
3T U T O R I A L

An Image Annotation
Application

http://www.sybex.com

2

This tutorial puts together many of the graphics methods and techniques we
discussed in Chapters 6 and 7 of the Mastering VB6 book. Annotate is an image
annotation application that works best with maps.

The Annotate application, shown in Figure 1, lets you load an image and place anno-
tation marks on it. Annotate is not a “draw-over-image” application; it can’t draw
lines and other shapes over the image. Instead, it allows you to place special marks
on an image, drag them around to different locations, change their shape and color,
add comments to each of them, and finally, delete unwanted marks. The application
was developed for annotating maps with simple marks to indicate wells and other
installations. For the examples in this tutorial, I’m using a simple image of the New
York City skyline.

Using the Annotate Application
The Annotate application operates on images that must be opened with the File ➣

New command. The annotations are stored in a different file, and they have the
extension ANT. The ANT file contains a reference to the image file (which can reside
in any folder on the hard drive and can be of any type Visual Basic can handle, e.g.,
GIF, BMP, JPEG) and the information about the annotation marks (shape, color, and
comments).

F I G U R E 1 :

The Annotate application’s
main Form

Tutorial • An Image Annotation Application

http://www.sybex.com

3

Open the File menu, select New, and you’ll be prompted for the name of an image
file. Once the image is loaded, you can annotate it with the commands of the Anno-
tations menu. The Annotations menu has the following structure:

Color Sets the color of the selected symbol; new marks will also be drawn
in this color.

Blue

Red

Green

Yellow

White

Black

Shape Sets the shape of the selected mark; new marks will also have the
same shape.

Circle

Dot

Box

XBox

Comments Assigns a string of text to the selected mark; the comments are
displayed in a ToolTip box when the pointer rests over the mark for a sec-
ond or so.

Delete This command deletes the selected mark.

To place a new annotation mark on the bitmap, select its shape and color from
the Annotations menu, then right-click the image to add the annotation mark. To
move it to another location, drag it with the mouse and drop it at the new loca-
tion. To change its characteristics, right-click the annotation mark and the Anno-
tations menu will pop up. On this menu, you can select a new color or shape for
the mark, delete the mark, or add comments to it. When you select the Comments
command, a small Form will appear on which you can enter your comments. To
see the comments, you can either right-click a mark and select Comments or rest
the pointer over the mark for a second or so, and the comments will appear in a
ToolTip box, as shown in Figure 2.

Tutorial • An Image Annotation Application

http://www.sybex.com

4

To save an image and its annotations, select the File ➣ Save As command and
the application will prompt you to select a filename for the annotations. You can
easily add a plain Save command, which stores the annotations in the currently
open file. The annotation files have the extension ANT, and they store the name of
the image that was annotated along with the information about each mark (loca-
tion, shape, and color) and the comments. For more information on the structure
of ANT files see the section “Saving the Annotations,” at the end of this tutorial.

Coding the Annotate Application
If you use the Annotate application for a while, you’ll understand that it doesn’t
draw directly on the PictureBox control on which the annotation marks are placed.
If you drew the annotation marks directly on the bitmap, you wouldn’t be able to
move them around. (Actually, you’d have to perform quite a number of calcula-
tions from within the MouseDown event to figure out which mark was clicked,
then drag it around.)

To simplify the logic of the application and make sure that annotation marks
blend with their backgrounds, I used a little trick. I placed the annotation marks
on small PictureBox controls without borders. Keeping the marks on separate,
individual controls allows the code to quickly detect which mark is clicked and
then drag it around following the movement of the mouse.

The application’s main Form contains a PictureBox that has its AutoSize property
set to True. Each time a new bitmap is loaded on the large PictureBox, the Form is
resized accordingly. If the images you want to annotate are too large to fit on your

F I G U R E 2 :

A simple image with differ-
ent types of annotation
marks and the comments
entered for one of the
marks in a ToolTip box

Tutorial • An Image Annotation Application

http://www.sybex.com

5

monitor, you should make the main Form scrollable using the techniques discussed
in the section “Implementing Scrolling Forms” of Chapter 10.

You must also place a borderless PictureBox on the large PictureBox control. The
small PictureBox is called Bullet and it has an Index value of 0. As you have guessed,
each time a new annotation mark is placed on the bitmap, a new member will be
added to the Bullet control array. The Bullet PictureBox’s dimensions are 16 × 16 pix-
els and its ScaleMode property must be set to 3 (Pixels). Its Visible property must
also be set to False so that the first member of the array will remain invisible.

