
Getting Started 1–1

Chapter 1
Introduction

Welcome to CA-Visual Objects!

CA-Visual Objects is a fully object-oriented application development
system that allows you to quickly and easily create sophisticated
applications that run under Microsoft Windows. Its entry into the
world of application development offers new opportunities and
technology to programmers of all levels and backgrounds.

With CA-Visual Objects, you can create full-featured, “ thoroughbred”
applications that deliver everything Windows users have come to
expect, including:

■ Multiple document interfaces (MDI), with no constraints on
simultaneously opening several documents (such as databases or
text files) or the same document in several different windows

■ Event-driven operation, with no limitations on user flexibility and
control

■ Top-flight graphical appearance and full-fledged annotation,
prompting, and help

■ Support for Windows conventions and subsystems, such as the
Clipboard, drag-and-drop, and Help

All of this is achieved by bringing together the worlds of object-
oriented programming (OOP), graphical user interfaces (GUIs), visual
design tools, and traditional business languages—all in a single,
integrated desktop.

CA-Visual Objects Features

1–2 CA-Visual Objects

CA-Visual Objects Features

CA-Visual Objects has lots of exciting features designed to make the
application development process fast and easy, as well as to free you
from dealing with technical details that can hinder you from using
your time productively.

Visual Programming Tools and a Complete IDE

The integrated development environment (IDE) provides tools that
enable you to visually design the windows, menus, reports, icons, etc.,
for your applications using point-and-click, drag-and-drop techniques.
These tools let you see the result of your design as it progresses.

The IDE is an intuitive and powerful environment for creating
applications—for example, the most frequently used features of the
IDE (like Save, Build, and Execute) are available at the touch of a
button. This allows new users to start developing applications
quickly.

The IDE offers a sophisticated and powerful environment for the
advanced developer, with features that allow you to spend more time
on the business logic aspect of application development. For example,
CA-Visual Objects automatically tracks and maintains the
relationships between the various pieces of an application for you,
determining which components need to be compiled to build an
application. Things like make files and compiler and linker script
files are, therefore, obsolete.

Additionally, the IDE offers the capability of running applications
without generating an executable file (.EXE). This feature enables
fast prototyping and quick feedback when you make changes to the
application and enables you to test and debug your applications
efficiently using the debugger in the IDE.

CA-Visual Objects Features

Getting Started 1–3

After developing, testing, and debugging your application, distributing
it as a stand-alone .EXE is easy. You simply click a button to generate
an .EXE, which can be distributed royalty-free to your end users.

A Fully Object-Oriented Language

The CA-Visual Objects language is fully object-oriented. Some may
question: Why object-orientation? There are many reasons, the most
fundamental of which is that programming for event-driven, GUI
environments presents a set of challenges that are aptly met by OOP.

As you read through the CA-Visual Objects documentation (in
particular, this guide and the Programmer’s Guides), you will see how
OOP naturally lends itself to GUI environments by giving you the
capability to develop complex systems through standard, reusable
components, in a manner that models the real world.

To facilitate object-oriented programming, CA-Visual Objects
includes extensive class libraries for:

■ GUI programming

■ Database management

■ Reporting

These libraries provide very powerful building blocks for your
applications. In addition, the visual tools in the IDE exploit the
strengths of object-orientation by using these class libraries to
generate object-oriented code based on your designs.

Note: Class libraries are no different from other libraries you would
use in your applications—instead of containing functions, for
example, they contain class and method definitions.

CA-Visual Objects Features

1–4 CA-Visual Objects

The language also features a structured superset of the Xbase
language. (Xbase is the industry standard term for those programming
languages that inherit from the original dBASE system, including
CA-Clipper, CA-dBFast, dBASE III PLUS, dBASE IV, and FoxPro.)

The Xbase superset contains extensions for Windows and its
environment, including the ability to access all Windows Application
Programming Interface (API) functions for low-level, system
programming.

Open Database Access

CA-Visual Objects gives you a wide variety of choices in terms of
database access. It supports:

■ Both procedural and object-oriented access to Xbase databases

CA-Visual Objects supports the procedural database commands
and functions—like SKIP and EOF()—that are traditional to
Xbase languages.

However, it also includes an object-oriented interface to Xbase
database management. Both semantically and syntactically, the
object-oriented interface is akin to the commands and functions
traditionally used in procedural access. For example, instead of
commands like APPEND, COMMIT, and ZAP, you’ll use
methods named Append(), Commit(), and Zap() to perform the
same operation.

Note: With these new methods, all the capabilities of the
traditional Xbase approach are provided, but have been enhanced
to fit the event-driven, multi-tasking nature of GUI applications.

■ Access to both Xbase and SQL databases

When using an object-oriented approach to database management,
both Xbase and SQL databases can be accessed.

CA-Visual Objects Features

Getting Started 1–5

Furthermore, access to these two different types of databases is
accomplished using a single, compatible protocol. This allows an
application to manage Xbase and SQL databases with the same
code.

■ Several different Xbase/SQL database formats

When accessing Xbase databases (using either a procedural or
object-oriented approach), you can choose from a variety of file
formats. This is accomplished through replaceable database
driver (RDD) technology. With RDDs, a single application can
access different database file formats using a common language
interface. This allows you to tailor your applications so that
migrating from one database format to another is simple and
straightforward.

CA-Visual Objects supplies several popular RDDs, and through
its open architecture allows for development of third-party RDDs.
See the Replaceable Database Drivers section in the “Using DBF
Files” chapter in the Programmer’s Guide, Volume II for more
information about RDD technology. Also refer to the “RDD
Specifics” appendix in the same volume for detailed information
about specific RDDs.

Similarly, support for SQL databases is accomplished using Open
Database Connectivity (ODBC), a widely used API for SQL
access under Windows. This technology also uses replaceable
drivers, supplied as dynamic link libraries (DLLs), which
standardize the interface to the various database formats.
CA-Visual Objects comes bundled with DLLs for many of the
popular ODBC formats, and provides language support for a
superset of the standard ODBC API, as well as an object-oriented
interface compatible with that used for Xbase database files.

CA-Visual Objects Features

1–6 CA-Visual Objects

An Active Repository

CA-Visual Objects is a repository-based system. The repository is
where the IDE stores all application components, and it automatically
manages the relationships between the various components of an
application. For example, if you make a change to a library
component, the repository automatically marks every application with
that library in its search path, indicating that it should be rebuilt.

A Native Code, Incremental Compiler

CA-Visual Objects can compile your applications down to native
machine code. This gives you the flexibility of using OOP without
sacrificing runtime performance.

Also, to support iterative development, the compiler works with
entity-level granularity. Entities, as explained in greater detail later in
this guide, are the smallest pieces of an application (like a function or
a global variable declaration). Entity-level granularity means that
when you make a change to an application and then build the
application, the compiler determines which entities of the application
have changed (or are affected by the change), and automatically
recompiles only those pieces, as opposed to recompiling entire
modules.

Entity-level granularity is a powerful feature because it speeds
development—you spend less time waiting for your application to be
built and more time designing, enhancing, and fine-tuning.
Additionally, it makes prototyping fast and easy.

CA-Visual Objects Features

Getting Started 1–7

Reporting with CA-RET

CA-RET—the Computer Associates Report Engine Technology
program component—has been integrated with CA-Visual Objects to
provide powerful reporting capabilities for your applications.

CA-RET offers a sophisticated database publishing interface, allowing
you to design and produce custom database reports at the press of a
button. While in CA-RET, you can use its intuitive, GUI environment
to define the structure and specifications of the report. For example,
you can add fields, text, tables, and pictures to a report, and format the
various sections (like headers, footers, and titles).

An Open Architecture

CA-Visual Objects features extensible subsystems that facilitate the
integration of third-party tools within the product. It also supports a
number of powerful features that allow your applications to interact
with other applications and exchange data, as well as use routines
written in other languages, such as C, C++, Pascal, and COBOL.

For example, you can:

■ Access the functions stored in a DLL

A DLL is a library of functions in which only the interface
definitions are visible, not the source code. CA-Visual Objects
has the necessary language support (such as pointers and
structures) to access standard Windows DLLs, including the
Windows API. Additionally, not only can you use DLLs in your
applications, but you can build them in CA-Visual Objects.
Furthermore, in addition to standard DLLs, you can build special
CA-Visual Objects DLLs that can contain classes, methods, etc.

■ Use Dynamic Data Exchange (DDE) to exchange information
with other DDE-compatible applications (such as CA-RET)

■ Interface with your system’s Clipboard facility to transfer
different types of data between applications

Where to Go from Here

1–8 CA-Visual Objects

Where to Go from Here

In conclusion, CA-Visual Objects’ strength and ease-of-use offer you
great potential for developing GUI applications that run under
Windows. Its intuitive, robust language and visual development tools
simplify the complexities of GUI programming for every user, yet are
powerful enough to satisfy all development needs.

To gain a better understanding of CA-Visual Objects features and
capabilities, all users—both novice and advanced—should work
through the remainder of this Getting Started guide.

After working through this guide, you may want to go on to the IDE
User Guide, which provides more detailed information about the IDE,
especially the browsers and visual editors, editing and debugging
applications, and creating .EXEs.

To learn more about programming, read through the three volumes of
the Programmer’s Guide. Once you are more familiar with the
language, refer to the Class Reference, Function Reference, and/or
Command Reference Guides for complete information about syntax
and parameters. (Of course, at any time, you can display the online
Help reference for information about the environment and language
right on your screen as you work.)

Tip: If you are a CA-Clipper user, you may want to consult
Migrating Your CA-Clipper Programs to CA-Visual Objects for
tips and techniques on how to migrate your existing CA-Clipper
code.

In This Guide

Getting Started 1–9

In This Guide

This Getting Started guide is your introduction to CA-Visual Objects.
It contains all the information you need to get a quick and productive
start.

This guide is organized into the following chapters:

1. Introduction

2. Installing and Starting CA-Visual Objects

Provides the information you need to install and start CA-Visual
Objects.

3. Object-Oriented Programming Concepts

Intended for a person new to object-oriented programming, this
chapter describes the basic principles of OOP.

4. An Overview of the IDE

Presents an overview of some of the features of the IDE.

5. Learning the Basics

Provides a hands-on tutorial that you can work through to build a
sample MDI application.

What You Need to Know

In addition to an understanding of basic programming concepts, this
guide assumes that you are familiar with Windows terminology and
navigational techniques, including how to work with standard
Windows items like menus, dialog boxes, the Clipboard, and the
Control Panel.

If you are unfamiliar with Windows, please refer to your Windows
documentation before using CA-Visual Objects.

General Typographic Conventions

1–10 CA-Visual Objects

General Typographic Conventions

This guide also employs several typographic conventions (such as
capitalization or italic formatting) to distinguish between language
elements and discussion of them.

Key Names The names of keys, such as Enter, Ctrl, and Del, appear in the
document as they do on your keyboard, where possible.

Note that when referring to the four arrow keys as a group, they are
referred to as Direction keys; however, the name of each Direction key
(for example, Up arrow or Left arrow) is used when referring to them
individually.

Key Combinations Whenever two keys are joined together with a plus (+) sign (for
example, Ctrl+R), you should hold down the first key while pressing
the second key to complete the command. Release the second key
first.

Key Sequences When keys are separated by a comma (,), press them in the sequence
indicated. The keystroke sequence Alt+E, C, for example, indicates
that you should hold the Alt key down while pressing the E key,
release them both, and then press and release the C key.

User Input Examples The following conventions are used for user input:

■ Literal information (text that the user must enter exactly as
shown) is shown in bold:

Insert the diskette into drive A and type a:\install.

■ Placeholder text (variable information a user must enter) is
denoted by a bold and italic typeface:

Enter login username.

UPPERCASE The following appear in uppercase:

■ Commands (like CLEAR MEMORY)

■ Keywords (for example, AS, WORD, and INT)

■ Reserved words (for example, NIL, TRUE, and FALSE)

■ Constants (for example, NULL_STRING and MAX_ALLOC)

General Typographic Conventions

Getting Started 1–11

Mixed Case / Initial
Capitalization

The following are displayed using mixed case:

■ Function, method, and procedure names (like
SetDoubleClickTime() and Abs())

■ Class names (for example, TopAppWindow and DBServer)

■ Variable names (for example, oTopAppWindow and
nLoopCounter)

Italic Variable names are displayed in italic in syntax (for example,
Abs(<nValue>)) and when referring to them in the discussion text.

Cross References The following conventions are used:

■ Guide name in italic:

See the IDE User Guide.

■ Part name in single quotes:

See ‘Database Programming’ in the Programmer’s Guide, Volume
II .

■ Chapter name in double quotes:

See “Creating an Application” in the IDE User Guide.

■ Section name as it appears in the document:

Also see the Saving a Program section.

Getting Help

1–12 CA-Visual Objects

Getting Help

CA-Visual Objects provides online Help, which can be used to
display information on your console as you work. You can use any
of the following Help menu commands:

Menu Command Description

Index Displays an index of available help topics about
the CA-Visual Objects language and IDE.

Context Help Allows you to get context-sensitive help for an
item or area currently displayed on your screen.

How to Use Help Describes how to use the Windows online Help
system.

In the IDE you can also receive context-sensitive help for a menu or
menu command by pressing either the F1 key or the Shift+F1 key
combination. Press Shift+F1 to receive context-sensitive help for
most dialog boxes and windows.

Additionally, when the Source Code Editor is open, you can receive
context-sensitive help for the keywords, commands, classes, and
functions in a selected module or entity. Simply highlight the
keyword, command, class, or function and press the Shift+F1 key
combination.

