TUTORIAL

File Input/Output (1/0)

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

2 Tutorial e File Input/Output (1/0)

An important aspect of any programming language is its ability to access and
manipulate files. Visual Basic provides all the statements and commands necessary
for storing information to and reading it from files. I didn’t discuss this topic in the
book because Visual Basic’s commands for file input/output (file I/O) are not new;
they have existed in BASIC for many years. Moreover, Visual Basic makes it easy to
store information in databases and access it with the Data Access Objects (I discuss
DAOQ in Chapter 17). In some cases, however, you want to be able to store a few lines
of text to a file or read a few numbers from a binary file. Setting up an entire data-
base is an overkill in these situations. It's much simpler to create a file, store the
information there, and recall it as needed.

File Types

Visual Basic supports three types of files:

* Sequential
e Random access

* Binary

Sequential files are mostly text files (the ones you can open with a text editor such
as Notepad). These files store information as it’s entered, one byte per character.
Even the numbers in a sequential file are stored as a string and not as numeric val-
ues (that is, the numeric value 33.4 is not stored as a single or double value, but as
the string “33.4”). These files are commonly created by text-processing applica-
tions and are used for storing mostly text, not numbers.

Sequential files are read from the beginning to the end. Therefore, you can’t read
and write at the same time to a sequential file. If you must read from and write to
the file simultaneously, you must open two sequential files: one for reading from
and another one for writing to.

If your application requires frequent access to the file’s data (as opposed to read-
ing all the data into memory and saving them back when it’s done), you should use
random access files. Like sequential files, random access files store text as characters,
one byte per character. Numbers, however, are stored in their native format (as
integers, doubles, and so on). You can display a random access file in a DOS win-
dow with the TYPE command and see the text, but you won’t be able to read the
numbers. Random access files are used for storing data that are organized in seg-
ments of equal length. These segments are called records. Random access files allow

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (I/0) 3

you to move to any record, as long as you know where the record is located. Since
all records are of the same length, it’s easy to locate any record in the file by its
index. Moreover, unlike sequential files, random access files can be opened for
reading and writing at the same time. If you decide to change a specific record, you
can write the new record’s data on top of the old record, without affecting the adja-
cent records.

Binary files, finally, are similar to sequential files, and they make no assumption
as to the type of data stored in them. The bytes of a binary file can be characters or
the contents of an executable file. Images, for instance, are stored in binary files.

Tip If your application deals with text files only, you should also consider the Text-

Stream object of VBScript, which is described in Chapter 20 of Mastering Visual
Basic 6. Using this object you can also access text files from within Windows
scripts.

File Manipulation Commands

The various file types differ not as much in how they store data, but in how we
access them. A file that was created as a random access file can also be opened as
a binary file. Of course, how data are encoded is the programmer’s responsibility,
but it’s possible to create and open a file in different modes. We’ll look at the three
file types shortly along with examples and the commands required to access their
contents. But let’s start with the basic commands. How you manipulate a file is
more or less independent of its type and involves three stages:

Opening the file: The operating system reserves some memory for storing
the file’s data. If the file does not exist, it’s first created and then opened. To
open a file (and create it if necessary), use the Open command.

Processing the file: A file can be opened for reading from, writing to, or read-
ing and writing. Data are read, processed, and then stored back to the same
or to another file.

Closing the file: When the file is closed, the operating system releases the
memory reserved for the file. To close an open file, use the Close command.

In the following sections, we’ll look at Visual Basic’s file-manipulation statements
and functions.

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

4

Tutorial e File Input/Output (1/0)

The Open Statement

To use a file, you must first open it—or create it, if it doesn’t already exist. The
Open statement, which opens files, accepts a number of arguments:

Open file_name, For file_type, Access access_type, lock_type,_
As #file_number, Len=record_length

The For, Access, As, and Len arguments are Visual Basic keywords. Most arguments
are optional.

The simplest form of the Open statement is:
Open fileName As #1

This line opens a file and assigns it the number 1. Subsequent statements use the
numeric value 1 to identify this file.

The argument file_name is the name of the file (the name of a disk file). The argu-
ment file_type determines the file’s type and can be one of the following constants:

e Input
¢ Output
* Append

e Random

e Binary

The first three refer to sequential files; Random is used with random access files,
and Binary is used with binary files. When you open a sequential file, you can’t
change its data. You can either read them (and store them to another file) or over-
write the entire file with the new data. To do so, you must open the file for Input,
read its data, and then close the file. To overwrite it, open it again (this time for Out-
put) and save the new data to it.