Creating New Annotation Marks

New annotation marks are created when the user right-clicks the Picture1 control.
When the right mouse button is released over the large PictureBox control, the fol-
lowing code is executed:

Private Sub Picture1_MouseUp(Button As Integer, Shift As Integer, _
X As Single, Y As Single)

If MAPNAME = “” Then Exit Sub
If Button = 2 Then

maxMarks = maxMarks + 1
Load Bullet(maxMarks)
Bullet(maxMarks).Move X - Bullet(maxMarks).ScaleWidth / 2, _

Y - Bullet(maxMarks).ScaleHeight / 2
Bullet(maxMarks).Visible = True
Bullet(maxMarks).ToolTipText = “”
Bullet(maxMarks).Tag = MARKSHAPE
DrawBullet maxMarks, MARKCOLOR, MARKSHAPE

End If
End Sub

The Load statement creates a new member in the Bullet array and increases the num-
ber of annotation marks by one (variable maxMarks). The Tag property of the Bullet
control array is used to store the name of the shape, and the new control’s Tool-
TipText property is reset to an empty string. The DrawBullet() subroutine draws the
annotation shape on the corresponding Bullet control. This is a very interesting sub-
routine because it must draw a shape transparently over the bitmap.

Drawing Transparent Shapes

Drawing a transparent shape directly over the bitmap isn’t challenging, except for
the fact that the shape must be drawn on another PictureBox control. To create the
impression that the shape is drawn over the bitmap, the code must copy the under-
lying bitmap pixels to the Bullet PictureBox control (with the PaintPicture method)

Tutorial • An Image Annotation Application

http://www.sybex.com

6

and then draw on top of this bitmap. If you want to add new shapes or replace the
existing ones, this is where you should insert the appropriate code.

Function DrawBullet(BulletIndex As Integer, FRCOLOR As Long, _
FRSHAPE As String)

Bullet(BulletIndex).PaintPicture Picture1.Image, _
0, 0, Bullet(BulletIndex).ScaleWidth, _
Bullet(BulletIndex).ScaleHeight, _
Bullet(BulletIndex).Left, Bullet(BulletIndex).Top, _
Bullet(BulletIndex).ScaleWidth, _
Bullet(BulletIndex).ScaleHeight, 13369376

Bullet(BulletIndex).FillColor = FRCOLOR
Bullet(BulletIndex).ForeColor = FRCOLOR
Bullet(BulletIndex).Tag = FRSHAPE
If FRSHAPE = “CIRCLE” Then

X = Bullet(BulletIndex).ScaleWidth / 2
Y = Bullet(BulletIndex).ScaleHeight / 2
Bullet(BulletIndex).Circle (X, Y), X * 0.9

ElseIf FRSHAPE = “DOT” Then
X = Bullet(BulletIndex).ScaleWidth / 2
Y = Bullet(BulletIndex).ScaleHeight / 2
Bullet(BulletIndex).FillStyle = 0
Bullet(BulletIndex).Circle (X, Y), X * 0.9
Bullet(BulletIndex).FillStyle = 1

ElseIf FRSHAPE = “BOX” Or FRSHAPE = “XBOX” Then
X = Bullet(BulletIndex).ScaleWidth
Y = Bullet(BulletIndex).ScaleHeight
Bullet(BulletIndex).DrawWidth = 2
Bullet(BulletIndex).Line (2, 2)-(X - 2, Y - 2), , B
If FRSHAPE = “XBOX” Then

Bullet(BulletIndex).Line (2, 2)-(X - 2, Y - 2)
Bullet(BulletIndex).Line (2, Y - 2)-(X - 2, 2)

End If
Else

‘ MsgBox “Application Error: Unknown shape requested!”
Exit Function

End If
Picture1.Refresh

End Function

FRSHAPE and FRCOLOR arguments specify the annotation mark’s shape and color.
The application keeps track of the current mark’s shape and color with the MARK-
SHAPE and MARKCOLOR Form variables. Every time the user selects a new shape
and/or color from the Annotations menu, these two variables are set accordingly.

Tutorial • An Image Annotation Application

http://www.sybex.com

7

For example, when the Annotations ➣ Color ➣ Blue command is selected, the fol-
lowing code is executed:

Private Sub BlueDot_Click()
MARKCOLOR = RGB(0, 0, 255)
If selDotIndex = -1 Then

Exit Sub
Else

DrawBullet selDotIndex, MARKCOLOR, MARKSHAPE
End If
ClearColorChecks
BlueDot.Checked = True

End Sub

The program sets the MARKCOLOR variable to a blue color so that subsequent
annotation marks are drawn in this color. If a mark is selected at the time (variable
selDotIndex is not -1), then it’s redrawn in the newly selected color with a call to the
DrawBullet() subroutine.

Likewise, when a new shape is selected, the following code is executed:

Private Sub ShapeBox_Click()
MARKSHAPE = “BOX”
If selDotIndex = -1 Then

Exit Sub
Else

DrawBullet selDotIndex, MARKCOLOR, MARKSHAPE
End If
ClearShapeChecks
ShapeBox.Checked = True

End Sub

Dragging the Annotation Marks

When the Bullet PictureBox is clicked upon, the code must prepare it for a drag oper-
ation. This is taken care by the following lines in the control’s MouseDown event:

Private Sub Bullet_MouseDown(Index As Integer, Button As Integer,_
Shift As Integer, X As Single, Y As Single)

If Button = vbLeftButton Then
Dragging = True
XStart = X
YStart = Y
Bullet(Index).ZOrder 0

End If
End Sub

Tutorial • An Image Annotation Application

http://www.sybex.com

8

The Dragging variable is declared as Boolean in the Form’s declaration section so
that it will be available to all mouse-related events. While the Bullet PictureBox is
being dragged around, the following code is executed from within the control’s
MouseMove event:

Private Sub Bullet_MouseMove(Index As Integer, Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If Not Dragging Or Button <> vbLeftButton Then Exit Sub
Bullet(Index).Visible = False
Bullet(Index).Move Bullet(Index).Left + (X - XStart), _

Bullet(Index).Top + (Y - YStart)
Bullet(Index).Visible = True
DrawBullet Index, Bullet(Index).FillColor, Bullet(Index).Tag

End Sub

The Index argument lets your code know which of the Bullet PictureBox controls is
being dragged. If you’re not in the middle of a drag operation or the left mouse but-
ton has been released, the code exits the MouseMove subroutine. If a drag opera-
tion is in progress, the code moves the control around, following the movement of
the mouse. It then calls the DrawBullet() subroutine to draw the annotation mark at
its new location.

Finally, in the MouseUp event, the dragging operation ends. If the MouseUp
event is triggered by the release of the right mouse button, then the Annotations
menu (it’s called AnnotationsMenu) is displayed:

Private Sub Bullet_MouseUp(Index As Integer, Button As Integer, _
Shift As Integer, X As Single, Y As Single)

If Button = vbRightButton Then
selDotIndex = Index
MARKSHAPE = Bullet(selDotIndex).Tag
PopupMenu AnnotationsMenu

ElseIf Button = vbLeftButton Then
Dragging = False

End If
End Sub

TIP The code would be almost trivial if I had used the DragMode property of the Bullet
control and the DragDrop event of the large PictureBox. This technique would
simplify the coding of the drag operation, but the marks wouldn’t be transparent
during dragging. By implementing the drag operation in code, I am able to draw
the mark on the bitmap myself and make the underlying pixels show through the
Bullet control’s background.

Tutorial • An Image Annotation Application

http://www.sybex.com

9

Saving the Annotations

The code that saves the annotations to a text file is probably the first part of the code
you may wish to revise. The program stores all the information to a text file, which
means you can’t use double quotes in your comments. Also, when comments are
displayed in the ToolTip box, multiple text lines appear as long strings with two ver-
tical lines at the points where they should break (text lines don’t break when dis-
played in a ToolTip box). Apart from these two limitations, the code is functional
and stores all the information needed by the application to load a bitmap and its
annotations from a disk file.

The ANT file starts with the path name of the image being annotated. Then the
annotations follow, and they are stored are follows:

<x coordinate> <y coordinate> <color> <shape>

<comments>

These two lines are repeated for every annotation mark on the image. Here’s a typ-
ical ANT file with three annotation marks:

D:\Maps\Samples\Nysky.bmp
113.5333 13.46667 255 DOT
“WELL #D104
Capacity 100400”
265.5333 113.4667 65535 DOT
“WELL #F081
Not pumping”
109 168 255 DOT
“WELL #E330
Capacity 83000”

Here’s the code that saves the annotations of the current bitmap:

Private Sub FileSaveAs_Click()
CommonDialog1.DialogTitle = “Select Project File to Open”
CommonDialog1.DefaultExt = “ANT”
CommonDialog1.Filter = “Application Files|*.ANT”
CommonDialog1.CancelError = True
On Error GoTo FileSaveError
CommonDialog1.ShowSave
fNumMap = FreeFile()
Open CommonDialog1.FileName For Output As #fNumMap

Print #fNumMap, MAPNAME
On Error Resume Next
For i = 1 To maxMarks

thisDot = thisDot + 1

Tutorial • An Image Annotation Application

http://www.sybex.com

10

vtest = Bullet(i).Visible
If Err.Number = 0 Then

Print #fNumMap, Bullet(i).Left, Bullet(i).Top, _
Bullet(i).FillColor, Bullet(i).Tag

Print #fNumMap, Chr(34) & Notes(i) & Chr(34)
End If
Err.Clear

Next
Close #fNumMap
Exit Sub

FileSaveError:
MsgBox “Error in saving annotation map!”
On Error Resume Next
Close #fNumMap

End Sub

The code starts by writing the path name of the image to the output file. Then,
it stores the information of each annotation mark with a For … Next loop that scans
all the elements of the control array Bullet.

Notice the line that assigns the Visible property of the Bullet(i) control to the vtest
variable. This is a dummy line that produces a runtime error if there is no such con-
trol. The code of the Annotate application unloads controls from the Bullet array at
will and doesn’t renumber the members that follow. This means that the Bullet con-
trol array may contain “holes,” which correspond to the items that are removed
from the array during the course of the program. If the loop attempts to save all the
elements of the Bullet array, the missing elements will cause runtime errors. One
way to detect missing items is to access a property. If the element is missing, a run-
time error will be generated. Because of the statement On Error Resume Next, the
error is caught at the following line. The statements that save the information to the
file are executed only if no error occurs, which means that the element Bullet(i) exists
and corresponds to an annotation mark.

The code that reads the annotation marks from the disk file and redraws the
annotated bitmap is shown next:

Private Sub FileOpen_Click()
CommonDialog1.DialogTitle = “Select Map to Annotate”
CommonDialog1.Filter = “Application Files|*.ANT”
CommonDialog1.InitDir = App.Path
CommonDialog1.CancelError = True

On Error GoTo FileOpenError
CommonDialog1.ShowOpen
fNum = FreeFile()
Open CommonDialog1.FileName For Input As #fNum

Tutorial • An Image Annotation Application

http://www.sybex.com

11

Input #fNum, MAPNAME
On Error GoTo ImageNotFound
Picture1.Picture = LoadPicture(MAPNAME)
Form1.Palette = Picture1.Picture
Picture1.Picture = LoadPicture(MAPNAME)
Form1.Width = Picture1.Width + 3 * Picture1.Left
Form1.Height = Picture1.Height + 60 * Screen.TwipsPerPixelY
Form1.Refresh
ClearDots
On Error Resume Next
i = 0
While Not EOF(fNum)

i = i + 1
Load Bullet(i)
Bullet(i).Visible = True
Input #fNum, BLeft, BTop, BColor, BShape, BNote
Bullet(i).Left = BLeft
Bullet(i).Top = BTop
DrawBullet (i), (BColor), (BShape)
Notes(i) = BNote
Bullet(i).ToolTipText = BNote

Wend
maxMarks = i
Close #fNum
Exit Sub

FileOpenError:
Exit Sub

ImageNotFound:
MsgBox “Image file “ & MAPNAME & “ not found”
Exit Sub

End Sub

Tutorial • An Image Annotation Application

http://www.sybex.com

	An Image Annotation Application
	Using the Annotate Application
	Coding the Annotate Application
	Creating New Annotation Marks
	Drawing Transparent Shapes
	Dragging the Annotation Marks
	Saving the Annotations

	Go Back to Main Menu

	Copyright ©1998 SYBEX, Inc:
	, Alameda, CA: Copyright ©1998 SYBEX, Inc., Alameda, CA

	www:
	sybex:
	com:

