
Java Man Pages 
 

The Java Man Pages 
  

javac 
The Java compiler 

java 
The Java interpreter, which you use to run Java programs. 

javah 
Used for creating the header files and stub files that allow you to implement native methods. 

javap 
Disassembles compiled Java files and prints out a representation of the Java bytecodes. 

javaprof 
A profiling tool. 

hotjava 
A World Wide Web browser that allows you to have interactive content. 

 

______________________________________________________________________________ 

java@java.sun.com 
 

  
This documentation was ported to MS Window's Help by Bill Bercik. 
Bill may be reached at: bill@dippybird.com 

Stop by his web site and get the latest update to the Information Portafilter    for Java at: 
http://www.dippybird.com/java.html 

  



HotJava - The JAVA World Wide Web 
Browser 

 

HotJava - The JAVA World Wide Web Browser  

HotJava allows browsing of the World Wide Web and provides the ability to present interactive content 
across platforms. Interactive content is in the form of applets. Applets are programs written in the JAVA 
language to run within HotJava. 

 

SYNOPSIS 
hotjava [ url ] 

 

DESCRIPTION 
The hotjava command starts the HotJava browser and connects to the document or resource designated 
by url. If url is not supplied then HotJava goes to either: 
 

· the page designated by the value of the environment variable WWW_HOME; or 
· file://~/demo if WWW_HOME is unset. 

 

ENVIRONMENT VARIABLES 
HOTJAVA_HOME 

The directory where HotJava looks for resources that it needs to run itself. By default this is set to the 
installation directory when the system is first installed. 

WWW_HOME 
The default home page. 

HOTJAVA_READ_PATH 
Used by HotJava to determine whether any applet has permission read a file. The value of 
HOTJAVA_READ_PATH is a semicolon-separated list of files or directories. By default 
HOTJAVA_READ_PATH is set to: 

     <;hotjava-install-dir>;:$HOME/public_html/ 
 
Each component of the path is used as a prefix to compare against the file that the applet wants to 
open for reading. Applets are allowed to read from 
 

· files in matching directories 
· files in subdirectories of matching directories 
· files that match a component exactly 

For example, let's say you have a directory: 

     $HOME/Images 
 



 

As subdirectories under "Images" you have a "Private" subdirectory and a "Public" subdirectory. If you 
set HOTJAVA_READ_PATH to: 

     <;hotjava-install-dir>;:$HOME/public_html/:$HOME/Images/ 
 
 

an applet would be able to read the "Private" subdirectory. If you wanted to prevent applets from 
reading the "Private" subdirectory but allow them to read the "Public" one then you would set 
HOTJAVA_READ_PATH to: 

     <;hotjava-install-dir>;:$HOME/public_html/:$HOME/Images/Public/ 
 
 

In this way the directory "$HOME/Images/Private" won't match any component of 
HOTJAVA_READ_PATH and applets can't read files in it. 

Setting HOTJAVA_READ_PATH to "*" disables file checking for reads. The * should be quoted so the 
shell doesn't expand it. 

HOTJAVA_WRITE_PATH 
Used by HotJava to determine whether an applet has permission to write to a file. The value of 
HOTJAVA_WRITE_PATH is a semicolon-separated list of files or directories. By default 
HOTJAVA_WRITE_PATH is set to: 

     /tmp/:/devices/:/dev/:~/.hotjava/ 
 
The components of the path are used as a prefix to compare against the file that the applet wants to 
open for writing. 

See HOTJAVA_READ_PATH for an example of how matching components works. The * should be 
quoted so the shell doesn't expand it. 

Setting HOTJAVA_WRITE_PATH to "*" disables file checking for writes. 

 



javac - The JAVA Compiler 
 

javac - The Java Compiler 
javac compiles Java programs. 

 

SYNOPSIS 
javac [ options ] filename.java... 

javac_g [ options ] filename.java... 

 

DESCRIPTION 
The javac command compiles Java source code contained in the files specified by filename.java... into 
class files containing Java bytecodes. Filenames    must end in the .java extension. Java classes are 
interpreted by the java command. 

Every class defined in the files passed to javac has its resulting bytecodes stored in a file named 
classname.class. The .class file is stored in the same directory as the corresponding .java file, unless the 
-d option is used. If a class in one of the files passed to javac    references a class not in any of the files 
passed to javac then javac    searches for the referenced class using the class path. 

