amount of additional memory overhead involved in keeping the list of bookmarks, but it is
insignificant compared with the accumulation of the bookmarks themselves when many bookmarks are fetched over
the lifetime of a connection.

The least memory consumption can be attained when using bookmarks by calling SQLGetStmtOption with
theSQL_BOOKMARK option to retrieve bookmarks only when you intend to re-use them. A front-end application
might accomplish this by allowing the user the option of marking a row for later retrieval, perhaps using a mechanism
such as a check box on the data display dialog.

Programming With Bookmarks
See the ODBC 2.0 Programmer’s Reference from Microsoft Press for a discussion on how to use SQLExtendedFetch
and bookmarks. The example can be found in Chapter 22, “ODBC Function Reference,” in the section on
SQLExtendedFetch. The subsection is entitled “Positioning to a Bookmark.”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Performing Bulk Operations Using Parameter Arrays
The ODBC Interface supports passing arrays of parameters when executing SQL statements with parameters. For
example, when performing a SQL INSERT statement, it is possible to insert an arbitrary number of rows rather than a
single row in the execution of the statement.

Operation

To take advantage of this feature:

1. Call SQLParamOptions to set the number of elements in each parameter array (all parameters must have
the same number of elements).

2. For each parameter, allocate storage for an array of parameter values (which becomes the rgbValue
argument to SQLBindParameter for this parameter) and a corresponding array of parameter lengths (which
becomes the pcbValue argument to SQLBindParameter).

3. For each parameter, call SQLBindParameter to notify the interface of the location of the parameter data.

4. For each row to be processed, perform the following:

a. For each parameter in the row, initialize the corresponding elements in the parameter’s value array
to the parameter’s value in that row.

b. Initialize the corresponding element in the parameter’s pcbValue array to the proper length for that
parameter value.

5. Call SQLExecDirect (or SQLPrepare and SQLExecute) to execute the statement, causing all rows to be
processed.

Error Handling
If an error occurs while processing, the unsigned Win32 integer whose address was passed as the third argument to
SQLParamOptions contains the index of the row where the error occurred. This index is one-based rather than zero-
based: the first row is row 1, the second is row 2, and so on.

To skip the offending row and continue processing, call SQLBindParameter for each parameter, using the address of
the next element in the data array and the length array as the rgbValue and pcbValue argument respectively. Then
call SQLExecDirect or SQLExecute to continue processing.

Limitations
The following limitations apply to bulk operations using parameter arrays:

• Data-at-execution parameters are not supported.

• No parameter array may exceed 64KB in size (Win32 ODBC Interface only).

• Stored statements may not be used with parameter arrays.

For a brief coding example showing how to perform bulk insertion, see the function description for SQLParamOptions
in Chapter 22 of the ODBC 2.0 Programmer’s Reference from Microsoft Press.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Configuring Data Sources
Before you can access MicroKernel data with the ODBC Interface, you must use the ODBC Administrator to configure
a data source for each MicroKernel database. ODBC-enabled applications use this data source information to
connect to the database.

A data source corresponds to one of the following:

• A named database.

• A directory in which Data Dictionary Files (DDFs) reside containing the definition of the database schema,
and optionally a data file directory in which the actual data files reside if not in the same directory as the
DDFs.

 Note: Btrieve data files cannot be accessed by ODBC unless DDFs have been
created for them. If there are no DDFs associated with your Btrieve data file,
please see “Creating DDFs for Btrieve Files” . Because Btrieve files can be
complex, you are not encouraged to create DDFs for existing Btrieve files unless
you are an application developer.

You can also change the definition of a data source, or delete a data source.

In order for an ODBC application to access MicroKernel data files, the application must connect to a data source
defined for a dictionary. A dictionary consists of at least three files: FILE.DDF, FIELD.DDF, and INDEX.DDF; other
DDF files may also be part of a dictionary. The dictionary is a system catalog that contains table layout information
such as field and index names, sizes, lengths, and attributes that define each data file in a given database. These
DDF files are actually Btrieve data files and have a very specific set of requirements defining how they should be built
and populated with table layout information.

If a dictionary is not built properly or has invalid or improperly structured data, ODBC applications will not function
correctly. Invalid dictionaries usually result from manually creating the dictionary with direct Btrieve API calls, rather
than using the ODBC Interface or a SQL utility or application. Creating a dictionary via ODBC or SQL guarantees the
integrity of the DDFs and the definitions in them; creating a dictionary via Btrieve calls does not.

The most common problem is an unexpected Status Code 204, 6, or 4 when accessing the database. For example:

• Status Code 204 often results from a table name index (index number 1 in FILE.DDF) that is defined as case
sensitive, when it should be case insensitive. In a properly built dictionary, you can specify table and field
names with any case, regardless of the way it was originally defined.

• Status Code 4 often results either from incorrectly defined indexes (other than FILE.DDF), because the
ODBC Interface cannot locate the data it needs, or from a MicroKernel data file that does not match the
dictionary definition.

• Status Code 6 often results from incompatible INDEX.DDF files. Pre-v3.0 INDEX.DDF files have only two
indexes, but v3.0 and later INDEX.DDF files have three indexes. If the ODBC Interface tries to access a pre-
v3.0 dictionary, it automatically tries to add the third index. This index has the UNIQUE attribute and is built
on three fields in the X$Index table: Xi$File, Xi$Number, and Xi$Part. Improperly structured dictionaries may
have invalid data, such as duplicate entries for these fields. In such cases, the ODBC Interface receives
Status Code 6 when attempting to add the unique index.

Users with invalid dictionaries should contact the application vendor or developer and request a valid dictionary.

Adding a Data Source

The ODBC Interface uses the information you enter when you add the data source to permit ODBC-enabled
applications to access your database. You must perform these steps from the workstation or client where your ODBC-
enabled application will run.

 Note: If you specify an owner name in the ODBC Add Data Source dialog and
the owner name includes a leading non-alphabetic character or trailing blanks,
you must enclose the name in single quotes.

To add a data source in Windows 3.x:

1. Double-click the Pervasive Software ODBC program group.

2. Double-click the ODBC Administrator icon. You should see the Data Sources dialog box:

3. Click Add . You should see the Add Data Source dialog box:

4. Choose Pervasive Software ODBC-16 from the list of drivers and click OK . You should see the ODBC
Interface configuration dialog:

5. In the ODBC Interface dialog box, create a name for the data source in the first empty field. In the picture,

the ODBC data source is named Database16.

To Select a Named Database:

If you have any Pervasive.SQL databases set up as Named Databases, you can view a list of those
available by clicking on Refresh DB Names . You may select one of them as the data source by clicking its
name in the Database Names list box, or by typing a name. If you choose a Named Database, do not enter
anything in the DDF Directory or Database Directory fields. See “Named Databases” for additional
information.

 Note: Data dictionary files must already exist for named databases. When you
create a new data source and you specify a directory that does not contain data
dictionary files, you are prompted to allow the ODBC Interface to create them for
you. If you select a named database and files do not exist in the directory
specified in the definition of the database, the connection cannot be made and the
data source addition fails.

To Specify the Data Files:

1. If you do not want to use a Named Database, you must specify a path to the target databases’s DDFs in the
DDF Directory field. In the picture, the DDFs reside in the directory E:\pvsw\demodata.

2. If the data files are not in the same directory as the DDFs, you must enter the location of the data files in the
Database Directory field.

To Use Security:

1. If you want the ODBC data source to use database engine security, enter a Pervasive.SQL user name in the
Username field. Enter the appropriate password in the Password field only if you want the password to be
sent automatically whenever you connect to the database. If you leave the password blank, you will be
prompted for the password upon connecting to the data source.

2. If you want to use Pervasive owner names when connecting to this data source, enter them in the Owner
Names field. You may enter up to 8 names, separated by commas. You will be able to access any database
which has an Owner Name matching one or more of the names listed.

To Select Format and Compatibility Options:

1. If your database stores characters in the OEM character set, and your application needs to manipulate data
that uses the Windows character set, check the OEM/ANSI Conversion box. This selection causes the
ODBC driver to translate the characters between the two character sets.

2. If you expect your application to use Scalable SQL-style null handling, check the Scalable SQL Nulls box.
For more information, see “Scalable SQL-style Null Handling” .

3. If you expect your application to log into the database server using the Scalable SQL 4 features available
only in Scalable SQL 4 and Pervasive.SQL, check the Scalable SQL 4 Mode box. If you want your
application to login using only Scalable SQL 3.01 features, even if the server engine is version 4 or later, do
not check the box.

4. If you plan to use the new data source exclusively with Microsoft Access, check the Access/Jet
Compatibility box. Access is known to have problems with certain data types (notably TIME, DECIMAL, and
the various NUMERIC types).    These problems show up as #deleted errors and reports that a record has
been updated by another user when it has actually not been updated by anyone else. DO NOT check this
box unless you are encountering #deleted or other unexpected errors in Access.

5. If you wish to change the default formatting of dates, choose the desired format using the Date Format list
box. This option is only available when Scalable SQL 4 Mode is checked. The options are: mdy, myd, dmy,
dym, ymd and ydm.

If the date format is set to any value other than the default (mdy), SET DATEFORMAT is called using the
specified date format after a successful login to the database.    You can then select, insert, or update data
using the specified format. For example, if Date Format is ymd, a date field can be formatted as in the
following SQL statement:

Select * from tablename where datecol = '1925/12/25'

6. If you wish to have SQL statements executed immediately after you have logged into the database, enter
them in theLogin Script box. See “Login Scripts” for further information.

 Note: When adding or modifying a data source, the parameters you supply must
allow a successful login to occur.

To Save Your Changes:

When you are finished, click OK . You should now see your new data source listed in the Data Sources
dialog box:

Your ODBC data source configuration is complete. Click Close .

To add a data source in Windows 9X or Windows NT:

1. Click the Start button, then point to Programs | Pervasive SQL 7 and click 32bit ODBC Administrator .

 Note: If you installed ODBC Interface separately, click the Start button, then
point to Programs | Pervasive ODBC - 32 Bit .

2. You should see the ODBC Administrator dialog box, with the User DSN tab in front:

3. On the User DSN tab, click Add . You should see the Create New Data Source dialog box:

4. Select Pervasive Software ODBC-32 from the list of drivers and click Finish . You should see the ODBC
Interface configuration dialog:

5. In the ODBC Interface dialog box, create a name for the data source in the Description field. In the figure,
the ODBC data source is named Database32.

To Select a Named Database:

If you have any Pervasive.SQL databases configured as Named Databases, you can view a list of those
available by clicking on Refresh DB Names . You may select one of them as the data source by clicking its
name in the Database Names list box, or by typing a name. If you choose a Named Database, do not enter
anything in the DDF Directory or Database Directory fields. See “Named Databases” for additional
information.

 Note: Data dictionary files must already exist for named databases. When you
create a new data source and you specify a directory that does not contain data
dictionary files, you are prompted to allow the ODBC Interface to create them for
you. If you select a named database and files do not exist in the directory
specified in the definition of the database, the connection cannot be made and the
data source addition fails.

To Specify the Data Files:

1. If you do not want to use a Named Database, you must specify a path to the target databases’s DDF files in

the DDF Directory field. In the picture, the DDFs reside in the directory E:\pvsw\demodata.

2. If the data files are not in the same directory as the DDFs, you must enter the location of the data files in the
Database Directory field.

To Use Security:

1. If you want the ODBC data source to use database engine security, enter a Pervasive.SQL user name in the
Username field. Enter the appropriate password in the Password field only if you want the password to be
sent automatically whenever you connect to the database. If you leave the password blank, you will be
prompted for the password upon connecting to the data source.

2. If you want to use Pervasive owner names when connecting to this data source, enter them in the Owner
Names field. You may enter up to 8 names, separated by commas. You will be able to access any database
which has an Owner Name matching one or more of the names listed.

To Select Format and Compatibility Options:

1. If your database stores characters in the OEM character set, and your application needs to manipulate data
that uses the Windows character set, check the OEM/ANSI Conversion box. This selection causes the
ODBC driver to translate the characters between the two character sets.

2. If you expect your application to use Scalable SQL-style null handling, check the Scalable SQL Nulls box.
For more information, see “Scalable SQL-style Null Handling” .

3. If you expect your application to log into the database server using the Scalable SQL 4 features available
only in Scalable SQL 4 and Pervasive.SQL, check the Scalable SQL 4 Mode box. If you want your
application to login using only Scalable SQL 3.01 features, even if the server engine is version 4 or later, do
not check the box.

4. If you plan to use the new data source exclusively with Microsoft Access, check the Access/Jet
Compatibility box. Access is known to have problems with certain data types (notably TIME, DECIMAL, and
the various NUMERIC flavors).    These problems show up as #deleted errors and reports that a record has
been updated by another user when it has actually not been updated by anyone else. DO NOT check this
box unless you are encountering #deleted or other unexpected errors in Access.

5. If you wish to change the default formatting of dates, choose the desired format using the Date Format list
box. This option is only available when Scalable SQL 4 Mode is checked. The options are: mdy, myd, dmy,
dym, ymd and ydm.

If the date format is set to any value other than the default (mdy), SET DATEFORMAT is called using the
specified date format after a successful login to the database.    You can then select, insert, or update data
using the specified format. For example, if Date Format is ymd, a date field can be formatted as in the
following SQL statement:

Select * from tablename where datecol = '1925/12/25'

6. If you wish to have SQL statements executed immediately after you have logged into the database, enter
them in the Login Script box. See “Login Scripts” for further information.

 Note: When adding or modifying a data source, the parameters you supply must
allow a successful login to occur.

To Save Your Changes:

When you are finished, click OK . You should now see your new data source listed in the Data Sources
dialog box:

7. Your ODBC data source configuration is complete. Click OK .

Modifying a Data Source

To change the characteristics of a data source:

1. Choose the Pervasive ODBC program group.

2. Choose the ODBC Administrator icon in Windows 3.x or the 32-bit ODBC Administrator icon in Windows NT
and Windows 9X.

3. Select the desired data source in the Data Sources list and choose Configure .

4. In the ODBC Setup dialog, set the option values as necessary and click OK .

Deleting a Data Source

To delete a data source:

1. Choose the Pervasive ODBC program group.

2. Choose the ODBC Administrator icon in Windows 3.x or the 32-bit ODBC Administrator icon in Windows NT
and Windows 9X.

3. Select the data source to delete in the Data Sources list, then choose Remove .

A confirmation dialog box displays.

4. Click Yes to confirm the deletion.

Connecting to an ODBC Data Source
Once data sources are configured, an ODBC-enabled application can connect to the data source and access the
data. To connect to an ODBC data source, the ODBC Interface must be installed, and one of the following must be
available on your computer:

• The SQL client Requester, configured to process remote requests. Also, the corresponding SQL
communications module must be loaded on the Pervasive.SQL database server.

Refer to your Pervasive.SQL documentation for more information about configuring the Requester.

• A Pervasive.SQL workstation engine.

• The Btrieve client Requester, configured to process remote requests. Also, the corresponding Btrieve
communications module must be loaded on the database server.

Many applications are set up to use ODBC data sources for a variety of purposes. Such applications are called
ODBC-enabled applications. Examples include Microsoft Access and all members of the Microsoft Office family of
products.

 Note: Btrieve data files cannot be accessed by ODBC unless accurate Data
Dictionary Files (DDFs) have been created for them. It is not enough to generate
default DDFs by creating a data source. The DDFs must be customized to
describe the internal record structure of your particular data file. If there are no
DDFs associated with your Btrieve data file, or if you are unable to connect to
your Btrieve database using ODBC, please see “Creating DDFs for Btrieve Files”
. Because Btrieve files can be complex, you are not encouraged to create DDFs
for existing Btrieve files unless you are an application developer.

As part of the connection process, an ODBC-enabled application may prompt you for information.

If an application prompts you for information about a data source, perform the following
steps:

1. In the User Name box, enter your name as defined in the database (if security is enabled on the database
and a name is required).

2. In the Password box, enter your password (if required). If you did not enter a user name, leave Password

blank.

3. Choose or enter a database name or enter the DDF path (and optionally, the path for the data files) for the
database in which to access data. To choose a database name, click Refresh button to fill the list box.

4. Click OK .

An ODBC-enabled application must connect to a data source to access its information.    Different applications
connect to data sources at different times.    For example, an application might connect to a data source only at your
request, or it might connect automatically when it starts.    For information about when an ODBC-enabled application
connects to a data source, see the documentation for that application.

ODBC Driver Options

Named Databases

Database names are a feature of Pervasive.SQL.    The use of database names insulates the application
from the need to know the specific physical location of a database, making the database configuration easy
to maintain over time. The ODBC Interface fully supports the use of database names, but provides no
means for defining them.

Database names can be defined using the Setup utility that is part of your product.

Login Scripts

A login SQL script consists of one or more SQL statements, separated by semicolons, that are to be
executed on connection to the data source after a successful login to the database.

This is useful, for example, to establish the global null values when the underlying data was built using null
values other than the default.

This feature is especially useful for data sources to be used with third-party applications such as Borland
Delphi, Visual Basic RDO, and Microsoft Access that do not offer easy ways to execute SQL statements on
each connection as it is made.

In the Login Script edit control, put the SQL statement or statements you want to have executed during login
to the database. If more than one SQL statement is to be executed, separate the statements with a semi-
colon (;). For example:

SET BINARYNULL = 255;SET DECIMALNULL = ' '

In many cases you may wish to avoid the use of a semi-colon as statement separator.    For example, you
may wish to use a semi-colon within the SQL statement, or you may need to use the connect string returned
from SQLDriverConnect, which uses a semi-colon to separate attribute-value pairs.    In these instances, you
can begin the script with any non-alphabetic character, and that character will be used as the delimiter. Use
a dollar sign as the delimiter instead of the semi-colon.

