
3T U T O R I A L

A Scrolling ImageBox Control

http://www.sybex.com

2

Visual Basic doesn’t provide a control that can display large images and allow
the user to select an area to view with the help of scroll bars, so the ScrollingImage-
Box control is one that you will use in all kinds of projects. You can also use this con-
trol on Web pages. It provides a Picture property, similar to the regular ImageBox
control. The Picture property can be assigned an image file, which will be displayed
on the control. The difference between the custom scrolling ImageBox control we are
going to develop here and the regular ImageBox control is that the custom control
doesn’t resize the image of its viewing area. It attaches two scroll bars that let the
user view any portion of the image. We are also going to add a PictureFromURL
property that will download and display an image from a Web server.

The Form shown in Figure 1 is the test Form for the control, which can be found
in the ScrlImg folder on the CD. This control was designed to host large images; if
the image is smaller than the control’s viewing area, the control won’t be resized
automatically. Instead, the scroll bars will be disabled, but not removed. You might
want to tweak the code to add a feature that will autosize the control if the image
is smaller than its viewing area. In addition to allowing the user to scroll the image
with the help of the scroll bars, the control provides properties for reporting the
image’s size and position on the control, as well as methods for scrolling the image
under program control.

The ScrollImageBox Control’s
Custom Members

The ScrollImageBox control has the following properties, methods, and events.
Figure 2 shows the properties.

F I G U R E 1 :

The ScrollImageBox control
displaying a large image

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

3

The Xposition and YPosition Properties These two properties report the
coordinates of the top left visible pixel of the image (the origin of the image’s
visible section).

The VisibleWidth and VisibleHeight Properties These two properties
return the dimensions of the visible part of the image (which are the same as the
control’s dimensions). The rectangle of the image displayed in the control’s view-
ing area starts at coordinates (XPosition, YPosition) and has dimensions (Visible-
Width, VisibleHeight). All properties are expressed in pixels.

The PictureWidth and PictureHeight Properties These two properties
return the actual size of the image, including the part that’s not visible.

The ScrollTo(X, Y) Method This method allows you to scroll the image to pixel
(X, Y) from within your code. After calling this method, the control’s XPosition prop-
erty becomes equal to X, and the YPosition property becomes equal to Y.

The ScrollX and ScrollY Events These events are triggered every time the user
scrolls the thumb on the vertical or horizontal bar. They are raised from within the
scroll bars’ Scroll event, and they can be used to monitor any changes in the values
of the scroll bars continuously as the user slides them.

The ChangeX and ChangeY Events These events are triggered every time the
user changes the value of the vertical or horizontal scroll bar. They are raised from
within the scroll bars’ Change event, and they can be used to monitor any changes
in the scroll bars after the user has moved the thumb to a new value.

Two more useful properties you can easily add to the control are the SmallChange
and LargeChange properties, which would allow developers to set the equivalent
properties of the ScrollBar controls. Instead, the custom control scrolls the image by
1 pixel when the scroll arrows are clicked and by 10 pixels when the area of the scroll
bar between the arrows and the thumb is clicked. You can easily implement these

F I G U R E 2 :

The properties of the Scroll-
ImageBox custom control
that report the location of
the image’s visible area on
the control

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

4

properties by adding the corresponding property procedures with the ActiveX Con-
trol Interface Wizard and mapping them to the corresponding properties of the two
ScrollBar controls.

Testing the ScrollImgBox Control
The test project of the Scrolling Image custom control has two Forms: The TestForm
(shown in Figure 3) and the VideoForm (shown in Figure 4). The TestForm contains
an instance of the ScrollImgBox control, a few Command Buttons that let you scroll
the image under program control, and a few labels that display the dimensions
and the current location of the image.

F I G U R E 4 :

The VideoForm Form of the
ScrollImgBox control’s test
project

F I G U R E 3 :

The TestForm Form of the
ScrollImgBox control’s test
project

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

5

The Move Right and Move Down buttons lets you scroll the image in the corre-
sponding direction by five pixels at a time. As the image is repositioned on the con-
trol (either with the buttons or manually), the coordinates of its upper-left visible
pixel are displayed in the two Label controls at the bottom of the Form. The two
Labels at the top display the dimensions of the image, even if part of it is not visible.
Finally, the Show Position button displays the image’s dimensions and the origin of
its first visible pixel on a message box.

