
Delphi Client/Server Suite 2.0
Open Architecture

Richard Morris
KHIRON Software PTY LTD

Borland International
July 2, 2025

Delphi Client/Server Suite 2.0 Open Architecture

I. DELPHI OPENTOOLS API...

II. COMPONENTS & CLASSES...

A. THIRD PARTY CUSTOM COMPONENTS..
B. CUSTOM COMPONENT AND PROPERTY EDITORS..

III. DATA CONNECTIVITY AND CUSTOM DATA ACCESS TECHNOLOGY.................................

IV. DELPHI EXPERTS USING THE OPEN TOOLS API..

A. CUSTOM EXPERT TECHNOLOGY AND PRODUCTIVITY TOOLS...
B. THE CASE EXPERT..

V. MICROSOFT SYSTEMS TECHNOLOGY..

VI. DEVELOPER TOOLS..

A. VERSION CONTROL SYSTEMS...
B. CASE TOOL INTEGRATION...
C. TRANSACTION PROCESSING..

VII. SUMMARY...

VIII. TECHNICAL APPENDIX..

A. EXPORTING CLASSES IN DELPHI...
B. FILE VIRTINTF.PAS...
C. FILE ISTREAMS.PAS...
D. FILE DSGNINTF.PAS - THE DESIGNER INTERFACE...
E. FILE TOOLINTF.PAS - THE TOOL INTERFACE...
F. FILE VCSINTF.PAS - THE VERSION CONTROL INTERFACE..
G. FILE FILEINTF.PAS - THE VIRTUAL FILE SYSTEM...
H. FILE EXPTINTF.PAS - THE EXPERT INTERFACE...

IX. BIBLIOGRAPHY..

2 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Delphi Overview

Since its introduction in February 1995, Borland’s Delphi Client/Server has set a new standard in high-
performance rapid application development. As a result of Delphi’s unique combination of a native code
compiler, visual two-way tools and scaleable database technology, Delphi has achieved numerous awards
worldwide and has made best seller lists around the world. Delphi has also achieved a tremendous level of
third party support including dozens of add-on libraries and compatible tools, over 30 books, a half dozen
monthly magazines and newsletters, and many training courses supported by a growing number of third
party consultants.

Borland has a forthcoming second generation 32 bit Delphi environment, known as
Delphi Client/Server Suite 2.0, for Windows NT and Windows 95. This 2.0 release incorporates several
new technologies in order to further improve the productivity of developers and the performance of
applications. The Delphi Client/Server Suite 2.0 is based on a new 32 bit optimizing native code compiler
offering three to four times greater performance than before, and a new 32 bit Borland Database Engine
with a faster, scaleable query engine. An expanded Open Tools API allows Delphi Client/Server Suite 2.0
to interface with third party tools and libraries to customize the development environment thereby
increasing overall productivity.

The Case for Integration

There is no doubt that Delphi has achieved worldwide acceptance as a leading edge development tool. It
has a unique combination of a powerful native code compiler, a scaleable and extensible database
architecture, and a flexible component development paradigm that increases productivity and increases
return on investment. However to paraphrase an old saying ‘No tool is an Island’. Corporate customers
need to be able to integrate with a variety of tools and technologies.

Delphi includes a rich suite of such tools such as an Editor, Debugger, Visual Form builder, Compiler,
Linker, Resource Builder, and Project Manager. For many projects this suite provides everything you
would need to jump right in and start developing great code.

However, more complex client/server projects in large organizations typically have differing requirements
for specialized tools. The number and variety of such tools is almost as varied as the developers and teams
who use them. They can range from custom built suites that model the organizations procedural model, to
off-the-shelf solutions from Developer tool vendors. These fulfill purposes such as CASE (Computer
aided systems engineering), Object Oriented Analysis and Design, Version Control, Code analyzers and
various software metric tools, testing and quality assurance tools, and more.

In this paper we are going to review how Delphi integrates with the latest leading edge technologies, and
‘tried-and-true’ software development tools to provide developers with an environment unparalleled in PC
software development. Delphi itself was written in Delphi, and Borland has exposed interfaces into the
environment’s internal structures, called the Open Tools API, which allow organizations to provide tight
integration with their preferred suite of tools. Finally we will see how some of the industry’s most
prominent developer tool vendors have integrated their respective technologies with Delphi. At the end of
this paper is an appendix that briefly documents the published interfaces into Delphi to give you a head
start in developing your own integration solutions.

3 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

I Delphi OpenTools API
Delphi Client / Server Suite 2.0 includes an OpenTools API that allows developers to customize
their environments with third party technologies and thereby increase their productivity. The API
includes:
· Design Interface for creating custom object property editors
· Tools Interface for generic tool integration
· Expert Interface for creation of easy to use experts
· Version Control Interface for Source Control Management in a team environment
· File Interface for custom file management

Delphi provides a well defined Open Tools API that allows developer of custom technologies to integrate
into the Delphi development environment. Delphi provides a series of interfaces so that any developer can
build their own tools in Delphi and integrate them seamlessly into the environment.

Today, vendors of custom tools for developers are capitalizing on the Open Tools API by integrating their
solutions directly into the Delphi environment. The OpenTools interface comprises: a Design Interface, a
Tools Interface, an Expert Interface, a Version Control interface, and new in Delphi Client/Server Suite
2.0, a File Interface. We shall cover them in further detail later and the Appendix covers the technical
interface more clearly.

· Delphi 2.0 CLIENT/SERVER Suite's Design Interface: The Delphi environment
pre-defines property editors for the standard components, however productivity
improvements are available by allowing developers of custom components to create
custom property editors using the Design Interface.

· The Tools Interface provides the developer an object class to be used for generic tool
integration. This class contains interfaces for project and file management, dialogs,
the Visual Component Library (VCL), and exception handling for external tools.

· The Expert Interface allows developers to easily create their own Experts (also
known as “Wizards”) which simplify or automate tasks. An expert could do almost
any task, such as importing proprietary data into the Scaleable Data Dictionary,
automatically creating forms, automatically creating application frameworks, or
generating reusable forms that are shared in the Object Repository.

· The Version Control Interface has functions that facilitate source code
management in a team environment. The Version Control Interface has been used
to integrate industry standard tools such as Intersolv PVCS, now included in Delphi
Client/Server Suite 2.0, and MKS Source Integrity. Both of these tools make use of
custom menus and project hooks in the Version Control Interface to provide easy
access to the underlying version control software's functionality which leads to
greater team development practices.

· Delphi Client/Server Suite 2.0 includes an expanded File Interface allowing
developers complete control in how they integrate with all aspects of file
management. For example, third parties can replace the traditional PC file system,
and extract Delphi project code from Databases, archive files, or third party
applications.

II Components & Classes
Delphi Client / Server Suite 2.0 incorporates an object oriented component model that allows for
maximum code reusability and maintenance.
· Developers create components from within the Delphi Environment

4 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

· A large number of Third Party custom components are readily available to provide specific
functionalities

· Specialized technology can be integrated into the Delphi Client/Server Suite 2.0 environment

Delphi empowers developers to achieve significant productivity through its Visual Development
environment. The Visual Development Environment allows a developer to simply grab a pre-built
component and drop it into an application. There are over 100 standard components that ship with Delphi
Client/Server Suite 2.0. Additionally Delphi can turn any OLE Control (OCX)into a custom component
providing open access to a growing third party market. Because Delphi is an object-oriented development
environment, it is easy to create your own custom controls or subclass OLE controls via inheritance
thereby extending the power and functionality of the environment to meet the changing business needs.

The Delphi environment manages these components through the Visual Component Library (VCL).
Developers can group their components into categories, and easily find them through the intuitive tab
interface.

Figure 1- Delphi Client/Server Suite 2.0 has a tabbed interface to an extensible palette of over 100 components

A key feature of Delphi is the ability to create new components as necessary from within the Delphi
environment instead of having to create components within another tool altogether. These new
components, through object-oriented inheritance, can be as simple as an existing component with some
added functionality, or a completely custom component that is based entirely on new code. Additionally,
Delphi has an expert to build the skeleton structure of a component with a single click. Customized
components meet the changing needs of the development team and can be reused in many different
applications thereby increasing productivity and maintainability.

Figure 2 - Delphi Component Design in action

The significance of being able to create new components in Delphi is three fold:

5 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

· Developers don't have to switch to another development environment when creating new
components.

· Delphi teams build reusable components libraries so that they can create more applications
resulting in exponential productivity growth.

· Components based application can be easily maintained.

Figure 3 - Code reuse promotes exponential productivity growth over time

A Third Party Custom Components

As a developer you want to enhance your productivity leveraging the expertise of specialists, the best
method to do this is to utilize custom component written by experts. The uses of a custom component are
as varied as the uses of a computer: from telephony to virtual reality. There are many established third
party companies building Delphi components to provide developers with specific functionalities such as
Document Image Control or access to specific external hardware.

The following table shows a few of the many Delphi specific components available from component
specialist providers . Of course there are more than 600 OLE Control (OCX) vendors that make
components that can also be incorporated directly into Delphi. Finally there are hundreds of components
available on both the Internet and CompuServe.

Product Description
ABC for Delphi Professional exception handling and error logging components.
Accounting for Delphi Accounting Components
Apiary Developers suite for Netware Native Delphi encapsulation of Netware API’s to take advantage

of Netware 4.1 features such as Auditing, Netware Directory
Services, Extended Attributes, Fileserver Environment, File
System, Messaging, Printing, Queue management etc.

App Enhancement Component Pack Series of Delphi components for enhancing screen design.
Async Professional for Delphi Asynchronous communications components
DrawKit Delphi graphic components
DynaZip Data compression toolkit.
ImageBASIC Document Imaging components (OCR, Scanners, TWAIN)

6 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

ISG Components Components for Email and Forms enabling applications.
King Calendar Professional Edition Calendar components for creating scheduling and PIM

applications.
Light Lib Business
DrawKit

Object Oriented Delphi controls for charting such as business
Graphs with drill down capability.

Light Lib Images Object Oriented Delphi controls for Image manipulation
including full scanner (TWAIN) support.

ReportPrinter Native Delphi Report components
Orpheus Components for designing validating Data entry applications with

comprehensive collection of productivity components for Delphi
ZMaster Multi-lingual drop in components for English and French

language applications

Table 1 - Sample selection of Custom components1

Almost any enabling technology can be wrapped into Delphi components, and healthy growth of the add-
on component market is testimony to: a) demands by the market place for component based solutions and
b) demands for integrated solutions with Delphi.

B Custom Component and Property Editors

Another important feature in Delphi is its ability to customize not only the components that a developer
builds, but the context and mechanisms with which developer edits those components. Custom component
are obviously a first step toward the integration of specialized technology into Delphi projects, however in
a lot of instances it is in the editing and binding of the properties of Custom controls that significant
customization can be achieved. For example in developing with Delphi Client/Server Suite 2.0 it is a
common requirement to build complex SQL (Structured Query Language) definitions to access data from
Remote servers. Borland has included technology called the Visual Query Builder (VQB) from Integra to
allow a developer to visually customize the SQL statement property of a Query component (Figure 4).

Figure 4 - The Visual Query Builder is completely integrated into Delphi Client/Server Suite 2.0

1 This is just a sample of some custom components, as there are many emerging on the market every day.
You may wish to contact your local Borland Office for the latest edition of the PowerTools catalogue
which is a more comprehensive list including contact details for these companies.

7 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

By editing the SQL property of a Delphi Query Component you have access to a powerful, custom tool for
building complex queries. Visually build complex data relationships through easy to use ‘point and click’
technology. The SQL code (Figure 5) is automatically put into the SQL property of our Query component.
Without this custom component editor you would have to type that SQL code into the Components SQL
property by hand each time.

Figure 5 - SQL Code produced by the Visual Query Builder

Delphi provides developers a lot of control over how it handles custom components by allowing
developers to build their own experts to speed common development exercises and procedures. The
Design Interface which is part of the Open Tools interface of Delphi allows developers to handle how any
property is edited within the Delphi environment.

III Data Connectivity and Custom Data access technology
Delphi Client / Server Suite 2.0 allows access to data through high speed SQL Link Native
Drivers, ODBC, and through customized solutions. Data access is available for
· Native access to: Oracle, Sybase, Informix, MS SQL Server, InterBase
· ODBC access to (for example): AS400, IMS, DB2, Lotus Notes...
· Custom access to: BTrieve, Access, OLAP, OODBMS, TPM...

By using industry standards, such as SQL92 and ODBC, Delphi is able to access a broad range of data
sources. However for pure performance the Borland Database Engine incorporates high speed native SQL
Links drivers to commonly used RDBMs such as Sybase, Oracle, Informix, Microsoft SQL Server, and
InterBase.

Since the release of Delphi, a large number of data specialist companies have developed custom
technologies enabling Delphi to access a broad range of data formats, from popular PC formats such as
BTrieve to RDBMS’s, OODBMS's, OLAP's, etc. There are also technologies that support Transaction
Processing Architectures enabling multi-tier applications and other technologies enabling Delphi to
integrate legacy mainframe applications with new development projects.

Company Product Description
Gerald Limited AS400RemoteCommand

AS400DirectTransfer
Native Delphi VCL Components for high
performance native access to AS400 data

Brainstorm Technologies Delphi-Link for Notes Native controls to enable Delphi
Developers to build mission critical
applications using Lotus notes

AmiSys Inc. Titan Database Engine allowing developers to
access BTrieve data files natively

8 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Successware Apollo Database engine for Foxpro, Visual
dBase, and HiPerSix indexed data files

Innovative Solutions and
Technologies

OpenExchange Data import-conversion-export tools

AT&T GIS Top End TOP END is a family of open software
products that offers robust client/server
middleware services for the distributed
enterprise environment.

Digital Equipment
Corporation

ObjectBroker Digital's compliant implementation of the
Object Management Group’s (OMG)
Common Object Request Broker
specification.

Open Horizon Connection Application
Broker

Provides Delphi with the ability to
support 3-tier architectures (Transarc's
Encina, BEA System's Tuxedo)
transparently and allowing Delphi
applications to be deployed into a stable
3-tier architecture.

Attachmate QuickApp Delphi samples and technology to access
existing applications running on
mainframes, and integrate them into new
projects

Sequelink Sequelink 4.5 Enables Delphi through the BDE to
access data from RDB, DB2, AS400,
Ingres, Teradata, Adabase and other
database systems.

Table 2 - Sample selection of Custom Data access technologies2

The OLE extensions in Delphi Client/Server Suite 2.0 provide the developer with an even greater selection
of data sources including: Spreadsheets, Business Objects encapsulating complex business rules, and
Direct Access Objects. Delphi was built to simplify the process of developing flexible applications that
work with complex data requirements.

IV Delphi Experts using the Open Tools API
Delphi Client / Server Suite 2.0's Open Tools API allows developers to create experts that
automate work flow. Numerous third party vendors are also providing experts that automate the
Delphi environment. Delphi Client / Server Suite 2.0 also includes experts that:
· Create Database forms thereby increasing productivity
· Imports Case Data Repositories into the Delphi Scaleable Data Dictionary so that business

and data models can be easily used to create application solutions
· Can be shared by the team via the Object Repository.

Delphi ships with several experts (also called wizards) which automate common development tasks, such
as building components, and populating data access and display forms.

The Expert Interface allows Delphi to receive from an expert module an exported Class that has the ability
to integrate, remove and describe itself from Delphi. Experts are generally automation tools for Delphi
that create forms and applications, although an expert could do almost any task. Experts can be invoked
upon creation of a form in the Form Gallery, creation of an application in the Application Gallery, or in an
ad-hoc manner from the Help menu.

2 This is just a sample of available custom data solutions, for more current details please feel free to
contact your local Borland Office for the latest edition of the PowerTools catalogue which is a more
comprehensive list including contact details for these companies.

9 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Figure 6 -Delphi Database form Expert in action

Delphi Client/Server Suite 2.0 also includes an object repository for storing standard Dialogs, Forms, and
experts. As you can see in (Figure 6) the database form expert appears as an available form in our Object
repository (Figure 7). From this point a developer can copy, use or inherit a previously designed form
class such as an about box, or select an expert to generate a brand new form class.

Figure 7 - The Delphi new form Repository

A Custom Expert Technology and Productivity tools

There are a number of useful Expert based solutions commercially available for Delphi including a
number of installation experts that automate the production of deployment builds and Install disks for
Delphi applications. Such products include InstallShield from Stirling Technologies, Eschalon Setup Pro
from Eschalon Development Inc., and WISE Install from Great Lakes Software.

Product Description
Conversion Assistant Automate Conversion of Visual Basic projects to Delphi
Component Create Tools for designing and creating new customized native components.
Eschalon Setup Pro Create Installation builds including custom BDE installs

10 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Help Magician Pro Visual hypertext help builder
Multi Edit A drop-in customizable replacement for the standard Delphi code editor
The Generator Data Testing tool for generating Test data.
PC-Install Create Installation builds
PolyG111 Multi-lingual expert for creating multi-lingual applications.
Premia Codewright Drop in Code editor to extend Delphi
ReportPrinter Native Delphi Report components
SQA Test Quality Assurance testing tools for Delphi

Table 3 - Sample selection of Delphi productivity tools3

The technical appendix to this paper summarizes the documented interfaces used to build such Expert
tools.

B The CASE Expert
Borland’s Research & Development teams are continually developing custom expert solutions for
upcoming releases of Delphi. We have seen examples of these in the Dialogs, and Database experts
shipping with Delphi, and Resource Expert (available in the Delphi RAD pack) which allows Developers
to import complex Dialogs from other Windows Development environments such as C++. In this section
we shall look at the CASE expert built into Delphi Client/Server Suite 2.0.

Historically the best practices of complex system design have been automated in CASE tools, allowing
systems developers to design classes and interactions, to be coded in their implementation environment.
Development teams that are considering large scale systems design, or currently have an investment in
CASE expertise will want to consider carefully how they can integrate their development tool of choice
with the latest state-of-the-art CASE technologies.

Some CASE tools extend system documentation to automate the creation of code for specific development
tools. A few development tools have technologies to directly import models designed in CASE tools into
their own class repositories. The caveat is that these are traditionally static solutions for integration only
between specific versions of limited tools. The Delphi R&D Team have designed a modular open solution
to solve this issue, called the CASE Expert, that allows information from a CASE model to be imported
directly into the Delphi Scaleable Data Dictionary.

The CASE expert uses the Open Tools API to provide an interface to allow classes to be imported from
custom environments into the Delphi environment. This expert works by allowing the developer to select
from a number of CASE tool specific modules (Figure 8), and then to select from projects modeled within
those CASE tools, and finally to choose an integration strategy for importing those models into Delphi.
This solution gives developers the flexibility to choose the CASE technology that allows them to achieve
the highest productivity, and be assured of continued integration support from their CASE tool of choose.

3 This is just a sample of Delphi productivity tools available today. You may wish to contact your local
Borland Office for the latest edition of the PowerTools catalogue which is a more comprehensive list
including contact details for these companies.

11 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Figure 8 - CASE Methodologies integrated in Delphi Client/Server Suite 2.0 by an Expert

With the Client/Server version of Delphi 2.0, Borland has built integration modules for a number of well
respected CASE tools such as LBMS Systems Engineer, Popkin System Architect, Sybase S-Designor and
CSA SilverRun. Because of it’s open and modular architecture further integration with other tools can be
added later on.

V Microsoft systems technology
Delphi Client / Server Suite 2.0 supports Microsoft systems technology so that applications can
easily integrate with desktop suites, access varying data sources and offer the highest performing
applications. Delphi supports systems standards such as
· OLE Clients, OLE Servers, Remote Automation
· OLE Controls, OLE Containers
· ODBC
· Threading
· COM

An important advantages of Delphi is that it fully supports Microsoft standards. Delphi Client/Server
Suite 2.0 is a Windows95 and NT logo application that allows developers to create logo applications
passing all of the stringent requirements set down by Microsoft.

Delphi has classes for embedding Microsoft OLE objects, Microsoft DDE conversations, INI files and so
on. Delphi 2.0 extends this to handle OLE Automation , both in and out-of-process servers, Windows95
component classes, the Registry, and Windows32 API for Windows NT and Windows95. Additionally
Delphi representation of classes follows the Microsoft Common Object Model (COM), allowing Delphi to
create and inherit from COM classes created in C++ such as Microsoft’s DirectX APIs for low level
hardware interaction.

12 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Delphi Client/Server Suite 2.0 can encapsulate any OLE Control (OCX) by automatically generating a
Delphi object wrapper The example (Figure 9) shows a simple Internet Browser created by dropping an
HTML OCX component on a form.

Figure 9 - Sample OCX component in Delphi 2.0

Delphi supports both the Common Object Model (COM) and OLE. Delphi allows the developer to handle
both the controller and server side of OLE automation and is fully compatible with the forthcoming
Network OLE technology, as well as Visual Basic 4.0's Remote Automation technology. This means
Delphi will build native compiled applications on both ends of a network OLE link, allowing high
performance application partitioning for mission critical applications.

By adhering closely to operating system standards, developers are guaranteed that Delphi will remain on
the leading edge of development technologies, providing them a stable foundation for productive
development in any office application environment.

VI Developer tools
Delphi Client / Server Suite 2.0 provides solutions from design through deployment.
· CASE and OOAD tools increase design capabilities and work specifically with Delphi
· Version Control tools enable team development and reduces development chaos
· Transaction Process Monitors allow for high volume client server applications.

To gain a better understanding of the Integration development occurring in the Industry today we shall
look at tool integration and some specific tools that will probably be of more interest to teams in large
organizations. These technologies are VCS (Version Control and Configuration management), CASE
tools (Computer Aided Software Engineering), and Transaction Processing.

A Version Control Systems

13 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Delphi Client/Server Suite 2.0 includes source code control with Intersolv's PVCS Version Manager to
allow a team of developers to work most efficiently. Check In / Check Out capabilities supplemented with
Visual Differencing, Reporting, and Archive management assists in the development of deployable
applications. PVCS, the industry leading source code control and configuration management software,
helps large teams of developers work together and reduce development "chaos." This in turn reduces
errors and brings product to market more quickly and more profitably..

We examine the VCS interface, and two commercial VCS products that have been integrated into Delphi:
PVCS from Intersolv and Source Integrity from Mortice Kern System.

Company Product Description
Intersolv PVCS Integration built by Borland and included

with Delphi Client/Server Suite 2.0
Mortice Kern Systems Source Integrity Integration built by MKS into Source

Integrity, using Open Tools API

Table 4 - Version Control solutions

Figure 10 - Intersolv PVCS technology is included in Delphi Client/Server Suite 2.0

The Borland and Intersolv R&D teams built an interface to PVCS directly from within Delphi and
documented the Interface as the VCS management portion of the OpenTools API. You can see (Figure
10) the Delphi menu Item called Workgroups which surfaces the ability to put and get forms and code,
and the ability to mark and retrieve version information.

14 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Figure 11 - Easy to use Delphi Interface to powerful Source Code Management functionality

With the release of Delphi Client/Server Suite 2.0, Borland's engineers have again raised the productivity
bar to provide a hierarchical project management tool (Figure 11), tighter integration and better control of
the version control repository.

The MKS Source Integrity interface was created by Mortice Kern themselves, and ships with their
Product. Again you can see (Figure 12) that they have used the menu integration to add a Source Integrity
menu item which surfaces the ability to check in and out individual files and projects from the archive, and
run the Source Integrity Management tools.

Figure 12 - Montage showing features of MKS Version control Interface

15 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

B Case tool integration

CASE Tools allow Analyst/Programmers to automate the creation of Code based on Conceptual schema.
The Models used vary depending on the category of CASE tools, for example there are those that create
Data Models and Business rules based on Entity relationship diagrams, State Transitions and other models
of defining information flow, OO (Object Oriented) Case tools Automate the creation of Classes and
interactions directly from a graphical representation of Classes, Relationships, and responsibilities from
Industry Modeling standard such as the Booch93 , OMT (Rumbaugh) or Coad Object models.

We’ve already discussed the CASE expert in Delphi Client/Server Suite 2.0 that offers a customizable
modular technology for integrating a number of CASE tools, as well there are a number of CASE vendors
who have native support for the Delphi language and it’s Data sources (Table 5 - CASE integration).

Company Product Description
Rational Rational Rose A forthcoming edition of this product of

Grady Booch and James Rumbaugh will
be integrated with Delphi.

Popkin System Architect Popkin are converting their product to
generate InterBase schema. Borland
have built a CASE expert integration
module for these modules.

CSA SilverRun Business process application
development and Database design CASE
tool (Delphi and InterBase support).
Integration module within the Delphi 2.0
CASE expert.

LBMS Systems Engineer Integration module within the Delphi 2.0
CASE expert.

SDP (Sybase) S-Designor Integration module within the Delphi 2.0
CASE expert.

Asymetrix InfoModeller Windows based data modeler, can
generate data schema for Delphi.

Logic Works ErWin Windows based ER modeler, can
generate data schema for Delphi.

Cadet CADET Custom built Delphi specific CASE tool
built using Delphi.

Micro Gold software WithClass Generic CASE tool supports C++,
SmallTalk and Delphi Class creation.

Other Custom in-house CASE
tools.

Delphi’s Open Tools API and CASE
Expert allows developers to extend
Delphi to work with any custom CASE
technology

Table 5 - CASE integration4

One of the most complex issue involved with CASE tools is the ability of the CASE tool to reverse
engineer the native source back into the systems own model. There are several good data modeling CASE
tools that do reverse engineer the respective databases structures that Delphi is capable of accessing
(Oracle, Sybase, SQL Server, Informix, dBase, Paradox). Reverse engineering the actual Delphi classes
into an OO Model is expected in the future. However for new projects, generating classes from a CASE

4 For more current details please feel free to contact your local Borland Office for the latest edition of the
PowerTools catalogue which is a more comprehensive list

16 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

tool that are then sub-classed to enter the application allows the CASE tool to be reused iteratively within
the development cycle.

Popkin Software have announced SA/Delphi link to allow Delphi to utilize System Architects Object
Repository technology to store data elements, entities/tables and entire Delphi forms. This is a precursor
to an upcoming version that will be able to maintain complete program logic.

Figure 13 - With Class 2.5 using Coad-Yourdon Object Model

WithClass a CASE tool (Figure 13) currently fully supports the Delphi language to produce complete
Delphi classes from OMT, Booch, Schlaer-Mellor, or Coad-Yourdon OO modeling. The model shown is
using Coad-Yourdon, the code output for the passenger class is shown (Figure 14).

17 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Figure 14 - OOAD Tools like WithClass 2.5 create Delphi Objects.

C Transaction Processing

Most SQL Servers provide a level of transaction control that allows the developer to guarantee that either
an entire database transaction against the server completes, or is rolled back in it’s entirety. Transaction
Processing tools enable the developer to manage successful commit or rollback of entire transactions
beyond the server to heterogeneous multi server environments and are very important going forward with
multi-tier client/server environments.

Company Product Description
BEA Systems Tuxedo Delphi solutions for transaction

processing.
Transarc ENCINA See Open Horizons Connection product.
Open Horizon Connection Provides a native connection to Transarc

ENCINA transaction processing
architecture (DCE) allowing Delphi
applications to be deployed into a stable
3-tier architecture.

Other Custom TP technology Delphi’s data classes have transaction
support in-built, with hooks in the
Database class to enable extensions to
any custom transaction monitor.

Table 6 - Transaction Processing systems

ENCINA from Transarc is such a system, based on DCE (Distributed Computing Environment) RPC
(Remote Procedure Calls) and it offers transactional control to any XA standard compliant device
including RDBMS’s, Mainframe applications (IDMS, ISAM, etc.) and hardware devices that support the

18 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

XA standard. Delphi can currently integrate with ENCINA through Open Horizon’s Connection ODBC
product, which enables Delphi to use the BDEs ODBC (Open DataBase Connectivity) interface.

Another product in this category is Tuxedo from BEA Systems, which is also XA compliant. It provides a
similar transactional semantic, however it relies on a propriety call interface.

Additionally Delphi Client/Server Suite 2.0 has added a new Data Module Object type to facilitate the
separation of application logic (business rules) from data presentation and data access.5 This allows
developers to logically partition applications into a multi-tiered design within the visual environment while
improving reuse and maintenance. As Delphi can directly call RPC (Remote Procedure Call) interfaces,
such as DCE or the forthcoming Network OLE, partitioning can be physically separated at any tier
boundary. Delphi Client / Server Suite 2.0's support for OLE and remote automation also enables physical
partitioning of business logic.

VII Summary

Delphi is a high performance visual client/server development tool for Windows. Backed by over 10 years
of solid native code compiler experience, Delphi is the first product to combine a state of the art compiler
with visual development and scaleable database technology in a robust object-oriented environment.
Unlike any other development tool currently available, Delphi provides much-needed rapid development
support for production-quality client/ server and Windows applications with an Open Tools API to
integrate with third party technologies.

Over a quarter of a million developers world-wide are today using Delphi to produce a diverse range of
solutions such as integrated applications on the Information superhighway, secure funds transfer systems,
multi-media publishing, and line of business solutions by some of the world’s leading IS departments.

Delphi customers include such organizations as Alcatel, Arthur Anderson, BMW, BP Shipping, Bank of
America, BBC Television, British Telecom, City of Los Angeles, Conoco, DHL, Fiat, First National Bank
of Chicago, KPMG, Mercury Communications, SwissBank SG Warburg, Unibank and many others.
Delphi and Delphi Client/Server are being used for a broad range of applications that demand rapid
application development and high performance.

With it’s Open Tools API Borland fulfills its commitment to developers world-wide to provide state-of-
the-art technology integrated tightly within the Delphi environment. By publishing comprehensive
integration interfaces and utilizing industry standards like OLE and Intersolv PVCS Delphi provides
developers with productive and powerful tools for the future. Delphi offers the fastest way to the fastest
applications today, and a healthy future is assured with further development both by Borland, and third
party tool vendors.

5 See Delphi 2.0 Client Server Database Architecture white paper for more information.

19 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

VIII Technical Appendix

A Exporting classes in Delphi

Let’s look at how Delphi passes fully functional Objects to DLL’s and uses Objects from DLL’s in it’s
internal functioning.

Firstly an ancestor class of the class you want to transfer is defined and will be the published interface
available to both modules. This base class must define all the methods to be called across the DLL
boundary. Each method must be defined as a Virtual function to allow a descendant class to override the
function. Each method is also defined as an export function allowing special entry and exit code to be
created for the function just as if were a standard DLL export clause. This class type is often called a pure
virtual base class.

The DLL defines a function that returns an instance of our base class, the executable (in this case Delphi)
calls that function, but the DLL actually passes back a pointer to it’s functional subclass. The executable
now proceeds to call the virtual function by the standard virtual mechanism, i.e. offsets into the VM Table
passed in the first 4 bytes of the Object. However this is a VMT built in a totally different module with far
calls directly into that modules implementations of the overridden functions, so the object code to call that
routine calls a routine in the DLL. The only difficult bit in Delphi 1.0 is to protect Exceptions crossing the
boundary. As is the case with normal DLL functions, stack unwinding across the boundary will cause
serious problems, so it is imperative to put exception traps around all exported method implementations.
This is not necessary in Delphi 2.0 as exceptions are raised as system exceptions and thus may pass the
DLL boundary.

B File VIRTINTF.PAS

1 Function ReleaseException - exception protection
This function removes the current exception object from the exception stack and return it’s message string,
in Delphi 2.0 this function is kept for backward compatibility, but does not modify the exception stack.

2 Class tInterface - the ancestor of all interface classes
The first virtual exportable Class is used as a base type for all of the other classes, it is called tInterface.
Its is a simple class that defines a function to report the descendants version and redefines the free method
to call an exported virtual release method, thus allowing classes to be disposed externally. Delphi
Client/Server Suite 2.0 adds the ability to maintain a reference count allowing the class to be referenced
from many places and only destructed by the last location interested.

Method Version Function
function AddRef: Longint; 2.0 Increments and returns internal reference count
function Release: Longint; 1.0 Used to destruct remote class (Delphi 2.0 will decrement the refference count and dedestruct

the last instance)
function GetVersion: Integer; 1.0 Return interface version (Default = 0 for Delphi 1.0, 2 for Delphi 2.0)

Table 7 - Virtual methods for tInterface

3 Class TIStream - File handling from External modules
This type is a descendant of Tinterface that defines an interface for passing Streams to external modules,
the useable stream classes are in Istreams.pas. The TIStream defines the exported core stream input and
output routines to talk to Interface streams declared in IStreams. OpenTools defines these to allow in
memory streams of unsaved project files to be accessed from tool routines.

20 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

Method Version Function
function Read(var Buffer; Count: Longint): Longint; 1.0 Try to read Count characters into Buffer, and return the number of Characters actually read

from the stream.
function Write(const Buffer; Count: Longint):
Longint;

1.0 Try to write Count characters from Buffer, and return the number of Characters actually written
to the stream.

function Seek(Offset: Longint; Origin: Word):
Longint;

1.0 Seeks to a location in the stream. If Origin is 0, the new position is Offset (seek absolute). If
Origin is 1, the new position is Position + Offset (seek relative). If Origin is 2, the new position
is Size + Offset (seek absolute from end of data). Seek returns the new position, relative to the
beginning of the stream.

function GetModifyTime: Longint; 1.0 Returns the files date and time (returns 0 when attached to a tIMemoryStream, when attached
to a tIFileStream returns the date when a file was created or last modified in DOS internal
format.)

procedure SetModifyTime(Time: Longint); 2.0 Sets the file date/time when attached to a tIFileStream.

Table 8 - Virtual methods for tIStream

C File ISTREAMS.PAS
The Istreams unit contains definitions for two subclasses the tiMemoryStream and the tiFileStream which
contain a physical stream (tMemoryStream and tFileSTream respectively). These stream holders are
exported across the DLL boundary to a module that passes them to the constructor of a tVirtualStream.
The module that contains the tVirtualStream can then access the stream as if it were a local file or memory
stream, the actual stream being in a foreign module.

1 Const ExceptionHandler: TExceptionHandler
This method pointer points to a local exception handler for handling streaming exceptions.

2 Class tIMemoryStream and tIFileStream - Stream exporters
These two subclasses are exported as the tiStream base class, into the using module where they are then
passed in to the constructor of a tVirtualStream. The interface file stream is constructed by passing it a file
name and the mode to open it. The interface memory stream is constructed by passing it a pointer to
another Stream, or nil for the object to construct one from scratch and remove it when finished.

3 Class TVirtualStream - File handling from External modules
The tVirtualStream is a subclass of a tStream, and can be accessed in the calling Module.

Method Version Function
constructor Create(AIStream: TIStream); 1.0 Passed a tIStream will instruct all stream access routines to call across the interface into the

stream interface exporting module.
function Read(var Buffer; Count: Longint): Longint; 1.0 Calls Read function of tIStream in foreign module.
function Write(const Buffer; Count: Longint):
Longint;

1.0 Calls Write function of tIStream in foreign module.

function Seek(Offset: Longint; Origin: Word):
Longint;

1.0 Calls Seek function of tIStream in foreign module.

function GetModifyTime: Longint; 1.0 Calls GetModifyTime function of tIStream in foreign module.
Procedure SetModifyTime(Time: Longint); 2.0 Calls SetModifyTime function of tIStream in foreign module.

Table 9 - Virtual methods for tVirtualStream

D File DSGNINTF.PAS - The Designer Interface
Dsgnintf defines a series of classes descending from tDesigner that are called by Delphi to edit component
properties. The mechanism for creating a custom property designer is not trivial, and is covered in depth
in the Delphi technical manuals, and well documented in the file DSGNINTF.PAS in the VCL source, so I
shall show how the designers are exported from the component library COMPLIB.

A designer is created by subclassing the generic tPropertyEditor class, which defines a number of
functions for setting and getting properties, defining sub-properties (i.e.: tFont), defining the style of
editing (Dialogs, DropDown List, Simple, Read Only, and multi Component selectable). Once a
tPropertyEditor subclass has been defined in a unit with the necessary information to define it’s editing
parameters, that unit is added to the Component Library through the Options|Install function.

21 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

There is one other exported definition needed by COMPLIB to create an instance of that editor upon
request , it needs a procedure in the unit called Register (Called in the same way as the register routine for
Components). That function has to call the function RegisterPropertyEditor passing the type of the
Property, the Component Class or Descendants that the editor will apply to, the name of the property, and
the Class of the Editor. The component library then creates a list indexed on the definitions to create the
appropriate Editor whenever the Object Inspector requests an editor for a property.

E File TOOLINTF.PAS - the Tool Interface
The tiToolServices Object is one of the key exported objects in the OpenTools API, it is essentially a class
exported from Delphi to external modules to allow them to take control of the Delphi environment. It is a
subclass of the basic tInterface class, and contains exported virtual function to provide Project and File
Management routines, Dialogs for non Delphi DLL’s, a Component Library interface, and a routine to
access Delphis standard exception handler. The Tool services object is created on the application side, and
passed to the VCS/Expert Manager DLL during initialization. Note: The application is responsible for
creating and freeing the interface object, and the client should never free the interface.

1 Class tToolServices - Actions
These routines allow the module passed the tIToolServices class to instruct the Delphi IDE to load and
close files, projects, and forms.

Method Version Function
function CloseProject: Boolean; 1.0 returns True if no project open, or if the currently open project can be closed.
function OpenProject(const ProjName: string):
Boolean;

1.0 returns True if the named project can be opened. Pass an empty string to create a new project
and main form.

function OpenProjectInfo(const ProjName: string):
Boolean;

1.0 returns True if the named project file can be opened. This routine bypasses all the normal
project load features (such as loading a desktop file, showing the source code, etc), and simply
opens the .DPJ and .OPT files.

function SaveProject: Boolean; 1.0 returns True if the project is unmodified, if there is no project open, or if the open project can be
saved.

function CloseFile(const FileName: string): Boolean; 1.0 returns True if the specified file is not currently open, or if it can be closed.
function SaveFile(const FileName: string): Boolean; 1.0 returns True if the specified file is successfully saved as FileName.
function OpenFile(const FileName: string): Boolean; 1.0 returns True if the specified file is already open or can be opened.
function ReloadFile(const FileName: string):
Boolean;

1.0 returns True if the file is already open and was reloaded from disk. (NOTE: This will not
perform any checking of the current editor state).

Function ModalDialogBox(Instance: THandle;
TemplateName: PChar; WndParent: HWnd;
DialogFunc: TFarProc; InitParam: LongInt): Integer;

1.0 used by non-VCL DLL's to present a dialog box which is modal. Note that DLLs written using
VCL can simply call a form's ShowModal function.

function CreateModule(const ModuleName:
string;Source, Form: TIStream; CreateFlags:
TcreateModuleFlags): Boolean;

1.0 Will create new module from memory images of the source and, optionally, the form file. The
CreateModuleFlags are:
cmAddToProject Add the new module to the currently open project.
CmShowSource Show the source file in the top-most editor window.
CmShowForm If a form is created, show it above the source.
CmUnNamed Will mark the module as unnamed which will cause the SaveAs

dialog to show the first time the user attempts to save the file.
CmNewUnit Creates a new unit and adds it to the current project. NOTE: all

other parameters are ignored.
CmNewForm Creates a new form and adds it to the current project. NOTE: all

other parameters are ignored.
CmNewModel Creates a new Data Model and adds it to the current project.

NOTE: all other parameters are ignored.
CmMainForm If the module includes a form, make it the main form of the

currently open project. Only valid with the cmAddToProject
option.

CmMarkModified Will insure that the new module is marked as modified.
CmExisting Will Create a module from an existing file on disk

function CreateModuleEx(const ModuleName,
FormName, AncestorClass,FileSystem: string;
Source, Form: TIStream;CreateFlags:
TCreateModuleFlags): TIModuleInterface;

2.0 New extended form of CreateModule. This will return a
TIModuleInterface. All CreateModes from CreateModule are supported with only the following
differences:
cmExisting Will create an existing module from the given file system.
AncestorClass This must specify an existing base class in the project (use the

cmAddToProject flag to add a module to the project first).
NOTES: Pass an empty string for the file system parameter in order to use the default file
system. The file system parameter *must* be a valid file system previously registered through
the RegisiterFilesystem API.

Table 10 - Virtual Action methods for tIToolServices.

2 Class tToolServices - Informational Services
These routines allow the module passed the tIToolServices class to query the Delphi IDE about the state of
the projects, files and forms it has loaded.

Method Version Function
function GetParentHandle: HWND; 1.0 returns a HWND, which should be used as the parent for any windows created by the client.

22 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

function GetProjectName: string; 1.0 returns a fully qualified path name of the currently open project file, or an empty string if no
project is open.

function GetUnitCount: Integer; 1.0 returns the current number of units belonging to the project.
function GetUnitName(Index: Integer): string; 1.0 returns a fully qualified name of the specified unit.
function GetFormCount: Integer; 1.0 returns the current number of forms belonging to the

project.
function GetFormName(Index: Integer): string; 1.0 returns a fully qualified name of the specified form

file.
function GetCurrentFile: string; 1.0 returns a fully qualified name of the current file,

which could either be a form or unit (.PAS).
Returns a blank string if no file is currently selected.

function IsFileOpen(const FileName: string):
Boolean;

1.0 returns True if the named file is currently open.

Function GetNewModuleName(var UnitIdent,
FileName: string): Boolean;

1.0 Automatically generates a valid Filename and Unit
identifier. Uses the same mechanism as used by the IDE.

Table 11 - Virtual Information methods for tIToolServices.

3 Class tToolServices - Component Library interface
These routines allow the module passed the tIToolServices class to query the Delphi IDE about the
Component library, the component installed, and the palettes they are in.

Method Version Function
function GetModuleCount: Integer; 1.0 Returns the number of currently installed modules in the

component library.
Function GetModuleName(Index: Integer): string; 1.0 Returns then name of the module given its index.
Function GetComponentCount(ModIndex: Integer):
Integer;

1.0 Returns the number of components installed in a particular module.

Function GetComponentName(ModIndex,
CompIndex: Integer): string;

1.0 Returns the name of the component given its module index and index in that module.

Table 12 - Virtual Component library methods for tIToolServices.

4 Class tToolServices - Virtual File System interfaces
These routines allow the module passed the tIToolServices class to install a custom filing system, to allow
for example Blob Storage of all project files for complex version control systems.

Method Version Function
Function RegisterFileSystem(AVirtualFileSystem:
TIVirtualFileSystem): Boolean;

2.0 Registers an externally defined file system.

Function UnRegisterFileSystem(const Ident: string):
Boolean;

2.0 UnRegisters an externally defined file system.

Function GetFileSystem(const Ident: string):
TIVirtualFileSystem;

2.0 Returns an installed external file system based on the identifier passed.

Table 13 - Virtual File system methods for tIToolServices.

F File VCSIntf.PAS - The Version Control Interface
This file defines the cooperative interface between the Delphi IDE and a VCS Manager DLL. The VCS
Manager DLL must be named in the DELPHI.INI file at startup time under the isVersionContol section, as
the value for the ivVCSManager variable (Defined as VCSManager). e.g.

[Version Control]
VCSManager=C:\DELPHI\TOOLS\RAM_VC.DLL

When the IDE loads, it will load the specified DLL and attempt to obtain an address for the DLL's
initialization function, exported by a TVCSManagerInitProc function named by VCSManagerEntryPoint.
Delphi is responsible for freeing the client object before unloading the VCS Manager DLL.

1 Function TVCSManagerInitProc - Interface builder function
A function matching this signature must be exported from the VCS Manager DLL.
tVCSManagerInitProc = function (VCSInterface: TIToolServices): TIVCSClient; Note that in this
function the Version Control manager is passed a ToolServices interface from within Delphi so that the
Version control system has full access to all modules within the Delphi IDE.

23 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

2 Class tIVCSClient - Version control
tiVCSClient has functions to create Menu items within the Delphi menu, respond to those items being
activated, check and disable menu items, and finally a Project Change notification interface so that
Version control software encapsulated by the Class can respond to new projects.
Method Version Function
function GetIDString: string; 1.0 Called at initialization. Client should return a unique identification string. ‘Borland.StdVcs’ is

reserved for Borland use.
Procedure ExecuteVerb(Index: Integer); 1.0 Called when the user selects a verb from a menu.
function GetMenuName: string; 1.0 Called to retrieve the name of the main menu item to be added to the application's menu bar.

Return a blank string to indicate no menu.
function GetVerb(Index: Integer): string; 1.0 Called to retrieve the menu text for each verb. A verb may be returned as a blank string to

create a seperator bar.
function GetVerbCount: Integer; 1.0 Called to determine the number of available verbs. This

function will not be called if the GetMenuName function
returns a blank string (indicating no menu).

function GetVerbState(Index: Integer): Word; 1.0 Called to determine the state of a particular verb. The return value is a bit field of various states.
VsEnabled Verb enabled if set, otherwise disabled
vsChecked Verb checked if set, otherwise cleared

procedure ProjectChange; 1.0 Called when there is any state change of the current project, i.e. when a project is destroyed or
created.

Table 14 - Virtual methods for tIVCSClient.

G File FileIntf.PAS - The Virtual File System
This is the definition of the IDE's virtual file system. An expert, VCS manager, property editor, or
component editor can register a new file system interface with the IDE. This allows for re-vectoring of
file operations to the editor and form/data model designer. The way to specify an alternate file system for
a file, is to open it through the Tools API (ToolIntf.pas). The default file system will always be used by
the IDE except in the case mentioned above.

1 Class TIVirtualFileSystem - Virtual storage class
All references to the term "file" depend on how it is defined by the file system. The "file" could be a
Memo Blob field, SQL text, etc... A file system instance must provide the following;
Method Version Function
function GetFileStream(const FileName: TFileName;
Mode: Integer): TIStream;

2.0 This is the core of the file system. The file system must return an instance of a TIStream for
reading/writing according to the Mode.

function FileAge(const FileName: TFileName):
Longint;

2.0 This should return long value corresponding to the DOS file date format.

function RenameFile(const OldName, NewName:
TFileName): Boolean;

2.0 Returns True if the file system was able to rename the file.

function IsReadonly(const FileName: TFileName):
Boolean;

2.0 Return True if the given file is read only.

function IsFileBased: Boolean; virtual; export;
abstract;

2.0 Return True if the file system closely matches the OS file system. If this is False, certain
operations are not performed.

function DeleteFile(const FileName: TFileName):
Boolean;

2.0 Return True is the file was successfully deleted.

function FileExists(const FileName: TFileName):
Boolean;

2.0 Return True if the specified file exists in this file system.

function GetTempFileName(const FileName:
TFileName): TFileName;

2.0 Returns a Temporary file name based on the name given.

function GetBackupFileName(const FileName:
TFileName): TFileName;

2.0 Returns a backup file name based on the name given. By convention, the extension is shifted
one character to the right and a tilde '~' character is inserted. (eg unit1.pas -> unit1.~pa).

function GetIDString: string; 2.0 Returns a unique ID string used to identify the file system. By conventions this string should be
in the form <Vendor or Product>.<FileSystemName>. (eg. Borland.SQLFileSystem).

Table 15 - Virtual methods for TIVirtualFileSystem.

H File ExptIntf.PAS - The Expert Interface
The final class interface is the expert interface, which is documented by example in the ExptDemo
application shipping with Delphi Client/Server samples. An expert can be loaded in two ways, in an
external DLL module using a similar interface to the VCS interface, or as a Library Expert. The
advantage of the later method is that an expert compiled into the COMPLIB has complete access to
instances of all registered classes, making it possible to create complex experts.
Method Version Function
function GetName: string; 1.0 REQUIRED. This must return a unique descriptive name identifying this expert.
function GetComment: string; 1.0 REQUIRED if style is esForm or es Project. This should return a 1 - 2 sentence describing the

function of this expert.
function GetGlyph: HBITMAP; 1.0 REQUIRED if style is esForm or esProject. This should return a handle to a bitmap to be

displayed in the form or project list boxes or dialogs. This bitmap should be 60x40 pixels.
function GetStyle: TExpertStyle; 1.0 REQUIRED. Returns one of three possible values:

esStandard Tells the IDE to treat the interface to this expert as a menu item on the Help
menu.

EsForm Tells the IDE to treat this expert interface in a fashion similar to form templates.

24 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

EsProject Tells the IDE to treat this interface in a fashion similar to project templates.
function GetState: TExpertState; 1.0 REQUIRED. If the style is esStandard, esChecked will cause the menu to display a checkmark.

NOTE: This function is called each time the expert is shown in a menu or listbox in order to
determine how it should be displayed.

function GetIDString: string; 1.0 REQUIRED. This ID string should be unique to all experts that could be installed. By
convention, the format of the string is: CompanyName.ExpertFunction, eg.
Borland.WidgetExpert

function GetMenuText: string; 1.0 REQURED if style is esStandard. This should return the actual text to display for the menu
item. NOTE: This function is called each time the parent menu is pulled-down, so it is possible
to provide context sensitive text.

function GetMenuText: string; 1.0 REQUIRED. Called whenever this expert is invoked via the menu, form gallery dialog, or
project gallery dialog. The style will determine how the expert was invoked.

Table 16 - Virtual methods for tIExpert.

You can load an expert as a DLL by registering it in the Delphi.ini file or Registry (Window 3.x and
Windows95 respectively) in the experts section;

[Experts]
ExptDemo=D:\BORLAND\DELPHI\BIN\EXPTDEMO.DLL

You will need to make a DLL that exports a function with a name defined in ExpertEntryPoint
('INITEXPERT0012') of the prototype TExpertInitProc = function(ToolServices: TIToolServices;
RegisterProc: TExpertRegisterProc; var Terminate: TExpertTerminateProc): Boolean; Note that the
Function is passed the same TToolServices class passed to a Version Control Manager DLL. It is also
passed a Registration and Termination routines. The Registration routine is passed a constructed Expert
which will be a subclass of TIExpert. A Library Expert is instantiated in COMPLIB and registered
through the RegisterLibraryExpert function in a similar manner to the registration of a component. The
expert has access to tToolServices from an instance in the ExptIntf unit.

25 Borland Confidential

Delphi Client/Server Suite 2.0 Open Architecture

IX Bibliography

‘The Delphi Open Tools Interface’
Richard Morris, KHIRON Software
Borland Developers Conference, SAN DIEGO August 1995

‘Team Development with Delphi’
Brian Slatner, Turbo Power Software
Borland Developers Conference, SAN DIEGO August 1995

‘An Overview of the 32 Bit Delphi Compiler for Win 95 and NT’
Zack Urlocker, Borland International
Borland Developers Conference, SAN DIEGO August 1995

‘Rapid Application Development with Delphi’
Diane Rogers, Borland International
Borland Developers Conference, SAN DIEGO August 1995

26 Borland Confidential

	I Delphi OpenTools API
	II Components & Classes
	A Third Party Custom Components
	B Custom Component and Property Editors

	III Data Connectivity and Custom Data access technology
	IV Delphi Experts using the Open Tools API
	A Custom Expert Technology and Productivity tools
	B The CASE Expert

	V Microsoft systems technology
	VI Developer tools
	A Version Control Systems
	B Case tool integration
	C Transaction Processing

	VII Summary
	VIII Technical Appendix
	A Exporting classes in Delphi
	B File VIRTINTF.PAS
	1 Function ReleaseException - exception protection
	2 Class tInterface - the ancestor of all interface classes
	3 Class TIStream - File handling from External modules

	C File ISTREAMS.PAS
	1 Const ExceptionHandler: TExceptionHandler
	2 Class tIMemoryStream and tIFileStream - Stream exporters
	3 Class TVirtualStream - File handling from External modules

	D File DSGNINTF.PAS - The Designer Interface
	E File TOOLINTF.PAS - the Tool Interface
	1 Class tToolServices - Actions
	2 Class tToolServices - Informational Services
	3 Class tToolServices - Component Library interface
	4 Class tToolServices - Virtual File System interfaces

	F File VCSIntf.PAS - The Version Control Interface
	1 Function TVCSManagerInitProc - Interface builder function
	2 Class tIVCSClient - Version control

	G File FileIntf.PAS - The Virtual File System
	1 Class TIVirtualFileSystem - Virtual storage class

	H File ExptIntf.PAS - The Expert Interface

	IX Bibliography