For example, to connect to the sample Patients data source, and then set values for BINARYNULL and
DECIMALNULL global null values on this connection, you would use the following connection string:

DSN=Patients;DDFPATH=C:\BTI\WIN\DEMODATA;=Smith;

PWD=Sesame;SET BINARYNULL = 255;DECIMALNULL = ';'

Test the effect of your script after connecting to the data source.

Scalable SQL-style Null Handling

Pervasive.SQL determines null values by examining the data for a given row and column, looking for a
sentinel value in each byte of the column.    For example, the default value for a column of type NUMERIC is
the space character.

For most data types, there is a valid sentinel value outside the scalar range of the type.    However, for a few
types, such as INT(2) and INT(4), this is not the case.    The default sentinel value for integer types is zero,
and an integer with a zero in all bytes has the legal scalar value zero.

Some ODBC-enabled applications construct WHERE clauses that test a column value with an IS NOT NULL
construct, resulting in the exclusion of rows where every byte of the test columns value is the sentinel value.
This can result in the inadvertent exclusion of rows from a result set.

The ODBC Interface reports as non-nullable any data type that does not have a possible null value outside
its scalar range.    Nonetheless, some ODBC-enabled applications still construct tests of the type described
in the preceding paragraph.

To allow these applications to operate correctly, the ODBC Interface modifies the SQL statement substituting
WHERE 0 = 1 for WHERE MY_INT_COLUMN IS NULL and    WHERE 1 = 1 for WHERE MY_INT_COLUMN IS
NOT NULL .    This behavior is applied whenever a test for null status is applied to a column which the ODBC
Interface declares as not nullable.

Some programmers may want to expose the native null handling of Pervasive.SQL, which requires that the
ODBC Interfaces null handling behavior be disabled.    To accomplish this, set the Scalable SQL Nulls check
box in the Setup or SQLDriverConnect dialog.    When passing a connect string to SQLDriverConnect or
SQLBrowseConnect, pass the attribute value pair NULLENABLED=yes .

ODBC and the Web
You can also use ODBC Interface 2 to connect Web applications to Pervasive.SQL via ODBC/Internet Database
Connector (IDC) or JDBC-ODBC Bridge. IDC—contained in an ISAPI (Internet Server API) DLL—provides easy
access to Pervasive.SQL databases through a simple scripting language on Windows NT platforms. The IDC
application uses ODBC APIs to send and retrieve information between the database and the Internet on Windows NT
platforms.

The JDBC-ODBC Bridge (from JavaSoft’s Web site, www.javasoft.com) provides data access from Java applications
and is fully compatible with ODBC Level 2 drivers. The bridge translates JDBC method calls into ODBC function calls
and allows JDBC to leverage the database connectivity provided by existing ODBC technology.

Data Type Differences
Some data types are defined differently when using ODBC statements than when using Pervasive.SQL directly, such
as within SQL Scope.

String Types
Applicable Types: ZSTRING, LSTRING, NOTE

ODBC definitions for these types must define a length 1 byte shorter than the native Pervasive.SQL definition.
Because termination is handled transparently within ODBC, the ODBC definition should allow enough space to store
exactly the number of characters that will be in the largest value. In contrast, the Pervasive.SQL definition must allow
one additional byte in length for the terminator character. For example, the following two CREATE TABLE statements
are equivalent:

ODBC Statement CREATE TABLE person USING ‘person.mkd’

(FirstName zstring(15) CASE)

 SQLScope Statement CREATE TABLE person USING ‘person.mkd’
(FirstName zstring(16) CASE)

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Sample Program
The following table lists the ODBC functions that the sample program calls.

Function Description

 SQLAllocEnv Allocates an ODBC environment handle.

 SQLAllocConnect Allocates an ODBC connection handle.

 SQLConnect Connects to the data source.

 SQLAllocStmt Allocates an ODBC statement handle.

 SQLSetStmtOption Configures the statement handle.

 SQLExecDirect Executes a SQL statement.

 SQLNumResultCols Returns the number of fields in the result set.

 SQLDescribeCol Provides a description of the attributes of a field in a result set.

 SQLBindCol Binds a field in a result set to a storage location in the application’s
workspace.

 SQLExtendedFetch Retrieves a block of records from the result set arising from the
execution of the SQL statement.

 SQLError Retrieves information about an ODBC error.

 SQLFreeStmt Frees an ODBC statement handle.

 SQLDisconnect Disconnects from the data source.

 SQLFreeConnect Frees an ODBC connection handle.

 SQLFreeEnv Frees an ODBC environment handle.

 

Example 2-1
 C Source Code for ODBCSAMP.C    continued

/***

**

**    Copyright 1998 Pervasive Software Inc. All Rights

** Reserved

**

**/

/***

    ODBCSAMP.C

This program demonstrates the C/C++ ODBC interface for Scalable SQL and Btrieve under MS Windows.    It uses ODBC
functions to fetch records from the ‘dental’ database that is included with this product. IMPORTANT: Be sure to set up a data
source mapped to this database; the data source name must match with the name used in the SQLConnect call. See
‘IMPORTANT’, below.

The ODBC Software Development Kit is required for developing ODBC-enabled applications.    It can be obtained from

Microsoft as part of the Developer Network subscription service.    The necessary components are also shipped as part of the
Visual C++ product (v1.5 or greater).

**/

#include <windows.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/**

The following files are found in the ODBC SDK, a Microsoft product.

**/

#include <sql.h>    /* ODBC SQL function prototypes, part 1 */

#include <sqlext.h>    /* ODBC SQL function prototypes, part 2 */

/**

The following pragmas allow Watcom’s linker to link with the Win32 library found in the ODBC SDK.

**/

#if defined(__WATCOMC__) && defined(BTI_WIN_32)

      #pragma aux    SQLError                      "*";

      #pragma aux    SQLAllocEnv                "*";

      #pragma aux    SQLAllocConnect        "*";

      #pragma aux    SQLConnect                  "*";

      #pragma aux    SQLAllocStmt              "*";

      #pragma aux    SQLSetStmtOption      "*";

      #pragma aux    SQLExecDirect            "*";

      #pragma aux    SQLBindCol                  "*";

      #pragma aux    SQLNumResultCols      "*";

      #pragma aux    SQLDescribeCol          "*";

      #pragma aux    SQLFetch                      "*";

      #pragma aux    SQLExtendedFetch      "*";

      #pragma aux    SQLFreeStmt                "*";

      #pragma aux    SQLDisconnect            "*";

      #pragma aux    SQLFreeConnect          "*";

      #pragma aux    SQLFreeEnv                  "*";

#endif

/**

    Constants

**/

/* ** IMPORTANT **

// You must have a data source called "BTI_ODBC_SAMPLEDB"
// configured for this sample to work. */

#define BTI_SAMPLE_DATA_SOURCE "BTI_ODBC_SAMPLEDB"

#define DOCTOR_LEN        12

#define DOCTOR_COL      1

#define PHONE_LEN      12

#define PHONE_COL      2

#define FIRST_LAST_LEN    33

#define FIRST_LAST_COL    3

#define ROWSET_SIZE      10

#define MAX_FIELD_LENGTH 44

typedef struct ColDescs

    {

          UCHAR szColName[MAX_FIELD_LENGTH + 1];

          SWORD pcbColName;

          SWORD fSqlType;

          UDWORD pcbColDef;

          SWORD pibScale;

          SWORD pfNullable;

    } ColStruct;

/**

    generic error handler

**/

void        CheckError(RETCODE status, HENV henv, HDBC hdbc, HSTMT hstmt)

{

RETCODE errstat = SQL_SUCCESS ;

char szSqlState[8];

LONG fNativeError = 0;

static char szErrorMsg[256];

short cbErrorMsg = 0;

          /* return directly if no error has occurred. */

if (status == SQL_SUCCESS)

 ;

else if (status == SQL_ERROR || status == SQL_SUCCESS_WITH_INFO)

 {

 szErrorMsg[0] = 0;

 szSqlState[0] = 0;

 

 /* if an error or SQL_SUCCESS-with-info occurs, there may be multiple messages associated with the problem; retrieve and
print them all. */

 

 while (errstat == SQL_SUCCESS)

    {

    errstat = SQLError(

            henv,

            hdbc,

            hstmt,

            szSqlState,

            &fNativeError,

            szErrorMsg,

            sizeof(szErrorMsg),

            &cbErrorMsg

           );

 

    printf("*** Status: %s\nSQLState: %s\nMessage:    "

  "%s\nNative Error: %ld\n\n",

        status == SQL_ERROR ? "Error" : "SQL_SUCCESS with info",

        szSqlState,

        szErrorMsg,

        fNativeError

       );

    } // end while loop

 } // end else if (status == SQL_ERROR || status == SQL_SUCCESS_WITH_INFO)

else

 printf("\nError status = %ld\n", status);

 

} // end CheckError

 

/**

    main

**/

void main(void)

{

    char userid    [] = "";

    char password[] = "";

    char header    [] = " DOCTOR              PHONE NUMBER            PATIENT";

    ColStruct * colbuf = NULL;

 

    SWORD      colPosition = 0;

    UWORD          fetchOption = 0;

    UDWORD    recordIndex = 0;

    char        statement[300];

    RETCODE      status = SQL_SUCCESS;

    SDWORD        statlen = 0;

    UCHAR          szDoctor[ROWSET_SIZE][DOCTOR_LEN + 1];

    SDWORD        cbDoctor[ROWSET_SIZE];

    UCHAR          szPhone[ROWSET_SIZE][PHONE_LEN + 1];

    SDWORD        cbPhone[ROWSET_SIZE];

    UCHAR          szFirst_Last[ROWSET_SIZE][FIRST_LAST_LEN + 1];

    SDWORD        cbFirst_Last[ROWSET_SIZE];

    UDWORD        bufferLength = 0;

    SWORD          numResultCols = 0;

    UDWORD        rowlen = 0;

    UDWORD        rowsFetched = 0;

    UWORD          rowStatus[ROWSET_SIZE];

    /* ODBC variables. */

    HENV            henv    = SQL_NULL_HENV;

    HDBC            hdbc    = SQL_NULL_HDBC;

    HSTMT          hstmt = SQL_NULL_HSTMT;

 

    printf("SQL-Level Functions Sample Program Started\n");

 

    /* do ODBC standard setup */

    status = SQLAllocEnv(&henv);

    CheckError(status, henv, hdbc, hstmt);

    status = SQLAllocConnect(henv, &hdbc);

    CheckError(status, henv, hdbc, hstmt);

    /* login to ODBC data source */

    /* Dictionary and data files are in the working directory. */

    status = SQLConnect(hdbc,

                (UCHAR FAR *)BTI_SAMPLE_DATA_SOURCE,

                strlen(BTI_SAMPLE_DATA_SOURCE),

                userid,

                SQL_NTS,

                password,

                SQL_NTS);

    CheckError(status, henv, hdbc, hstmt);

    /* ODBC driver sets blank character to underscore during connect */

    if (status != SQL_SUCCESS && status != SQL_SUCCESS_WITH_INFO)

          printf("SQLConnect failed\n");

 

    /* allocate an ODBC statement  */

    if (status == SQL_SUCCESS)

    {

          status = SQLAllocStmt(hdbc, (HSTMT FAR *)&hstmt);

          CheckError(status, henv, hdbc, hstmt);

          if (status != SQL_SUCCESS)

                printf("SQLAllocStmt failed, status: %d\n", status);

    } // end if (status == SQL_SUCCESS)

    /* set appropriate statement options for a read-only block cursor. */

    SQLSetStmtOption(hstmt, SQL_CONCURRENCY, SQL_CONCUR_READ_ONLY);

    SQLSetStmtOption(hstmt, SQL_CURSOR_TYPE, SQL_CURSOR_DYNAMIC);

    SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWSET_SIZE);

 

    /* execute SQL select statement */

    if (status == SQL_SUCCESS)

    {

          strcpy(statement,

                "SELECT Doctor, Phone, First^Name * Last^Name FROM Patients,Appointments WHERE Patients.ID =
Appointments.ID");

          statlen = strlen(statement);

          printf("%s\n", statement);

          status = SQLExecDirect(hstmt, statement, statlen);

          CheckError(status, henv, hdbc, hstmt);

          if (status != SQL_SUCCESS)

                printf("SQLExecDirect failed, status: %d\n", status);

    } // end if (status == SQL_SUCCESS)

    /* allocate a buffer big enough to hold the rowset */

    if (status == SQL_SUCCESS)

    {

          rowlen = 0;

          status = SQLNumResultCols(hstmt, &numResultCols);

          CheckError(status, henv, hdbc, hstmt);

          if (status == SQL_SUCCESS)

              colbuf = malloc(numResultCols * sizeof (ColStruct));

          if (colbuf == NULL)

          {

                printf("Memory allocation failed\n");

                status = SQL_ERROR;

          } // end if (colbuf == NULL)

 

      /* get column description info into colbuf                */

          for (colPosition = 0;

                  (colPosition < numResultCols) && (status == SQL_SUCCESS);

              colPosition++)

          {

                colbuf[colPosition].pcbColName = MAX_FIELD_LENGTH;

                status = SQLDescribeCol(hstmt,

                      colPosition + 1,

                      (UCHAR FAR *)&colbuf[colPosition].szColName,

                      MAX_FIELD_LENGTH,

                      &colbuf[colPosition].pcbColName,

                                      &colbuf[colPosition].fSqlType,

                                      &colbuf[colPosition].pcbColDef,

                                      &colbuf[colPosition].pibScale,

                                      &colbuf[colPosition].pfNullable);

          } // end for (colPosition = 0; . . .

    } // end if (status == SQL_SUCCESS)

 

    /* bind columns      */

    if (status == SQL_SUCCESS)

          {

          status = SQLBindCol(hstmt,

                  DOCTOR_COL,

                  colbuf[DOCTOR_COL - 1].fSqlType,

  szDoctor,

  DOCTOR_LEN + 1,

  cbDoctor);

          }

 

    if (status == SQL_SUCCESS)

          {

          status = SQLBindCol(hstmt,

                  PHONE_COL,

                  colbuf[PHONE_COL - 1].fSqlType,

  szPhone,

  PHONE_LEN + 1,

  cbPhone);

          }

 

    if (status == SQL_SUCCESS)

          {

          status = SQLBindCol(hstmt,

                  FIRST_LAST_COL,

                  colbuf[FIRST_LAST_COL - 1].fSqlType,

  szFirst_Last,

  FIRST_LAST_LEN + 1,

  cbFirst_Last);

          }

 

    /* FETCH UP TO 10 RECORDS WITH A SINGLE SQLExtendedFetch() CALL */

    if (status == SQL_SUCCESS)

    {

          printf("\n%s\n", header);

          fetchOption = SQL_FETCH_FIRST;

          while (status == SQL_SUCCESS)

          {

                /* Get buffers full of records. */

                status = SQLExtendedFetch(hstmt,

                              fetchOption,

                              1,

                              &rowsFetched,

                              rowStatus);

 

                if ((status !=    SQL_SUCCESS) && (status != SQL_NO_DATA_FOUND))

                {

                  CheckError(status, henv, hdbc, hstmt);

                      printf ("SQLExtendedFetch failed, status: %d\n", status);

                      break;

                }

                /* Display the records in the column buffers, one record per line. */

                for (recordIndex = 0;

                        ((recordIndex < rowsFetched) && ((status == SQL_SUCCESS) ||

                        (status == SQL_SUCCESS_WITH_INFO)));

                        recordIndex++)

                {

                  printf(" %-13.13s%-18.18s%s\n",

                        szDoctor[recordIndex],

                        szPhone[recordIndex],

                        szFirst_Last[recordIndex]);

                }

 

                fetchOption = SQL_FETCH_NEXT;

          } // end while (status == SQL_SUCCESS)

    } // if (status == SQL_SUCCESS)

    SQLFreeStmt(hstmt, SQL_CLOSE);

    SQLDisconnect(hdbc);

    SQLFreeConnect(hdbc);

    SQLFreeEnv(henv);

 

    if (colbuf != NULL)

        free(colbuf);

 

    exit(0);

} // end main

OEM Character Translation
When storing data in or retrieving data from databases that are shared with DOS applications, Windows applications
should generally use the OEM character set supplied with the underlying operating system. This is especially
important in locales outside the United States.

The ODBC Interface v2.0 uses a translator DLL to translate data between the OEM character set and the ANSI
character set in use in Windows v3.x, Windows 9X, and Windows NT. Use of the translator DLL is optional. It can be
enabled by checking the check box entitled “OEM Character Translation” on either the data source configuration
screen displayed by the ODBC Administrator programs or the login screen displayed by SQLDriverConnect.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

ODBC Overview
This chapter describes using the Open Database Connectivity Applications Programming Interface (ODBC API) via
the Pervasive ODBC Interface, an alternative API for Pervasive.SQL. The following topics are covered in this chapter:

• “What is ODBC?”

• “Supported Versions”

• “New Features in ODBC Interface 2.04 and 2.5”

• “Architecture of Pervasive.SQL”

• “ODBC Conformance Levels”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

SQLExtendedFetch With Relative and Absolute
Positioning
The ODBC Interface v2.5 supports the SQL_FETCH_RELATIVE and SQL_FETCH_ABSOLUTE options in
SQLExtendedFetch. Be aware of the following points when using these options:

• Because the underlying cursor model is dynamic, if the tables in the SELECT statement are volatile, relative
and absolute positioning cannot guarantee to take you to the same row when executed a second time. This
is because rows may move (or disappear from the result set) due to updates, and deleted records will also
affect positioning.