The VideoForm downloads an image from a Web server and displays it on the
ScrollImgBox control. Notice that you must first download an image and then scroll
it. For those of you who are not interested in using the control on Web pages, I have
placed an image on the control already, which is displayed when you open the pro-
ject (it doesn’t have to be downloaded from a Web server). If you click the Scroll
Image button, the image code will start panning the image smoothly, giving the
impression of video playback. I’ll discuss the code of the VideoForm later in this
tutorial. Let’s start with code of the TestForm.

The TestForm maintains two variables that correspond to the current position
of the image on the custom control, which are declared as:

Dim X As Integer, Y As Integer

As soon as the Form is loaded, the dimensions of the bitmap are displayed on
two Label controls at the top of the Form:

Private Sub Form_Load()
Label1.Caption = “Width: “ & ScrollImgBox1.PictureWidth
Label2.Caption = “Height: “ & ScrollImgBox1.PictureHeight

End Sub

When you click the Move Right and Move Down buttons , the X and Y variables
increase by five pixels, causing the image to scroll in the corresponding direction
by that amount. The ScrollTo method is then called with the updated values of the
X and Y controls to scroll the image. Here are the Click event handlers of the two
Command Buttons:

Private Sub Command1_Click()
X = X + 5
ScrollImgBox1.ScrollTo (X), (Y)

End Sub

Private Sub Command2_Click()
Y = Y + 5
ScrollImgBox1.ScrollTo (X), (Y)

End Sub

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

6

Finally, each time the image is scrolled on the control, the coordinates on the two
Labels at the bottom of the Form are updated from within the ScrollX/ScrollY and
ChangeX/ChangeY events of the control:

Private Sub ScrollImgbox1_ChangeX(X As Integer)
Label4.Caption = “X at: “ & X

End Sub

Private Sub ScrollImgbox1_ChangeY(Y As Integer)
Label5.Caption = “Y at: “ & Y

End Sub

Private Sub ScrollImgBox1_Click()
MsgBox “I was clicked”

End Sub

Private Sub ScrollImgbox1_ScrollX(X As Integer)
Label4.Caption = “X at: “ & X

End Sub

Private Sub ScrollImgbox1_ScrollY(Y As Integer)
Label5.Caption = “Y at: “ & Y

End Sub

No matter how the image is scrolled (manually or under program control), these
events will be triggered, and the Form will be updated. Now that you have seen
how the control is used on a Form, we can look at the details of its implementation.
I’ll discuss the VideoForm test Form toward the end of this tutorial, and you’ll see
how the custom control can download an image over the Internet.

Implementing the ScrollImgBox Control
The ScrollImgBox control contains two PictureBox controls. One of them (the Pic-
ture2 control) is hidden (Visible property = False), and its AutoSize property is set
to True. This control stores the entire image. The other PictureBox control (the Pic-
ture1 control) is visible and holds only part of the image.

The two scroll bars attached to the control allow the user to select any part of the
image to view, and they are totally independent of the PictureBox controls. They are
placed to the right and at the bottom of the Picture1 control from within the control’s
code. Their Max values match the size of the image displayed. The vertical scroll
bar’s Max property, for example, is set to the image’s height minus the height of the

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

7

control’s viewing area (see Figure 2, earlier in this tutorial). Each time one of the
scroll bars changes value, another part of the image is copied on the visible Picture-
Box control with the PaintPicture method.

Adding the Standard Members
The ScrollImgBox control was designed with the help of the ActiveX Control Inter-
face Wizard, but it’s a fairly complicated control. In this tutorial I will discuss the
more interesting parts of the control’s implementation. For details on using the
ActiveX Control Interface Wizard, see Chapter 16 of Mastering Visual Basic 6.

