
The Java(tm) Language Environment: A
White Paper

Next

__

The Java(tm) Language Environment: A White
Paper
Written by James Gosling &; Henry McGilton

__
 This paper provides a detailed discussion about the design goals, merits, and attributes of the Java
programming language. This document also includes a chapter on the HotJava browser--a useful World-
Wide Web browser that demonstrates the power of Java.

For a brief overview of the Java language, please refer to The Java(tm) Language: An Overview . For a
brief overview of the HotJava browser, please refer to The HotJava(tm) Browser: An Overview.

Table of Contents
Copyright Information

Introduction to Java
 1.1 - Beginnings of the Java Language Project
 1.2 - Design Goals of Java
 1.3 - The Java Base System
 1.4 - The Java Environment--a New Approach to Distributed Computing

Java--Simple and Familiar
 2.1 - Main Features of the Java Language
 2.2 - Features Removed from C and C++
 2.3 - Summary

Java is Object Oriented
 3.1 - Object Technology in Java
 3.2 - What Are Objects?
 3.3 - Basics of Objects
 3.4 - Summary

Architecture Neutral, Portable, and Robust
 4.1 - Architecture Neutral
 4.2 - Portable
 4.3 - Robust
 4.4 - Summary

Interpreted and Dynamic
 5.1 - Dynamic Loading and Binding
 5.2 - Summary

Security in Java
 6.1 - Memory Allocation and Layout
 6.2 - The Byte Code Verification Process
 6.3 - Security Checks in the Bytecode Loader
 6.4 - Security in the Java Networking Package
 6.5 - Summary

Multithreading in Java
 7.1 - Threads at the Java Language Level
 7.2 - Integrated Thread Synchronization
 7.3 - Multithreading Support--Conclusion

Performance and Comparisons
 8.1 - Performance
 8.2 - The Java Language Compared
 8.3 - A Major Benefit of Java: Fast and Fearless Prototyping
 8.4 - Summary

The HotJava World-Wide Web Browser
 9.1 - The Evolution of Cyberspace
 9.2 - Freedom to Innovate
 9.3 - Implementation Details
 9.4 - Security
 9.5 - HotJava--the Promise

Further Reading

__
Next

 
This documentation was ported to MS Window's Help by Bill Bercik.
Bill may be reached at: bill@dippybird.com

Stop by his web site and get the latest update to the Information Portafilter    for Java at:
http://www.dippybird.com/java.html

 

The Java(tm) White Paper: Performance
and Comparisons

Next Prev Contents
__

Performance and Comparisons
 8.1 - Performance
 8.2 - The Java Language Compared
 8.3 - A Major Benefit of Java: Fast and Fearless Prototyping
 8.4 - Summary

__
This chapter addresses two issues of interest to prospective adopters of Java, namely, what is the
performance    of Java, and how does it stack up against other comparable programming languages?
Let's first address the performance question and then move on to a brief comparison with other
languages.

__

 8.1 Performance
 Java has been ported to and run on a variety of hardware platforms executing a variety of operating
system software. Test measurement of some simple Java programs on current high-end computer
systems such as workstations and high-performance personal computers show results roughly as follows:

new Object 119,000 per second
new C() (class with several methods) 89,000 per second
o.f() (method f invoked on object o) 590,000 per second
o.sf() (synchronized method f invoked on object o) 61,500 per second

 Thus, we see that creating a new object requires approximately 8.4 msec, creating a new class
containing several methods consumes about 11 msec, and invoking a method on an object requires
roughly 1.7 msec.

 While these performance numbers for interpreted bytecodes are usually more than adequate to run
interactive graphical end-user applications, situations may arise where higher performance is required. In
such cases, the Java bytecodes can be translated on the fly (at run time) into machine code for the
particular CPU on which the application is executing. For those accustomed to the normal design of a
compiler and dynamic loader, this is somewhat like putting the final machine code generator in the
dynamic loader.

 The bytecode format was designed with generating machine codes in mind, so the actual process of
generating machine code is generally simple. Reasonably good code is produced: it does automatic
register allocation and the compiler does some optimization w hen it produces the bytecodes.
Performance of bytecodes converted to machine code is roughly the same as native C or C++.

__

 8.2 The Java Language Compared
 There are literally hundreds of programming languages available for developers to write programs to
solve problems in specific areas. Programming languages cover a spectrum ranging across fully
interpreted languages such as UNIX Shells, awk, TCL, Perl, and so on, all the way to "programming to
the bare metal" languages like C and C++.

 Languages at the level of the Shells and TCL, for example, are fully interpreted high-level languages.
They deal with "objects" (in the sense they can be said to deal with objects at all) at the system level,
where their objects are files and processes ra ther than data structures. Some of these languages are
suitable for very fast prototyping--you can develop your ideas quickly, try out new approaches, and
discard non-working approaches without investing enormous amounts of time in the process. Scripting
languages are also highly portable. Their primary drawback is performance; they are generally much
slower than either native machine code or interpreted bytecodes. This tradeoff may well be reasonable if
the run time of such a program is reasonably short and you use the program infrequently.

 In the intermediate ground come languages like Perl, that share many characteristics in common with
Java. Perl's ongoing evolution has led to the adoption of object-oriented features, security features, and it
exhibits many features in common with Java, such as robustness, dynamic behavior, architecture
neutrality, and so on.

 At the lowest level are compiled languages such as C and C++, in which you can develop large-scale
programming projects that will deliver high performance. The high performance comes at a cost, however.
Drawbacks include the high cost of debugging unrelia ble memory management systems and the use of
multithreading capabilities that are difficult to implement and use. And of course when you use C++, you
have the perennial fragile superclass issue. Last but definitely not least, the binary distribution probl em of
compiled code becomes unmanageable in the context of heterogeneous platforms all over the Internet.

 The Java language environment creates an extremely attractive middle ground between very high-level
and portable but slow scripting languages and very low level and fast but non-portable and unreliable
compiled languages. The Java language fits somewhere in the middle of this space. In addition to being
extremely simple to program, highly portable and architecture neutral, the Java language provides a level
of performance that's entirely adequate for all but the most compute-intensive applications.

 Prospective adopters of the Java language need to examine where the Java language fits into the
firmament of other languages. Here is a basic comparison chart illustrating the attributes of the Java
language--simple, object-oriented, threaded, and so on--as described in the earlier parts of this paper.

 

 From the diagram above, you see that the Java language has a wealth of attributes that can be highly
beneficial to a wide variety of developers. You can see that Java, Perl, and SmallTalk are comparable
programming environments offering the richest set of capabilities for software application developers.

__

 8.3 A Major Benefit of Java: Fast and Fearless
Prototyping
Very dynamic languages like Lisp, TCL, and SmallTalk are often used for prototyping . One of the reasons
for their success at this is that they are very robust--you don't have to worry about freeing or corrupting
memory.

 Similarly, programmers can be relatively fearless about dealing with memory when programming in Java.
The garbage collection system makes the programmer's job vastly easier; with the burden of memory
management taken off the programmer's shoulders, storage allocation errors go away.

 Another reason commonly given that languages like Lisp, TCL, and SmallTalk are good for prototyping is
that they don't require you to pin down decisions early on--these languages are semantically rich.

 Java has exactly the opposite property: it forces you to make explicit choices. Along with these choices
come a lot of assistance--you can write method invocations and, if you get something wrong, you get told
about it at compile time. You don't have to worry about method invocation error.

__

 8.4 Summary

From the discussion above, you can see that the Java language provides high performance , while its
interpreted    nature makes it the ideal development platform for fast and fearless prototyping. From the
previous chapters, you've seen that the Java language is extremely simple and object oriented . The
language is secure to survive in the network-based environment. The architecture-neutral and portable   
aspects of the Java language make it the ideal development language to meet the challenges of
distributing dynamically extensible software across networks.

Now We Move On to the HotJava World-Wide Web Browser

 These first eight chapters have been your introduction to the Java language environment. You've learned
about the capabilities of Java and its clear benefits to develop software for the distributed world. Now it's
time to move on to the next chapter and t ake a look at the HotJava€ World-Wide Web browser--a major
end-user application developed to make use of the dynamic features of the Java language environment.

__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: The HotJava
World-Wide Web Browser

Next Prev Contents

__

The HotJava World-Wide Web Browser
 9.1 - The Evolution of Cyberspace
 9.2 - Freedom to Innovate
 9.3 - Implementation Details
 9.4 - Security
 9.5 - HotJava--the Promise

__
It's a jungle out there,
 So drink your Java

 T-shirt caption from Printer's Inc Cafe, Palo Alto, California

 The HotJava€ Browser ("HotJava") is a new World-Wide Web browser implemented
entirely in the Java programming language. HotJava is the first major end-user application created using
the Java programming language and its run-time system as a base. HotJava not only showcases the
powerful features of the Java environment, it also provides an ideal platform for distributing Java
programs across the Internet--the most complex, distributed, heterogeneous network in the
world.HotJava and its rapidly growing Web population of Java language programs called applets    (mini-
applications), are the most compelling demonstration of the dynamic capabilities of Java.

 HotJava includes many innovative features and capabilities above and beyond the first generation of
static Web browsers. HotJava is extensible . Its foremost feature is its ability to download Java programs
(applets) from anywhere, even across networks, and execute them on the user's machine. HotJava builds
on the network-browsing techniques established by Mosaic and other Web browsers and expands them
by adding dynamic behavior that transforms static documents into dynamic applications.

 HotJava goes far beyond the current generation of statically-oriented Web browsers and brings a much
needed measure of interactivity    to the concept of the Web browser. It transforms the existing static data
display of current generation Web browsers into a new and dynamic viewing system for hypertext,
described below. It enables creation and display of animation-oriented applications.    World-Wide Web
content developers can have their applications distributed across the Internet with the click of a button on
the user's client computer.

__

 9.1 The Evolution of Cyberspace
 The Internet has evolved into an amorphous ocean of data stored in many formats on a multiplicity of
network hosts. Over time, various data storage and transmission protocols have evolved to impose some
order on this chaos. One of the fastest growing area s of the net--the one we're primarily interested in
here--is the World-Wide Web (WWW), which uses a hypertext-based markup system to enable users to
navigate their way across the oceans of data.

The concept of hypertext    is by no means new, but its realization has spanned decades. The idea behind
hypertext was described in an essay by Vannevar Bush in 1945, and evangelized by Theodore (Ted)
Nelson in the 1960s and 1970s. Although Apple Computer's HyperCard product for Ma cintosh provided
an early if somewhat primitive implementation, the real power of hypertest comes from the ability to create
inter-document links across multiple host computers on the network. The first practical if small
implementation of a network-based    hypertext system was created by Tim Berners-Lee at CERN, using
the NEXTSTEP development environment to create what would blossom into HTML (HyperText Markup
Language), HTTP (HyperText Transport Protocol), and the WWW (World-Wide Web, or W3).

 Web browsers combine the functions of fetching data with figuring out what the data is and displaying it if
possible. One of the most prevalent file formats browsers deal with is HyperText Markup Language, or
HTML-- a markup language that embeds simple te xt-formatting commands within text to be formatted.
The main key to the hypertext concept is HTML's use of links to other HTML pages either on the same
host or elsewhere on the Internet.

 A user in search of gold mining data, for instance, can follow links across the net from Mountain View,
California, to the University of the Witwatersrand, South Africa, and arrive back at commercial data
providers in Montreal, Canada, all within the cont ext of tracing links in hypertext "pages". For a topic of
timely relevance to the World-Wide Web, a user interested in aspects of multimedia law relative to the
World-Wide Web can tune in to the home page at www.oikoumene.com/oikoumene for links to intellectual
property issues.

 9.1.1 First Generation Browsers

 What we could call the "first-generation" Web browsers--exemplified by NCSA
Mosaic and the first release of Netscape Navigator--provide an illusion of being interactive. By using the
(somewhat limited) language of HTML these browsers provide hypertext lin ks on which you can click.
The browser goes off across the network to fetch the data associated with that link, downloads the data,
and displays it on your local screen. As we said, this is an illusion of interactivity.

 This illustration depicts roughly the "interactive" flow of control in the first-generation Web browsers. As
you see, it's not really interactive--it's just a fancy data fetching and display utility.

 HotJava brings a new twist to the concept of client-server computing. The general view of client-server
computing is a big centralized server that clients connect to for a long time and from which they access
data and applications. It is roughly a star wi th a big server in the middle and clients arrayed around it.

The new model exemplified by the World-Wide Web is a wide-spread collection of independent nodes
with short-lived connections between clients and many servers. The controlling intelligence shif ts from
the server to the client and the answer to "who's in charge?" shifts from the server to the client.

 The primary problem with the first-generation web browsers is that they're
built in a monolithic fashion with their awareness of every possible type of data, protocol, and behavior
hard wired in order for them to navigate the Web. This means that every ti me a new data type, protocol,
or behavior is invented, these browsers must be upgraded to be cognizant of the new situation. From the
viewpoint of end users, this is an untenable position to be in. Users must continually be aware of what
protocols exist, which browsers deal with those protocols, and which versions of which browsers are
compatible with each other. Given the growth of the Internet, this situation is clearly out of control.

 9.1.2 The HotJava Browser--A New Concept in Web Browsers

 HotJava solves the monolithic approach and moves the focus of interactivity away from the Web server
and onto the Web client --that is, to the computer on which the user is browsing the Web. Because of its
basis in the Java system, a HotJava client can dynamically download segments of code that are executed
right there on the client machine. Such Java-based "applets" (mini-appl ications) can provide full
animation, play sound, and generally interact with the user in real time.

 HotJava removes the static limitations of the Mosaic generation of Web browsers with its ability to add
arbitrary behavior to the browser. Using HotJava, you can add applications that range from interactive
science experiments in educational material, to games and specialized shopping applications. You can
implement interactive advertising, customized newspapers, and a host of application areas that haven't
even been thought of yet. The capabilities of a Web browser whose behavior can be dynamically updated
are open-ended.

 Furthermore, HotJava provides the means for users to access these applications in a new way. Software
migrates transparently across the network as it's needed. You don't have to "install" software--it comes
across the network as you need it--perhaps after    asking you to pay for it. Content developers for the
World-Wide Web don't have to worry about whether or not some special piece of software is installed in a
user's system--it just gets there automatically. This transparent acquiring of applications free s content
developers from the boundaries of the fixed media types such as images and text and lets them do
whatever they'd like.

 9.1.3 The Essential Difference

 The central difference between HotJava and other browsers is that while these other browsers have
knowledge of the Internet protocols hard-wired into them, HotJava understands essentially none of them.
What it does    understand is how to find out about things it doesn't understand. The result of this lack of
understanding is great flexibility and the ability to add new capabilities very easily.

 

 9.1.4 Dynamic Content

 One of the most visible uses of HotJava's ability to dynamically add to its capabilities is something we
call dynamic content. For example, someone could write a Java program to implement an interactive
chemistry simulation, following the rules of the Hot Java API. People browsing the net with HotJava could
easily get this simulation and interact with it, rather than just having a static picture with some text. They
can do this and be assured that the code that brings their chemistry experiment to life doe sn't also
contain malicious code that damages the system. Code that attempts to be malicious or which has bugs
essentially can't breach the walls placed around it by the security and robustness features of Java.

 For example, the following is a snapshot of HotJava in use. Each diagram in the document represents a
different sort algorithm. Each algorithm sorts an array of integers. Each horizontal line represents an
integer: the length of the line corresponds to th e value of the integer and the position of the line in the
diagram corresponds to the position of the integer in the array.

 

 In a book or HTML document, the author has to be content with these static illustrations. With HotJava
the author can enable the reader to click on the illustrations and see the algorithms animate.

If you're running HotJava now, try it and see:

Sort Algorithms Made Visual
Bubble..........Bi- bubble.........QSort

 Using these dynamic facilities, content providers can define new types of data and behavior that meet
the needs of their specific audiences, rather than being bound by a fixed set of objects.

 9.1.5 Dynamic Types

 HotJava's dynamic behavior is also used for understanding different types of objects. For example, most
Web browsers can understand a small set of image formats (typically GIF, X11 pixmap, and X11 bitmap).
If they see some other type, they have no way to deal with it. HotJava, on the other hand, can
dynamically link the code from the host that has the image allowing it to display the new format. So, if
someone invents a new compression algorithm, the inventor just has to make sure that a copy of its Java
code is installed on the server that contains the images they want to publish; they don't have to upgrade
all the browsers in the world. HotJava essentially upgrades itself on the fly when it sees this new type.

 The following is an illustration of how HotJava negotiates with a server when it encounters an object of

an unknown type:  

 9.1.6 Dynamic Protocols

 The protocols that Internet hosts use to communicate among themselves are key components of the net.
For the World-Wide Web (WWW), HTTP (HyperText Transfer Protocol) is the most important of these
communication protocols. Within WWW documents, a reference to another document (even to a
document on another Internet host computer) is called a URL, meaning a Uniform Resource Locator . The
URL contains the name of the protocol, HTTP, that is used to find that document. Most of the current
generation of Web browsers have the knowledge of HTTP built-in. Rather than having built-in protocol
handlers, HotJava uses the protocol name to link in the appropriate handler as required, allowing new
protocols to be incorporated dynamically.

 The dynamic incorporation of protocols has special significance to how business is done on the Internet.
Many vendors are providing new Web browsers and servers with added capabilities, such as billing and
security. These capabilities most often take the form of new protocols. So each vendor comes up with
their unique style of security (for example) and sells a server and browser that speak this new protocol. If
a user wants to access data on multiple servers on which each has proprietary new protocols, t he user
needs multiple browsers. This is incredibly clumsy and defeats the synergistic cooperation that makes the
World-Wide Web work.

 

 With HotJava as a base, vendors can produce and sell exactly the piece that is their added value, and
integrate smoothly with other vendors, creating a final result that is seamless and very convenient for the

end user.  

 Protocol handlers get installed in a sequence similar to how content handlers get installed: The HotJava
Browser is given a reference to an object (a URL). If the handler for that protocol is already loaded, it will
be used. If not, the HotJava Browser will search first the local system and then the system that is the
target of the URL.

__

 9.2 Freedom to Innovate
 Innovation on the Internet follows a pattern: initially: someone develops a technology. They're free to try
all kinds of things since no one else is using the technology and there are no compatibility issues. Slowly,
people start using it, and as they do,    compatibility and interoperability concerns slow the pace of
innovation. The Internet is now in a state where even simple changes that everyone agrees will have
significant merit are very hard to make.

 

 Within a community that uses HotJava, individuals can experiment with new facilities while at the same
time preserving compatibility and interoperability. Data can be published in new formats and distributed
using new protocols and the implementations of these will be automatically and safely installed. There is
no upgrade problem.

 One need not be inventing new things to need these facilities. Almost all organizations need to be able to
adapt to changing requirements. TheHotJava browser's flexibility can greatly aid that. As new protocols
and data types become important, they can be transparently incorporated.

__

 9.3 Implementation Details
 The basic structure of HotJava is instructive. It is easiest understood from the operation of Mosaic.

 Mosaic starts with a URL and fetches the object referenced by that URL using the specified protocol. The
host and localinfo fields are passed to the protocol handler. The result of this is a bag of bytes that
contains the object that has been fetched. The se bytes are inspected to determine the type of the data
(HTML document or JPEG image, for example). From this type information, code is invoked to manipulate
and view the data.

 That's all there is to Mosaic. It's essentially very simple. But despite this, the Mosaic program is actually
huge since it must contain specialized handlers for all of these data types. It's bundled together into one
big monolithic lump.

 In contrast, HotJava is very small, since all of the protocol and data handlers are brought in from the
outside. For example, when it calls the protocol handler, instead of having a table that has a fixed list of
protocols that it understands, HotJava ins tead uses this type string to derive a Java language class
name. The protocol handler for this type is dynamically linked in if it is missing. They can be linked in from
the local system, or they can be linked in from definitions stored on the host where the URL was found, or
anywhere else on the net that HotJava suspects might be a good place to look. In a similar fashion,
HotJava can dynamically locate and load the code to handle different types of data objects and different
ways of viewing them.

__

 9.4 Security
Network security    is of paramount importance to Internet users, especially with the exponential growth of
Internet commerce. Network-based applications must be able to defend themselves against a veritable
gallimaufry of network viruses, worms, Trojan horses, and other fo rms of intruders. This section
discusses the layers of defense provided by Java, the Java run-time system, and the higher-level
protocols of HotJava itself.

 One of the most important technical challenges in building a system like HotJava is making it secure.
Downloading, installing,and executing fragments of code importedfrom across the network is potentially
an open invitation to all sorts of problems. On th e one hand, such a facility provides great power that can
be used to achieve very valuable ends; on the other hand, the facility could potentially be subverted to
become a breeding ground for computer viruses. The topic of safety is a very broad one and d oesn't
have a single answer. HotJava has a series of facilities that layer and interlock to provide a fairly high
degree of safety.

 9.4.1 The First Layer--the Java Language Interpreter

 The first layer of security in Java applications come from the ground rules of Java itself. These features
have been described in detail in previous chapters in this paper.

 When HotJava imports a code fragment, itdoesn't actually know whether or not the code fragment follows

Java language rules for safety. As described earlier, imported code fragments are subjected to a series of
checks, starting with straightforward tests t hat the format of the code is correct and ending with a series
of consistency checks by the Bytecode Verifier.

 9.4.2 The Next Layer--the Higher Level Protocols

 Given this base set of guarantees that interfaces cannot be violated, higher level parts of the system
implement their own protection mechanisms. For example, the file access primitives implement an access
control list that controls read and write access to files by imported code (or code invoked by imported
code). The defaults for these access control lists are very restrictive. If an attempt is made by a piece of
imported code to access a file to which access has not been granted, a dialog box pops up to allow the
user to decide whether or not to allow that specific access.

 These access restrictions err on the conservative side, which makes constructing some very useful
extensions impossible or awkward. We have a mechanism whereby public keys can be securely attached
to code fragments that allows code with trusted public key s to have fewer restrictions. This mechanism
isn't in the public release for legal reasons.

__

 9.5 HotJava--the Promise
 The HotJava Web browser, based upon the foundations of the Java environment, brings a hitherto
unrealized dynamic and interactive capability to the World-Wide Web. Dynamic content, dynamic data
types, and dynamic protocols    provide content creators with an entirely new tool that facilitates the
burgeoning growth of electronic commerce and education.

 The advent of the dynamic and interactive capabilities provided by the HotJava Web browser brings the
World-Wide Web to life, turning the Web into a new and powerful business and communication tool for all
users.

__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: Further
Reading

Prev Contents

__

Further Reading
__
I've got a little list.
 I've got a little list.

 Gilbert and Sullivan--The Mikado

The Java Programmer's Guide

Sun Microsystems

http://java.sun.com/progGuide/index.html

This is the draft version of the Java/HotJava Programmer's Guide.

Pitfalls of Object-Oriented Development, by Bruce F. Webster
Published by M&;T Books.

 A collection of "traps to avoid" for people adopting object technology. Recommended reading--it alerts
you to the problems you're likely to encounter and the solutions for them.

The Design and Evolution of C++, by Bjarne Stroustrop
Published by Addison Wesley

A detailed history of how we came to be where we are with C++.

NEXTSTEP Object-Oriented Programming and the Objective C Language.
Addison Wesley Publishing Company, Reading, Massachusetts, 1993.

The book on Objective C. A good introduction to object-oriented programming concepts.

Discovering Smalltalk. By Wilf Lalonde.
Benjamin Cummings, Redwood City, California, 1994.

An introduction to Smalltalk.

Eiffel: The Language. By Bertrand Meyer.
Prentice-Hall, New York, 1992.

An introduction to the Eiffel language, written by its creator.

An Introduction to Object-Oriented Programming. By Timothy Budd.
Addison Wesley Publishing Company, Reading, Massachusetts.

 An introduction to the topic of object-oriented programming, as well as a comparison of C++, Objective C,

SmallTalk, and Object Pascal.

Monitors: An Operating System Structuring Concept. By C. A. R. Hoare.
Communications of the ACM, volume 17 number 10, 1974. Pages 549-557.

 The original seminal paper on the concept of monitors as a means to synchronizing multiple concurrent
tasks.

__
Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: Copyright
Next Prev Contents

__

Copyright Information
__
©; 1995 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

 This BETA quality release and related documentation are protected by copyright and distributed under
licenses restricting its use, copying, distribution, and decompilation. No part of this product or related
documentation may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any.

Portions of this product may be derived from the UNIX®    and Berkeley 4.3 BSD systems, licensed from
UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of
California, respectively. Third-party font software in this product is protected by copyright and licensed
from Sun's font suppliers.

 RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is
subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

 The release described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

TRADEMARKS
 Sun, the Sun logo, Sun Microsystems, Solaris, HotJava, and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. The "Duke" character is a
trademark of Sun Microsystems, Inc., and Copyright (c) 199 2-1995 Sun Microsystems, Inc. All Rights
Reserved. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. All other product
names mentioned herein are the trademarks of their respective owners.

 All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of
SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware,
SPARCcenter, SPARCclassic, SPARCcluster, SPARCdesign, SPARC811, S PARCprinter, UltraSPARC,
microSPARC, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsystems, Inc.
Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems,
Inc.

The OPEN LOOK®    and Sun€ Graphical User Interfaces were developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing
the concept of visual or graphical user interfaces for the computer in dustry. Sun holds a non-exclusive
license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

X Window System is a trademark of the X Consortium.

 THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

 THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AN D/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: Introduction to
Java

Next Prev Contents

__

Introduction to Java
 1.1 - Beginnings of the Java Language Project
 1.2 - Design Goals of Java
 1.3 - The Java Base System
 1.4 - The Java Environment--a New Approach to Distributed Computing

__

 The Next Stage of the Known,
 Or a Completely New Paradigm?

 Taiichi Sakaiya--The Knowledge-Value Revolution

The Software Developer's Burden

 Imagine you're a software application developer. Your programming language of choice (or the language
that's been foisted on you) is C or C++ . You've been at this for quite a while and your job doesn't seem to
be getting any easier. These past few years you've seen the growth of multiple incompatible hardware
architectures, each supporting multiple incompatible operating systems, with each platform operating with
one or more incompatible graphical user interfaces. Now you're supposed to cope with all thi s and make
your applications work in a distributed client-server environment. The growth of the Internet, the World-
Wide Web, and "electronic commerce" have introduced new dimensions of complexity into the
development process.

 The tools you use to develop applications don't seem to help you much. You're still coping with the same
old problems; the fashionable new object-oriented techniques seem to have added new problems without
solving the old ones. You say to yourself and your friends, "There has to be a better way"!

 

The Better Way is Here Now

Now there is a better way--it's the Java€ programming language environment    ("Java" for short) from Sun
Microsystems. Imagine, if you will, this development world...

· Your programming language is object oriented, yet it's still dead simple.

· Your development cycle is much faster    because Java is interpreted . The compile-link-load-test-
crash-debug cycle is obsolete--now you just compile and run.

· Your applications are portable    across multiple platforms. Write your applications once, and you
never need to port them--they will run without modification on multiple operating systems and
hardware architectures.

· Your applications are robust    because the Java run-time system manages memory for you.

· Your interactive graphical applications have high performance    because multiple concurrent threads
of activity in your application are supported by the multithreading built into Java environment.

· Your applications are adaptable    to changing environments because you can dynamically download
code modules from anywhere on the network.

· Your end users can trust that your applications are secure , even though they're downloading code
from all over the Internet; the Java run-time system has built-in protection against viruses and
tampering.

 You don't need to dream about these features. They're here now. The Java Programming Language
Environment provides a portable, interpreted, high-performance, simple, object-oriented    programming
language and supporting run-time environment. This introductory chapter provides you with a brief look at
the main design goals of the Java system; the remainder of this paper examines the features of Java in
more detail.

At the end of this paper you'll find a chapter that describes the HotJava€ Browser    ("HotJava" for short).
HotJava is an innovative World-Wide Web browser, and the first major applications written using the Java
environment. HotJava is the first browser to dynamically download and execute Java code fragments
from anywhere on the Internet, and to so so in a secure manner.

__

 1.1 Beginnings of the Java Language Project
 Java is designed to meet the challenges of application development in the context of heterogeneous,
network-wide distributed environments. Paramount among these challenges is secure delivery of
applications that consume the minimum of system resources, can run on any hardware and software
platform, and can be extended dynamically.

 Java originated as part of a research project to develop advanced software for a wide variety of
networked devices and embedded systems. The goal was to develop a small, reliable, portable,
distributed, real-time operating environment. When the project st arted, C++ was the language of choice.
But over time the difficulties encountered with C++ grew to the point where the problems could best be
addressed by creating an entirely new language environment. Design and architecture decisions drew
from a variety    of languages such as Eiffel, SmallTalk, Objective C, and Cedar/Mesa. The result is a
language environment that has proven ideal for developing secure, distributed, network-based end-user
applications in environments ranging from networked-embedded devices to the World-Wide Web and the
desktop.

__

 1.2 Design Goals of Java
 The design requirements of Java are driven by the nature of the computing environments in which
software must be deployed.

 The massive growth of the Internet and the World-Wide Web leads us to a completely new way of
looking at development and distribution of software. To live in the world of electronic commerce and

distribution, Java must enable the development of secure, high performance, and highly robust
applications on multiple platforms in heterogeneous, distributed networks.

 Operating on multiple platforms in heterogeneous networks invalidates the traditional schemes of binary
distribution, release, upgrade, patch, and so on. To survive in this jungle, Java must be architecture
neutral , portable, and dynamically adaptable.

The Java system that emerged to meet these needs is simple , so it can be easily programmed by most
developers; familiar , so that current developers can easily learn Java; object oriented , to take advantage
of modern software development methodologies and to fit into distributed client-server applications;
multithreaded , for high performance in applications that need to perform multiple concurrent activities,
such as multimedia; and interpreted, for maximum portability and dynamic capabilities.

 Together, the above requirements comprise quite a collection of buzzwords, so let's examine some of
them and their respective benefits before going on.

 1.2.1 Simple, Object Oriented, and Familiar

Primary characteristics of Java include a simple    language that can be programmed without extensive
programmer training while being attuned to current software practices. The fundamental concepts of Java
are grasped quickly; programmers can be productive from the very beginning.

Java is designed to be object oriented    from the ground up. Object technology has finally found its way
into the programming mainstream after a gestation period of thirty years. The needs of distributed, client-
server based systems coincide with the encapsulated, message-passing paradigms of o bject-based
software. To function within increasingly complex, network-based environments, programming systems
must adopt object-oriented concepts. Java provides a clean and efficient object-based development
environment.

 Programmers using Java can access existing libraries of tested objects that provide functionality ranging
from basic data types through I/O and network interfaces to graphical user interface toolkits. These
libraries can be extended to provide new behavior.

 Even though C++ was rejected as an implementation language, keeping Java looking like C++ as far as
possible results in Java being a familiar    language, while removing the unnecessary complexities of C++.
Having Java retain many of the object-oriented features and the "look and feel" of C++ means that
programmers can migrate easily to Java and be productive quickly.

 1.2.2 Robust and Secure

Java is designed for creating highly reliable    software. It provides extensive compile-time checking,
followed by a second level of run-time checking. Language features guide programmers towards reliable
programming habits. The memory management model--no pointers or pointer arithmetic--eliminates en
tire classes of programming errors that bedevil C and C++ programmers. You can develop Java language
code with confidence that the system will find many errors quickly and that major problems won't lay
dormant until after your production code has shipped.

Java is designed to operate in distributed environments, which means that security    is of paramount
importance. With security features designed into the language and run-time system, Java lets you
construct applications that can't be invaded from outside. In the networked environment, applications
written in Java are secure from intrusi on by unauthorized code attempting to get behind the scenes and
create viruses or invade file systems.

 1.2.3 Architecture Neutral and Portable

 Java is designed to support applications that will be deployed into heterogeneous networked
environments. In such environments, applications must be capable of executing on a variety of hardware
architectures. Within this variety of hardware platforms, ap plications must execute atop a variety of
operating systems and interoperate with multiple programming language interfaces. To accommodate the
diversity of operating environments, the Java compiler generates bytecodes--an architecture neutral   
intermediate format designed to transport code efficiently to multiple hardware and software platforms.
The interpreted nature of Java solves both the binary distribution problem and the version problem; the
same Java language byte codes will run on any platform.

Architecture neutrality is just one part of a truly portable    system. Java takes portability a stage further by
being strict in its definition of the basic language. Java puts a stake in the ground and specifies the sizes
of its basic data types and the behavior of its arithmetic operators. Your programs are the sa me on every
platform--there are no data type incompatibilities across hardware and software architectures.

The architecture-neutral and portable language environment of Java is known as the Java Virtual
Machine . It's the specification of an abstract machine for which Java language compilers can generate
code. Specific implementations of the Java Virtual Machine for specific hardware and software platforms
then provide the concrete realization of the virtual mac hine. The Java Virtual Machine is based primarily
on the POSIX interface specification--an industry-standard definition of a portable system interface.
Implementing the Java Virtual Machine on new architectures is a relatively straightforward task as long as
the target platform meets basic requirements such as support for multithreading.

 1.2.4 High Performance

Performance    is always a consideration. Java achieves superior performance by adopting a scheme by
which the interpreter can run at full speed without needing to check the run-time environment. The
automatic garbage collector     runs as a low-priority background thread, ensuring a high probability that
memory is available when required, leading to better performance. Applications requiring large amounts
of compute power can be designed such that compute-intensive sections can be    rewritten in native
machine code as required and interfaced with the Java environment. In general, users perceive that
interactive applications respond quickly even though they're interpreted.

 1.2.5 Interpreted, Threaded, and Dynamic

The Java interpreter    can execute Java bytecodes directly on any machine to which the interpreter and
run-time system have been ported. In an interpreted environment such as Java system, the link phase of
a program is simple, incremental, and lightweight. You benefit from muc h faster development cycles--
prototyping, experimentation, and rapid development are the normal case, versus the traditional
heavyweight compile, link, and test cycles.

 Modern network-based applications, such as the HotJava World-Wide Web browser, typically need to do
several things at the same time. A user working with HotJava can run several animations concurrently
while downloading an image and scrolling the page. Java's multithreading    capability provides the means
to build applications with many concurrent threads of activity. Multithreading thus results in a high degree
of interactivity for the end user.

 Java supports multithreading at the language level with the addition of sophisticated synchronization
primitives: the language library provides the Thread    class, and the run-time system provides monitor and
condition lock primitives. At the library level, moreover, Java's high-level system libraries have been
written to be thread safe: the functionality provided by the libraries is available without conflict to multiple

concurrent threads of execution.

 While the Java compiler is strict in its compile-time static checking, the language and run-time system are
dynamic    in their linking stages. Classes are linked only as needed. New code modules can be linked in
on demand from a variety of sources, even from sources across a network. In the case of the HotJava
browser and similar applications, interactive executable cod e can be loaded from anywhere, which
enables transparent updating of applications. The result is on-line services that constantly evolve; they
can remain innovative and fresh, draw more customers, and spur the growth of electronic commerce on
the Internet.

__

 1.3 The Java Base System
 The complete Java system includes a number of libraries of utility classes and methods of use to
developers in creating multi-platform applications. Very briefly, these libraries are:

java.lang --the collection of base types (language types) that are always imported into any given
compilation unit. This where you'll find the declarations of Object (the root of the class hierarchy) and Class
, plus threads, exceptions, wrappers for the primitive data types, and a variety of other fundamental
classes.

java.io --streams and random-access files. This is where you find the rough equivalent of the Standard I/O
Library you're familiar with on most UNIX systems. A further library is called java.net , and provides support
for sockets, telnet interfaces, and URLs.

java.util--container and utility classes. Here you'll find classes such as Dictionary, HashTable, and Stack ,
among others, plus encoder and decoder techniques, and Date and Time    classes.

java.awt --an Abstract Windowing Toolkit that provides an abstract layer enabling you to port Java
applications easily from one window system to another. This library contains classes for basic interface
components such as events, colors, fonts, and controls such as buttons and scrollbars.

__

 1.4 The Java Environment--a New Approach to
Distributed Computing
 Taken individually, the characteristics discussed above can be found in a variety of software development
environments. What's completely new is the manner in which Java and its run-time system have
combined them to produce a flexible and powerful programming system.

 Developing your applications using Java results in software that is portable across multiple machine
architectures, operating systems, and graphical user interfaces, secure, and high performance. With
Java, your job as a software developer is much easier- -you focus your full attention on the end goal of
shipping innovative products on time, based on the solid foundation of Java. The better way    to develop
software is here, now, brought to you by the Java language environment.

__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: Java--Simple
and Familiar

Next Prev Contents

__

Java--Simple and Familiar
 2.1 - Main Features of the Java Language
 2.2 - Features Removed from C and C++
 2.3 - Summary

__
You know you've achieved perfection in design,
 Not when you have nothing more to add,
 But when you have nothing more to take away.

 Antoine de Saint Exupery.

In his science-fiction novel, The Rolling Stones, Robert A. Heinlein comments:

Every technology goes through three stages: first a crudely simple and quite unsatisfactory gadget;
second, an enormously complicated group of gadgets designed to overcome the shortcomings of the
original and achieving thereby somewhat satisfactory performance through extremely complex
compromise; third, a final proper design therefrom.

 Heinlein's comment could well describe the evolution of many programming languages. Java presents a
new viewpoint in the evolution of programming languages--creation of a small and simple language that's
still sufficiently comprehensive to address a wide variety of software application development. While Java
superficially like C and C++, Java gained its simplicity from the systematic removal of features from its
predecessors. This chapter discusses two of the primary design features of Java, namely, it's simple (from
removing features) and familiar    (because it looks like C and C++). The next chapter discusses Java's
object-oriented    features in more detail. At the end of this chapter you'll find a discussion on features
eliminated from C and C++ in the evolution of Java.

Design Goals

Simplicity    is one of Java's overriding design goals. Simplicity and removal of many "features" of dubious
worth from its C and C++-based ancestors keep Java relatively small and reduce the programmer's
burden in producing reliable applications. To this end, Java design team examined many aspects of the
"modern" C and C++ languages[1]    to determine features that could be eliminated in the context of
modern object-oriented programming.

Another major design goal is that Java look familiar    to a majority of programmers in the personal
computer and workstation arenas, where a large fraction of system programmers and application
programmers are familiar with C and C++. Thus, Java "looks like" C++. Programmers familiar with C,
Objective C, C++ , Eiffel, Ada, and related languages should find their Java language learning curve quite
short--on the order of a couple of weeks.

 To illustrate the simple and familiar aspects of Java, we follow the tradition of a long line of illustrious
programming books by showing you the HelloWorld    program. It's about the simplest program you can

write that actually does something. Here's HelloWorld implemented in Java.

 class HelloWorld {
 static public void main(String args[]) {
 System.out.println(";Hello world!";);
 }
 }

This example declares a class named HelloWorld . Classes are discussed in the next chapter on object-
oriented programming, but in general we assume the reader is familiar with object technology and
understands the basics of classes, objects, instance variables, and methods.

Within the HelloWorld class, we declare a single method called main()    which in turn contains a single
method invocation to display the string ";Hello world!"; on the standard output. The statement that prints
";Hello world!"; does so by invoking the println method of the out object. The out object is a class variable
in the System    class that performs output operations on files. That's all there is to HelloWorld.

__

 2.1 Main Features of the Java Language
 Java follows C++ to some degree, which carries the benefit of it being familiar to many programmers.
This section describes the essential features of Java and points out where the language diverges from its
ancestors C and C++.

 2.1.1 Primitive Data Types

 Other than the primitive data types discussed here, everything in Java is an object. Even the primitive
data types can be encapsulated inside library-supplied objects if required. Java follows C and C++ fairly
closely in its set of basic data types, with a couple of minor exceptions. There are only three groups of
primitive data types, namely, numeric types, Boolean types, and arrays.

Numeric Data Types

Integer numeric types are 8-bit byte, 16-bit short, 32-bit int , and 64-bit long. The 8-bit byte    data type in
Java has replaced the old C and C++ char    data type. Java places a different interpretation on the char   
data type, as discussed below.

There is no unsigned type specifier for integer data types in Java.

Real numeric types are 32-bit float and 64-bit double . Real numeric types and their arithmetic operations
are as defined by the IEEE 754 specification. A floating point literal value, like 23.79, is considered double 
by default; you must explicitly cast it to float if you wish to assign it to a float variable.

Character Data Types

Java language character data is a departure from traditional C. Java's char    data type defines a sixteen-
bit Unicode    character. Unicode characters are unsigned 16-bit values that define character codes in the
range 0 through 65,535. If you write a declaration such as

 char myChar = 'Q';

 you get a Unicode (16-bit unsigned value) type that's initialized to the Unicode value of the character Q.
By adopting the Unicode character set standard for its character data type, Java language applications
are amenable to internationalization and localization, greatly expanding the market for world-wide
applications.

Boolean Data Types

Java has added a boolean    data type as a primitive type, tacitly ratifying existing C and C++ programming
practice, where developers define keywords for TRUE and FALSE or YES and NO or similar constructs. A
Java boolean    variable assumes the value true or false. A Java boolean    is a distinct data type; unlike
common C practice, a Java boolean    type can't be converted to any numeric type.

 2.1.2 Arithmetic and Relational Operators

All the familiar C and C++ operators apply. Because Java lacks unsigned    data types, the >;>;>;    operator
has been added to the language to indicate an unsigned (logical) right shift. Java also uses the +   
operator for string concatenation; concatenation is covered below in the discussion on strings.

 2.1.3 Arrays

In contrast to C and C++, Java language arrays    are first-class language objects. An array in Java is a
real object with a run-time representation. You can declare and allocate arrays of any type, and you can
allocate arrays of arrays to obtain multi-dimensional arrays.

You declare an array of, say, Point s (a class you've declared elsewhere) with a declaration like this:

 Point myPoints[];

This code states that myPoints is an uninitialized array of Point s. At this time, the only storage allocated
for myPoints is a reference handle. At some future time you must allocate the amount of storage you
need, as in:

 myPoints = new Point[10];

to allocate an array of ten references to Point s that are initialized to the null reference. Notice that this
allocation of an array doesn't actually allocate any objects of the Point class for you; you will have to also
allocate the Point objects, something like this:

 int i;

 for (i = 0; i <; 10; i++) {
 myPoints[i] = new Point();
 }

Access to elements of myPoints    can be performed via the normal C-style indexing, but all array accesses

are checked to ensure that their indices are within the range of the array. An exception    is generated if
the index is outside the bounds of the array.

To get the length of an array, use the length() accessor method    on the array object whose length you
wish to know: myPoints.length()    returns the number of elements in myPoints. For instance, the code
fragment:

 howMany = myPoints.length();

would assign the value 10 to the howMany variable.

 The C notion of a pointer to an array of memory elements is gone, and with it, the arbitrary pointer
arithmetic that leads to unreliable code in C. No longer can you walk off the end of an array, possibly
trashing memory and leading to the famous "delayed -crash" syndrome, where a memory-access
violation today manifests itself hours or days later. Programmers can be confident that array checking in
Java will lead to more robust and reliable code.

 2.1.4 Strings

 Strings are Java language objects, not pseudo-arrays of characters as in C. There are actually two kinds
of string objects: the String class is for read-only (immutable) objects. The StringBuffer    class is for string
objects you wish to modify (mutable string objects).

 Although strings are Java language objects, Java compiler follows the C tradition of providing a syntactic
convenience that C programmers have enjoyed with C-style strings, namely, the Java compiler
understands that a string of characters enclosed in double quote signs is to be instantiated as a String
object. Thus, the declaration:

 String hello = ";Hello world!";;

 instantiates an object of the String class behind the scenes and initializes it with a character string
containing the Unicode character representation of ";Hello world!";.

Java has extended the meaning of the + operator to indicate string concatenation . Thus you can write
statements like:

System.out.println(";There are "; + num + "; characters in the file.";);

This code fragment concatenates the string ";There are ";    with the result of converting the numeric value
num    to a string, and concatenates that with the string "; characters in the file."; . Then it prints the result of
those concatenations on the standard output.

Just as with array objects, String objects provide a length()    accessor method to obtain the number of
characters in the string.

 2.1.5 Multi-Level Break

Java has no goto statement. To break or continue    multiple-nested loop or switch constructs, you can place
labels on loop and switch    constructs, and then break out of or continue    to the block named by the label.
Here's a small fragment of code from Java's built-in String class:

test: for (int i = fromIndex; i + max1 <;= max2; i++) {
 if (charAt(i) == c0) {
 for (int k = 1; k<;max1; k++) {
 if (charAt(i+k) != str.charAt(k)) {
 continue test;
 }
 } /* end of inner for loop */
 }
 } /* end of outer for loop */

The continue test statement is inside a for    loop nested inside another for loop. By referencing the label
test, the continue statement passes control to the outer for    statement. In traditional C, continue   
statements can only continue the immediately enclosing block; to continue or exit outer blocks,
programmers have traditionally either used auxiliary Boolean variables whose only purpose is to
determine if the outer block is to be continued or exited; alternatively, programmers have (mis)used the
goto    statement to exit out of nested blocks. Use of labelled blocks in Java leads to considerable
simplification in programming effort and a major reduction in maintenance.

 The notion of labelled blocks dates back to the mid-1970s, but it hasn't caught on to any large extent in
modern programming languages. Perl is another modern programming language that implements the
concept of labelled blocks. Perl's next label and last label are equivalent to continue label and break label
statements in Java.

 2.1.6 Memory Management and Garbage Collection

 C and C++ programmers are by now accustomed to the problems of explicitly managing memory:
allocating memory, freeing memory, and keeping track of what memory can be freed when. Explicit
memory management has proved to be a fruitful source of bugs, crashes, memory leaks, and poor
performance.

 Java completely removes the memory management load from the programmer. C-style pointers, pointer
arithmetic, malloc, and free do not exist. Automatic garbage collection is an integral part of Java and its
run-time system. While Java has a new operator to allocate memory for objects, there is no explicit free   
function. Once you have allocated an object, the run-time system keeps track of the object's status and
automatically reclaims memory when objects are no longer in use, freeing memory for future use.

Java's memory management model is based on objects    and references to objects. Because Java has
no pointers, all references to allocated storage, which in practice means all references to an object, are
through symbolic "handles". The Java memory manager keeps track of references to objects. When an
object has no more references, the object is a candidate for garbage collection.

 Java's memory allocation model and automatic garbage collection make your programming task easier,
eliminate entire classes of bugs, and in general provide better performance than you'd obtain through
explicit memory management. Here's a code fragment tha t illustrates when garbage collection happens.
It's an example from the on-line Java language programmer's guide:

class ReverseString {
 public static String reverseIt(String source) {
 int i, len = source.length();
 StringBuffer dest = new StringBuffer(len);

 for (i = (len - 1); i >;= 0; i--) {
 dest.appendChar(source.charAt(i));
 }
 return dest.toString();
 }
}

The variable dest is used as a temporary object reference during the execution of the reverseIt method.
When dest goes out of scope (the reverseIt    method returns), the reference to that object has gone away
and it's then a candidate for garbage collection.

 2.1.7 The Background Garbage Collector

 The Java garbage collector achieves high performance by taking advantage of the nature of a user's
behavior when interacting with software applications such as the HotJava browser. The typical user of the
typical interactive application has many natural p auses where they're contemplating the scene in front of
them or thinking of what to do next. The Java run-time system takes advantage of these idle periods and
runs the garbage collector in a low priority thread when no other threads are competing for CPU    cycles.
The garbage collector gathers and compacts unused memory, increasing the probability that adequate
memory resources are available when needed during periods of heavy interactive use.

 This use of a thread to run the garbage collector is just one of many examples of the synergy one obtains
from Java's integrated multithreading capabilities--an otherwise intractable problem is solved in a simple
and elegant fashion.

 2.1.8 Integrated Thread Synchronization

 Java supports multithreading, both at the language (syntactic) level and via support from its run-time
system and thread objects. While other systems have provided facilities for multithreading (usually via
"lightweight process" libraries), building multi threading support into the language itself provides the
programmer with a much easier and more powerful tool for easily creating thread-safe multithreaded
classes. Multithreading is discussed in more detail in Chapter 5.

__

 2.2 Features Removed from C and C++
 The earlier part of this chapter concentrated on the principal features of Java. This section discusses
features removed from C and C++ in the evolution of Java.

The first step was to eliminate redundancy    from C and C++. In many ways, the C language evolved into
a collection of overlapping features, providing too many ways to say the same thing, while in many cases
not providing needed features. C++, in an attempt to add "classes in C", merely added more redundancy
while retaining many of the inherent problems of C.

 2.2.1 No More Typedefs, Defines, or Preprocessor

Source code written in Java is simple. There is no preprocessor, no #define and related capabilities, no
typedef , and absent those features, no longer any need for header files . Instead of header files, Java
language source files provide the definitions of other classes and their methods.

 A major problem with C and C++ is the amount of context you need to understand another programmer's
code: you have to read all related header files, all related #defines, and all related typedef s before you can
even begin to analyze a program. In essence, programming with #defines    and typedef s results in every
programmer inventing a new programming language that's incomprehensible to anybody other than its
creator, thus defeating the goals of good programming practices.

In Java, you obtain the effects of #define    by using constants. You obtain the effects of typedef    by
declaring classes--after all, a class effectively declares a new type. You don't need header files because
the Java compiler compiles class definitions into a binary form that retains all the type information through
to link time.

By removing all this baggage, Java becomes remarkably context-free . Programmers can read and
understand code and, more importantly, modify and reuse code much faster and easier.

 2.2.2 No More Structures or Unions

 Java has no structures or unions as complex data types. You don't need structures and unions when you
have classes; you can achieve the same effect simply by declaring a class with the appropriate instance
variables.

The code fragment below declares a class called Point.

 class Point extends Object {
 double x;
 double y;
 methods to access the instance variables
 }

The following code fragment declares a class called Rectangle , that uses objects of the Point class as
instance variables.

 class Rectangle extends Object {
 Point lowerLeft;
 Point upperRight;
 methods to access the instance variables
 }

 In C you'd define these classes as structures. In Java, you simply declare classes. You can make the
instance variables as private or as public as you wish, depending on how much you wish to hide the
details of the implementation from other objects.

 2.2.3 No More Functions

Java has no functions . Object-oriented programming supersedes functional and procedural styles. Mixing
the two styles just leads to confusion and dilutes the purity of an object-oriented language. Anything you
can do with a function you can do just as well by defining a class and creating methods for that class.
Consider the Point    class from above. We've added public methods to set and access the instance
variables:

 class Point extends Object {
 double x;
 double y;

 public void setX(double x) {
 this.x = x;
 }
 public void setY(double y) {
 this.y = y;
 }
 public double x() {
 return x;
 }
 public double y() {
 return x;
 }
 }

If the x and y    instance variables are private to this class, the only means to access them is via the public
methods of the class. Here's how you'd use objects of the Point class from within, say, an object of the
Rectangle class:

 class Rectangle extends Object {
 Point lowerLeft;
 Point upperRight;

 public void setEmptyRect() {
 lowerLeft.setX(0.0);
 lowerLeft.setY(0.0);
 upperRight.setX(0.0);
 upperRight.setY(0.0);
 }
 }

 It's not to say that functions and procedures are inherently wrong. But given classes and methods, we're
now down to only one way to express a given task. By eliminating functions, your job as a programmer is
immensely simplified: you work only with classes and their methods.

 2.2.4 No More Multiple Inheritance

Multiple inheritance --and all the problems it generates--has beed discarded from Java. The desirable
features of multiple inheritance are provided by interfaces--conceptually similar to Objective C protocols.

 An interface is not a definition of an object. Rather, it's a definition of a set of methods that one or more
objects will implement. An important issue of interfaces is that they declare only methods and constants.
No variables may be defined in interfaces.

 2.2.5 No More Goto Statements

Java has no goto statement[2]. Studies illustrated that goto    is (mis)used more often than not simply
"because it's there". Eliminating goto    led to a simplification of the language--there are no rules about the
effects of a goto into the middle of a for    statement, for example. Studies on approximately 100,000 lines
of C code determined that roughly 90 percent of the goto    statements were used purely to obtain the
effect of breaking out of nested loops. As mentioned above, multi-level break and continue remove most of
the need for goto statements.

 2.2.6 No More Operator Overloading

 There are no means provided by which programmers can overload the standard arithmetic operators.
Once again, the effects of operator overloading can be just as easily achieved by declaring a class,
appropriate instance variables, and appropriate methods to manipulate those variables.

 2.2.7 No More Automatic Coercions

Java prohibits C and C++ style automatic coercions. If you wish to coerce a data element of one type to a
data type that would result in loss of precision, you must do so explicitly by using a cast. Consider this
code fragment:

 int myInt;
 double myFloat = 3.14159;
 myInt = myFloat;

The assignment of myFloat to myInt    would result in a compiler error indicating a possible loss of
precision and that you must use an explicit cast. Thus, you should re-write the code fragments as:

 int myInt;
 double myFloat = 3.14159;
 myInt = (int)myFloat;

 2.2.8 No More Pointers

Most studies agree that pointers    are one of the primary features that enable programmers to inject bugs
into their code. Given that structures are gone, and arrays and strings are objects, the need for pointers to
these constructs goes away. Thus, Java has no pointers. Any task that wou ld require arrays, structures,
and pointers in C can be more easily and reliably performed by declaring objects and arrays of objects.
Instead of complex pointer manipulation on array pointers, you access arrays by their arithmetic indices.
The Java run-time system checks all array indexing to ensure indices are within the bounds of the array.

 You no longer have dangling pointers and trashing of memory because of incorrect pointers, because
there are no pointers in Java.

__

 2.3 Summary
To sum up this chapter, Java is:

· Simple --the number of language constructs you need to understand to get your job done is minimal.

· Familiar --Java looks like C and C++ while discarding the overwhelming complexities of those
languages.

 Now that you've seen how Java was simplified by removal of features from its predecessors, read the
next chapter for a discussion on the object-oriented features of Java.

__
[1] Now enjoying their silver anniversaries
__
[2] However, goto is still a reserved word.
__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: Java is Object
Oriented

Next Prev Contents

__

Java is Object Oriented
 3.1 - Object Technology in Java
 3.2 - What Are Objects?
 3.3 - Basics of Objects
 3.4 - Summary

__

 My Object All Sublime
 I Will Achieve in Time

 Gilbert and Sullivan--The Mikado

To stay abreast of modern software development practices, Java is object oriented from the ground up.   
The point of designing an object-oriented language is not simply to jump on the latest programming fad.
The object-oriented paradigm meshes well with the needs of client-server and distributed software.
Benefits of object technology are rapidly becoming realized as more organizations move their applications
to the distributed client-server model.

 Unfortunately, "object oriented" remains misunderstood, over-marketed as the silver bullet that will solve
all our software ills, or takes on the trappings of a religion. The cynic's view of object-oriented
programming is that it's just a new way to organ ize your source code. While there may be some merit to
this view, it doesn't tell the whole story, because you can achieve results with object-oriented
programming techniques that you can't with procedural techniques.

 An important characteristic that distinguishes objects from ordinary procedures or functions is that an
object can have a lifetime greater than that of the object that created it. This aspect of objects is subtle
and mostly overlooked.In the distributed c lient-server world, this creates the potential for objects to be
created in one place, passed around networks, and stored elsewhere, possibly in databases, to be
retrieved for future work.

 As an object-oriented language, Java draws on the best concepts and features of previous object-
oriented languages, primarily Eiffel, SmallTalk, Objective C, and C++. Java goes beyond C++ in both
extending the object model and removing the major complexit ies of C++. With the exception of its
primitive data types, everything in Java is an object, and even the primitive types can be encapsulated
within objects if the need arises.

__

 3.1 Object Technology in Java
 To be truly considered "object oriented", a programming language should support at a minimum four

characteristics:

· Encapsulation --implements information hiding and modularity (abstraction)

· Polymorphism --the same message sent to different objects results in behavior that's dependent on
the nature of the object receiving the message

· Inheritance --you define new classes and behavior based on existing classes to obtain code re-use
and code organization

· Dynamic binding --objects could come from anywhere, possibly across the network. You need to be
able to send messages to objects without having to know their specific type at the time you write your
code. Dynamic binding provides maximum flexibility while a program is executing

 Java meets these requirements nicely, and adds considerable run-time support to make your software
development job easier.

__

 3.2 What Are Objects?
 At its simplest, object technology is a collection of analysis, design, and programming methodologies that
focuses design on modelling    the characteristics and behavior of objects in the real world. True, this
definition appears to be somewhat circular, so let's try to break out into clear air.

What are objects? They're software programming models . In your everyday life, you're surrounded by
objects: cars, coffee machines, ducks, trees, and so on. Software applications contain objects: buttons on
user interfaces, spreadsheets and spreadsheet cells, property lists, menus, and so on. These objects
have state and behavior . You can represent all these things with software constructs called objects,
which can also be defined by their state and their behavior.

In your everyday transportation needs, a car can be modelled by an object. A car has state (how fast it's
going, in which direction, its fuel consumption, and so on) and behavior (starts, stops, turns, slides, and
runs into trees).

 You drive your car to your office, where you track your stock portfolio. In your daily interactions with the
stock markets, a stock can be modelled by an object. A stock has state    (daily high, daily low, open price,
close price, earnings per share, relative strength), and behavior (changes value, performs splits, has
dividends).

 After watching your stock decline in price, you repair to the cafe to console yourself with a cup of good
hot coffee. The espresso machine can be modelled as an object. It has state    (water temperature,
amount of coffee in the hopper) and it has behavior    (emits steam, makes noise, and brews a perfect cup
of java).

__

 3.3 Basics of Objects

In the programming implementation of an object, its state    is defined by its
instance variables . Instance variables are private to the object. Unless explicitly made public or made
available to other "friendly" classes, an object's instance variables are inaccessible from outside the
object.

An object's behavior is defined by its methods . Methods manipulate the instance variables to create new
state; an object's methods can also create new objects.

 The small picture to the left is a commonly used graphical representation of an object. The diagram
illustrates the conceptual structure of a software object--it's kind of like a cell, with an outer membrane
that's its interface to the world, and an inner nucleus that's protected by the outer membrane.

An object's instance variables    (data) are packaged, or encapsulated, within the object. The instance
variables are surrounded by the object's methods . With certain well-defined exceptions, the object's
methods are the only means by which other objects can access or alter its instance variables. In Java,
classes can declare their instance variables to be public , in which cases the instance variables are
globally accessible to other objects. Declarations of accessibility are covered in later in Access Specifiers.

 3.3.1 Classes

A class is a software construct that defines the instance variables and methods of an object. A class in
and of itself is not an object. A class is a template that defines how an object will look and behave when
the object is created or instantiated    from the specification declared by the class. You obtain concrete
objects by instantiating a previously defined class. You can instantiate many objects from one class
definition, just as you can construct many houses that area all the same from a single architect's drawing.
Here's the basic declaration of a very simple class called Point

 class Point extends Object {
 public double x; /* instance variable */
 public double y; /* instance variable */
 }

 As mentioned, this declaration merely defines a template from which real objects can be instantiated, as
described next.

 3.3.2 Instantiating an Object from its Class

Having declared the size and shape of the Point class    above, any other object can now create a Point
object--an instance of the Point class--with a fragment of code like this:

 Point myPoint; // declares a variable to refer to a Point object

 myPoint = new Point(); // allocates an instance of a Point object

 Now, you can access the variables of this Point object by referring to the names of the variables,
qualified with the name of the object:

 myPoint.x = 10.0;
 myPoint.y = 25.7;

 This referencing scheme, similar to a C structure reference, works because the instance variables of
Point were declared public    in the class declaration. Had the instance variables not been declared public ,
objects outside of the package within which Point    was declared could not access its instance variables in
this direct manner. The Point    class declaration would then need to provide accessor methods    to set
and get its variables. This topic is discussed in a little more detail after the discussion on constructors.

 3.3.3 Constructors

When you declare a class in Java, you can declare optional constructors    that perform initialization when
you instantiate objects from that class. You can also declare an optional finalizer, discussed later. Let's go
back to our Point class from before:

 class Point extends Object {
 public double x; /* instance variable */
 public double y; /* instance variable */

 Point() { /* constructor to initialize to default zero value */
 x = 0.0;
 y = 0.0;
 }
 /* constructor to initialize to specific value */
 Point(double x, double y) {
 this.x = x; /* set instance variables to passed parameters */
 this.y = y;
 }
 }

Methods with the same name as the class as in the code fragment are called constructors . When you
create (instantiate) an object of the Point    class, the constructor method is invoked to perform any
initialization that's needed--in this case, to set the instance variables to an initial state.

This example is a variation on the Point    class from before. Now, when you wish to create and initialize
Point    objects, you can get them initialized to their default values, or you can initialize them to specific
values:

 Point lowerLeft;
 Point upperRight;

 lowerLeft = new Point(); /* initialize to default zero value */
 upperRight = new Point(100.0, 200.0); /* initialize to non- zero */

The specific constructor that's used when creating a new Point    object is determined from the type and
number of parameters in the new invocation.

The this Variable

What's the this variable in the examples above? this    refers to the object you're "in" right now. In other
words, this    refers to the receiving object. You use this    to clarify which variable you're referring to. In the
two-parameter Point method, this.x means the x instance variable of this object, rather than the x
parameter to the Point method.

In the example above, the constructors are simply conveniences for the Point    class. There are situations,
however, where constructors are necessary, especially in cases where the object being instantiated must
itself instantiate other objects. Let's illustrate this by declaring a Rectangle class that uses two Point objects
to define its bounds:

 class Rectangle extends Object {
 private Point lowerLeft;
 private Point upperRight;

 Rectangle() {
 lowerLeft = new Point();
 upperRight = new Point();
 }
 . . .
 instance methods appear in here
 . . .
 }

In this example, the Rectangle()    constructor is vitally necessary to ensure that the two Point    objects are
instantiated at the time a Rectangle    object is instantiated, otherwise, the Rectangle    object would
subsequently try to reference points that have not yet been allocated, and would fail.

 3.3.4 Methods and Messaging

 If an object wants another object to do some work on its behalf, then in the
parlance of object-oriented programming, the first object sends a message    to the second object. In
response, the second object selects the appropriate method    to invoke. Java method invocations look
similar to functions in C and C++.

 Using the message passing paradigms of object-oriented programming, you can build entire networks
and webs of objects that pass messages between them to change state. This programming technique is
one of the best ways to create models and simulations of complex real-world systems. Let's redefine the
declaration of the Point    class from above such that its instance variables are private, and supply it with
accessor methods to access those variables.

 class Point extends Object {
 private double x; /* instance variable */
 private double y; /* instance variable */

 Point() { /* constructor to initialize to zero */
 x = 0.0;
 y = 0.0;
 }
 /* constructor to initialize to specific value */
 Point(double x, double y) {
 this.x = x;
 this.y = y;
 }
 public void setX(double x) { /* accessor method */
 this.x = x;
 }
 public void setY(double y) { /* accessor method */
 this.y = y;
 }
 public double getX() { /* accessor method */
 return x;
 }
 public double getY() { /* accessor method */
 return y;
 }
 }

These method declarations provides the flavor of how the Point    class provides access to its variables
from the outside world. Another object that wants to manipulate the instance variables of Point objects
must now do so via the accessor methods:

 Point myPoint; // declares a variable to refer to a Point object

 myPoint = new Point(); // allocates an instance of a Point object
 myPoint.setX(10.0); // sets the x variable via the accessor method
 myPoint.setY(25.7);

 Making instance variables public or private is a design tradeoff the designer makes when declaring the
classes. By making instance variables public, you are exposing some of the details of the implementation
of the class, thereby providing higher efficien cy and conciseness of expression at the possible expense
of hindering future maintenance efforts. By hiding details of the internal implementation of a class, you
have the potential to change the implementation of the class in the future without breaking any code that
uses that class.

 3.3.5 Finalizers

You can also declare an optional finalizer    that will perform necessary tear-down actions when the
garbage collector is about to free an object. This code fragment illustrates a finalize method in a class.

 /**
 * Close the stream when garbage is collected.
 */
 protected void finalize() {
 try {
 file.close();
 } catch (Exception e) {
 }
 }

This finalize    method will be invoked when the object is about to be garbage collected, which means that
the object must shut itself down in an orderly fashion. In the particular code fragment above, the finalize   
method merely closes an I/O file stream that was used by the object, to ensure that the file descriptor for
the stream is closed.

 3.3.6 Subclassing

Subclassing    is the mechanism by which new and enhanced objects can be defined in terms of existing
objects. One example: a zebra is a horse with stripes. If you wish to create a zebra object, you notice that
a zebra is kind of like a horse, only with stripes. In object-oriented terms, you'd create a new class called
Zebra, which is a subclass    of the Horse class. In Java language terms, you'd do something like this:

 class Zebra extends Horse {
 Your new instance variables and new methods go here
 }

The definition of Horse, wherever it is, would define all the methods to describe the behavior    of a horse:
eat, neigh, trot, gallop, buck, and so on. The only method you need to override is the method for drawing
the hide. You gain the benefit of already written code that does all the work--you don't have to re-invent
the wheel, or in this case, the hoof. The extends    keyword tells the Java compiler that Zebra is a subclass
of Horse. Zebra is said to be a derived class--it's derived from Horse, which is called a base class.

Here's an example of subclassing a variant of our Point    class from previous examples to create a new
three-dimensional point called ThreePoint :

 class Point extends Object {
 protected double x; /* instance variable */
 protected double y; /* instance variable */

 Point() { /* constructor to initialize to zero */
 x = 0.0;
 y = 0.0;
 }
 }
 class ThreePoint extends Point {
 protected double z; /* the z coordinate of the point */

 ThreePoint() { /* default constructor */
 x = 0.0; /* initialize the coordinates */

 y = 0.0;
 z = 0.0;
 }
 ThreePoint(double x, double y, double z) {/* specific constructor */
 this.x = x; /* initialize the coordinates */
 this.y = y;
 this.z = z;
 }
 }

Notice that ThreePoint adds a new instance variable for the z    coordinate of the point. The x and y
instance variables are inherited from the original Point class, so there's no need to declare them in
ThreePoint. However, notice we had to make Point's instance variables protected instead of private as in the
previous examples. Had we left Point's instance variables private, even its subclasses would be unable to
access them, and the compilation would fail.

 Subclassing enables you to use existing code that's already been developed and, much more important,
tested, for a more generic case. You override the parts of the class you need for your specific behavior.
Thus, subclassing gains you reuse of existing co de--you save on design, development, and testing. The
Java run-time system provides several libraries of utility functions that are tested and are also thread safe.

 3.3.7 Access Control

 When you declare a new class in Java, you can indicate the level of access permitted to its instance
variables and methods. Java provides four levels of access specifiers. Three of the levels must be
explicitly specified if you wish to use them. They are public, protected, and private.

 The fourth level doesn't have a name--it's often called "friendly" and is the access level you obtain if you
don't specify otherwise. The "friendly" access level indicates that your instance variables and methods are
accessible to all objects within the same package, but inaccessible to objects outside the package.

The friendly access level comes in handy if you're creating packages    of classes that are related to each
other and can access each other's instance variables directly. A geometry package consisting of Point and
Rectangle    classes, for instance, might well be easier and cleaner to implement, as well as more efficient,
if the Point's instance variables were directly available to the Rectangle    class. Outside of the geometry
package, however, the details of implementations are hidden from the rest of the world, giving you the
freedom to changed implementation details without worrying you'll break code that uses those classes.
Packages are a Jav a language construct that gather collections of related classes into a single container.
For example, all Java I/O system code is collected into a single package. The primary benefit of packages
is organizing many class definitions into a single unit. The secondary benefit from the programmer's
viewpoint is that the "friendly" instance variables and methods are available to all classes within the same
package, but not to classes defined outside the package.

public methods and instance variables are available to any other class anywhere.

protected    means that instance variables and methods so designated are accessible only to subclasses of
that class, and nowhere else.

private    methods and instance variables are accessible only from within the class in which they're
declared--they're not available even to their subclasses.

 3.3.8 Class Variables and Class Methods

Java follows conventions from other object-oriented languages in providing class methods and class
variables. Normally, variables you declare in a class definition are instance variables --there is one of
those variables in every separate object that's created (instantiated) from the class. A class variable, on
the other hand, is local to the class itself--there's only a single copy of the variable and it's shared by
every object you instantiate from the class.

To declare class variables and class methods, you declare them as static . This short code fragment
illustrates the declaration of class variables:

 class Rectangle extends Object {
 static final int version = 2;
 static final int revision = 0;
 }

The Rectangle class declares two static    variables to define the version and revision level of this class.
Now, every instance of Rectangle that you create from this class will share these same variables. Notice
they're also defined as final    because you want them to be constants.

 Class methods are methods that are common to an entire class. When would you use class methods?
Usually, when you have behavior that's common to every object of a class. For example, suppose you
have a Window    class. A useful item of information you can ask the class is the width of the border
around the window. There's no point in having an instance method to obtain this information that's shared
by every instance of Window--it makes more sense to have just one class method to return the border
width.

Class methods can operate only    on class variables. Class methods can't access instance variables, nor
can they invoke instance methods. Like class variables, you declare class methods by defining them as
static.

 3.3.9 Abstract Methods

 Abstract methods are a powerful construct in the object-oriented paradigm. To understand abstract
methods, we look at the notion of an abstract superclass . An abstract superclass is a class in which you
define methods that aren't actually implemented by that class--they only provide place-holders such that
subsequent subclasses must override those methods and supply their actual implementation.

This all sounds wonderfully, well, abstract , so why would you need an abstract superclass? Let's look at
a concrete    example, no pun intended. Let's suppose you're going to a restaurant for dinner, and you
decide that tonight you want to eat fish. Well, fish    is somewhat abstract--you generally wouldn't just
order fish; the waiter is highly likely to ask you what specific    kind of fish you want. When you actually get
to the restaurant, you will find out what kind of fish they have, and order a specific fish, say, sturgeon, or
salmon, or opakapaka.

 In the world of objects, an abstract class is like generic fish--the abstract class defines generic state and
generic behavior, but you'll never see a real live implementation of an abstract class. What you will see is
a concrete subclass    of the abstract class, just as opakapaka is a specific (concrete) kind of fish.

 Suppose you are creating a drawing application. The initial cut of your application can draw rectangles,
lines, circles, polygons, and so on. Furthermore, you have a series of operations you can perform on the
shapes--move, reshape, rotate, fill color, and so on. You could    make each of these graphic shapes a
separate class--you'd have a Rectangle class, a Line class, and so on. Each class needs instance
variables to define its position, size, color, rotation and so on, which in turn dictates methods to set and
get at those variables.

 At this point, you realize you can collect all the instance variables into a single abstract superclass called
Graphical , and implement most of the methods to manipulate the variables in that abstract superclass.
The skeleton of your abstract superclass might look something like this:

abstract class Graphic extends Object {
 protected Point lowerLeft; // lower left of bounding box
 protected Point upperRight; // upper right of bounding box
 . . .
 more instance variables
 . . .
 public void setPosition(Point ll, Point ur) {
 lowerLeft = ll;
 upperRight = ur;
 }
 abstract void drawMyself(); // abstract method
 }

}

Now, you can't instantiate the Graphical class, because it's declared abstract. You can only instantiate a
subclass of it. When you implement the Rectangle class or the Circle class, you'd extend (subclass)
Graphical. Within Rectangle, you'd provide a concrete    implementation of the drawMySelf()    method that
draws a rectangle, because the definition of drawMySelf()    must by necessity be unique to each shape
inherited from the Graphical    class. Let's see a small fragment of the Rectangle class declaration, where its
drawMySelf() method operates in a somewhat PostScript'y fashion:

abstract class Rectangle extends Graphical {
 void drawMySelf() { // really does the drawing
 moveTo(lowerLeft.x, lowerLeft.y);
 lineTo(upperRight.x, lowerLeft.y);
 lineTo(upperRight.x, upperRight.y)
 lineTo(lowerLeft.x, upperRight.y);
 . . .
 and so on and so on
 . . .
 }
}

Notice, however, that in the declaration of the Graphical class, the setPosition() method was declared as a
regular (public void) method. All methods that can    be implemented by the abstract superclass can be
declared there and their implementations defined at that time. Then, every class that inherits from the
abstract superclass will also inherit those methods.

You can continue in this way adding new shapes that are subclasses of Graphical , and most of the time,
all you ever need to implement is the methods that are unique to the specific shape. You gain the benefit
of re-using all the code that was defined inside the abstract superclass.

__

 3.4 Summary

This chapter has conveyed the essential aspects of Java as an object-oriented    language. To sum up:

· Classes    define templates from which you instantiate (create) distinct concrete objects.

· Instance variables hold the state    of a specific object.

· Objects communicate by sending messages    to each other. Objects respond to messages by
selecting a method to execute.

· Methods define the behavior    of objects instantiated from a class. It is an object's methods that
manipulate its instance variables. Unlike regular procedural languages, classes in an object-oriented
language may have methods with the same names as other classes. A given object responds to a
message in ways determined by the nature of that object, providing polymorphic behavior.

· Subclassing    provides the means by which a new class can inherit    instance variables and
methods from any already defined class. The newly declared class can add new instance variables
(extra state), can add new methods (new behavior), or can override    the methods of its superclass
(different behavior). Subclassing provides code reuse.

 Taken together, the concepts of object-oriented programming create a powerful and simple paradigm for
software developers to share and re-use code and build on the work of others.

__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: Architecture
Neutral, Portable, and Robust

Next Prev Contents

__

Architecture Neutral, Portable, and Robust 

 4.1 - Architecture Neutral
 4.2 - Portable
 4.3 - Robust
 4.4 - Summary

__

 With the phenomenal growth of networks, today's developers must "think distributed". Applications--even
parts of applications--must be able to migrate easily to a wide variety of computer systems, a wide variety
of hardware architectures, and a wide varie ty of operating system architectures. They must operate with
a plethora of graphical user interfaces.

 Clearly, applications must be able to execute anywhere on the network without prior knowledge of the
target hardware and software platform. If application developers are forced to develop for specific target
platforms, the binary distribution problem quic kly becomes unmanageable. Various and sundry methods
have been employed to overcome the problem, such as creating "fat" binaries that adapt to the specific
hardware architecture, but such methods are not only clumsy but are still geared to a specific oper ating
system. To solve the binary-distribution problem, software applications and fragments of applications must
be architecture neutral and portable.

Reliability    is also at a high premium in the distributed world. Code from anywhere on the network should
work robustly    with low probabilities of creating "crashes" in applications that import fragments of code.

 This chapter describes the ways in which Java has addressed the issues of architecture neutrality,
portability, and reliability.

__

 4.1 Architecture Neutral
 The solution that the Java system adopts to solve the binary-distribution problem is a "binary code
format" that's independent of hardware architectures, operating system interfaces, and window systems.
The format of this system-independent binary code is architecture neutral . If the Java run-time system is
made available on a given hardware and software platform, an application written in Java can then
execute on that platform without the need to perform any special porting work for that application.

 4.1.1 Byte Codes

 The Java compiler doesn't generate "machine code" in the sense of native hardware instructions--rather,
it generates bytecodes: a high-level, machine-independent code for a hypothetical machine that is

implemented by the Java interpreter and run-time system.

 One of the early examples of the bytecode approach was the UCSD P-System, which was ported to a
variety of eight-bit architectures in the middle 1970s and early 1980s and enjoyed widespread popularity
during the heyday of eight-bit machines. Coming up to the present day, current architectures have the
power to support the bytecode approach for distributed software. Java bytecodes are designed to be easy
to interpret on any machine, or to dynamically translate into native machine code if required by
performance demands.

 The architecture neutral approach is useful not only for network-based applications, but also for single-
system software distribution. In today's software market, application developers have to produce versions
of their applications that are compatible wi th the IBM PC, Apple Macintosh, and fifty-seven flavors of
workstation and operating system architectures in the fragmented UNIX marketplace.

 With the PC market (through Windows 95 and Windows NT) diversifying onto many CPU architectures,
and Apple moving full steam from the 68000 to the PowerPC, production of software to run on all
platforms becomes almost impossible until now. Using Java, cou pled with the Abstract Window Toolkit,
the same version of your application can run on all platforms.

__

 4.2 Portable
 The primary benefit of the interpreted byte code approach is that compiled Java language programs are
portable to any system on which the Java interpreter and run-time system have been implemented.

 The architecture-neutral aspect discussed above is one major step towards being portable, but there's
more to it than that. C and C++ both suffer from the defect of designating many fundamental data types
as "implementation dependent". Programmers labor t o ensure that programs are portable across
architectures by programming to a lowest common denominator.

 Java eliminates this issue by defining standard behavior that will apply to the data types across all
platforms. Java specifies the sizes of all its primitive data types and the behavior of arithmetic on them.
Here are the data types:

byte 8-bit two's complement
short 16-bit two's complement
int 32-bit two's complement
long 64-bit two's complement

float 32-bit IEEE 754 floating point
double 64-bit IEEE 754 floating point

char 16-bit Unicode character

 The data types and sizes described above are standard across all implementations of Java. These
choices are reasonable given current microprocessor architectures because essentially all central
processor architectures in use today share these characterist ics. That is, most modern processors can
support two's-complement arithmetic in 8-bit to 64-bit integer formats, and most modern processors
support single- and double-precision floating point.

 The Java environment itself is readily portable to new architectures and operating systems. The Java
compiler is written in Java. The Java run-time system is written in ANSI C with a clean portability
boundary which is essentially POSIX-compliant. There are no "implementation-dependent" notes in the
Java language specification.

__

 4.3 Robust
Java is intended for developing software that must be robust, highly reliable, and secure,    in a variety of
ways. There's strong emphasis on early checking for possible problems, as well as later dynamic (run-
time) checking, to eliminate error-prone situations.

 4.3.1 Strict Compile-Time and Run-Time Checking

 The Java compiler employs extensive and stringent compile-time checking so that syntax-related errors
can be detected early, before a program is deployed.

 One of the advantages of a strongly typed language (like C++) is that it allows extensive compile-time
checking, so bugs can be found early. Unfortunately, C++ inherits a number of loopholes in its compile-
time checking from C. Unfortunately, C++ and C ar e relatively lax, most notably in the area of method or
function declarations. Java imposes much more stringent requirements on the developer: Java requires   
explicit declarations and does not support C-style implicit declarations.

 Many of the stringent compile-time checks at the Java compiler level are carried over to the run time,
both to check consistency at run time, and to provide greater flexibility. The linker understands the type
system and repeats many of the type checks done by the compiler, to guard against version mismatch
problems.

 The single biggest difference between Java and C or C++ is that Java's memory model eliminates the
possibility of overwriting memory and corrupting data. Instead of pointer arithmetic, Java has true arrays
and strings, which means that the interpreter can    check array and string indexes. In addition, a
programmer can't write code that turns an arbitrary integer into an object reference by casting.

 While Java doesn't pretend to completely remove the software quality assurance problem, removal of
entire classes of programming errors considerably eases the job of testing and quality assurance.

__

 4.4 Summary
Java--an architecture-neutral and portable    programming language--provides an attractive and simple
solution to the problem of distributing your applications across heterogeneous network-based computing
platforms. In addition, the simplicity and robustness    of the underlying Java language results in higher
quality, reliable applications in which users can have a high level of confidence. The next chapter contains
a brief discussion of Java's interpreted    implementation.

__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: Interpreted
and Dynamic

Next Prev Contents

__

Interpreted and Dynamic
 5.1 - Dynamic Loading and Binding
 5.2 - Summary

__
Programmers using "traditional" software development tools have become resigned to the artificial edit-
compile-link-load-throw-the-application-off-the-cliff-let-it-crash-and-start-all-over-again style of current
development practice.

 Additionally, keeping track of what must be recompiled when a declaration changes somewhere else
strains the capabilities of development tools--even fancy "make"-style tools such as found on UNIX
systems. This development approach bogs down as the code bases of applications grow to hundreds of
thousands of lines.

 Better methods of fast and fearless prototyping and development are needed. The Java language
environment is one of those better ways, because it's interpreted and dynamic.

 As discussed in the previous chapter on architecture-neutrality, the Java compiler generates byte codes
for the Java Virtual Machine[3], which was introduced briefly in Chapter 4 . The notion of a virtual
interpreted machine is not new. But the Java language brings the concepts into the realm of secure,
distributed, network-based systems.

 The Java language virtual machine is a strictly defined virtual machine for which an interpreter must be
available for each hardware architecture and operating system on which you wish to run Java language
applications. Once you have the Java language int erpreter and run-time support available on a given
hardware and operating system platform, you can run any Java language application from anywhere,
always assuming the specific Java language application is written in a portable manner.

 The notion of a separate "link" phase after compilation is pretty well absent from the Java environment.
Linking, which is actually the process of loading new classes by the Class Loader , is a more incremental
and lightweight process. The concomitant speedup in your development cycle means that your
development process can be much more rapid and exploratory, and because of the robust nature of the
Java language and run-time system, you will catch bugs at a much earlier phase of the cycle.

__

 5.1 Dynamic Loading and Binding
The Java language's portable and interpreted nature produces a highly dynamic and dynamically-
extensible    system. The Java language was designed to adapt to evolving environments. Classes are
linked in as required and can be downloaded from across networks. Incoming code is verified before
being passed to the interpreter for execution.

 Object-oriented programming has become accepted as a means to solve at least a part of the "software
crisis", by assisting encapsulation of data and corresponding procedures, and encouraging reuse of code.
Most programmers doing object-oriented developmen t today have adopted C++ as their language of
choice. But C++ suffers from a serious problem that impedes its widespread use in the production and
distribution of "software ICs". This defect is known as the fragile superclass problem.

 5.1.1 The Fragile Superclass Problem

 This problem arises as a side-effect of the way that C++ is usually implemented. Any time you add a new
method or a new instance variable to a class, any and all classes that reference that class will require a
recompilation, or they'll break. Keeping tra ck of the dependencies between class definitions and their
clients has proved to be a fruitful source of programming error in C++, even with the help of "make"-like
utilities.The fragile superclass issue is sometimes also referred to as the "constant recompilation
problem." You can    avoid these problems in C++, but with extraordinary difficulty, and doing so effectively
means not using any of the language's object-oriented features directly. By avoiding the object-oriented
features of C++, developers defeat the goal of re-usable "software ICs".

 5.1.2 Solving the Fragile Superclass Problem

 The Java language solves the fragile superclass problem in several stages. The Java compiler doesn't
compile references down to numeric values--instead, it passes symbolic reference information through to
the byte code verifier and the interpreter. The Ja va interpreter performs final name resolution once, when
classes are being linked. Once the name is resolved, the reference is rewritten as a numeric offset,
enabling the Java interpreter to run at full speed.

 Finally, the storage layout of objects is not determined by the compiler. The layout of objects in memory
is deferred to run time and determined by the interpreter. Updated classes with new instance variables or
methods can be linked in without affecting existing code.

 At the small expense of a name lookup the first time any name is encountered, the Java language
eliminates the fragile superclass problem. Java programmers can use object-oriented programming
techniques in a much more straightforward fashion without the c onstant recompilation burden
engendered by C++. Libraries can freely add new methods and instance variables without any effect on
their clients. Your life as a programmer is simpler.

 5.1.3 Java Language Interfaces

An interface    in the Java language is simply a specification of methods that an object implements. The
concept of an interface in the Java language was borrowed from the Objective-C concept of a protocol .
An interface does not include instance variables or implementation code. You can import and use multiple
interfaces in a flexible manner, providing the benefits of multiple inheritance without the inherent
difficulties created by the usual rigid class inheritance structure.

 5.1.4 Run-Time Representations

Classes in the Java language have a run-time representation. There is a class named Class , instances of
which contain run-time class definitions. If you're handed an object, you can find out what class it belongs
to. In a C or C++ program, you may be handed a pointer to an object, but if you don't know what type of
object it is, you have no w ay to find out. In the Java language, finding out based on the run-time type
information is straightforward.

 It is also possible to look up the definition of a class given a string containing its name. This means that
you can compute a data type name and easily have it dynamically-linked into the running system.

__

 5.2 Summary
The interpreted and dynamic nature of Java provides several benefits:

· The interpreted environment enables fast prototyping without waiting for the traditional compile and
link cycle,

· The environment is dynamically extensible, whereby classes are loaded on the fly as required,

· The fragile superclass problem that plagues C++ developers is eliminated because of deferral of
memory layout decisions to run time.

__
[3] One of the ancestors of the virtual machine concept was the UCSD P System, developed by Kenneth
Bowles at the University of California at San Diego in the late 1970s.
__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: Security in
Java

Next Prev Contents

__

Security in Java
 6.1 - Memory Allocation and Layout
 6.2 - The Byte Code Verification Process
 6.3 - Security Checks in the Bytecode Loader
 6.4 - Security in the Java Networking Package
 6.5 - Summary

__
Security commands a high premium in the growing use of the Internet for products and services ranging
from electronic distribution of software and multimedia content, to "digital cash". The area of security with
which we're concerned here is how the Java compiler and run-time system restrict application
programmers from creating subversive code.

 The Java language compiler and run-time system implement several layers of defense against potentially
incorrect code. The environment starts with the assumption that nothing is to be trusted, and proceeds
accordingly. The next few sections discuss the Java security models in greater detail.

__

 6.1 Memory Allocation and Layout
 One of the Java compiler's primary lines of defense is its memory allocation and reference model. First of
all, memory layout    decisions are not made by the Java language compiler, as they are in C and C++.
Rather, memory layout is deferred to run time, and will potentially differ depending on the characteristics
of the hardware and software platforms on which the Java system executes.

 Secondly, Java does not have "pointers" in the traditional C and C++ sense of memory cells that contain
the addresses of other memory cells.The Java compiled code references memory via symbolic "handles"
that are resolved to real memory addresses at run t ime by the Java interpreter. Java programmers can't
forge pointers to memory, because the memory allocation and referencing model is completely opaque to
the programmer and controlled entirely by the underlying run-time system.

 Very late binding of structures to memory means that programmers can't infer the physical memory
layout of a class by looking at its declaration. By removing the C and C++ memory layout and pointer
models, the Java language has eliminated the programmer's    ability to get behind the scenes and
manufacture pointers to memory. These features must be viewed as positive benefits rather than a
restriction on the programmer, because they ultimately lead to more reliable and secure applications.

__

 6.2 The Byte Code Verification Process

 What about the concept of a "hostile compiler"? Although the Java compiler ensures that Java source
code doesn't violate the safety rules, when an application such as the HotJava Browser imports a code
fragment from anywhere, it doesn't actually know if c ode fragments follow Java language rules for safety:
the code may not have been produced by a known-to-be trustworthy Java compiler. In such a case, how
is the Java run-time system on your machine to trust the incoming bytecode stream? The answer is
simple: the Java run-time system doesn't trust the incoming code, but subjects it to bytecode verification.

 The tests range from simple verification that the format of a code fragment is correct, to passing each
code fragment through a simple theorem prover to establish that it plays by the rules:

· it doesn't forge pointers,

· it doesn't violate access restrictions,

· it accesses objects as what they are (for example, InputStream objects are always used as
InputStream s and never as anything else).

 A language that is safe, plus run-time verification of generated code, establishes a base set of
guarantees that interfaces cannot be violated.

 6.2.1 The Byte Code Verifier

The bytecode    verifier traverses the bytecodes, constructs the type state information, and verifies the
types of the parameters to all the bytecode instructions.

 

 The illustration shows the flow of data and control from Java language source code through the Java
compiler, to the bytecode verifier and hence on to the Java interpreter. The important issue is that the
Java bytecode loader and the bytecode verifier mak e no assumptions about the primary source of the
bytecode stream--the code may have come from the local system, or it may have travelled halfway
around the planet. The bytecode verifier acts as a sort of gatekeeper: it ensures that code passed to the
Java    interpreter is in a fit state to be executed and can run without fear of breaking the Java interpreter.
Imported code is not allowed to execute by any means until after it has passed the verifier's tests. Once
the verifier is done, a number of important properties are known:

· There are no operand stack overflows or underflows

· The types of the parameters of all bytecode instructions are known to always be correct

· Object field accesses are known to be legal--private, public, or protected

 While all this checking appears excruciatingly detailed, by the time the bytecode verifier has done its
work, the Java interpreter can proceed, knowing that the code will run securely. Knowing these properties
makes the Java interpreter much faster, becau se it doesn't have to check anything. There are no
operand type checks and no stack overflow checks. The interpreter can thus function at full speed without
compromising reliability.

__

 6.3 Security Checks in the Bytecode Loader
 While a Java program is executing, it may in its turn request that a particular class or set of classes be
loaded, possibly from across the network. After incoming code has been vetted and determined clean by
the bytecode verifier, the next line of defens e is the Java bytecode loader. The environment seen by a
thread of execution running Java bytecodes can be visualized as a set of classes partitioned into
separate name spaces . There is one name space for classes that come from the local file system, and a
separate name space for each network source.

 When a class is imported from across the network it is placed into the private name space associated
with its origin. When a class references another class, it is first looked for in the name space for the local
system (built-in classes), then in the name    space of the referencing class. There is no way that an
imported class can "spoof" a built-in class. Built-in classes can never accidentally reference classes in
imported name spaces--they can only reference such classes explicitly. Similarly, classes imported from
different places are separated from each other.

__

 6.4 Security in the Java Networking Package
 Java's networking package provides the interfaces to handle the various network protocols (FTP, HTTP,
Telnet, and so on). This is your front line of defense at the network interface level. The networking
package can be set up with configurable levels of paranoia. You can

· Disallow all network accesses

· Allow network accesses to only the hosts from which the code was imported

· Allow network accesses only outside the firewall if the code came from outside

· Allow all network accesses

__

 6.5 Summary
Java is secure to survive in the network-based environment. The architecture-neutral and portable   

aspects of the Java language make it the ideal development language to meet the challenges of
distributing dynamically extensible software across networks.

__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

The Java(tm) White Paper: Multithreading
in Java

Next Prev Contents

__

Multithreading in Java
 7.1 - Threads at the Java Language Level
 7.2 - Integrated Thread Synchronization
 7.3 - Multithreading Support--Conclusion

__
Sophisticated computer users become impatient with the do-one-thing-at-a-time mindset of the average
personal computer. Users perceive that their world is full of multiple events all happening at once, and
they like to have their computers work the same way.

Unfortunately, writing programs that deal with many things happening at once can be much     more
difficult than writing in the conventional single-threaded C and C++ style. You can write multithreaded
applications in languages such as C and C++, but the level of difficulty goes up by orders of magnitude,
and even then there are no assurances that vendors' libraries are thread-safe.

The term thread-safe    means that a given library function is implemented in such a manner that it can be
executed by multiple concurrent threads of execution.

 The major problem with explicitly programmed thread support is that you can never be quite sure you
have acquired the locks you need and released them again at the right time. If you return from a method
prematurely, for instance, or if an exception is raised, for another instance, your lock has not been
released; deadlock is the usual result.

__

 7.1 Threads at the Java Language Level
 Built-in support for threads provides Java programmers with a powerful tool to improve interactive
performance of graphical applications. If your application needs to run animations and play music while
scrolling the page and downloading a text file from a server, multithreading is the way to obtain fast,
lightweight concurrency within a single process space. Threads are sometimes also called lightweight
processes or execution contexts.

Threads are an essential keystone of Java. The Java library provides a Thread    class that supports a rich
collection of methods to start a thread, run a thread, stop a thread, and check on a thread's status.

Java thread support includes a sophisticated set of synchronization primitives    based on the widely used
monitor and condition variable    paradigm introduced twenty years ago by C.A.R. Hoare and implemented
in a production setting in Xerox PARC's Cedar/Mesa system. Integrating support for threads into the
language makes them much easier to use and more robust. Much of the style of Java's integration of
threads was modelled after Cedar and Mesa.

Java's threads are pre-emptive , and depending on platform on which the Java interpreter executes,

threads can also be time-sliced . On systems that don't support time-slicing, once a thread has started,
the only way it will relinquish control of the processor is if another thread of a higher priority takes control
of the processor. If your applications are likely to be compute-intensive, you might consider how to give
up control periodically by using the yield()    method to give other threads a chance to run; doing so will
ensure better interactive response for graphical applications.

__

 7.2 Integrated Thread Synchronization
 Java supports multithreading at the language (syntactic) level and via support from its run-time system
and thread objects. At the language level, methods within a class that are declared synchronized    do not
run concurrently. Such methods run under control of monitors    to ensure that variables remain in a
consistent state. Every class and instantiated object has its own monitor that comes into play if required.

 Here are a couple of code fragments from the sorting demonstration in the HotJava web browser. The
main points of interest are the two methods stop and startSort, which share a common variable called
kicker (it kicks off the sort thread):

public synchronized void stop() {
 if (kicker != null) {
 kicker.stop();
 kicker = null;
 }
}
private synchronized void startSort() {
 if (kicker == null || !kicker.isAlive()) {
 kicker = new Thread(this);
 kicker.start();
 }
}

The stop and startSort methods are declared to be synchronized --they can't run concurrently, enabling them
to maintain consistent state in the shared kicker variable. When a synchronized    method is entered, it
acquires a monitor on the current object. The monitor precludes any other synchronized methods in that
object from running. When a synchronized    method returns by any means, its monitor is released. Other
synchronized    methods within the same object are now free to run.

 If you're writing Java applications, you should take care to implement your classes and methods so
they're thread-safe, in the same way that Java run-time libraries are thread-safe. If you wish your objects
to be thread-safe, any methods that may change the values of instance variables should be declared
synchronized . This ensures that only one method can change the state of an object at any time. Java
monitors are re-entrant : a method can acquire the same monitor more than once, and everything will still
work.

__

 7.3 Multithreading Support--Conclusion
 While other systems have provided facilities for multithreading (usually via "lightweight process"
libraries), building multithreading support into the language as Java has done provides the programmer
with a much more powerful tool for easily creating thread-safe multithreaded classes.

 Other benefits of multithreading are better interactive responsiveness and real-time behavior. Stand-
alone Java run-time environments exhibit good real-time behavior. Java environments running on top of
popular operating systems provide the real-time responsiveness available from the underlying platform.

__
Next Prev Contents

The Java(tm) Language Environment: A White Paper

URL Not Available

file:/D|/FTP/WHITE/JAVA-W~9.HTM#MARKER-9-1