When you define your own classes you need to specify their location. Use CLASSPATH to do this. 
CLASSPATH consists of a semicolon separated list of directories that specifies the path. For example: 

    .;C:\users\lindholm\classes 
 
Note that the system always appends the location of the system classes onto the end of the class path 
unless you use the -classpath option to specify a path. 

javac_g is a non-optimized version of javac suitable for use with debuggers like dbx or gdb. 

 

OPTIONS 
 -classpath path 

 Specifies the path javac uses to look up classes. Overrides the default or the CLASSPATH 
environment variable if it is set. Directories are separated by semicolons. Thus the general format for 
path is: 

    .;<;your_path>; 
 
 

For example: 



    .;C:\users\lindholm\classes;D:\java\classes 
 
 

-d directory 
 Specifies the root directory of the class hierarchy. Thus doing: 

    javac -d <;my_dir>;\editor\gui\TextWindow.java 
 
causes the class file for the class called editor.gui.Textwindow to be saved as: 

    <;my_dir>;\editor\gui\TextWindow.class 
 
 

-g 
 Enables generation of debugging tables. Debugging tables contain information about line numbers 
and local variables - information used by debugging tools. By default, this option is on. To turn 
debugging table generation off, use the -ng option. 

-ng 
Disables generation of debugging tables. This makes the Java bytecode files smaller, but makes it 
impossible for debugging tools to access local variables or print out line numbers. 

-nowarn 
Turns off warnings. If used the compiler does not print out any warnings. 

-O 
Optimizes compiled code by inlining static, final and private methods. Note that your classes may get 
larger in size. 

-verbose 
 Causes the compiler and linker to print out messages about what source files are being compiled and 
what class files are being loaded. 

 

 

ENVIRONMENT VARIABLES 
CLASSPATH 

Used to provide the system a path to user-defined classes. Directories are separated by semicolons, 
for example, 

    .;C:\users\lindholm\classes;D:\java\classes 
 
 

 

SEE ALSO 
java, javah, javaprof, javap 



javah 
 

javah 
javah produces C header files and C stub files from an Java class file. 

SYNOPSIS 
javah [ options ] classname. . . 

javah_g [ options ] classname. . . 

DESCRIPTION 
javah generates headers and stubs that are needed to implement native methods. The header (.h) files 
created are used by C programs to reference class instance variables. The .h file contains a struct 
definition whose layout parallels the layout of the corresponding class. The fields in the struct correspond 
to instance variables in the class. 

The name of the header file and the structure that is declared are derived from the name of the class. If 
the class passed to javah is inside a package the package name is prepended to both the header file 
name and the structure name. Underscores (_) are used as name delimiters. 

By default javah creates a subdirectory, called "CClassHeaders", where it saves the header files it 
creates. If the -stubs option is used, javah creates a directory named "stubs" and saves the stub file 
there. 

javah_g is a non-optimized version of javah suitable for use with debuggers like dbx or gdb. 

 

OPTIONS 
-d directory 

Overrides the default directory where javah saves the header files or the stub files. 

-td directory 
Overrides the default directory where javah stores temporary files. The default is /tmp. 

-stubs 
Causes javah to generate stub declarations from the Java object file. 

-verbose 
Causes javah to print a message to stdout concerning the status of the generated files. 

 -classpath path 
 Specifies the path javah uses to look up classes. Overrides the default or the CLASSPATH 
environment variable if it is set. Directories are separated by semicolons. Thus the general format for 
path is: 

    .;<;your_path>; 
 



 

For example: 

    .;C:\users\lindholm\classes;D:\java\classes 
 
 

 

ENVIRONMENT VARIABLES 
CLASSPATH 

Used to provide the system a path to user-defined classes. Directories are separated by semicolons, 
for example, 

    .;C:\users\lindholm\classes;D:\java\classes 
 
 

 

SEE ALSO 
java, javac, javaprof, javap 



javaprof - the Java profiling data pretty 
printer 

 

 javaprof - the Java profiling data prettyprinter  

javaprof prettyprints the profiling data produced by java. 

SYNOPSIS 

javaprof [ options ] java.prof 
 
 

 

DESCRIPTION 
javaprof is a program for prettyprinting the profiling data produced by    java -prof. java.prof is the name of 
the file created by using the -prof option to java. java.prof contains the profiling information that javaprof 
uses to compute various statistics. 