Let’s start with the standard members of the custom control. If you want to design
the control from scratch, start the ActiveX Control Interface Wizard and follow these
steps (or open the ScrlImg project, start the ActiveX Control Interface Wizard, and
examine its screens):

1. In the Select Interface Members screen, add the following standard members
to the control:

• BorderStyle, Enabled, and Picture properties

• Refresh method

• Click, DblClick, KeyDown, KeyPress, KeyUp, MouseDown, MouseMove,
and MouseUp events

2. In the Create Custom Interface Members screen, add the following members:

Properties Methods Events

PictureWidth ScrollTo ScrollX

PictureHeight ScrollY

VisibleWidth ChangeX

VisibleHeight ChangeY

PictureFromURL DownloadFailed

Xposition DownloadCompleted

Yposition

3. In the Set Mapping screen, set the following mappings:

• Map the ScrollX and ScrollY events to the Scroll events of the horizontal
and vertical scroll bar.

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

8

• Map the ChangeX and ChangeY events to the Change events of the hor-
izontal and vertical scroll bar.

Every time the scroll bars change value, the custom events will be triggered.
Of course, the Wizard will not add the code for scrolling the image on the con-
trol. We’ll have to edit the code and add the statements for scrolling the images
later.

• Map the Xposition and Yposition properties to the Value property of the
horizontal and vertical scroll bars so that they always reflect the current
position of the image on the control.

• Map the Picture property to the Picture property of the Picture1 control.

• Map all standard events (mouse and keyboard events) to the correspond-
ing events of the Picture1 control, which is the largest visible element on
the control.

4. In the Set Attributes screen, set the following member attributes:

• Add an Integer argument to the ChangeX and ChangeY events:

ChangeX(X As Integer)
ChangeY(Y As Integer)

(X and Y are the values of the image’s origin when it’s repositioned on the
control by the user.)

• Add the same arguments to the ScrollX and ScrollY methods.

• Set the PictureFromURL property’s data type to String.

• Make all other properties Integer. (If you plan to use the control with
images that exceed 32,000 pixels in either direction, make all proper-
ties and arguments Long instead of Integer.) An image of dimensions
32K ×32K pixels is probably too large for most Windows applications).

• Assign the following arguments to the ScrollTo method:

ScrollTo(X As Integer, Y As Integer)

Just enter the string “X As Integer, Y As Integer” (without the quotes) in the
Arguments box.

5. Click the Finish button, and the Wizard will generate the skeleton for the
control.

Programming the Custom Members
Now you must step in and add the code that will make the control work. The
code added by the Wizard is trivial and takes care of the basic properties, but it

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

9

doesn’t scroll the image. You must supply the code that makes the control unique.
Let’s examine the custom properties of the control.

The XPosition and YPosition Properties

These properties are implemented with the following Property Get procedures:

Public Property Get XPosition() As Variant
XPosition = HScroll1.Value

End Function

Public Property Get YPosition() As Variant
YPosition = VScroll1.Value

End Function

You can make these two properties read-only by omitting the matching Property
Set procedures. In this case, the developer will have to use the ScrollTo method to
scroll the image. The values of these properties are not stored in local variables either;
they are read directly from the scroll bars’ Value properties. If you have mapped the
Xposition and Yposition properties to the Value property of the corresponding scroll
bar, the Wizard will automatically insert the Procedure properties.

The VisibleWidth and VisibleHeight Properties

These properties are not stored in local variables either. They are calculated from
within the corresponding Property Get procedures, and they are read-only:

Public Property Get VisibleWidth() As Integer
VisibleWidth = (UserControl.Width - VScroll1.Width) / _

Screen.TwipsPerPixelX
End Property

Public Property Get VisibleHeight() As Integer
VisibleHeight = (UserControl.Height - HScroll1.Height) / _

Screen.TwipsPerPixelY
End Property

The Picture Property

The custom control’s Picture property is mapped to the Picture property of the Pic-
ture1 control. The Property procedures for the Picture property are shown next:

Public Property Get Picture() As Picture
Set Picture = Picture1.Picture

End Property

Public Property Set Picture(ByVal New_Picture As Picture)
Set Picture1.Picture = New_Picture