If you don’t want to overwrite an existing file, but append data to it (without
changing any of the existing data), open it for Append.

WARNING

If you open a file for Output, Visual Basic wipes out its contents, even if you don’t
write anything to it. Moreover, VB won’t warn you that it's about to overwrite a
file, as applications do. This is how the Open statement works, and you can't
change your mind after opening a sequential file for Output.

The access_type argument is used with random access files and determines
whether the file can be opened for reading from (Read), writing to (Write), or

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (1/0) 5

both (Read Write). If you open a file with Read access, your program can’t modify
it even by mistake. The access method has nothing to do with file types. Sequen-
tial files are open for Input or Output only, because they can’t be opened in both
modes. The access type is specified for reasons of safety. If you need to open a file
only to read data from it, open it with Read access (there’s no reason to risk modi-
fying the data).

The lock_type argument allows you to specify the rights of other Windows appli-
cations, while your application keeps the file open. Under Windows, many applica-
tions can be running at the same time, and one of them may attempt to open a file
that is already open. In this case, you can specify how other applications are to
access the file. The lock_type argument can have one of the following values:

Shared Other applications can share the file.
Lock Read The file is locked for reading.
Write Lock The file is locked for writing.

Lock Read Write Other applications can’t access this file.

File locking is a very important function, especially in a networked environment.
Imagine two users attempting to write to the same file at the same time. Using the
file-locking features you can write programs that work properly in networked envi-
ronments. However, if you are going to build applications that will be run by many
users who access the same files, you should consider building a database.

After the As keyword follows a numeric value that uniquely identifies the file.
Every file you open must have its own, unique number. This number is used by sub-
sequent commands to identify the specific file. The Close command, for example,
which closes an open file when it’s no longer needed, must know which file to close.
The statement:

Close #1

closes the file that was opened as #1. The file number has nothing to do with the
actual file on the disk. The same file can be opened later with another number. With-
out the file number, you'd have to specify the file’s name with each command that
accesses the file. The file’s number is therefore a shorthand notation for identifying
files from within our code.

Finally, if the file is a random access one, you must declare the length of the record
with the Len keyword. The record_length argument is the record’s length in bytes.
When you create a random access file, Visual Basic doesn’t record any information
regarding the record’s length or structure to the file. You should know, therefore, the
structure of each record in a random access file before you can open it. The record’s

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

6

Tutorial e File Input/Output (1/0)

length is the sum of the bytes taken by all record fields. You can either calculate it, or
you can use the function Len (record) to let Visual Basic calculate it. The record argu-
ment is the name of the structure you use with the random access file.

The following command opens the file c:\samples\vb\cust.dat as a sequential
file with the number 1:

Open "c:\samples\vb\cust.dat" For Input As #1

To open a random access file, you must know its record’s length. The record is the
basic element of a random access file, and the record is the smallest piece of informa-
tion you can write to a random access file. To find the length of the record, you must
first decide how the data will be organized in fields and declare the record’s type.
Let’s say you want to create a random access file for storing music records. You can
use the following structure for the purposes of this application:

Type Mrecord
Title As String*60
Group As String*30
Style As String*3
Year As Date

End Type

This structure is simple, but you can extend it by adding any other field you need.
The length of this structure can be easily calculated if you know how many bytes a
Date type takes. To avoid mistakes, let Visual Basic calculate the record’s length,
with the Len() function—the same function that returns the length of a string. The
following statement opens a random access file for reading from and writing to,
using the record structure shown above:

Open "c:\samples\vb\cust.dat" For Random As #1 Len=Len(Mrec)

Mrec is a variable declared as Mrecord type.