• For very large result sets, these operations can be slow if the “distance” to the desired position is relatively
large.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Using SQLSetPos
The ODBC Interface implementation of SQLSetPos allows you to perform positioned updates and deletions, lock and
unlock rowset rows selectively, and insert rows into the table or view.
SQLSetPos operations work on any result set that does not contain columns representing aggregate functions such
as MIN, MAX, and SUM, and AVG, nor any columns whose content is computed.

See the ODBC 2.0 Programmer’s Reference from Microsoft Press for an example of how to use SQLExtendedFetch
and SQLSetPos in combination. The example can be found in Chapter 22, “ODBC Function Reference,” in the
section on SQLSetPos.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Manual Organization
• Chapter 1—“ODBC Overview”

This chapter describes using the Open Database Connectivity Applications Programming Interface (ODBC
API) via the ODBC Interface, an alternative API for Pervasive.SQL. There’s also a description of new
features and enhancements included in the latest version.

• Chapter 2—“Getting Started”

This chapter explains how to install and configure your ODBC driver for Pervasive products.

• Chapter 3—“Creating DDFs for Btrieve Files”

This chapter covers how to use ODBC to access existing Btrieve files.

• Chapter 4—“ODBC SQL Grammar”

This chapter explains how to use the ODBC SQL grammar.

• Chapter 5—“Programming via ODBC”

This chapter describes how to program using the ODBC Applications Programming Interface (API) with the
ODBC Interface.

• Appendix A—“Extensions to ODBC”

This appendix describes using the ODBC Interface to perform certain Pervasive.SQL operations that do not
have direct equivalents in the Open Database Connectivity Applications Programming Interface (ODBC API).

• Appendix B—“Sample Program”

This appendix shows how to program in the C language using the ODBC API and the ODBC Interface.

• Appendix C—“Programming Considerations”

This appendix provides specific information on programming with the ODBC Interface in various client
development environments.

The manual also includes an index. Information on status codes can be found in the CODE_MSG.HLP Windows Help
file provided in the product, or in Status Codes and Messages or Status Codes and Messages Quick Reference Card
. Information on SQL syntax can be found in the SQLREF.HLP (SQL Language Reference) Windows Help file
provided in the product.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Microsoft Access
Access applications do not allow updating of rows on tables that do not have a unique index. Access 95 and Access
97 allow users to specify which columns constitute a unique identifier if an index does not exist, but a unique index
should be created on these columns in advance for best performance on updates.

You must relink your attached tables following any changes to the DSN configuration. Access hard codes these
settings in the table properties when linked. Access 2.0 users should apply the Access Service Pack #1 (dated 11/94).
This Service Pack fixed numerous problems that affected the behavior of Access with regard to ODBC data sources.

Designing for Access
As an ODBC application connecting to Pervasive Software products, Access works best when certain guidelines are
applied during the creation of your database, as follows:

• Column Names. Avoid using Pervasive Software keywords as column names. For example, the words time ,
year , and date are scalar functions in Pervasive.SQL. Using keywords as column names can result in query
problems. In addition, avoid using arithmetic and illegal characters as part of the column name. When
Access attaches a column name containing a forward slash (/) or plus sign (+) that has existing column
names on each side of the character, it is unclear whether name/last is the result of column name divided by
column last .

• Data Types. Access works best with string and integer data types.

• Key Columns. Microsoft recommends a single unique key column. Integer and string columns yield the best
results. Access 2.0 and Microsoft Query users should consider making the key column first and ordered
alphabetically. Access uses the first unique index it finds (in alphabetical order by name) as the "bookmark"
source for building a keyset for the table. In addition, Microsoft recommends that users avoid multi-
segmented keys on ODBC tables, because the Jet engine does not handle such keys correctly in certain
instances.

• DDFs. It is important that DDFs be created according to specification. When possible, use CREATE TABLE
statements through the ODBC Interface to create the data definitions.

Compatibility Problems
Most problems with Access are known limitations of the Microsoft Jet database engine technology in dealing with
ODBC drivers. Refer to the Microsoft Tech Notes Q128809 and Q127096 for details. A White Paper
(www.microsoft.com/odbc/wpapers/rjetwp.htm) on using ODBC data sources with Access also documents problems
you may encounter working with ODBC data sources under Access.

#Name Problems
Access might return #Name in table views when encountering column names containing invalid characters or
Pervasive.SQL keywords. Refer to the SSQLREF.HLP file for a list of keywords and reserved words. The following
column name characters can cause Access to return a #name: back slash (\), forward slash (/), hyphen (-), NULL
characters and NULL terminated strings, arithmetic operators, and unknown characters.

#Name can result when a mismatch exists between the defined column type and the actual data stored in the Btrieve
data file. A problem caused by mismatched data is not always obvious. For example, a column of type CHAR filled
with NULL bytes can result in a #Name return.

When a MONEY column is used as a key, the datasheet may show #Name for every cell. This is apparently due to an
internal error in Access.

LVAR columns containing CHAR data and consisting of only one segment are handled as CHAR fields if the
Access/Jet Compatibility mode is turned on. Under these conditions, LVAR fields can be viewed, modified, and

inserted using Access. Otherwise, Access displays OLE Object for LVAR columns or a Not a valid OLE object error
when attempting to display rows from a table containing LVAR columns. Access assumes that any large binary data
type (more than 255 bytes) contains an OLE object. This problem is also present when tables with LVAR columns are
opened using the Microsoft Visual C++ Foundation Classes' database support or with Visual BASIC.

#Deleted Problems
The Access Jet engine may return a #Deleted for each field returned. The default query used by Access causes an
internal comparison of the record set. This internal comparison is used to determine if a record has been deleted or
modified from the database. The mechanism is known to work poorly for certain data types, notably TIME, MONEY,
NUMERICSA and NUMERICSTS.

To solve this problem, first try setting the value of ACCESSFRIENDLY to ‘Yes’ in your connection string. If you still
have problems, use the steps below.

Microsoft recommends using a SQL pass-through query as a workaround to this problem.

To create a SQL pass-through query:

1. In query design mode, select SQL Specific , then Pass-Through from the Query menu. For Access v7.0,
select Query , then press the New button.

2. Accept the default of Design View.

3. Close the Show Table window.

4. Select SQL Specific from the Query menu and select the Pass-Through option.

5. Entered the desired SQL statement.

The query can be saved for future use. This method corrects virtually all display problems, but the resulting grid is not
updatable. Updates must be performed using an Update Query when SQL Pass Through is used.

When a front-end ODBC application, such as Access, invokes SQLPassThrough, it means pass the query directly to
the Microsoft ODBC Driver Manager unmodified . This functionality is often needed because front-end applications
always modify their implementation of SQL grammar before handing off to the Microsoft Driver Manager.
SQLPassThrough enables the "front-end" user to execute driver or back-end specific grammar constructs, which can
increase query performance.

There has been confusion about the term SQLPassThrough . As a Pervasive Software user, you might think that
SQLPassThrough would invoke an ODBC Interface bypass to the Pervasive.SQL interface. However, the ODBC
Interface has no pass through mechanism. It simply processes ODBC APIs, mapping them to Pervasive Software
product APIs. The Microsoft ODBC API begins all API calls with the letters SQL . Typically, when an ODBC application
attaches the prefix SQL to a function, it intends to call the Microsoft ODBC Driver Manager.

Updating Data
When you try to update records in a table that has a MONEY key, a window displays a message indicating that
someone else has changed the data and the update does not occur. In addition, Access exhibits a variety of
difficulties with tables that have a unique key containing a TIME, DATE, or BFLOAT field. Problems also exist with
Access's handling of NUMERICSA and NUMERICSTS keys.

An Invalid date, time, or timestamp error can appear when opening a table in table view. This is often the result of
data stored in a null type other than the default. For example, if DATE data were stored with an assumed binary null
value of 128, an error appears in Access because binary 128 is not a valid date. To resolve this problem, select the

Null Enabled checkbox, combined with a DSN Login Script of Set Binarynull=128; .

Write Conflict errors have been observed on tables containing columns that are incorrectly defined. Older Btrieve files
often contain binary data that is not easily represented in a form that is accessible in relational tables. If the portion of
the data record is defined as a character column, accessing the record via ODBC (e.g., as an Access linked table)
may produce unexpected results, among them the Write Conflict error. This happens because the data in a character
field is expected to be text with blank padding to the full width of the column. Problems may also occur when binary
data is stored in character type fields. If the data contains a null byte, the ODBC Interface interprets character data as
NULL terminated strings. Access pads the remaining data with blanks before presenting it to the user.

Inserting Data
When inserting data into a table that has an AUTOINC column, if you explicitly insert a zero as the column value, the
insert succeeds, but Access shows the row as #deleted , indicating that someone else deleted the record immediately
after it was inserted. What has happened is that Access queries after the insert to make sure the row is accessible,
using all values explicitly entered by the user as part of the WHERE clause in the query.    Because Pervasive.SQL
assumes the zero AUTOINC value to mean that the column should contain a unique value that is internally
generated, a query testing for this value in the column fails.

An alternative is to leave AUTOINC columns untouched when entering data for the new row.    If the column value is
left blank, Access does not assume a value for the column in either the insert or the subsequent attempt to retrieve
the newly inserted row.

Exporting Data
When a table containing a NOTE or LVAR column is created during the Access Export operation, the NOTE or LVAR
column in the resulting table has a size of 28,672.

Low Memory Condition
When Access is left open for extended periods of time, you may run out of available memory.    In order to prevent this
problem, create a special table in your Pervasive.SQL database, which Access can use to configure the way it uses
ODBC. Name the table MSysConf and define in it the following columns:

Column Name Data Type

 Config INT(2)

 chValue CHAR(255)

 nValue INT(4)

 Comments CHAR(255)

 

You should then insert the following two records into the table:

Config = 102 and nValue = a large value (such as 10,000)

Config = 103 and nValue = a small value (such as 5 or 10)

For more information regarding this issue, refer to pages 338 and 339 of the Microsoft Jet Database Engine
Programmer's Guide by Microsoft Press.

Procedure

If you have not already done so, go into the ODBC Administrator and create a data source to your database using the

Pervasive ODBC Interface.

Use the Microsoft Access option SQL Specific Pass Through (described in the following steps) to create the
MSysConf table in the Pervasive.SQL database.

To create the MSysConf table:

1. In the Access main database screen, from the Query menu, select New ; a dialog box with types of views is
displayed.

2. Select Design View ; a list of available tables is displayed.

3. Click Close ; a blank query design window is displayed.

4. From the Query menu , choose SQL Specific , then Pass-through ; a blank text screen is displayed. Enter
the following (including quotes, commas, etc.) in the text box:

CREATE TABLE MSysConf
(Config INT(2), chValue Char(255), nValue INT(4),
 Comments CHAR(255))

5. Run the query. You are then prompted to select the data source which you created in the previous step.    A
message may be displayed stating, 'Pass-through query with ReturnRecords Property set to True did not
return any records'.    Click OK if this occurs.

6. Create another new Pass-Through query using the previous steps and then enter the following statement:

INSERT INTO MSysConf (Config, nValue)
 VALUES (102, 10000)
 VALUES (103, 5)

7. Run the query, and select the data source as in Step 5.

This process creates and populates the MSysConf table. Save these queries for future reference and repeat this
process for any other Pervasive.SQL databases that will be accessed from Microsoft Access.    For further information
on this table, search the Microsoft Access help for MSysConf or consult your Access documentation.

Status Code 833in ORDER BY Clauses
When using a Scalable SQL 3.x engine (either workstation or client/server), if you create a query using the Access
Query Designer in which the results are ordered by a column that is not the unique key for the table, you receive an
error message with an underlying Status Code 833.

For example, if you execute the following statements:

CREATE TABLE MyTest

(c1 autoinc,

c2 char(10),

c3 char (10))

WITH INDEX (c1 UNIQUE);

INSERT INTO MyTest VALUES (0, 'TEST', 'TEST');

And then use Access to execute the following query in the Access Query designer:

SELECT c2, c3 FROM Mytest ORDER BY c2;

You receive Status Code 833: The columns in the ORDER BY clause must be defined in the selection list if they are
not defined as indexes in the database.

The error is actually not returned by processing the above query, but rather by processing a query which Access
generates in preparing to execute this query.    The underlying query attempts to build a keyset involving the unique
key, but ordering its results using the ORDER BY clause from the original query, as in the following:

SELECT "MyTest.C1" FROM "MyTest" ORDER BY "C2";

The Scalable SQL 3.x engine returns a Status Code 833 from executing this statement. This error is passed on to the
user, who assumes that it comes from executing the original query.

Following are suggested workarounds:

• Add indexes to all columns in the ORDER BY clause. For optimal performance, you should perform ORDER
BY queries using indexed columns. You can create an index on a column easily, using a statement similar to
this example:

create index MyIndex on MyTest (c2);

You may run this statement as a Microsoft Access “pass through” query, as shown (for a different statement)
in “Procedure” on page C-11.

• In the Access query editor, use a query that contains the DISTINCT keyword on tables that contain a unique
key. For example, the following statement succeeds:

SELECT DISTINCT c2, c3 FROM Mytest ORDER BY c2;

In contrast, the following statements fail:

SELECT DISTINCTROW c2, c3 FROM Mytest ORDER BY c2;

SELECT c2, c3 FROM Mytest ORDER BY c2;

• Perform the SELECT without the ORDER BY and then sort the results in the Access table view.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Microsoft Visual BASIC
Visual BASIC applications do not allow updating of rows on tables that do not have a unique index.

ODBC Interface 2.5 includes support for 32-bit Visual BASIC 4.0 Remote Data Objects (VB4 RDO) features. You can
access VB4 RDO from within the Visual BASIC language. VB4 RDO is available only in the Win32 Visual BASIC 4.0
Enterprise Edition. RDO support is not available in the Win16 version of Microsoft Visual BASIC.

 Note: Ensure that you are using the latest available version of MSRDO32.DLL
(dated 6/7/96), which ships with Microsoft Visual C++ 4.2. A patch file is also
available via other Microsoft support sources, including the MSBASIC forum on
CompuServe. The older version of MSRDO32.DLL (dated 7/26/95), which ships
with Microsoft Visual Basic 4.0, causes MONEY and other decimal data types to
display incorrectly.

When using VB4 RDO, the default rowset size of 100 is adequate for most purposes, but must be set to a size that
keeps the full rowset buffer from exceeding 32K. The full rowset buffer size can be calculated using the following
formula:

buffer size = rowset size * (maximum record length + 2)

RDO manages the rowset as a virtual window on the result set, so as a programmer you appear to be operating on
only one row at a time.

Status Code 822 or 210 can be returned if the RDO RecordSet exceeds 32KB.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Modifying DDFs to Describe Existing Data Files
The database you have created is “empty”—it does not contain any information about your Btrieve files. To tell the
database about the content and structure of your Btrieve files, you must create a table definition for each Btrieve file
and add that table definition to the database.

Determining the Table Definition of an Existing File
This section describes the steps for determining the table definition for an existing Btrieve data file. The next section
provides instructions on how to add that table definition to the database.

There are 4 basic steps for determining the table definition for an existing Btrieve file:

• Determine what the fixed record length is and whether or not there is a variable-length field.

• Determine known field definitions from indexes.    Determine known index definitions.

• Fill in field definitions for non-indexed fields.

• Translate information obtained from the above steps into a CREATE TABLE statement that can be executed
by ODBC to add the table definition to the database.

The Btrieve file PERSON.MKD, which is provided with the 'demodata' sample database, will be used as an example
in executing these steps.

 Note: You can use DDF Ease to perform these steps. The ‘Help’ menu in DDF
Ease contains a tutorial that shows you how to use DDF Ease for this purpose.

Step 1: Determine Fixed Record Length and Whether a Variable-length Field
Exists

Records in a Btrieve file have a fixed-length section plus an optional variable-length field. The fixed-length portion of
the record contains all of the fixed-length fields (or columns) that make up the data. The minimum size of the fixed-
length record is 4 bytes, and the maximum size of the fixed-length record and variable-length field together is 32,765
bytes.    A Btrieve file can only have one variable-length field if it has one, and it is always stored after the fixed-length
portion of the record.

You can determine the fixed record length and whether the data file has a variable-length field by obtaining the file
statistics on the Btrieve file using the Btrieve Maintenance Utility. Pervasive Software offers both a command-line and
graphical version of the Btrieve Maintenance Utility.    For the examples in this section, we chose to use the
command-line Btrieve Maintenance Utility (BUTIL).

The following is a portion of the output produced by running BUTIL -stat on the PERSON.MKD Btrieve file.

BUTIL -stat person.mkd

...

Total Number of Records = 1500

Record Length = 312

Data Compression = No

Variable Records = Yes

Variable-Tail Allocation Tables = No

Blank Truncation = No

Free Space Threshold = 5%

...

From this output, we can determine that the fixed record length is 312 bytes and that a variable-length field is defined.
This information is used in Step 2.

Step 2: Determine Known Fields and Indexes from the Btrieve File

Btrieve files contain some information about field lengths and data types, indexes, and overall record length that must
match the corresponding table definition.

You can determine the index definitions, the position (that is, byte position in the record), length, and data type of the
fields that are indexed using the BUTIL -stat command.

The following is a portion of the output from running BUTIL -stat on the PERSON.MKD Btrieve file.

BUTIL -stat person.mkd

Total Number of Keys = 3

Total Number of Segments = 5

Legend:
< = Descending Order
D = Duplicates Allowed
I = Case Insensitive
M = Modifiable
R = Repeat Duplicate
A = Any Segment (Manual)
L = All Segments (Null)
* = The values in this column are hexadecimal.
?? = Unknown
-- = Not Specified
From the above information, we know that the file contains five indexed fields. There may be additional fields that we
have not yet determined. We can also tell field characteristics such as data type, case insensitivity, duplicates
allowed, and modifiable (among others).

One step in creating your table definition is naming the fields.    In our example, we use column names such as:
"Student_ID", "FirstName", "LastName", "PermCity", and "PermState". These names do not need to match anything
specific. When you define the table, you create them for the first time.    Choose names that will be significant to your
application.    If you do not know the contents of the fields, you can use Field1, Field2, etc. for the purposes of working
out your definition terms.    Create a worksheet similar to the table below.

Table 3-1
Naming the Indexed Fields

Field Name**1 Position Length Data Type Case Insensitive

 Student_ID 1 8 Unsigned

 FirstName 9 16 Zstring Yes

 LastName 25 26 Zstring Yes

 PermCity 82 31 Zstring Yes

 PermState 113 3 Zstring Yes

    **1 This portion was not identified with the BUTIL -stat command.

We also know that some field definitions are MISSING because there are gaps in the record positions and lengths
(see Table 3-2 on page 3-7). For example, there is not a gap between the first two fields because the first field ends
at 8, and the second field begins at position 9. However, the third field ends at position 50 (25 [position] + 26 [length] -
1 = 50) and the next field should begin at position 51. But the next indexed field begins at 82. From this information,
we can tell that there are one or more fields in the record beginning at position 51 and ending at position 81 (total
length of 31 bytes).

We also know the fixed record length is 312 and the last indexed field ends at position 115 (113 + 3 - 1 = 115). So one
or more field definitions exist for positions 116 to position 312 for a length of 197 bytes. There is also a variable-length
field, and the maximum size of the record is the fixed record length plus the variable-length field size. So the
maximum size of the variable-length field is the maximum record length, 32765 bytes, minus the defined fixed record
length for the PERSON.MKD file, 312 bytes, plus one (32765 - 312    + 1    = 32454 bytes).    The field name can be
defined as “Comment”. Scalable SQL or only allows a data type of LVAR or NOTE for a variable-length field.

Table 3-2
Non-Indexed Fields

Field Name Position Length Data Type Case Insensitive

 51 31 ?? ??

  116 197 ?? ??

 Comment 313 Up to 32456 LVAR or NOTE N/A

 

Table 3-3 shows what is known so far about the field definitions for the Btrieve file, keeping in mind that the unnamed
field definitions could be broken into one or more fields.

Table 3-3
Fields Known so Far

Field Name Position Length Data Type Case Insensitive

 Student_ID 1 8 Unsigned

 FirstName 9 16 Zstring Yes

 LastName 25 26 Zstring Yes

  51 31 ?? ??

 PermCity 82 31 Zstring Yes

 PermState 113 3 Zstring Yes

  116 197 ?? ??

 Comment 313 Up to 32456 LVAR or NOTE N/A

 

 Note: IMPORTANT:    If there are ANY field overlaps in Table 3 you cannot use
ODBC or Scalable SQL to create a table definition for your Btrieve file.    For
example, you would have a field overlap if there were an indexed field at position
5 with length of 1 or more.    This would overlap the bytes in the Student_ID field,
and possibly the FirstName field as well.
you have overlapping field definitions and you want to use ODBC or Scalable
SQL to define a table definition, then you must:
(1) remove indexes from your Btrieve file which has indexes on overlapping
positions and lengths, and
(2) modify your Btrieve application program logic to reflect the newly changed
index definitions.
you must separate the overlapping fields into multiple fields that do not overlap,
and define an index (or segmented index) on these fields.

The index information we know so far from the above field table and BUTIL -stat command is shown in Table 3-4 on
page 3-9. Table 3-4 on page 3-9 provides an easier to read format for the index definitions for later steps.

Table 3-4 on page 3-9 uses the following conventions: An index consisting of more than one field is a segmented
index. If the index consists of N fields, then segments 1 through (N - 1) will have Yes in the Segmented column. A
value of No in the column “Segmented” means that the next index encountered is not part of the current index
definition.

Table 3-4
Index Information

Index Segmente

d
Field Case

Insensiti
ve

Dup Mod NULL Sort ACS

 0 No Student_ID

 1 Yes LastName Yes Yes Yes

 1 No FirstName Yes Yes Yes

 2 Yes PermState Yes Yes

 2 No PermCity Yes Yes

 

The next step is to complete the field definitions for the non-indexed fields in Table 3.

Step 3: Complete the Non-Indexed Field Definitions

In Step 2 we identified the non-indexed portions of the record, which are shown in Table 3-5 on page 3-9.

Table 3-5
Non-indexed Field Definitions

Field Name Position Length Data Type Case Insensitive

 50 31 ?? ??

  116 197 ?? ??

 Comment 313 Up to 32456 LVAR or NOTE N/A

 

The first two gaps can be split into one or more fields over the interval of the position and length specified in the table
because they are part of the fixed record length portion of the record (i.e. the fields are not variable-length fields).

How to divide the field gaps into one or more fields depends on the context and structure of the data in the Btrieve file
as defined by your application.    If you are not using a DDF tool to assist you with determining how to split these
fields, you must rely on your knowledge of your application’s use and definition of the Btrieve record structure for the
file.    It is assumed that you have the latter information if you are creating a table definition using ODBC without the
assistance of a DDF tool.

For the PERSON.MKD data file, the application's record structure indicates that the first field should not be split, and
the field name and data type are "PermStreet" and "Zstring,” respectively.

Table 3-6
Non-indexed Field Definitions for PERSON.MKD file Position 51, Length 31

Field Name Position Length Data Type Case Insensitive

 PermStreet 51 31 Zstring yes

 

The second field gap (position 116, length 197) should be split into subfields as follows:

Table 3-7
Non-indexed Field Definitions for PERSON.MKD file Position 116, Length 197

Field Name Position Length Data Type Case Insensitive

 Perm_Zip 116 11 Zstring Yes

 Perm_Country 126 21 Zstring Yes

 Street 148 31 Zstring Yes

 City 179 31 Zstring Yes

 State 210 3 Zstring Yes

 Zip 213 11 Zstring Yes

 Phone 224 10 Numeric

 EmergencyPhone 234 20 Character Yes

 UnlistedNumber 254 1 Bit

 BirthDate 255 4 Date

 EmailAddress 259 31 Zstring Yes

 Sex 290 1 Logical

 Citizenship 291 21 Zstring Yes

 Survey 312 1 Bit

 Smoker 312 1 Bit

 Married 312 1 Bit

 Children 312 1 Bit

 Disability 312 1 Bit

 Scholarship 312 1 Bit

 

The "Comment" field is a variable-length field. The length and the data type of the "Comment" field can be defined
based on knowledge of the application that uses PERSON.MKD. From our knowledge of the application, this field is
defined as:

Table 3-8
Variable-length Field Definition for PERSON.MKD file

Field Name Position Length Data Type Case Insensitive

 Comment 313 200 Note N/A

 

Combining the completed field information of the non-indexed fields (Table 3-6 on page 3-10, Table 3-7 on page 3-10,
and Table 3-8 on page 3-11) with the field information of the indexed field (Table 3-1 on page 3-7) yields the complete
field table definitions:

Table 3-9
Complete Field Definition for PERSON.MKD file

Field Name Position Length Data Type Case Insensitive

 Student_ID 1 8 Unsigned

 FirstName 9 16 Zstring Yes

 LastName 25 26 Zstring Yes

 PermStreet 51 31 Zstring Yes

 PermCity 82 31 Zstring Yes

 PermState 113 3 Zstring Yes

 Perm_Zip 116 11 Zstring Yes

 Perm_Country 126 21 Zstring Yes

 Street 148 31 Zstring Yes

 City 179 31 Zstring Yes

 State 210 3 Zstring Yes

 Zip 213 11 Zstring Yes

 Phone 224 10 Numeric

 EmergencyPhone 234 20 Character Yes

 UnlistedNumber 254 1 Bit

 BirthDate 255 4 Date

 EmailAddress 259 31 Zstring Yes

 Sex 290 1 Logical

 Citizenship 291 21 Zstring Yes

 Survey 312 1 Bit

 Smoker 312 1 Bit

 Married 312 1 Bit

 Children 312 1 Bit

 Disability 312 1 Bit

 Scholarship 312 1 Bit

 Comment 313 200 Note N/A

 

Step 4: Translate Index and Field Information to a Create Table Statement

Now that we have the information we need about fields and indexes, we must translate that information into a format
that ODBC and the SQL engine can understand. In the correct format, this information is used to create the definition.
This format is a CREATE TABLE statement. See SQL Language Reference (online or printed) for the complete
syntax used when defining fields and indexes with a CREATE TABLE statement.

We will be translating the information listed in Table 3-9 on page 3-11, which lists the field definitions, and Table 3-4
on page 3-9, which lists the index definitions into a CREATE TABLE statement.

Some rules of thumb when performing this translation can be summarized as follows:

• Do not rely on a default length for the field.    Specify a length for all fields except DATE, TIME, BIT,
CURRENCY, and TIMESTAMP. These fields only have one length.

• You can optionally define the number of decimal places (precision) on the data types DECIMAL, NUMERIC,
NUMERICSA, and NUMERICSTS.    In the CREATE TABLE statement, the syntax is (length, precision). See
SQL Language Reference .

• Because you will execute the CREATE TABLE statement in ODBC, you must subtract one from the length of
the following data types: ZSTRING, LSTRING, and NOTE. These fields have an internal storage format
which adds one byte to the actual data being stored. The length you specify for the field should correspond
to the actual number of characters that will be stored without regard to how the data is internally represented
or terminated. If you plan to use the CREATE TABLE statement within a native SQL application instead of an
ODBC application, you must provide the internal length for the field without subtracting one from the length
of these types of fields.

• Only the data types CHARACTER, LSTRING, and ZSTRING can be case sensitive or case insensitive.

• For index definitions, if there is a "No" for Duplicates Allowed, you will need to add an index attribute
UNIQUE. If the Sort is descending, add the index attribute DESC. If there is a "Yes" for Mod, Case, Null, or
Seg, you will need to add the index attribute MOD, CASE, NULL, or SEG, respectively. The SEG attribute
must be specified last.

• For index definitions, if there is an Alternate Collating Sequence (ACS) for an index or index segment, you
will need to provide a path (in single quotes) to a valid ACS file after the index attributes. An example ACS
file is UPPER.ALT. It does not matter if the ACS file matches the ACS in the Btrieve file because the ACS
information is stored in the existing Btrieve file. Providing the ACS path is only used to set the ACS flag in
the DDF table definition. You can obtain a copy of UPPER.ALT from Pervasive Software.

The CREATE TABLE statement has a USING <file> clause that allows you to specify the Btrieve file corresponding to
your table.    Note:    You will get a Status Code 59 or a Status Code 257.

The CREATE TABLE statement requires a table name.    For the PERSON.MKD file, we chose the name “person.”

Armed with this information, we will now construct the CREATE TABLE statement:

CREATE TABLE person USING 'person.mkd'
(

 Student_ID          unsigned(8) ,

 FirstName            zstring(15) CASE ,

 LastName              zstring(25) CASE ,

 PermStreet          zstring(30) CASE ,

 PermCity              zstring(30) CASE ,

 PermState            zstring(2)    CASE ,

 PermZip                zstring(10) CASE ,

 PermCountry        zstring(20) CASE ,

 Street                  zstring(30) CASE ,

 City                      zstring(30) CASE ,

 State                    zstring(2)    CASE ,

 Zip                        zstring(10) CASE ,

 Phone                    numeric(10),

 EmergencyPhone character(20) CASE,

 UnlistedNumber Bit,

 BirthDate            Date,

 EmailAddress      zstring(30) CASE ,

 Sex                        logical(1),

 Citizenship        zstring(20) CASE,

 Survey                  bit,

 Smoker                  bit,

 Married                bit,

 Children              bit,

 Disability          bit,

 Scholarship        bit,

 Comment                note(199)

) WITH INDEX (

 Student_ID          UNIQUE,

 LastName              CASE MOD SEG,

 FirstName            CASE MOD,

 PermState            CASE MOD SEG,

 PermCity              CASE MOD

)

We now have a table definition for a Btrieve data file.    The next section explains how to use this statement to add the

table to the database.

How to Add a Table Definition to the Database
In the previous section we determined the table definition in terms of a CREATE TABLE statement.

To use ODBC to execute these statements, you will need to:

• Connect to a data source for the database you have defined.

• Create the table in the database using the CREATE TABLE statement defined in the last section.

• Verify that the definition is correct by calling SQLStatistics.

You can use DDF Ease or Microsoft's ODBC Test (32-bit) to execute ODBC statements.    None of the above steps
require coding—all can be accomplished through the graphical interface of the ODBC Administrator and/or other
tools.

Connecting to a data source

To connect to a data source:

1. Create a data source for the database if one does not exist.

If ODBC Administrator was used to create the database, a data source is already be defined. Otherwise, you
need to define a data source. Define a data source using the ODBC Administrator, as shown in “Adding a
Data Source” .

2. You may now connect to the data source.

In ODBC Test, from the Connect menu, choose Full Connect and select the data source you defined.

In DDF Ease, from the File file menu, choose Open Database .

Creating the Table Definition:

To create a table definition using DDF Ease:

From the Table menu, choose Create . The Table Creation Wizard guides you through the steps to create
your table.

To create a table definition using ODBC Test:

1. From the Statement menu, choose SQLAllocStmt .    Click OK . This step allocates a statement. The new
empty statement will be used by the SQLExecDirect function in the following step.

2. Execute the CREATE TABLE statement.

a. From the Statement menu, choose SQLExecDirect to display the SQLExecDirect dialog box.

b. In the szSqlStr edit box, enter the CREATE TABLE statement exactly as you defined it in the
previous section. Click OK .

c. If you received an Status Code of -1, from the Misc menu, choose SQLError to see the error code.
Look up the error code in Status Codes and Messages .    You probably have a syntax error in the
CREATE TABLE statement or you mis-translated your table definition when analyzing the Btrieve
file structure.    Make the corrections to the CREATE TABLE statement and go back to step 1
(allocate a new statement).    If you receive Status Codes 59 or 257, you have successfully created
the table.    You should now check that the table definition is correct.

Verifying That the Table Definition is Correct

There are two tasks to perform in this step:

• Verify that the index definitions in the table match the index definitions in the Btrieve file.

• Verify that the field definitions match what you expect for your data.

To verify the definition using DDF Ease:

From the File menu, choose Check Database . The Check Database Wizard guides you through the steps
to check your database definitions.

To verify the index definitions using ODBC Test:

1. From the Statement menu, choose SQLAllocStmt to allocate a statement. From the Catalog menu,
choose SQLStatistics .

A dialog appears.

2. In the szTable name box, enter the name of the table (in this example, "person").

For the fUnique field, select SQL_INDEX_ALL from the box. Click OK .

If this command succeeds (SQL_SUCCESS = 0), then your definitions match. You can display them by
repeating these steps and from the Results menu, choose GetDataAll .

To verify the field definitions using ODBC Test:

1. From the Statement menu, choose SQLAllocStmt to allocate a statement.

2. From the Statement menu, choose SQLExecDirect from the menu. Enter the following statement in the
szSqlStr box (substitute your table name for “person”):

SELECT * from person

To fetch and view all of the data at once, from the Results menu, choose GetDataAll .

Fetching and viewing the data all at once will be slow if you have a large amount of data.    To view the data
one row at a time, alternately choose from the Results menu: SQLFetch followed by GetDataRow .

3. If the table definition is incorrect, you must delete it.

However, you do not want to delete your data file. You must first move your data file to another directory
location so that it is not deleted. You can use the following command to move it to a subdirectory named
“bak”:

copy person.mkd bak

Next, allocate a statement using the menu item Statement | SQLAllocStmt, and then choose Statement |
SQLExecDirect. Enter the following statement to erase the incorrect table definition:

DROP TABLE person

Copy your Btrieve data file back to the database directory and make adjustments as necessary to the table
definition following the directions in the previous major sections.

As you can see, this can be a time consuming, detailed, and painstaking task. When you are finished, your Btrieve
file(s) can be accessed by any ODBC application. Keep in mind that DDF Ease can greatly ease the burden of
creating and manipulating DDFs.

New Features in ODBC Interface 2.04 and 2.5
This section outlines the functionality added in this release.

Features Added
• Version 2.5 supports Pervasive Smart Components. Version 2.04 does not support this architecture because

it is intended for use with earlier versions of the product that do not use the Smart Components architecture.

• ODBC performs cache fetches if the query is read-only, forward cursor and rowset size is 1.

• Multiple paths are allowed with DATAPATH when using SQLDriverConnect.

With the release of Pervasive.SQL Workstation (ODBC Interface 2.53 and later), ODBC Interface no longer includes
an embedded SQL engine. You must either use ODBC Interface with a local Pervasive.SQL Workstation, or with the
SQL engine running on your Pervasive.SQL server machine.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

ODBC Conformance Levels
This version of the ODBC Interface for Windows, Windows 95, and Windows NT supports ODBC Conformance Level
2. ODBC defines conformance levels for both the API and the SQL grammar. Applications written to conform to a
specific level of the ODBC standard can use any interface that supports the conformance level that the application
uses. Such applications are often referred to as ODBC-enabled applications. Many ODBC-enabled applications exist,
including most report writers, word processors, and spreadsheet programs.

SQL Grammar Conformance
The ODBC core-level SQL grammar is, for the most part, a subset of the ODBC Interface’s SQL grammar. SQL
statements written to conform to ODBC SQL generally run without modification on a MicroKernel database using
Pervasive.SQL.

Microsoft designed ODBC as a truly open standard, allowing full access to the power of the underlying DBMS.
Consequently, if a programmer is willing to trade a degree of portability for additional functionality, it is possible to take
advantage of the full spectrum of ODBC Interface SQL extensions to the ODBC SQL grammar. SQL statements
written using ODBC Interface SQL syntax not supported by the ODBC SQL grammar are passed through without
modification to the ODBC Interface SQL engine.

API Conformance
All ODBC Level 1 and Level 2 API functions are fully supported, with minor limitations described in later sections.

ODBC Procedure (Stored Statement) Support
The ODBC Interface supports the concept of ODBC procedures, via the equivalent of Pervasive.SQL stored
statements. In ODBC terminology, a procedure is an executable entity that, when executed, can return result sets in
the same manner as a SELECT statement.

A procedure, however, is much more powerful than a simple SELECT statement. It can consist of several different
kinds of SQL statements, including SELECT, INSERT, UPDATE, and DELETE statements. Because it can contain
multiple statements, in circumstances in which it contains multiple SELECT statements, it is capable of returning
multiple result sets.

Using SQLRowCount and SQLMoreResults in Procedure
Processing
When you execute a SQL INSERT, UPDATE, or DELETE statement, the ODBC Interface stores the number of rows
affected and continues processing the next SQL statement, if one is available. When you execute a SELECT
statement, a result set is available and execution stops until the caller decides what to do with the result set.

The application may, therefore, have both a row count and a result set available for processing at the same time.
Because multiple INSERT, UPDATE, or DELETE statements might be processed in the procedure before control is
returned to the caller, multiple row counts might be available. When processing stored procedures that contain a mix
of SELECT and non-SELECT statements, use the following algorithm after SQLExecute or SQLExecDirect returns
SQL_SUCCESS:

1. Call SQLRowCount.

2. If the value that SQLRowCount returns is zero, a result set may be available. Call SQLNumResultCols; if it
returns a non-zero value for the number of columns in the result set, a result set is available.

3. If the value that SQLRowCount returns is greater than zero, or equal to zero and SQLNumResultCols
returned a zero for the number of columns in the result set, it is the result of the execution of a statement
that did not return a result set.

4. If a result set is available, process it using the usual ODBC functions (for example, SQLDescribeCol,
SQLBindCol, and SQLFetch).

5. Call SQLMoreResults to see if another row count or result set is available.

6. If SQLMoreResults returned SQL_NO_DATA_FOUND, processing is complete.

7. If SQLMoreResults returned SQL_SUCCESS, more results are available; proceed to Step 1.

8. If SQLMoreResults returned SQL_ERROR, an error has occurred while processing a stored statement.

Limitations
Following are the limitations to using SQLRowCount and SQLMoreResults in procedure processing:

• You cannot use procedures in conjunction with parameter arrays.

• Procedures can only use input parameters. Output and input/output parameters are not supported.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

ODBC SQL Grammar
This chapter explains how to use the Open Database Connectivity (ODBC) SQL grammar. The ODBC Interface
supports the core SQL grammar with some extensions. Many of the vendor-specific escape sequences outlined in
Appendix C of the ODBC specification are also supported. In accordance with the design of ODBC, Pervasive.SQL
passes native SQL grammar to the underlying native SQL engine.

For a detailed description of the ODBC SQL grammar, see the ODBC 2.0 Programmer’s Reference , available from
Microsoft Press.

This chapter discusses the following topics:

• “SQL Preprocessor”

• “Variations From the ODBC SQL Grammar”

• “Data Types”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Performing Pervasive.SQL Operations Without ODBC
Equivalents
Some functions in the SQL API do not have direct equivalents in the ODBC API. These functions include
XQLCallback and XQLVersion. Moreover, ODBC does not have an equivalent to the Btrieve concept of owner names
on files.

You can still access these functions and enable files with owner names using extensions to the ODBC API functions
SQLGetConnectOption and SQLSetConnectOption. Using these functions, you can perform the following tasks:

• Provide a list of owner names to the interface

• Retrieve version information

• Identify the current session ID

• Install or remove a callback function (Windows only)

• Convert data between internal and display formats and vice versa

• Validate a mask

• Obtain the default mask

• Validate data values

Table A-1 shows the correspondence between the ODBC data types and the corresponding C data types.

Table A-1
C Platform-Independent Data Types

ODBC Type Windows Type

 HDBC long integer

 RETCODE long (32-bit) integer

 UDWORD long integer

 UWORD short (16-bit) integer

 

Using SQLSetConnectOption and SQLGetConnectOption
Table A-2 shows when to use SQLSetConnectOption and when to use SQLGetConnectOption.

Table A-2
Using SQLSetConnectOption and SQLGetConnectOption

Functionality ODBC Function fOption

Value

 Provide a list of owner names to the interface SQLSetConnectOption 1000

 Retrieve version information SQLGetConnectOption 1001

 Identify the current session ID SQLGetConnectOption 1002

 Install or remove a callback function (Windows only) SQLSetConnectOption 1003

 Convert data between internal and external formats
and vice versa

SQLGetConnectOption 1004

 Validates a mask for use in entering data for a field SQLGetConnectOption 1005

 Gets the default mask for use in entering data for a
field

SQLGetConnectOption 1006

 Validates values for a field or group of fields SQLGetConnectOption 1007

 

Following is the C/C++ call specification for SQLGetConnectOption.

RETCODE SQLGetConnectOption(hdbc, fOption, pvParam)

HDBC    hdbc;

UWORD    fOption;

UDWORD    pvParam;

Following is the C/C++ call specification for SQLSetConnectOption.

RETCODE SQLSetConnectOption(hdbc, fOption, vParam

HDBC    hdbc;

UWORD    fOption;

UDWORD    vParam;

Calling SQLGetConnectOption
To call SQLGetConnectOption, prepare a buffer according to the format required by the option you wish to invoke.
Call the function, passing the connection handle obtained from ODBC when allocating the connection, option number,
and the address of the buffer (which must be cast to type UDWORD to avoid compiler warnings).

Parameter Summary

The parameters for the SQLGetConnectOption function are described separately for each option, because each
option interprets the parameters differently.

Error Conditions

SQLGetConnectOption returns an error if the underlying SQL API function returns an error. Use the ODBC function
SQLError to obtain error information, including the status code that the function in the native error code parameter
returns.

SQLGetConnectOption may also return an error status if the connection is not active and a cursor ID was needed
internally to complete the operation.

Calling SQLSetConnectOption
To call SQLSetConnectOption, follow these steps:

1. Prepare an input buffer according to the format required by the option you want to invoke.

2. Call the function, passing the connection handle obtained from ODBC when allocating the connection, the

option number, and the address of the input buffer, which must be cast to type UDWORD to avoid compiler
warnings.

Parameter Summary

The parameters for the SQLSetConnectOption function are described separately for each option, because each
option interprets the parameters differently.

Error Conditions

SQLSetConnectOption returns an error if the underlying SQL API function returns an error. Use the ODBC function
SQLError to obtain error information, including the status code that the function returns in the native error code
parameter.

SQLSetConnectOption may also return an error status if the connection is not active (since a cursor ID may need to
be allocated internally to complete the operation).

An error is reported if the name list is incorrectly formatted when passing a list of owner names.

Option 1000: Giving the ODBC Interface a List of Owner
Names
Owner names act as passwords and encryption keys in protecting access to sensitive data stored in Pervasive.SQL
data files. You can also use SQLSetConnectOption to pass a list of owner names to the SQL engine for opening the
underlying tables.

Parameter Summary

Table A-3 summarizes the parameters for the SQLSetConnectOption function when passing a list of owner names.

Table A-3
SQLSetConnectOption parameters

 Passed by:

 Parameter Description Value

Ref.    hdbc Value that SQLAllocConnect returns. u

    fOption

The constant value 1000. u

    vParam

Address of a null-terminated string containing individual owner names
separated by commas; if an owner name contains spaces, enclose it
in single quotes. The contents of this buffer are not modified during
the processing of the SQLSetConnectOption function.Cast this
address to type UDWORD to avoid compiler warnings on the call.

u

 

Passing a List of Owner Names

To allow ODBC to open Pervasive.SQL files to which owner names have been applied, invoke SQLSetConnectOption
with the parameters described in Table A-3.

Error Conditions

SQLSetConnectOption returns an error if the connection is not active (since a cursor ID must be allocated internally
to complete the operation). An error is reported if the name list is incorrectly formatted.

Option 1001: Retrieving Version Information
Use this option to obtain version information concerning the Pervasive.SQL engine or client Requester.

Parameter Summary

Table A-4 summarizes the parameters for the SQLGetConnectOption function when retrieving version information.

 Passed by:

 Parameter Description Value

Ref.    hdbc Value that SQLAllocConnect returns. u

    fOption

The constant value 1001. u

    vParam

Address of a buffer. Cast this address to type UDWORD to avoid
compiler warnings on the call.

u

 

Table A-4 describes the structure of the buffer used for obtaining version information.

Table A-4
SQLGetConnectOption Version Parameter Block Format

Size Type Description

 4 Character Input: Initialize to the signature “XVER.”Output: If this still contains
“XVER,” version information is contained in the following data
elements. If it does not contain “XVER,” these 4 bytes contain version
information from an older version of the Scalable SQL engine. In this
case, the first two bytes contain the version number and the next two
bytes contain the revision number.

 2 Integer Set to the size of this buffer, including the 4-byte signature.

 2 Integer Option code. Set to 0 to obtain the client requester version. Set to 1
to obtain the version of the local engine. Set to 2 to obtain the version
of the engine serving the session ID given in the next data element.
Set to 3 to obtain the version of the engine servicing the database

whose database name or database directory path is given in the next
data element.

 4 Integer (first two
bytes only)

If option code is 2, pass a valid session ID. If option code is 3, pass
the address of a character buffer containing a zero-terminated string
that is a database name beginning with “@”, a NetWare server and
volume name in the form \\server\volume:, or a database directory
path.

 2 Integer Version number.

 2 Integer Revision number.

 2 Integer Product update number. A return of 65535 indicates that the product
update level cannot be determined.

 4 Character Code indicating the type of the target engine or client requester.
NWSV indicates Scalable SQL for Netware (Server Edition), RQST
indicates Scalable SQL Requester, and WIN3 indicates Scalable SQL
for Windows.

 

Retrieving Version Information

Invoke SQLGetConnectOption after formatting the buffer for input as described in Table A-4. The requested version
information is returned in the buffer.

Error Conditions

SQLSetConnectOption returns an error if the internal call fails.

Option 1002: Identifying the Current Session ID
Normally, you do not need the session ID when using ODBC, but it is required for one of the options in retrieving
version information.

Parameter Summary

Table A-5 summarizes the parameters for the SQLGetConnectOption function when obtaining the current session ID.

Table A-5

 Passed by:

 Parameter Description Value

Ref.    hdbc Value that SQLAllocConnect returns. u

    fOption

The constant value 1002. u

 Address of short integer into which the session ID is copied. Cast this
address to type UDWORD to avoid compiler warnings on the call.

    vParam

u

      SQLGetConnectOption Parameters with Session ID

Retrieving Version Information

Invoke SQLGetConnectOption passing the address of a short integer as the vParam argument. The session ID is
returned in the buffer (if a session has been established).

Error Conditions

SQLGetConnectOption returns an error if a session has not been established (no connection has been made to a
Pervasive.SQL data source).

Option 1003: Setting or Removing a Callback Function
(Windows Only)
You can use this option with the ODBC Interface for Windows. If your application needs to yield control to other
applications while making Btrieve calls, your application must define a callback function, register it with the
MicroKernel, and then deregister it before terminating. This option is not valid for the ODBC Interface for Windows 95.

Parameter Summary

Table A-6 summarizes the parameters for the SQLSetConnectOption function when setting or removing a callback
function.

Table A-6

 Passed by:

 Parameter Description Value

Ref.    hdbc Value that SQLAllocConnect returns. u

    fOption

The constant value 1003. u

    vParam

Address of a buffer. Cast this address to type UDWORD to avoid
compiler warnings on the call.

u

      SQLGetConnectOption Parameters with Callback

Table A-7 describes the structure of the buffer used for setting and removing a callback function.

Table A-7
SQLSetConnectOption Callback Parameter Block Format

Size Type Description

 2 Integer Action number: 0 to register a callback function; 1 to remove a
callback function.

 2 Integer Option; specify zero for this parameter, which is reserved for future
use.

 4 Pointer to callback
function

Address of callback function to register or remove.

 4 Pointer to callback
function pointer
buffer, which must be
4 bytes in size

Address of previous callback function storage buffer. For option 0,
initialize the callback function storage buffer to zero and pass its
address; on return it contains the address of the previous callback
function (if any was registered). For option 1, pass the address of the
buffer containing the value returned by the call using option 0.

 4 Pointer to character
buffer

The address of an application-defined structure that the task needs in
the callback.

 4 Pointer to character
buffer, which must be
4 bytes in size

Address of pointer storage for previous callback function’s
application-defined buffer. For option 0, initialize this pointer to zero
and pass its address, and on return it contains the address of the
previous callback function’s application-defined structure (if any was
registered). For option 1, pass the address of the buffer containing
the value returned by the call using option 0.

 

Installing or Removing a Callback Function

The form of the callback function and the details of its use are described in the entry for XQLCallback in the
Pervasive.SQL Programmer’s Reference . Refer to these manuals for further details.

Error Conditions

SQLSetConnectOption returns an error if the internal call fails.

Option 1004: Converting Data
Use this option to convert data between its internal format and ASCII display format and vice versa.

Parameter Summary

Table A-8 summarizes the parameters for the SQLGetConnectOption function when converting data.

Table A-8

 Passed by:

 Parameter Description Value

Ref.    hdbc Value that SQLAllocConnect returns. u

 The constant value 1004. u

    fOption

    vParam

Address of a buffer. Cast this address to type UDWORD to avoid
compiler warnings on the call.

u

      SQLGetConnectOption Parameters with Conversion

Table A-9 describes the structure of the data buffer used for converting data.

Table A-9
SQLGetConnectOption Convert Parameter Block Format

Size Type Description

 2 Integer Option number: 0 to convert from unformatted to formatted; 1 to
convert from formatted to unformatted.

 2 Integer Internal data type of the value to convert.

 2 Integer Internal size of the value to convert.

 2 Integer Number of decimal places for DECIMAL, MONEY, NUMERIC,
NUMERICSA, and NUMERICSTS data types. Initialize to 0 for all
other data types.

 2 Integer Size of the buffer pointed to by the next data element (for option zero)
or the size of the data in the buffer pointed to by the next data
element (for option 1).

 4 Pointer to character
buffer

Address of buffer containing the unformatted value (for option 0) or
the formatted value (for option 1).

 4 Pointer to character
buffer

Address of output buffer; for option 0, contains the formatted value.
For option 1, it contains the unformatted value.

 4 Pointer to character
buffer

Specify the mask to use for conversion. The mask can be up to 30
characters long; if shorter than 30 characters, terminate the mask
with a binary zero. To use the default mask, store a binary zero in the
first byte.

 2 Integer Option 0: Specify 0 for left justification, 1 for centered, and 2 for right
justification.Option 1: Specify 2 to strip leading blanks from a
character data type; the data is treated as if right-justified. If you are
not stripping leading blanks from the data in a character data type,
specify -1. For other types, this value is ignored.

 

Converting Data

Invoke SQLGetConnectOption after formatting the buffer for input as described in Table A-8. The data is converted as
specified.

Error Conditions

SQLGetConnectOption returns an error if the internal call fails.

Option 1005: Validate Mask
Use this option to validate a mask for use in entering data for a field.

Parameter Summary

Table A-10 summarizes the parameters for the SQLGetConnectOption function when validating a mask.

Table A-10

 Passed by:

 Parameter Description Value

Ref.    hdbc Value that SQLAllocConnect returns. u

    fOption

The constant value 1005. u

    vParam

Address of a buffer. Cast this address to type UDWORD to avoid
compiler warnings on the call.

u

      SQLGetConnectOption Parameters with Mask Validation

Table A-11 describes the structure of the buffer used for validating a mask.

Table A-11
SQLGetConnectOption Mask Validation Block Format

Size Type Description

 2 Integer Internal data type code.

 2 Integer Internal size of the data type in bytes.

 2 Integer Number of decimal places for the data type.

 2 Integer Initialize to the length in bytes of the mask to be validated.

 4 Pointer to character
buffer

The address of the character string containing the mask to validate.

 

Validating a Mask

Invoke SQLGetConnectOption after formatting the buffer for input. The mask is validated and a return of
SQL_SUCCESS indicates the mask is valid.

Error Conditions

SQLSetConnectOption returns an error if the mask is not valid.

Option 1006: Get Default Mask
Use this option to obtain the default mask for use in entering data for a field.

Parameter Summary

Table A-12 summarizes the parameters for the SQLGetConnectOption function when obtaining the default mask.

Table A-12
SQLGetConnectOption Parameters for Get Default Mask

 Passed by:

 Parameter Description Value

Ref.    hdbc Value that SQLAllocConnect returns. u

    fOption

The constant value 1006. u

    vParam

Address of a buffer. Cast this address to type UDWORD to avoid
compiler warnings on the call.

u

 

Table A-13 describes the structure of the buffer used for obtaining the default mask.

Table A-13
SQLGetConnectOption Get Default Mask Block Format

Size Type Description

 2 Integer Internal data type code.

 2 Integer Internal size of the data type in bytes.

 2 Integer Number of decimal places for the data type.

 2 Integer Initialize to the number of bytes available in the buffer in which the
default mask will be stored. On return, stores the length in bytes of
the returned default mask.

 4 Pointer to character
buffer

The address of the buffer in which the character string containing the
default mask should be stored.

 

Obtaining the Default Mask

Invoke SQLGetConnectOption after formatting the buffer for input as described in Table A-13. The returned mask

indicates the default format for the indicated data type.

Error Conditions

SQLGetConnectOption returns an error if the input parameters are not valid.

Option 1007: Validate Values
Use this option to validate a value or values for a given field or group of fields.

Parameter Summary

Table A-14 summarizes the parameters for the SQLGetConnectOption function when validating a value.

Table A-14

 Passed by:

Paramete
r

Description Value

Ref.   
hdbc

Value that SQLAllocConnect returns. u

    fOption

The constant value 1007. u

    vParam

Address of a buffer. Cast this address to type UDWORD to avoid
compiler warnings on the call.

u

      SQLGetConnectOption Parameters when Validating

Table A-15 describes the structure of the buffer used for validating a value.

Table A-15
SQLGetConnectOption Validation Param. Block Format

Size Type Description

 4 Pointer to short (2-byte)
integer

Input: number of field names in the buffer pointed to by the next
data element.Output: if an error occurs, the number of fields that
were validated correctly.

 4 Pointer to character
buffer

Specify the names of the fields for which to validate values;
terminate each field name with a binary 0. If the dictionary
contains duplicate field names, qualify each duplicate field name
with the appropriate table name.

 2 Integer Length in bytes of the following data element.

 4 Pointer to character Specify the field values to validate in internal format. A one-to-one

buffer correspondence must exist between the field names in the
second data element and the values in this buffer, and the size of
each value must match the internal size of the field definition.

 

Validating a Value

Invoke SQLGetConnectOption after formatting the buffer for input as described in Table A-15. The value is validated
for the indicated data type.

Error Conditions

SQLGetConnectOption returns an error if the input parameters are not valid. Use SQLError to obtain more detailed
information; in particular, the native error code indicates the return from the internal call, giving the specific nature of
the error.

Positioned Updates and Deletes Using SQL
Statements
The ODBC Interface SQL preprocessor allows you to perform positioned updates and deletions using SQL
statements with a variation on the extended SQL grammar for the verbs UPDATE and DELETE.

Rows must be selected using a select statement of the following form:

SELECT [ALL | DISTINCT] select-list    FROM table-nameUPDATE OF [column-name [, column-name]...]

The FOR UPDATE OF clause is supported for compliance with the specification, but is otherwise ignored.

Before performing the select, the cursor type should be set to SQL_CURSOR_DYNAMIC and concurrency should be
set to SQL_CONCUR_ROWVER using calls to SQLSetConnectOption. You may set the rowset size if you want to
use a rowset larger than one row.

Fetch rows into the rowset buffer using SQLExtendedFetch. If a multi-row rowset is used and the row to be updated
or deleted is not the first row in the rowset, call SQLSetPos with the SQL_POSITION option to set the current row
number.

Obtain the driver-assigned cursor name using SQLGetCursorName, or set the name to a name of your own choosing
using SQLSetCursorName.

On a separate statement handle, prepare and execute (using SQLPrepare and SQLExecute) or execute directly
(using SQLExecDirect) one of the following types of SQL statements:

DELETE FROM table-name WHERE CURRENT OF cursor-name

UPDATE table-name column-identifier =
{constant-value | dynamic-parameter}
[, column-identifier =
{constant-value | dynamic-parameter}]...CURRENT OF cursor-name

The table name must match that used in the SELECT ... FOR UPDATE OF statement.

Limitations
• Only a single table should be used in the SELECT ... FOR UPDATE OF statement.

• The result set should not contain columns representing aggregate functions such as MIN, MAX, SUM, and
AVG, nor any columns whose content is computed.

• The SET clause in the UPDATE statement should set columns in the select-list of the select statement to
either a constant value or a dynamic parameter. Expressions are not supported.

• Parameter arrays are not supported.

• Data-at-execution parameters are not supported.

See the ODBC 2.0 Programmer’s Reference from Microsoft Press for a discussion on how to use positioned updates
and deletes via SQL statements. The example can be found in Chapter 22, “ODBC Function Reference,” in the
section on SQLSetPos.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Powersoft PowerBuilder
PowerBuilder applications do not allow updating of rows on tables that do not have a unique index.

If you are using PowerBuilder 4.x or 5.x, insert the following sections in the PBODB040.INI or PBODB050.INI file:

Under the "DBMS Driver / DBMS Settings" heading, insert:

Figure C-1
PowerBuilder INI Settings - Main

; Pervasive Software ODBC Interface

[BTRIEVE WINBTINT]

PBNoCatalog='YES'

PBSyntax='BTRIEVE_ODBC_SYNTAX'

PBDateTime='DEFAULT_DATETIME'

PBFunctions='MS_BTRIEVE_FUNCTIONS'

; Pervasive Software ODBC Interface

[BTRIEVE W32BTINT]

PBNoCatalog='YES'

PBSyntax='BTRIEVE_ODBC_SYNTAX'

PBDateTime='DEFAULT_DATETIME'

PBFunctions='MS_BTRIEVE_FUNCTIONS'

Under the "Pattern Matching Syntax" heading, insert:

Figure C-2
PowerBuilder INI Settings - Pattern Matching

[BTRIEVE_ODBC_SYNTAX]

AddColumn='ALTER TABLE &TableName ADD ::AddColElement[, ::AddColElement]...'

AddColElement='&ColumnName &data type '

CreateIndex='CREATE &UNIQUE INDEX &IndexName ON &TableName (::ColumnIndex[,::ColumnIndex]...)'

ColumnIndex='&ColumnName &Descending'

CreateTable='CREATE TABLE &TableName (::ColumnElement[, ::ColumnElement]...)'

ColumnElement='&ColumnName &data type &NotNull'

DropIndex='DROP INDEX &IndexName'

DropTable='DROP TABLE &TableName'

DropView='DROP VIEW &TableName'

GrantTablePrivilege='GRANT &Privilege[,&Privilege]... ON &TableName TO

&UserName[,&UserName]...'

RevokeTablePrivilege='REVOKE &Privilege[,&Privilege]... ON &TableName FROM

&UserName[,&UserName]...'

Managing Rowsets
Powerbuilder returns records by using SQLExtendedFetch. Prior to fetching records, Powerbuilder applications set a
rowset size of 1 to 1000 records.

The rowset size Powerbuilder applications choose varies, based on a calculation internal to Powerbuilder. Frequently,
the calculated rowset size causes an overflow in one or more Pervasive data buffer settings. If this situation occurs,
the application may return one of the following errors, depending on which Pervasive product is in use:

[Pervasive Software][ODBC Interface][Pervasive Software SQL Engine]Status Code: 2106

[Pervasive Software][ODBC Interface][Pervasive Software SQL Engine]Status Code: 822

[Pervasive Software][ODBC Interface][Pervasive Software SQL Engine]Status Code: 210

[Pervasive Software][ODBC Interface]Error in row. (100)

To avoid these failures, you can set the Powerbuilder rowset size so that it fits better within the Pervasive data buffer
limits. The default Pervasive data buffer setting is 16KB, the maximum 32KB. You can change the client buffer setting
by using Setup utility to modify the Communications Buffer Size within the Scalable SQL Requester component or the
Btrieve Communications Manager component. You can change the server buffer setting by using Setup to modify the
Communications Buffer Size within the appropriate database engine component. The client and server settings must
be the same.

Once you have chosen your Pervasive data buffer size, you must ensure that Powerbuilder does not use rowsets too
large for the data buffer. In Powerbuilder, the BLOCK parameter specifies the rowset size, or the number of rows
returned in a rowset. See the Powerbuilder online help for more information about BLOCK.

You can use the formula below to calculate the largest value of BLOCK (the largest rowset size) you can use:

BLOCK = Data buffer size / (max record length + 2)

Maximum record length is the length in bytes of the longest possible record in your database.

Setting the BLOCK Parameter

Before connecting to a database, you must configure the database profile in Powerbuilder.

To change the BLOCK parameter within the database profile:

1. Click the DB Profile icon on the Powerbuilder toolbar. You should see the Database Profiles window as
shown in Figure C-3 on page -16.

Figure C-3

Database Profiles window

2. Choose the database profile you wish to edit. Then click Edit to open the Database Profile Setup window,
as shown in Figure C-4 on page -17.

Figure C-4
Database Profile Setup window

3. Click More . Add the following text to the DBPARM value: ,BLOCK= x    where x is the desired rowset size.
See Figure C-5 on page -18.

For example, the resulting string for DBPARM, specifying that no more than 10 rows should be returned in a
data buffer, might look like this:

ConnectString='DSN=DEMODATA;=C:\PVSW\DEMODATA;DDFPATH=C:
\PVSW\DEMODATA;=no;FeaturesUsed=no;AccessFriendly=no;=mdy;',BLOCK=10

Figure C-5

DBPARM setting

Programming Considerations
The ODBC Interface 2.5 has been tested with Borland Delphi 2.0; Microsoft Visual BASIC 4.0 and 5.0; Microsoft
Access 2.0, 7.0, and 8.0; Microsoft Visual FoxPro 3.0; and Powersoft PowerBuilder 5.0 (Enterprise Edition). This
appendix discusses issues that developers may encounter when developing applications that use the ODBC
Interface. The following topics are covered:

• “Borland Delphi”

• “Cognos Impromptu”

• “Crystal Reports”

• “Microsoft Visual BASIC”

• “Microsoft Access”

• “Powersoft PowerBuilder”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Programming via ODBC
This chapter describes how to program using the Open Database Connectivity Applications Programming Interface
(ODBC API) with the ODBC Interface. The following topics are covered in this chapter:

• “Development Software Requirements”

• “Data Type Differences”

• “SQLGetInfo Return Values”

• “SQLDriverConnect Connection Strings”

• “ODBC Procedure (Stored Statement) Support”

• “Performing Bulk Operations Using Parameter Arrays”

• “Using SQLSetPos”

• “Using Bookmarks”

• “Positioned Updates and Deletes Using SQL Statements”

• “SQLExtendedFetch With Relative and Absolute Positioning”

• “OEM Character Translation”

• “Supplying Btrieve Owner Names”

• “General Programming Notes”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

SQL Preprocessor
The ODBC Interface uses a SQL preprocessor to modify ODBC-compliant SQL statements into a form that can be
correctly interpreted by the underlying proprietary SQL engine.

For example, you can use quoted identifiers in accordance with the ODBC specification, and if the underlying engine
is earlier than Scalable SQL 4.0, the preprocessor removes the quotes and substitutes the appropriate blank
substitution character in the identifier. The NOT keyword as supported in ODBC SQL is slightly different from the
support in Pervasive.SQL. The preprocessor transforms ODBC-compliant statements containing the NOT keyword
into Pervasive.SQL-compliant statements.

The preprocessor also handles SQL grammar constructs used by some non-compliant front ends. For example,
Microsoft Access uses the keyword DISTINCTROW in SELECT statements. This keyword is not supported either by
the ODBC specification or Scalable SQL engines. The preprocessor substitutes the word DISTINCT for
DISTINCTROW.

The SQL preprocessor handles ODBC-compliant grammar and a few extensions required by popular front ends, but
does not recognize the full range of Pervasive.SQL extensions. If the preprocessor detects unrecognized grammar
constructs, it passes the original, unmodified SQL statement to the underlying SQL engine. For this reason, you
should choose between ODBC compliance and Pervasive.SQL compliance when submitting SQL statements to the
ODBC Interface. If you choose Pervasive.SQL compliance, you are responsible for ensuring that all the rules of the
Pervasive.SQL grammar are followed, including blank substitution in identifiers.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

SQLDriverConnect Connection Strings
You can connect to a Pervasive.SQL database using the information provided during the definition of the data source,
using a database name, or by specifying the path to the DDF and data files for the database. When calling
SQLDriverConnect, you pass a connection string that contains the name of the data source, and optionally, additional
information such as the user’s login name and password, the DDF and data paths, or the database name.

Connection strings passed to SQLDriverConnect consist of keyword-value pairs joined by equal signs, with the
keyword-value pairs separated by semicolons. The connection string uses the keywords listed in Table 5-2.

Table 5-2
SQLDriverConnect Connection String Keywords

Keyword Description

 DSN The name of the data source (required).

 DB A Pervasive.SQL database name.

 DDFPATH Directory path containing the dictionary files for a Pervasive.SQL database
(if this is not a named database).

 DATAPATH Directory path containing the data files for a Pervasive.SQL database (if
different from the dictionary path, and if this data source does not use a
named database). You may specify:- NetWare-style paths
- A single long path
- Multiple short paths separated by commasNOTE: Multiple long paths are
not supported.

 UID The user login ID.

 PWD The user-specified password.

 LOGINSCRIPT Specific SQL statements that should be executed upon connection to the
database, immediately following a successful login. See below for more
information.

 NULLENABLED Range: Yes|No. Default: No.Set this variable to ‘Yes’ if you wish to use
Pervasive.SQL-style null handling. The default value of ‘No’ specifies
traditional ODBC-style null handling. See below for additional information.

 ACCESSFRIENDLY Range: Yes|No. Default: No.Set this variable to ‘Yes’ if you wish to enable
the Access/Jet Compatibility mode.

 FEATURESUSED Range: Yes|No. Default: No.Set to ‘Yes’ to enable Pervasive.SQL 4 mode
connection (allowed for Scalable SQL 4 and Pervasive.SQL databases
only). The default value of ‘No’ causes the connection to be made in
Scalable SQL 3-compliant mode regardless of the version of the target
engine.

 DATEFORMAT Range: mdy|myd|dym|dmy|ymd|ydm. Default: mdy.Set to the date format
desired. This keyword is only available if using a Scalable SQL 4or
Pervasive.SQL data base and FEATURESUSED is set to ‘Yes’. See below
for more information.

 CREATEDDF Range: 0|1|2. Default: empty.This keyword allows you to create, replace, or
remove a DDF. Zero ‘0’ signifies Create, ‘1’ specifies Replace, and ‘2’
specifies Remove. See below for more information.

 

Named Database Example
To connect to the Patients data source (which is the named database ‘Patients’) with the login ID Smith and the
password Sesame using Pervasive.SQL, use the following connection string. (The ‘@’ character prepended to the
database name is optional; if missing, it is added dynamically before the internal call to XQLLogin.)

DSN=Patients;DB=@Patients;UID=Smith;PWD=Sesame

DDF Path Example
To connect to the Patients data source (which is located in the directory C:\PVSW\DEMODATA for the ODBC
Interface for Windows, and in the directory C:\ProgramFiles\BTI\WIN32\DEMODATA for the ODBC Interface for
Windows NT/Windows 95) with the login ID Smith and the password Sesame using Pervasive.SQL, use the following
connection strings.

For Windows 3.x:

DSN=Patients;DDFPATH=C:\PVSW\DEMODATA\ODBC; UID=Smith;PWD=Sesame

For Windows NT and Windows 95:

DSN=Patients;DDFPATH=C:\PVSW\DEMODATA\ODBC;UID=Smith;=Sesame

 Note: Spaces are not supported as part of long path names under Windows NT or
Windows 95.

DATAPATH Keyword
This variable specifies the directory path containing the data files for a Pervasive.SQL database, if the data files path
is different from the dictionary path and if this data source does not use a named database.

To provide multiple data file paths, use a comma separated list, as in the following example:

DATAPATH=d:\data1,d:\data2,d:\data3;

 Note: Although the ODBC Administrator uses semicolons to separate data paths,
the semicolon separator cannot be used with the DATAPATH keyword, because it
already has meaning as the statement separator.

LOGINSCRIPT Keyword
This variable specifies whether a login script should be run on successful connection to the database. A login SQL
script consists of one or more SQL statements, separated by semicolons. You specify the SQL statements using the
Login Script edit control.

This feature can be used, for example, to establish global null values when the underlying data was built using null
values other than the default.

This feature is especially useful for data sources to be used with third-party applications (such as Borland Delphi,
Visual Basic RDO, and Microsoft Access) that do not offer easy ways to execute SQL statements on each
connection.

In the Login Script edit control, enter the SQL statement or statements you want to have executed during login to the
database. If more than one SQL statement is to be executed, separate the statements with a semi-colon (;). For
example:

LOGINSCRIPT=SET BINARYNULL = 255;SET DECIMALNULL = ' '

In some cases you may wish to use a different statement separator.    For example, you may need to use a semi-
colon within the SQL statement, or you may need to use the connect string returned from SQLDriverConnect , which
uses a semi-colon to separate attribute-value pairs.    In these instances, you can begin the Login Script with any non-
alphabetic character, and that character will be used as the delimiter.

For example, to connect to the Patients data source as described above and then set values for BINARYNULL and
DECIMALNULL global null values on this connection, you could use the following connection string (which sets the
Login Script delimiter to he dollar sign ($):

DSN=Patients;DDFPATH=C:\BTI\WIN\DEMODATA;UID=Smith;=Sesame;LOGINSCRIPT=$SET BINARYNULL = 255$SET
DECIMALNULL = ';'

Test the effect of your script after connecting to the data source.

NULLENABLED Keyword
Pervasive.SQL determines null values by searching for a sentinel value in each byte of the column.    For example,
the default NULL value for a column of type NUMERIC is the space character.

For most data types, there is a valid sentinel value outside the scalar range of the type.    However, for a few types,
such as INT(2) and INT(4), this is not the case.    The default sentinel value for integer types is zero, and an integer
with a zero in all bytes has the legal scalar value zero.

Some ODBC-enabled applications construct WHERE clauses that test a column value with an IS NOT NULL
construct, resulting in the exclusion of rows where every byte of the test columns value is the sentinel value.    This
can result in the inadvertent exclusion of rows from a result set.

The ODBC Interface reports as non-nullable any data type that does not have a possible null value outside its scalar
range.    Nonetheless, some ODBC-enabled applications still construct tests of the type described previously.

To allow these applications to operate correctly, the ODBC Interface modifies the SQL statement substituting WHERE
0 = 1 for WHERE MY_INT_COLUMN IS NULL and    WHERE 1 = 1 for WHERE MY_INT_COLUMN IS NOT NULL.   
This behavior is applied whenever a test for null status is applied to a column which the ODBC Interface declares as
not nullable.

Some programmers may want to expose the native null handling of Pervasive.SQL, which requires that the ODBC
Interfaces null handling behavior be disabled.    To accomplish this, set the Scalable SQL Nulls check box in the
Setup dialog.    When passing a connect string to SQLDriverConnect or SQLBrowseConnect, pass the attribute value
pair ‘NULLENABLED=yes’.

ACCESSFRIENDLY Keyword
Setting this flag to ‘Yes’ turns on a special Access/Jet Compatibility mode that provides additional interoperability with
Microsoft Access.    This flag is normally set by checking the Access/Jet Compatibility box on the Setup Data Sources
screen for a data source to be used with MS Access.

Access and the Jet engine behave best with String datatypes (CHAR, ZSTRING) and INT.

Access is known to have problems with certain data types:

• TIME (used as a key)

• Numerics (NUMERIC, NUMERICSA, NUMERICSTS) with precision greater than 9.

• DECIMAL (used as a key)

• LVAR

• Float & Bfloat (with precision greater than 7)

These Access/Jet engine problems show up as ‘#deleted’ errors, and Access reports that a record has been updated
by another user when it has actually not been updated by anyone else.

When ACCESSFRIENDLY mode is set, the Pervasive ODBC Interface takes special steps to ensure proper
interpretation of the data types that can cause problems with Access.    This flag should only be set for data sources
that display ‘#deleted’ for each field, and should only be used when Access or the Jet engine is used to view or
update the data source.

This Jet compatibility mode may require some workarounds at the front-end level. In the case of Excel, you can
multiply strings by calling a “string to Number” function. The same is true with Access. A front-end mask can be
applied so that the “string” with a number value will display and behave as a number.

Microsoft has not indicated any plans to fix this problem.

DATEFORMAT Keyword
If the date format is set to any value other than the default (mdy), SET DATEFORMAT is called for the specified date
format after a successful login to the database.    This supports dates using the date format specified for updates and
inserts.    For example, if Date Format is ymd, a date field can be formatted as in the following SQL statement:

Select * from tablename where datecol = '1925/12/25'

CREATEDDF Keyword
The CREATEDDF keyword is used to create, replace or remove a Data Dictionary File.    This keyword can only be
used with SQLDriverConnect and SQLBrowseConnect and requires the DRIVER and DDFPATH keywords.    Note
that a data source is not used with this keyword.    When specifying CREATEDDF=2 to remove a data dictionary, the
DDF files are deleted, no connection is made, and the return code is -1, because no connection occurred. (Similarly,
SQLError returns a native code of 0.) An error is returned if the directory specified by DDFPATH does not exist, or if
CREATEDDF is used to create a data dictionary and DDF files already exist in the specified directory.

To create a data dictionary in the d:\datadict    directory,    using the Win32 Pervasive Software ODBC Interface, you
would use the following connection string:

DRIVER={Pervasive Software ODBC-32};=d:\datadict;CREATEDDF=0;

To create a data dictionary in the d:\datadict directory,    with data in the d:\data directory, using the Win32 Pervasive
Software ODBC Interface, you would use the following connection string:

DRIVER={Pervasive Software ODBC-32};DDFPATH=d:\datadict; DATAPATH=d:\data;CREATEDDF=0;

Invoking Driver-specific Features using SQLDriverConnect
You can use SQLDriverConnect to invoke features specific to Pervasive’s ODBC Interface.

Braces "{}"    are mandatory when used with SQL_DRIVER_NONPROMPT.

The semi-colon ";" is also necessary.

Following are some examples of invoking various features.

Basic set-up

DRIVER={Pervasive Software ODBC-32};=USER;PWD=PASSWORD;DATAPATH=L:\Bench;DDFPATH=L:\bench;

Providing a Database Name

DRIVER={Pervasive Software ODBC-32};=USER;PWD=PASSWORD;DB=@DBASE;

Invoking Other Features

This example invokes Pervasive.SQL null-handling, Microsoft Access compatibility, and Pervasive.SQL features.

DRIVER={Pervasive Software ODBC-32};=D:\btissql;DDFPATH=D:\btissql;NullEnabled=yes;=yes;featuresused=yes;

For more information on the context of using these features, refer to the ODBC 2.0 Programmer’s Reference , p. 274.

To activate the translation DLL, you can call SQLSetConnectOption after SQLDriverConnect, as shown in the
following example.

• SQLDriverConnect:

• In:

hdbc=0x00821AE8, hwnd=VALID,szConnStrIn="DRIVER={Pervasive Software ODBC-32};DATAPATH=D:\btissql;...",
cbConnStrIn=127, szConnStrOut=VALID, cbConnStrOutMax=300, pcbConnStrOut=VALID,
fDriverCompletion=SQL_DRIVER_NOPROMPT=0

• Return:

SQL_SUCCESS=0

• Out:

szConnStrOut="DRIVER={Pervasive Software ODBC-32};DATAPATH=D:\btissql...", *pcbConnStrOut=127

• SQLSetConnectOption:

• In:

hdbc=0x00821AE8,fOption=Conn: SQL_TRANSLATE_DLL=106, vParam="", Parameter Type=SQL_C_CHAR=1

• Return:

SQL_SUCCESS=0

For more information on this programming context, refer to the ODBC 2.0 Programmer’s Reference , p.450.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

SQLGetInfo Return Values
Table 5-1 lists the C language #define directives for the fInfoType argument and the corresponding values that
SQLGetInfo returns as Pervasive.SQL processes them. An application can retrieve this information by passing the
constants (listed in the first column in Table 5-1) to SQLGetInfo in the fInfoType argument.

 Note: For some fInfoType values listed below that refer to maximum values
(such as for SQL_MAX_TABLES_IN_SELECT), the value zero is returned when
the actual value is unlimited or variable depending on system resource
availability. Consult the ODBC 2.0 Programmer’s Reference from Microsoft for
explanations of the various fInfoType values.

Table 5-1
SQLGetInfo Return Values

fInfoType Value (#define) Returned Value

 SQL_ACTIVE_CONNECTIONS Returns a number that depends on
Pervasive.SQL Setup and available memory, or
that depends on BTI.INI settings and available
memory.

 SQL_ACTIVE_STATEMENTS Always returns 0 as there is no specified limit.

 SQL_DATA_SOURCE_NAME Returns    the current data source name.

 SQL_DRIVER_HDBC Handled by the Driver Manager.

 SQL_DRIVER_HENV Handled by the Driver Manager.

 SQL_DRIVER_HSTMT Handled by the Driver Manager.

 SQL_DRIVER_NAME Returns    “WINBTINT.DLL” for the ODBC
Interface for Windows or “W32BTINT.DLL” for the
ODBC Interface for Windows NT/Windows 95.

 SQL_DRIVER_VER Returns    the current version string.

 SQL_FETCH_DIRECTION Returns the following:
SQL_FD_FETCH_NEXT |
SQL_FD_FETCH_FIRST |
SQL_FD_FETCH_LAST |
SQL_FD_FETCH_PRIOR |
SQL_FD_FETCH_ABSOLUTE |
SQL_FD_FETCH_RELATIVE |
SQL_FD_FETCH_BOOKMARK.

 SQL_ODBC_API_CONFORMANCE Returns SQL_OAC_LEVEL1 to indicate level 1
conformance.

 SQL_ODBC_VER Handled by the Driver Manager.

 SQL_ROW_UPDATES Returns N.

 SQL_ODBC_SAG_CLI_CONFORMANCE Returns SQL_OSCC_COMPLIANT to indicate
that a driver is SAG compliant.

 SQL_SERVER_NAME Returns an empty string.

 SQL_SEARCH_PATTERN_ESCAPE Returns \.

 SQL_ODBC_SQL_CONFORMANCE Returns SQL_OSC_CORE for core SQL.

 SQL_DATABASE_NAME Returns an empty string.

 SQL_DBMS_NAME Returns “BTRIEVE.”

 SQL_DBMS_VER Returns a string representing the current version
of Pervasive.SQL on this connection (e.g.,
"03.01.0935"). The actual version is determined
dynamically on request

 SQL_ACCESSIBLE_TABLES Returns N.

 SQL_ACCESSIBLE_PROCEDURES Returns N.

 SQL_PROCEDURES Returns Y.

 SQL_CONCAT_NULL_BEHAVIOR Returns SQL_CB_NULL to indicate that the result
is a concatenation of non-NULL value columns.

 SQL_CURSOR_COMMIT_BEHAVIOR Returns SQL_CB_PRESERVE.

 SQL_CURSOR_ROLLBACK_BEHAVIOR Returns SQL_CB_PRESERVE.

 SQL_DATA_SOURCE_READ_ONLY Returns    N.

 SQL_DEFAULT_TXN_ISOLATION For the ODBC Interface for Windows, returns a
value based on the transaction isolation level
specified in Pervasive.SQL Setup. For the ODBC
Interface for Windows NT/Windows 95, returns a
value based on the transaction isolation level
specified in BTI.INI [Scalable SQL Engine]
“isolation level” section. A value of “cs” in that
section causes the return value
SQL_TXN_REPEATABLE_READ; a value of “ex”
(exclusive) results in a return of
SQL_TXN_SERIALIZABLE.

 SQL_EXPRESSIONS_IN_ORDERBY Returns N.

 SQL_IDENTIFIER_CASE Returns SQL_IC_MIXED.

 SQL_IDENTIFIER_QUOTE_CHAR Returns a double-quote character.

 SQL_MAX_COLUMN_NAME_LEN Returns 20.

 SQL_MAX_CURSOR_NAME_LEN Returns 18.

 SQL_MAX_OWNER_NAME_LEN Returns 0 to indicate that owner names are not
supported.

 SQL_MAX_PROCEDURE_NAME_LEN Returns 30.

 SQL_MAX_QUALIFIER_NAME_LEN Returns 0 to indicate that qualifiers are not
supported.

 SQL_MAX_TABLE_NAME_LEN Returns 20.

 SQL_MULT_RESULT_SETS Returns Y.

 SQL_MULTIPLE_ACTIVE_TXN Returns Y.

 SQL_OUTER_JOINS Returns Y.

 SQL_OWNER_TERM Returns an empty string.

 SQL_PROCEDURE_TERM Returns “Stored Statements”.

 SQL_QUALIFIER_NAME_SEPARATOR Returns “.”

 SQL_QUALIFIER_TERM Returns an empty string.

 SQL_SCROLL_CONCURRENCY Returns the following:
SQL_SCCO_OPT_ROWVER |
SQL_SCCO_OPT_VALUES |
SQL_SCCO_READ_ONLY | SQL_SCCO_LOCK.

 SQL_SCROLL_OPTIONS Returns the following:
SQL_SO_KEYSET_DRIVEN |
SQL_SO_DYNAMIC |
SQL_SO_FORWARD_ONLY.

 SQL_TABLE_TERM Returns    “Table”.

 SQL_TXN_CAPABLE Returns SQL_TC_DML to indicate that
transactions are supported, but for DML
statements only.

 SQL_USER_NAME Returns the login name of the current user, or an
empty string if the user is not available.

 SQL_CONVERT_FUNCTIONS Returns 0.

 SQL_NUMERIC_FUNCTIONS Returns the following:
SQL_FN_NUM_ROUND |
SQL_FN_NUM_TRUNCATE.

 SQL_STRING_FUNCTIONS Returns the following:
SQL_FN_STR_CONCAT | SQL_FN_STR_LEFT |
SQL_FN_STR_LTRIM | SQL_FN_STR_LENGTH
| SQL_FN_STR_LCASE | SQL_FN_STR_RIGHT
| SQL_FN_STR_RTRIM |
SQL_FN_STR_SUBSTRING |
SQL_FN_STR_UCASE.

 SQL_SYSTEM_FUNCTIONS Returns 0.

 SQL_TIMEDATE_FUNCTIONS Returns the following:
SQL_FN_TD_CURTIME | SQL_FN_TD_HOUR |
SQL_FN_TD_MINUTE | SQL_FN_TD_SECOND |
SQL_FN_TD_DAYOFWEEK |
SQL_FN_TD_CURDATE| SQL_FN_TD_MONTH |
SQL_FN_TD_DAYOFMONTH |
SQL_FN_TD_YEAR.If the Scalable SQL 4 or
Pervasive.SQL Engine is in use on the
connection, SQL_FN_TD_NOW is also returned.

 SQL_CONVERT_BIGINT Returns 0.

 SQL_CONVERT_BINARY Returns 0.

 SQL_CONVERT_BIT Returns 0.

 SQL_CONVERT_CHAR Returns 0.

 SQL_CONVERT_DATE Returns 0.

 SQL_CONVERT_DECIMAL Returns 0.

 SQL_CONVERT_DOUBLE Returns 0.

 SQL_CONVERT_FLOAT Returns 0.

 SQL_CONVERT_INTEGER Returns 0.

 SQL_CONVERT_LONGVARCHAR Returns 0.

 SQL_CONVERT_NUMERIC Returns 0.

 SQL_CONVERT_REAL Returns 0.

 SQL_CONVERT_SMALLINT Returns 0.

 SQL_CONVERT_TIME Returns 0.

 SQL_CONVERT_TIMESTAMP Returns 0.

 SQL_CONVERT_TINYINT Returns 0.

 SQL_CONVERT_VARBINARY Returns 0.

 SQL_CONVERT_VARCHAR Returns 0.

 SQL_CONVERT_LONGVARBINARY Returns 0.

 SQL_TXN_ISOLATION_OPTION Returns the following:
SQL_TXN_READ_COMMITTED |
SQL_TXN_SERIALIZABLE.

 SQL_ODBC_SQL_OPT_IEF Returns Y.

 SQL_CORRELATION_NAME SQL_CN_ANY.

 SQL_NON_NULLABLE_COLUMNS SQL_NNC_NULL.

 SQL_DRIVER_ODBC_VER Returns the version of ODBC under which the
Interface was compiled.

 SQL_LOCK_TYPES Returns SQL_LCK_NO_CHANGE |
SQL_LCK_EXCLUSIVE | SQL_LCK_UNLOCK.

 SQL_POS_OPERATIONS Returns SQL_POS_POSITION    |
SQL_POS_REFRESH |
SQL_POS_UPDATE |
SQL_POS_DELETE |
SQL_POS_ADD.

 SQL_POSITIONED_STATEMENTS Returns SQL_PS_POSITIONED_DELETE |
SQL_PS_POSITIONED_UPDATE |
SQL_PS_SELECT_FOR_UPDATE.

 SQL_GETDATA_EXTENSIONS Returns SQL_GD_ANY_COLUMN |
SQL_GD_ANY_ORDER    |
SQL_GD_BLOCK.

 SQL_BOOKMARK_PERSISTENCE Returns SQL_BP_CLOSE    |
SQL_BP_DROP |
SQL_BP_SCROLL |
SQL_BP_TRANSACTION |
SQL_BP_UPDATE    |
SQL_BP_OTHER_HSTMT.

 SQL_STATIC_SENSITIVITY Returns 0.

 SQL_FILE_USAGE Returns SQL_FILE_NOT_SUPPORTED.

 SQL_NULL_COLLATION Returns SQL_NC_LOW.

 SQL_ALTER_TABLE Returns the following:
SQL_AT_ADD_COLUMN |
SQL_AT_DROP_COLUMN.

 SQL_COLUMN_ALIAS Returns N.

 SQL_GROUP_BY Returns
SQL_GB_GROUP_BY_EQUALS_SELECT.

 SQL_KEYWORDS Returns the current list of reserved keywords for
the SQL engine (See Appendix B, “Pervasive.SQL
Keywords” for a complete listing).

 SQL_ORDER_BY_COLUMNS_IN_SELECT Returns Y.

 SQL_OWNER_USAGE Returns 0.

 SQL_QUALIFIER_USAGE Returns 0.

 SQL_QUOTED_IDENTIFIER_CASE Returns SQL_IC_MIXED.

 SQL_SPECIAL_CHARACTERS Returns #$^.

 SQL_SUBQUERIES Returns
SQL_SQ_CORRELATED_SUBQUERIES.

 SQL_UNION Returns the following:
SQL_U_UNION | SQL_U_UNION_ALL.

 SQL_MAX_COLUMNS_IN_GROUP_BY Returns 0, meaning no maximum is specified.

 SQL_MAX_COLUMNS_IN_INDEX Returns 0, meaning no maximum is specified.

 SQL_MAX_COLUMNS_IN_ORDER_BY Returns 0, meaning no maximum is specified.

 SQL_MAX_COLUMNS_IN_SELECT Returns 0, meaning no maximum is specified.

 SQL_MAX_COLUMNS_IN_TABLE Returns 32767.

 SQL_MAX_INDEX_SIZE Returns 255.

 SQL_MAX_ROW_SIZE_INCLUDES_LONG Returns N.

 SQL_MAX_ROW_SIZE Returns 4088. The actual value may vary
depending on configured sizes for the
communications buffer for both the client
requester and the server engine.

 SQL_MAX_STATEMENT_LEN Returns 32767.

 SQL_MAX_TABLES_IN_SELECT Returns 20 for Scalable SQL 3.01 connections,
and zero for Scalable SQL 4.0 or Pervasive.SQL
connections. Zero is used to indicate that there is
no fixed limitation, but the actual number is
dependent on available memory.

 SQL_MAX_USER_NAME_LEN Returns 30.

 SQL_MAX_CHAR_LITERAL_LEN Returns 255.

 SQL_TIMEDATE_ADD_INTERVALS Returns 0.

 SQL_TIMEDATE_DIFF_INTERVALS Returns 0.

 SQL_NEED_LONG_DATA_LEN Returns N.

 SQL_MAX_BINARY_LITERAL_LEN Returns 255.

 SQL_LIKE_ESCAPE_CLAUSE Returns Y.

 SQL_QUALIFIER_LOCATION Returns 0.

 

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Sample Program
This appendix shows how to program in the C language using the ODBC API and the ODBC Interface. The following
topics are covered in this appendix:

• “Interface Modules”

• “Compiling C/C++ Applications”

• “Sample Program”

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Specifying your Configuration
This section covers how to set up ODBC Interface for your particular client/server configuration. All configuration
changes are performed using the Setup Utility, which you can start from the Pervasive.SQL program group. You may
need to use the Win16 version or the Win32 version, as noted in the following section.

 Note: The default installation of ODBC is properly configured with the most
commonly used setup parameters. Do not use the procedures outlined here unless
you are certain you need to change your existing configuration.

It may help you to remember that the ODBC driver is, itself, a Pervasive.SQL application, so if you know how to
configure Pervasive.SQL applications, you know how to configure the ODBC driver.

Windows 3.x Applications on Windows 9X/NT Systems
If you want to run Win16 ODBC applications on Win32 systems, there are a few guidelines to take into account.

 Note: This section applies to Pervasive.SQL Server only.

Thunking

Pervasive recommends that you use “thunking” at the Microsoft ODBC driver manager level. “Thunking” refers to the
translation of Win16 calls to Win32 calls. To do so, you should have both Microsoft Win16 and Microsoft Win32
ODBC installed. Once this step is complete, thunking will occur transparently and automatically.

If you do not install both Microsoft ODBC products on your Windows 9X or Windows NT computer, you must use a
different method of thunking.

To turn on Pervasive thunking:

1. Using Setup (Win16), choose Scalable SQL Requester under Component, and choose Access Control
under Categories.

2. Choose Use Thunk under Settings. Set the value to “On.”

3. Make sure the Local Usage and Remote Usage settings are both “Off.”

These settings are preferred if thunking is on, because thunking means you want to use the Win32
requester, not the Win16 requester. By disabling Win16 Remote and Local Usage, you are ensuring that
only the Win32 requester gets loaded into memory.

4. Using the other Setup program, Setup (Win32), choose Scalable SQL Requester under Component, and
choose Access Control under Categories.

5. Under Settings, set Local Usage to “On” if you wish to use a local Win32 workstation engine. Or, set
Remote Usage to “On” if you wish to connect to a remote server engine.

If you have both settings set to “On,” the Requester will always try to find the server first, and then fall back
to the local engine if no server can be found.

6. Click Save , and click Exit .

Using a local Btrieve workstation engine

This section describes how to configure your client if your 16-bit ODBC application uses the Btrieve workstation
engine.

If you wish to run a Win16 ODBC application directly against a local Btrieve workstation
engine, perform the following steps:

1. Using Setup (Win32), choose Scalable SQL Requester under Component, and choose Access Control
under Categories. If this Component is not available, skip to step 4.

2. Choose Local Usage under Settings. Set the value to “Off.”

3. Choose Remote Usage under Settings. Set the value to “Off.”

4. Under Component, choose MicroKernel Router (Win32) and under Categories, choose Access Control .

5. Under Settings, choose Local . Set the value to “On.”

6. Under Settings, choose Requester . Set the value to “Off.”

7. Click Save , and click Exit .

8. Using Setup (Win16), choose Scalable SQL Requester under Component, and choose Access Control
under Categories.

9. Choose Local Usage under Settings. Set the value to “On.”

10. Choose Remote Usage under Settings. Set the value to “Off.”

11. Choose Use Thunk under Settings. Set the value to “Off.”

12. Under Component, choose MicroKernel Router (Win16) , and under Categories, choose Access Control .

13. Under Settings, choose Local . Set the value to “Off.”

14. Under Settings, choose Requester . Set the value to “Off.”

15. Choose Use Thunk under Settings. Set the value to “On.”

16. Click Save , and click Exit .

Selecting Your Remote Access Path

 Note: With the release of Pervasive.SQL Workstation and Pervasive.SQL Server
Service Pack 2 (ODBC Interface 2.53 and later), ODBC Interface no longer
includes an embedded SQL engine. You must either use ODBC Interface with a
local Pervasive.SQL Workstation, or with the SQL engine running on your
Pervasive.SQL server machine. If you are using either of these product versions,

this section does not apply to you

By default, the Typical client installation configures your ODBC client to connect to a remote Pervasive.SQL server
engine. If you are not running the SQL server engine, the default configuration “falls back” to the Btrieve server
engine. In some cases you may wish to prevent this fallback, oryou may want to require that an ODBC application
works directly with Btrieve without a SQL server engine. This section explains how you can specify these
configurations.

ODBC Interface includes a built-in SQL workstation engine. If you do not have a remote Scalable SQL 4 server
installed, the built-in workstation engine translates the ODBC calls to Btrieve calls, allowing the ODBC application to
communicate directly with the remote Btrieve server engine. You should use this built-in local SQL engine only if you
do not want to have (or cannot have) Scalable SQL 4 running on the server.

If you wish to run a Win16 ODBC application directly against a remote Btrieve 7 server
engine (remote Scalable SQL access disabled), perform the following steps:

1. Using Setup (Win32), choose Scalable SQL Requester under Component, and choose Access Control
under Categories.

2. Choose Local Usage under Settings. Set the value to “Off.”

3. Choose Remote Usage under Settings. Set the value to “Off.”

4. Under Component, choose MicroKernel Router (Win32) and under Categories, choose Access Control .

5. Under Settings, choose Local . Set the value to “Off.”

6. Under Settings, choose Requester . Set the value to “On.”

7. Click Save , and click Exit .

8. Using Setup (Win16), choose Scalable SQL Requester under Component, and choose Access Control
under Categories.

9. Choose Local Usage under Settings. Set the value to “On.”

10. Choose Remote Usage under Settings. Set the value to “Off.”

11. Choose Use Thunk under Settings. Set the value to “Off.”

12. Under Component, choose MicroKernel Router (Win16) and under Categories, choose Access Control .

13. Under Settings, choose Local . Set the value to “Off.”

14. Under Settings, choose Requester . Set the value to “Off.”

15. Choose Use Thunk under Settings. Set the value to “On.”

16. Click Save , and click Exit .

If you wish to run a Win16 ODBC application against a remote Scalable SQL 4 server
engine (Btrieve access disabled), perform the following steps:

 Note: Scalable SQL 4 and Btrieve 7 server engines are both available by default.
You should only use this procedure if you wish to disable Btrieve access and use
only the SQL server engine.

1. Using Setup (Win32), choose Scalable SQL Requester under Component, and choose Access Control
under Categories.

2. Choose Local Usage under Settings. Set the value to “Off.”

3. Choose Remote Usage under Settings. Set the value to “On.”

4. Under Component, choose MicroKernel Router (Win32) , and under Categories, choose Access Control .

5. Under Settings, choose Local . Set the value to “Off.”

6. Under Settings, choose Requester . Set the value to “Off.”

7. Click Save , and click Exit .

8. Using Setup (Win16), choose Scalable SQL Requester under Component, and choose Access Control
under Categories.

9. Choose Local Usage under Settings. Set the value to “Off.”

10. Choose Remote Usage under Settings. Set the value to “Off.”

11. Choose Use Thunk under Settings. Set the value to “On.”

12. Under Component, choose MicroKernel Router (Win16) , and under Categories, choose Access Control .

13. Under Settings, choose Local . Set the value to “Off.”

14. Under Settings, choose Requester . Set the value to “Off.”

15. Choose Use Thunk under Settings. Set the value to “Off.”

16. Click Save , and click Exit .

If you wish to run a Win16 ODBC application with access to both Btrieve and Scalable
SQL enabled, perform the following steps:

 Note: The SQL and Btrieve server engines are both available by default. You
should only use this procedure if you wish to restore or verify the default
configuration.

1. Using Setup (Win32), choose Scalable SQL Requester under Component, and choose Access Control
under Categories.

2. Choose Local Usage under Settings. Set the value to “Off.”

3. Choose Remote Usage under Settings. Set the value to “On.”

4. Under Component, choose MicroKernel Router (Win32) and under Categories, choose Access Control .

5. Under Settings, choose Local . Set the value to “Off.”

6. Under Settings, choose Requester . Set the value to “On.”

7. Click Save , and click Exit .

8. Using Setup (Win16), choose Scalable SQL Requester under Component, and choose Access Control
under Categories.

9. Choose Local Usage under Settings. Set the value to “Off.”

10. Choose Remote Usage under Settings. Set the value to “Off.”

11. Choose Use Thunk under Settings. Set the value to “On.”

12. Under Component, choose MicroKernel Router (Win16) and under Categories, choose Access Control .

13. Under Settings, choose Local . Set the value to “Off.”

14. Under Settings, choose Requester . Set the value to “Off.”

15. Choose Use Thunk under Settings. Set the value to “On.”

16. Click Save , and click Exit .

Running Applications on the Server (Windows NT only)
In some cases you may wish to run an application on the computer where the server engine is located. This
configuration is only permitted on Windows NT. This section explains how to specify that an application running on
Windows NT should access the local server engine.

 Note: This section only applies to Pervasive.SQL Server.

If you wish to enable access to the local Scalable SQL server engine only:

1. Using Setup (Win32), choose Scalable SQL Requester under Component, and choose Access Control
under Categories.

2. Choose Local Usage under Settings. Set the value to “On.”

3. Choose Target Engine under Settings. Set the value to “Server Only.”

4. Click Save , and click Exit .

If you wish to enable access to the local Btrieve server engine only:

1. Using Setup (Win32), choose MicroKernel Router under Component, and choose Access Control under
Categories.

2. Choose Local under Settings. Set the value to “On.”

3. Choose Target Engine under Settings. Set the value to “Server Only.”

4. Choose Scalable SQL Requester under Component, and choose Access Control under Categories.

5. Choose Local Usage under Settings. Set the value to “On.”

6. Choose Target Engine under Settings. Set the value to “Workstation Only.”

7. Click Save , and click Exit .

If you wish to enable access to both the local Btrieve server engine and the local Scalable
SQL server engine:

1. Using Setup (Win32), choose MicroKernel Router under Component, and choose Access Control under
Categories.

2. Choose Local under Settings. Set the value to “On.”

3. Choose Target Engine under Settings. Set the value to “Server Only.”

4. Choose Scalable SQL Requester under Component, and choose Access Control under Categories.

5. Choose Local Usage under Settings. Set the value to “On.”

6. Choose Target Engine under Settings. Set the value to “Server Only.”

7. Click Save , and click Exit .

If you wish to enable access to the local Btrieve Win32 workstation engine only:

1. Using Setup (Win32), choose MicroKernel Router under Component, and choose Access Control under
Categories.

2. Choose Local under Settings. Set the value to “On.”

3. Choose Target Engine under Settings. Set the value to “Workstation Only.”

4. Choose Scalable SQL Requester under Component, and choose Access Control under Categories.

5. Choose Local Usage under Settings. Set the value to “On.”

6. Choose Target Engine under Settings. Set the value to “Workstation Only.”

7. Click Save , and click Exit .

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Supplying Btrieve Owner Names
The ODBC Interface supports supplying a Btrieve owner name for a data file. This is useful if you are maintaining a
database that has Btrieve owner names set on individual files. Owner names are a Btrieve security feature, and you
must supply the owner name in order to access or update the file or retrieve file statistics.

To supply the Btrieve owner name, you can call SQLSetConnectOption, as shown in the following example.

• SQLSetConnectOption:

• In:

hdbc=0x00821AE8,fOption=1000, vParam=ownerNames, Parameter Type=SQL_C_CHAR

• Return:

SQL_SUCCESS=0

Set the vParam parameter to the address of a null-terminated string that contains the owner names separated by
commas. You must specify each unique owner name required by the database. (For example, if all the files use the
same owner name, you specify that owner name just once.) If an owner name contains spaces, enclose it in single
quotes.

If you make this call more than once for the same connection, each call supersedes the previous call, rather than
adding to it.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Supported Versions
Two different versions of Pervasive ODBC Interface are currently available. The versions are ODBC Interface 2.5 for
use with Pervasive.SQL 7, and ODBC Interface 2.04 for use with Scalable SQL v4 (or earlier) or Btrieve 6.15 (or
earlier).

The APIs and functionality offered by these versions are identical. The major difference is that version 2.5 is designed
to work with the new Smart Components architecture in Pervasive.SQL, while 2.04 is not.

This manual is accurate for both versions of ODBC Interface.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Variations From the ODBC SQL Grammar
This section describes areas in which the SQL grammar of the interface varies from the ODBC SQL grammar.

Variable Length Fields as the Last Field in Views and Tables
The standard approach to variable-length fields in Pervasive.SQL data is to require that they appear as the last field
in a table or view. When constructing joins using the ODBC Interface, you must structure the SQL statement so the
variable-length field is the last field in the field selection list.

For example, suppose two tables exist in the following formats:

CREATE TABLE T1 (Key INT(4), Memorandum NOTE(1000))

CREATE TABLE T2 (Key INT(4),Earned^value INT(4))

A SELECT statement such as the following does not work:

SELECT * FROM T1, T2 WHERE T1.Key = T2.Key

This is because the NOTE field in T1 would appear in the middle of the view. The statement must be restructured so
that the NOTE field is at the end of the view, for example:

SELECT * FROM T2, T1 WHERE T1.Key = T2.Key

You can achieve the same effect by explicitly naming the fields instead of using the asterisk to indicate all fields:

SELECT T1.Key, Earned^value, Memorandum FROM T1, T2 WHERE T1.Key = T2.Key

Qualify Index Names with Table Names
The ODBC SQL grammar supports using table names to qualify index names. With Pervasive.SQL, index names
must be unique within the DDF.

 Note: The index name is not necessarily related to the name of the column or
columns used to create the index. Rather, the index name is assigned by the user
as part of the CREATE INDEX statement.

For example, the ODBC Interface does not recognize the following SQL statement:

DROP INDEX Patients.FirstLast

Instead, use the following statement:

DROP INDEX FirstLast

 Note: Indices created using Btrieve v6.15 do not have names and cannot be
dropped using the DROP INDEX statement.

Scalar Functions
The following scalar functions are supported:

Table 4-1

Supported Scalar Functions

String Numeric Time and Date

CONCATLC
ASELEFTLE
NGTHLTRIM

RIGHTRTRIM
SUBSTRING
UCASE

ROUNDTRUNCATE

CURDATECURTIMEDAYOFMONTHDAYOFWEEKHOUR MINUTEMONTHSECONDYEARNOW (Scalable SQL v4.0
and Pervasive.SQL only)

Although LENGTH and SUBSTRING are listed as applying to strings, they also work for NUMERIC and DECIMAL
fields.

Scalar functions can be entered as-is into SQL statements, but the resulting SQL statement is not ODBC-compliant
and therefore not portable. To create portable SQL, use an ODBC “vendor string” escape sequence, as shown in the
ODBC 2.0 Programmer’s Reference . For example:

SELECT {fn LCASE(keycol1)} FROM table1

If a field name in a vendor string contains a space, the default blank replacement character (caret) does not work. In
this case, set blank to underscore and use underscore in place of the space in the vendor string. After executing the
scalar function, you can reset blanks to carets. See the following example:

SET BLANK = ‘_’{fn LCASE(first_name)} FROM PATIENTSBLANK = ‘^’

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

What is ODBC?
Open Database Connectivity is a standard introduced by Microsoft Corporation, based on the SQL Access Group’s
Call Level Interface (SAG CLI) specification. The ODBC standard is a superset of the SAG CLI and the X/Open and
ANSI SQL-92 grammar.

The specification of the ODBC standard is set forth in the ODBC 2.0 Programmer’s Reference and SDK Guide ,
published by Microsoft Press. Developers should refer to this specification to familiarize themselves with the ODBC
call-level interface and the ODBC SQL grammar.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

Who Should Read This Manual
This manual provides information for programmers and users of Pervasive’s ODBC Interface to Btrieve and Scalable
SQL.

Pervasive Software would appreciate your comments and suggestions about this manual. As a user of our
documentation, you are in a unique position to provide ideas that can have a direct impact on future releases of this
and other manuals. Please complete the User Comments form on the Pervasive web site or send email to
docs@pervasive.com.

Send comments to docs@pervasive.com. Copyright © 1998 Pervasive Software, Inc.    All rights reserved.

