
Tango 3

Meta Tags and
Configuration Variables

January, 1999

Pervasive Software
12365 Riata Trace Parkway, Building II

Austin, Texas 78727 USA

Telephone: (512) 231-6000
Toll Free: 1 800 287-4383

Fax: (512) 231-6010

Email: info@pervasive.com
Web: http://www.pervasive.com/

Pervasive Software Inc.

Tango(TM) License Agreement

 IMPOR
SOFTWA
AGREEM
AUTHO
SUCH O
TERMS
DO NOT
AGREEM
DAYS O

1 DEFIN
a. "Perva
corporati
(U.S.A.) 7
b. "You"
which is
c. "Softw
received
d. "Docu
material
e. "Licen
this Agre
f. "Effect
licensed b
2 LICEN

2.1
subject to
nonexclu
solely for
purposes
from dep
develop u

2.2
Pervasive
Company

2.3
take all re
Documen
source co
and/or it
are not li
addition
and Your
otherwis
source co
3 COPIE
archival p
faithfully
the Docu
4 OWN
Documen
Pervasive
allow You
rights un
or Your C
5 RESTR
Agreeme
sublicese
create de
Documen
applicabl
your inte
6 ASSIG
otherwis
obligatio

Pervasive Software’s prior written consent and any attempted
assignment will be void. A merger or other acquisition by a third
party will be treated as an assignment.Pervasive may at any time
and without Your or Your Company’s consent assign all or a

mpany
nership

m the
 will

cense at
re
hall also
y of the
any

and
ation of
rvive

arrants
ged or
s
ays of
y with

E
NDER
ASIVE
 OR
PLIED,
STATES

T
S,

MPLE,
NESS
OURSE

.

verned
 of

s
tion on

t sets
 or Your
ing
LER,

AKE
ICH IS
ENT

nt shall

nt right
ed to be

held
limited,
o

ng
se
f) Cuba,
ch the
TANT: DO NOT INSTALL THE ENCLOSED
RE UNTIL YOU HAVE READ THIS LICENSE
ENT. BY INSTALLING THE SOFTWARE, OR

RIZING ANY OTHER PERSON TO DO SO, YOU, AND
THER PERSON, IF APPLICABLE ACCEPT THE
AND CONDITIONS OF THIS AGREEMENT. IF YOU
 AGREE TO THE TERMS OF THIS LICENSE
ENT, RETURN THE ENTIRE PACKAGE WITHIN TEN

F RECEIPT.

ITIONS.
sive" means Pervasive Software Inc., a Delaware
on, 12365 Riata Trace Parkway, Building II, Austin, Texas
8727.
or "Your Company" means the person or business entity
licensing the Software pursuant to this Agreement.
are" means all of the software You or Your Company have

from Pervasive with this License.
mentation" means the manuals and any other printed
provided by Pervasive with the Software.
se" means the license purchased and granted pursuant to
ement.
ive Date" means the date on which the Software was
y You or Your Company.
SE AND PROTECTION.

License Grant. Pervasive grants to You or Your Company,
 the following terms and conditions, a limited
sive, nontransferable, revocable right to use the Software
 Your internal development and Your internal testing
 only on a single-user, desk-top device. You are prohibited
loying any application programs to other parties that You
sing the Software.

Documentation. Documentation may not be copied.
 reserves all rights not expressly granted to You or Your
.

Protection of Software. You and Your Company agree to
asonable steps to protect the Software and
tation from unauthorized copying or use. The Software
de represents and embodies trade secrets of Pervasive
s licensors. The source code and embodied trade secrets
censed to You or Your Company and any modification or
thereto, or deletion therefrom is strictly prohibited. You
 Company agree not to disassemble, decompile, or
e reverse engineer the Software in order to discover the
de and/or the trade secrets contained in the source code.
S. You may make a single copy of the Software for
urposes only. All proprietary rights notices must be

 reproduced and included on all copies. You may not copy
mentation.
ERSHIP. Ownership of, and title to, the Software and
tation (including any copies) shall be vested solely in
. Copies are provided to You or Your Company only to
 or Your Company to exercise Your or Your Company’s

der this Agreement. Only the License is purchased by You
ompany, as applicable.
ICTIONS. Except as expressly authorized in this

nt, You and Your Company agree not to use, rent, lease,
, distribute, transfer, copy, reproduce, display, modify,
rivative works of, time share or dispose of the Software or
tation or any part thereof. You or Your Company, as
e, may use the Software and Documentation solely for
rnal business purposes.

portion of its rights and duties under this Agreement to a co
or companies wholly owning, owned by, or in common ow
with Pervasive.
7 TERM, TERMINATION. This Agreement is effective fro
date You or Your Company open the software envelope and
remain in force until terminated. You may terminate this Li
any time by destroying the Documentation and the Softwa
together with all copies and adaptations. This Agreement s
automatically terminate if You or Your Company breach an
terms or conditions of this Agreement. You and Your Comp
agree to destroy the original and all copies of the Software
Documentation, or to return them to Pervasive upon termin
this License. Sections 2.2, 4 and 5 of this Agreement shall su
any termination hereof.
8 LIMITED WARRANTY AND LIMITED LIABILITY.

8.1 Magnetic Media and Documentation. Pervasive w
that if the magnetic media or Documentation are in a dama
physically defective condition at the time that the License i
purchased and if they are returned to Pervasive within 90 d
purchase, then Pervasive will provide You or Your Compan
replacements at no charge.

8.2 Disclaimer of Warranty. PERVASIVE LICENSES TH
SOFTWARE PRODUCT TO YOU OR YOUR COMPANY U
THIS AGREEMENT SOLELY ON AN "AS IS" BASIS. PERV
MAKES NO OTHER REPRESENTATIONS, CONDITIONS
WARRANTIES WHATSOEVER, EITHER EXPRESS OR IM
REGARDING THE SOFTWARE; PERVASIVE EXPRESSLY
AND YOU OR YOUR COMPANY ACKNOWLEDGES THA
PERVASIVE DOES NOT MAKE ANY REPRESENTATION
CONDITIONS OR WARRANTIES, INCLUDING, FOR EXA
WITH RESPECT TO MERCHANTABILITY, TITLE, OR FIT
FOR ANY PARTICULAR PURPOSE OR ARISING FROM C
OF DEALING OR USAGE OF TRADE, AMONG OTHERS
9 GENERAL CONDITIONS.

9.1 Governing Law. This License Agreement will be go
by, and interpreted in accordance with, the laws of the State
Texas (U.S.A.) exclusive of its choice of law provisions. Thi
Agreement expressly "excludes the United Nations Conven
Contracts for the International Sale of Goods."

9.2 Complete Understanding. This License Agreemen
forth the entire understanding and agreement between You
Company and Pervasive and may be amended only in writ
signed by both parties. NO VENDOR, DISTRIBUTOR, DEA
RETAILER, SALES PERSON OR OTHER PERSON IS
AUTHORIZED TO MODIFY THIS AGREEMENT OR TO M
ANY WARRANTY, REPRESENTATION OR PROMISE WH
DIFFERENT THAN, OR IN ADDITION TO, THIS AGREEM
ABOUT THE SOFTWARE.

9.3 Waiver. No waiver of any right under this Agreeme
be effective unless in writing, signed by a duly authorized
representative of Pervasive. No waiver of any past or prese
arising from any breach or failure to perform shall be deem
a waiver of any future right arising under this Agreement.

9.4 Severability. If any provision in this Agreement is
invalid or unenforceable, that provision shall be construed,
modified or, if necessary, severed, to the extent necessary, t
eliminate its invalidity or unenforceablility, and the other
provisions of this Agreement shall remain unaffected.

9.5 Export Controls. None of the Software or underlyi
information or technology may be downloaded or otherwi
exported or reexported (i) into (or to a national or resident o
Iraq, Libya, North Korea, Iran, or any other country to whi
NMENT. You or Your Companies may not assign or
e transfer in whole or in part or in any manner any rights,
ns, or any interest in or under this Agreement without

U.S. has embargoed goods; or (ii) to any person or entity on the U.S.
Treasury Department’s list of Specially Designated Nationals, or
the U.S. Commerce Department’s Table of Denial Orders, or the

U.S. Commerce Department’s Entity List of Missile, Nuclear, and
Chemical and Biological Weapons Proliferators, or the U.S.
Department of State’s Foreign Terrorist Organization List. You
agree to the foregoing and you represent the warrant that you are
not located in, under the control of, or a national or resident of such
country or on any such list. The Software may also be subject to
U.S. laws and export regulations of the U.S. government that
require an explicit export license prior to any export or reexport of
the Software. You agree to obtain any such explicit export license
that may be required.

9.6 U.S Government End Users. The Software is a
"commercial item," as that term is defined in 48 C.F.R. 2.101 (Oct.
1995), consisting of "commercial computer software" and
"commercial computer software documentation," as such terms are
used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R.
12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995), all
U.S. Government End Users acquire the Software with only those
rights set forth herein. Contractor/Manufacturer is Pervasive
Software Inc., 12365 Riata Trace Parkway, Building II, Austin, Texas
(U.S.A.) 78727.

9.7 Consequential Damages. WITHOUT LIMITING THE
FOREGOING,IN NO EVENT WILL PERVASIVE BE LIABLE TO
YOU OR YOUR COMPANY FOR INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR
RELATING TO THIS LICENSE AGREEMENT, WHETHER
UNDER THEORY OF WARRANTY, TORT, PRODUCTS
LIABILITY OR OTHERWISE.

9.8 High Risk Activities. The Software is not fault-tolerant and
is not designed, manufactured or intended for use or resale as on-
line control equipment in hazardous environments regarding fail-
safe performance, such as in the operation of nuclear facilities,
aircraft navigation or communication systems, air traffic control,
direct life support machines, or weapons systems, in which the
failure of the Software could lead directly to death, personal injury,
or severe physical or environmental damage ("High Risk
Activities"). Pervasive and its suppliers specifically disclaim any
express or implied warranty of fitness for High Risk Activities.

9.9 English will be the controlling language of this
Agreement.
Microsoft Software Disclaimer
NO OTHER WARRANTIES, TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, MICROSOFT AND ITS
SUPPLIERS DISCLAIM ALL OTHER WARRANTIES, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, WITH REGARD TO
THE SOFTWARE PRODUCT, AND ANY ACCOMPANYING
HARDWARE. THIS LIMITED WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS, WHICH
VARY FROM STATE/JURISDICTION TO STATE/
JURISDICITION.
NO LIABILITY FOR CONSEQUENTIAL DAMAGES, TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO
EVENT SHALL MICROSOFT OR ITS SUPPLIERS BE LIABLE FOR
ANY SPECIAL, INCIDENTAL, INDIRECT, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING,
WIHTOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE
PRODUCT, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES
AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT
APPLY TO YOU.

Apple Software Disclaimer

APPLE COMPUTER, INC. (“APPLE”) MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT

LIMITATIONS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A SPECIFIC PURPOSE,
REGARDING THE APPLE SOFTWARE. APPLE DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE OR THE RESULTS OF THE USE OF THE
APPLE SOFTWARE IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS OR OTHERWISE.
THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE
OF THE APPLE SOFTWARE IS ASSUMED BY YOU. THE
EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED
BY SOME STATES. THE ABOVE EXLUSION MAY NOT APPLY
TO YOU.
IN NO EVENT WILL APPLE, ITS DIRECTORS, OFFICERS,
EMPLOYEES OR AGENTS BE LIABLE TO YOU FOR ANY
CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES
(INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTIONS, LOSS OF BUSINESS
INFORMATION, AND THE LIKE) ARISING OUT OF THE USE
OR INABILITY TO USE THE APPLE SOFTWARE EVEN IF APPLE
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMJAGES. BECAUSE SOME STATES DO NOT ALLOW THE
EXLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE
LIMITATIONS MAY NOT APPLY TO YOU. Apple’s liability to you
for actual damages from any cause whatsoever, and regardless of
the form of the action (whether in contract, tort [including
negligence], product liability or otherwise), will be limited to $50.

Copyright Notices

The Tango manual, program design, and design concepts are
copyrighted, with all rights being subject to the limitations and
restrictions imposed by the copyright laws of the United States of
America and Canada. Under the copyright laws, this manual may
not be copied, in whole or part, including translation to another
language or format, without the express written consent of
Pervasive Software Inc.
Copyright © 1999 Pervasive Software Inc. All rights reserved.
Tango Enterprise, the Tango software, Tango Editor, Tango Server,
Tango CGI, the documentation, and associated materials are ©
1992–1999 Pervasive Software Inc. All rights reserved. Tango is a
trademark of Pervasive Software Inc.
FileMaker is a registered trademark and the FileMaker Pro design
is a trademark of FileMaker Corporation.
Microsoft, Windows, Windows NT, Windows 95, and the Windows
logo are registered trademarks or trademarks of the Microsoft
Corporation in the United States and/or other countries.
All other trademarks mentioned are the property of their respective
owners.
JavaScript 1.2 Compatible. Portions © Netscape Communications
Corporation 1996, All Rights Reserved.
THE LICENSED ELEMENTS ARE LICENSED “AS IS” WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT
LIMITATION, PERFORMANCE, MERCHANTABILITY, FITNESS
FOR ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT.
THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE
OF THE SOFTWARE IS ASSUMED BY LICENSEE. SHOULD THE
SOFTWARE PROVE DEFECTIVE, LICENSEE ASSUME THE
ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL
THEORY SHALL NETSCAPE OR ITS SUPPLIERS BE LIABLE TO
LICENSEE OR ANY OTHER PERSON FOR ANY INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF
ANY CHARACTER INCLUDING WITHOUT LIMITATION ANY
COMMERCIAL DAMAGES OR LOSSES, EVEN IF NETSCAPE
HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH
DAMAGES.

Calendar Conversion Code. Copyright 1993–1995, Scott E. Lee, all
rights reserved.
Permission granted to use, copy, modify, distribute and sell so long
as the above copyright and this permission statement are retained
in all copies. THERE IS NO WARRANTY – USE AT YOUR OWN
RISK.
Regex. Copyright © 1992 Henry Spencer.
Copyright © 1992, 1993
The Regents of the University of California. All rights reserved.
This code is derived from software contributed to Berkeley by
Henry Spencer of the University of Toronto.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
This product includes software developed by the University of
California, Berkeley and its contributors.
4. Neither the name of the University nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
Portions of this software are copyrighted by INTERSOLV, Inc.,
1991–1996.

Calendar Conversion Code. Copyright 1993–1995, Scott E. Lee, all
rights reserved.
Permission granted to use, copy, modify, distribute and sell so long
as the above copyright and this permission statement are retained
in all copies. THERE IS NO WARRANTY – USE AT YOUR OWN
RISK.
Regex. Copyright © 1992 Henry Spencer.
Copyright © 1992, 1993
The Regents of the University of California. All rights reserved.
This code is derived from software contributed to Berkeley by
Henry Spencer of the University of Toronto.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
This product includes software developed by the University of
California, Berkeley and its contributors.
4. Neither the name of the University nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
Portions of this software are copyrighted by INTERSOLV, Inc.,
1991–1996.

Table of Contents

1 Introduction . 1
An Overview of This Manual

2 Meta Tags . 3
A Reference to Tango Server Meta Tags

Where You Can Use Meta Tags . 4
What’s New in Tango Meta Tags . 5
Terminology Changes and Additions . 6
Format of Meta Tags . 7

Syntax . 7
Naming Attributes . 7
Attribute Value Length . 8
Quoting Attributes . 8

Encoding Attribute . 10
NONE . 10
METAHTML . 10
MULTILINE . 10
MULTILINEHTML . 11
URL . 11
JAVASCRIPT . 11
SQL . 11

Format Attribute . 13
CASE: Case Reformatting . 13
NUM: Numeric Formatting . 13
Synonyms . 15
TEL: Telephone Numbers . 15
DATETIME . 16

Alphabetical List of Meta Tags . 17
Alphabetical List of Meta Tags With Attributes . 23
Meta Tags List by Function . 26
<@ABSROW> . 28
<@ACTIONRESULT> . 29
<@ADDROWS> . 30
i

Table of Contents
<@APPFILE> . 32
<@APPFILENAME> . 33
<@APPFILEPATH> . 34
<@ARG> . 35
<@ARGNAMES> . 37
<@ARRAY> . 38
<@ASCII> . 40
<@ASSIGN> . 41

<@BREAK> . 44
<@CALC> . 45
<@CGI> . 57
<@CGIPARAM> . 58
<@CGIPATH> . 61
<@CHAR> . 62
<@CIPHER> . 63
<@COL> . 66
<@COLS> </@COLS> . 67
<@COLUMN> . 68
<@COMMENT> </@COMMENT> . 69
<@CONTINUE> . 70
<@CRLF> . 71
<@CURCOL> . 72
<@CURRENTACTION> . 73
<@CURRENTDATE>, <@CURRENTTIME>,
<@CURRENTTIMESTAMP> . 74
<@CURROW> . 75
<@DATEDIFF> . 76
<@DATETOSECS>, <@SECSTODATE> . 77
<@DAYS> . 79
<@DBMS> . 80
<@DEBUG> </@DEBUG> . 81
<@DELROWS> . 82
<@DISTINCT> . 84
<@DOCS> . 87
<@DQ>, <@SQ> . 88
<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP> 89
<@DSNUM> . 91
iiii

Table of Contents
<@DSTYPE> . 92
<@ERROR> . 93
<@ERRORS> </@ERRORS> . 95
<@EXCLUDE> </@EXCLUDE> . 96
<@EXIT> . 97
<@FILTER> . 98
<@FOR> </@FOR> . 101
<@FORMAT> . 102

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>,
<@ELSEIFEQUAL>, </@IF> . 103
<@IFEMPTY> <@ELSE> </@IF> . 107
<@IFEQUAL> <@ELSE> </@IF> . 108
<@INCLUDE> . 110
<@INTERSECT> . 111
<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP> 114
<@ISNUM> . 119
<@KEEP> . 120
<@LEFT> . 121
<@LENGTH> . 122
<@LITERAL> . 123
<@LOCATE> . 124
<@LOWER> . 125
<@LTRIM> . 126
<@MAXROWS> . 127
<@NEXTVAL> . 128
<@NUMAFFECTED> . 129
<@NUMCOLS> . 130
<@NUMROWS> . 131
<@OMIT> . 132
<@PLATFORM> . 133
<@POSTARG> . 134
<@POSTARGNAMES> . 135
<@PRODUCT> . 136
<@PURGE> . 137
<@PURGERESULTS> . 138
<@RANDOM> . 139
<@REGEX> . 140
iii iii

Table of Contents
<@REPLACE> . 142
<@RESULTS> . 143
<@RIGHT> . 144
<@ROWS> </@ROWS> . 145
<@RTRIM> . 147
<@SCRIPT> . 148
<@SEARCHARG> . 151
<@SEARCHARGNAMES> . 152

<@SECSTODATE>, <@SECSTOTIME>, <@SECSTOTS> 153
<@SERVERSTATUS> . 154
<@SETCOOKIES> . 157
<@SORT> . 158
<@SQ> . 160
<@SQL> . 161
<@STARTROW> . 162
<@SUBSTRING> . 163
<@TIMER> . 164
<@TIMETOSECS>, <@SECSTOTIME> . 165
<@TMPFILENAME> . 166
<@TOGMT> . 167
<@TOKENIZE> . 168
<@TOTALROWS> . 169
<@TRANSPOSE> . 170
<@TRIM> . 171
<@TSTOSECS>, <@SECSTOTS> . 172
<@UNION> . 174
<@UPPER> . 177
<@URL> . 178
<@URLENCODE> . 180
<@USERREFERENCE> . 181
<@USERREFERENCEARGUMENT> . 182
<@USERREFERENCECOOKIE> . 183
<@VAR> . 184
<@VARINFO> . 189
<@VARNAMES> . 190
<@VERSION> . 191
iviv

Table of Contents
<@!> . 192

3 Configuration Variables . 193
Setting Tango Options With Configuration Variables

A Note on Scope . 194
A Note on Default Locations . 195
altUserKey . 196
aPrefix . 196
aSuffix . 196
cache . 197
cacheSize . 197
cDelim . 197
configPasswd . 198
cPrefix . 198
crontabFile . 199
cSuffix . 199
currencyChar . 199
dataSourceLife . 200
dateFormat, timeFormat, timestampFormat . 201
DBDecimalChar . 203
debugMode . 204
decimalChar . 204
defaultErrorFile . 205
defaultScope . 206
domainScopeKey . 206
encodeResults . 207
FMDatabaseDir . 207
headerFile . 207
httpHeader . 207
itemBufferSize . 208
license . 208
listenerPort . 208
logDir . 209
loggingLevel . 209
logToResults . 210
mailDefaultFrom . 210
mailPort . 211
v v

Table of Contents
mailServer . 211
maxActions . 211
maxHeapSize . 212
maxSessions . 212
noSQLEncoding . 212
persistentRestart . 213
pidFile . 213
postArgFilter . 214

queryTimeout . 214
rDelim . 214
returnDepth . 215
rPrefix . 215
rSuffix . 215
shutdownUrl . 216
startStopTimeout . 216
startupUrl . 217
staticNumericChars . 217
stripCHARs . 218
threadPoolSize . 218
thousandsChar . 218
timeFormat . 219
timeoutHTML . 220
timestampFormat . 220
transactionBlocking . 220
userAgent . 220
userKey, altuserKey . 221
validHosts . 222
varCachePath . 223
variableTimeout . 223
variableTimeoutTrigger . 224
vivi

Introduction

An Overview of This Manual

This manual gives detailed explanations of all meta tags (Chapter 1,
which begins on page 3) and configuration variables (Chapter 2,
which begins on page 193) that are used to construct application
files and configure Tango Server. It is intended as a reference for the
user who is familiar with Tango.

Some topics in this manual apply only to Tango Enterprise for
Macintosh, Tango Enterprise for Windows, Tango Server on UNIX,
or Tango for FileMaker (Mac OS).

The Mac™ OS, Microsoft™ Windows™, UNIX™, and FileMaker
Pro™ graphics identify those topics, respectively; otherwise, topics
apply equally to all versions.

For details of how to install Tango, see the Getting Started Guide.

For details of how to use Tango, see the User’s Guide.

The uses of meta tags and configuration variables within Tango are
discussed in the User’s Guide. See the following chapters:

■ “Using Meta Tags”
■ “Working With Variables,” especially the section “Using

Configuration Variables”
■ “Using Tango Server,” especially the section “Configuring

Tango Server,” which discusses configuration variables.
1

Introduction

2
 2

1
C H A P T E R 1

Meta Tags

A Reference to Tango Server Meta Tags

Meta tags are the components of a markup language that is
interpreted by Tango Server. This language is similar in form to
HTML but much more dynamic.

Meta tags are resolved by Tango Server when your application file
is executed. For more information on using meta tags, see
Chapter 6, “Using Meta Tags” in the User’s Guide.

This chapter covers the following topics:

■ what’s new in Tango meta tags
■ basic meta tag syntax
■ the ENCODING attribute
■ the FORMAT attribute
■ terminology changes and additions
■ listing of meta tags by function
■ where you can use meta tags
■ alphabetical table of meta tags and meta tags with attributes
■ alphabetical reference to all meta tags, their function, syntax

and explanation.
3

Where You Can Use Meta Tags
Where You Can Use Meta Tags

Most meta tags can be used in all places in application files where
text or HTML can be inserted, including these application file
locations:

■ attribute HTML that is attached to an action, including:
■ Results HTML
■ Error HTML
■ No Results HTML

■ actions in an application file, including:
■ parameters in Search, Update, and Delete actions
■ column values in Update and Insert actions
■ Maximum Matches and Start Match fields in Search and

Direct DBMS actions
■ External action parameters
■ File action parameters
■ Assign actions (both name and value)
■ If action parameters
■ custom column references used in database actions
■ SQL entered into the Direct DBMS action window

■ HTML files included using the <@INCLUDE> meta tag
■ most attributes for other meta tags.

Where you can insert meta tags, the contextual menu (accessible
from a right mouse click on Windows or a CONTROL click on
Macintosh) shows Insert Meta Tag.
44

What’s New in Tango Meta Tags
What’s New in Tango Meta Tags

There are many new meta tags in this version of Tango. They fit
into all categories of functionality: URL, form and CGI values,
numeric operations, conditionals, database output, data source
information, date and time, user variables, string operations, and
array. As well, increased functionality has been given to meta tags
that existed in previous versions of Tango. The following are a few
of the upgrades and new inclusions to Tango meta tags.

■ <@CALC> was a simple addition, subtraction, division and
multiplication calculator in previous versions of Tango. In
Tango 3.0, <@CALC> has a new breadth of functionality: it can
calculate and resolve complex comparisons, mathematical
operations, and logical processes.

■ <@COLUMN> is now recognized by Tango Server, whereas in
previous versions it could only be used in Tango Editor and
was converted to <@COL> automatically. This change means
that you may now use <@COLUMN> tags in files included with
<@INCLUDE>.

■ <@FORMAT> and the FORMAT attribute permit you to control how
values returned by Tango are formatted.

■ The <@ARRAY> tag lets you create two-dimensional arrays for
storage in variables.

■ There are many new meta tags for working with text strings,
including tags for extracting substrings, and finding and
replacing text in a value.

■ Date and time operations are now easier with the addition of
tags for adding and subtracting days to a date, converting date
and time values to seconds and back, and testing the validity of
date and time string values.
5 5

Terminology Changes and Additions
Terminology Changes and Additions

There have been some terminology changes within Tango. Because
a query document is now referred to as an application file, the meta
tags <@QUERYDOC> and <@QUERYPATH> have become <@APPFILE>
and <@APPFILEPATH>. There has been no change to what these tags
do.

The meta tag <@GLOBAL> has been changed to <@VAR>. This reflects
a terminology change from globals to variables.

The term parameter, used to describe the name/value pairs that
made up the syntax of a meta tag, is now attribute. This was
changed to establish parallelism with existing name/value pair
terminology in HTML.
66

Format of Meta Tags
Format of Meta Tags

Syntax The basic syntax for Tango meta tags is:

<@TAG ATTRIBUTENAME="ATTRIBUTEVALUE">

■ The opening “<” is a characteristic of tag languages, including
HTML. The “@” symbol distinguishes Tango meta tags.
At least one space must occur between the tag name and the
first attribute name, and between all attribute values and
subsequent attribute names. For example,

<@POSTARG NAME="Bruce" ENCODING="NONE">

and

<@POSTARG NAME="Bruce"
ENCODING="NONE">

are both valid meta tag syntax.

■ Line breaks are allowed in tags anywhere a space occurs. For
example,

<@ASSIGN
NAME="varname"
SCOPE="local"
VALUE="somevalue"
>

is valid Tango meta tag syntax.

■ There is no space allowed before or after the equals (=) sign. As
well, if you quote the value of an attribute, no space is allowed
between the equals (=) sign and the opening quote. For
example, <@POSTARG NAME="Bruce"> is correct syntax.

■ This documentation shows meta tags in uppercase, but meta
tags are case insensitive. That is, all of the following are valid
Tango meta tag syntax:

<@CALC EXPR="3+7">
<@Calc expr="3+7">
<@calc Expr="3+7">

Naming
Attributes

The current version of Tango uses attribute names in meta tags.
This is a departure from previous versions of Tango that recognized
attributes by their position in the meta tag and did not use attribute
names. For example, when using the <@POSTARG> tag, previous
versions of Tango evaluated the first attribute as the name of the
7 7

Format of Meta Tags
post argument to get, and the second as the type of encoding to
perform on the value returned. The tag looked like this, <@POSTARG
foo METAHTML>.

In Tango 3.0, all attributes have names. <@POSTARG> is now written
as, <@POSTARG NAME="foo" ENCODING="METAHTML">, or
<@POSTARG ENCODING="METAHTML" NAME="foo">. The order of
the attributes does not matter if the attributes are named.

The name for every attribute you specify must be provided, with
one exception: any attribute that is required—that is, any attribute
whose absence makes a meta tag invalid—can be specified without
a name, as long as it occurs in its predefined position (usually
immediately following the name of the meta tag).

Note The documentation in this chapter shows meta tag syntax
with the required order for positional (required) attributes.

Using the <@POSTARG> example, <@POSTARG homer> is still valid in
Tango 3.0, because the NAME attribute is required, and its designated
position is first. But, if you want to specify the encoding, you must
use <@POSTARG homer ENCODING="NONE">, because ENCODING is
not a required attribute. For new users of Tango, the best method to
adopt is to enter all attribute names, for example, <@POSTARG
NAME="homer" ENCODING="NONE">.

Attribute Value
Length

The length of each meta tag attribute value is limited only by
available memory. Previous versions of Tango had an attribute
value limit of 255 characters.

Quoting
Attributes

Attribute values must sometimes be quoted to avoid ambiguity. For
example, whenever you need to specify an attribute value that
includes a space, you must put quotes around it. To refer to a
database column called “Zip Code”, for example, use <@COLUMN
NAME="Zip Code">. Without the quotes, Tango would incorrectly
interpret Zip as the attribute name and Code as the start of another
attribute. Tango recognizes both the double (") and single (') quote
character pairs as attribute delimiters.
88

Format of Meta Tags
Another case where quotes are necessary is when specifying an
empty value for the attribute ("" tells Tango that there is no value).

Note Quotes are not necessary when you are using only meta
tags as the attribute value. Tango knows that meta tags begin with
<@ and end with >, so no quotes are necessary to delimit.

In general, quoting attribute values is recommended. It is never
incorrect to quote an attribute value.

Some additional rules to follow when quoting meta tag attributes
are as follows:

■ If you have a nested tag in an attribute, use the “other” quote
character around its value. This alternating can go on
indefinitely for deeply nested tags. This allows you to
distinguish between quotes you want to specify as part of the
attribute value itself, instead of as an attribute delimiter. For
example:

<@ARG NAME="<@VAR NAME=’<@VAR
NAME="myArgNameVar">’>">

For more information,
see “<@DQ>, <@SQ>” on
page 88.

■ If you have a literal double or single quote in a meta tag
attribute value, you must replace it with the <@SQ> or <@DQ>
meta tag, regardless of which quote character is delimiting the
attribute value.

For more information,
see “<@CALC>” on
page 45 and “<@IF>” on
page 103.

■ The exceptions to the last rule are the expressions specified for
<@CALC> and <@IF> meta tags, and the Advanced mode for If,
Else If, and While Loop actions. The EXPR attribute can use
quotes as part of an expression, as long as they are not the same
quotes as surround EXPR. These quotes are taken as delimiters
for individual values within the expression. The expression
attribute also supports backslash-escaping of quotes: \" and \’
for literal quotes (and require the use of \\ for \ as a result).
9 9

Encoding Attribute
Encoding Attribute

Many value-returning meta tags accept an ENCODING attribute that
determines how returned values are formatted. Each of the valid
format types is described in this section.

If no encoding attribute is specified, values returned by meta tags
used in Results HTML, No Results HTML, and Error HTML
undergo a process of conversion so they appear correctly in the
user’s Web browser. For example, < is converted to <.

NONE The NONE value for the ENCODING attribute allows you to indicate
that the value returned by the meta tag contains HTML formatting
codes that are to be passed back to the user’s Web browser without
translation. The main use for this attribute is for displaying HTML
stored in database fields and variables.

For example:

<@COLUMN NAME="pages.theHTMLpage" ENCODING="NONE">

Note This attribute value was called “HTML” in previous
versions of Tango.

METAHTML The METAHTML attribute value of the ENCODING attribute performs
the same function as NONE but also looks for Tango meta tags in the
value and evaluates any it finds.

For example:

<@COLUMN NAME="table.template" ENCODING="METAHTML">

If the template column contains the text <@VAR NAME="foo">, the
example shown returns the current value of the variable foo.

MULTILINE The MULTILINE attribute value causes Tango to replace return, line
feed, and return/line feed combinations in the value with

tags. Normally, Web browsers ignore line breaks in HTML. Use this
attribute to force the display of returns in database values.
1010

Encoding Attribute
MULTILINEHTML The MULTILINEHTML attribute value lets you combine the functions
of NONE and MULTILINE. This formatting attribute is particularly
useful for formatting data entered by users who have used HTML
tags for character formatting (for example, bolding and
italicization), but who have not used
 or <P> tags to properly
indicate line or paragraph endings.

URL The URL formatting attribute value tells Tango to make the value
returned by a meta tag safe for inclusion in a URL by encoding
special characters such as spaces and slashes, according to the
scheme set out in RFC 1630. The main use for this attribute value is
to construct URLs containing database or user-entered values.

For example:

<A HREF="/customer_detail?cust_name=
<@COLUMN NAME=’customer.cust_name’ ENCODING=’URL’>">
More customer info

If the URL attribute were not used in this case, links to customer
names from the database that contained spaces would not work
properly because a space is invalid in a URL. By using the URL
attribute value, any spaces are converted to %20. Similarly, other
special characters that have meaning in URLs (~, #, and so on) are
also converted.

The <@URLENCODE> meta tag performs the same function on any
value. It is strongly recommended that you get into the habit of
encoding any meta tags included in a URL, even if you think the
value returned is not going to require it.

JAVASCRIPT Encodes the value to make it a valid JavaScript literal. It does this
by escaping certain characters using a backslash; for example, tabs
are converted to \t. Use this type of encoding when using a meta
tag in server- or client-side JavaScript code.

SQL The SQL encoding type converts the specified value by doubling all
occurrences of the single quote character.

For more information,
see “Direct DBMS SQL
Auto-Encoding” in
Chapter 18 of the User’s
Guide and
“noSQLEncoding” on
page 212.

Tango Server automatically performs SQL encoding on meta tag
values substituted in Direct DBMS SQL, except when the
configuration variable noSQLEncoding is set to true. The SQL
ENCODING attribute value is generally appropriate only when
noSQLEncoding is set to true, and allows you to toggle SQL
encoding on or off for particular meta tags.
11 11

Encoding Attribute
For example:

<@ASSIGN NAME=mySQL VALUE="SELECT * FROM customer
WHERE cust_name=<@SQ>">

<@ASSIGN NAME=mySQL VALUE="<@ARG cust_name
ENCODING=sql><@SQ>"
1212

Format Attribute
Format Attribute

A new attribute, FORMAT, is optional with many meta tags. It
specifies how the output of the tag should be formatted.

All tags with an optional FORMAT attribute accept a format string of
the form FORMAT=class:format, as detailed following.

CASE: Case Reformatting

Text can be converted as follows:

■ to uppercase with case:upper (for example, HEllo ⇒ HELLO)
■ to lowercase with case:lower (for example, HEllo ⇒ hello)
■ to wordcase with case:word (for example, HEllo ⇒ Hello).

Words are defined as a sequence of non-whitespace characters
delimited by whitespace.

NUM: Numeric Formatting

Numbers with at least one whole digit and optional fractional
digits can be reformatted.

The format is specified by a comma-delimited list of values in this
order:

FORMAT=num: grouping,
grouping separator,
fractional digits,
fraction separator,
positive prefix,
positive suffix,
negative prefix,
negative suffix

All eight items must be present, either with a specified value or
nothing. For example, if you do not want any formatting for
fractional digits there would be nothing between the commas, (,,).

You must address each of the eight items in the number formatting
string, even if it is just to let Tango know not to do anything with
one or more of the eight numerical formatting items in the list.

Each list item may be a maximum of 15 characters long. Spaces and
case are significant.

The list items are described as follows:
13 13

Format Attribute
■ grouping defines how you want your numbers grouped, for
example, in groups of three. There are two ways to apply your
grouping. They are:
■ A hyphen-delimited list of digits from the least-significant

place (beginning from the right).
■ An asterisk (*) means repeat using the last specification; no

number means the output remainder is untouched.

Examples:

3-* 1,234,567,890,123

This example repeats a grouping of “3”.

3-1-2 1234567,89,0,123

This example groups six digits, beginning from the right,
into three separate groups, one of three (“3”) digits, one of
one (“1”), and one of two (“2”).

■ grouping separator defines the character that separates the
groupings. In the previous example, it is a comma. It may be
multiple characters.

■ fractional digits to show:
■ If a number is specified, that many digits are displayed; the

value is truncated or 0-padded as appropriate.
■ If no number is specified, then the number of fractional

digits passed in is displayed untouched.
■ fraction separator, may be multiple digits, and it is displayed

even if no fractional digits are present. This is similar to a
decimal place separator.

■ positive prefix determines the prefix used if the number is
positive (for example, +).

■ positive suffix determines the suffix used if the number is
positive.

■ negative prefix determines the prefix used if the number is
negative (for example, -).

■ negative suffix determines the prefix used if the number is
negative.

Do not include spaces unless they are intended. Commas, single
quotes, and double quotes can be included by backslash-escaping
(for example, \, or \"), or enclosing them in single or double quotes
(for example, “,” or ‘’’). Anything following a backslash is taken
literally.
1414

Format Attribute
Here are some examples of numeric formats. -1234.56 is formatted
as:

Synonyms

There are synonyms provided for commonly used format strings.

Example synonyms are listed in the table following with formatted
string, -1234567.890.

*US = United States and CA=Canada.

TEL: Telephone Numbers

This formatting accepts as input text a sequence of digits, spaces, or
punctuation marks, and outputs the digits in one of the following
requested formats:

Format Format String Example

Swiss Monetary num:3-*,\,,2,.,SFrs.,,SFrs.,C SFrs.1,234.56C

US Accounting num:3-*,\,,2,.,$,,($,) $(1,234.56)

French language
numerals

num:3-*, ,3,\,,,,’- ’, - 1 234,560

credit sheet num:,,,.,Balance: ,
credit,Balance: , debit

Balance: 1234.56 debit

 Format * Equivalent Format Sample Output

num:CA-accounting
num:US-accounting

num:3-*,\,,2,.,$,,($,), ($ 1,234,567.89)

num:comma-float num:3-*,\,,,.,,,-, -1,234,567.890

num:comma-integer num:3-*,\,,0,,,,-, -1,234,567

num:simple-float num:,,,.,,,-, -1234567.890

num:simple-integer num:,,0,,,,-, -1234567

Format* Sample Output Input Restrictions

tel:US-short
tel:CA-short

819-1173 7-11 digits required

tel:US-long
tel:CA-long

(905) 819-1173 10-11 digits required
15 15

Format Attribute
*US = United States and CA=Canada.

DATETIME

The FORMAT attribute accepts the “%-” specifiers used by the
dateFormat configuration variables, with the addition of a
datetime: prefix. For example, datetime:%Y-%m-%d would
specify an ODBC-style date (December 1st, 1998 would be
formatted as “1998-12-01”).

For more information,
see “dateFormat,
timeFormat,
timestampFormat” on
page 201.

Tango attempts to guess what the date/time entered actually is.
First, the dateFormat, timeFormat, and timestampFormat
configuration variables are used to test the input string for a perfect
match, and failing these, the procedures as used by the <@ISDATE>
family of tags are tested. If the input cannot be determined, a
warning is logged and reformatting does not take place.

Tags that accepted a format attribute in previous versions of
Tango—<@CURRENTTIME>, <@CURRENTIMESTAMP>, and
<@CURRENTDATE>—can be used with the new FORMAT attribute or
with their old formatting.

There is only one datetime-class synonym: datetime:http.

datetime:http = datetime:%A, %d-%b-%Y %H:%M:%S GMT.

For more information,
see “<@TOGMT>” on
page 167.

For example, if the string 1998-09-29 12:34:56 were formatted
with datetime:http, the output format would be “Monday, 29-
Sep-1998 12:34:56 GMT”.

Note datetime:http formatting does not make any
adjustments to the time value to correct to GMT time. It simply
outputs the input timestamp in the HTTP format. To convert a
local time to GMT, use <@TOGMT>.

tel:US-intl
tel:CA-intl

+1 905 819-1173 10-11 digits required

tel:US-hyphen
tel:CA-hyphen

1-905-819-1173 10-11 digits required

Format* Sample Output Input Restrictions
1616

Alphabetical List of Meta Tags
Alphabetical List of Meta Tags

New meta tags are denoted by a grey box, as are old meta tags with
new names.

Meta Tag Abstract

<@ABSROW> Returns the position of the current row within the
total rowset.

<@ACTIONRESULT> Returns the value of the specified item from the
first row of results of the specified action.

<@ADDROWS> Adds one or more rows to an array.

<@APPFILE> Returns the path to the current application file,
including the file name.

<@APPFILENAME> Returns the name of the current application file.

<@APPFILEPATH> Returns the path to the current application file,
excluding the application file name, but including
the trailing slash

<@ARG> Returns search and/or post argument values.

<@ARGNAMES> Returns an array of all search and post
arguments passed to the current application file.

<@ARRAY> Returns an array with a specified number of
rows and columns.

<@ASCII> Returns the ASCII value of the first character in
a string.

<@ASSIGN> Assigns a value to a variable.

<@BREAK> Ends execution of a loop.

<@CALC> Returns the result of a calculation.

<@CGI> Returns the full path and name of the Tango
CGI.

<@CGIPARAM> Evaluates to the specified CGI attribute.

<@CGIPATH> Returns the path to the directory containing the
Tango CGI.

<@CHAR> Returns the character that has the specified
ASCII value.

<@CIPHER> Performs encryption/decryption on strings.

<@COL> Returns the value of a numbered column.
17 17

Alphabetical List of Meta Tags
<@COLS> </@COLS> Processes the enclosed HTML once for each
column in the current row.

<@COLUMN> Returns the value of a named column.

<@COMMENT>
</@COMMENT>

Includes comments in Tango application files.

<@CONTINUE> Ends the current iteration of a loop.

<@CRLF> Evaluates to a carriage return/linefeed
combination. Used in the file pointed to by
headerFile (the HTTP header).

<@CURCOL> Returns the index (1, 2, 3...) of the column
currently being processed if placed inside a
<@COLS></@COLS> block.

<@CURRENTACTION> Returns the name of the currently executing
action.

<@CURRENTDATE>
<@CURRENTTIME>
<@CURRENTTIMESTAMP>

Returns the current date, time, or timestamp.

<@CURROW> Returns the number of the current row being
processed in a <@ROWS> or <@FOR> block.

<@DATEDIFF> Returns the number of days between the two
dates specified.

<@DATETOSECS> Converts a date into seconds.

<@DAYS> Adds days to a date.

<@DBMS> Returns the concatenated name and version of
the database used by the current action’s data
source.

<@DEBUG></@DEBUG> Delimits text to appear in Results HTML only in
debug mode.

<@DELROWS> Deletes one or more rows from an array.

<@DISTINCT> Returns an array containing the distinct rows in
the input array.

<@DOCS> Displays the content of an application file in
HTML.

<@DQ> Returns a double quote, for use within quoted
attributes.

<@DSDATE>
<@DSTIME>
<@DSTIMESTAMP>

Converts a date, time, or timestamp value to the
format required by the current action’s data
source.

<@DSNUM> Converts a number to the format required by the
current action’s data source.
1818

Alphabetical List of Meta Tags
<@DSTYPE> Returns the type of data source associated with
the current action.

<@ERROR> Returns the value of the named error component
of the current error.

<@ERRORS>
</@ERRORS>

In conjunction with <@ERROR>, allows iteration
over a list of errors.

<@EXCLUDE>
</@EXCLUDE>

Processes text for meta tags, without adding the
results of that processing to the Results HTML.

<@EXIT> Ends the processing of current HTML and
continues with the next action in the application
file.

<@FILTER> Returns an array containing rows matching a
specified expression.

<@FOR></@FOR> Allows looping in HTML.

<@FORMAT> Allows formatting of text, numeric, and datetime
values.

<@IF>
<@ELSEIF>
<@ELSEIFEMPTY>
<@ELSEIFEQUAL>
 </@IF>

Performs conditional processing.

<@IFEMPTY>
<@ELSE>
</@IF>

Includes text in HTML if a provided value is
empty.

<@IFEQUAL>
<@ELSE>
</@IF>

Includes text in HTML if two values are equal.

<@INCLUDE> Returns the contents of a specified file.

<@INTERSECT> Returns the intersection of two arrays.

<@ISDATE>
<@ISTIME>
<@ISTIMESTAMP>

Checks whether a value is a valid date, time, or
timestamp.

<@ISNUM> Checks whether a value is a valid number.

<@KEEP> Returns a string stripped of specified characters.

<@LEFT> Returns the first n characters from a string.

<@LENGTH> Returns the number of characters in a string.

<@LITERAL> Causes Tango to suppress meta tag substitution
for the supplied value.

<@LOCATE> Returns the starting position of a substring in a
string.
19 19

Alphabetical List of Meta Tags

2020
<@LOWER> Converts a string to lowercase.

<@LTRIM> Returns string stripped of leading spaces.

<@MAXROWS> Returns the value specified in the Maximum
Matches field of a Search or Direct DBMS
action.

<@NEXTVAL> Increments a variable and returns the value.

<@NUMAFFECTED> Returns the number of rows affected by the last
executed Insert, Update, Delete, or DirectDBMS
action.

<@NUMCOLS> Returns the number of columns retrieved by an
action or in a specified array.

<@NUMROWS> Returns the number of rows retrieved by an
action or in a specified array.

<@OMIT> Returns a string stripped of specified characters.

<@PLATFORM> Returns the name of the operating platform.

<@POSTARG> Returns the value of the named post argument.

<@POSTARGNAMES> Returns an array containing the names of all
post arguments.

<@PRODUCT> Returns the name of the server’s product type.

<@PURGE> Removes one or all variables from a scope.

<@PURGERESULTS> Empties the currently accumulated Results
HTML.

<@RANDOM> Returns a random number.

<@REGEX> Finds strings using regular expressions.

<@REPLACE> Replaces strings.

<@RESULTS> Evaluates to the accumulated Results HTML.

<@RIGHT> Extracts the last n characters from the string.

<@ROWS> </@ROWS> Allows iteration over the rows of an action’s
results or an array.

<@RTRIM> Returns a string stripped of trailing spaces.

<@SCRIPT> </@SCRIPT> Executes scripts written in JavaScript.

<@SEARCHARG> Returns the value of the specified search
argument.

<@SEARCHARGNAMES> Returns an array containing the names of all
search arguments.

<@SECSTODATE> Converts seconds to a date.

<@SECSTOTIME> Converts seconds to a time.

Alphabetical List of Meta Tags
<@SECSTOTS> Converts seconds to a timestamp.

<@SERVERSTATUS> Returns status information about Tango Server.

<@SETCOOKIES> Returns the correct Set-Cookie lines to set the
values of cookie variables.

<@SORT> Returns the input array, sorted by the specified
column(s).

<@SQ> Returns a single quote, for use within quoted
attributes.

<@SQL> Returns last action-generated SQL.

<@STARTROW> Returns the position of the first row retrieved.

<@SUBSTRING> Extracts a substring.

<@TIMER> Allows you to create and use named elapsed
timers.

<@TIMETOSECS> Converts a time to seconds.

<@TMPFILENAME> Generates a unique temporary file name.

<@TOGMT> Transforms a local time to GMT.

<@TOKENIZE> Provides you with a way of sectioning a string
into multiple pieces.

<@TOTALROWS> Returns the total number of rows matched by a
Search action.

<@TRANSPOSE> Exchanges row and column specifications for
values in an array.

<@TRIM> Returns a string stripped of leading and trailing
spaces.

<@TSTOSECS> Converts a timestamp to seconds.

<@UNION> Returns the union of two arrays.

<@UPPER> Returns a string converted to uppercase.

<@URL> Retrieves the specified URL and returns its data.

<@URLENCODE> Makes a string compatible for inclusion in a URL.

<@USERREFERENCE> Returns a value identifying the user executing
the application file.

<@USERREFERENCE
ARGUMENT>

Evaluates to
_userReference=<@USERREFERENCE>.

<@USERREFERENCE
COOKIE>

Used in default HTTP header of Tango when
returning results.

<@VAR> Retrieves the contents of a variable.

<@VARINFO> Returns information about a variable.
21 21

Alphabetical List of Meta Tags
<@VARNAMES> Returns an array containing all variable names
for a given scope.

<@VERSION> Returns the version number of Tango Server.

<@!> Allows commenting of application files.
2222

Alphabetical List of Meta Tags With Attributes
Alphabetical List of Meta Tags With Attributes

Square brackets []
denote optional
attributes (or tags, in the
case of multi-tag
expressions).

<@ABSROW>

<@ACTIONRESULT NAME NUM [FORMAT] [ENCODING]>

<@ADDROWS ARRAY VALUE [POSITION] [SCOPE]>

<@APPFILE [ENCODING]>

<@APPFILENAME [ENCODING]>

<@APPFILEPATH [ENCODING]>

<@ARG NAME [TYPE] [FORMAT] [ENCODING]>

<@ARGNAMES>

<@ARRAY [ROWS] [COLS] [VALUE] [CDELIM] [RDELIM]>

<@ASCII CHAR>

<@ASSIGN NAME VALUE [SCOPE]>

<@BREAK>

<@CALC EXPR [PRECISION] [FORMAT] [ENCODING]>

<@CGI [ENCODING]>

<@CGIPARAM NAME [COOKIE] [ENCODING]>

<@CGIPATH>

<@CHAR CODE [ENCODING]>

<@CIPHER ACTION TYPE STR [KEY] [ENCODING]>

<@COL [NUM] [FORMAT] [ENCODING]>

<@COLS></@COLS>

<@COLUMN NAME [FORMAT] [ENCODING]>

<@COMMENT></@COMMENT>

<@CONTINUE>

<@CURCOL>

<@CURRENTACTION [ENCODING]>

<@CURRENTDATE [FORMAT] [ENCODING]>

<@CURRENTTIME [FORMAT] [ENCODING]>

<@CURRENTTIMESTAMP [FORMAT] [ENCODING]>

<@CURROW>

<@DATEDIFF DATE1 DATE2 [FORMAT]>

<@DATETOSECS DATE [FORMAT]>

<@DAYS DATE DAYS [FORMAT] [ENCODING]>

<@DBMS [ENCODING]>

<@DEBUG></@DEBUG>

<@DELROWS ARRAY [POSITION] [NUM] [SCOPE]>

<@DISTINCT ARRAY [COLS] [SCOPE]>

<@DOCS FILE [ENCODING]>

<@DQ>

<@DSDATE DATE [INFORMAT] [ENCODING]>

<@DSTIME TIME [INFORMAT] [ENCODING]>

<@DSTIMESTAMP TS [INFORMAT] [ENCODING]>

<@DSNUM NUM [ENCODING]>
23 23

Alphabetical List of Meta Tags With Attributes
<@DSTYPE [ENCODING]>

<@ERROR PART [ENCODING]>

<@ERRORS></@ERRORS>

<@EXCLUDE></@EXCLUDE>

<@EXIT>

<@FILTER ARRAY EXPR [SCOPE]>

<@FOR [START] [STOP] [STEP] [PUSH]></@FOR>

<@FORMAT STR [FORMAT] [INFORMAT] [ENCODING]>

<@IF EXPR [TRUE] [FALSE]>

<@IF EXPR>
[<@ELSEIF EXPR>]
[<@ELESIFEMPTY VALUE>]
[<@ELSEIFEQUAL VALUE1 VALUE2>]
[<@ELSE>]
</@IF>

<@IFEMPTY VALUE>
[<@ELSE>]
</@IF>

<@IFEQUAL VALUE1 VALUE2>
[<@ELSE>]
</@IF>

<@INCLUDE FILE>

<@INTERSECT ARRAY1 ARRAY2 [COLS] [SCOPE1] [SCOPE2]>

<@ISDATE VALUE>

<@ISTIME VALUE>

<@ISTIMESTAMP VALUE>

<@ISNUM VALUE>

<@KEEP STR CHARS [ENCODING]>

<@LEFT STR NUMCHARS [ENCODING]>

<@LENGTH STR>

<@LITERAL VALUE [ENCODING]>

<@LOCATE STR FINDSTR>

<@LOWER STR [ENCODING]>

<@LTRIM STR [ENCODING]>

<@MAXROWS>

<@NEXTVAL NAME [SCOPE] [STEP]>

<@NUMAFFECTED>

<@NUMCOLS [ARRAY]>

<@NUMROWS [ARRAY]>

<@OMIT STR CHARS [ENCODING]>

<@PLATFORM [ENCODING]>

<@PRODUCT [ENCODING]>

<@POSTARG NAME [TYPE] [FORMAT] [ENCODING]>

<@POSTARGNAMES>

<@PURGE [NAME] [SCOPE]>

<@PURGERESULTS>

<@RANDOM [HIGH] [LOW]>
2424

Alphabetical List of Meta Tags With Attributes
<@REGEX EXPR STR TYPE>

<@REPLACE STR FINDSTR REPLACESTR [POSITION] [ENCODING]>

<@RESULTS [ENCODING]>

<@RIGHT STR NUMCHARS [ENCODING]>

<@ROWS [ARRAY] [SCOPE] [PUSH] [START] [STOP] [STEP]></@ROWS>

<@RTRIM STR [ENCODING]>

<@SCRIPT EXPR [SCOPE]>

<@SCRIPT [SCOPE]></@SCRIPT>

<@SEARCHARG NAME [TYPE] [FORMAT] [ENCODING]>

<@SEARCHARGNAMES>

<@SECSTODATE SECS [FORMAT] [ENCODING]>

<@SECSTOTIME SECS [FORMAT] [ENCODING]>

<@SECSTOTS SECS [FORMAT] [ENCODING]>

<@SERVERSTATUS [VALUE] [ENCODING]>

<@SETCOOKIES>

<@SORT ARRAY [COLS] [SCOPE]>

<@SQ>

<@SQL [ENCODING]>

<@STARTROW>

<@SUBSTRING STR START NUMCHARS [ENCODING]>

<@TIMER [NAME] [VALUE]>

<@TIMETOSECS TIME [FORMAT]>

<@TMPFILENAME [ENCODING]>

<@TOGMT TS [FORMAT] [ENCODING]>

<@TOKENIZE VALUE CHARS>

<@TOTALROWS>

<@TRANSPOSE ARRAY [SCOPE]>

<@TRIM STR [ENCODING]>

<@TSTOSECS TS [FORMAT]>

<@UNION ARRAY1 ARRAY2 [COLS] [SCOPE1] [SCOPE2]>

<@UPPER STR [ENCODING]>

<@URL LOCATION [BASE] [USERAGENT] [FROM] [ENCODING]>

<@URLENCODE STR>

<@USERREFERENCE>

<@USERREFERENCEARGUMENT>

<@USERREFERENCECOOKIE>

<@VAR NAME [SCOPE] [FORMAT] [TYPE] [APREFIX] [ASUFFIX]
[RPREFIX] [RSUFFIX] [CPREFIX] [CSUFFIX] [ENCODING]>

<@VARINFO NAME ATTRIBUTE [SCOPE]>

<@VARNAMES SCOPE>

<@VERSION [ENCODING]>

<@! COMMENT>
25 25

Meta Tags List by Function
Meta Tags List by Function

URL, Form, and CGI Val-
ues

@ARG
@ARGNAMES
@CGI
@CGIPARAM
@CGIPATH
@POSTARG
@POSTARGNAMES
@SEARCHARG
@SEARCHARGNAMES
@URL
@URLENCODE

Conditionals

@ELSE
@ELSEIF
@ELSEIFEMPTY
@ELSEIFEQUAL
@IF
@IFEMPTY
@IFEQUAL
@ISNUM

Paths

@APPFILE
@APPFILEPATH
@CGI
@CGIPARAM
@CGIPATH

Variables

@ASSIGN
@LITERAL
@PURGE
@USERREFERENCE
@USERREFERENCEARGUMENT
@USERREFERENCECOOKIE
@VAR
@VARINFO
@VARNAMES

Tango Information

@PLATFORM
@PRODUCT
@VERSION

File Access

@APPFILE
@APPFILENAME
@APPFILEPATH
@INCLUDE
@TMPFILENAME

Action/Application File
Information

@ACTIONRESULT
@APPFILENAME
@CURRENTACTION
@RESULTS
@SQL

String Operations

@ASCII
@CHAR
@CIPHER
@DQ
@KEEP
@LEFT
@LENGTH
@LOCATE
@LOWER
@LTRIM
@OMIT
@REGEX
@REPLACE
@RIGHT
@RTRIM
@SQ
@SUBSTRING
@TOKENIZE
@TRIM
@UPPER
@URLENCODE
2626

Meta Tags List by Function
Numeric Operations

@CALC
@DSNUM
@ISNUM
@NEXTVAL
@RANDOM

Database Output

@ABSROW
@COL
@COLS
@COLUMN
@CURCOL
@CURROW
@FORMAT
@MAXROWS
@NUMAFFECTED
@NUMROWS
@PURGERESULTS
@ROWS
@STARTROW
@TOTALROWS

Data Source Information

@DBMS
@DSNUM
@DSTYPE
@SQL

Date and Time

@CURRENTDATE
@CURRENTTIME
@CURRENTTIMESTAMP
@DATEDIFF
@DATETOSECS
@DAYS
@ISDATE
@ISTIME
@ISTIMESTAMP
@SECSTODATE
@SECSTOTIME
@SECSTOTS
@TIMER
@TIMETOSECS
@TOGMT
@TSTOSECS

Server

@SERVERSTATUS

Array Operations

@ADDROWS
@ARRAY
@ASSIGN
@DELROWS
@DISTINCT
@FILTER
@INTERSECT
@NUMCOLS
@REGEX
@ROWS
@SORT
@TOKENIZE
@TRANSPOSE
@UNION
@VAR
@VARINFO

Data Validation

@ISDATE
@ISNUM
@ISTIME
@ISTIMESTAMP

Formatting

@FORMAT

Script Execution

@SCRIPT

Loop Processing

@BREAK
@CONTINUE

HTML Processing

@COMMENT
@EXCLUDE
@EXIT
@!
27 27

<@ABSROW>
<@ABSROW>

Description Returns the position of the current row within the total rowset
matched by a Search action’s criteria.

When used outside of the <@ROWS></@ROWS> block of a Search or
Direct DBMS action’s Results HTML, this meta tag returns zero.

Example <P>There are <@TOTALROWS> records matching your
criteria. Here are records <@STARTROW> through <@CALC
EXPR="<@STARTROW>+<@NUMROWS>-1">:</P>

<@ROWS>
<P>Here is matching record number <@ABSROW>:
<P>Name:
<@COLUMN NAME="contact.name" FORMAT="case:upper">
Phone: <@COLUMN
NAME="contact.phone" FORMAT="tel:CA-short">
</@ROWS>

This HTML displays the match number for each record displayed,
relative to the first matching record.

See Also <@CURROW> page 75
<@MAXROWS> page 127
<@ROWS> </@ROWS> page 145
<@STARTROW> page 162
<@TOTALROWS> page 169
2828

<@ACTIONRESULT>
<@ACTIONRESULT>

Syntax <@ACTIONRESULT NAME=actionName NUM=itemNumber
[FORMAT=format] [ENCODING=encoding]>

Description Returns the value of the specified item from the first row of results
generated by an action in the current execution.

Use this meta tag inside any action to reference data from the first
row of a previously executed results generating action, such as a
Search, External, or Direct DBMS action. The NAME attribute refers
to the name of the action that generated the result during the
current execution of the application file. The NUM attribute is the
number of the column to get (for example, to get the value of the
third column in the first row returned by an action, specify NUM=3).

Note When the action result being asked for has been executed
multiple times, as can occur if the action is inside a loop, the value
from the last execution of the action is returned. When the action
name specified is ambiguous, as can occur when branching to
another application file, the <@ACTIONRESULT> tag refers to the
last one executed.

Note For FileMaker Pro data sources (Mac OS), Insert actions
return a single item of data—the record ID of the newly created
record—that may be accessed by <@ACTIONRESULT
InsertActionName 1>.

Example Your new account number is:
<@ACTIONRESULT NAME="GetUniqueID" NUM="1">.

In this example, <@ACTIONRESULT> evaluates to the first item from
the first row of the result set generated by the action GetUniqueID.

See Also <@COL> page 66
<@COLUMN> page 68
Encoding Attribute page 10
<@FORMAT> page 102
Format Attribute page 13
<@PURGERESULTS> page 138
<@RESULTS> page 143
29 29

<@ADDROWS>
<@ADDROWS>

Syntax <@ADDROWS ARRAY=arrayVarName VALUE=rowsToAdd
[POSITION=position] [SCOPE=scope]>

Description Adds the rows specified in VALUE to the array in the variable named
by ARRAY. This tag does not return anything.

The VALUE attribute specifies the row(s) to add. You may use the
<@VAR> tag and specify a variable containing an array, or specify
any other meta tag that returns an array. This array must have the
same number of columns as the one specified by ARRAY; otherwise,
an error is generated.

For single-column arrays, the VALUE attribute may be a text value,
rather than an array. In this case, a single row is added with the
value specified.

The POSITION attribute specifies the index of the row to start
adding from; the rows are added after the specified row. To add
rows to the beginning of the array, use 0 as the value for POSITION.
To add rows to the end of the array, use -1. If POSITION is not
specified, the rows are added to the end.

The SCOPE attribute specifies the scope of the variable specified as
the value of the ARRAY attribute. If the scope is not specified, the
default scoping rules are used.

Meta tags are permitted in any of the attributes.

Examples ■ If the local variable colors contains the following array:

and the local variable colors2 contains the following array:

 orange

 amber

 burnt umber

 yellow
3030

<@ADDROWS>
<@ADDROWS ARRAY="colors" SCOPE="local"
VALUE="@@local$colors2"> results in colors containing:

■ If the user variable choices_list contains the following array:

and the user variable new_choices contains the following
array:

<@ADDROWS ARRAY="choices_list" SCOPE="user"
VALUE="<@VAR NAME=’new_choices’ SCOPE=’user’>"
POSITION=1> results in choices_list containing:

See Also <@DELROWS> page 82
<@UNION> page 174

 orange

 amber

 burnt umber

 yellow

 News 2

 Sports 3

 Movies 4

 Stocks 1

 Weather 5

 News 2

 Stocks 1

 Weather 5

 Sports 3

 Movies 4
31 31

<@APPFILE>
<@APPFILE>

Syntax <@APPFILE [ENCODING=encoding]>

Description Returns the path to the current application file, including the file
name. This meta tag is useful for creating links that reference the
current application file. The path returned is always relative to the
Web server root directory.

Note This meta tag is often used to create URLs, for example, in
the HREF attribute of an anchor tag in HTML. To make sure that
the meta tag returns a properly encoded value, you can use one of
the following:

<@APPFILE ENCODING="URL">
<@URLENCODE STR="<@APPFILE>">

Example <A HREF="<@CGI><@APPFILE>?conf=<@COLUMN NAME=
’conferences.conf_id’>&function=messages">
<@COLUMN NAME="conferences.conf_name"> Messages

This example specifies a link to the current application file.

See Also <@APPFILEPATH> page 34
<@CGI> page 57
Encoding Attribute page 10
<@URLENCODE> page 180
3232

<@APPFILENAME>
<@APPFILENAME>

Syntax <@APPFILENAME ENCODING=encoding>

Description Returns the name of the current application file. This meta tag is
useful for creating links that reference the current application file.

Compare the following two tags:

■ <@APPFILE> returns the path and the name
■ <@APPFILEPATH> returns the path and not the name.

Note This meta tag is often used to create URLs, for example, in
the HREF attribute of an anchor tag in HTML. To make sure that
the meta tag returns a properly encoded value, you can use one of
the following:

<@APPFILE ENCODING="URL">
<@URLENCODE STR="<@APPFILE>">

Example The following example processes different HTML depending on
the name of the current application file. You may find this useful in
files that are referenced with <@INCLUDE> that are used by several
application files but that you would like to behave differently in
different application files.

<@IFEQUAL <@APPFILENAME> customers.taf>
 [...HTML to execute...]
<@ELSEIFEQUAL <@APPFILENAME> administrator.taf>
 [...HTML to execute...]
<@ELSE>
 [...default HTML to execute...]
<@/IF>

 See Also <@APPFILE> page 32
<@APPFILEPATH> page 34
<@INCLUDE> page 110
<@URLENCODE> page 180
33 33

<@APPFILEPATH>
<@APPFILEPATH>

Syntax <@APPFILEPATH [ENCODING=encoding]>

Description Returns the path to the current application file, excluding the
application file name, but including the trailing slash.

This meta tag is useful for creating links that reference an
application file, <@INCLUDE> file, or image file in the same directory
as the currently executing application file.

The path returned is always relative to the Web server root
directory.

Examples <A
HREF="<@CGI><@APPFILEPATH>homer.taf?function=form">

This example calls the homer.taf file, located in the same directory
as the currently executing application file.

<@INCLUDE FILE="<@APPFILEPATH>header.html">

This example includes the header.html file, located in the same
directory as the currently executing application file.

<IMG SRC="<@APPFILEPATH>logo.gif">

This example references the logo.gif file, located in the same
directory as the currently executing application file.

See Also <@APPFILE> page 32
<@CGI> page 57
Encoding Attribute page 10
<@INCLUDE> page 110
<@URLENCODE> page 180
3434

<@ARG>
<@ARG>

Syntax <@ARG NAME=name [TYPE=type] [FORMAT=format]
[ENCODING=encoding]>

Description Returns the value(s) of the named search or post argument in the
HTTP request that calls the application file. References to
arguments not present in the request evaluate to empty.

Use this meta tag (rather than <@SEARCHARG> or <@POSTARG>) when
you want the flexibility of passing a value to an application file via
either a search or post argument.

The NAME attribute may be specified as a literal value, value-
returning meta tag, or a combination of both.

The TYPE attribute accepts one of two possible values: TEXT or
ARRAY. ARRAY causes the tag to return a single-column, multi-row
array of values, one for each value received for the named
argument. An HTML <SELECT> form field with the MULTIPLE
attribute, for example, sends multiple instances of the form field,
one for each value selected by the user. Using the ARRAY type lets
you access all those values.

TEXT, which is the default type if the TYPE attribute is not specified,
causes the tag to return a single value. If you specify this type when
multiple values were received for the argument, the value returned
is the first one received by Tango.

The optional FORMAT attribute determines how the value is
formatted by Tango. This attribute is ignored if TYPE=ARRAY is
specified.

Examples <@ARG NAME="foo">

These return the value of the “foo” argument. Even if more than
one value was specified for foo, only one is returned.

<@ARG NAME="foo" TYPE="ARRAY">

This example returns an array containing all values for the “foo”
argument.
35 35

<@ARG>
See Also Encoding Attribute page 10
Format Attribute page 13
<@POSTARG> page 134
<@SEARCHARG> page 151
3636

<@ARGNAMES>
<@ARGNAMES>

Description Returns an array with two columns specifying all search and post
arguments passed into the current application file. The first column
contains the name of the argument, and the second column
contains either POST or SEARCH, depending upon how the argument
was sent to the server.

Example View the arguments <@ARGNAMES>.

This would return something like:

Fred POST
access POST
username SEARCH

See Also <@POSTARGNAMES> page 135
<@SEARCHARGNAMES> page 152
37 37

<@ARRAY>
<@ARRAY>

Syntax <@ARRAY [ROWS=rows] [COLS=cols] [VALUE=textValue]
[CDELIM=columnDelimString] [RDELIM=rowDelimString]>

Description Returns an array with a specified number of rows and columns.

This meta tag is usually used in conjunction with <@ASSIGN>. See
the examples in this section.

The attributes ROWS and COLS optionally specify the number of
rows and columns in the array, respectively. The optional attribute
VALUE specifies a string used for initializing the array, formatted as
array elements separated by CDELIM and RDELIM text.

ROWS and COLS must be specified if VALUE is not specified. VALUE
must be specified if ROWS and COLS are not specified.

If all three of these attributes are specified, they must be in accord,
or an error is generated. The following example would generate an
error because the VALUE specifies three columns and two rows,
which contradicts the ROWS and COLS attributes.

<@ARRAY ROWS=10 COLS=2 VALUE="a,b,c;d,e,f">

It is also invalid to specify a VALUE attribute with different numbers
of columns in each row. The number of columns in each row must
be the same, and must match the COLS value, if specified.

If the CDELIM and RDELIM attributes were specified as"," and ";",
respectively, and the value string were specified as
VALUE="1,2,3;4,5,6;7,8,9;a,b,c;" an array with the following
structure would be created:

1 2 3
4 5 6
7 8 9
a b c

For more information,
see “cDelim” on page 197
and “rDelim” on
page 214.

If no values for the column or row delimiters are specified, then the
values specified by the configuration variables cDelim and rDelim
are used as defaults.
3838

<@ARRAY>
Examples Creating an array and assigning it to a variable:

<@ASSIGN NAME="array1" VALUE="<@ARRAY ROWS=’5’
COLS=’3’>">

Creating and initializing an array, assigning it to a variable, and
printing it:

<@ASSIGN NAME="initValue"
VALUE="1,2,3;4,5,6;7,8,9;a,b,c;d,e,f;g,h,i">

<@ASSIGN NAME="array2" VALUE="<@ARRAY ROWS=’5’ COLS=’3’
VALUE=@@initValue CDELIM=’,’ RDELIM=’;’>">

<@VAR NAME="array2">

See Also <@ASSIGN> page 41
<@VAR> page 184
39 39

<@ASCII>
<@ASCII>

Syntax <@ASCII CHAR=char>

Description Returns the ASCII value of the first character of the string specified
in the CHAR attribute.

Note Characters with ASCII codes above 127 return different
values depending on the character encoding standard used by the
operating system on the computer where Tango Server is running.

The attribute may be a literal value or a meta tag that returns a
string.

Examples <@ASCII CHAR="T">

This example returns “84”.

<@ASCII CHAR="<@POSTARG NAME=char>">

This example returns the ASCII value of the first character of the
CHAR form field entered by the user.

See Also <@CHAR> page 62
4040

<@ASSIGN>
<@ASSIGN>

Syntax <@ASSIGN NAME=name VALUE=value [SCOPE=myscope]>

Description Assigns a value to a variable. If the specified variable does not yet
exist, it is created.

For more details on
variables, see Chapter 7,
“Using Variables,” in the
User’s Guide.

The value may be text or an array. If the variable being assigned to
exists and contains an array, this tag also lets you set the values of
individual elements in that array. <@ASSIGN> can assign an array
(or array section) to a variable, or to another array (or array
section). Array assignments require that the source and target
arrays (or array sections) have the same dimensions.

The NAME attribute specifies the name of the variable to assign the
value to. The following restrictions apply to the value specified in
the NAME attribute:

■ must start with a letter
■ may contain numbers, letters, and the underscore character “_”
■ may be no longer than 31 characters.

Variable names are case insensitive; for example, myVar is the same
variable as MYVAR and MyVaR.

If you are assigning to an array variable element or section, the
name includes the element or section specification specified within
square brackets as [rownumber,colnumber], with an asterisk
indicating all rows or all columns; for example,
NAME=myArray[1,2] or NAME=myArray[*,3].

The VALUE attribute specifies the value to assign to the variable. If
you are assigning to an array section, the value specified here must
match the dimensions of the array variable specification in NAME.

Note Resizing an array variable is not supported, but you may
assign a new array (of any dimension) to an existing variable.
Assigning subset shapes is not possible where such shapes cannot
be described with the wildcard syntax “*”.

The SCOPE attribute specifies the name of the scope in which to
assign the variable. If this attribute is omitted, the following steps
41 41

<@ASSIGN>
are taken to determine the scope in which the assignment takes
place:

■ Tango searches for the variable in local, user, domain, and
system scope, in that order. As soon as a variable by the NAME
specified is found, the search stops, and the VALUE is assigned
to that variable.

For more information,
see “defaultScope” on
page 206.

■ A new variable is created in the default scope if the variable is
not found. The default scope is normally user, but can be
changed by setting the defaultScope configuration variable.

Examples <@ASSIGN NAME="foo" VALUE="123456" SCOPE="user">

This example assigns the value “123456” to the variable foo in user
scope.

<@ASSIGN NAME="foo2" VALUE="abcdef">

This example either assigns the value “123456” to the variable foo2
in local, user, domain or system scope, depending on the first
instance of foo2 that Tango Server encounters; or, if it does not
exist, it creates a new variable called foo2 in default scope and
assigns the value “123456” to it.

<@ASSIGN NAME="foo3" SCOPE="user" VALUE="<@ARRAY
ROWS=5 COLS=3>">

This example assigns an array of five rows and three columns to the
user variable foo3.

<@ASSIGN NAME="foo4" SCOPE="user"
VALUE="<@POSTARGNAMES>">

This example assigns the evaluated value of the meta tag
<@POSTARGNAMES> (an array) to the user variable foo4.

<@ASSIGN NAME="initValue"
VALUE="1,2,3;4,5,6;7,8,9;a,b,c;d,e,f;g,h,i">
<@ASSIGN NAME="array2" VALUE="<@ARRAY ROWS=’5’
COLS=’3’ VALUE=@@initValue CDELIM=’,’
RDELIM=’;’>">
<@ASSIGN NAME="foo5" SCOPE="user"
VALUE="@@array2[*,2]">

This example creates an array variable called array2, initializes it,
and then creates a new one-column array variable (foo5),
containing all the values in column 2 of array2.
4242

<@ASSIGN>
<@ASSIGN NAME="orders[1,*]" VALUE="@@myOrder"
SCOPE="user">

This example puts the single-row array stored in the myOrder
variable into the first row of the orders user variable, replacing the
existing values. This assignment generates an error if myOrder is
not an array, contains more than one row, or does not contain the
same number of columns as the orders array.

<@ASSIGN NAME="zips" VALUE="@@orders[*,4]"
SCOPE="local">

Assigns to the local variable zips a one-column array of all the
values from column 4 of the orders array.

<@ASSIGN NAME="curr_cust" VALUE="@@orders[1,1]">

Assigns the value from the first cell in the first row of the orders
array to the curr_cust variable, using default scoping rules.

<@ASSIGN NAME="race_results[*,3]" VALUE="<@VAR
NAME=’new_results[*,1]’>">

Copies the values from column 1 of the new_results array to the
third column of the race_results array. Both arrays must contain
the same number of rows, or an error occurs.

See Also <@ARRAY> page 38
<@PURGE> page 137
<@VAR> page 184
43 43

<@BREAK>
<@BREAK>

Description Terminates execution of an <@COLS>, <@ROWS>, or <@FOR> block.
<@BREAK> causes execution to continue to the HTML following the
current loop’s close tag; outside of a loop, it does nothing. This tag
has no attributes. This tag does not affect loops initiated with For
Loop or While Loop actions.

This tag is generally used with an <@IF> tag to terminate a loop
when some condition is met. Be careful to handle nested loops
properly: only the innermost loop’s processing is affected by the
break.

Example The following example returns records until the accumulated total
of all the company.balance columns reaches or exceeds 1000:

<@ASSIGN NAME="running_total" VALUE="0">
<@ROWS>
Here are the values from record <@CURROW> of the
results:<P>
Company Name: <@COLUMN
NAME="company.name">

Balance $<@COLUMN
NAME="company.balance">

Running total: $<@NEXTVAL NAME="running_total"
STEP=’<@COLUMN NAME="company.balance">’>
<@IF EXPR="@@running_total>=1000" TRUE="<@BREAK>">
</@ROWS>
Running total of balance has reached $1000. End of
records.

See Also <@COLS> </@COLS> page 67
<@CONTINUE> page 70
<@EXIT> page 97
<@FOR> </@FOR> page 101
<@ROWS> </@ROWS> page 145
4444

<@CALC>
<@CALC>

Syntax <@CALC EXPR=expr [PRECISION=precision] [FORMAT=format]
[ENCODING=encoding]>

Description Returns the result of the calculation specified in EXPR.

Basic
Functionality

The expression may contain numbers (including numbers in
scientific notation); any of six arithmetic operations—
multiplication (*), division (/), modulo (%), power (^), addition (+),
and subtraction (-); parentheses for controlling the order of
operations; mathematical functions; string functions; logical
operations; comparison operations; calculation variables (A–Z);
and sub-expressions.

Note Do not confuse calculation variables with configuration
variables or other Tango variables. They are only applicable to
<@CALC> and do not work with <@ASSIGN> or <@VAR>.

If the expression contains any spaces—except for spaces within
embedded meta tags—it must be quoted.

The optional PRECISION attribute is an integer that controls the
number of decimal places displayed in the result. The default
precision is the maximum required for accuracy of the result.

If an error is encountered while the expression is parsed or
computed, the computation is halted and the tag is substituted with
relevant error information.

Examples <@CALC EXPR="3+7">

This tag returns “10”.

<@CALC EXPR="<@POSTARG NAME=’calculateThis’>"
PRECISION="4">

This evaluates the contents of the form field specified—
calculateThis—to four decimal places of precision. If the field
contained “8*9+8/2”, for example, the tag would evaluate to
“76.0000”.
45 45

<@CALC>
Advanced
Functionality
and Calculation
Variables
Reference

Numbers

A valid number is a sequence of digits, optionally preceded or
trailed by a currency sign (default “$”, otherwise set by the
configuration variable currencyChar), with any number of
thousand separator characters, an optional decimal point, and an
exponentiation part. As well, an empty variable or empty string
evaluates to zero.

Numbers can be used with any operators and functions, even with
the string specific function len, which returns the length of the
number converted to a string.

When a number is used in logical expression, any non-zero number
is considered true, and zero is considered false.

Logical expressions themselves return “1” if they are true or “0” if
they are false.

Two symbolic constants, true and false, which evaluate to “1”
and “0”, respectively, are provided for convenience.

An empty string evaluates to zero for the purposes of calculation.
That is, if the variable foo is empty, the following operations are
valid:

<@CALC ’@@foo + 1’> OK, returns 1
<@CALC ’"" + 1’> OK, returns 1
<@CALC ’mean(@@foo 1)’> OK, returns 0.5

The thousand separator set to space

A special case occurs when the thousand separator is set to a space.
A number containing a space can be processed if it is a result of a
tag evaluation; however, a number literal must be quoted if it
includes spaces.

For example:

<@ASSIGN NAME=fred VALUE="1 000 000">

<@CALC "@@fred / 100"> Ok, returns 10000.0
<@CALC "@@fred > ’1 000’"> Ok, returns 1.0
<@CALC "@@fred > 1 000"> Error

For more information,
see “currencyChar” on
page 199, “decimalChar”
on page 204,
“DBDecimalChar” on
page 203, and
“thousandsChar” on
page 218.

The thousands separator, currency sign, and other numerical
formats are set by Tango configuration variables. They can be set in
various scopes.
4646

<@CALC>
Array evaluation

<@CALC> treats array references using non-array-specific operators
and functions as a numerical value returning the number of rows in
the array.

This provides an easy way to verify whether an array is empty or
contains a certain value. For example, you can test for the existence
of an array variable with <@CALC EXPR="@@array_variable > 0"
TRUE="Yes!" FALSE="No such variable.">.

For example:

The variable fred contains the following array:

The variable barney contains the following array:

<@CALC @@fred> returns 2.

<@CALC @@barney> returns 3.

<@IF EXPR="@@fred > @@barney" TRUE="true!"
FALSE="alas"> returns “alas”.

Hexadecimal, Octal and Binary Numbers

The calculator can accept hexadecimal, octal, and binary numbers.
The num function converts strings representing hexadecimal, octal
and binary numbers to decimal numbers, and the result of the
conversion can be used anywhere where a number is used. The
following table specifies the conversion rules.

1 2

3 4

1 2

5 6

7 8
47 47

<@CALC>
Note If a decimal number is passed to this function, it either
yields an error or an incorrect result.

For example, all the following expressions generate errors:

num(0x123fga) ERROR: letter g is invalid
num(012380) ERROR: digit 8 is invalid
num(123) ERROR: digits 2 and 3 are invalid

Strings

Any Tango meta tag that does not evaluate to a valid number or
array reference is considered a string. No additional quoting is
required. There is a single exception to this rule, further explained
in “Meta Tag Evaluation” on page 55.

Strings can be used only in comparison operations, contains clauses
or as arguments to the len function. A string literal—that is, a string,
directly included in the expression—must be enclosed in single
quotes if it contains spaces, special characters or starts with a digit.

For more information,
see “Calculation
Variables” on page 49.

Note Single letters must always be enclosed in quotes in string
operations so that they are treated as letters, and not as
calculation variables.

The following examples show string comparisons. If a string literal
contains a single quote or a backslash, it must be escaped with a
backslash.

<@ASSIGN NAME=name VALUE="John Lennon">
<@CALC EXPR="@@name=John"> false
<@CALC EXPR="@@name=John Lennon"> ERROR
<@CALC EXPR="@@name=’John Lennon’"> true
<@CALC EXPR="@@name=’John*’"> true

Prefix Valid Symbols Converted As Examples

0x 0123456789abcdef Hexadecimal num (0xff)
num (0x0123f3a4)

0 01234567 Octal num (0123456)
num (0120235)

None 01 Binary num (1011110010100)
num (111)
4848

<@CALC>
<@ASSIGN NAME=name VALUE="John’s trousers">
<@CALC EXPR="@@name=John*" true
<@CALC EXPR="@@name=’John\’s trousers’"> true
<@CALC EXPR="@@name=’John’s’"> ERROR

<@ASSIGN NAME=dir VALUE="C:\test">
<@CALC EXPR="@@dir=’C:\test’"> false
<@CALC EXPR="@@dir=’C:\\test’"> true

When a string is encountered on one side of the comparison
operation, the other operand is forced to a string, too. For example:

2.15 <=’abba’
’123.456.78.12’=@@ip_address

Function len returns the length of the string, so the result of this
operation can be used anywhere a number can be used. Strings can
not be assigned to calculation variables.

For example, these are valid expressions:

ABBA=’BLACK SABBATH’ false
len(JOHN LENNON) + len(FREDDY MERCURY) - 5 > 0 true

but these are not:

a :=ABBA ERROR: cannot assign string
FREDDY < 0 ERROR: cannot compare string and number

and this tag returns true although you may expect it to return false:

<@CALC EXPR="a=b">

Note A single letter on both sides of the comparison operator
evaluates to a calculation variable, meaning a number
comparison is performed.

String comparisons using <@CALC> are case insensitive.

Calculation Variables

A calculation variable is a single case-insensitive letter (A–Z) that
can be assigned a numeric value and used in subsequent
operations. You can write small programs inside the tag with
calculation variables and statement separators, or put a program in
a separate file and use <@INCLUDE> to calculate the result.
49 49

<@CALC>
Single letters must always be enclosed in quotes in string
operations so that they are treated as letters, and not as calculation
variables. For example:

For more information,
see “beginswith” on
page 52.

<@CALC EXPR="Henry beginswith ’H’"> evaluates the string
“Henry” to see if it begins with the string “H” (case-
insensitive).

<@CALC EXPR="1234 beginswith H"> evaluates “1234” to see
if it begins with the value specified in the calculation variable H
(number-to-string conversions are performed).

The following table shows predefined calculation variables. You
may use these values in your programs, or have any of these
calculation variables reassigned with any other value.

Variable Meaning Value

G (3 - sqrt(5))/2, the golden ratio. 0.381966011250105

E e, the base of natural logarithms. 2.718281828459045

L log10(e), the ratio between natural and

decimal logarithms.

0.434294481903252

P pi, the circumference to diameter ratio
of a circle.

3.141592653589793

Q sqrt(2), the square root of 2. 1.414213562373095

I Has a meaning only inside foreach
expression.

Current row index

J Has a meaning only inside foreach
expression.

Current column index

X Has a meaning only inside foreach
expression.

Current array element
index
5050

<@CALC>
Operators

The following table shows the operators listed in order of
increasing precedence. Operators having the same precedence, for
example, plus and minus, are not separated by a rule.

Note The beginswith operator should be used instead of a
trailing asterisk as a wildcard in comparisons.The use of
asterisks as wildcards is deprecated and will be removed in a
future release.

Operator Meaning and Return Value Usage

; Sub-statement separator, returns the value of
the last statement.

statement ;
statement

:= Assignment operator, assigns the value of the
expression to the calculation variable, and
returns that value.

variable :=
expression

||
OR

Logical OR, returns 1 if any of the expressions is
evaluated to a non-zero value, or 0 otherwise.

expr || expr
expr OR expr

&&
AND

Logical AND, returns 1 if both of the expressions
are evaluated to non-zero values, or 0
otherwise.

expr && expr
expr AND expr

< Numeric or string LESS. Returns 1 if left
operand is greater than right one, or 0
otherwise.

expr < expr
string < string

> Numeric or string GREATER. Returns 1 if left
operand is greater than right one, or 0
otherwise.

expr > expr
string > string

<= Numeric or string LESS OR EQUAL. Returns 1 if
left operand is less than or equal to right one, or
0 otherwise.

expr <= expr
string <=
string

>= Numeric or string GREATER OR EQUAL.
Returns 1 if left operand is greater than or equal
to right one, or 0 otherwise.

expr >= expr
string >=
string

= numeric or string EQUAL. Returns 1 if left
operand is equal to right one, or 0 otherwise.

expr = expr
string = string

!= Numeric or string NOT EQUAL. Returns 1 if left
operand is not equal to right one, or 0 otherwise.

expr != expr
string != string

? : Ternary comparison. Evaluates to expr1 if
condition is true, or to expr2 otherwise.

(cond) ?
expr1: expr2
51 51

<@CALC>
Built-in Functions

Each built-in function expects either a single numeric argument, or
a space-separated list of mixed numeric and array arguments, or a
string. It is an error to specify an argument of the wrong type to a
function. If an array, specified as an argument to a function,

contains Containment. Returns true if specified string or
number is contained in the array.

array contains
string
array contains
number

contains Occurrence. Returns true if specified string or
number is a substring of the source string.

source_string
contains string
source_string
contains
number

beginswith Occurrence. Returns true if specified string or
number begins the source string. (Case-
insensitive.)

source_string
beginswith
string
source_string
beginswith
number

endswith Occurrence. Returns true if specified string or
number ends the source string. (Case-
insensitive.)

source_string
endswith
string
source_string
endswith
number

+ Addition. Returns the sum of the expressions. expr + expr

– Subtraction. Returns the difference of the
expressions.

expr – expr

* Multiplication. Returns the product of the
expressions.

expr * expr

/ Division. Returns the quotient of the expr1
divided by the expr2.

expr1 / expr2

% Modulo. Returns the remainder of expr1 divided
by expr2.

expr1 % expr2

^ Power. Returns expr1 raised to expr2 power. expr1 ^ expr2

– Unary minus. Returns the negation of the
expression.

– expr

+ Unary plus. Returns the expression itself. + expr

!
NOT

Logical NOT. Returns 0 if the value of the
expression is not 0, or 1 otherwise.

! expr
NOT expr

Operator Meaning and Return Value Usage
5252

<@CALC>
contains non-numeric elements, these elements are ignored
without any error diagnostics.

The following tables list all built-in functions.

1. Numeric functions of the form func(expr)

Function Meaning and Return Value
Arguments and
Usage

abs |x|, the absolute value of the expression abs(expr)

acos cos-1(x), the arccosine of the expression,
returned in radians

acos(expr)

asin sin-1(x), the arcsine of the expression,
returned in radians

asin(expr)

atan tan-1(x), the arctangent of the expression,
returned in radians

atan(expr)

ceil expression rounded to the closest integer
greater than or equal to the expression

ceil(expr)

cos cos(x), the cosine of the expression,
specified in radians

cos(expr)

exp ex, the exponentiation of the expression exp(expr)

fac x! (or 1*2*3*...*x) factorial of the expression fac(expr)

floor expression rounded to the closest integer
less than the expression

floor(expr)

log In(x) (or loge(x)), the natural logarithm of
the expression

log(expr)

log10 log10(x), the decimal logarithm of the
expression

log10(expr)

sin sin(x), the sine of the expression, specified
in radians

sin(expr)

sqrt sqrt(x) (or x1/2), the square root of the
expression

sqrt(expr)

tan tan(x), the tangent of the expression,
specified in radians

tan(expr)
53 53

<@CALC>
2. String functions of the form func(string)

3. Array functions of the form func(expr|array expr|array)

Array
Operators

Contains Operator

The contains operator has the following syntax:

<@VAR NAME="array"> contains number or string

This operator checks if the specified number or string is contained
in the array. The string should be enclosed in quotes, if it contains
any non-alphanumeric characters. The operator returns “1” if the
element is found, or “0” otherwise.

Function Meaning and Return Value
Arguments
and Usage

len returns the length of the string enclosed in
parentheses

len(text)

num converts a string, representing a
hexadecimal, octal, or binary number into a
number

num(text)

Function Meaning and Return Value
Arguments and
Usage

max max(A1, A2,...An). returns the largest

element

max(expr expr ...)

min min(A1, A2,...An). returns the smallest
element

min(expr expr ...)

sum A1+A2+...+An. returns the sum of the
elements

sum(expr expr...)

prod A1*A2*...*An. returns the product of the

elements

prod(expr expr...)

mean Amean=(A1+A2+...+An) /n. returns the
mean of the elements

mean(expr expr...)

var Avar=((A1-Amean)2+((A2-Amean)2+...+((An-

Amean)2)/(n-1) returns the (squared)
variance of the elements

var(expr expr...)
5454

<@CALC>
For example, the following expression, which uses the <@IF> meta
tag, returns “Cool” if “Queen” is found in the CDs array, and “Too
Bad” if it is not.

<@IF EXPR="<@VAR NAME=CDs> contains Queen" TRUE=Cool
FALSE="Too bad">

Foreach Operator

The foreach operator has the following syntax:

<@VAR array> foreach {statement; ...}

For more information,
see “<@ARRAY>” on
page 38.

For more information,
see “<@ASSIGN>” on
page 41.

This operator steps through the elements of an array and it assigns

■ the value of the elements to the variable “X”
■ the current row number to the variable “I”
■ and the current column number to the variable “J”

and it executes the statements inside the braces “{ }”for each
element. All non-numeric elements are interpreted as zeroes.

The operator returns the last calculated value of the expression.

The values of “X, I, J” are restored upon the exit from the foreach
operator. For example, if array CDs is initialized as follows:

<@ASSIGN NAME="CDinitValue" VALUE="AC/
DC,Scorpions,Deep Purple,Black
Sabbath,Queen;19.50,22.50,22.50,17.90,29.00">
<@ASSIGN NAME="CDs" VALUE="<@ARRAY ROWS=’2’
COLS=’5’ VALUE=@@CDinitValue CDELIM=’,’
RDELIM=’;’>">

then the following program prints the name of the most expensive
CD:

<@VAR NAME=CDs[1,<@CALC "t :=1; p :=0.0;

<@VAR NAME=CDs> foreach
{ t :=(p < x)? j: t; p :=(p < x)? x: p; }; t">]>

Meta Tag Evaluation

There are two special cases when a meta tag is not treated as a
string. Consider the following two examples:

<@CALC EXPR="<@POSTARG NAME=prog>">
<@CALC EXPR="<@INCLUDE FILE=myprog>">

If the post argument prog contains an expression submitted by a
user, or the file myprog contains an expression to be calculated, one
would expect <@CALC> to produce the result of the calculation. The
55 55

<@CALC>
rule is, if the expression contains a single meta tag, such an
expression is fully evaluated by the calculator, rather than treated
as a string.

Ordering of Operation Evaluation With Parentheses

Parentheses can be used to order the evaluation of expressions that
otherwise are evaluated in the order specified in the Operators
table (page 51). For example:

<@CALC EXPR= "7*3+2">

This example evaluates to “23”.

<@CALC EXPR= "7*(3+2)">

This example evaluates to “35”.

A more complex example can be constructed using different
operators and nested parentheses:

<@CALC EXPR="(<@ARG _function> = ’detail’) and
((len(<@ARG id>) != 0 and <@ARG mode>=’abs’)
or (<@ARG mode>=’next’ or <@ARG mode>=’prev’">))>

This tag evaluates to “1” (true) if the _function argument is equal
to “detail” and any one of the following conditions are met:

■ id arg is not empty and the mode arg is “abs”
■ mode argument is “next”
■ mode argument is “prev”.

See Also <@ARRAY> page 38
<@ELSEIF> page 103
<@ELSEIFEMPTY> page 103
<@ELSEIFEQUAL> page 103
Encoding Attribute page 10
<@FORMAT> page 102
Format Attribute page 13
<@IF>, <@ELSE> page 103
<@VAR> page 184
5656

<@CGI>
<@CGI>

Syntax <@CGI [ENCODING=encoding]

Description Returns the full path and name of the Tango CGI. On Mac OS, the
path arguments separator, “$”, is appended to this value.

With server plug-in/extension versions of Tango, this meta tag
returns nothing.

Use this meta tag when creating embedded links to other Tango
application files. Doing so ensures that the links work regardless of
the Web server setup, or on which platform you are running Tango
Server.

Note This meta tag is often used to create URLs, for example, in
the HREF attribute of an anchor tag in HTML. To make sure that
the meta tag returns a properly encoded value, you can use one of
the following:

<@CGI ENCODING="URL">
<@URLENCODE STR="<@CGI>">

Examples <A HREF="<@CGI>/custlist.taf">List Customers

This provides a link to an application file named custlist.taf.

If running the Mac OS CGI in the Web server's root directory, the
example returns /Tango.acgi$/custlist.taf after the meta tag is
evaluated. On Windows NT, with the CGI in the cgi-bin directory,
the example returns /cgi-bin/t3cgi.exe/custlist.taf. If you
are running Tango with one of the server plug-ins, it returns
/custlist.taf.

<A HREF="<@CGI>/more/cust_add.taf">Add Customer

This links to the cust_add.taf application file located in a
directory named more in the root directory of the Web server.

See Also <@APPFILE> page 32
<@APPFILEPATH> page 34
Encoding Attribute page 10
57 57

<@CGIPARAM>
<@CGIPARAM>

Syntax <@CGIPARAM NAME=name [COOKIE=cookie] [ENCODING=encoding]>

Description Evaluates to the value of the specified CGI attribute. CGI attributes
are values passed to Tango Server by your Web server. CGI
attributes are passed whether you are using the CGI or the plug-in
version of Tango Server.

The following table shows valid values for the NAME attribute and
descriptions of the value returned by each.

Attribute Name Description

 CLIENT_ADDRESS The fully-qualified domain name of the user who
called the application file, if your Web server is set to
do DNS lookups; otherwise, this attribute contains
the user’s IP address. For example, “fred.xyz.com”.

CLIENT_IP The IP address of the user who called the application
file. For example, “205.189.228.30”.

CONTENT_TYPE The MIME type of the HTTP request contents.

FROM_USER Rarely returns anything; with some older Web
browser applications, the user’s e-mail address.

HTTP_COOKIE Returns the value of the HTTP cookie specified in
the COOKIE attribute. For example, <@CGIPARAM
NAME="HTTP_COOKIE" COOKIE="SICode">
returns the value of the SICode cookie. (This
attribute is retained for backwards compatibility with
Tango 2.3. It is recommended that you use <@VAR>
with SCOPE="COOKIE" to return the values of
cookies in Tango 3.0. See “<@VAR>” on page 184.)

HTTP_SEARCH_ARGS Text after question mark (?) in the URL.

METHOD The HTTP request method used for the current
request. If a normal URL call, or form submitted with
the GET method, “GET”; if a form submitted with the
POST method, “POST”.

PATH_ARGS Text after the Tango CGI name and before any
search arguments in the URL. If using the plug-in, or
suffix-mapping to call the CGI automatically, no value
is returned by this attribute. You may also use the
<@APPFILE> meta tag to get this value (it works
regardless of calling method and whether you use
the plug-in or CGI). For example, a “/” after the CGI
name indicates the beginning of the path args.
5858

<@CGIPARAM>

MetaTags.fm Page 59 Monday, January 18, 1999 4:38 PM
The parameters listed in the following table are available under the
Mac OS only. Some may be available only with the StarNine
WebSTAR server. Check your server documentation to see if it
supports a particular CGI parameter.

POST_ARGS The raw POST (form submission) argument
contents, containing the names and values of all
form fields.

REFERER The URL of the page from which the current request
was initiated. Not provided by all Web browsers.
(The misspelling of this attribute is for consistency
with the CGI specification.)

SCRIPT_NAME Returns the CGI portion of the URL.

SERVER_NAME Fully-qualified domain name of the Web server, if
your Web server is set to do DNS lookups;
otherwise, this attribute contains the server’s IP
address. For example, “www.example.com”.

SERVER_PORT The TCP/IP port on which the Web server is running.
A typical Web server runs on port 80.

USERNAME The user name, obtained with HTTP authentication,
of the user who requested the URL. This attribute is
available only if the URL used to call the current
application file required authentication by the Web
server software.

USER_AGENT The internal name of the Web browser application
being used to request the URL. This often contains
information about the platform (Mac OS, Windows,
etc.) on which the Web browser is running, and the
application’s version. For example, Internet Explorer
3.0 for Macintosh returns Mozilla/2.0 (compatible;
MSIE 3.0; Mac_PowerPC).

 Parameter Description

ACTION The name of the Web server action used to call Tango.

ACTION_PATH The path from the Web server application to the Tango
CGI used to call the current application file. If using the
plug-in, returns “Tango”.

FULL_REQUEST The entire contents of the current HTTP request,
including the URL and any POST arguments.

PASSWORD The password, obtained with HTTP authentication, of
the user who requested the URL. This parameter is
available only if the URL used to call the current
application file is protected by a Web server realm.

Attribute Name Description
59 59

<@CGIPARAM>
Example <P>Hi there, <TT><@CGIPARAM NAME=CLIENT_ADDRESS>
</TT>. You are connected to <TT><@CGIPARAM
NAME=SERVER_NAME></TT>, port <@CGIPARAM
NAME=SERVER_PORT>.

This returns a personalized greeting to the client, for example:

Hi there, whitman.leavesofgrass.com. You are connected to
baudelaire.flowersofevil.com, port 80.

See Also Encoding Attribute page 10

SCRIPT_NAME If using the plug-in, or if the Tango CGI is called with a
Web server action, returns the application file path and
name; otherwise, returns the path and name of the
Tango CGI.

 Parameter Description
6060

<@CGIPATH>

MetaTags.fm Page 61 Monday, January 18, 1999 5:14 PM
<@CGIPATH>

Description Mac OS Only

Returns the path to the directory containing the Tango CGI. The
final slash is not included in the value. For example, if the Tango
Server CGI is in a directory called Tango at the Web server root
level, then <@CGIPATH> evaluates to /Tango.

If you have the Tango CGI at the root directory of the Web server, or
are running the plug-in version of Tango Server, this meta tag
returns an empty string.

This meta tag is supported mainly for backward compatibility with
existing applications. For greater compatibility with the plug-in
and other platform versions of Tango, Pervasive strongly
recommends that the CGI, if being used, be located in the Web
server’s document root directory.

Note This meta tag returns a value only when using Tango CGI
on the Mac OS. On other platforms, and for Tango Server plug-in
on Mac OS, this meta tag evaluates to an empty string.

Example <IMG SRC="<@CGIPATH><@APPFILEPATH>logo.gif">

This example returns a reference the logo.gif file, located in the
same directory as the currently executing application file.

See Also <@APPFILE> page 32
<@APPFILEPATH> page 34
<@CGI> page 57
61 61

<@CHAR>
<@CHAR>

Syntax <@CHAR CODE=number [ENCODING=encoding]>

Description Returns the character that has the ASCII value number.

This meta tag is especially useful for specifying non-printing
characters, such as linefeeds (<@CHAR CODE=10>), carriage returns
(<@CHAR CODE=13>), and tabs (<@CHAR CODE=9>). Valid values for
the number attribute are 1 through 254.

Note Numbers above 127 return different characters depending
on the character encoding standard used by the operating system
on the computer where Tango Server is running.

The number attribute may be a literal value or a meta tag that
returns a number.

Examples <@CHAR CODE=84>

This example returns “T”.

<@CHAR CODE=<@POSTARG NAME=charCode>>

This example returns the character that corresponds to the value of
the contents of the charCode form field entered by the user.

<@OMIT STR=<@POSTARG NAME=comments> CHARS="<@CHAR
CODE=10><@CHAR CODE=9>">

This example returns the comments form field value stripped of any
linefeed and tab characters.

See Also <@ASCII> page 40
<@CRLF> page 71
<@DQ>, <@SQ> page 88
Encoding Attribute page 10
6262

<@CIPHER>
<@CIPHER>

Syntax <@CIPHER ACTION=action TYPE=type STR=string [KEY=key]
[ENCODING=encoding]>

Description Performs encryption, decryption, and hashes on strings using
various algorithms and keys.

<@CIPHER> provides the Tango user with access to various
encryption algorithms. The user may specify different keys, if
required.

Three attributes are required: ACTION, TYPE, and STR.

■ ACTION is the action you want to perform, for example,
encrypt or decrypt.

■ TYPE is the type of action you want to perform, for example,
BitRoll.

Note There is a special case in which TYPE is not required. This
occurs when the ACTION is Hash, and this is because Tango
supports only one type of Hash.

■ STR is the string upon which you want to execute the action, for
example, a social security number. A zero length STR is
processed by the underlying cipher routines.

KEY may be required or prohibited depending on the TYPE of cipher
requested. Keys may be case sensitive.

Warning messages are logged if attributes needed are missing:

[Warning] CIPHER: no action specified

[Warning] CIPHER: type not specified or unknown

[Warning] CIPHER: specified key not valid for this
cipher

Ciphers
Supported

Each type of cipher has at least one operation permitted. Each may
accept a key, may provide a default one if none is given, or may
reject any key and use a predetermined value, or none, as
appropriate.
63 63

<@CIPHER>
Cipher names are case insensitive. The following table lists types of
ciphers, their actions, their key restrictions, and a short description
of each cipher.

The ACTION has two directions, forward and reverse. This means
that you can take a string and encrypt, encipher or hash it in the
forward direction, and, for the reverse direction, you can decrypt or
decipher.

Hash is a one-way cipher: it works only in the forward position. An
example use for this would be a passwords for a UNIX system.
One-way hash functions are handled as encipher operations with
no corresponding decipher operation. The keyword HASH is
accepted as an ACTION for this purpose.

Certain synonyms for the two ciphering operations are supported:

Type Action Key Restrictions Short Description

 BitRoll encrypt/decrypt prohibited swaps position of
first 3 and last 5
bits in a byte

Caesar encrypt/decrypt optional, integer
(positive and
negative) values
only, use “3” as
default

rotate chars by
value positions
mod 26

OneTimePad encrypt/decrypt required, all
alphabetic (no
spaces or
punctuation)

rotate characters
by x positions, x
being successive
case-insensitive
characters of key,
a=1, b=2, ...

 Rot13 encrypt/decrypt prohibited rotate characters
by 13 positions

hash ignored MD5* one way
hash. Produces a
32 character string.

* ©RSA Data Security Inc. MD5 Message-Digest Algorithm.

 plaintext -> ciphertext ciphertext -> plaintext

 encrypt decrypt

 encipher decipher
6464

<@CIPHER>
Security Issues It is up to the user to guarantee the security of their information.
BitRoll, Caesar, and Rot13 are not secure at all, and OneTimePad
is only as secure as the keys are managed and generated.

Submitting a key through a form may be insecure, especially
because the HTTP request could be viewed in transit. The key and
algorithm—and anything else as part of the request—can be
viewed in transit. Secure channels must be used to hide text in-
transit, and very strong ciphers must be used to guarantee security.

See Also Encoding Attribute page 10
65 65

<@COL>
<@COL>

Syntax <@COL [NUM=number] [FORMAT=format] [ENCODING=encoding]>

Description Returns the value of the column NUM in the current record of a result
rowset or array. This tag may be used in any Results HTML. <@COL
NUM=1> refers to the first column in the current row, <@COL NUM=2>
the second, and so on.

This tag is valid only in a <@ROWS> block. This meta tag can be used
with no attributes inside a <@COLS> block. In this case, it returns the
value of the current column.

Note Insert actions using FileMaker Pro data sources (Mac OS)
allow the use of <@COL 1> in the Results HTML. The meta tag
evaluates to the record ID of the inserted record in this case.

Example <@ROWS>
Column 1:<@COL NUM=1>

Column 2:<@COL NUM=2>

Column 3:<@COL NUM=3>

</@ROWS>

This prints the values from columns one, two and three for each
row in the current rowset.

See Also <@COLS> </@COLS> page 67
<@COLUMN> page 68
Encoding Attribute page 10
<@FORMAT> page 102
Format Attribute page 13
<@ROWS> </@ROWS> page 145
6666

<@COLS> </@COLS>
<@COLS> </@COLS>

Syntax <@COLS></@COLS>

Description Processes the enclosed HTML once for each column in the current
row.

Text appearing between <@COLS></@COLS> is processed once for
each column in the current row of a <@ROWS> block. If a <@ROWS>
block appears between these tags, <@ROWS> is ignored.

This tag block is very useful for looping through an unknown
number of columns, such as might be generated by a Direct DBMS
action with variable SQL.

Example <@ROWS>
 <@COLS>
 <@COL>
 </@COLS>

</@ROWS>

This example would return every column in every row returned by
the Search action that it is attached to.

See Also <@CURCOL> page 72
<@NUMCOLS> page 130
67 67

<@COLUMN>
<@COLUMN>

Syntax <@COLUMN NAME=name [FORMAT=format] [ENCODING=encod-
ing]>

Description Returns the value of the named column in the current row of a
<@ROWS> block. The name can be in column, table.column or
owner.table.column format, as long as it is not ambiguous.

Note For FileMaker Pro data sources (Mac OS), the name may be
in field or layout.field format.

If the tag cannot be evaluated due to insufficient information
(ambiguity) or a mismatch for all the columns, a blank is returned.

This tag is supported for Direct DBMS actions only when ODBC
data sources are used.

Example <@ROWS>
<@COLUMN NAME=TEST.TEST_TABLE_A.KEY_FIELD>,
<@COLUMN NAME=TEST.TEST_TABLE_A.CHAR_FIELD>,
<@COLUMN NAME=INT_FIELD>

</@ROWS>

This example goes through every row in the results set and returns
the values of the named columns in each row.

See Also <@COL> page 66
<@COLS> </@COLS> page 67
<@CURCOL> page 72
Encoding Attribute page 10
Format Attribute page 13
6868

<@COMMENT> </@COMMENT>
<@COMMENT> </@COMMENT>

Syntax <@COMMENT>comment</@COMMENT>

Description This tag pair gives you the ability to comment on Tango application
files.

It is intended as a means of notation for multiple programmers
who may access the same application files, or as a notation for a
single user managing large application files and projects. It is valid
in Results, No Results, and Error HTML, and in Direct DBMS, SQL
and Script action scripts.

The material inside these tags is stripped out and never appears in
HTML sent to the user’s Web browser.

Note These tags are required to appear in pairs, and unpaired
appearances are treated as unrecognized tags and left untouched.

Examples <@COMMENT> This function does this </@COMMENT>

The tag and the HTML contained inside are removed before the rest
of the HTML is returned to the user.

<@COMMENT> do this: <@ASSIGN NAME=myVar
VALUE="asdfasd"> </@COMMENT>

The tag and the HTML contained inside are removed before the
HTML is returned, and <@ASSIGN> is not an executed part of the
application file.
69 69

<@CONTINUE>
<@CONTINUE>

Description Terminates execution of the current iteration of an <@COLS>,
<@ROWS>, or <@FOR> block. Execution of the loop continues from the
beginning of the block. Outside of an <@COLS>, <@ROWS>, or <@FOR>
block, this tag does nothing. <@CONTINUE> has no attributes.

This tag is generally used with an <@IF> tag to terminate the
current iteration of a loop when some condition is met. Be careful to
handle nested loops properly: only the innermost loop’s processing
is affected by the continue command.

Example The following example suppresses the printing of the records
where the type column has the value “internal”. If the type column
has the value “internal”, the loop processing goes directly to the
</@ROWS> tag (and then to the beginning of the loop if there are
more records).

Only public records will be shown.
<@ROWS>
<HR>
Here are the values from record <@CURROW> of the
results:<P>
<@IF EXPR="<@COL TYPE>=’internal’"
TRUE="<@CONTINUE>">
Name: <@COLUMN
NAME="contact.name">

Phone: <@COLUMN
NAME="contact.phone">

</@ROWS>
End of records.

See Also <@BREAK> page 44
<@COLS> </@COLS> page 67
<@EXIT> page 97
<@FOR> </@FOR> page 101
<@ROWS> </@ROWS> page 145
7070

<@CRLF>
<@CRLF>

Description Evaluates to a carriage return/linefeed combination.

See the chapter “Using
Tango Server” in the
User’s Guide for more
information on the Tango
Server configuration file
and how to change
system configuration
variables.

This tag is used in the HTTP header specified by the headerFile
configuration variable to generate the line terminators required for
the HTTP header. (This tag is intended as a general-purpose header
line terminator and may evaluate to a different character sequence
to accommodate certain Web servers.)

You should use the <@CRLF> tag when editing the contents of the
header.htx file.

See Also headerFile page 207
<@LITERAL> page 123
71 71

<@CURCOL>
<@CURCOL>

Description Returns the index (1, 2, 3, ...) of the column currently being
processed if placed inside a <@COLS></@COLS> block.

Example <@ROWS>
 <@COLS>
 <@CURCOL>
 </@COLS>

</ROWS>

If this example looped through two three-column rows, it would
return:

1 2 3
1 2 3

See Also <@COLS> </@COLS> page 67
<@NUMCOLS> page 130
7272

<@CURRENTACTION>
<@CURRENTACTION>

Syntax <@CURRENTACTION [ENCODING=encoding]>

Description Returns the name of the currently executing action. This meta tag
can be useful for debugging application files.

Example <@ASSIGN NAME=<@CURRENTACTION>_RowCount
VALUE=<@NUMROWS>>

This text could be saved in a text file and included with
<@INCLUDE> to assign the number of rows returned by the action to
a variable whose name includes the action name.

See Also Encoding Attribute page 10
73 73

<@CURRENTDATE>, <@CURRENTTIME>, <@CURRENTTIMESTAMP>
<@CURRENTDATE>, <@CURRENTTIME>,
<@CURRENTTIMESTAMP>

Syntax <@CURRENTDATE [FORMAT=format] [ENCODING=encoding]>

<@CURRENTTIME [FORMAT=format] [ENCODING=encoding]>

<@CURRENTTIMESTAMP [FORMAT=format] [ENCODING=encod-
ing]>

Description Returns the current date, time, or timestamp (date and time
concatenated). If FORMAT is specified, it is used to format the value;
otherwise, the default date and time formats specified by the date
and time configuration variables are used.

For more information,
see “Date and Time
Formatting Codes” on
page 202.

Codes for the elements of FORMAT are shown in the description of
the date and time formatting configuration variables. Date and
time values returned by these meta tags reflect the setting of the
clock on the computer where Tango Server is installed.

Examples Today is <@CURRENTDATE>

This prints a message that includes the current date in the format
specified by the default date format.

It is now <@CURRENTTIME FORMAT="datetime:%H:%M:%S">

This prints a message that includes the current time in 24-hour
format.

It is day <@CURRENTDATE FORMAT="%j"> of <@CURRENTDATE
FORMAT="%Y">

This prints a message that includes the current day and year.

See Also dateFormat page 201
Encoding Attribute page 10
<@FORMAT> page 102
Format Attribute page 13
timeFormat page 201
timestampFormat page 201
7474

<@CURROW>
<@CURROW>

Description Returns the number of the current row being processed in a
<@ROWS> or <@FOR> block. It evaluates to “0” before or after a
<@ROWS> block.

Example <@ROWS>
<HR>
Here are the values from record <@CURROW> of the
results:<P>
Name: <@COLUMN
NAME="contact.name">

Phone: <@COLUMN
NAME="contact.phone">

</@ROWS>

Prior to displaying each contact’s name and phone number, the
number of the record in the current rowset is displayed.

See Also <@ABSROW> page 28
<@NUMROWS> page 131
<@ROWS> </@ROWS> page 145
75 75

<@DATEDIFF>
<@DATEDIFF>

Syntax <@DATEDIFF DATE1=firstdate DATE2=seconddate
[FORMAT=format]>

Description Returns the number of days between the two dates specified.

For more information,
see “<@ISDATE>,
<@ISTIME>,
<@ISTIMESTAMP>” on
page 114.

<@DATEDIFF> handles ODBC, ISO, some numeric formats, and
textual formats.

If the date is entered incorrectly—wrong separators or wrong
values for year, month or day—the tag returns “Invalid date!”.

The date attributes are mandatory. If no attribute is found while the
expression is parsed, the tag returns “No attribute!”.

All formats assume the Gregorian calendar. All years must be
greater than zero.

Example <@DATEDIFF DATE1=1998-02-20 DATE2=1998-02-27>

This tag returns “7”, the number of days between the two dates.

See Also <@DAYS> page 79
<@FORMAT> page 102
Format Attribute page 13
<@ISDATE> page 114
<@ISTIME> page 114
<@ISTIMESTAMP> page 114
7676

<@DATETOSECS>, <@SECSTODATE>
<@DATETOSECS>, <@SECSTODATE>

Syntax <@DATEOSECS DATE=date [FORMAT=format]>

<@SECSTODATE SECS=seconds [FORMAT=format]
[ENCODING=encoding]>

Description <@DATEOSECS> checks the entered date and, if valid, converts it into
seconds using as a reference—midnight (00:00:00) January 1, 1970
(1970-01-01). For dates before this, the return values are negative.

Conversely, <@SECSTODATE> checks the entered seconds and
converts them to a date.

All formats assume the Gregorian calendar. All years must be
greater than zero.

Both tags handle ODBC, ISO, and some numeric formats.

If the date is entered incorrectly—wrong separators or wrong
values for year, month, or day—the tag returns “Invalid date!”.

The date attribute is mandatory. If no attribute is found while the
expression is parsed, the tag returns “No attribute!”.

Examples <@DATETOSECS DATE=1970-01-01>

This tag returns “0”, the number of seconds since January 1, 1970.

<@DATETOSECS DATE=1969-12-31>

This tag returns “-86400”, the number of seconds since January 1,
1970.

<@SECSTODATE SECS=-86400>

This tag returns “1969-12-31”, the date derived from the number of
seconds. The example assumes a dateFormat of “%Y-%m-%d”.
77 77

<@DATETOSECS>, <@SECSTODATE>
See Also dateFormat page 201
Encoding Attribute page 10
<@FORMAT> page 102
Format Attribute page 13
<@ISDATE> page 114
<@ISTIME> page 114
<@ISTIMESTAMP> page 114
<@SECSTOTIME> page 165
<@SECSTOTS> page 172
timeFormat page 201
timestampFormat page 201
<@TIMETOSECS> page 165
<@TSTOSECS> page 172
7878

<@DAYS>
<@DAYS>

Syntax <@DAYS DATE=date DAYS=days [FORMAT=format]
[ENCODING=encoding]>

Description Adds the days in the DAYS attribute to the date in the DATE attribute.
Use a negative DAYS value to subtract days.

All formats assume the Gregorian calendar. All years must be
greater than zero.

<@DAYS> handles ODBC, ISO, and some numeric formats.

If the date is entered incorrectly—wrong separators or wrong
values for year, month, or day—the tag returns “Invalid date!”.

The attributes, DATE and DAY are mandatory. If no attribute is found
for ether the tag returns “No attribute!”.

Example <@DAYS DATE=1998-02-20 DAYS=7>

This tag returns “1998-02-27”, the new date, assuming the
dateFormat is “%Y-%m-%d”.

See Also dateFormat page 201
<@DATEDIFF> page 76
Encoding Attribute page 10
<@FORMAT> page 102
Format Attribute page 13
79 79

<@DBMS>
<@DBMS>

Syntax <@DBMS [ENCODING=encoding]>

Description Returns the concatenated name and version of the database used
by the current action’s data source.

If the current action has no data source, the meta tag returns the
information for the most recent data source used during the current
execution of the application file. If used prior to the execution of a
database-related action, this tag returns an empty string.

Tango Enterprise only: This tag is useful in Direct DBMS actions
where you may want to execute different SQL depending on which
DBMS is in use.

The exact values returned by this meta tag depend on values
returned by the current database driver and/or server software.

Example <@IFEQUAL VALUE1="<@DBMS> VALUE2="ORACLE*:>
SQL to execute only if we are connected to an Oracle
data source.
</@IF>

This example from a Direct DMBS action is used to specify the SQL
to execute when an Oracle data source is assigned to the action.

See Also <@DSTYPE> page 92
Encoding Attribute page 10
8080

<@DEBUG> </@DEBUG>
<@DEBUG> </@DEBUG>

Syntax <@DEBUG></@DEBUG>

Description These paired tags provide the Tango user more power to debug
application files. If debugging is on, Tango processes the text inside
the <@DEBUG></@DEBUG> pair; otherwise, these tags and the content
inside are stripped out of the application file before being sent to
the server.

This tag is valid in Results, No Results, and Error HTML only.

Examples <@DEBUG> <@COLUMN NAME="contacts.lastname">
</@DEBUG>

This example includes the value of the lastname column of the
contacts table in the HTML only if in debug mode.

<@DEBUG> <@ASSIGN NAME="gname"
VALUE="<@COLUMN NAME=’contacts.lastname’>">
</@DEBUG>

This example executes the variable assignment only if in debug
mode.
81 81

<@DELROWS>
<@DELROWS>

Syntax <@DELROWS ARRAY=arrayVarName [POSITION=startWhere]
[NUM=numToDelete] [SCOPE=scope]>

Description Deletes rows from the array in the variable named by ARRAY. This
tag does not return anything. With no additional attributes
specified, this tag deletes one row from the end of the array.

The POSITION attribute specifies the index of the row to start
deleting from. If the value specified in POSITION is 0 or greater than
the number or rows in the array, no rows are deleted. If POSITION is
-1 (the default), the last row in the array is deleted.

The NUM attribute specifies the number of rows to delete. The
default is 1. If this attribute specifies a range that, in combination
with POSITION, exceeds the bounds of the array, only those rows
that do exist in the range are deleted, and no error is returned.

The SCOPE attribute specifies the scope of the variable specified as
the value of the ARRAY attribute. If the scope is not specified, the
default scoping rules are used.

Meta tags are permitted in any of the attributes.

Examples ■ The local variable colors contains the following array:

<@DELROWS ARRAY="colors" POSITION=2 NUM=2
SCOPE="local">

The local variable colors now contains the following array:

 orange

 amber

 red

 burnt umber

orange

burnt umber
8282

<@DELROWS>
■ The user variable choices_list contains the following array:

<@DELROWS ARRAY="choices_list" SCOPE="user">

The user variable choices_list now contains:

See Also <@ADDROWS> page 30

 News 2

 Sports 3

 Movies 4

 Stocks 1

News 2

Sports 3

Movies 4
83 83

<@DISTINCT>
<@DISTINCT>

Syntax <@DISTINCT ARRAY=arrayVarName
[COLS=compCol [compType] [, ...]] [SCOPE=scope]>

Description Returns an array containing the distinct, or unique, rows in the
input array.

The ARRAY attribute specifies the name of a variable containing an
array. The COLS attribute specifies the column(s) to consider when
checking for duplicate rows. Columns can be specified using either
column numbers or names, with an optional comparison type
specifier (compType).

Valid comparison types are SMART (the default), DICT, ALPHA, and
NUM. DICT compares values alphabetically without considering
case. ALPHA is a case-sensitive comparison. NUM compares values
numerically. SMART checks whether values are numeric or
alphabetic and performs a NUM or DICT comparison.

If the COLS attribute is omitted, all columns are considered using
the SMART comparison type when eliminating duplicates.

Multiple columns may be specified, separated by commas. Each
column specification may include a comparison type specifier. If
the comparison type specification is used, it must follow the name
or number of the column to be sorted, separated by a space. For
example, COLS="1 NUM, 2 DICT" specifies that the first column’s
values are compared numerically, and the second column’s values
are compared alphabetically, not case-sensitive.

The SCOPE attribute specifies the scope of the variable specified as
the value of the ARRAY attribute. If the scope is not specified, the
default scoping rules are used.

Meta tags are permitted in any of the attributes.
8484

<@DISTINCT>
Examples If the local variable test contains the following array:

<@DISTINCT ARRAY="test" SCOPE="local"> returns:

<@DISTINCT ARRAY="test" COLS="1 NUM" SCOPE="local">
returns:

1 a

1 a

2 a

3 b

3 b

4 c

4 c

6 d

7 e

7.0 f

1 a

2 a

3 b

4 c

6 d

7 e

7.0 f

1 a

2 a

3 b

4 c

6 d

7 e
85 85

<@DISTINCT>
<@DISTINCT ARRAY="test" COLS="2" SCOPE="local"> returns:

See Also <@FILTER> page 98
<@INTERSECT> page 111
<@SORT> page 158
<@UNION> page 174

1 a

3 b

4 c

6 d

7 e

7.0 f
8686

<@DOCS>
<@DOCS>

Syntax <@DOCS FILE=appfile [ENCODING=encoding]>

Description Displays the content of an application file in HTML.

Evaluates to an action list for the named application file. Each
action entry in the list is a link to a detailed description of that
action. The path to the named application file must be relative to
the Web server document root.

If no FILE attribute is provided, <@DOCS> evaluates to the running
application file.

For more information,
see “Tango Server
Configuration File” in
the chapter “Using Tango
Server” in the User’s
Guide.

There is a special configuration variable—DOCSSWITCH—that can be
set to on or off. It must be set to “on” for this tag to work.

For more information,
see “Saving an
Application File as Run-
Only” in Chapter 3 of the
User’s Guide.

This meta tag returns an empty value if the FILE attribute specifies
an application file saved as run-only.

When used in Results HTML, the ENCODING=NONE attribute must be
used in order for it to be displayed properly in the Web browser.

Examples <@DOCS ENCODING=NONE>

<@DOCS FILE="/Oracle/Car_demo/car_search.taf"
ENCODING=NONE>

See Also Encoding Attribute page 10
87 87

<@DQ>, <@SQ>
<@DQ>, <@SQ>

Description To use single and double quotes inside a meta tag attribute value,
use <@SQ> for a single quote “’” and <@DQ> for a double quote “"”.

Example <@ASSIGN NAME="Important_Quote" VALUE="Yoda said,
<@DQ>Do, or do not; there is no
<@SQ>try<@SQ>.<@DQ>">

<@VAR NAME="Important_Quote">

This example returns the following:

Yoda said, "Do, or do not; there is no ’try’."
8888

<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>
<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>

Syntax <@DSDATE DATE=date [INFORMAT=informat] [ENCODING=encoding]>

<@DSTIME TIME=time [INFORMAT=informat] [ENCODING=encoding]>

<@DSTIMESTAMP TS=ts [INFORMAT=informat] [ENCODING=encoding]>

Description These meta tags convert a date, time, or timestamp value to the
format required by the current action’s data source.

The main use for these tags is in Direct DBMS actions. In the other
types of database actions (Search, Update, Insert, and Delete),
Tango performs the required conversion automatically.

The DATE, TIME, and TS attributes are strings in the formats
specified by the INFORMAT attribute. This attribute uses the same
formatting codes as the date and time formatting configuration
variables. If INFORMAT is omitted, the date, time, or timestamp
value is assumed to be in the default format, specified by the
dateFormat, timeFormat, and timestampFormat configuration
variables with system scope, or the current user format, if assigned,
using dateFormat, timeFormat, or timestampFormat (user scope).

These meta tags are valid only in actions associated with a data
source.

Note These meta tags are not applicable to FileMaker Pro data
sources (Mac OS) as the date and time string formats required for
FileMaker Pro are determined by layout and system settings that
may be unavailable to Tango.

Example UPDATE myTable SET theDateColumn=<@DSDATE
DATE=<@POSTARG NAME=theDate>>

This SQL example from a Direct DBMS action assumes that the date
entered by the user into the date form field is in the format
specified by dateFormat.
89 89

<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>
See Also dateFormat page 201
Encoding Attribute page 10
Format Attribute page 13
timeFormat page 201
timestampFormat page 201
9090

<@DSNUM>
<@DSNUM>

Syntax <@DSNUM NUM=num [ENCODING=encoding]>

Description Converts a number to the format required by the current action’s
data source. The main use for this tag is in Direct DBMS actions. In
the other types of database actions (Search, Update, Insert, and
Delete), Tango performs the required conversion automatically.

This meta tag is valid only in actions associated with a data source.

Note Conversion of a number involves removal of thousand
separator and currency characters, trimming of spaces from the
beginning and end, and substitution of decimal characters with
the character required by the DBMS.

This meta tag is not applicable to FileMaker Pro data sources
(Mac OS) as the number formats required for FileMaker Pro are
determined by layout and system settings that may be unavailable
to Tango.

Example UPDATE myTable SET theNumericColumn=<@DSNUM
NUM=<@POSTARG NAME=num>>

This example assumes the user has entered “$2000.00” into the
number form field, and that the system configuration variable
currencyChar is set to “$”, thousandsChar is set to “.” and that
decimalChar and DBDecimalChar are both set to “.”; <@DSNUM> tag
returns “2000.00”.

See Also currencyChar page 199
DBDecimalChar page 203
decimalChar page 204
<@DSDATE> page 89
<@DSTIME> page 89
<@DSTIMESTAMP> page 89
Encoding Attribute page 10
thousandsChar page 218
91 91

<@DSTYPE>
<@DSTYPE>

Syntax <@DSTYPE [ENCODING=encoding]>

Description Returns the type of data source associated with the current action.
If the current action has no data source associated with it, this tag
returns the information for the most recent data source used during
the current execution of the application file. If used prior to the
execution of a database related action, this tag returns an empty
string.

Descriptions of values returned by this meta tag are shown in the
following table.

Example <@IFEQUAL VALUE1="<@DSTYPE>" VALUE2="ODBC">
display data from an ODBC data source
<@ELSE>
display data from a different data source type
</@IF>

This example customizes the HTML returned depending on the
data source type.

See Also <@DBMS> page 80
Encoding Attribute page 10

Value Returned Platform(s) Indicates

DAM Mac OS Data Access Manager

FileMaker Mac OS FileMaker Pro

ODBC All ODBC

Oracle All (Tango 2.1 or greater) Native Oracle
9292

<@ERROR>
<@ERROR>

Syntax <@ERROR PART=part [ENCODING=encoding]>

Description Returns the value of the named error component specified in the
PART attribute of the current error. This meta tag is valid only in an
action’s Error HTML or in an error.htx file and is generally used
within an <@ERRORS></@ERRORS> block.

For more information,
see “defaultErrorFile” on
page 205.

The error.htx file contains the default HTML to be returned when
no Error HTML has been specified for an action or when the error
occurs before action execution. Its location is specified by the
defaultErrorFile configuration variable.

Tango may return more than one error at a time, so this meta tag
should be used inside an <@ERRORS></@ERRORS> block to ensure
that the information for all errors generated is shown.

Note In the absence of an <@ERRORS></@ERRORS> block,
<@ERROR> returns the first error. However, if an <@ERRORS>
</@ERRORS> block is found, <@ERROR> tags outside of the block
return nothing.

Error Part Description

CLASS “Internal” (Tango error), “DBMS” (database server error), or
“External”, (external action error).

APPFILENAME The file name of the application file that generated the error.

APPFILEPATH The relative path of the application file that generated the
error.

POSITION The name of the action that generated the error, if
applicable.

NUMBER1 The main error number.

NUMBER2 The secondary error number.

MESSAGE1 The main error message.

MESSAGE2 The secondary error message.
93 93

<@ERROR>
Example <H3>Error</H3>
An error occurred while processing your request:

<@ERRORS>
APPFILE Path:<@ERROR PART="APPFILEPATH">

APPFILE Name:<@ERROR PART="APPFILENAME">

Position:<@ERROR PART="POSITION">

Class:<@ERROR PART="CLASS">

Main Error Number: <@ERROR PART="NUMBER1">

</@ERRORS>

This example returns all of the error information for each error
encountered during the current action execution.

See Also defaultErrorFile page 205
Encoding Attribute page 10
<@ERRORS> </@ERRORS>page 95
9494

<@ERRORS> </@ERRORS>
<@ERRORS> </@ERRORS>

Description If more than one error occurs during application file execution,
Tango Server queues up the errors. <@ERRORS>, in conjunction with
<@ERROR>, allows you to iterate over the list of errors. If the
<@ERRORS></@ERRORS> block is not used, information about the
first error encountered is returned by <@ERROR>.

Text between these tags is processed for each error generated by the
associated action. The tags are valid only in an action’s Error HTML
or in an error.htx file.

The error.htx file contains the default HTML to be returned
when no Error HTML has been specified for an action or when the
error occurs before action execution. Its location is specified by the
defaultErrorFile configuration variable.

Example <H3>Error</H3>
An error occurred while processing your request:

<@ERRORS>
Position: <@ERROR PART=POSITION>

Class: <@ERROR PART=CLASS>

Main Error Number: <@ERROR PART=NUMBER1>

Secondary Error Number: <@ERROR PART=NUMBER2>

Main Error Message: <@ERROR PART=MESSAGE1>

Secondary Error Message: <@ERROR PART=MESSAGE2>

</@ERRORS>

This example returns all of the error information for each error
encountered during the current action execution.

See Also defaultErrorFile page 205
<@ERROR> page 93
95 95

<@EXCLUDE> </@EXCLUDE>
<@EXCLUDE> </@EXCLUDE>

Syntax <@EXCLUDE>text</@EXCLUDE>

Description Processes string for meta tags, without adding the results of that
processing to the Results HTML.

Like the <@COMMENT></@COMMENT> tag, any text inside the start and
end tags is stripped out and does not appears in the HTML sent on
to the Web server. Unlike that tag pair, any meta tags encountered
are executed as part of the application file, not ignored as they are
within a comment.

This tag is useful if you want to do processing in Results HTML
without adding empty lines to the HTML returned.

Note You must use both a start tag and an end tag when using
<@EXCLUDE>. Unpaired appearances are treated as unrecognized
tags and left untouched.

Example <@EXCLUDE>Do this: <@ASSIGN NAME=myVar
VALUE="asdfasd"></@EXCLUDE>

The tag pair and the HTML contained inside it are removed before
the HTML is returned, and <@ASSIGN> is executed as part of the
application file.

See Also <@COMMENT> </@COMMENT> page 69
9696

<@EXIT>
<@EXIT>

Description Causes processing of the current Results HTML, No Results HTML,
or Error HTML to end. Processing of the application file continues
with the next action. This tag has no attributes.

This tag is generally used with an <@IF> tag to terminate
processing of the current HTML when some condition is met.

Example The following example processes the block of Results HTML only if
the user has privileges on the system, that is, if the user’s access
level is greater than “5”.

[...standard results are found here...]
<@IF EXPR="@@user$accesslevel>5" FALSE=<@EXIT>>
Here are some additional details on the records that
were returned:
<@ROWS>
Name: <@COLUMN
NAME="user.name">

Password: <@COLUMN
NAME="user.password">

</@ROWS>

See Also <@BREAK> page 44
<@CONTINUE> page 70
97 97

<@FILTER>
<@FILTER>

Syntax <@FILTER ARRAY=arrayVarName EXPR=filterExpr [SCOPE=scope]>

Description Given an array, this meta tag returns an array containing rows
matching a specified expression. The ARRAY attribute specifies the
name of a variable containing an array. The EXPR attribute specifies
the expression to use when evaluating each row to determine
whether it will be in the array returned. In this expression, the
values from the current row are specified with a number sign (#),
followed by the column name or number. (See the examples
following.) This expression may use any operators and functions
supported by the <@CALC> tag. If the expression evaluates to 1
(true) for a particular row, that row appears in the output array.

The SCOPE attribute specifies the scope of the variable specified in
the value of the ARRAY attribute. If SCOPE is not specified, the
default scoping rules are used.

Meta tags are permitted in any of the attributes, but see the
following note. Meta tags specified in EXPR are evaluated for each
row in ARRAY.

Note References to columns inside the EXPR attribute cannot be
specified by meta tags.

Examples ■ Assume the local variable resultSet contains the following
array:

<@FILTER ARRAY="resultSet" SCOPE="local"
EXPR="#3=ACTIVE"> returns:

3243 Acme Insurance ACTIVE

2344 Fairview Electronics INACTIVE

2435 Vanguard Computing INACTIVE

1234 Cinetopia ACTIVE

5421 Trailblazer Industries ACTIVE

3243 Acme Insurance ACTIVE

1234 Cinetopia ACTIVE
9898

<@FILTER>
■ Assume the user variable orders contains the following array
and that column two is named amount and column three is
named state:

<@FILTER ARRAY="orders" SCOPE="user" EXPR="(#amount
> 500) and (#state = NY)"> returns:

■ Assume the user variable accounts contains the following
array and that column two is named credit and column three
is named debit:

Also assume the value -100 is stored in the variable od_limit.

<@FILTER ARRAY="accounts" SCOPE="user"
EXPR="(#credit - #debit) < @@od_limit"> returns:

5421 Trailblazer Industries ACTIVE

 1000 324.78 NY

 1001 849.25 MA

 1002 1245.97 CT

 1003 400.45 CA

 1004 598.10 NY

 1005 53.89 ME

 1006 1800.76 NY

 1004 598.10 NY

 1006 1800.76 NY

987235-2347 3257.65 2049.12

 324234-9848 5234.37 6097.90

 234349-2823 0.00 56.33

 630780-8491 657.78 347.20

 324969-1983 234561.27 229679.18

 196573-8436 326.62 192.20

 537030-4739 9482.40 10274.23

 324234-9848 5234.37 6097.90

 537030-4739 9482.40 10274.23

3243 Acme Insurance ACTIVE
99 99

<@FILTER>
See Also <@DISTINCT> page 84
<@INTERSECT> page 111
<@SORT> page 158
<@UNION> page 174
100100

<@FOR> </@FOR>
<@FOR> </@FOR>

Syntax <@FOR [START=start] [STOP=stop] [STEP=step]
[PUSH=push]>
</@FOR>

Description The purpose of the <@FOR></@FOR> pair is to provide simple for loop
functionality.

<@FOR> executes the HTML and meta tags between the opening
and closing tags for each iteration of the loop. This means that all
the HTML between the tags is sent to the Web server as many times
as the <@FOR> loop specifies. The start and stop values can be
specified, as can the step used to get from one to the other.

Inside a for loop, <@CURROW> can be used to get the value of the
index.

START defines the starting value for the index, for which the default
value is “1”.

STOP defines the stopping value for the index. The loop terminates
when this value is exceeded, not when it is reached. The default
value is “0”.

STEP defines the increment added to the index after each iteration.
The default value is “1”.

PUSH allows the sending of data to the client after the specified
number of iterations have taken place.

This tag must appear in pairs and cannot span multiple actions. If
the specified step cannot take the index from start to stop, no
iterations are made. If the start equals the stop, one iteration is
made, regardless of the step size.

Example <@FOR STOP="5">
This function does this

</@FOR>

This example outputs the following:

This function does this
This function does this
This function does this
This function does this
This function does this
101 101

<@FORMAT>
<@FORMAT>

Syntax <@FORMAT STR=string [FORMAT=format] [INFORMAT=informat]
[ENCODING=encoding]>

Summary Allows access to the reformatting routines independent of the other
tags. The tag takes a STR attribute for the text to reformat and an
optional FORMAT attribute indicating the desired output format. An
optional INFORMAT attribute is provided for datetime-class
formatting to accept non-standard datetime values.

Examples To output the current date in ODBC/ISO style, purposely using a
timestamp.

<@FORMAT STR="<@CURRENTTIMESTAMP>"
FORMAT="datetime:%Y-%m-%d" INFORMAT="datetime:<@VAR
NAME=’timestampFormat’>">

To output a thousands-grouped integer value.

If a kilobyte is 1024 (2^10 bytes), then a megabyte
should be <@FORMAT STR=<@CALC EXPR="1024 * 1024">
FORMAT="num:comma-integer"> bytes.

See Also Encoding Attribute page 10
Format Attribute page 13
102102

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>
<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>,
<@ELSEIFEQUAL>, </@IF>

Syntax The <@IF> meta tag takes one of two forms:

Form One

<@IF EXPR=expr [TRUE=true] [FALSE=false]>

Form Two

<@IF EXPR=expr>
ifText

[<@ELSEIF EXPR=expr>
elseIfText]

[<@ELESIFEMPTY VALUE=value>
elseIfEmptyText]

[<@ELSEIFEQUAL VALUE1=value1 VALUE2=value2>
elseIfEqualText]

[<@ELSE>
elseText]

</@IF>

Description Both forms of the <@IF> meta tag take EXPR attributes. The
expression specified is evaluated just like the EXPR attribute of the
<@CALC> meta tag, and all of the operations permitted in it are
permitted here.

The EXPR attribute value must be quoted. The expression is
evaluated as false if it returns “false” or “0” (zero); otherwise, the
expression is considered to be true.

For more information,
see “<@CALC>” on
page 45.

Expressions can be of any degree of complexity and they are
processed according to <@CALC> grammar; that is, you can use
parentheses to order expressions, logical functions such as AND and
OR, and string or numeric functions such as len(), sin(), or max().

For example, the following complex expression is valid as the value
of the EXPR attribute:

<@IF EXPR="(len(@@password) > 6) OR (len(@@password)
< 3)" TRUE="Passwords must have between 3 and 6
characters. Try again." FALSE="That’s a valid
password.">
103 103

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>
This example checks the length of the password variable to see if it
is between three and six characters and returns different text if the
expression evaluates to true or false.

Form One

This form of the <@IF> meta tag returns one of two values based on
the evaluation of EXPR. If the expression is true, the value specified
in the TRUE attribute is returned. If the expression is false, the value
specified in the FALSE attribute is returned.

This form of the <@IF> meta tag may be used anywhere that a
value-returning meta tag is permitted.

Form Two

This form of the <@IF> meta tag processes blocks (of text, HTML,
SQL) depending on the evaluation of the EXPR attribute. If the
expression is true, the text after the tag—up until an ending
</@IF>— is processed.

The <@ELSE> meta tag and its variations (<@ELSEIF>,
<@ELSEIFEMPTY>, and <@ELSEIFEQUAL>) can be used inside of an
<@IF></@IF> block to provide alternate expressions and
corresponding text blocks to be processed if the <@IF> tag’s
expression is false.

The <@ELSE> meta tag takes no attributes. The text block associated
with it is processed and then processing of the enclosing IF block
ends.

The other ELSE tags are conditional. Their text blocks are processed
only if the condition specified is met.

For more information, see
“<@IFEMPTY> <@ELSE>
</@IF>” on page 107 and
“<@IFEQUAL> <@ELSE>
</@IF>” on page 108 for
descriptions of how the
<@ELSEIFEQUAL> and
<@ELSEIFEMPTY>
conditions are evaluated.

The <@ELSEIF> tag’s expression is evaluated just like the <@IF>
tag’s expression. Once an ELSE condition is met, the text block
associated with it is processed and then processing of the enclosing
if block ends. If an ELSE condition is not met, processing continues
with the next ELSE tag in the IF block.

Any number of <@ELSEIF> tags may be used inside an <@IF>
</@IF> block.

<@IF>, <@IFEMPTY>, and <@IFEQUAL> meta tag blocks may be
nested; that is, the text block associated with an IF or ELSE block
may itself contain an if block. There is no limit to the nested if levels
on UNIX or Windows platforms; however, on Macintosh, the
nested if limit is 12 levels.
104104

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>
This second form of the <@IF> meta tag may be used only in HTML
windows, Direct DBMS action SQL, and in the text of scripts for the
Script action.

Examples <@IF EXPR="<@VAR CD>=’ABBA’" TRUE="Cool!" FALSE="Too
Bad">

Evaluates to “Cool!” if the CD variable is equal to the text ABBA;
otherwise, returns “Too Bad”.

<@IF EXPR="<@CURRENTTIME FORMAT=’%H’> <4 &&
<@CURRENTTIME FORMAT=’%H’>> 0">

Wow, you’re up late!
</@IF>

Displays “Wow, you're up late!” if the current time is between 1:00
AM and 3:59 AM.

<@IF EXPR="<@VAR NAME=’choice’>=1">
 first choice HTML
<@ELSEIF EXPR="<@VAR NAME=’choice’>=2">
 second choice HTML
<@ELSEIF EXPR="<@VAR NAME=’choice’>=3">
 third choice HTML
<@ELSE>
 default choice HTML
</@IF>

This example displays different HTML based on the value of the
choice variable. If it evaluates to “1”, “first choice HTML” is
displayed; if it evaluates to “2”, “second choice HTML” is
displayed; and so on. If it does not evaluate to “1”, “2”, or “3”,
“default choice HTML” is displayed.

There is a shortcut syntax
for returning variables as
well, with or without
scope: use a double “@”
and the name of the
variable. The following
two notations are
equivalent: <@VAR
NAME="homer"> or
@@homer

<@IF EXPR="@@category=color">
<@IF EXPR="@@color=red">
Fire engines, apples, and embarrassed
faces come in this color.
<@ELSEIF EXPR="@@color=blue">
Ah, the color of clear skies, the ocean,
and recycling boxes.
<@ELSE>
I’m sure that’s a fine hue, but I know
nothing about it.
</@IF>

<@ELSEIF EXPR="@@category=shape">
<@IF EXPR="@@shape=circle">
Reminds me of the moon, clock faces, and
my old LPs.
<@ELSEIF EXPR="@@shape=triangle">
105 105

<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>
Yield signs, slices of hot apple pie, and
dog ears have this form.
<@ELSE>
Hmm. The shape of things to come, perhaps?
</@IF>

<@ELSE>
Colors and shapes are my only areas of expertise.
</@IF>

This example demonstrates nested ifs. The outer if block checks for
the category. Inside the block for each category, a nested if block
checks for particular values in the category.

See Also <@CALC> page 45
<@IFEMPTY>, <@ELSE> page 107
<@IFEQUAL>, <@ELSE> page 108
106106

<@IFEMPTY> <@ELSE> </@IF>
<@IFEMPTY> <@ELSE> </@IF>

Syntax <@IFEMPTY VALUE=value>
trueSubstitutionText

[<@ELSE>
falseSubstitutionText]

</@IF>

Description If the value specified in VALUE is an empty string, <@IFEMPTY
VALUE=value><@ELSE></@IF> includes trueSubstitutionText;
otherwise, it includes falseSubstitutionText. The VALUE attribute
value may be a meta tag or literal value (though it makes little
sense to use a literal value). The <@ELSE> portion is optional.

The trueSubstitutionText and falseSubstitutionText may include other
<@IF>,<@IFEMPTY>, and <@IFEQUAL> meta tags.

Macintosh only: These tags may be nested up to 12 levels; beyond
this limit, an error is returned.

Example <@IFEMPTY VALUE="<@CGIPARAM NAME=’USERNAME’>">
Here are the guest options:
...guest options...

<@ELSE>
<@IF "<@CGIPARAM NAME=’USERNAME’>=Admin">
<H3>Administrator Options</H3>
...administrator options...
<@ELSE>
<H3>Hi, <@CGIPARAM NAME="USERNAME">!</H3>
Here are your options
...user options...
</@IF>

</@IF>

This example returns different HTML based on the value of
<@CGIPARAM NAME="USERNAME">.

See Also <@ELSEIF> page 103
<@ELSEIFEMPTY> page 103
<@ELSEIFEQUAL> page 103
<@IF>,<@ELSE> page 103
<@IFEQUAL>,<@ELSE> page 108
107 107

<@IFEQUAL> <@ELSE> </@IF>
<@IFEQUAL> <@ELSE> </@IF>

Syntax <@IFEQUAL VALUE1=value1 VALUE2=value2>
trueSubstitutionText

[<@ELSE>
falseSubstitutionText]

</@IF>

Description If the value of the VALUE1 attribute and the value of the VALUE2
attribute are equal, <@IFEQUAL> includes trueSubstitutionText;
otherwise it includes falseSubstitutionText. Each of the attributes
may be a meta tag or a literal value, or a combination of both.
Literal values must be quoted if they contain a space. The <@ELSE>
portion is optional.

<@IFEQUAL> can be used to do begins-with type comparisons. An
asterisk at the end of either value acts as a wildcard character,
matching any characters at the end of the other value attribute.
(You can search for an asterisk character by using <@CHAR 42>.)

When comparing the values, Tango attempts to convert both values
to numbers and perform a numeric comparison. If one or both
values cannot be converted to numbers, Tango performs a string
comparison.

The trueSubstitutionText and falseSubstitutionText may include other
<@IF>, <@IFEMPTY>, and <@IFEQUAL>.

Macintosh only: These tags may be nested up to 12 levels; beyond
this limit, an error is returned.

Examples <@IFEQUAL VALUE1="<@CGIPARAM NAME=’user_agent’>"
VALUE2="Mozilla*">
...HTML for Netscape Navigator...
<@ELSE>
...HTML for other Web browsers...
</@IF>

This example returns different HTML depending on the user’s Web
browser.

<SELECT NAME="region">

<OPTION VALUE="NE"
<@IFEQUAL VALUE1="<@COLUMN ’customer.region’>"
VALUE2="NE">SELECTED</@IF>>North East
108108

<@IFEQUAL> <@ELSE> </@IF>
<OPTION VALUE="NW"
<@IFEQUAL VALUE1=<@COLUMN
customer.region>VALUE2"NW">SELECTED</@IF>>North
West

<OPTION VALUE="SE" <@IFEQUAL VALUE1=<@COLUMN
customer.region>VALUE2="SE">SELECTED </@IF>>South
East

<OPTION VALUE="SW" <@IFEQUAL VALUE1=<@COLUMN
customer.region>
VALUE2="SW">SELECTED</@IF>>South West

</SELECT>

This example sets the correct pop-up menu item to SELECTED based
on the value of a database field.

See Also <@ELSEIF> page 103
<@ELSEIFEMPTY> page 103
<@ELSEIFEQUAL> page 103
<@IF>, <@ELSE> page 103
<@IFEMPTY>, <@ELSE> page 107
109 109

<@INCLUDE>
<@INCLUDE>

Syntax <@INCLUDE FILE=file>

Description Returns the contents of the specified file. The file may contain meta
tags, which are processed normally. The FILE attribute is a slash-
separated path from the Web server root. The FILE attribute may
include literal text, meta tags, or both.

If Tango cannot find the referenced file, the meta tag returns an
empty value. This meta tag may be used in Results, No Results and
Error HTML, Direct DBMS SQL, variable assignment values,
External action attributes, and in database action insert, update,
and criteria value fields.

Examples <@INCLUDE FILE="/Footers/my_footer.html">

This example includes the my_footer.html file residing in the
Footers directory in the Tango application file root directory.

<@INCLUDE FILE="<@APPFILEPATH>my_footer.html">

This example includes the my_footer.html file residing in the
same directory as the currently executing application file.

<@INCLUDE FILE="<@COLUMN NAME=’invoice.filename’>">

This example includes the contents of the file specified in the
filename column in the invoice table.
110110

<@INTERSECT>
<@INTERSECT>

Syntax <@INTERSECT ARRAY1=arrayVarName1 ARRAY2=arrayVarName2
[COLS=compCol [compType] [, ...]] [SCOPE1=scope1]
[SCOPE2=scope2]>

Description Returns the intersection of two arrays, that is, an array containing
only those rows that exist in both input arrays.

The two input arrays are not modified. To store the result of this
meta tag in a variable, use a variable assignment.

The ARRAY1 and ARRAY2 attributes specify the names of variables
containing arrays. The optional COLS attribute specifies the
column(s) to consider when determining whether two rows are the
same: the columns are specified using column numbers or names
(compCol), with an optional comparison type (compType). The arrays
must have the same number of columns; otherwise, an error is
generated.

Valid comparison types are SMART (the default), DICT, ALPHA and
NUM. DICT compares columns alphabetically, irrespective of case.
ALPHA performs a case-sensitive comparison. NUM compares
columns numerically. SMART checks whether values are numeric or
alphabetic and performs a NUM or DICT comparison.

If no COLS attribute is specified, the intersection of the two arrays is
accomplished via a SMART comparison type that examines all
columns.

The SCOPE1 and SCOPE2 attributes specify the scope of the variables
specified by ARRAY1 and ARRAY2, respectively. If the attribute is not
specified, the default scoping rules are used.

Meta tags are permitted in any of the attributes.

Examples ■ If the variable p_items contains the following array:

 red

 blue

 green

 orange
111 111

<@INTERSECT>
The variable new contains the following array:

<@INTERSECT ARRAY1="p_items" ARRAY2="new"> returns:

■ If the variable test contains:

and the variable test2 contains:

<@INTERSECT ARRAY1="test" ARRAY2="test2"> returns:

■ The variable usr1 contains the following array:

The variable usr2 contains the following array:

 orange

 pink

 blue

 pink

 blue

 orange

 1 a a

 2 b c

 3 c c

 4 b c

 1 a a

 2 b b

 3 c c

 1 a a

 3 c c

Gilbert Steve 1823-1344 $433.00

Brown Robert 5543-1233 $332.50

Brown Marsha 1122-5778 $541.00

Kelly Herbert 5543-1443 $100.50

Brown Robert 6670-1123 $1123.75
112112

<@INTERSECT>
To find users that appear in both arrays, you would find the
intersection of the two arrays based on the first two columns:
<@INTERSECT ARRAY1="usr1" ARRAY2="usr2" COLS="1, 2">
returns:

Only columns 1 and 2 are specified as relevant; the different
values in the other columns are ignored for the purposes of
comparison.

■ In conjunction with <@IF>, <@INTERSECT> may be used to test
for the existence of a row in another array. If Var_A contains the
following array:

Var_B contains the following array:

<@IF EXPR="<@INTERSECT Var_A Var_B>">
 Var_B is in Var_A
<@ELSE>
 Not in Var_A
</@IF>

For more information,
see “Array evaluation”
on page 47.

This is because an array value specified as an expression (in
<@CALC> or <@IF>) returns the number of rows in that array.

See Also <@DISTINCT> page 84
<@FILTER> page 98
<@SORT> page 158
<@UNION> page 174

Brown Robert 6670-1123 $1123.75 *

* Tango returns just one of the rows that have the
same values in the specified columns (1 and 2).

1 John Tesh A

2 Mary Hart B

3 Bob Mackie C

4 Sharon Tate D

3 Bob Mackie C
113 113

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>

Syntax <@ISDATE VALUE=date>

<@ISTIME VALUE=time>

<@ISTIMESTAMP VALUE=timestamp>

Description These tags attempt to parse the input value and see if it is a valid
date, time, or timestamp, respectively. The intent of the tags is to
detect as wide a variety of formats as possible, thus allowing users
greater choice in inputting values. The tags evaluate to the value
“1” or “0”.

If the value contains spaces, it must be quoted (single or double, as
appropriate).

The tags currently support the following date/time/timestamp
formats:

■ configuration variable defaults
■ ISO 8601 formats (complete representations only)
■ ODBC formats
■ numeric formats
■ textual formats.

All formats assume the Gregorian calendar; that is, they use
Gregorian rules for all time periods as opposed to switching back to
the Julian calendar for years before the adoption of the Gregorian
calendar, which may vary depending on the country. All years
must be greater than zero.

A date unacceptable in one format may be acceptable in another.
For example, 98-02-12 is not a valid ODBC nor ISO date, but is
detected as a general numeric date because it is sufficiently
unambiguous.
114114

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
ISO Date Format

There are three ways to specify a date in ISO format:

■ Calendar Date Format: yyyy-mm-dd. An ISO Calendar Date
format gives years, months, and dates in numeric values. All
digit places of each field must be filled. Use leading zeroes to
pad fields to full width. Hyphens are optional, but if present,
all must be present; they are all-or-none optional, for example,
“1998-05-01” or “19980501”.

■ Week/Day Format: yyyy-Www-d. An ISO Week/Day format
specifies a date with its week number in the given year, plus its
day in the week. The capital W is required, the hyphens are all-
or-none optional, and numbers must be full-width. Weeks
range from W01 to W53, and days in each week are numbered
one (Monday) to seven (Sunday).

Week W01 of any year is defined as the first week with the
majority of the days of that week in that year; for example, it is
the week that January first is in if January first falls on a
Monday to a Thursday, or else it is the next week. Alternately,
the week containing January 04 is W01. Remember that ISO
defines a week as Monday to Sunday.

Note Note that the calendar year may be different from the week
year. For example, 1998-W01-2=1997-12-31, is December 31, 1997.

■ Ordinal Date Format: yyyy-ddd. An ISO Ordinal Date format
specifies a year and the day in that year numbered from
January first as 001. The day number ranges from 001 to 365
(366 in leap years). The hyphen is optional. The full width of
the digit fields must be provided; use leading zeroes to pad
fields.

ISO Time Format

An ISO time is specified in a 24-hour clock format: hh:mm:ss

The string may be preceded by a capital T, and may have a decimal
fraction portion consisting of a comma or period followed by one to
nine digits. Colons are all-or-none optional.

Note ISO allows 24:00 to indicate 00:00:00 on the next day, but
Tango does not allow this.
115 115

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
ISO Timestamp Format

An ISO timestamp format is simply the concatenation of a date and
a time in that order, with the capital T before the time mandatory.
Again, no spaces ever appear in an ISO format, for example,
“1998-05-01T12:00:00”.

ODBC Formats ODBC date/time string formats are very strict. No special
interpretation is required.

ODBC Date Format

Dates are specified yyyy-mm-dd using calendar dates. The full
width of each field must be provided. Use leading zeroes to pad
fields to full width. Hyphens are required.

ODBC Time Format

The time format hh:mm:ss.fffffffff is a triple of two-digit numbers
representing a 24-hour time, with colons required, followed by an
optional fraction portion consisting of a period with one to nine
decimal digits afterwards. Use leading zeroes to pad fields to full
width.

ODBC Timestamp Format

Timestamps are made by specifying a date, followed by a single
space, followed by the time.

Numeric
Formats

A numeric format is defined to be a date or time specified fully by
using numbers, separating punctuation, and possibly an “AM” or
“pm” marker. Any strings with words inside fall into the Textual
category.

These tags do not attempt to resolve ambiguities according to the
current locale or Tango Server settings. Ambiguous values are not
accepted.

Dates are composed of three numbers separated by identical
punctuation character sequences: “/”, “//”, “.”, or “-”. Times are
specified by three numbers separated by identical punctuation
characters: “:” or “.”, with an optional am/pm (case insensitive)
marker afterwards. If an am/pm marker is present, then a single
space may separate it and the time numbers. Timestamps are
116116

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
created by writing a date, followed by white space, followed by a
time. A time may never be specified first.

Textual
Formats

A textual format is any date/time string that includes alphabetic
characters. These words are assumed to be weekday and month
names in a variety of different languages. Input text must use high-
ASCII characters instead of HTML &#xxx; escapes to represent
accented characters. The following languages that use the ISO-
Latin-1 character coding set are supported:

■ C/POSIX DEFAULT
■ Danish
■ German
■ English
■ Spanish
■ Finnish
■ French
■ Icelandic
■ Italian
■ Dutch
■ Norwegian
■ Portuguese
■ Swedish.

A date may be written in any of the following formats, with []
indicating optional items.

■ [weekday] month day year
■ [weekday] day month year
■ year month day (hyphen delimiters allowed).

The weekday may only be followed by an optional comma and a
space. Other items may use dots, or single dots as well. If a
weekday is specified, it must be correct. For example, June 13 1997
was a Friday, and anything else is wrong. No extraneous words
should appear in the string, such as the “de” in Spanish “viernes, 20
de junio de 1997”. In general, no punctuation is best. (Punctuation
is supported to the point of allowing what is commonly in use
today.) All word comparisons are case-insensitive.
117 117

<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
If a time is given, it must have three numbers, two digits long (1–2
for the hour), separated by “.” or “:”, and an optional space with an
optional am/pm marker used in that native language. No
delimiters follow or precede a time otherwise. A time may appear
anywhere in the text.

Note The current implementation of the IS[DATE/TIME/
TIMESTAMP] tags only works with languages that use the ISO-
Latin-1 character set.
118118

<@ISNUM>
<@ISNUM>

Syntax <@ISNUM VALUE=number>

Summary Evaluates to non-zero if the expression specified in VALUE is a valid
number. A number cannot contain characters other than numbers
except the character(s) specified in currencyChar and the
characters specified in decimalChar and thousandsChar to delimit
parts of the string.

An empty or blank expression is not considered a valid number.

Examples <@ISNUM VALUE="$1,000,000.00"> true

<@ISNUM VALUE="1 + 2"> false

See Also currencyChar page 199
decimalChar page 204
<@ISDATE> page 114
<@ISTIME> page 114
<@ISTIMESTAMP> page 114
thousandsChar page 218
119 119

<@KEEP>
<@KEEP>

Syntax <@KEEP STR=string CHARS=char [ENCODING=encoding]>

Description Returns the string specified in STR stripped of all characters except
those specified in CHARS. The operation of this meta tag is case
sensitive. To retain both upper and lower case variations of a
character include both characters in the CHARS.

Each of the attributes to <@KEEP> may include both literal values
and meta tags that return values.

Examples <@KEEP STR="The quick fox" CHARS="aeiou">

This example evaluates to “euio”.

<@KEEP STR="$200.00" CHARS="0123456789.">

This example evaluates to “200.00”.

<@KEEP STR="This is the HTML" CHARS="TH">

This example evaluates to “THT”.

<@KEEP STR="<COLUMN NAME=Invoice.totalcost>"
CHARS="0123456789.">

This example returns the value in the total cost column, stripped of
any non-numeric characters.

See Also Encoding Attribute page 10
<@OMIT> page 132
120120

<@LEFT>
<@LEFT>

Syntax <@LEFT STR=string NUMCHARS=numChars [ENCODING=encoding]>

Description Returns the first NUMCHARS characters from the string specified in
STR and returns the extracted substring.

If the string contains any spaces—except for space embedded
within meta tags—the string must be quoted.

Both STR and NUMCHARS attributes are mandatory. If a syntax error
is encountered while the expression is parsed—no attributes at all,
no string or no number of characters—the tag returns an empty
string.

Examples <@LEFT STR="alpha" NUMCHARS="3">

This example returns “alp”, the first three characters of “alpha”.

<@LEFT STR="<@INCLUDE
FILE=’<@APPFILEPATH>BrownFox.txt’>" NUMCHARS="3">

This example returns “The”, the first three characters of “The Quick
Brown Fox Jumps Over The Lazy Dog” (the contents of the
BrownFox.txt file).

See Also Encoding Attribute page 10
<@REPLACE> page 142
<@RIGHT> page 144
<@SUBSTRING> page 163
121 121

<@LENGTH>
<@LENGTH>

Syntax <@LENGTH STR=string>

Description Returns the number of characters in the string specified in STR. The
STR attribute may be a literal value, a meta tag that returns a value,
or a combination of both.

Examples <@LENGTH STR="This is a test">

This example evaluates to “14”.

<@LENGTH STR="<@POSTARG NAME=’SSN’>">

This example evaluates to the number of characters entered into the
SSN form field.

<@LENGTH STR="<@COLUMN NAME=’customer.lastname’>">

This example evaluates to the length of the customer’s last name.
122122

<@LITERAL>
<@LITERAL>

Syntax <@LITERAL VALUE=value [ENCODING=encoding]>

Description Causes Tango to suppress meta tag substitution for the VALUE
supplied.

One use for this meta tag is assigning meta tags to variables, as you
need to do with the userKey, altUserkey, and domainScopeKey
configuration variables.

Example <@ASSIGN NAME="metaTag" VALUE="<@VAR NAME=’myVar’>">

This would assign the value of the myVar variable to the metaTag
variable, that is, not using the <@LITERAL> meta tag.

<@ASSIGN NAME="metaTag" VALUE="<@LITERAL
VALUE=’<@VAR NAME="myVar">’">

This assigns the text “<@VAR NAME=myVar>” to the metaTag
variable, using the <@LITERAL> meta tag.

See Also domainScopeKey page 206
Encoding Attribute page 10
userKey, altuserKey page 221
123 123

<@LOCATE>
<@LOCATE>

Syntax <@LOCATE STR=string FINDSTR=substring>

Description Returns the starting position of substring in string. If substring is
empty, omitted, or not in string, <@LOCATE> returns “0”. If substring
occurs more than once in string, the position of the first occurrence
is returned.

The operation of <@LOCATE> is case sensitive. In order for a match
to be found, substring must occur inside string exactly as it is
specified, including case.

Each of the attributes to <@LOCATE> may be specified as a literal
value, a meta tag that returns a value, or a combination of both.

Examples <@LOCATE STR="A test string" FINDSTR="test">

This example evaluates to “3”.

<@LOCATE STR="Not in here" FINDSTR="help">

This example evaluates to ”0”.

<@LOCATE STR="The rain in Spain" FINDSTR="ain">

This example evaluates to “6”.

<@LOCATE STR="Welcome to my home page." FINDSTR="come">

This example evaluates to “4”.

<@LOCATE STR="Tango Enterprise" FINDSTR="tango">

This example evaluates to “0”, because an exact match of “tango”,
including case, is not found in the source string.

<@LOCATE STR="<@LOWER STR=’Tango Enterprise’>"
FINDSTR="tango">

This example evaluates to “1.”
124124

<@LOWER>
<@LOWER>

Syntax <@LOWER STR=string [ENCODING=encoding]>

Description Returns the value specified in STR converted to lowercase. The STR
attribute may be a literal value, a meta tag that returns a value, or a
combination of both.

Examples <@LOWER STR="This is a test">

This example evaluates to “this is a test”.

<@LOWER STR=<@POSTARG NAME=product_code>>

This example returns the contents of the form field product_code,
converted to lowercase.

<@LOWER STR=<@COL NUM=1>>

This example returns the value from column one of the result set,
converted to lowercase.

See Also Encoding Attribute page 10
<@UPPER> page 177
125 125

<@LTRIM>
<@LTRIM>

Syntax <@LTRIM STR=string [ENCODING=encoding]>

Description Returns the value specified in STR stripped of leading spaces. The
STR attribute may be a literal value, a meta tag that returns a value,
or a combination of both.

Examples <@LTRIM STR=" this is padded">

This example returns “this is padded“.

<@LTRIM STR="<@COL NUM=’2’>">

This example returns value of column 2, less any leading spaces.

See Also Encoding Attribute page 10
<@KEEP> page 120
<@OMIT> page 132
<@RTRIM> page 147
stripCHARs page 218
<@TRIM> page 171
126126

<@MAXROWS>
<@MAXROWS>

Description Returns the value specified in the Maximum Matches field for the
current Search or Direct DBMS action. If No Maximum was
specified, <@MAXROWS> returns “0”. This meta tag may be used only
in a Search or Direct DBMS action.

This meta tag is especially useful when you specify a meta tag as
the Maximum Matches value for a search action (allowing a form
field or search argument value to determine, at execution time, the
maximum number of matches to return).

Example <@IFEQUAL VALUE1="<@MAXROWS>" VALUE2="0">
Here are the matching records:
<@ELSE>
Here are the <@MAXROWS> matching records:
</@IF>
<@ROWS>
...
</@ROWS>

This example indicates to you the maximum number of matches
that are displayed.

See Also <@NUMROWS> page 131
<@STARTROW> page 162
<@TOTALROWS> page 169
127 127

<@NEXTVAL>
<@NEXTVAL>

Syntax <@NEXTVAL NAME=variable [SCOPE=scope] [STEP=increment]>

Description Increments the specified variable by the specified increment and
returns the new value. <@NEXTVAL> operates only on integer values.
The default increment is “1”, if no STEP is specified. You can specify
a variable scope as well; see <@VAR> for a explanation of scoping
rules.

If the variable does not exist, is non-integer, is not scalar, or if the
step is non-integer, <@NEXTVAL> evaluates to nothing, and an error
is logged if LogLevel is greater than 0.

Scalars or individual array items may be updated by <@NEXTVAL>.

Example Placing the following line in the Results HTML after each database
access (Search, New Record, and so on) returns the number of times
the user has accessed the database in their session:

<P>You have accessed the database
<@NEXTVAL NAME="user$access">
times in this session.</P>

See Also loggingLevel page 209
<@VAR> page 184
128128

<@NUMAFFECTED>
<@NUMAFFECTED>

Description Returns the number of database rows affected by the last Insert,
Update, Delete, or Direct DBMS action executed. All other actions
have no effect on what the tag returns. The value returned by the
tag is always the number of rows affected by the last Insert, Update,
Delete, or Direct DBMS action executed. This tag only works for
Oracle and ODBC data source types. The tag has no attributes.

At the start of execution, and until an Insert, Update, Delete, or
Direct DBMS action is executed, the tag returns “-1”.

Notes
■ If the last Direct DBMS action performed a search, the tag also

returns “-1”.

■ Some ODBC drivers do not support this meta tag. For data
sources using these drivers, the tag always returns “-1”.

Example An Update action in your application file updates a product code.
In the Results HTML for that Update action, you could use
<@NUMAFFECTED> to return to the user the number of records
changed:

<P><@NUMAFFECTED> records were
updated in the database.</P>
129 129

<@NUMCOLS>
<@NUMCOLS>

Syntax <@NUMCOLS [ARRAY=array]>

Description Returns the number of columns in each row.

Without the ARRAY attribute, this meta tag is valid in the Results
HTML of any results returning action, and returns the number of
columns in the result rowset.

With the optional ARRAY attribute, which accepts the name of a
variable containing an array, the tag may be used anywhere meta
tags are valid and returns the number of columns in the named
array.

Example Here are your results. There are <@NUMROWS> rows of
<@NUMCOLS> columns in the rowset

<@ROWS>
 <@COLS>
 <@COL>
 <@COLS>

</@ROWS>

See Also <@COLS> </@COLS> page 67
<@CURCOL> page 72
<@NUMROWS> page 131
130130

<@NUMROWS>
<@NUMROWS>

Syntax <@NUMROWS [ARRAY=array]>

Description Returns the number of rows in an action’s result rowset or in the
specified array.

Without the ARRAY attribute, this meta tag is valid in the Results
HTML of any results returning action, and returns the number of
rows in the result rowset.

With the optional ARRAY attribute, which accepts the name of a
variable containing an array, the tag may be used anywhere that
meta tags are valid, and returns the number of rows in the named
array.

Example <@NUMROWS> records were returned:<P>

<@ROWS>
Name: <@COLUMN NAME="contact.name">

Phone: <@COLUMN NAME="contact.phone">

</@ROWS>

This example returns a message indicating the number of records
retrieved, then lists the name and phone number of each contact.

See Also <@MAXROWS> page 127
<@NUMCOLS> page 130
<@STARTROW> page 162
<@TOTALROWS> page 169
131 131

<@OMIT>
<@OMIT>

Syntax <@OMIT STR=string CHARS=char [ENCODING=encoding]>

Description Returns the value specified in STR stripped of all characters
specified in CHARS. The operation of this meta tag is case sensitive.
To omit both the upper and lower case variations of a character, you
must include both characters in CHARS.

Each of the attributes of <@OMIT> may be specified using a literal
value, meta tags that return values, or a combination of both.

Examples <@OMIT STR="$200.00" CHARS="$">

This example evaluates to “200.00”.

<@OMIT STR=" spacey" CHARS=" ">

This example evaluates to “spacey”.

<@OMIT STR=green CHARS=gren>

This example evaluates to an empty string.

<@OMIT STR="$200.00" CHARS="01234567890.">

This example evaluates to “$”.

<@OMIT STR="<@POSTARG NAME=’PHONENUMBER’>"
CHARS="()-">

If the form field PHONENUMBER contains “(905) 819-1173” then this
would evaluate to “9058191173”.

See Also Encoding Attribute page 10
<@KEEP> page 120
<@LTRIM> page 126
<@RTRIM> page 147
<@TRIM> page 171
132132

<@PLATFORM>
<@PLATFORM>

Syntax <@PLATFORM [ENCODING=encoding]>

Description Returns the name of the operating system on which Tango Server is
currently running. You may want to use this tag in Branch actions
to branch to different External actions based on the current Tango
Server platform.

Example For example, <@PLATFORM> may evaluate to one of the following:

■ SunOS/5.5; sun4m
■ Windows NT/4.0; Intel
■ Mac OS/ 8.0.1; PPC
■ IRIX16.2; IP22

See Also Encoding Attribute page 10
<@VERSION> page 191
133 133

<@POSTARG>
<@POSTARG>

Syntax <@POSTARG NAME=name [TYPE=type] [FORMAT=format]
[ENCODING=encoding]>

Description Returns the value(s) of the named post argument (form field) in the
HTTP request calling the application file. References to post
arguments not present in the request evaluate to empty.

The NAME attribute may be specified as a literal value, value-
returning meta tag, or a combination of both.

The TYPE attribute accepts one of two possible values: TEXT or
ARRAY. ARRAY causes the tag to return a single-column, multi-row
array of values, one for each value received for the named post
argument. A <SELECT> form field with the MULTIPLE attribute, for
example, sends multiple instances of the form field, one for each
value selected by the user. Using the ARRAY type lets you access all
those values. TEXT, which is the default type if the TYPE attribute is
not specified, causes the tag to return a single value. If you specify
this type when multiple values were received for the argument, the
value returned is the first one received by Tango.

The optional FORMAT and ENCODING attributes determine how the
value is formatted by Tango. These attributes are ignored if
TYPE=ARRAY is specified.

Example You asked for properties in <@POSTARG NAME="city">

This example includes the value from the form field “city” in the
HTML.

See Also <@ARG> page 35
Encoding Attribute page 10
Format Attribute page 13
<@POSTARGNAMES> page 135
<@SEARCHARG> page 151
<@SEARCHARGNAMES> page 152
134134

<@POSTARGNAMES>
<@POSTARGNAMES>

Description Returns an array containing the names of all post arguments.

Post arguments are passed to Tango through forms. A form that has
a method of POST returns the results of its fields through post
arguments. <@POSTARGNAMES> provides a mechanism for
identifying the names of all post arguments received in the current
request.

The array returned has one column and n rows where there are n
unique post arguments.

Example The following returns all post argument names using the default
array formatting:

<@ASSIGN NAME="mypostargs" VALUE="<@POSTARGNAMES>">

<@VAR NAME="mypostargs">

Note If multiple post arguments with the same name are
received, the name of the post argument is listed only once.

See Also <@ARG> page 35
<@ARGNAMES> page 37
<@SEARCHARGNAMES> page 152
135 135

<@PRODUCT>
<@PRODUCT>

Syntax <@PRODUCT ENCODING=encoding>

Description Returns the name of the server’s product type.

Example <@PRODUCT> on a licensed copy of Tango Enterprise returns one of
the following:

Tango Enterprise Application Server
Tango Enterprise Developer Studio

See Also <@PLATFORM> page 133
<@VERSION> page 191
136136

<@PURGE>
<@PURGE>

Syntax <@PURGE [NAME=name] [SCOPE=scope]>

Description Used to remove a variable from a scope, or to remove all variables
from a scope.

Note Purging variables in the cookie scope does not cause the Web
browser to forget a cookie. If you want to make a Web browser
forget a cookie, you must set the expiry time to immediate, for
example, “in -1 days” in the Properties dialog box for a cookie
variable when assigning values to variables with an Assign
action.

Examples The following examples demonstrate how to remove variable types
from various scopes:

<@PURGE NAME="foo" SCOPE="user">
<@PURGE NAME="foo" SCOPE="domain">
<@PURGE NAME="foo" SCOPE="local">
<@PURGE NAME="foo" SCOPE="cookie">

The following examples demonstrate how to remove all variables
from a given scope:

<@PURGE SCOPE="user">
<@PURGE SCOPE="domain">
<@PURGE SCOPE="local">

See Also <@ASSIGN> page 41
<@VAR> page 184
137 137

<@PURGERESULTS>
<@PURGERESULTS>

Description Empties the currently accumulated Results HTML.

Note <@PURGERESULTS> can only clear results that have been
accumulated in previous actions. It does not clear the
accumulated results of the current action.

See Also <@ACTIONRESULT> page 29
<@RESULTS> page 143
138138

<@RANDOM>
<@RANDOM>

Syntax <@RANDOM [HIGH=high] [LOW=low]>

Description Returns a random number between HIGH and LOW, inclusive of their
values.

The HIGH and LOW attributes may range from zero to 2,147,483,647.
If only one attribute is specified, a number between zero and that
number is returned. If no attribute is specified, a number between
zero and 32767 is returned.

Either of the attributes for <@RANDOM> may be specified using literal
values or by using meta tags that return values.

Examples <@RANDOM HIGH="100" LOW="1">

This example returns a random number between 1 and 100.

<@RANDOM LOW="1" HIGH="<@NUMROWS>">

This example returns a random number between 1 and the number
of rows returned by the current action.

<@RANDOM HIGH="<@POSTARG NAME=’pickANumber’>">

This example returns a random number between zero and the
pickANumber form field value submitted with the current request.

See Also <@CALC> page 45
139 139

<@REGEX>
<@REGEX>

Syntax <@REGEX EXPR=expression STR=text TYPE=type>

Description Provides an interface to POSIX regular expression matching
routines from inside Tango. This gives you powerful tools to match
text patterns if they are needed.

<@REGEX> accepts as attributes the regular expression (EXPR), the
text to match the pattern against (STR), and the type of the regular
expression (TYPE), basic or extended. If the attributes contain
spaces, they must be quoted—single or double, as appropriate.
<@REGEX> returns its results in the form of an array and should be
assigned to a variable via <@ASSIGN>.

Upon a successful match, <@REGEX> returns an array with three
columns and n+1 rows, where n is the number of parenthesized
subexpressions in the pattern. The first column contains the
matching text, the second column contains the start index of the
matching portion, and the third column gives the length of the
matching portion. The start and length are compatible with the
<@SUBSTRING> tag.

Rows i from 1 to n give the ith matching parenthesized
subexpression, and row n+1 gives the entire matching portion of
the text. (If there are no parenthesized subexpressions, the whole
match is returned in the first row.)

The table gives a sample array returned from <@REGEX>.

<@REGEX EXPR="([[:alpha:]]+),[[:space:]]+([A-
Z]{2})[[:space:]]+([A-Z][0-9][A-Z] [0-9][A-Z][0-9])"
STR="in Mississauga, ON L5N 6J5." TYPE=E>.

 Mississauga 4 11

 ON 17 2

 L5N 6J5 20 7

 Mississauga, ON L5N 6J5 4 23
140140

<@REGEX>
If attributes are missing, <@REGEX> returns a string with the
problem attributes. Upon an error condition, <@REGEX> returns a
single character, “C” for a pattern compile failure, and an “M” for a
match failure. If any attributes are missing, a textual message is
displayed indicating the missing items. You can easily test for
success by using <@VARINFO NAME=variable ATTRIBUTE=TYPE>.

Tip For more information on constructing POSIX regular
expressions, ask your local UNIX guru, consult the FreeBSD regex
man page, or try doing an internet search for the term “POSIX
1003.2“.
141 141

<@REPLACE>
<@REPLACE>

Syntax <@REPLACE STR=string FINDSTR=findString
REPLACESTR=replaceString [POSITION=position]
[ENCODING=encoding]>

Description Returns a text string in which all the occurrences of FINDSTR in the
value specified in STR are replaced with the substitute as specified
in REPLACESTR. If the POSITION attribute is specified, only that
occurrence of FINDSTR is replaced.

Strings that contain spaces must be quoted.

If a syntax error is encountered while the expression is parsed—no
attributes at all, no string, no keyword, no substitute, or no
occurrence—the tag returns an empty string.

<@REPLACE> is case insensitive.

Examples <@REPLACE STR="alpha" FINDSTR="a" REPLACESTR="u"
POSITION="2">

This example returns “alphu”, replacing the second occurrence of
“a”.

<@REPLACE STR="<@INCLUDE
FILE=’<@APPFILEPATH>BrownFox.txt’>"
FINDSTR="<@INCLUDE
FILE=’<@APPFILEPATH>BrownFox.txt’>" REPLACESTR="A">

This example replaces “The Quick Brown Fox Jumps Over A Lazy
Dog” (the content of the BrownFox.txt file) with “A”.

See Also Encoding Attribute page 10
<@LEFT> page 121
<@LOCATE> page 124
<@REGEX> page 140
<@REPLACE> page 142
<@RIGHT> page 144
<@SUBSTRING> page 163
142142

<@RESULTS>
<@RESULTS>

Syntax <@RESULTS [ENCODING=encoding]>

Description Evaluates to the accumulated Results HTML for the current
execution of the application file.

The returned value includes the Results HTML for all the actions
up to, but not including, the current action.

The accumulated Results HTML can be cleared with the
<@PURGERESULTS> tag.

Example This tag can be used to give a variable the value of the Results
HTML from a database query so that the results can be used in
other application file calls without re-doing the search. (This
technique is useful only with data that does not change often—a list
of product categories, for example.) After generating the HTML
and assigning <@RESULTS> to a variable (cached_list, for
example), subsequent calls to the application file can be handled by
checking the contents of the variable with a Branch action. If
cached_list is not empty, you can immediately return <@VAR
NAME="cached_list" ENCODING="NONE">. If the variable is empty,
you would branch to the normal processing to query the database.

See Also <@ACTIONRESULT> page 29
Encoding Attribute page 10
<@PURGERESULTS> page 138
143 143

<@RIGHT>
<@RIGHT>

Syntax <@RIGHT STR=string NUMCHARS=numChars [ENCODING=encod-
ing]>

Description Extracts the last number of characters from the string specified in
STR and returns the extracted substring.

If the string contains any spaces—except for spaces embedded
within meta tags—it must be quoted.

Examples <@RIGHT STR="alpha" NUMCHARS="3">

This example returns “pha”, the last three characters of “alpha”,
beginning from the right.

<@RIGHT STR="<@INCLUDE
FILE=’<@APPFILEPATH>BrownFox.txt’>" NUMCHARS="3">

This example returns “Dog”, the last three characters of “The Quick
Brown Fox Jumps Over The Lazy Dog” (the content of the
BrownFox.txt file).

See Also Encoding Attribute page 10
<@LEFT> page 121
<@LOCATE> page 124
<@REGEX> page 140
<@REPLACE> page 142
<@SUBSTRING> page 163
144144

<@ROWS> </@ROWS>
<@ROWS> </@ROWS>

Syntax <@ROWS [ARRAY=array] [SCOPE=scope] [PUSH=push]
[START=start] [STOP=stop] [STEP=step]></@ROWS>

Description The Results HTML appearing between this tag pair is processed
once for each row of the result set generated by an action.

This tag pair also allows iteration over the rows of an array. This tag
places a copy of the text between the opening and closing tags for
each row of the array.

ARRAY is the array to loop over. It can be the name of an array
variable or an array value. The default value is resultSet. All
results-returning actions (Search, Direct DBMS, External, Script,
and Mail) perform an automatic assignment of their results array to
the local variable resultSet.

START refers to the starting value for the index. The default value
is 1.

STOP refers to the stopping value for the index. The loop terminates
when this value is exceeded, not when it is reached. The default
value is <@NUMROWS>.

STEP refers to the increment added to the index after each iteration.
The default value is 1.

PUSH allows the sending of data to the client after the specified
number of iterations have taken place.

Note This tag must appear in pairs and cannot span multiple
actions. START and STOP can only be used to specify points inside
the array. If the index exceeds the number of rows in the result set
or reaches a negative value, the loop terminates. If the specified
STEP does not take the index from START to STOP, no iterations
are made. If the START equals the STOP, one iteration is made,
regardless of the step or array sizes.

<@ROWS> blocks can be nested. In that case, the tags that get their
reference from a <@ROWS> block (for example, <@COL>, <@COLUMN>,
<@MAXROWS>) refer to the innermost <@ROWS> block.
145 145

<@ROWS> </@ROWS>
Examples <@ROWS ARRAY="<@VARNAMES SCOPE=’USER’>"
START="<@MAXROWS>" STOP="1" STEP="1">
Variable <@CURROW> is named <@COL NUM="1">

</@ROWS>

Variable x is named varname. It is printed for each variable in the
user’ s scope, going in reverse order.

<@ROWS PUSH=100>
<@COLUMN NAME="ACTIVITYLOG.LOGTIMESTAMP">
<@COLUMN NAME="ACTIVITYLOG.DOMAINNAMEID">

</@ROWS>

This example allows you to see the resulting HTML 100 rows at a
time. The effects of the PUSH attribute depend on the HTML
presentation of the result set and the Web browser that is used to
access Tango. Sometimes, even though Tango and the Web server
are sending data to the Web browser, the Web browser holds up the
data without displaying it. For example, if the <@ROWS> block in the
previous paragraph sits between a <TABLE></TABLE> with rows of
the result set corresponding to the rows of the table, a Netscape
Web browser does not display the result file until the HTML
<TABLE> block is completed.

See Also <@COL> page 66
<@COLUMN> page 68
<@MAXROWS> page 127
146146

<@RTRIM>
<@RTRIM>

Syntax <@RTRIM STR=string [ENCODING=encoding]>

Description Returns the value specified in STR stripped of trailing spaces. The
STR attribute may be a literal value or a meta tag that returns a
value.

This meta tag is useful for stripping spaces from the end of CHAR
column values returned from DBMSs such as Oracle, which pad
values to the declared length of the column. You may also use the
stripChars configuration variable to accomplish this task.

Examples <@RTRIM STR="this is padded ">

This example returns “this is padded”.

<@RTRIM STR="<@COL NUM=’2’>">

This example returns value for column two, less any trailing
spaces.

See Also Encoding Attribute page 10
<@KEEP> page 120
<@LTRIM> page 126
<@OMIT> page 132
stripCHARs page 218
<@TRIM> page 171
147 147

<@SCRIPT>
<@SCRIPT>

Syntax <@SCRIPT [SCOPE=scope]>script here</@SCRIPT>

or

<@SCRIPT EXPR=expr [SCOPE=scope]>

Description Used for server-side execution of scripts written in JavaScript.

The tag syntax can take one of two forms, and which one you use
depends on how much script you have. Functionally, the two forms
are equivalent and the result of evaluating the tag is the output
from the script; so, for example, <@SCRIPT EXPR="2+2"> evaluates
to “4”.

Usage One: <@SCRIPT [SCOPE=scopeSpec]> your
script here</@SCRIPT>

This is the long form of the tag. You can use this syntax for large
chunks of script where it makes sense for the script to be blocked
out by begin/end tags. The script can contain other Tango tags;
those tags are substituted prior to script execution. In order for the
script to be able to interact with the Tango environment, there are
predefined object/methods that can be called from the script. They
are explained on the following page.

The optional SCOPE attribute defines the lifetime of the objects and
functions declared in the script, and is similar to the scope of
variables. Only two scopes are supported: LOCAL and IMMED. The
default scope is LOCAL, so anything defined in one script can be
referenced in another script in the same file execution. The second
scope, IMMED, specifies that the execution context for the script is
completely deleted immediately after running the script, and is
used to ensure no name/space clashes occur between the script and
other longer-lived objects.

Nesting of <@SCRIPT> blocks is not supported.
148148

<@SCRIPT>
Usage Two: <@SCRIPT EXPR=“your script here”
[SCOPE=SCOPESPEC]>

This is a shorthand form of the tag for small script snippets. As
with the long form of this tag, the script snippet can contain other
Tango tags that are substituted prior to script execution.

Note If the script expression attribute is supplied, then it is
syntactically invalid to include the closing </@SCRIPT> tag, and
the closing tag is left unsubstituted. Also note that all attributes to
<@SCRIPT> must be named.

Predefined Objects

The following predefined objects and methods exist in the
JavaScript environment of Tango Server to allow scripts to interact
with Tango in a controlled and meaningful way:

■ server: object representing Tango Server.
■ getVariable(name): gets Tango a variable. Using default

scoping rules, returns variable value.
■ getVariable(name, scope): as in the previous paragraph, but

defined with scope.
■ setVariable(name, value): sets a Tango variable, using default

scoping rules, returns nothing.
■ setVariable(name, value, scope): as in the previous paragraph,

but with defined scope.

Note Tango variables are accessed by value, not by reference.
You must therefore use setVariable to update Tango with any
changes you make to variable values. Also, because they are
passed by value, getting large Tango arrays can consume a lot of
memory because the entire array is duplicated inside of
JavaScript.

Because Tango supports only two-dimensional arrays, it is an error
to try to put a JavaScript array of more than two dimensions into a
Tango variable.

For more information on the JavaScript capabilities of Tango, see
the online help for JavaScript that is distributed with Tango (in the
Help directory under the Tango root directory).
149 149

<@SCRIPT>
Examples <@SCRIPT EXPR="1*2*3*4">

This example returns a value of “24”.

<@SCRIPT EXPR="server.setVariable (’foo’, ’bar’);">

This example sets the Tango variable “foo” to the value “bar”, so
that a subsequent <@VAR NAME="foo"> returns “bar”.

<@SCRIPT EXPR="server.getVariable(’foo’);">

This example is equivalent to <@VAR NAME="foo">.

See Also <@ASSIGN> page 41
<@VAR> page 184
150150

<@SEARCHARG>
<@SEARCHARG>

Syntax <@SEARCHARG NAME=name [TYPE=type] [FORMAT=format]
[ENCODING=encoding]>

Description Returns the value(s) of the named search argument (name/value
pairs after a “?” in the URL, or form fields in a GET method form) in
the HTTP request calling the application file. References to search
arguments not present in the request evaluate to empty.

The NAME attribute may be specified as a literal value, value-
returning meta tag, or a combination of both.

The TYPE attribute accepts one of two possible values: TEXT or
ARRAY. ARRAY causes the tag to return a single-column, multi-row
array of values, one for each value received for the named search
argument. A URL like http://www.yoursite.com/
my.taf?x=1&x=2&x=3, for example, sends three separate values for
the x search argument. Using the ARRAY type lets you access all
those values. TEXT, which is the default type if the TYPE attribute is
not specified, causes the tag to return a single value. If you specify
this type when multiple values were received for the argument, the
value returned is the first one received by Tango.

The optional FORMAT and ENCODING attributes determine how the
value is formatted by Tango. These attributes are ignored if
TYPE=ARRAY is specified.

Example The items in the <@SEARCHARG NAME="category_name">
category are:

<@ROWS>
<@COLUMN NAME="product.name">

</@ROWS>

This example includes the requested category name in a heading
prior to listing the products.

See Also <@ARG> page 35
Encoding Attribute page 10
Format Attribute page 13
<@POSTARG> page 134
151 151

<@SEARCHARGNAMES>
<@SEARCHARGNAMES>

Description Returns an array containing the names of all search arguments.

Search arguments are passed to Tango through the URL.

For the URL:

http://hostname/path_to_cgi/
path_to_taf?sarg1=value1&sarg2=value2&...
&sargn=val

<@SEARCHARGNAMES> returns an array containing a subset of the
names sarg1, sarg2,...,sargn. The result array has one column
and n rows where there are n unique search arguments.

Example The following returns all search argument names using the default
array formatting:

<@ASSIGN NAME="mysearchargs"
VALUE="<@SEARCHARGNAMES>">

<@VAR NAME="mysearchargs">

See Also <@ARG> page 35
<@ARGNAMES> page 37
<@POSTARGNAMES> page 135
152152

<@SECSTODATE>, <@SECSTOTIME>, <@SECSTOTS>
<@SECSTODATE>, <@SECSTOTIME>, <@SECSTOTS>

See the following meta tags:

<@DATETOSECS>, <@SECSTODATE>page 77
<@TIMETOSECS>, <@SECSTOTIME>page 165
<@TSTOSECS>, <@SECSTOTS> page 172
153 153

<@SERVERSTATUS>
<@SERVERSTATUS>

Syntax <@SERVERSTATUS [VALUE=value] [ENCODING=encoding]>

Description Returns status information on Tango Server. The tag has an
optional attribute, VALUE. The value of this attribute must be one of
the categories specified in the following table (case insensitive).

If the value attribute is not specified, a two-column array is
returned, giving all status values with the category name in the first
column and the value in the second column. With this form of the
tag, the ENCODING attribute, if specified, is ignored.

Category Description

Version version of status information (not the server)

ProcessID system process ID number

UpTime (min) server running time (in minutes)

ActiveQryThr number of threads marked in use

AvgQryProcTime average time to process a request, in 1/60 second ticks

LstQryProcTime time to process last request, in 1/60 second ticks

DataSrcCount number of data source connections allocated

NumQryServed number of requests served since server inception

MinQryProcTime minimum request processing time so far, in 1/60 second
ticks

MaxQryProcTime maximum request processing time so far, in 1/60 second
ticks

AvgQryReadTime average time to read a prepare a request for processing, in
1/60 second ticks

AvgQryWriteTime average time to return results to the user after processing,
in 1/60 second ticks

NumAFRead number of Tango application files read from disk, cache, or
network

AvgAFReadTime average amount of time taken to read an application file
from disk, cache, or network, in 1/60 second ticks

AvgAFSize average size of application file read from disk, cache, or
network

QryThrCount number of processing threads allocated
154154

<@SERVERSTATUS>
Notes

■ NumAFRead, AvgAFReadTime, and AvgAFSize include cache
reads, and therefore reflect the performance of the application
file cache.

■ QryProc values may include time taken to push intermediate
data back to the user.

■ NumQryServed includes any requests killed and tallied in
NumQryKilled.

■ Windows and UNIX only: TripRd values measure actual
network and disk accesses, and represent true overhead to read
include/application files that are new, uncached, or changed
since being cached.

■ Because of the way that Tango Server works under Macintosh,
the following status values return zero under Mac OS:
TotlTripRdBytes, TotlTripRdFiles, TotlTripRdTime,
NumTripBadConn, and ProcessID.

ActiveDataSrc number of data sources marked in use

NumQrykilled number of requests killed (timed out) since server inception

TotlTripRdBytes total number of bytes read via network

TotlTripRdFiles total number of files read via network

TotlTripRdTime total amount of time taken to read all files read via network,
in 1/60 second ticks

NumCachedDocs number of application files currently in application file
cache

NumCachedIncl number of include files currently in include file cache

ProcessSize current size of server process (bytes)

HeapSize current amount of working memory consumed (bytes)

NumTripBadConn number of network CGI-server connections failed

NumUsersShared number of user references in the shared variable store

NumVarsShared number of variables in the shared variable store

NumUsersLocal number of user references in the local variable store

NumVarsLocal number of variables in the local variable store

Category Description
155 155

<@SERVERSTATUS>
Retrieving these values via the tag means executing a request,
which affects the status values as specified:

■ A thread is used to process the request, and that bumps up the
ActiveQryThr count.

■ Since the current request has not completed yet, the
QryProcTime times and the NumQryServed count do not reflect
the currently executing request.

■ Executing a request involves reading it, so NumAFRead and the
AvgAF values reflect the current request.

■ If a network read was required to load the application file and
other include files, the TotlTripRd values are updated.

See Also Encoding Attribute page 10
156156

<@SETCOOKIES>
<@SETCOOKIES>

Description For use in an HTTP header. Returns the correct Set-Cookie lines to
set the values of cookie variables assigned in the current
application file execution.

Note Make sure you include this meta tag in any custom
headers you create for Tango. If you do not, the cookie scope does
not work properly.

See Also headerFile page 207
157 157

<@SORT>
<@SORT>

Syntax <@SORT ARRAY=arrayVarName [COLS=sortCol [sortType] [sortDir]
[, ...]] [SCOPE=scope]>

Description Sorts the input array by the column(s) specified. This tag does not
return anything.

The ARRAY attribute specifies the name of a variable containing an
array. The COLS attribute specifies the column(s) to sort by,
specified using column numbers or names, with optional sort types
(sortType) and directions (sortDir).

Valid sort types are SMART (the default), DICT, ALPHA and NUM. DICT
sorts the column alphabetically, irrespective of case. ALPHA is a case-
sensitive sort. NUM sorts the column numerically. SMART checks
whether values are numeric or alphabetic and sorts using a NUM or
DICT type.

Valid sort directions are ASC (the default) and DESC. ASC sorts the
column in ascending order, with lower values coming before higher
ones. DESC sorts in descending order, with higher values coming
before lower ones.

If the COLS attribute is omitted, all columns are sorted left to right
using the SMART sort type and the ASC (ascending) sort direction.

The order of the type and direction options are not important, that
is, COLS="1 NUM ASC" is equivalent to COLS="1 ASC NUM".

Multiple columns may be specified, separated by commas. Each
sort column specification may include a sort type specifier and/or a
sort direction specifier. If included, these must follow the sort
column, separated by a space.

Multiple sort columns cause the array to be sorted by the first
column specified, then, rows with the same value in that column
are sorted by the second sort column specified within that
previously-created sort order, and so on.

The SCOPE attribute specifies the scope of the variable specified by
ARRAY. If not specified, the default scoping rules are used.

Meta tags are permitted in any of the attributes.
158158

<@SORT>
Examples ■ If the local variable test contains the following array:

<@SORT ARRAY="test" SCOPE="local" COLS="1 NUM">
rewrites the local test variable as the following array:

■ <@SORT ARRAY="customer" COLS="cust_state, cust_num">
sorts the array stored in customer. The default SMART sort type
checks the cust_state column, finds it is alphabetic, and uses
sort type DICT; similarly, it checks the cust_num column, finds
it is numeric, and uses sort type NUM in the cust_num column
for the rows with the same cust_state value.

See Also <@DISTINCT> page 84
<@FILTER> page 98
<@INTERSECT> page 111
<@UNION> page 174

 4 example

 2 is

 7 sorting

 3 an

 5 of

 1 here

 6 array

 1 here

 2 is

 3 an

 4 example

 5 of

 6 array

 7 sorting
159 159

<@SQ>
<@SQ>

See the following meta tag:

<@DQ>, <@SQ> page 88
160160

<@SQL>
<@SQL>

Syntax <@SQL [ENCODING=encoding]>

Description Returns last action-generated SQL.

This meta tag accesses your last action-generated SQL.

This meta tag is not valid for use with FileMaker Pro data sources.

See Also Encoding Attribute page 10
161 161

<@STARTROW>
<@STARTROW>

Description Returns the position of the first row retrieved by a Search or Direct
DBMS action within the set of records matching the action’s
criteria. This value corresponds to the one specified in the Start
retrieval at match number field in the Results section of the Search
action.

Example <@TOTALROWS> records matched your criteria. Listed
here are <@NUMROWS> records, starting with record
<@STARTROW>.

<@ROWS>
...
</@ROWS>

This example returns a message indicating the number of records
found and returned, and the position of the first record shown
within the found rowset.

See Also <@ABSROW> page 28
<@CURROW> page 75
<@MAXROWS> page 127
<@NUMROWS> page 131
<@ROWS> </@ROWS> page 145
<@TOTALROWS> page 169
162162

<@SUBSTRING>
<@SUBSTRING>

Syntax <@SUBSTRING STR=str START=start NUMCHARS=numChars
[ENCODING=encoding]>

Description Extracts a NUMCHARS long substring, starting at START from STR and
returns a copy of the extracted substring.

If the string contains any spaces except for spaces embedded within
meta tags, the string must be quoted.

All three attributes are mandatory. If a syntax error is encountered
while the expression is parsed (no attributes at all, no string, or no
number of characters) the tag returns an empty string.

Examples <@SUBSTRING STR="alpha" START="3" NUMCHARS="2">

This example returns “ph”, the two characters starting at the third
position.

<@SUBSTRING STR="<@INCLUDE
FILE=’<@APPFILEPATH>BrownFox.txt’>" START="3"
NUMCHARS="2">

This example returns “e ” and a space, which are the two characters
starting at the third position in “The Quick Brown Fox Jumps Over
The Lazy Dog” (the contents of the BrownFox.txt file).

See Also Encoding Attribute page 10
<@LEFT> page 121
<@LOCATE> page 124
<@REPLACE> page 142
<@RIGHT> page 144
163 163

<@TIMER>
<@TIMER>

Syntax <@TIMER [NAME=name] [VALUE=value]>

Description Allows you to create and use named timers. These timers exist only
within the scope of a single application file execution. <@TIMER>
accepts and returns its numbers in milliseconds.

Upon application file start-up, the default timer named ELAPSED is
created to track elapsed time, and is set to zero.

You can create new timers or update existing ones by calling
<@TIMER> with an optional NAME and a required VALUE attribute. If
the name attribute is not specified, the default timer (ELAPSED) is
updated with the value specified.

If a non-numeric value is given, the timer is set to zero. Values may
be negative. When setting a timer, the tag returns nothing.

The value of a timer is retrieved if only the NAME attribute and no
VALUE attribute is specified. Retrieving a non-existent timer returns
nothing.

Because NAME is optional, the most simple and direct use of the tag
is <@TIMER>, which returns the elapsed time for the current
application file.

Values returned by <@TIMER> are accurate to 1/60 of a second.

Examples <@TIMER>

Returns the value of the default timer (ELAPSED).

<@TIMER VALUE="-30000">

Sets the value of the default timer (ELAPSED) to -30,000
milliseconds.

<@TIMER NAME="Fred" VALUE="3000">

Creates a new timer named Fred and sets its value to 3000
milliseconds.

<@TIMER NAME="Fred">

Returns the current value of Fred.
164164

<@TIMETOSECS>, <@SECSTOTIME>
<@TIMETOSECS>, <@SECSTOTIME>

Syntax <@TIMETOSECS TIME=time [FORMAT=format]>
<@SECSTOTIME SECS=seconds [FORMAT=format]
[ENCODING=encoding]>

Description <@TIMETOSECS> checks the entered time and, if valid, converts it
into seconds. Conversely, <@SECSTOTIME> converts the entered
seconds to a time.

For details, see
“<@ISDATE>,
<@ISTIME>,
<@ISTIMESTAMP>” on
page 114.

Both handle ODBC, ISO, and some numeric formats.

If the time is entered incorrectly—wrong separators or a
nonexistent number of hours, minutes or seconds—the tag returns,
“Invalid time!”.

The TIME attribute is mandatory. If no attribute is found while the
expression is parsed, the tag returns “No attribute!”.

Examples <@TIMETOSECS TIME=02:00:04>

This example returns “7204”, the number of seconds contained in
two hours and four seconds.

<@SECSTOTIME SECS=7204>

This example returns “02:00:04”, the time in hour, minute and
second format, assuming that is how times are configured with the
timeFormat configuration variable.

See Also Encoding Attribute page 10
<@FORMAT> page 102
Format Attribute page 13
<@ISDATE> page 114
<@ISTIME> page 114
<@ISTIMESTAMP> page 114
timeFormat page 219
165 165

<@TMPFILENAME>
<@TMPFILENAME>

Syntax <@TMPFILENAME [ENCODING=encoding]>

Description Generates a unique temporary file name on the file system that
Tango Server is currently executing on.

Example <@ASSIGN NAME="myfile1" VALUE="<@TMPFILENAME>">

<@ASSIGN NAME="myfile2" VALUE="<@TMPFILENAME>">

The myfile1 and myfile2 variables can now be referenced in a File
action (for example, writing interim information to a temporary
scratch file) and are guaranteed to be unique file names on the
system running Tango Server.

See Also Encoding Attribute page 10
166166

<@TOGMT>
<@TOGMT>

Syntax <@TOGMT TS=timestamp [FORMAT=format] [ENCODING=encod-
ing]>

Description Transforms local time, given by the TS argument, to GMT
(Greenwich Mean Time). The transformed time can be formatted
according to the optional FORMAT attribute.

The difference between GMT and local time is influenced by
daylight savings time. That is, for Toronto, Ontario, the regular
difference is 5 hours, but the summertime difference is 4 hours.
Tango accounts for daylight savings time.

Example <@TOGMT TS="<@CURRENTTIMESTAMP>">

See Also <@CURRENTDATE> page 74
<@CURRENTTIME> page 74
<@CURRENTTIMESTAMP> page 74
Encoding Attribute page 10
<@FORMAT> page 102
Format Attribute page 13
167 167

<@TOKENIZE>
<@TOKENIZE>

Syntax <@TOKENIZE VALUE=text CHARS=delimiters>

Description Provides you with a way of sectioning a string into multiple pieces
according to a set of delimiting characters. It accepts as attributes
the VALUE of the text and the delimiting CHARS, and returns its
results as an array. The result is a one row array, with a column for
each token. If the entire string consisted of only delimiters, a one by
one empty array is returned.

Each character in CHARS is taken as a separate delimiter.

Example Note There are extra spaces in the string specified in the VALUE
attribute in the following example.

<@TOKENIZE VALUE=" The quick brown fox jumped,
quite amazingly, over the lazy dog. " CHARS=" ,.">

The array returned would look like this:

See Also <@LTRIM> page 126
<@RTRIM> page 147
<@SUBSTRING> page 163
168168

<@TOTALROWS>
<@TOTALROWS>

Description Returns the total number of rows matching the criteria specified in
the Search action the meta tag is used in. The actual number of rows
returned by the Search action is determined by the Maximum
Matches and Start Row settings.

This tag returns a meaningful value only if the Get total number of
matches option is selected in the Results section of the Search
action. If this option is not selected, or if the tag is used outside of a
Search action, this tag returns “1”.

Example <@TOTALROWS> records matched your criteria. Listed
here are <@NUMROWS> records, starting with record
<@STARTROW>.

<@ROWS>
...
</@ROWS>

This example returns a message indicating the number of records
found and the number shown.

See Also <@ABSROW> page 28
<@CURROW> page 75
<@MAXROWS> page 127
<@NUMROWS> page 131
<@ROWS> </@ROWS> page 145
<@STARTROW> page 162
169 169

<@TRANSPOSE>
<@TRANSPOSE>

Syntax <@TRANSPOSE ARRAY=arrayVarName [SCOPE=scope]>

Description Exchanges row and column specifications for values in an array; for
example, the value in the third row, first column is transposed to
the first row, third column. The ARRAY attribute specifies the array
to transpose. The optional SCOPE attribute specifies the scope.

This tag returns a new array. The original array is not modified; you
can use the <@ASSIGN> meta tag or Assign action to assign the
result of this tag to a variable.

Example If the local variable fred contains a 3 x 4 array of the following
form:

<@ASSIGN NAME="fred_transposed" VALUE=’<@TRANSPOSE
ARRAY="fred" SCOPE="local">’>

@@fred_transposed returns a 4 x 3 array of the following form:

See Also <@ASSIGN> page 41

1 USA 1.72

2 Canada 84.2

3 Brazil 34

4 Argentina 47

1 2 3 4

USA Canada Brazil Argentina

1.72 84.2 34 47
170170

<@TRIM>
<@TRIM>

Syntax <@TRIM STR=string [ENCODING=encoding]>

Description Returns the value specified in STR stripped of leading and trailing
spaces. The value of the STR attribute may be a literal value or a
meta tag that returns a value.

Examples <@TRIM STR=" this is padded ">

This example returns “this is padded”.

<@TRIM STR="<@COL NUM=’2’>">

This example returns the value of column “2”, less any leading and
trailing spaces.

See Also Encoding Attribute page 10
<@KEEP> page 120
<@LTRIM> page 126
<@OMIT> page 132
<@RTRIM> page 147
171 171

<@TSTOSECS>, <@SECSTOTS>
<@TSTOSECS>, <@SECSTOTS>

Syntax <@TSTOSECS TS=timestamp [FORMAT=format]>
<@SECSTOTS SECS=seconds [FORMAT=format]
[ENCODING=encoding]>

Description <@TSTOSECS> checks the entered timestamp and converts it into
seconds, using as a reference, midnight (00:00:00) January 1, 1970
(1970-01-01). Conversely, <@SECSTOTS> converts the entered
seconds to a timestamp. For dates before this, the return values are
negative.

All formats assume the Gregorian calendar. All years must be
greater than zero. <@TSTOSECS> handles ODBC, ISO, and some
numeric formats.

If the date is entered incorrectly—wrong separators or a
nonexistent number of hours, minutes or seconds—the tag returns
“Invalid day!” If the time is entered incorrectly (wrong
separators or a nonexistent number of hours, minutes or seconds)
the tag returns “Invalid time!”.

The time attribute is mandatory. If no attribute is found while the
expression is parsed, the tag returns “No attribute!”.

If the optional FORMAT attribute is not used, the value in the
configuration variable timestampFormat is used as the output
format of this tag.

Examples <@TSTOSECS TS="1969-12-31 23:59:55">

This example returns “-5”.

<SECSTOTS SECS="5">

This example returns “1970-01-01 00:00:05”, assuming the default
configuration variables correspond to the example’s format.
172172

<@TSTOSECS>, <@SECSTOTS>
See Also <@DATETOSECS> page 77
Encoding Attribute page 10
<@FORMAT> page 102
Format Attribute page 13
<@ISDATE> page 114
<@ISTIME> page 114
<@ISTIMESTAMP> page 114
<@SECSTODATE> page 77
<@SECSTOTIME> page 165
timestampFormat page 201
<@TIMETOSECS> page 165
173 173

<@UNION>
<@UNION>

Syntax <@UNION ARRAY1=arrayVarName1 ARRAY2=arrayVarName2
[COLS=compCol [compType]] [SCOPE1=scope1] [SCOPE2=scope2]>

Description Returns the union of two arrays. The union consists of the
combination of both arrays, with duplicates removed. Duplicates
are found based on the values of the specified columns, checked
using the specified comparison type.

The two input arrays are not modified. To store the result of this
meta tag in a variable, use a variable assignment.

Note To join two arrays without removing duplicates, use the
<@ADDROWS> tag.

The ARRAY1 and ARRAY2 attributes specify the names of variables
containing arrays. The optional COLS attribute specifies the
column(s) to consider when eliminating duplicates: the columns
are specified using column numbers or names, with an optional
comparison type (compType). The arrays must have the same
number of columns; otherwise, an error is generated.

Valid comparison types are SMART (the default), DICT, ALPHA and
NUM. DICT compares columns alphabetically, irrespective of case.
ALPHA performs a case-sensitive comparison. NUM compares
columns numerically. SMART checks whether values are numeric or
alphabetic and performs a NUM or DICT comparison.

If no COLS attribute is specified, the elimination of duplicates is
accomplished via a SMART comparison type that examines all
columns in a row.

The SCOPE1 and SCOPE2 attributes specify the scope of the variables
specified by ARRAY1 and ARRAY2, respectively. If the attribute is not
specified, the default scoping rules are used.

Meta tags are permitted in any of the attributes.
174174

<@UNION>
Examples ■ If the variable old_items contains the following array:

and the array new_items contains the following:

<@UNION ARRAY1="old_items" ARRAY2="new_items">
returns:

■ If the variable test contains the following array:

and the variable test2 contains:

<@UNION ARRAY1="test" ARRAY2="test2"> returns:

 blue

 green

 orange

 orange

 pink

 blue

 pink

 blue

 green

 orange

 pink

 1 a a

 2 b c

 3 c c

 1 a a

 2 b b

 3 c c

 3.0 c c

 1 a a

 2 b c

 3 c c

 2 b b
175 175

<@UNION>
■ Variable usr1 contains the following:

Variable usr2 contains the following:

To find the unique users in both arrays, you would find the
union of the two arrays based on the first two columns.

<@UNION ARRAY1="usr1" ARRAY2="usr2" COLS="1, 2">
returns:

The values in columns 3 and 4 are ignored for the purpose of
the union operation since COLS="1, 2" is specified.

See Also <@ADDROWS> page 30
<@DISTINCT> page 84
<@FILTER> page 98
<@INTERSECT> page 111
<@SORT> page 158

Gilbert Steve 1823-1344 $433.00

Brown Robert 5543-1233 $332.50

Brown Marsha 1122-5778 $541.00

Kelly Herbert 5543-1443 $100.50

Brown Robert 6670-1123 $1123.75

MacDonald Bill 1551-0787 $150.75

Gilbert Steve 1823-1344 $433.00

Brown Robert 6670-1123 $1123.75 *

* Tango returns just one of the rows that have the same val-
ues in the specified columns (1 and 2).

Brown Marsha 1122-5778 $541.00

Kelly Herbert 5543-1443 $100.50

MacDonald Bill 1551-0787 $150.75
176176

<@UPPER>
<@UPPER>

Syntax <@UPPER STR=string [ENCODING=encoding]>

Description Returns the string specified in STR converted to uppercase. The
value of the STR attribute may be a literal value or a meta tag that
returns a value.

Examples <@UPPER STR="This is a Test">

This example returns “THIS IS A TEST”.

<@UPPER STR="<@POSTARG NAME=’product_code’>">

This example returns the contents of the form field product_code,
converted to uppercase.

See Also Encoding Attribute page 10
<@LOWER> page 125
177 177

<@URL>
<@URL>

Syntax <@URL LOCATION=location [BASE=base] [USERAGENT=user-
agent] [FROM=from] [ENCODING=encoding]>

Description Retrieves the specified URL and returns its data, stripped of the
HTTP header.

<@URL> supports only HTTP URLs. The HTTP-type URL must be of
the following form:

http://hostname:port/path?search-arguments

where port defaults to 80 if not specified, and path and search-
arguments are defaulted to an empty list.

The BASE attribute adds the specified value as an HTML <BASE> tag
(that is, <BASE HREF=base>) within the HTML <HEAD> element of
the retrieved HTML. This is necessary to load any inline data (for
example, images) that are specified in relative URL format on the
page retrieved. Tango prepends the specified value of the BASE
attribute to the relative path.

For more information,
see “userAgent” on
page 220.

The USERAGENT attribute is placed in the User-Agent line of the
request. If USERAGENT is not specified, or is empty, the value of the
userAgent configuration variable is used.

The User-Agent value in HTTP requests gives the destination
server information about the program (such as, name, version, and
platform) that is requesting the URL. For example, the User-Agent
value passed by Netscape Navigator 4.04 for Windows NT is:

Mozilla/4.04 [en] (WinNT; I)

Servers often use the user agent information to determine the
format of the results returned. (Tango application files can get the
user agent information from a request using <@CGIPARAM
NAME="USER_AGENT">.) For example, a server may return a special
version of a page, including Web browser-specific HTML for
additional features, when the Web browser is Netscape Navigator
or Microsoft Internet Explorer.

Use the USERAGENT attribute when you want Tango Server to
emulate a specific Web browser so the server returns the data in the
format you want.

The FROM attribute sets the value for the From line of the HTTP
header specified for in the <@URL> meta tag.
178178

<@URL>
For more information,
see the section “Timed
URL Processing With
Tango Server” in the
chapter “Using Tango
Sever” in the User’s
Guide.

You should use the FROM attribute to specify the e-mail address of
the person to contact if the URL request is causing problems at the
destination server. Supplying an e-mail address is especially
important when the <@URL> meta tag is included in an application
file that is executed automatically using Tango’s timed URL
processing functionality. If something goes wrong, the destination
server administrator knows who to contact.

(Tango application files can get the FROM information from a request
using <@CGIPARAM NAME="FROM_USER">.)

If you do not specify a value, the default value is given by the
configuration variable, mailDefaultFrom.

The <@URL> meta tag returns an error message if a time out or error
condition occurs.

Note If you intend to display the value of <@URL> in a Web
browser, you must use the ENCODING=NONE attribute.

Note <@URL> currently has some limitations. It does not support:
■ the HTTPS protocol for secure access to Web sites
■ access to user/password protected Web sites
■ the sending of post arguments (form fields) with a request.

Examples <@URL LOCATION="http://www.redhat.com/">

<@URL LOCATION="http://www.redhat.com/"
BASE="http://www.redhat.com/"
USERAGENT="Mozilla/4.04 [en] (WinNT; I)"
FROM="tango-admin@mycompany.com">

See Also Encoding Attribute page 10
mailDefaultFrom page 210
userAgent page 220
179 179

<@URLENCODE>
<@URLENCODE>

Syntax <@URLENCODE STR=string>

Description Makes this string specified in STR compatible for inclusion in a URL
by escaping characters that have special meaning in URLs, such as
spaces and slashes according to the protocol specified in RFC 1630.

This tag works exactly like the ENCODING=URL attribute, but can be
used to URL-encode any value.

Examples <@URLENCODE STR="Hello World">

This example returns “Hello%20World”.

<@URLENCODE STR="<@ACTIONRESULT NAME=’action1’
NUM=’1’>">

This example returns the result of the <@ACTIONRESULT> with
special characters escaped.

See Also <@URL> page 178
180180

<@USERREFERENCE>
<@USERREFERENCE>

Description Returns a unique number identifying the user executing the
application file in which the tag appears. If no user reference
number was received (via the “_userReference” search argument or
an HTTP cookie) when the application file was called, a new
number is generated; otherwise, the number passed in is returned.

For more information on
user variable tracking,
see Chapter 7, “Using
Variables,” in the User’s
Guide.

The user reference number can be used for reliable tracking of user
variables.

See Also userKey, altuserKey page 221
<@USERREFERENCEARGUMENT> page 182
<@USERREFERENCECOOKIE> page 183
181 181

<@USERREFERENCEARGUMENT>
<@USERREFERENCEARGUMENT>

Description Evaluates to _userReference=<@USERREFERENCE>.

For more information on
user variable tracking,
see Chapter 7, “Using
Variables,” in the User’s
Guide.

This meta tag is intended for use in Results HTML anchor URLs
when you are tracking user variables by user reference and require
support for Web browsers that do not support HTTP cookies.

Example <A HREF="<@CGI>/shop/
add_item_to_basket.taf?item=29&
<@USERREFERENCEARGUMENT>">Add item

This example includes the user’s user reference ID value in the
URL of the link.

See Also userKey, altuserKey page 221
<@USERREFERENCE> page 181
<@USERREFERENCECOOKIE> page 183
182182

<@USERREFERENCECOOKIE>
<@USERREFERENCECOOKIE>

Description Used in the default HTTP header of Tango when returning results.
It permits intelligent setting of the user reference cookie, a value
that can be used to track user variables.

For more information on
user variable tracking,
see Chapter 7, “Using
Variables,” in the User’s
Guide.

If no Tango user reference number was received, either via cookie
or search argument, with the current HTTP request,
<@USERREFERENCECOOKIE> returns the following:

Set-Cookie: Tango_UserReference=<@USERREFERENCE>;
path=/[CRLF]

([CRLF] stands for a carriage return/linefeed (ASCII 13/10)
combination.)

If a user reference number was received with the current HTTP
request, <@USERREFERENCECOOKIE> returns nothing. Because the
cookie has already been set, there is no need to set it again.

Example This is the content of Tango’s default HTTP header for Mac OS
versions:

HTTP/1.0 200 OK [CRLF]
Server: WebSTAR/1.0 ID/ACGI [CRLF]
MIME-Version: 1.0 [CRLF]
Content-type: text/html [CRLF]
<@USERREFERENCECOOKIE>[CRLF]

See Also userKey, altuserKey page 221
<@USERREFERENCE> page 181
<@USERREFERENCEARGUMENT> page 182
183 183

<@VAR>
<@VAR>

Syntax <@VAR NAME=name [SCOPE=scope] [FORMAT=format]
[APREFIX=aprefix] [ASUFFIX=asuffix] [RPREFIX=rprefix]
[RSUFFIX=rsuffix] [CPREFIX=cprefix] [CSUFFIX=csuffix]
[TYPE=text] [ENCODING=encoding]>

Description <@VAR> retrieves the contents of a variable, and, depending on the
operation being performed, formats the data appropriately. Any of
the attribute values of <@VAR> may be specified by other meta tags.

Scalars

When retrieving the contents of a scalar (standard variable), the
result of <@VAR> is always a text string.

Arrays

<@VAR> may also be used to retrieve an array. However, <@VAR>
does different things to arrays based on context: <@VAR> converts
the array to text whenever the result of the tag is returned in
Results HTML, or when TYPE=text is specified; <@VAR> returns an
internal reference to the array when it is used to copy an array from
one place to another. So, if <@VAR> is used within <@ASSIGN>, then
no conversion to text is performed (unless the TYPE="text"
attribute is specified).

The format outputted is specified by the following attributes:

APREFIX: the array prefix string
ASUFFIX: the array suffix string
RPREFIX: the row prefix string
RSUFFIX: the row suffix string
CPREFIX: the column prefix string
CSUFFIX: the column suffix string

For more information,
see “aPrefix” on
page 196, “aSuffix” on
page 196, “cPrefix” on
page 198, “cSuffix” on
page 199, “rPrefix” on
page 215 and “rSuffix”
on page 215.

These attributes are used for defining the appropriate text for
display, before and after the specific components of the array are
displayed. This is useful for automatically displaying the contents
of arrays as tables or ordered lists. The default values of these
attributes are set by configuration variables with the same name.
184184

<@VAR>
Scoping Rules Scoping is the method by which variables can be organized and
disposed of in an orderly and convenient fashion. There are various
levels of scoping, each of which has an appropriate purpose:

For more information,
see “Configuration
Variables” on page 193.

■ System Scope contains any variables that are general to all
users. This scope contains only server configuration variables.
To use this scope, specify SCOPE=system or SCOPE=sys.

For more information,
see “domainScopeKey”
on page 206.

■ Domain Scope contains variables that a class of users can
share. These variables can be accessed from any application file
run by any user within the class. This scope is defined by
setting the system configuration variable domainScopeKey
appropriately; that is, setting it to a value that can differentiate
such users. To use this scope, specify SCOPE=domain.

For more information,
see “userKey,
altuserKey” on page 221.

■ User Scope contains variables that a user defines and expects
to be able to access from many application files or invocations
of single application files. To use this scope, specify SCOPE=user
or SCOPE=usr.

■ Local Scope contains variables that should be unique to every
invocation of any application file. For example, this scope
could be used for temporary variables that reformat output
from a search action. All variables of this scope are removed
when the application file concludes execution. To use this
scope, specify SCOPE=local, or SCOPE=doc.

■ Cookie Scope contains variables that are sent to the user’s Web
browser as cookies (that is, a small text file kept by the Web
browser for a specified amount of time). To use this scope
specify SCOPE=cookie.

Specifying Scopes

There are two methods of specifying a variable with a particular
scope.

■ Use the SCOPE=scope attribute.
■ Leave out the SCOPE=scope attribute and specify a variable

name as scope$myvariable; scope may be any valid scope
specifier.

Behavior is undefined when both methods are used at once.
185 185

<@VAR>
Scoping Precedence

When no scope is specified, Tango must find the variable by
looking for the variable name within the various scopes. Tango has
a set order in which it tries to find scopes. They are:

local—»user—»domain—»system

Note Variable scoping precedence for variables and
configuration variables does not check cookie scope.

For more information,
see “domainScopeKey”
on page 206.

If domainScopeKey resolves to empty for this user, then domain is
not checked.

Variable Shortcut Syntax

There is a shortcut syntax for returning variables as well, with or
without scope: use a double “@” and the name of the variable. The
following two notations in each of the examples are equivalent:

<@VAR NAME="homer">
@@homer

<@VAR NAME="homer" SCOPE="domain">
@@domain$homer

Configuration Variables

For a detailed list of
configuration variables,
see Chapter 2 of the Meta
Tags and Configuration
Variables manual.

Tango reserves special variables that contribute to the configuration
of the server and also that provide default behaviors for users.

For more information,
see “About Variables” in
Chapter 7 of the User’s
Guide. For more
information on setting
configuration variables
using the config.taf
file, see “Tango Server
Configuration File” in
the User’s Guide.

System variables that contribute to the basic configuration of the
server only exist in the system scope. System variables that provide
default behaviors for users are subject to the full scoping
mechanism described previously. Default values read from the
preference file are stored in the system scope.
186186

<@VAR>
Examples Accessing a local variable:

<@VAR NAME="foo" SCOPE="local">
<@VAR NAME="local$foo">
@@local$foo

Accessing a user variable:

<@VAR NAME="foo" SCOPE="user">
<@VAR NAME="user$foo">
@@user$foo
<@VAR NAME="foo" SCOPE="usr">
<@VAR NAME="usr$foo">
@@usr$foo

Accessing a system scope variable:

<@VAR NAME="foo" SCOPE="system">
<@VAR NAME="system$foo">
@@system$foo
<@VAR NAME="foo" SCOPE="sys">
<@VAR NAME="sys$foo">
@@sys$foo

Accessing a domain scope variable:

<@VAR NAME="foo" SCOPE="domain">
<@VAR NAME="domain$foo">
@@domain$foo

Accessing variable using scoping precedence:

<@VAR NAME="foo">
@@foo

Getting an array and formatting it for Results HTML:

<@VAR NAME="array">

Getting part of an array and formatting it for Results HTML:

<@VAR NAME="array[3,*]">

Getting an array and formatting it for Results HTML with
attributes:

<@VAR NAME="array" APREFIX=’<TABLE BORDER="2">’
ASUFFIX= </TABLE>’ RPREFIX=’<TR>’ RSUFFIX=’</TR>’
CPREFIX=’<TD BORDER="2">’ CSUFFIX=’</TD>’>

Copying an array without formatting it:

<@ASSIGN NAME="array2" VALUE="<@VAR NAME=’array’>">
187 187

<@VAR>
Copying part of an array without formatting it:

<@ASSIGN NAME="array2" VALUE="<@VAR
NAME=’array[*,4]’>">

Copying the formatted representation of an array to a variable:

<@ASSIGN NAME="array2" VALUE="<@VAR NAME=’array’
FORMAT=text>">

See Also <@ARRAY> page 38
<@ASSIGN> page 41
Encoding Attribute page 10
Format Attribute page 13
188188

<@VARINFO>
<@VARINFO>

Syntax <@VARINFO NAME=variable ATTRIBUTE=attribute
[SCOPE=scope]>

Description Returns information about variables and accepts three ATTRIBUTE
values, TYPE, ROWS, and COLS:

■ TYPE returns either text or array.
■ ROWS returns the number of rows if the variable is an array, or

“0” otherwise.
■ COLS returns the number of columns if the variable is an array,

or “0” otherwise.

Examples If the following variable assignments are made:

<@ASSIGN NAME="scalar" SCOPE="user" VALUE="abcdef">
<@ASSIGN NAME="array" SCOPE=user" VALUE="<@ARRAY
ROWS=’5’ COLS=’3’>">

<@VARINFO> returns the following values:

<@VARINFO NAME="scalar" SCOPE="user" ATTRIBUTE="type">
(returns “text”)

<@VARINFO NAME="scalar" SCOPE="user" ATTRIBUTE="rows">
(returns “0”)

<@VARINFO NAME="scalar" SCOPE="user" ATTRIBUTE="cols">
(returns “0”)

<@VARINFO NAME="array" SCOPE="user" ATTRIBUTE="type">
(returns “array”)

<@VARINFO NAME="array" SCOPE="user" ATTRIBUTE="rows">
(returns “5”)

<@VARINFO NAME="array" SCOPE="user" ATTRIBUTE="cols">
(returns “3”)

See Also <@ASSIGN> page 41
<@VAR> page 184
<@VARNAMES> page 190
189 189

<@VARNAMES>
<@VARNAMES>

Syntax <@VARNAMES SCOPE=scope>

Description Returns an array containing all variable names for a given scope.
See <@VAR> for an explanation of the scoping rules. The result array
has one column and n rows where n is the number of variables in
the specified scope.

Example The following returns all variable names for the current user scope
using the default array formatting:

<@ASSIGN NAME="myvarnames" VALUE="<@VARNAMES
SCOPE=’user’>">
<@VAR NAME="myvarnames">

See Also <@ASSIGN> page 41
<@VAR> page 184
190190

<@VERSION>
<@VERSION>

Syntax <@VERSION [ENCODING=encoding]>

Description Returns the version number of Tango Server.

Example <@VERSION> returns the version number of Tango Server, for
example, “3.0.012”.

See Also Encoding Attribute page 10
<@PLATFORM> page 133
191 191

<@!>
<@!>

Syntax <@! COMMENT=comment>

Description Used to insert short comments in your application files. This tag is
similar to the <@COMMENT> meta tag, except the comment goes
inside the required attribute COMMENT, rather than between the
<@COMMENT> and </@COMMENT> tags.

The tag and its contents are not returned the browser and any meta
tags in the COMMENT attribute are not processed.

The attributes of this tag must obey all the quoting rules specified
in “Quoting Attributes” on page 8; for example, if the COMMENT
attribute contains spaces, you may not omit the quotes surrounding
the attribute value.

Example <@! COMMENT="Here is a comment.">

<@! "This code was written by Fred on 5/4.">

See Also <@COMMENT> </@COMMENT> page 69
<@EXCLUDE> </@EXCLUDE> page 96
192192

2
C H A P T E R 2

Configuration Variables

Setting Tango Options With Configuration Variables

Configuration variables set options controlling the operation of Tango
Server. This chapter describes the configuration variables and also
lists their default values and the scopes in which they are valid.

Configuration variables with scope other than system can be set
just like any other variable: use the <@ASSIGN> meta tag with the
SCOPE attribute set in HTML or in the Assign action when building
an application file. See “Working With Variables” in Chapter 7 of
the User’s Guide for details of variable assignment.

To change system configuration variables, you must first set
configPasswd with scope=USER to match the system configuration
variable configPasswd, or you can use the config.taf application
file to set system configuration variables more easily. See the
chapter “Using Tango Server” in the User’s Guide, and the Getting
Started Guide for details.

Tango Server switches (for example, fileReadSwitch,
javaSwitch) are special configuration variables that enable or
disable certain Tango features. Documentation on Tango Server
switches is provided in the User’s Guide: see “Feature Switches” in
the chapter “Using Tango Server” for details on these configuration
variables.

Configuration variables are saved in the configuration file
(t3server.ini on Windows and UNIX and Tango 3 Server
Preferences under Mac OS). See the chapter “Using Tango
Server” in the User’s Guide for more details about this file.
193

Configuration Variables
A Note on Scope

The description for each configuration variable lists the scopes in
which they are valid (for example, “Valid in all scopes” or “System
scope only”).

Note Configuration variables are never valid in cookie scope.

For more information,
see “Understanding
Scope” in Chapter 7 of
the User’s Guide.

For those variables that belong to all or a variety of scopes, adding
scope specifications has the following effects:

■ scope=LOCAL sets the configuration variable value for the
current application file.

■ scope=USER sets the configuration variable value to be used
with the current user.

■ scope=DOMAIN sets the configuration variable value to be used
in the current domain.

For more information,
see the chapter “Using
Tango Server” in the
User’s Guide.

■ scope=SYSTEM sets the configuration variable value to be used
in Tango Server. An administrative password is required to set
or change the value of a system configuration variable.
194194

A Note on Default Locations
A Note on Default Locations

The following paths are the system defaults under different
operating systems for files whose locations are set by Tango
configuration variables.

■ Mac OS
StartupDisk:System Folder:Preferences:Tango3

■ Windows NT
C:\WinNT\Tango3\

■ Windows 95
C:\Windows\Tango3\

Note Under Windows, the drive letter may be different than “C”,
depending on where Windows is installed.

■ UNIX
/var/opt/EDI/

This affects the following configuration variables:

defaultErrorFile page 205
headerFile page 207
logDir page 209
pidFile page 213
timeoutHTML page 220
varCachePath page 223
195 195

Configuration Variables
altUserKey

See “userKey, altuserKey” on page 221.

aPrefix

Valid in all scopes This variable sets the prefix character for the entire array when the
meta tag <@VAR> is used to return the value of an array and convert
the array values to text (for example, in Results HTML).

For more information,
see “Arrays” in
Chapter 7 of the User’s
Guide.

The default value of this variable is <TABLE BORDER="1">, so that
returning the values of arrays when arrays are converted to text
generates HTML tables.

See Also

aSuffix page 196
cPrefix page 198
cSuffix page 199
rPrefix page 215
rSuffix page 215

aSuffix

Valid in all scopes This variable sets the suffix character for the entire array when the
meta tag <@VAR> is used to return the value of an array and convert
the array values to text (for example, in Results HTML).

For more information,
see “Arrays” in
Chapter 7 of the User’s
Guide.

The default value of this variable is </TABLE>, so that returning the
values of arrays when arrays are converted to text generates HTML
tables.

See Also

aPrefix page 196
cPrefix page 198
cSuffix page 199
rPrefix page 215
rSuffix page 215
196196

cache
cache

System scope only This configuration variable turns the Tango Server cache on or off.
Possible values are true and false.

The default value of this variable is true.

See Also

cacheSize page 197

cacheSize

System scope only The value of this configuration variable specifies, in bytes, how
much of Tango memory is used for caching application files and
files referenced with <@INCLUDE>.

Tango Server caches in memory each file it reads, so that
subsequent accesses of the same file are faster. The maximum size
of the cache is controlled by this configuration variable. When the
cache fills up, and Tango tries to load an uncached file, any cached
included files are purged to make room. If that fails to free enough
memory to load the file, the cached application files are purged.

You should set the value of cacheSize to a value large enough to
accommodate the files that are regularly accessed by Tango.

The default value of cacheSize is 2000000.

See Also

cache page 197

cDelim

Valid in all scopes This variable sets the default delimiter character between columns
for creating arrays with the meta tag <@ARRAY>.

For more information,
see “Arrays” in
Chapter 7 of the User’s
Guide.

The default value of this variable is “,”.

See Also

rDelim page 214
197 197

Configuration Variables
configPasswd

User and system
scopes

This configuration variable sets the password that must be entered
for a user to be allowed to change system configuration variables.

When you attempt to set a system configuration variable, Tango
checks to see if there is a user variable called configPasswd that
matches the corresponding system variable. If there is, Tango lets
you change configuration variables. If not, Tango returns an error
message.

For more information,
see the chapter “Using
Tango Server” in the
User’s Guide.

That is, before attempting to set system configuration variables,
you must assign the value to the configPasswd user variable that
matches the system configuration variable configPasswd.

When you use the config.taf application file, you are prompted
for this password.

cPrefix

Valid in all scopes This variable sets the prefix character for columns (that is,
individual data items) of an array. The meta tag <@VAR> is used to
return the value of an array and convert the array values to text (for
example, in Results HTML).

For more information,
see “Arrays” in
Chapter 7 of the User’s
Guide.

The default value of this variable is <TD>, so that returning the
values of arrays when arrays are converted to text generates HTML
tables.

See Also

aPrefix page 196
aSuffix page 196
cSuffix page 199
rPrefix page 215
rSuffix page 215
198198

crontabFile
crontabFile

System scope only This configuration variable points to the crontab file used to set up
timed URL processing with Tango.

For more information,
see “Timed URL
Processing With Tango
Server” in the chapter
“Using Tango Server” in
the User’s Guide.

The default value of this configuration variable is empty.

cSuffix

Valid in all scopes This variable sets the suffix character for columns in an array that is
returned when the meta tag <@VAR> is used to return the value of an
array and convert the array values to text (for example, in Results
HTML).

For more information,
see “Arrays” in
Chapter 7 of the User’s
Guide.

The default value of this variable is </TD>, so that returning the
values of arrays when arrays are converted to text generates HTML
tables.

See Also

aPrefix page 196
aSuffix page 196
cPrefix page 198
rPrefix page 215
rSuffix page 215

currencyChar

Valid in all scopes

(local scope invalid when
staticNumericChars=true)

The value of this configuration variable tells Tango Server what
character string is used as the currency symbol in money values
(for example, in the USA and Canada, the dollar sign ($) is used).
Values up to three characters in length may be assigned to
currencyChar. If a longer value is assigned, only the first three
characters are used.

Tango Server uses this value in order to properly evaluate numbers
in conditional comparisons (for example, Branch action, <@IF>,
<@IFEQUAL> and <@ISNUM> meta tags) and in calculations
199 199

Configuration Variables
performed with <@CALC>; that is, it recognizes that strings that start
or end with these characters are to be treated as numeric and not
text.

The setting is also used when Tango Server is constructing SQL for
Search, Insert, Update, and Delete actions. Tango automatically
removes the character string specified by currencyChar from any
values specified for numeric columns. Use the <@DSNUM> meta tag
to perform the same function on numbers you specify in Direct
DBMS actions.

The default value of currencyChar is $.

On Mac OS, the default is the corresponding setting in the Numbers
control panel on the server computer. You may always revert to the
default setting by assigning an empty value to this configuration
variable.

currencyChar and Scope

For more information, see
“staticNumericChars” on
page 217.

When staticNumericChars has the value TRUE (the default),
changing the value of currencyChar has no effect during the
execution of an application file. Changes to currencyChar in user,
domain, or system scope take effect with the next application file
execution; as a consequence, changes to currencyChar in local
scope have no effect.

See “Understanding
Scope” in Chapter 7 of
the User’s Guide.

When staticNumericChars has the value FALSE, currencyChar
works with scope in the standard way.

See Also

DBDecimalChar page 203
decimalChar page 204
<@DSDATE> page 89
<@DSNUM> page 91
<@DSTIME> page 89
<@DSTIMESTAMP> page 89
staticNumericChars page 217
thousandsChar page 218

dataSourceLife

System scope only Tango Enterprise only.

The value of this configuration variable indicates how long the
Tango Server keeps open an unused connection to a data source.
200200

dateFormat, timeFormat, timestampFormat
This variable is specified in minutes. When the time out period is
exceeded, the connection to the data source is closed. Each time a
data source connection is used, its timeout timer is reset to zero.

When this configuration variable is set to zero, data source
connections are always closed immediately after use. Multiple
actions in the same execution using the same data source use the
same connection; that is, the connection is not closed until the end
of the application file execution.

The default value is 30 (minutes).

dateFormat, timeFormat, timestampFormat

Valid in all scopes Tango Enterprise only: These configuration variables allow you to
specify the formats for displaying and entering date, time, and
timestamp values. The formats determine the default display
formats of retrieved database values as well as those returned by
the <@CURRENTDATE>, <@CURRENTTIME>, and
<@CURRENTTIMESTAMP> meta tags. Date, time, and timestamp
values specified in Update and Insert actions, and those in criteria
values must match the formats specified in these configuration
variables. Tango converts these values to the formats required by
the database.

Note On Mac OS, the default values for dateFormat,
timeFormat, and timestampFormat, if they are not explicitly
set, come from the Date & Time control panel of the computer
running Tango.

FileMaker Pro data sources only: These configuration variables
determine how the date, time, and timestamp values returned by
the <@CURRENTDATE>, <@CURRENTTIME>, and
<@CURRENTTIMESTAMP> meta tags are formatted. Date, time, and
timestamp values specified in Update and Insert actions, and those
in criteria values must match the format specified in the Date &
Time control panel of the Macintosh running the FileMaker Pro
application.

For more information,
see “DATETIME” on
page 16.

To control the format of dates and times returned by FileMaker Pro,
use the FORMAT attribute with the datetime: class of formatting.
201 201

Configuration Variables
The following table shows valid formatting codes.

Date and Time Formatting Codes

Code Description

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of month (01–31)

%H hour (24 hour clock)

%I hour (12 hour clock)

%j day of the year (001–366)

%m month (01–12)

%M minute (00–59)

%p local equivalent of AM or PM

%S second (00–59)

%U week number of the year (Sunday as first day of week)
(00–53)

%w weekday (0–6, Sunday is zero)

%W week number of the year (Monday as first day of week)
(00–53)

%x local date representation

%X local time representation

%y year without century (00–99)

%Y year with century

%% % sign
202202

DBDecimalChar
Examples

If the following date and time formats were used on the twenty-
eighth of July, 1998, at 6:30 PM:

%A, %B %d, %Y returns “Sunday, July 28, 1998”
%m/%d/%Y returns “07/28/1998”
%H:%M:%S returns “18:30:00”
%I:%M %p returns “6:30 PM”

The default values of the configuration variables are given in the
following table:

DBDecimalChar

Valid in all scopes The value of this configuration variable tells Tango Server what
decimal character ODBC data sources require in numbers. This
value may be determined by the ODBC driver, the database
vendor’s client software, or the DBMS server. You must make sure
you set this configuration variable appropriately for the ODBC data
sources you are accessing with Tango Server.

If you use ODBC data sources requiring different decimal
characters, you may use the DBDecimalChar with scope=LOCAL to
change this setting temporarily while accessing a specific data
source.

The setting of DBDecimalChar is used when Tango Server is
constructing SQL for Search, Insert, Update, and Delete actions that
use ODBC data sources. If necessary—for example, when
DBDecimalChar differs from decimalChar—Tango automatically
converts values specified for numeric columns to use the decimal
character specified in DBDecimalChar. Use the <@DSNUM> meta tag
to perform the same function on numbers you specify in Direct
DBMS actions using an ODBC data source.

Configuration Variable Default Value

dateFormat %m/%d/%Y

timeFormat %H:%M:%S

timestampFormat %m/%d/%Y %H:%M:%S.
203 203

Configuration Variables
The default value of DBDecimalChar is a period (“.”).

See Also

currencyChar page 199
decimalChar page 204
thousandsChar page 218
<@DSDATE> page 89
<@DSTIME> page 89
<@DSTIMESTAMP> page 89
<@DSNUM> page 91

debugMode

Valid in all scopes This configuration variable sets whether debug mode is on.

For more information,
see “Debugging
Application Files” in
Chapter 3 of the User’s
Guide.

The default value of this variable is appFileSetting, which allows
the application file setting of debug mode (the checkbox) to set
whether a particular application file has debug mode on or off.

Other possible values are forceOn and forceOff, which override
any application file settings (that is, overrides the debug checkbox
in the application file).

decimalChar

Valid in all scopes

(local scope invalid when
staticNumericChars=true)

The value of this configuration variable tells Tango Server what
character is used as the decimal character in numbers. In the US,
the period, “.”, is normally used for this purpose. Only a single
character may be assigned to decimalChar. If a longer value is
assigned to decimalChar, only the first character is used.

Tango Server uses this value in order to properly evaluate numbers
in conditional comparisons (Branch action, <@IF>, and
<@IFEQUAL>) and in calculations performed with <@CALC>. The
setting is also used when Tango Server is constructing SQL for
Search, Insert, Update, and Delete actions. If necessary, Tango
automatically converts values specified for numeric columns to use
the decimal character required by the DBMS.

Use the <@DSNUM> meta tag to perform the same function on
numbers you specify in Direct DBMS actions.
204204

defaultErrorFile
Tango uses this setting to format any numeric values retrieved from
a data source.

The default value of decimalChar is “.” (a period).

On Mac OS, the default is the corresponding setting in the Numbers
control panel on the server computer. You may always revert to the
default setting by assigning an empty value to this configuration
variable.

decimalChar and Scope

For more information, see
“staticNumericChars” on
page 217.

When staticNumericChars has the value TRUE (the default),
changing the value of decimalChar has no effect during the
execution of an application file. Changes to decimalChar in user,
domain, or system scope take effect with the next application file
execution; as a consequence, changes to decimalChar in local scope
have no effect.

See “Understanding
Scope” in Chapter 7 of
the User’s Guide.

When staticNumericChars has the value FALSE, decimalChar
works with scope in the standard way.

See Also

currencyChar page 199
DBDecimalChar page 203
<@DSDATE> page 89
<@DSNUM> page 91
<@DSTIME> page 89
<@DSTIMESTAMP> page 89
staticNumericChars page 217
thousandsChar page 218

defaultErrorFile

System scope only This configuration variable specifies a path to a file on the Tango
Server machine. Tango uses the contents of this file as the error
message returned to a user whenever an error condition occurs
within an application file (unless you have specified Error HTML
within the application file itself).

The default error file is error.htx. This file is in HTML format and
may contain meta tags. You can edit the file with a text or HTML
editor.
205 205

Configuration Variables
defaultScope

Local or system
scope

This configuration variable sets the default scope that variables are
created with when the Assign action or the <@ASSIGN> meta tag are
used without specifying a scope.

The default value of defaultScope is user.

domainScopeKey

System scope only This configuration variable sets the key for the domain scope; that
is, what value Tango uses in order to determine which domain a
request originated from and the value it uses as a key to find
domain variables internally.

The default value is <@CIPHER action=hash str="<@CGIPARAM
server_name>>. This uses an encrypted form of the domain. The
value of the domainScopeKey cannot be greater than 32 characters.
<@CIPHER action=hash> always results in a 32 character string.

When you assign a value to domainScopeKey, you must tell Tango
Server to evaluate the meta tag only when domain variables need
to be keyed. This is done with the <@LITERAL> meta tag.

For more information,
see “<@LITERAL>” on
page 123.

For example, the syntax of the assignment to userKey of its default
value would be as follows:

<@ASSIGN NAME=domainScopeKey VALUE=
<@LITERAL VALUE="<@CIPHER action=hash
str=’<@CGIPARAM server_name>>’>

Tip It may sometimes be necessary to add security to
domainScopeKey, for example, if one copy of Tango is serving
application files from several different domains and the system
administrator wanted to prevent the administrators of each
domain from using the encrypted form of the domain as the scope
setting that would give them access to another domain’s
variables.

You can add a password to the value of domainScopeKey, that
is:

<@CIPHER action=hash str="<@CGIPARAM
server_name>password">

(Substitute your own value for password.)
206206

DSConfig
Because other administrators would not know the password, they
could not generate the correct string that is used as
domainScopeKey.

DSConfig

System scope only This configuration variable allows you to modify some Tango data
source parameters which may be required to tune database
performance on an individual basis. These parameters include
whether the data source driver is thread-safe, and the maximum
number of connections allowed to the data source.

DSConfig contains an array, and is not specified within the Tango 3
Server Preferences (Mac OS) or t3server.ini (Windows and
UNIX) file. The contents of the DSConfig array are written to and
read from a file.

For more information on
the format and location
of this file, see
“DSConfigFile” on
page 208.

By default, this file is called Data Source Preferences (Mac OS)
or dsConfig.ini (Windows and UNIX). You can also set the name
and location of the file to something other than the default by
modifying the value of the DSConfigFile configuration variable.

It is recommended that
you use the config.taf
application file to modify
the values of this
variable.

Caution Do not edit the Data Source Preferences or
dsConfig.ini file directly when Tango Server is running. Either
stop Tango Server and edit this file, or use the config.taf file or
your own application files to create or modify the DSConfig array,
which is then automatically written out to the Data Source
Preferences or dsConfig.inifile.

When DSConfig is updated, changes are written immediately to the
file specified by DSConfigFile.

For more information on
the structure of the data
source configuration file,
see “DSConfigFile” on
page 208.

The DSConfig array has the following structure:

The type parameter defines the type of data source: ODBC, Oracle
or DAM. The name parameter defines the name of the data source,
the Oracle alias or connect string, or the DAM host name.

The maxconnections parameter defines the maximum number of
connections that Tango Server makes to the datasource. The default
is ‘0’ (no limit).

Row 0 type.name type.name

Row 1 (maxconnections) n n

Row 2 (singlethreaded) 1 or 0 1 or 0
207 207

Configuration Variables
Setting maxconnections to a value other than zero can be useful if
you have a limited user license for your database server. For
example, if you have a five-user license only, Tango Server may use
all of the connections when running application files. Setting the
maxconnections value to less than five allows other users to
connect to the database while Tango Server is also running.
However, you should not set maxconnections to a value which is
too low for your data source setup; for example, if maxconnections
is set to “2” and Tango Server has two open database connections,
the next user that tries to connect via Tango Server to a database
may experience a wait until the connection is free, or the query may
time out when the queryTimeout value is reached.

The singlethreaded parameter allows you to override what the
data source tells Tango about its thread safety. If you suspect your
driver is not thread-safe; that is, cannot be run in a multi-threaded
configuration with no ill effects, you can set this parameter to “1”
(true), which means that Tango Server only allows one thread to
use the driver at any time.

If multiple data sources are using the same driver, which you want
to set as singlethreaded, you must specify singlethreaded for
each data source.

DSConfigFile

System scope only This configuration variable contains the name of the data source
configuration file to read from and write to. The default path is to
Data Source Preferences (Mac OS) or dsConfig.ini (Windows
and UNIX) in the same folder as Tango 3 Server Preferences
(Mac OS) or t3server.ini (Windows and UNIX); that is, on
Mac OS, the Tango 3 folder within the Preferences folder within
the System folder.

The Data Source Preferences file is structured as follows:

[Data Sources]
myFirstDS=comment on first ds
mySecondDS=comment on second ds

[myFirstDS]
TYPE=ODBC
MAXCONNECTIONS=0
SINGLETHREADED=1
208208

encodeResults
[mySecondDS]
TYPE=Oracle
MAXCONNECTIONS=5
SINGLETHREADED=0

For more information on the parameters that are set in this file, see
“DSConfig” on page 207.

Stanza names must be unique in this file. Stanza names are one of
the following: the name of the ODBC data source, the Oracle alias
or connect string, or the DAM host name.

On server startup, if DSConfigFile contains a valid path to an
existing file, the contents of the file are used to set up the DSConfig
variable.

encodeResults

Valid in all scopes This configuration variable tells Tango whether or not to encode
the output sent to the Web browser by Tango in standard HTML
format; specifically, changing all high-bit characters to their
encoded forms. For example, “é” (a high-bit character, not in the
standard ASCII set) is encoded in HTML as é. If you would
like to send binary data, or are using a character set other than ISO
Latin-1, you can set this value to false.

The default value of this variable is true.

FMDatabaseDir

System scope only Mac OS only.

The value of this configuration variable is a path telling Tango
where to look for local FileMaker Pro databases. When Tango tries
to connect to a local data source and finds that the database is not
open, it looks in this folder and opens the database (if present).

headerFile

System scope only This configuration variable sets the file to be used as the HTTP
header that is returned every time a reply is sent to a Web browser.
The default value of this configuration variable is header.htx.
209 209

Configuration Variables
httpHeader

Valid in all scopes This configuration variable determines the HTTP header used
when Tango Server returns results to a user. The HTTP header
sends information to a Web browser about the request: whether it
was successful and what kind of information is being returned. It
can also be used to redirect the browser to a different URL.
.

For more information,
see “headerFile” on
page 209.

Note Changes made to this configuration variable are not saved;
it reverts to the value specified in the file pointed to by the
headerFile each time you start Tango Server (the default). To
make a permanent change to the HTTP header, use headerFile.

The value of httpHeader scope=local determines the content of
the HTTP header for the result of the current application file
execution. You may set this at any point in the file execution.

itemBufferSize

System scope only Specifies the size, in bytes, of the largest column value that can be
retrieved from a data source. You need to increase this value only if
you need to retrieve large values. The default value is 65535 (64K).

license

System scope only This configuration variable contains your Tango Server registration
number. The server runs only if a valid license number is entered.
210210

listenerPort
listenerPort

System scope only Windows and UNIX only.

This configuration variable sets the port number used by the Tango
Server to listen for requests from the Tango CGI. This number can
be any valid port number that is not currently in use on your
system. (Various UNIX operating systems and applications reserve
ports.)

The default value is 18000.

lockConfig

System scope only If this configuration variable is present and set to ‘true’, the Tango
Server configuration file (Tango 3 Server Preferences on
Mac OS, t3server.ini on Windows and UNIX) is set to read-only;
that is, changes made to configuration variables within the course
of an application file execution are not written out to disk. They
must be made manually to the configuration file.

If this configuration variable is not present, or is present and set to
“false”, there is no effect.

This configuration variable cannot be set with the config.taf
application file: you must manually add the following entry to
Tango 3 Server Preferences:

LOCKCONFIG=true

logDir

System scope only This configuration variable sets the directory used for logging. The
log directory should be unique for every Tango Server running on
the same machine.

The default value of this variable is {default path}log.{name of
server}; for example, on Windows NT running the Tango
Development Studio, the default value of the variable is
C:\WinNT\Tango3\log.Tango_3_Personal_Server.
211 211

Configuration Variables
loggingLevel

Valid in all scopes This configuration variable controls what information is written to
the Tango.log file. There are five values that can be assigned to this
configuration variable, corresponding the five possible levels of
logging.

The following table lists each value and describes what information
is logged.

Higher logging levels may affect the performance of your Web
server, particularly if there is a lot of traffic. You may want to use
high logging levels (particularly LogLevel3 and LogLevel4) only
while you need to track down problems with your application files.

The default value of loggingLevel is NoLogging.

See Also

debugMode page 204
logToResults page 212

logToResults

Valid in all scopes Controls whether the logging information execution is returned
with Results HTML. This option is useful for debugging. When set
to true, all the information written to the Tango log file for an
application file execution is also returned with the Results HTML.
The default value of logToResults is false.

The current setting of loggingLevel configuration variable
determines the amount of information logged. To see logging

Level Information Logged

NoLogging None

LogLevel1 application file execution, search and post argument
values.

LogLevel2 LogLevel1 information plus application file actions.

LogLevel3 LogLevel2 information plus generated SQL, variable and
action result values.

LogLevel4 LogLevel3 information plus Results HTML.
212212

mailDefaultFrom
information for a particular application file execution, assign true
to this configuration variable with scope=LOCAL.

Note Selecting the Debug mode option in the application file
window is equivalent to setting logToResults scope=LOCAL
to true and loggingLevelscope=LOCAL to LogLevel3.
Because these variables are set with local scope, they are only set
to these values for the duration of the file execution.

See Also

debugMode page 204
loggingLevel page 212

mailDefaultFrom

Valid in all scopes This configuration variable determines the default From value for e-
mail messages sent using the Mail action of Tango.

For more details on
timed URL processing
and startup/shutdown
URLs, see the chapter
“Using Tango Server” in
the User’s Guide.

This default is overridden by any value you type in the From field
of the Mail action.

This configuration variable is also used as the default value of the
FROM attribute of the <@URL> tag, and the From value in HTTP
requests generated by Tango’s timed URL processing, startup/
shutdown URLs, and the URL specified in
variableTimeoutTrigger.

See Also

mailPort page 213
mailServer page 214

mailPort

System scope only This configuration variable specifies the port that the e-mail server
specified by mailServer uses.
213 213

Configuration Variables
The default value of this variable is 25.

See Also

mailDefaultFrom page 213
mailServer page 214

mailServer

System scope only This configuration variable sets the SMTP e-mail server that is used
for messages sent with the Mail action.

See Also

mailDefaultFrom page 213
mailPort page 213

maxActions

System scope only If this configuration variable is set to a positive number (the default
is zero), the number of Tango actions executed so far by a query is
checked against the value of this variable. If the number of actions
exceeds the value, the query aborts and returns an error.

Note A looping query always aborts when the execution time
exceeds the time specified in the configuration variable
queryTimeout. maxActions provides finer control over
infinite loops.

See Also

queryTimeout page 217

maxHeapSize

System scope only UNIX only.

This configuration variable sets the maximum allowable heap size,
in bytes. Tango Server restarts itself in a clean state, if its heap size
exceeds this value.
214214

maxSessions
The default value is 20000000.

maxSessions

System scope only Mac OS only.

This system configuration variable determines the maximum
number of sessions Tango Server opens for a particular data source
host. It accepts any positive integer as a value. A value of zero
indicates no maximum.

Note This system configuration variable is applicable only to
DAM data sources under Mac OS. It has no effect on connections
made to other data source types or on other operating systems.

The default value of maxSessions is zero, indicating that there is no
limit on the number of data source connections that Tango Server
makes to a particular DAM host.

noSQLEncoding

Valid in all scopes Tango Enterprise only.

This configuration variable determines whether text in Direct
DBMS actions is SQL-encoded by default (single quote characters
doubled). The default value is false. Setting the value to true turns
off automatic SQL-encoding in Direct DBMS actions.

For more information,
see “Direct DBMS SQL
Auto-Encoding” in the
chapter “Using
Advanced Database
Actions” in the User’s
Guide.

If noSQLEncoding is set to true, you can use the ENCODING=SQL
attribute on most value-returning meta tags to SQL-encode the
value returned by that meta tag.

See Also

Encoding Attribute page 10

persistentRestart

System scope only Windows and UNIX only.
215 215

Configuration Variables
This configuration variable controls how the server handles an
automatic restart. An automatic restart is initiated when
maxHeapSize is exceeded (UNIX only) and when Tango detects a
problem with servicing requests.

When set to true, the server first attempts to completely shut down
the running server before restarting a new one. All variables in use
at the time of the shutdown are preserved.

When set to false, a new server is started immediately, even before
the old one is stopped. This setting ensures high server availability,
but variables from the old server instance are not available in the
new one. The default value is true.

See Also

maxHeapSize page 214

pidFile

System scope only Windows and UNIX only.

This configuration variable sets the location of a file is used to track
the Tango Server process. It should have a unique name for every
Tango Server running on the same machine. The default value is
{default path}pid.{name of server}.

postArgFilter

Valid in all scopes The postArgFilter configuration variable accepts a value
containing one or more characters, each of which is automatically
removed from post argument values received by Tango Server. The
characters can be specified by their ASCII number using the
<@CHAR> tag.

For more information,
see “<@CGIPATH>” on
page 61.

This configuration variable is useful for automatically removing
the linefeeds that some Web browsers use for ending lines entered
into <TEXTAREA> form fields, and that appear as boxes in Mac OS
database applications. To use postArgFilter for this purpose,
assign <@CHAR 10> to it.

The default value of postArgFilter is empty.
216216

queryTimeout
queryTimeout

System scope only This configuration file variable causes queries that exceed the
specified number of seconds to time out and return the HTML page
specified in timeoutHTML. This variable is specified in seconds.

The default value of queryTimeout is 300.

See Also

timeoutHTML page 222

rDelim

Valid in all scopes This variable sets the default delimiter character between rows for
creating arrays with the meta tag <@ARRAY>.

For more information,
see “Arrays” in
Chapter 7 of the User’s
Guide.

The default value of this variable is “;”.

This variable is valid in all scopes.

See Also

cDelim page 197

returnDepth

System scope only This configuration file option sets the maximum number of branch
“levels” that you can have in a Tango application file. This applies
to Branch actions that have the Return option set. It specifies the
number of returns that can be outstanding at any time. If this limit
is exceeded during an application file execution, an error occurs.

The default is 20. Setting this configuration variable to a larger
value may increase the memory requirements of Tango Server.

rPrefix

Valid in all scopes This variable sets the prefix character for array rows that is
returned when the meta tag <@VAR> is used to return the value of an
217 217

Configuration Variables
array and convert the array values to text (for example, in Results
HTML).

For more information,
see “Returning the Value
of Arrays” in Chapter 7
of the User’s Guide.

The default value of this variable is <TR>, so that returning the
values of arrays when arrays are converted to text generates HTML
tables.

See Also

aPrefix page 196
aSuffix page 196
cPrefix page 198
cSuffix page 199
rSuffix page 218

rSuffix

Valid in all scopes This variable sets the suffix character for array rows that is returned
when the meta tag <@VAR> is used to return the value of an array
and convert the array values to text (for example, in Results
HTML).

For more information,
see “Returning the Value
of Arrays” in Chapter 7
of the User’s Guide.

The default value of this variable is </TR>, so that returning the
values of arrays when arrays are converted to text generates HTML
tables.

See Also

aPrefix page 196
aSuffix page 196
cPrefix page 198
cSuffix page 199
rPrefix page 217

shutdownUrl

System scope only This configuration variable contains the HTTP URL to be requested
when Tango Server shuts down.
218218

startStopTimeout
For more information,
see “Startup and
Shutdown URL
Processing” in the
chapter “Using Tango
Server” in the User’s
Guide.

The default value is empty.

See Also

startStopTimeout page 219
startupUrl page 219

startStopTimeout

System scope only This configuration variable determines how long the Tango Server
waits for a response from the URLs that are called when Tango
Server shuts down or starts up. The value is specified in seconds.

For more information,
see “Startup and
Shutdown URL
Processing” in
Chapter 20 of the User’s
Guide.

The default value is 60.

See Also

shutdownUrl page 218
startupUrl page 219

startupUrl

System scope only This configuration variable contains the HTTP URL, if any, that is
requested when Tango Server starts up.

For more information,
see “Startup and
Shutdown URL
Processing” in the
chapter “Using Tango
Server” in the User’s
Guide.

The default value is empty.

See Also

shutdownUrl page 218
startStopTimeout page 219

staticNumericChars

System scope only This configuration variable determines when Tango Server checks
for changes to the configuration variables that determine the
thousands, decimal, and currency characters used for numerical
evaluation.

The default value of TRUE means Tango Server obtains these
characters from the thousandsChar, decimalChar, and
currencyChar configuration variables at the beginning of each
219 219

Configuration Variables
application file execution only. Any changes to the user, domain,
and system scope variables take effect with the next application file
execution. Local scope for these configuration variables is never
used when staticNumericChars has the value TRUE.

When staticNumericChars has the value FALSE, any changes to
the thousandsChar, decimalChar, and currencyChar
configuration variables in any scope take effect immediately.

Tip There is a significant performance benefit to a setting of TRUE
for this configuration variable. Use a setting of FALSE only if you
must support different numeric formats over the course of a
single application file execution.

stripCHARs

Valid in all scopes This configuration variable sets whether CHAR (fixed-length text
field) data from data sources is automatically stripped of trailing
spaces. Possible values are true and false.

The default value is true.

threadPoolSize

System scope only Windows and UNIX only.

This variable determines the number of worker threads that the
Tango Server allocates to process requests. This is the maximum
number of requests that Tango Server tries to process
simultaneously. If the number of concurrent requests reaches this
limit, additional requests are queued until threads become
available. Increasing this number may have a detrimental effect on
hardware that cannot support the load. The default value is 20.

thousandsChar

Valid in all scopes

(local scope invalid when
staticNumericChars=true)

The value of this configuration variable tells Tango Server what
character is used as the thousands separator in numbers. For
example, in the US, the comma (“,”) is normally used for this
220220

thousandsChar
purpose. Only a single character may be assigned to
thousandsChar. If a longer value is assigned to it, only the first
character is used. The value also should not be the same one
specified for the decimalChar configuration variable, as this would
create confusion when numbers were specified.

Tango Server uses this value in order to properly evaluate numbers
in conditional comparisons (for example, Branch action, <@IF>,
<@IFEQUAL> and <@ISNUM> meta tags) and in calculations
performed with the <@CALC> meta tag.

The setting is also used when Tango Server is constructing SQL for
Search, Insert, Update, and Delete actions. Tango automatically
removes the character specified by thousandsChar from any
values specified for numeric columns. Use the <@DSNUM> meta tag
to perform the same function on numbers you specify in Direct
DBMS actions.

The default value of thousandsChar is “,” (a comma).

On Mac OS, the default is the corresponding setting in the Numbers
control panel on the server computer. You may always revert to the
default setting by assigning an empty value to this configuration
variable.

thousandsChar and Scope

For more information, see
“staticNumericChars” on
page 219.

When staticNumericChars has the value TRUE (the default),
changing the value of thousandsChar has no effect during the
execution of an application file. Changes to thousandsChar in user,
domain, or system scope take effect with the next application file
execution; as a consequence, changes to thousandsChar in local
scope have no effect.

See “Understanding
Scope” in Chapter 7 of
the User’s Guide.

When staticNumericChars has the value FALSE, thousandsChar
works with scope in the standard way.

See Also

currencyChar page 199
DBDecimalChar page 203
decimalChar page 204
<@DSDATE> page 89
<@DSNUM> page 91
<@DSTIME> page 89
<@DSTIMESTAMP> page 89
staticNumericChars page 219
221 221

Configuration Variables
timeFormat

See “dateFormat, timeFormat, timestampFormat” on page 201.

timeoutHTML

System scope only This configuration variable points to the HTML file that is returned
when a query times out in the Tango Server.

The default value of this variable is timeout.html.

See Also

queryTimeout page 217

timestampFormat

See “dateFormat, timeFormat, timestampFormat” on page 201.

transactionBlocking

System scope only This configuration variable determines whether Tango Server
blocks other processes during a transaction. Transactions begin
with the Begin Transaction action and end when an End
Transaction action is reached, an error occurs (automatic rollback),
or the end of an application file or a Return action is reached
(automatic commit).

For more information,
see “Creating Database
Transactions” in the
User’s Guide.

This variable accepts TRUE or FALSE as values. The default value is
TRUE. It is read only at startup; a restart is required to effect changes
to it.

Caution Setting this configuration variable to FALSE may cause
poor performance due to record contention when multiple users
are executing transactions with Tango.
222222

userAgent
userAgent

Valid in all scopes The value of this configuration variable is used in the header of
HTTP requests sent by Tango Server as a result of timed URL
execution, startup and shutdown URLs, and the URL specified in
variableTimeoutTrigger. It is also used as the default value of the
USERAGENT attribute of the <@URL> meta tag.

The User-Agent value in HTTP requests gives the destination
server information about the program (such as, name, version, and
platform) that is requesting the URL. For instance, the User-Agent
value passed by Netscape Navigator 4.04 for Windows NT is:

Mozilla/4.04 [en] (WinNT; I)

Servers often use the user-agent information to determine the
format of the results returned. (Tango application files can get the
user-agent information from a request using <@CGIPARAM
NAME="USER_AGENT">.) For example, a server may return a special
version of a page, including browser-specific HTML for additional
features, when the browser is Netscape Navigator or Internet
Explorer.

The default value of userAgent is empty, causing Tango Server
URL requests to use "Tango Application Server/
[version]([platform])", where [version] and [platform] are
the values returned by <@VERSION> and <@PLATFORM> meta tags.

See Also

<@URL> page 178

userKey, altuserKey

Local, domain and
system scopes

These variables set the key used to identify users in Tango.

User variables let you store values associated with a particular user
of your Web site. These values can then be accessed in any
application file. In order for user variables to work properly, Tango
must be able to uniquely identify each user who accesses it. The
World Wide Web and the protocol it uses (HTTP) do not make this
easy. Tango gives you several options for specifying how Tango
identifies each user. You need to choose the one that best suits your
environment. You make this choice by assigning values to these
configuration variables.
223 223

Configuration Variables
The userKey and altuserKey configuration variables tell Tango
Server what piece(s) of information to use to identify a user when
assigning to and evaluating user variables. The value of userKey is
the default key for user variables. If its contents evaluate to empty,
altUserKey is used instead.

When you assign a value to userKey and altUserKey, you must
tell Tango Server not to evaluate the content of the VALUE attribute,
but instead to evaluate the meta tag when user variables need to be
keyed. This is done with the <@LITERAL> meta tag.

For more information,
see “<@URL>” on
page 178.

The syntax of the assignment to userKey of its default value would
be as follows:

<@ASSIGN NAME=userKey VALUE=<@LITERAL
VALUE="<@USERREFERENCE>">

When you use <@VAR> to get the value of either of these
configuration variables, the meta tags assigned to it are returned,
not the values of those meta tags, because of the use of the
<@LITERAL> meta tag. To get the actual value of the key, use the
ENCODING=METAHTML formatting parameter in <@VAR>.

For more information,
see “Encoding Attribute”
on page 10.

For example, <@VAR NAME=userKey> might return
<@USERREFERENCE>, indicating that user configuration variables are
keyed on the Tango user reference ID assigned to each user. To get
the actual value of the key for the current user, you would use
<@VAR NAME=userKey ENCODING=METAHTML>, which would return
the value of the string currently being used as the user key in the
current application file (a 24-digit hexadecimal string).

The default value of userKey is <@USERREFERENCE>. The default
value of altUserKey is empty.

See Also

<@CGIPARAM> page 58
<@USERREFERENCE> page 181
<@VAR> page 184

validHosts

System scope only Windows and UNIX only.

This configuration variable specifies a list of hosts from which
Tango Server accepts Tango CGI connections. The hosts are given in
a colon-separated list, in either domain name or IP address form.
224224

varCachePath

s

s

o
e

r
e
This prevents an arbitrary user on your network or the Internet
from using your Tango Server.

varCachePath

System scope only This specifies a folder to which Tango writes all variables when it i
shutdown, and re-reads those variables from when Tango is
started.

Note Variables continue to expire in the usual fashion; if you
restart Tango after the specified user timeout period has elapsed,
all the variables immediately expire upon being reloaded.

The default value of this variable is
{defaultpath}variables.{name of Tango Server}; for
example, on Windows NT when running the Tango Development
Studio, the value of the variable is
C:\WinNT\Tango3\variables.Tango_3_Personal_Server.

variableTimeout

User, domain, and
system scopes

The system scope version of this configuration variable determine
the default period, in minutes, after which domain and user
variables expire. For user variables, the expiry timer is reset to zer
each time the user accesses Tango Server. For domain variables, th
expiry timer is reset each time a user from the domain accesses
Tango Server.

Setting variableTimeout to zero indicates that variables never
expire. In general, this value is appropriate for the domain scope
only.

To change the expiry timeout period for domain variables only,
assign the desired value to variableTimeout in domain scope. Fo
example, to specify that domain scope variables never expire, mak
the following assignment:

<@ASSIGN NAME=variableTimeout SCOPE=domain VALUE=0>
225 225

Configuration Variables
Setting this variable with user scope sets the expiry timeout for the
current user, overriding the value in the system scope.

See Also

variableTimeoutTrigger page 226

variableTimeoutTrigger

User and domain
scopes

Just before a user’s or a domain’s variables expire, the HTTP URL
specified in that scope’s variableTimeoutTrigger is activated.
(The time after which variables expire is set in the configuration
variable variableTimeout.) This URL could be used to execute an
application file that clears the database of temporary user session
data, purges the user name from a list of logged-in chat users, or
many other possibilities.

There is no default timeout trigger. To have a trigger execute upon
the expiry of each user's variables, you would assign the desired
value to variableTimeoutTrigger (in user scope) at some point
during each user's session. To set a trigger for a particular domain,
you would assign to variableTimeoutTrigger in domain scope in
an application file being accessed from that domain.

The URL in this configuration variable cannot contain meta tags
because the trigger mechanism does not evaluate meta tags.
Nevertheless, you can include user- or domain-specific information
in the URL by including meta tags in the assignment to
variableTimeoutTrigger, which are evaluated at the time of the
assignment.

See Also

mailDefaultFrom page 213
userAgent page 223
variableTimeout page 225
226226

Index

Symbols
! meta tag 192

See also COMMENT, EXCLUDE

A
ABSROW meta tag 28
action

assign 193
ACTIONRESULT meta tag 29
ADDROWS meta tag 30

See also DELROWS, UNION
altUserKey 221
APPFILE meta tag 32
APPFILENAME meta tag 33

See also APPFILE, APPFILEPATH,
INCLUDE, URLENCODE

APPFILEPATH meta tag 34
application file

inserting comment 192
aPrefix 196
ARG meta tag 35
ARGNAMES meta tag 37
array

adding rows 30
deleting rows 82
exchanging for values 170
returning distinct rows 84
returning intersection of two arrays 111
returning matching rows 98
returning union of two arrays 174
sorting by columns 158

array in CALC 47
ARRAY meta tag 38
ASCII meta tag 40
assign action 193
ASSIGN meta tag 41, 193
aSuffix 196
attribute

ENCODING 8, 10
FORMAT 13

naming 7
quoting 8
value length 8

B
BREAK meta tag 44

See also COLS, CONTINUE, EXIT, FOR,
ROWS

C
cache 197
cacheSize 197
CALC meta tag 45, 50

array 47
calculation variables 50

calculation variables
CALC

string comparisons 50
cDelim 197
CGI meta tag 57
CGIPARAM meta tag 58
CGIPATH meta tag 61
CHAR meta tag 62
CIPHER meta tag 63
COL meta tag 66
COLS meta tag 67
COLUMN meta tag 68
COMMENT meta tag 69
configPasswd 198
configuration variable 193

altUserKey 221
aPrefix 196
aSuffix 196
cache 197
cacheSize 197
cDelim 197
configPasswd 198
cPrefix 198
crontabFile 199
225

Index
cSuffix 199
currencyChar 199
dataSourceLife 200
dateFormat 201
DBDecimalChar 203
debugMode 204
decimalChar 204
defaultErrorFile 205
defaultScope 206
domainScopeKey 206
encodeResults 207
FMDatabaseDir 207
headerFile 207
itemBufferSize 208
license 208
listenerPort 208
logDir 209
loggingLevel 209
logToResults 210
mailDefaultFrom 210
mailPort 211
mailServer 211
maxActions 211
maxHeapSize 212
maxSessions 212
noSQLEncoding 212
persistentRestart 213
pidFile 213
postArgFilter 214
queryTimeout 214
rDelim 214
returnDepth 215
rPrefix 215
rSuffix 215
shutdownUrl 216
startStopTimeout 216
startupUrl 217
staticNumericChars 217
stripCHARS 218
thousandsChar 218
threadPoolSize 218
timeFormat 201
timeoutHTML 220
timestampFormat 201
transactionBlocking 220
userAgent 220
userKey 221
validHosts 222
varCachePath 223
variableTimeout 223

variableTimeoutTrigger 224
CONTINUE meta tag 70

See also BREAK, COLS, EXIT, FOR, ROWS
cPrefix 198
CRLF meta tag 71
crontabFile 199
cSuffix 199
CURCOL meta tag 72
currencyChar 199
CURRENTACTION meta tag 73
CURRENTDATE meta tag 74
CURRENTTIME meta tag 74
CURRENTTIMESTAMP meta tag 74
CURROW meta tag 75

D
dataSourceLife 200
DATEDIFF meta tag 76
dateFormat 201
DATETOSECS meta tag 77
DAYS meta tag 79
DBDecimalChar 203
DBMS meta tag 80
DEBUG meta tag 81
debugMode 204
decimalChar 204
defaultErrorFile 205
defaultScope 206
DELROWS meta tag 82

See also ADDROWS
DISTINCT meta tag 84

See also FILTER, INTERSECT, SORT,
UNION

DOCS meta tag 87
domainScopeKey 206
DQ meta tag 88
DSDATE meta tag 89
DSNUM meta tag 91
DSTIME meta tag 89
DSTIMESTAMP meta tag 89
DSTYPE meta tag 92

E
ELSE meta tag 107
ELSEIF meta tag 103
ELSEIFEMPTY meta tag 103
ELSEIFEQUAL meta tag 103
226226

Index
encodeResults 207
ENCODING attribute 8, 10

value
JAVASCRIPT 11
METAHTML 10
MULTILINE 10
MULTILINEHTML 11
NONE 10
SQL 11
URL 11

ERROR meta tag 93
ERRORS meta tag 95
EXCLUDE meta tag 96

See also !, COMMENT
EXIT meta tag 97

See also BREAK, CONTINUE

F
FILTER meta tag 98

See also DISTINCT, INTERSECT, SORT,
UNION

FMDatabaseDir 207
FOR meta tag 101
FORMAT attribute 13
FORMAT meta tag 102

G
generating line terminators for HTTP header

70

H
headerFile 207

I
IF meta tag 103
IFEMPTY meta tag 107
IFEQUAL meta tag 108
INCLUDE meta tag 110
inserting comment in application file 192
INTERSECT meta tag 111

See also DISTINCT, FILTER, SORT,
UNION

ISDATE meta tag 114
ISNUM meta tag 119

ISTIME meta tag 114
ISTIMESTAMP meta tag 114
itemBufferSize 208

J
JAVASCRIPT value for ENCODING attribute

11

K
KEEP meta tag 120

L
LEFT meta tag 121
LENGTH meta tag 121
license 208
list by function 26
listenerPort 208
LITERAL meta tag 123
LOCATE meta tag 124
logDir 209
loggingLevel 209
logToResults 210
LOWER meta tag 125
LTRIM meta tag 126

M
mailDefaultFrom 210
mailPort 211
mailServer 211
maxActions 211
maxHeapSize 212
MAXROWS meta tag 127
maxSessions 212
meta tag 26

! 192
See also COMMENT, EXCLUDE

ABSROW 28
ACTIONRESULT 29
ADDROWS 30

See also DELROWS, UNION
alphabetical list 17
alphabetical list with attributes 23
APPFILE 32
APPFILENAME 33
227 227

Index
See also APPFILE, APPFILEPATH,
INCLUDE, URLENCODE

APPFILEPATH 34
ARG 35
ARGNAMES 37
ARRAY 38
ASCII 40
ASSIGN 41, 193
attribute value length 8
BREAK 44

See also COLS, CONTINUE, EXIT,
FOR, ROWS

CALC 45, 50
array 47

CGI 57
CGIPARAM 58
CGIPATH 61
CHAR 62
CIPHER 63
COL 66
COLS 67
COLUMN 68
COMMENT 69
CONTINUE 70

See also BREAK, COLS, EXIT, FOR,
ROWS

CRLF 71
CURCOL 72
CURRENTACTION 73
CURRENTDATE 74
CURRENTTIME 74
CURRENTTIMESTAMP 74
CURROW 75
DATEDIFF 76
DATETOSECS 77
DAYS 79
DBMS 80
DEBUG 81
DELROWS 82

See also ADDROWS
DISTINCT 84

See also FILTER, INTERSECT, SORT,
UNION

DOCS 87
DQ 88
DSDATE 89
DSNUM 91
DSTIME 89
DSTIMESTAMP 89
DSTYPE 92

ELSE 107
ELSEIF 103
ELSEIFEMPTY 103
ELSEIFEQUAL 103
ENCODING attribute 10
ERROR 93
ERRORS 95
EXCLUDE 96

See also !, COMMENT
EXIT 97

See also BREAK, CONTINUE
FILTER 98

See also DISTINCT, INTERSECT,
SORT, UNION

FOR 101
FORMAT 102
format attribute 13
formatting 7
IF 103
IFEMPTY 107
IFEQUAL 108
INCLUDE 110
INTERSECT 111

See also DISTINCT, FILTER, SORT,
UNION

ISDATE 114
ISNUM 119
ISTIME 114
ISTIMESTAMP 114
KEEP 120
LEFT 121
LENGTH 121
LITERAL 123
LOCATE 124
LOWER 125
LTRIM 126
MAXROWS 127
naming attributes 7
NEXTVAL 128
NUMAFFECTED 129
NUMCOLS 130
NUMROWS 131
OMIT 132
PLATFORM 133
POSTARG 134
POSTARGNAMES 135
PRODUCT 136

See also PLATFORM, VERSION
PURGE 137
PURGERESULTS 138
228228

Index
RANDOM 139
REGEX 140
REPLACE 142
RESULTS 143
RIGHT 144
ROWS 145
RTRIM 147
SCRIPT 148
SEARCHARG 151
SEARCHARGNAMES 152
SECSTODATE 77
SECSTOTIME 165
SECSTOTS 172
SERVERSTATUS 154
SETCOOKIES 157
SORT 158

See also DISTINCT, FILTER,
INTERSECT, UNION

SQ 88
SQL 161
STARTROW 162
SUBSTRING 163
syntax 7
terminology changes 6
TIMER 164
TIMETOSECS 165
TMPFILENAME 166
TOGMT 167
TOKENIZE 168
TOTALROWS 169
TRANSPOSE 170

See also ASSIGN
TRIM 171
TSTOSECS 172
UNION 174

See also ADDROWS, DISTINCT,
FILTER, INTERSECT, SORT

UPPER 177
URL 178, 179

limitations 179
URLENCODE 180
USERREFERENCE 181
USERREFERENCEARGUMENT 182
USERREFERENCECOOKIE 183
VAR 184
VARINFO 189
VARNAMES 190
VERSION 191
what’s new in 5

METAHTML value for ENCODING attribute
10

MULTILINE value for ENCODING attribute
10

MULTILINEHTML value for ENCODING
attribute 11

N
naming attributes 7
NEXTVAL meta tag 128
NONE value for ENCODING attribute 10
noSQLEncoding 212
NUMAFFECTED meta tag 129
NUMCOLS meta tag 130
NUMROWS meta tag 131

O
OMIT meta tag 132

P
persistentRestart 213
pidFile 213
PLATFORM meta tag 133
POSTARG meta tag 134
postArgFilter 214
POSTARGNAMES meta tag 135
PRODUCT meta tag 136

See also PLATFORM, VERSION
PURGE meta tag 137
PURGERESULTS meta tag 138

Q
queryTimeout 214
quoting attributes 8

R
RANDOM meta tag 139
rDelim 214
REGEX meta tag 140
REPLACE meta tag 142
RESULTS meta tag 143
returnDepth 215
229 229

Index
returning
name of current application file 33
rows affected by action executed 129
server product type 136

RIGHT meta tag 144
ROWS meta tag 145
rPrefix 215
rSuffix 215
RTRIM meta tag 147

S
SCRIPT meta tag 148
SEARCHARG meta tag 151
SEARCHARGNAMES meta tag 152
SECSTODATE meta tag 77
SECSTOTIME meta tag 165
SECSTOTS meta tag 172
SERVERSTATUS meta tag 154
SETCOOKIES meta tag 157
setting

options with configuration variables 193
shutdownUrl 216
SORT meta tag 158

See also DISTINCT, FILTER, INTERSECT,
UNION

SQ meta tag 88
SQL meta tag 161
SQL value for ENCODING attribute 11
STARTROW meta tag 162
startStopTimeout 216
startupUrl 217
staticNumericChars 217
string comparisons in CALC 50
stripCHARS 218
SUBSTRING meta tag 163
syntax of meta tags 7

T
terminating

current iteration of COLS, ROWS, or FOR
block 70

execution of COLS, ROWS, or FOR block
44

processing of Results, No Results, and
Error HTML 97

thousandsChar 218

threadPoolSize 218
timeFormat 201
timeoutHTML 220
TIMER meta tag 164
timestampFormat 201
TIMETOSECS meta tag 165
TMPFILENAME meta tag 166
TOGMT meta tag 167
TOKENIZE meta tag 168
TOTALROWS meta tag 169
transactionBlocking 220
TRANSPOSE meta tag 170

See also ASSIGN
TRIM meta tag 171
TSTOSECS meta tag 172

U
UNION meta tag 174

See also ADDROWS, DISTINCT, FILTER,
INTERSECT, SORT

UPPER meta tag 177
URL meta tag 178, 179

limitations 179
URL value for ENCODING attribute 11
URLENCODE meta tag 180
userAgent 220
userKey 221
USERREFERENCE meta tag 181
USERREFERENCEARGUMENT meta tag 182
USERREFERENCECOOKIE meta tag 183
using

configuration variable 193

V
validHosts 222
value length of attributes 8
VAR meta tag 184
varCachePath 223
variable, configuration. See configuration

variable
variableTimeout 223
variableTimeoutTrigger 224
VARINFO meta tag 189
VARNAMES meta tag 190
VERSION meta tag 191
230230

	Title Page
	Table of Contents
	Introduction
	Meta Tags
	Where You Can Use Meta Tags
	What’s New in Tango Meta Tags
	Terminology Changes and Additions
	Format of Meta Tags
	Syntax
	Naming Attributes
	Attribute Value Length
	Quoting Attributes

	Encoding Attribute
	NONE
	METAHTML
	MULTILINE
	MULTILINEHTML
	URL
	JAVASCRIPT
	SQL

	Format Attribute
	Alphabetical List of Meta Tags
	Alphabetical List of Meta Tags With Attributes
	Meta Tags List by Function
	<@ABSROW>
	Description
	Example
	See Also

	<@ACTIONRESULT>
	Syntax
	Description
	Example
	See Also

	<@ADDROWS>
	Syntax
	Description
	Examples
	See Also

	<@APPFILE>
	Syntax
	Description
	Example
	See Also

	<@APPFILENAME>
	Syntax
	Description
	Example
	See Also

	<@APPFILEPATH>
	Syntax
	Description
	Examples
	See Also

	<@ARG>
	Syntax
	Description
	Examples
	See Also

	<@ARGNAMES>
	Description
	Example
	See Also

	<@ARRAY>
	Syntax
	Description
	Examples
	See Also

	<@ASCII>
	Syntax
	Description
	Examples
	See Also

	<@ASSIGN>
	Syntax
	Description
	Examples
	See Also

	<@BREAK>
	Description
	Example
	See Also

	<@CALC>
	Syntax
	Description
	Basic Functionality
	Examples
	Advanced Functionality and Calculation Variables Reference
	Array Operators
	See Also

	<@CGI>
	Syntax
	Description
	Examples
	See Also

	<@CGIPARAM>
	Syntax
	Description
	Example
	See Also

	<@CGIPATH>
	Description
	Example
	See Also

	<@CHAR>
	Syntax
	Description
	Examples
	See Also

	<@CIPHER>
	Syntax
	Description
	Ciphers Supported
	Security Issues
	See Also

	<@COL>
	Syntax
	Description
	Example
	See Also

	<@COLS> </@COLS>
	Syntax
	Description
	Example
	See Also

	<@COLUMN>
	Syntax
	Description
	Example
	See Also

	<@COMMENT> </@COMMENT>
	Syntax
	Description
	Examples

	<@CONTINUE>
	Description
	Example
	See Also

	<@CRLF>
	Description
	See Also

	<@CURCOL>
	Description
	Example
	See Also

	<@CURRENTACTION>
	Syntax
	Description
	Example
	See Also

	<@CURRENTDATE>, <@CURRENTTIME>, <@CURRENTTIMESTAMP>
	Syntax
	Description
	Examples
	See Also

	<@CURROW>
	Description
	Example
	See Also

	<@DATEDIFF>
	Syntax
	Description
	Example
	See Also

	<@DATETOSECS>, <@SECSTODATE>
	Syntax
	Description
	Examples
	See Also

	<@DAYS>
	Syntax
	Description
	Example
	See Also

	<@DBMS>
	Syntax
	Description
	Example
	See Also

	<@DEBUG> </@DEBUG>
	Syntax
	Description
	Examples

	<@DELROWS>
	Syntax
	Description
	Examples
	See Also

	<@DISTINCT>
	Syntax
	Description
	Examples
	See Also

	<@DOCS>
	Syntax
	Description
	Examples
	See Also

	<@DQ>, <@SQ>
	Description
	Example

	<@DSDATE>, <@DSTIME>, <@DSTIMESTAMP>
	Syntax
	Description
	Example
	See Also

	<@DSNUM>
	Syntax
	Description
	Example
	See Also

	<@DSTYPE>
	Syntax
	Description
	Example
	See Also

	<@ERROR>
	Syntax
	Description
	Example
	See Also

	<@ERRORS> </@ERRORS>
	Description
	Example
	See Also

	<@EXCLUDE> </@EXCLUDE>
	Syntax
	Description
	Example
	See Also

	<@EXIT>
	Description
	Example
	See Also

	<@FILTER>
	Syntax
	Description
	Examples
	See Also

	<@FOR> </@FOR>
	Syntax
	Description
	Example

	<@FORMAT>
	Syntax
	Summary
	Examples
	See Also

	<@IF>, <@ELSEIF>, <@ELSEIFEMPTY>, <@ELSEIFEQUAL>, </@IF>
	Syntax
	Description
	Examples
	See Also

	<@IFEMPTY> <@ELSE> </@IF>
	Syntax
	Description
	Example
	See Also

	<@IFEQUAL> <@ELSE> </@IF>
	Syntax
	Description
	Examples
	See Also

	<@INCLUDE>
	Syntax
	Description
	Examples

	<@INTERSECT>
	Syntax
	Description
	Examples
	See Also

	<@ISDATE>, <@ISTIME>, <@ISTIMESTAMP>
	Syntax
	Description
	ODBC Formats
	Numeric Formats
	Textual Formats

	<@ISNUM>
	Syntax
	Summary
	Examples
	See Also

	<@KEEP>
	Syntax
	Description
	Examples
	See Also

	<@LEFT>
	Syntax
	Description
	Examples
	See Also

	<@LENGTH>
	Syntax
	Description
	Examples

	<@LITERAL>
	Syntax
	Description
	Example
	See Also

	<@LOCATE>
	Syntax
	Description
	Examples

	<@LOWER>
	Syntax
	Description
	Examples
	See Also

	<@LTRIM>
	Syntax
	Description
	Examples
	See Also

	<@MAXROWS>
	Description
	Example
	See Also

	<@NEXTVAL>
	Syntax
	Description
	Example
	See Also

	<@NUMAFFECTED>
	Description
	Example

	<@NUMCOLS>
	Syntax
	Description
	Example
	See Also

	<@NUMROWS>
	Syntax
	Description
	Example
	See Also

	<@OMIT>
	Syntax
	Description
	Examples
	See Also

	<@PLATFORM>
	Syntax
	Description
	Example
	See Also

	<@POSTARG>
	Syntax
	Description
	Example
	See Also

	<@POSTARGNAMES>
	Description
	Example
	See Also

	<@PRODUCT>
	Syntax
	Description
	Example
	See Also

	<@PURGE>
	Syntax
	Description
	Examples
	See Also

	<@PURGERESULTS>
	Description
	See Also

	<@RANDOM>
	Syntax
	Description
	Examples
	See Also

	<@REGEX>
	Syntax
	Description

	<@REPLACE>
	Syntax
	Description
	Examples
	See Also

	<@RESULTS>
	Syntax
	Description
	Example
	See Also

	<@RIGHT>
	Syntax
	Description
	Examples
	See Also

	<@ROWS> </@ROWS>
	Syntax
	Description
	Examples
	See Also

	<@RTRIM>
	Syntax
	Description
	Examples
	See Also

	<@SCRIPT>
	Syntax
	Description
	Examples
	See Also

	<@SEARCHARG>
	Syntax
	Description
	Example
	See Also

	<@SEARCHARGNAMES>
	Description
	Example
	See Also

	<@SECSTODATE>, <@SECSTOTIME>, <@SECSTOTS>
	<@SERVERSTATUS>
	Syntax
	Description
	See Also

	<@SETCOOKIES>
	Description
	See Also

	<@SORT>
	Syntax
	Description
	Examples
	See Also

	<@SQ>
	<@SQL>
	Syntax
	Description
	See Also

	<@STARTROW>
	Description
	Example
	See Also

	<@SUBSTRING>
	Syntax
	Description
	Examples
	See Also

	<@TIMER>
	Syntax
	Description
	Examples

	<@TIMETOSECS>, <@SECSTOTIME>
	Syntax
	Description
	Examples
	See Also

	<@TMPFILENAME>
	Syntax
	Description
	Example
	See Also

	<@TOGMT>
	Syntax
	Description
	Example
	See Also

	<@TOKENIZE>
	Syntax
	Description
	Example
	See Also

	<@TOTALROWS>
	Description
	Example
	See Also

	<@TRANSPOSE>
	Syntax
	Description
	Example
	See Also

	<@TRIM>
	Syntax
	Description
	Examples
	See Also

	<@TSTOSECS>, <@SECSTOTS>
	Syntax
	Description
	Examples
	See Also

	<@UNION>
	Syntax
	Description
	Examples
	See Also

	<@UPPER>
	Syntax
	Description
	Examples
	See Also

	<@URL>
	Syntax
	Description
	Examples
	See Also

	<@URLENCODE>
	Syntax
	Description
	Examples
	See Also

	<@USERREFERENCE>
	Description
	See Also

	<@USERREFERENCEARGUMENT>
	Description
	Example
	See Also

	<@USERREFERENCECOOKIE>
	Description
	Example
	See Also

	<@VAR>
	Syntax
	Description
	Scoping Rules
	Examples
	See Also

	<@VARINFO>
	Syntax
	Description
	Examples
	See Also

	<@VARNAMES>
	Syntax
	Description
	Example
	See Also

	<@VERSION>
	Syntax
	Description
	Example
	See Also

	<@!>
	Syntax
	Description
	Example
	See Also

	Configuration Variables
	A Note on Scope
	A Note on Default Locations
	altUserKey
	aPrefix
	aSuffix
	cache
	cacheSize
	cDelim
	configPasswd
	cPrefix
	crontabFile
	cSuffix
	currencyChar
	dataSourceLife
	dateFormat, timeFormat, timestampFormat
	DBDecimalChar
	debugMode
	decimalChar
	defaultErrorFile
	defaultScope
	domainScopeKey
	dsConfig
	dsConfigFile
	encodeResults
	FMDatabaseDir
	headerFile
	httpHeader
	itemBufferSize
	license
	listenerPort
	lockConfig
	logDir
	loggingLevel
	logToResults
	mailDefaultFrom
	mailPort
	mailServer
	maxActions
	maxHeapSize
	maxSessions
	noSQLEncoding
	persistentRestart
	pidFile
	postArgFilter
	queryTimeout
	rDelim
	returnDepth
	rPrefix
	rSuffix
	shutdownUrl
	startStopTimeout
	startupUrl
	staticNumericChars
	stripChars
	threadPoolSize
	thousandsChar
	timeFormat
	timeoutHTML
	timestampFormat
	transactionBlocking
	userAgent
	userKey,altUserKey
	validHosts
	varCachePath
	variableTimeout
	variableTimeoutTrigger

	Index