The FreeFile() Function

During the course of an application, you may open and close many files and you
may not always know in advance which file numbers are available. Visual Basic
provides the FreeFile() function, which returns the next available file number. The
FreeFile() function is used in conjunction with the Open statement to open a file:

fNum = FreeFile()
Open "c:\samples\vb\cust.dat" For Random As #fNum Len=Len(Mrec)

After these two statements execute, all subsequent commands that operate on the
specified file can refer to it as fNum. The FreeFile() function returns the next available

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (I/0) 7

file number, and unless this number is assigned to a file, FreeFile()returns the same
number if called again. The following statements will not work:

fNuml FreeFile()
fNum2 FreeFile()
Open "filel" For Input As #fNuml
Open "file2" For Output As #fNum2

Each time you call FreeFile() to get a new file number, you must use it. The pre-
vious statements should have been coded as follows:
fNuml = FreeFile()
Open "filel" For Input As #fNuml

fNum2 = FreeFile()
Open "file2" For Output As #fNum2

The Close(file humber) Statement

The Close statement closes an open file, whose number is passed as argument. The
statement

Close #fNuml

closes the file opened as #Num1. You can also call the Close statement with mul-
tiple file numbers, as in:

Close #fNuml, fNum2, fNum3

This statement closes the three files that were opened as #f{Num1, #Num2, and
#Num3.

The EOF(file_ number) and LOF(file humber) Functions

These are two more frequently used functions in file manipulation. The EOF() func-
tion accepts as an argument the number of an open file and returns True if the end
of the file (EOF) has been reached. The LOF() function returns the length of the file,
whose number is passed as argument.

You use the EOF() function to determine whether the end of the file has been
reached, with a loop such as the following:

{get first record}

While Not EOF(fNum)
{process current record}
{get next record}

Wend

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (1/0)

With the help of the LOF() function, you can also calculate the number of records
in a random access file:

Rec_Length = LOF(file_number) / Len(record)

In the following sections, we are going to look at the commands for writing to
and reading from all types of files. These commands are not the same for all types
of files. Some commands read an entire line of text, others read a number of char-
acters (or bytes), and others read and write records to a random access file. Let’s
start with the statements for sequential files:

The Print #file num, variable, variable, ... Statement

The Print statement writes data to a sequential file. The first argument is the num-
ber of the file to be written, and the following arguments (you can supply any
number of arguments after the first one) are the variables to be written to the file.
After all variable values have been written to the file, the Print # statement inserts
a line break. The following statements write two lines of text to the file opened as
#Num and insert a line break between them:

Print #fNum, "this is the first line of text"
Print #fNum, "and this 1is the second line of text"

The semicolon (;) and the comma (,) characters determine the screen position, where
the pointer will be moved before printing the next value. The semicolon specifies
that the first character of the new value will be placed right after the last character of
the last value. The comma specifies that the next character will be printed in the next
print zone. Each print zone corresponds to 14 columns. In other words, the Print #
statement writes data to the file exactly as the TYPE command (of DOS) displays
them on the screen. You must keep in mind that the text will be displayed correctly
only when printed with a monospaced typeface, such as Courier. If you place the
text on a TextBox with a proportional typeface, the columns will not align.

The Line Input #file_number, strVar Statement

To read from sequential files, use the Line Input # statement. The file_number
argument is the file’s number, and strVar is the name of a variable where the data
read from the file will be stored. The Line Input statement reads a single line of
text from the file and assigns it to a string variable. This statement reads all the
characters from the beginning of the file to the first newline character. When you
call it again, it returns the following characters, up to the next newline character.
The newline characters are not part of the information stored to or read from the
file, and they are used only as delimiters. If we close the file of the last example

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (I/0) 9

and open it again, the following lines will read the first two text lines and assign
them to the string variables linel and line2:

Line Input #fNum, Tlinel
Line Input #fNum, 1ine2

If you want to store plain text to a disk file, create a sequential file and store the
text there, one line at a time. To read it back, open the file and read one line at a time
with the Lin Input statement, or use the following function to read the entire text.

The Input$(nchars, #file_number) Statement

The Input$() function reads nchars characters from the file specified by the second
argument. This function is used to read the entire file and is faster then reading
the file one line at a time. To read the entire text file, set the number of characters
equal to the file’s length, using the LOF() function:

Textl.Text = Input$(LOF(fNum), fNum)

In addition, this function offers more flexibility than the others, since it allows you
to read any number of characters, regardless of line breaks.

The Width #fNum, length Statement

This is another useful statement that applies to sequential files only. The Width state-
ment sets the maximum line length that can be written to a file. The maximum line
length is specified by the second argument, length. A line with fewer characters than
length is stored to the file as is. Longer lines are broken; Visual Basic automatically
inserts newline characters to enforce the specified maximum line length.

The Put and Get Statements

These statements are used for writing records to and reading records from a ran-
dom access file. Both commands must know the record number you want to access
(write or read). The syntax of the Put statement is:

Put #file_number, record_number, record

The record_number argument is the number of the record we are interested in, and
record is a record variable that is written to the file. The record_number argument is
optional; if you omit it, the record will be written to the current record position.
After a record is written to or read from the file, the next record becomes the current
one. If you've read the second record, the Put statement will store the field values
in the third record in the file. If you call the Put statement 10 times sequentially

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

10 Tutorial e File Input/Output (1/0O)

without specifying a record number, it will create (or overwrite) the first 10 records

of the random access file.
The syntax of the Get statement is quite similar:
Get #file_number, record_number, record

and its arguments have the same meaning.
At this point, I'll outline the basics of random access file manipulation, since

this is the most flexible file type. Let’s say you want to create a random access file
for storing a product list. Each product’s information is stored in a ProductRecord

variable, whose declaration is shown next:

Type ProductRecord
ProductID As String*10
Description As String*100

Price As Currency

End Type
The Type ProductRecord will be used for storing each product’s information

before moving it to the file. Let’s start by defining a variable of type ProductRecord:

Dim PRec As ProductRecord
You can then assign values to the fields of the PRec variable with statements

such as the following:

PRec.ProductID = "TV00180-A"
PRec.Description "SONY Trinitron TV"

PRec.Price = 799.99
The PRec record variable can be stored to a random access file with the Put state-

ment. Of course, you must first create the file with the following statements:

FNum = FreeFile()
Open "c:\products.dat" For Random Len=Len(ProductRecord) As #FNum
You can then write the Prec variable to the file with the statement:

Put #FNum, , PRec
Notice that you can omit the number of the record where the data will be stored.

You can change the values of the fields and keep storing additional records with the
same Put statement (as long as PRec is populated with a different value). After all
the values are stored to the file, you can close the file with this statement:

Close #FNum

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (1/0) 11

To read the records, open the file with the same Open statement you used to open
it for saving the records:

FNum = FreeFile()
Open "c:\products.dat" For Random Len=Len(ProductRecord) As #FNum

You can then set up a loop to read the records in an array of PRec structures. Assum-
ing that the array Products has been declared with the statement:

Dim Products(100) As PRec
you can scan the records of the file with the following loop:

TotRecords = LOF(fNum) / Len(ProductRecord)
For i = 1 to TotRecords

Get #FNum, , Products(i)
Next

The function LOF() returns the length of the file (in bytes). By dividing this num-
ber by the length of each record (also in bytes), we get the number of records in the
file. This value is used by the For...Next loop to scan all records in the file.

The Seek Statement and the LOC() Function

An important concept in processing random access files is that of the current record.
Visual Basic maintains a pointer to the current record for each open random access
file. Each time you read a record or save one in the file, the pointer is increased by
one (unless it’s the last record in the file) to point to the next record. The numbers of
the records are not stored on disk. Since all records have the same length, the operat-
ing system can calculate where each record begins and move to the corresponding
byte instantly.

Visual Basic provides the Seek statement, which lets you move to any record in the
random access file, and the Loc() function, which returns the number of the current
record. In other words, the Seek statement manipulates the record pointer, and the
Loc() function simply reads its value.

The syntax of the Seek statement is:
Seek #file_number, record_number

in which record_number is the number of the record to which you want to move.
The Seek statement can’t locate a record based on its contents. It’s like accessing
an array element with its index.

The syntax of the Loc() function is:

Loc(file_number)

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

12

Tutorial e File Input/Output (1/0)

To move to the next record in a random access file, use the following statements:

fPointer = Loc(fNum) + 1
Seek(fNum, fPointer)

The value returned by the Loc() function is a Long Integer, which means a random
access file can hold too many records for the average disk.

The Seek statement and Loc() function can be used with random access files, as
well as binary files, only in this case there are no record numbers. We usually set
the length of the record to one byte, and we seek for a specific byte number in the
file. If you want to read a number of bytes starting at a specified location in the file,
use the Seek method to move to the first byte you're interested in and then read
as many bytes as you need.

The Lock and Unlock Statements

The Lock statement allows you to lock a file or some of the records in a random
access file. The locked records are not available to other applications that are cur-
rently running. Your application, however, has access to all files. If another appli-
cation attempts to open a locked file or to access one of the locked records, Visual
Basic will generate a trappable runtime error.

With the Lock command you can lock an entire file. The statement

Lock #fNum

locks the entire file opened as #fNum. If the file was opened as a sequential file,
the entire file must be locked. If the file was opened as a random access file, you
can lock one or more records only. The following statement locks the records 99
through 110 of the file opened as #fNum:

Lock #fNum 99,100

If the file was opened as binary, the bytes 99 through 100 will become unavail-
able to other applications.

The Unlock statement has the same syntax, but the opposite effect. If the file is
locked, it unlocks it. The Lock and Unlock statements are essential in building appli-
cations that access files in an operating system such as Windows, in which multiple
applications can access the same file and act on it. You should always take into con-
sideration the possibility of another application accessing the same files as yours.
However, if the situation gets too complicated, you should probably switch to a
database.

In the following sections, we are going to look at a few examples that put together
the information presented so far.

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (1/0) 13

The Textfile Project

The Textfile application, shown in Figure 1, allows you to enter some text in a
TextBox control and save it to a text file. The TextBox control can also be loaded
with a text file’s contents. This project is an adaptation of the TextPad project we
developed in Chapter 5, to demonstrate the TextBox control.

FIGURE 1:

The Textfile application
demonstrates how to
access text files.

. Text File 10 Demo I [O]]

Microsoft Windows 95 README for Microsoft Windows
August 1996

{c) Copyright Microsoft Corporation, 1996

HOW TO USE THIS DOCUMENT

To view Readme.txt on screen in Notepad, maximize the Notepad window.

To print Readme.txt, open it in Notepad or another word processor,
then use the Print command on the File menu.

| |

EXIT |

Open File Save File Save File As

The code that stores the contents of the TextBox to a file is quite short:

FNum = FreeFile

Open OpenFile For Output As #1
Print #FNum, Textl.Text

Close #FNum

The name of the file where the text will be read from, OpenFile, is specified by
the user with the help of a File Open common dialog box. The code saves the
entire text with a single statement and then closes the file.

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

14 Tutorial e File Input/Output (1/0)

The lines that load a text file onto the TextBox control are shown next:

FNum = FreeFile

Open CommonDialogl.FileName For Input As #1
txt = Input(LOF(FNum), #FNum)

Close #FNum

Textl.Text = txt

The code reads the entire file into the fxt string variable and then assigns it to the
Text property of the TextBox control. You can open the project with Visual Basic and
see the entire listing.

The FilelO Project

The FilelO project, shown in Figure 2, demonstrates how to access text files one
line at a time and binary files one character at a time. Processing the file consists
of turning text into uppercase and simply copying binary files. You can adjust the
Process procedure to perform any type of processing you need.

The sample application prompts the user to select the file to be processed and
then to select the output file. You will see the File Open dialog box, followed by the
File Save dialog box. This isn’t the best user interface, but we’ll focus on the file
input/output statements and functions, not the application’s interface. After you
specify the file to be processed and the output file (where the processed data will
be written), the program starts processing the file.

FIGURE 2:

The FilelO application
demonstrates how to

access a text file one line at
a time and binary files one

byte at a time.

! 50000759392 N =1E3

Process Text File

Frocess Binary File

file processed in 4 seconds

The code that reads the text file and processes it is shown next. The Line Input
routine and saved to the output file. Here’s the code:

Open outfile For Output Access Write As #outfileNumber
While Not EOF(infileNumber)
Line Input #infileNumber, tline

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (1/0) 15

outline = Process(tline)
Print #outfileNumber, outline
Wend
Close infileNumber
Close outfileNumber

Text files are processed very fast, partly because they are read one line at a time, but
mostly because they are short, compared with typical binary files, such as images or
executable files. If you click the Process Binary File button, however, and select a large
file, the processing will most likely take a while. The program displays the progress
of the operation in the Form’s title bar, as the number of bytes processed versus the
total number of bytes in the file. This indicator is updated every 10,000 bytes.