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

10

ArrangeControl
UserControl_Paint

End Property

When a new picture is assigned to the control’s Picture property, the Arrange-
Control subroutine is called, which arranges the various controls on the UserControl
object. It then calls the SetScrollbars function, which sets the Max properties of the
two scroll bars. Here’s the ArrangeControl subroutine:

Private Sub ArrangeControl()
Picture2.Top = 0
Picture2.Left = 0
Picture2.Width = UserControl.Width - VScroll1.Width
Picture2.Height = UserControl.Height - HScroll1.Height
HScroll1.Left = 0
HScroll1.Width = UserControl.Width - VScroll1.Width
HScroll1.Top = UserControl.Height - HScroll1.Height
VScroll1.Left = UserControl.Width - VScroll1.Width
VScroll1.Top = 0
VScroll1.Height = UserControl.Height - HScroll1.Height
SetScrollbars

End Sub

After sizing and positioning the scroll bars’ controls on the Form, the Arrange-
Control subroutine calls the SetScrollbars subroutine, which sets up the proper-
ties of the two scroll bars (sets their Max properties according to the size of the
control’s visible area and the image size, disables them if required, and so on).
The SetScrollbars subroutine is shown next:

Private Sub SetScrollbars()
m_PictureWidth = ScaleX(Picture1.Picture.Width, 8, vbPixels)
m_PictureHeight = ScaleY(Picture1.Picture.Height, 8, vbPixels)
HScroll1.Enabled = True
VScroll1.Enabled = True
HScroll1.Visible = True
VScroll1.Visible = True

‘ should we disable horizontal scrollbar?
If m_PictureWidth <= Picture2.ScaleWidth Then

Picture2.Width = m_PictureWidth * Screen.TwipsPerPixelX
HScroll1.Enabled = False
HScroll1.Width = Picture2.Width
HScroll1.Visible = False
VScroll1.Left = Picture2.Left + Picture2.Width

End If
‘ should we disable vertical scrollbar?

If m_PictureHeight <= Picture2.ScaleHeight Then
Picture2.Height = m_PictureHeight * Screen.TwipsPerPixelY

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

11

VScroll1.Enabled = False
VScroll1.Height = Picture2.Height
VScroll1.Visible = False
HScroll1.Top = Picture2.Top + Picture2.Height

End If
HScroll1.Min = 0
HScroll1.Max = m_PictureWidth - Picture2.ScaleWidth
HScroll1.LargeChange = 10
HScroll1.SmallChange = 1
VScroll1.Min = 0
VScroll1.Max = m_PictureHeight - Picture2.ScaleHeight
VScroll1.LargeChange = 10
VScroll1.SmallChange = 1

End Sub

The m_PictureWidth and m_PictureHeight arguments are two local variables that
store the actual dimensions of the bitmap displayed on the custom control. The
expressions Picture1.Picture.Width and Picture1.Picture.Height return the dimen-
sions of the bitmap displayed on the Picture1 control in HiMetric units. The ScaleX
and ScaleY methods convert the dimensions of the bitmap from HiMetric units to
pixels. These values won’t change in the course of the control’s life unless a new
image is loaded.

The two If clauses disable the scroll bar(s) if the image is smaller than the cus-
tom control’s visible area. This control was meant to be used with large images
and hasn’t been optimized for small images. Even if the entire image can fit in the
control’s viewing area, the scroll bars will be disabled, but they’ll remain visible.
The last few statements in the subroutine set the properties of the two scroll bars.
When either scroll bar is set to its maximum value, the rightmost and bottom part
of the image should appear on the control.

After the controls have been arranged on the UserControl object and the Scroll-
Bar controls have been set up, the Picture Property Set Procedure’s code calls the
UserControl_Paint event. This is where the we copy part of the image from the
invisible onto the visible PictureBox control:

Private Sub UserControl_Paint()
On Error Resume Next

Picture2.PaintPicture Picture1.Picture, 0, 0, _
Picture2.Width, Picture2.Height, _
HScroll1.Value, VScroll1.Value, _
Picture2.Width, Picture2.Height

End Sub

The PaintPicture method copies a bitmap from a PictureBox control or Form
object to another and is described in detail in Chapter 6. The code presented so

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

12

far takes care of the placement of the image on the control. To scroll the visible part
of the image every time the user changes the scroll bars, we must simply invoke
the UserControl_Paint event from within the Change and Scroll events of the two
ScrollBar controls. In addition, we must also raise the ChangeX, ScrollX and the
ChangeY, ScrollY events. Here are the handlers of the Change and Scroll events of
the horizontal scroll bar:

Private Sub HScroll1_Change()
UserControl_Paint
RaiseEvent ChangeX(HScroll1.Value)

End Sub

Private Sub HScroll1_Scroll()
UserControl_Paint
RaiseEvent ScrollX(HScroll1.Value)

End Sub

The ScrollTo method scrolls the bitmap to the specified position by manipulat-
ing the Value property of the two scroll bars. The two If structures in the follow-
ing listing make sure that the bitmap isn’t scrolled to an invalid position.

Public Sub ScrollTo(X As Integer, Y As Integer)
If HScroll1.Enabled Then

If X > HScroll1.Max Then X = HScroll1.Max
HScroll1.Value = X

End If
If VScroll1.Enabled Then

If Y > VScroll1.Max Then Y = VScroll1.Max
VScroll1.Value = Y

End If
End Sub

The rest of the code was generated by the Wizard. It’s straightforward, and I need
not repeat it here. You can open the ScrollingImage project in the Visual Basic IDE
and examine the Property procedures and the methods of the custom control. Notice
that most standard members are mapped to the equivalent members of the User-
Control object and the visible PictureBox (Picture2).

Downloading Images over the Internet
In order to use the ScrollImgBox control on a Web page (or even in a desktop appli-
cation that can contact a Web server and download images), we must add a custom
property, which is similar to the Picture property, but it can download a bitmap
from a Web server. Let’s call this property PictureFromURL. This property need not
be set at design time. Instead, the host application (a VB application or a Web page)

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

13

can set this property at runtime. When the PictureFromURL property is set, the
control will download the specified image from a Web server and display it. All
other properties and methods remain the same.

When this control is used on a Web page, there’s no use for the Picture property.
The page to which it belongs is going to be viewed on a client computer, and the
image must be downloaded anyway (the page can’t expect that the picture will be
stored in the host computer’s disk). The PictureFromURL property is implemented
with the following Property procedures:

Public Property Get PictureFromURL() As String
PictureFromURL = m_PictureFromURL

End Property

Public Property Let PictureFromURL(ByVal newValue As String)
m_PictureFromURL = newValue
If Ambient.UserMode And newValue <> “” Then

AsyncRead newValue, vbAsyncTypePicture, “PictureFromURL”
End If

End Property

The local variable m_PictureFromURL is a string variable that stores the URL of
the image to be downloaded. The value of this property is passed to the AsyncRead
method, which then downloads it. The PictureFromURL property can be assigned
a value such as a file name on the local disk:

File://c:/Images/NYork.GIF

or a file’s URL on the Web:

http://www.sybex.com/Images/NYork.gif

The UserMode property of the UserControl object is True at runtime only, and
the control will not attempt to download the image at design time.

To download the image, the code calls the AsyncRead method specifying the vb-
AsyncTypePicture constant as the AsyncType argument. The specified resource will
be downloaded asynchronously and will be stored in a local file on the host com-
puter. When the download completes, the AsyncReadComplete event is raised. In
this event’s handler, we must display the image on the control. As with the Picture
property, we are going to call the ArrangeControl subroutine to arrange the con-
trols on the UserControl object and then invoke the UserControl’s Paint event to
actually display the visible portion of the image. Here’s the AsyncReadComplete
event’s handler:

Private Sub UserControl_AsyncReadComplete(AsyncProp As AsyncProperty)
On Error GoTo NoImage

If AsyncProp.PropertyName = “PictureFromURL” Then
Set Picture1.Picture = AsyncProp.Value

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

14

ArrangeControl
UserControl_Paint
RaiseEvent DownloadCompleted

End If
Exit Sub

NoImage:
RaiseEvent DownloadFailed
Debug.Print “Download failed”

End Sub

The Value property of the AsyncProp object is the name of a file (a string) in which
the downloaded bitmap was stored. This value can be assigned directly to the Pic-
ture property of the Picture1 control. The actual file where the bitmap is stored is
of no interest to the developer. It’s a temporary file, which is located in the Tempo-
rary Internet Files folder, and will eventually be removed.

Testing the PictureFromURL Property
The PictureFromURL property can be used with Web pages, as well as desktop
applications, as long as the user has established a connection to the Internet. The
VideoForm test Form of the ScrolImg project (shown in Figure 4, earlier in this
tutorial) downloads an image from a Web server when the Load Image button is
clicked. If you have the Personal Web server installed on your computer, place
the image to be downloaded in the root folder of the Web server and enter the fol-
lowing lines in the Load Image button’s Click event handler:

Private Sub Command2_Click()
ScrollImgBox1.PictureFromURL = “http://127.0.0.1/nysky.gif”

End Sub

The image is expected to reside in the server’s root folder. This test Form will
also work if you are using Internet Information Server. If you are not running a
Web server on your computer, you can post the image on your ISP’s server. Most
ISPs provide a folder on their server for each subscriber, and you can post your
files there.

NOTE The process of posting files to an ISP server is described in Chapter 21 of Master-
ing Visual Basic 6. For those of you who might be reading this tutorial on the
Sybex Web site and who don’t have the book handy, I’ve included a summary of
the process at the end of this tutorial. If you’re going to post the image on an ISP’s
server, you must change the URL of the image in the previous code segment
accordingly.

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

15

The code behind the Scroll Image button is quite simple. It moves the image
around by calling its ScrollTo method repeatedly. Here’s the code that scrolls the
image around:

Private Sub Command1_Click()
Dim i As Integer
Dim j As Integer
Dim VWidth As Integer

VWidth = ScrollImgBox1.PictureWidth - ScrollImgBox1.VisibleWidth
For i = 0 To 90

ScrollImgBox1.ScrollTo 0, i
DoEvents

Next
For i = 0 To VWidth

ScrollImgBox1.ScrollTo i, 90
DoEvents

Next
For i = 90 To 40 Step -1

ScrollImgBox1.ScrollTo VWidth, i
DoEvents

Next
For i = VWidth To 0 Step -1

ScrollImgBox1.ScrollTo i, 40
DoEvents

Next
End Sub

Using the ScrollImgBox on a Web Page
To test the custom control’s ability to download images over the Web, we are going
to build a Web page that uses the ScrollImgBox control. After the page has been
loaded on the client computer, it downloads the NYSKY.GIF image file from the
Web server and scrolls it, just like the VIDEOFORM test Form. The page shown in
Figure 5 was created with FrontPage Express, a WYISYG HTML editor that comes
with Internet Explorer 4 (full installation). It’s just as easy to create the HTML page
with a simple editor such as Notepad, but FrontPage Express can locate the Class
ID of the various ActiveX controls in the Registry and create the appropriate
<OBJECT> tags for you.

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

16

To insert an instance of an ActiveX control on a Web page, follow these steps:

1. Start Visual Basic and open the project ScrlImg (in the AXImage folder of
the CD).

2. Select the UserControl object in the Project Explorer window.

3. Choose File ➣ Make ScrollImageBox.ocx.

4. After the OCX file of the control is created, open the DOS window, switch to
the folder that contains the control, and enter the following command:

C:\WINDOW\SYSTEM\REGSVR32 SCROLLIMGBOX.OCX

This command will register the Scrolling ImageBox control with your system,
and any application can use it.

5. Switch to FrontPage Express and start a new page.

6. Choose Insert ➣ Other Components ➣ ActiveX Control, and in the list of
ActiveX controls, select ScrollingImage.ScrolImgBox. (This item will appear
only if you haven’t changed the names of the project and the UserControl

F I G U R E 5 :

The SCROLLIMG.HTM page

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

17

object. If you did, select the ActiveX control by its new name). In the ActiveX
Control Properties window you can also set the dimensions of the control.

7. Place the two Command Buttons below the ScrollImgBox control by select-
ing the Microsoft Forms 2.0 Command Button in the list of ActiveX controls.

FrontPage Express will generate the HTML code for the document. All you really
need are the definitions of the ActiveX controls. Choose View ➣ HTML to view the
source code. It’s not easy to read because FrontPage doesn’t use uppercase for the
HTML tags. Here’s the listing of the SCRLIMG.HTM Web page after some beautifi-
cation and the addition of the SCRIPT section:

<HTML>
<HEAD>
<meta http-equiv=”Content-Type”
content=”text/html; charset=iso-8859-1”>
<meta name=”GENERATOR” content=”Microsoft FrontPage Express 2.0”>
<TITLE>Scrolling Image Box - Web Page Demo</TITLE>
<SCRIPT LANGUAGE=VBScript>
Sub LoadButton_Click()

ScrollImageBox.PictureFromURL=”nysky.gif”
End Sub
Sub ScrollButton_Click()

Width=ScrollImageBox.PictureWidth-ScrollImageBox.VisibleWidth
For i=1 to 70

ScrollImageBox.ScrollTo CInt(0), CInt(i)
ScrollImageBox.Refresh

Next
For i=0 to Width

ScrollImageBox.ScrollTo CInt(i), 70
ScrollImageBox.Refresh

Next
For i=70 to 20 Step -1

ScrollImageBox.ScrollTo CInt(Width), CInt(i)
ScrollImageBox.Refresh

Next
For i=Width to 0 Step -1

ScrollImageBox.ScrollTo CInt(i), 20
ScrollImageBox.Refresh

Next
End Sub
</SCRIPT>

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

18

</HEAD>
<BODY bgcolor=”#FFFFFF”>
<H1>Scrplling ImageBox Demo</H1>
<OBJECT CLASSID=”clsid:9C6BC6AF-0A8B-11D2-94D1-0000E8CE04E8”
NAME=”ScrollImageBox” BORDER=”0” WIDTH=”350” HEIGHT=”180”>
</OBJECT>
<P>
<OBJECT ID=”LoadButton” classid=”clsid:D7053240-CE69-11CD-A777-
00DD01143C57”
BORDER=”0” WIDTH=”80” HEIGHT=”32”>

<PARAM NAME=”Caption” VALUE=”Load Image”>
</OBJECT>
<OBJECT ID=”ScrollButton” CLASSID=”clsid:D7053240-CE69-11CD-A777-
00DD01143C57”
BORDER=”0” WIDTH=”80” HEIGHT=”32”>

<PARAM NAME=”Caption” VALUE=”Scroll Image”>
</OBJECT>
</BODY>
</HTML>

The CLASSID for the AXImage control on your computer will be different. Use
the SCROLLIMG.HTM page as a sample, but it will not work as is. You must change
the CLASSID attribute’s value and then open it with Internet Explorer.

The script is similar to the Visual Basic code we used in the VideoForm test Form
to scroll the image around. The SCROLLIMG.HTM page expects that the image to
be downloaded (NYSKY.GIF) resides in the root folder of the Web server. To open
the page, start Internet Explorer and enter the following URL in the Address box:

HTTP://127.0.0.1/SCROLLIMG.HTM

The SCROLLIMG.HTM page will work as expected when opened and viewed on
a computer on which the ScrollImgBox control has been registered. If you attempt
to access this file on your server from another computer, you won’t see the custom
control on the page because the control hasn’t been registered on the host computer.
Use the same computer on which the custom control was developed to test the
SCROLLIMG.HTM page.

In the last section of this tutorial, you’ll find information on posting the images to
be downloaded on your ISP’s server. The information in the next section applies to
most ISPs, but you may have to contact your ISP for more information on posting to
user sites.

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

19

Posting a File on a Web Server
Testing a control that downloads property values from a Web server requires that
you connect to the server. If you have your own Web server (Internet Information
Server or the Personal Web Server), you can just copy an image file to one of the
Web server’s virtual directories. You can just copy it to the root directory and then
connect to your own server using the following URL:

http://127.0.0.1/NYSky.gif

The address 127.0.0.1 is the address of your own computer on the network. Actu-
ally, you don’t even need a network. As long as you have a Web server installed on
your computer, use this URL to connect to it. If the Web server is on another com-
puter in the same network, substitute the actual computer name for the string
“127.0.0.1”.

Most of you, however, don’t have you own Web server to test your controls. You
can still use your Internet service provider’s server, as long as you have permis-
sion to post files on it (most ISPs provide a few Mbytes to subscribers, where they

Safety and Security
The default security settings of Internet Explorer will prevent the control from initializing
and executing on the computer. This control is not safe for scripting, and Internet Explorer
will ignore it. (To make a control safe for scripting, use the Package and Deployment Wiz-
ard that comes with Visual Basic 6.)

To view the SCROLLIMG page, follow these steps:

1. In Internet Explorer, choose View ➣ Internet Options to open the Internet
Options dialog box.

2. Select the Security tab, and click the Low option button.

3. Close the dialog box, connect to the server, and open the page.

This time the control will load. When you click the Load Image button, you’ll get a warn-
ing. Internet Explorer will tell you that the AcitveX control you’re about to view may be
unsafe. Click Yes anyway (you’ve seen the control’s code, and it doesn’t do anything to
your file system). After the image downloads, click the Scroll Image button to scroll the
image in its box.

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

20

can post user pages). To test the ScollImgBox control with your ISP’s server, you
must post the NYSKY.GIF file to your directory on the server. First, create a new
folder on your hard disk, and place the NYSKY.GIF file there (if you have any
HTML files you would like to post, place them there as well). Now, start the Web
Publishing Wizard (a utility that comes with Windows and FrontPage), and fol-
low these steps:

1. The first page of the Web Publishing Wizard is a welcome screen. Click the
Next button to open the Select a File or Folder window.

2. In the File or Folder Name box, enter the name of the folder you just created.
Click Next.

3. In the next window, specify a friendly name for the Web server, and click the
Advanced button.

4. In the next window, select the protocol to be used for transferring the file.
Select FTP and click Next.

5. In the next window, you specify the URL of the service provider. You must
provide the name of the server on which the ISP places user pages (don’t
change the name of the local directory). For most ISPs, this URL is some-
thing like:

users.ISPname.com/yourname

The yourname variable is your login name. If your address is jdoe@usa1.com,
your login name is jdoe, and the URL of your directory on the ISP’s server
would be:

users.usa1.com/jdoe

TIP Many ISPs use the tilde character in front of the user name (users.usa1.com/
~jdoe). If you search for “user pages” in your ISP’s Web site, you’ll find all the
information you need.

6. Click Next again to open the last window of the Wizard, and click on Finish
to publish your files.

7. To test your directory on the server, start Internet Explorer and enter the URL
of the Rates.txt file on the server:

http://users.usa1.com/jdoe/nysky.gif

You should see the contents of the Rates.txt file in the browser’s window. This
means that you have successfully posted the file, and your Rates control will
also be able to see it on the server and download it.

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

21

8. Copy the URL from the browser’s Address box and paste it in your code
(pass it as argument to the DownloadRates method of the Rates control).

The process I describe here will work with many ISPs, but the exact steps may not
apply to all ISPs. If you have problems posting your files to the server, just find out
from your ISP what it takes to publish your own user or personal Web site. Instead
of an entire Web site, just place the Rates.txt there. Or, if you already have a Web site,
place the Rates.txt file in the same directory. It’s not going to affect your Web, since
none of the pages contain hyperlinks to this file.

Tutorial • A Scrolling ImageBox Control

http://www.sybex.com

	A Scrolling ImageBox Control
	The ScrollImageBox Control's Custom Members
	The Xposition and YPosition Properties
	The VisibleWidth and VisibleHeight Properties
	The PictureWidth and PictureHeight Properties
	The ScrollTo(X, Y) Method
	The ScrollX and ScrollY Events
	The ChangeX and ChangeY Events

	Testing the ScrollImgBox Control
	Implementing the ScrollImgBox Control
	Posting a File on a Web Server

	Go Back to Main Menu

	Copyright ©1998 SYBEX, Inc:
	, Alameda, CA: Copyright ©1998 SYBEX, Inc., Alameda, CA

	www:
	sybex:
	com:

