Chapter 7
Inheritance and Subclassing

Objective
In this lesson, you will learn how and when to use inheritance to
customize the behavior of objects in your application. You will see
how CA-Visual Objects uses inheritance to deliver a powerful
development environment and, consequently, you will gain an
appreciation for the benefits of subclassing and code reuse.
Overview

Inheritance is one of the fundamental principles of object-oriented
programming. It allows you to specify new classes in terms of
existing ones. The new class inherits all of the attribunssafice
variableg and behaviorrfiethod} of the existing class and allows you
to add any distinguishing features that are needed.

Subclass, Superclass, When a class inherits from another class, it is said todubaasof
and Parent that class. Asuperclasss any of the classes from which a class
derives its behavior, and tiparentis the immediate superclass.

Inheritance allows for incremental development by creating new
classes on the stable foundation of existing classes. In this way, a
great deal of code can be reused (by inheriting behavior and
characteristics), and a significant level of robustness can be easily
maintained.

South Seas Adventures 7-1

Overview

Class Tree CA-Visual Objects allows for each class to inherit from a single
parent class. This is called single inheritance. On the other hand,
each class can have as many subclasses as required. This gives rise to
a class tree, a hierarchical representation of the relationships between
classes:

Class Tree

Subclasses

Superclasses

It is easy to see that classes defined at higher levels in the class tree
are more likely to be general, and have a higher level of abstraction,
while classes defined at lower levels are more specialized.

In CA-Visual Objects, a subclass is created using the INHERIT
keyword in the CLASS statement. For example, to create a subclass
of DataWindow called EdititemWindow, you would use the following
class declaration statement:

CLASS EdititemWindow INHERIT DataWindow

EdititemWindow has all of the properties and behaviors of the
DataWindow class, plus a few of its own which you will code. One
way to look at EditltemWindow is that it iskind ofdata window.

7-2 CA-Visual Objects

Overview

When and How to
Create a Subclass

Subclassing with
Generated Code

Whenever you require special behavior, first look to see if you

already have a class that provides what you need. If one exists, use

it. However, if there is no class that does exactly what you want, but
there is one which provides the same behavior at a more basic level,
then this can be used as a parent to create a subclass with the desired
characteristics. In this way, subclassing is like specialization.

During the development of an application, you may find that a class is
too specific to be of general use. In this case, you must create a class
at a greater level of abstraction, which is more general. By doing this,
you actually remove specialized behavior and attributes from the
class, making it more generic. It should now be possible to create
various subclasseseach with its own area of specializatioto fill

the required roles. As you can see, this provides you with a very
powerful and flexible development environment.

The visual editors in CA-Visual Objects, such as the Window Editor
and the Menu Editor, generate source code for your application. If
you examine the code created by these editors, you will notice that
inheritance is used to define a new class for your purposes.

For example, the Window Editor generates a new window class
definition in terms of an existing window class. This empowers the
visual editors with a greater degree of flexibility, and ensures that
your application will be consistent and robust.

Each time you edit a binary entity, by saving the current design in one
of the visual editors, CA-Visual Objects regenerates any required class
definitions and supporting entities. For this reason, you shmvdr
modify the generated code directly, since it will be overwritten by the
regenerated code from the editor.

South Seas Adventures 7-3

Overview

If you wish to customize the behavior of the generated class or the
supporting entities, create a subclass based on the class created by
CA-Visual Objects, as shown in the diagram below. Any specialized
behavior can be added to this new class. As you review and analyze
source code in the chapters to follow, you will see this technique
employed over and over again in the South Seas Adventures
application.

Visual
Editor

Generated Code
(Do not modify)

Subclass
(OK to modify)

For a more complete discussion of object-oriented programming in
CA-Visual Objects, please refer to th@bjects, Classes, and
Method$ chapter in thérogrammer’s Guide, Volume lll.

7-4 CA-Visual Objects

Exercise

Exercise

Customizing Generated
Code

1.

Open the South Seas Adventures by double-clicking on its
button in the Application Browser:

% e

South Seas

The Module Browser appears.

Open the File:Forms module by clicking on its button in the
Module Browser.

Examine the class definition created by the Window Editor by
double-clicking on the _FileOpenDialog class entity:

CLASS _FileOpenDialog INHERIT DialogWindow

PROTECT oDCtheGroupBox1 AS GroupBox

PROTECT oCCAdventureRadioButton AS ;
RadioButton

PROTECT oCCCustomerRadioButton AS RadioButton

PROTECT oCCPaymentRadioButton AS RadioButton

PROTECT oCCEmployeeRadioButton AS RadioButton

PROTECT oCClnvoiceRadioButton AS RadioButton

PROTECT oCCltemRadioButton AS RadioButton

PROTECT oCCOkButton AS PushButton

PROTECT oCCcCancelButton AS PushButton

Notice that _FileOpenDialog inherits from the DialogWindow

class. This predetermines a great deal of the window’s behavior

and characteristics.

Close the Source Code Editor by double-clicking on its system
menu.

South Seas Adventures 7-5

Exercise

The Open File dialog box, shown below, allows the user to select
which kind of file they wish to open. To make it work properly,
you will have to add a FileType instance variable that can be
inspected once the dialog box has been closed.

= Open File

Select Record Type

®]

) Customer

O paymen [O]
. Erelovee
(@] Invoice

' Item

Recall that it is never good to modify generated code, because
when CAVisual Objects needs to regenerate code based on
modifications to the underlying entity (such as the Window
entity), your source code modifications will be lost.

The best way to handle a situation like this is to create a subclass
of _FileOpenDialog in order to isolate and protect your changes.
The standard used throughout the South Seas Adventures
application is to remove the leading underscore (as in
FileOpenDialog) to create the new subclass.

Double-click on the FileOpenDialog class entity to see how the
subclass was created with the additional FileType instance
variable:

CLASS FileOpenDialog INHERIT _FileOpenDialog
EXPORT FileType AS USUAL

Close the Source Code Editor by double-clicking on its system
menu.

Close the File:Forms Entity Browser by double-clicking on its
system menu.

7-6 CA-Visual Objects

Exercise

Using Inheritance in You will want to take advantage of the power of inheritance in your
Your Programs own programs, too, not just in modifying code generated by
CA-Visual Objects.

1. Launch the Class Browser by choosing the Tools Class Browser
command.

2. Highlight the IniFileSpec class in the left panel of the Class
Browser and click the Expand button to its left to view its
subclasses.

The WinlIniFileSpec class appears below IniFileSpec in a tree-like

structure:
= A al Obje asses of So ea =
=| File Edit ¥Yiew Tools Applicati Debug Wind Help *
Bzl o Hin i=iE Sic]
@ EMPLOYEE_LAST_NAME Il = Methods =
@ EMPLOYEE_LOGON_NAME | @ Meth CREATE |
@ EMPLOYEE_PASSWORD | I @ Weth DELETEEMTRY |
@ EMPLOYEE_FHOME | @ Meth DELETESECTION |
@ EMPLOYEE_STATE_ID | @ Meth GETINT |
Class Browser @ EMPLOYEE_ZIP | @ Meth GETSECTION |
- @ EMPLOYEEBROWSER IO P @ Mets GETSTRING |
@ EMPLOYEEICON | @ Meth GETSTRINGUPPER |
@ EMPLOYEESUBFORM | @ Meth INIT |
= Q@ _FILENEWDIALOG | @ heth WRITEINT |
E Q@ _FILECPEMDIALOG | L @ Meth WRITESTRING |
&= @ _FINDDIALOG |
@ FINGERCURSOR |
E @ WININIFILESPEC |
9 INVCRPT |
O _INVCRPTDIALOG I =
- - - -
Class _FINDDIALOG (South Seas) Inherit DIALOGWINDOWY (GUI Classes)

South Seas Adventures 7-7

Exercise

The purpose of these classes is to read and write .INI files. A general
class, FileSpec, is used as a starting point. The IniFileSpec class can
read and write to any .INI file, while the WinIniFileSpec class can

only read and write to the WIN.INI file. The following class tree
results:

Class Tree

FiIeTpec The CA-Visual Objects FileSpec class

IniFileSpec Class to read and write to any .INI file

WininiFileSpec Class to read and write to WIN.INI

The source code for the classes is shown below. Notice that there are
no additional instance variables defined for these classely new
class methods.

CLASS IniFileSpec INHERIT FileSpec

CLASS WinlniFileSpec INHERIT IniFileSpec

Note: At any time, you can double-click on an item in either pane of
the Class Browser to view it in the Source Code Editor.

As is evident using the Class Browser, IniFileSpec contains ten new

methods, while WinIniFileSpec contains only six new methods. This
is because WinlniFileSpec is able to reuse some of the code already
written.

For example, each class has its own GetString() method. This is
because getting a string from the WIN.INI file requires a different
function call than getting a string from another .INI file, so the
GetString() method requires a different implementation in each class.
From the perspective of using the method, however, the syntax is
exactly the same for both classes.

However, only the IniFileSpec has a GetStringUpper() method. Does
this mean that only IniFileSpec objects can perform the
GetStringUpper() method? Certainly not!

7-8 CA-Visual Objects

Exercise

Since WinlniFileSpec inherits from the IniFileSpec class, it also
inherits all methods defined by IniFileSpec. Thus, WinlniFileSpec
objects can respond to GetStringUpper() method calls. How does this
work?

When a call is made to WinlIniFileSpec:GetStringUpper(), a method of
that name is executed if such a method exists in the current class. If
no such method is found, a search is performed upwards through the
inheritance tree for the closest superclass which contains a method
with this name. In this case, it would be IniFileSpec, as shown in the
following diagram:

GetStringUpper() - WinlniFileSpec
method call Object

Search WinlIniFileSpec class
for GetStringUpper() method

If fouy Not found

Execute() method Search inheritance tree for
superclass with GetStringUpper()
method

However, if none of the superclasses contain this method, CA-Visual
Objects generates a runtime error.

The reason the two classes can share the same GetStringUpper()
method is because of its implementation. This method simply calls
GetString(), which, although specialized for each class, maintains a
consistent user interface. Double-click on the GetStringUpper()
method to view its source code:

METHOD GetStringUpper(sSection, sEntry) ;
CLASS IniFileSpec

RETURN UPPER(SELF:GetString(sSection,
sEntry))

South Seas Adventures 7-9

Summary

Summary

How does GetStringUpper() know which method to invoke?

In CA-Visual Objects, the keyworSELFalways refers to the current
object. In a method, SELF is not necessarily of the same class as the
class to which the method belongs. This is because all subclasses of
this class may also call this method. This code is shared. In this case,
SELF may refer to either a WinIniFileSpec object or an IniFileSpec
object, and the appropriate method is called in either case.

As you have seen, inheritance is a very important and powerful feature
of object-oriented programming. CA-Visual Objects helps you make
the most of this powerful concept and allows you to quickly and easily
develop robust applications that meet your business needs.

You can now move on to the next chapter, which demonstrates how to
create menus and toolbars, which you can then add to your windows.

7-10 CA-Visual Objects