The code that processes the binary file is shown next. It uses the Get statement to
retrieve the next byte from the file, processes it (it simply assigns it to another vari-
able), and stores it to the output file. Notice how the code uses the LOF() function to
keep track of the percentage of the file already processed.

i=0
FLen = LOF(infileNumber)
WhiTe Not EOF(infileNumber)
Get #infileNumber, , inChar
outChar = inChar
Put #outfileNumber, , outChar
ipos = ipos + 1
If (ipos Mod 10000) = 0 Then
Me.Caption = ipos & "/" & FLen
DoEvents
End If
Wend

You can open the FileIO project in the Visual Basic IDE and examine the rest of
the code (it also appears at the end of this tutorial).

The Products Project

The Products project, shown in Figure 3, demonstrates the basic techniques for
manipulating random access files. The Products application maintains a product
catalog that is stored in a random access file. The text boxes on the Form in Figure 3
display the fields of the current record. Use the navigation buttons to move to the
desired record, and the Add and Delete buttons to add and delete records.

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

16 Tutorial e File Input/Output (1/0)

FIGURE 3:

The Products project
demonstrates how to

access random access files.

wm. Random Access Files !Elm
Product ID |0100-0D9102 Category |W7
Cescription IQuinitron ™
Price W Supplier | Surplus TV
First | Prewvious | et ‘ Last |
Add Record | Delete Record | EXIT |

Here’s the structure of the ProductRecord record:

Private Type ProductRecord
ID As String * 12
Category As String * 5
Description As String * 50
Price As Currency
Supplier As String * 20
Deleted As Boolean

End Type

The array is declared as:
Dim Products(1000) As ProductRecord

The records are stored in a random access file on disk, and they are read into an
array when the program starts. When the program ends, the records are moved
from the array back to the Products file on disk. To avoid moving records in the
array when a record is deleted, I use the Deleted flag in the ProductRecord struc-
ture. When a record is deleted, this field is set to True, and the program ignores
this record in subsequent operations.

The code that’s executed when the Form is loaded is shown next. It opens the
Products file in the application’s path and then populates the Products array. The
totRecords and currentRecord variables are Form variables; all procedures use the tot-
Records variable to keep track of the maximum number of records and the current-
Record variable to keep track of the current record’s index.

Private Sub Form_Load()
fnum = FreeFile
Open App.Path & "/products" For Random As #fnum Len = Len(Products(0))
totRecords = LOF(fnum) / Len(Products(0))
If totRecords = 0 Then
currentRecord = 0

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (1/0) 17

Close #fnum
Exit Sub

End If

For i = 1 To totRecords
Get #fnum, i, Products(i)

Next

Close #fnum

If totRecords > 0 Then
currentRecord = 1
ShowRecord

End If

End Sub

The code behind the navigation buttons is simple. It manipulates the variable
currentRecord and then displays the corresponding element of the array. Here’s the
code behind all four of the navigation buttons:

Private Sub cmdFirst_Click()
If currentRecord = 0 Then
MsgBox "There are no records in the Products array"
Else
currentRecord = 1
ShowRecord
End If
End Sub

Private Sub cmdLast_Click()
If currentRecord = 0 Then
MsgBox "There are no records in the Products array"
Else
currentRecord = totRecords
ShowRecord
End If
End Sub

Private Sub cmdPrevious_Click()
Dim oldRecord As Integer
oldRecord = currentRecord
currentRecord = currentRecord - 1
While currentRecord > 0 And Products(currentRecord).Deleted
currentRecord = currentRecord - 1
Wend
If currentRecord <= 0 Then
MsgBox "This is the first record in the array"
currentRecord = oldRecord
Else
ShowRecord

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

18 Tutorial e File Input/Output (1/0)

End If
End Sub

Private Sub cmdNext_Click()
Dim oldRecord As Integer
oldRecord = currentRecord
currentRecord = currentRecord + 1
While currentRecord <= totRecords And Products(current-
Record).Deleted
currentRecord = currentRecord + 1
Wend
If currentRecord > totRecords Then
MsgBox "This is the last record in the array"
currentRecord = oldRecord
Else
ShowRecord
End If
End Sub

When the Delete Record button is clicked, the program sets the current record’s
Deleted field to True. It doesn’t remove the element from the Products array (you'd
have to move all following records one position up in the array), and it doesn’t even
display the next or previous record, as is customary in similar applications. You
might want to implement this feature yourself. You may actually not want to ignore
the deleted records, but rather display them in red or with a special mark some-
where on the Form and offer the user an Undelete button. This button must nor-
mally be disabled, and you should enabled it from within your code only if the
current record’s Deleted field is True.

The deleted records are actually removed from the disk file when the records are
saved. This action takes place from within the Exit button’s Click event handler. As
you recall from the discussion of the commands for accessing random access files,
there are no statements for removing records. You can only add records to a random
access file; therefore, its size can’t decrease. To actually get rid of the deleted records,
you must read the records into memory, delete the file, and then create a new file
with the same structure and name and save the records there. If the file is too long,
you can open two random access files at the same time, read the records from the
original file, and save the ones that haven’t been marked for deletion to the other
file. (You may come up with more complicated algorithms, that save new records in
the place of deleted records, but when things get this complicated, it’s time to switch
to a database application.) Here’s the code that saves the active records of the Prod-
ucts file:

Private Sub cmdExit_Click()
Ki1l App.Path & "/products"
fnum = FreeFile

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (I/0) 19

Open App.Path & "/products" For Random As #fnum Len = Len(Prod-
ucts(0))
For i = 1 To totRecords
If Not Products(i).Deleted Then
Put #fnum, , Products(i)
End If
Next
Close #fnum
End
End Sub

The code of the Exit command button deletes the Products file in the applica-
tion’s path and then creates a new random access file with the same name and
stores the records of the Products array there. The If statement skips the records
that were marked for deletion during execution.

Tip If power goes off while the program saves the records, you'll lose all the informa-

tion. In a real application, you should probably make a copy of the original file,
and after all records have been successfully saved, delete the copy. When the
application starts, it should always look for this temporary file. Normally, it
shouldn't exist. If it does, something terrible happened during the last save opera-
tion, and you should offer some recovery options to the user.

The Add Record button clears the text boxes in preparation for the entry of a new
record, by calling the ClearFields subroutine. It then hides the buttons you see on
the Form and makes two other buttons visible: the OK and Cancel buttons. This
action is performed by the HideButtons subroutine.

After the user has entered the fields of a new record, he or she must click the OK
button to commit the new record. The OK button’s code is shown next:

Private Sub cmdOK_Click()
If Not IsNumeric(txtPrice.Text) Then
MsgBox "Invalid price specified"
Exit Sub
End If

totRecords = totRecords + 1
If totRecords > 1000 Then
MsgBox "Maximum record count reached. Can't add more records"
Exit Sub
End If
currentRecord = totRecords
Products(currentRecord).ID = txtID.Text
Products(currentRecord).Category = txtCategory.Text
Products(currentRecord).Description = txtDescription.Text
Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

20 Tutorial e File Input/Output (1/0)

Products(currentRecord).Price = (txtPrice.Text)
Products(currentRecord).Supplier = txtSupplier.Text
Products(currentRecord).Deleted = False
ShowButtons

End Sub

This code makes sure that the Price field has a valid value (you can add more
data validation here, of course) and then stores the values of the text boxes to the
next available element of the Products array. Finally, it hides the OK and Cancel
buttons and makes the navigation and the Add and Delete buttons visible again.

The Products project is a simple example that demonstrates the basic commands
for accessing and handling random access files. You should try to modify the appli-
cation so that instead of reading all the records in memory, it seeks the correspond-
ing record in the file and reads it directly from the disk. Here is the complete listing
of the Products project:

Private Type ProductRecord
ID As String * 12
Category As String * 5
Description As String * 50
Price As Currency
Supplier As String * 20
Deleted As Boolean

End Type

Dim Products(1000) As ProductRecord
Dim currentRecord As Integer
Dim totRecords As Integer

Private Sub cmdAdd_CTick()
ClearFields
HideButtons

End Sub

Private Sub cmdCancel_Click()
ShowRecord
ShowButtons

End Sub

Private Sub cmdDelete_Click()
Products(currentRecord).Deleted = True
End Sub

Private Sub cmdExit_CTlick()
Ki1l App.Path & "/products"
fnum = FreeFile

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (1/0) 21

Open App.Path & "/products" For Random As #fnum Len = Len(Products(0))
For i = 1 To totRecords

If Not Products(i).Deleted Then

Put #fnum, , Products(i)

End If
Next
Close #fnum
End

End Sub

Private Sub cmdFirst_Click()
If currentRecord = 0 Then
MsgBox "There are no records in the Products array"
Else
currentRecord = 1
ShowRecord
End If
End Sub