NOTE: Profiling information is not accurate for multi-threaded applications. Profiling should only be used 
on single-threaded benchmark programs. 

The profiling information is written to stdout and consists of three sections: 
 

1.    time/#calls per method 
2.    time/#calls per class 
3.    memory usage per data type 

 

OPTIONS 
-v 

Causes javaprof to produce additional profiling information, which is considered less interesting than 
that listed above. 

 

SEE ALSO 
javac, javah, java, javap 



JAVAP - Java class file disassembler 
 

javap - Java    class file disassembler 
Disassembles class files. 

 

SYNOPSIS 
javap [ options ] class. . . 

 

DESCRIPTION 
The javap command disassembles a class file. Its output depends on the options used. If no options are 
used, javap prints out the public fields and methods of the classes passed to it. javap prints its output to 
stdout. For example, compile the following class declaration: 

    class C { 
        static int a = 1; 
        static int b = 2; 
        static { 
            System.out.println(a); 
        } 
        static { 
            a++; 
            b = 7; 
            System.out.println(a); 
            System.out.println(b); 
        } 
        static { 
            System.out.println(b); 
        } 
        public static void main(String args[]) { 
            C c = new C(); 
        } 
    } 
 
 

When the resulting class C is passed to javap using no options, output like the following results: 

    Compiled from C:\users\lindholm\C.java 
    private class C extends java/lang/Object { 
        static int a; 
        static int b; 
        public static void main(java/lang/String []); 
        public C(); 
        static void (); 
    } 
 
 



 

OPTIONS 
-p 

 Prints out the private and protected methods and fields of the class in addition to the public ones. 
 -c 

 Prints out disassembled code, i.e., the instructions that comprise the JAVA bytecodes, for each of the 
methods in the class. For example, passing class C to javap using the -c flag results in output like the 
following: 

    Compiled from C:\users\lindholm/C.java 
    private class C extends java/lang/Object { 
        static int a; 
        static int b; 
        public static void main(java/lang/String []); 
        public C(); 
        static void (); 

    Method void main(java/lang/String []) 
       0 new #4 
       3 invokenonvirtual #9 ()V> 
       6 return 

    Method C() 
       0 aload_0 0 
       1 invokenonvirtual #10 ()V> 
       4 return 

    Method void () 
       0 iconst_1 
       1 putstatic #7 
       4 getstatic #6 
       7 getstatic #7 
      10 invokevirtual #8 
      13 getstatic #7 
      16 iconst_1 
      17 iadd 
      18 putstatic #7 
      21 bipush 7 
      23 putstatic #5 
      26 getstatic #6 
      29 getstatic #7 
      32 invokevirtual #8 
      35 getstatic #6 
      38 getstatic #5 
      41 invokevirtual #8 
      44 iconst_2 
      45 putstatic #5 
      48 getstatic #6 
      51 getstatic #5 
      54 invokevirtual #8 
      57 return 

    } 



 
 

 -classpath path 
 Specifies the path javap uses to look up classes. Overrides the default or the CLASSPATH 
environment variable if it is set. Directories are separated by semicolons. Thus the general format for 
path is: 

    .;<;your_path>; 
 
 

For example: 

    .;C:\users\lindholm\classes;D:\java\classes 
 
 

 

ENVIRONMENT VARIABLES 
CLASSPATH 

Used to provide the system a path to user-defined classes. Directories are separated by semicolons, 
for example, 

    .;C:\users\lindholm\classes;D:\java\classes 
 
 

 

SEE ALSO 
java, javac, javaprof, javah 



java-The Java Interpreter 
 

 java-The Java Interpreter 
java interprets (executes) Java bytecodes. 

SYNOPSIS 

java [ options ] classname <;args>; 
 

java_g [ options ] classname <;args>; 
 

 
 

 

DESCRIPTION 
java is the Java interpreter, which executes Java programs. 

The classname argument is the name of a class. classname    must be fully qualifed by including its 
package in the name, for example: 

    java java.lang.String 
 
 

Note that any arguments that are after classname in the call to java are passed to the class. 

The bytecodes for the class are in a file called classname.class generated by compiling the 
corresponding class source file with javac. All Java bytecode files have .class as their extension, which 
the compiler automatically adds when the class is compiled. classname must contain a main() method, 
which java executes and then exits, unless main() creates one or more threads. If any threads are created 
by main() then java    doesn't exit until the last thread exits. The main() method is defined as follows: 

    class Aclass { 
        public static void main(String argv[]){ 
  
        } 
    } 
 
When you define your own classes you need to specify their location. Use CLASSPATH to do this. 
CLASSPATH consists of a semicolon separated list of directories that specifies the path. For example: 



    .;C:\users\lindholm\classes 
 
Note that the system always appends the location of the system classes onto the end of the class path 
unless you use the -classpath option to specify a path. 

Ordinarily, source files are compiled using javac then the program is run using java. However, java can 
be used to compile and run programs when the -cs    option is used. As each class is loaded its 
modification date is compared to the modification date of the class source file. If the source has been 
modified more recently, it is recompiled and the new bytecode file is loaded. java    repeats this procedure 
until all the classes are correctly compiled and loaded. 

The interpreter can determine whether a class is legitimate through the mechanism of verification. 
Verification ensures that the byte codes being interpreted do not violate any language constraints. 

java_g is a non-optimized version of java suitable for use with debuggers like dbx or gdb. 

 

OPTIONS 
 -cs, -checksource 

 When a compiled class is loaded, causes the modification time of the class bytecode file to be 
compared to that of the class source file. If the source has been modified more recently, it is 
recompiled and the new bytecode file is loaded. 

-classpath path 
 Specifies the path java uses to look up classes. Overrides the default or the CLASSPATH 
environment variable if it is set. Directories are separated by semicolons. Thus the general format for 
path is: 

    .;<;your_path>; 
 
 

For example: 

    .;C:\users\lindholm\classes;D:\java\classes 
 
 

-ms x 
Sets the size of the memory allocation pool (the garbage collected heap) to x . The default units for x 
are bytes. x must be >; 1000 bytes. You can modify the meaning of x by appending either the letter 
";k"; for kilobytes or the letter ";m"; for megabytes. The default is ";-ms3m", for 3 megabytes of 
memory. 

-noasyncgc 
Turns off asynchronous garbage collection. When passed as an option no garbage collection takes 
place unless it is explicitly called or the program runs out of memory. Normally garbage collection 
runs as an asynchronous thread in parallel with other threads. 

-prof 
Causes java to produce profiling data. When used, java creates a file called "java.prof" in the current 
directory, when it exits. This file can be passed to javaprof for prettyprinting. 

-ss x 
Each Java thread has two stacks: one for Java code and one for C code. The -ss option sets the 
maximum stack size that can be used by C code in a thread to x . Every thread that is spawned 



during the execution of the program passed to java has x as its C stack size. The default units for x    
are bytes. x    must be >; 1000 bytes. You can modify the meaning of x by appending either the letter 
";k"; for kilobytes or the letter ";m"; for megabytes. The default stack size is 64 kilobytes ("-ss 64k"). 

-oss x 
Each Java thread has two stacks: one for Java code and one for C code. The -oss option sets the 
maximum stack size that can be used by Java code in a thread to x. Every thread that is spawned 
during the execution of the program passed to java has x as its Java stack size. The default units for 
x are bytes. x must be >; 1000 bytes. You can modify the meaning of x    by appending either the letter 
";k"; for kilobytes or the letter ";m"; for megabytes. The default stack size is 400 kilobytes ("-ss400k"). 

This option is not supported in HotJava alpha 2 release for NT. 

-t 
Prints a trace of the instructions executed ( java_g only). 

-v, -verbose 
Causes java to print a message to stdout each time a class file is loaded. 

-verify 
Runs the verifier on all code. 

-verifyremote 
Runs the verifier on all code that is loaded into the system via a classloader. verifyremote is the 
default for the interpreter. 

-noverify 
Turns verification off. 

-verbosegc 
Causes the garbage collector to print out messages whenever it frees memory. 

 

 

ENVIRONMENT VARIABLES 
CLASSPATH 

Used to provide the system a path to user-defined classes. Directories are separated by semicolons, 
for example, 

    .;C:\users\lindholm\classes;D:\java\classes 
 
 

 

SEE ALSO 
javac, javah, javaprof, javap 



URL Not Available
 
http://java.sun.com/ 
 