Private Sub cmdLast_Click()
If currentRecord = 0 Then
MsgBox "There are no records in the Products array"
Else
currentRecord = totRecords
ShowRecord
End If
End Sub

Private Sub cmdNext_CTlick()
Dim oldRecord As Integer
oldRecord = currentRecord
currentRecord = currentRecord + 1
While currentRecord <= totRecords And Products(current-
Record).Deleted
currentRecord = currentRecord + 1
Wend
If currentRecord > totRecords Then
MsgBox "This is the last record in the array"
currentRecord = oldRecord
Else
ShowRecord
End If
End Sub

Private Sub cmdOK_CTick()
If Not IsNumeric(txtPrice.Text) Then

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

22 Tutorial e File Input/Output (1/0O)

MsgBox "Invalid price specified"
Exit Sub
End If

totRecords = totRecords + 1
If totRecords > 1000 Then
MsgBox "Maximum record count reached. Can't add more records"
Exit Sub
End If
currentRecord = totRecords
Products(currentRecord).ID = txtID.Text
Products(currentRecord).Category = txtCategory.Text
Products(currentRecord).Description = txtDescription.Text
Products(currentRecord).Price = (txtPrice.Text)
Products(currentRecord).Supplier = txtSupplier.Text
Products(currentRecord).Deleted = False
ShowButtons
End Sub

Private Sub cmdPrevious_Click()
Dim oldRecord As Integer
oldRecord = currentRecord
currentRecord = currentRecord - 1
While currentRecord > 0 And Products(currentRecord).Deleted
currentRecord = currentRecord - 1
Wend
If currentRecord <= 0 Then
MsgBox "This is the first record in the array"
currentRecord = oldRecord
Else
ShowRecord
End If
End Sub

Private Sub Form_Load()
fnum = FreeFile
Open App.Path & "/products" For Random As #fnum Len = Len(Products(0))
totRecords = LOF(fnum) / Len(Products(0))
If totRecords = 0 Then
currentRecord = 0
Close #fnum
Exit Sub
End If
For i = 1 To totRecords
Get #fnum, i, Products(i)
Next

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Tutorial e File Input/Output (I/0)

23

End

Sub

End

Sub

End

Sub

End

Sub

End

Close #fnum

If totRecords > 0 Then
currentRecord = 1
ShowRecord

End If

Sub

ShowRecord()

txtID.Text = Products(currentRecord).ID

txtCategory.Text = Products(currentRecord).Category
txtDescription.Text = Products(currentRecord).Description
txtPrice.Text = Products(currentRecord).Price
txtSupplier.Text = Products(currentRecord).Supplier

Sub

ClearFields()

txtID.Text = "'
txtCategory.Text = ""
txtDescription.Text = ""
txtSupplier.Text = ""
txtPrice.Text = ""

Sub

HideButtons()
cmdAdd.Visible = False
cmdDelete.Visible = False
cmdFirst.Visible = False
cmdLast.Visible = False
cmdPrevious.Visible = False
cmdNext.Visible = False
cmdExit.Visible = False
cmdOK.Visible = True
cmdCancel.Visible = True
Sub

ShowButtons()
cmdAdd.Visible = True
cmdDelete.Visible = True
cmdFirst.Visible = True
cmdLast.Visible = True
cmdPrevious.Visible = True
cmdNext.Visible = True
cmdExit.Visible = True
cmdOK.Visible = False
cmdCancel.Visible = False
Sub

Copyright ©1998 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

	File Input/Output (I/O)
	File Types
	File Manipulation Commands
	The Open Statement
	The FreeFile() Function
	The Close(file_number) Statement
	The EOF(file_number) and LOF(file_number) Functions
	The Print #file_num, variable, variable, … Statement
	The Line Input #file_number, strVar Statement
	The Input$(nchars, #file_number) Statement
	The Width #fNum, length Statement
	The Put and Get Statements
	The Seek Statement and the LOC() Function
	The Lock and Unlock Statements

	The Textfile Project
	The FileIO Project
	The Products Project

	Go Back to Main Menu

	www:
	sybex:
	com:

	Copyright ©1998 SYBEX, Inc:
	, Alameda, CA: Copyright ©1998 SYBEX, Inc., Alameda, CA

