
South Seas Adventures 10–1

Chapter 10
Customizing Window Event
Handlers

Objective

This lesson discusses window objects and window event processing.
In this lesson, you will:

■ Examine several events that are often customized in CA-Visual
Objects applications

■ Customize your own window event handlers

■ Define how windows respond to different types of event messages

Overview

Events and
Event-Driven Programs

In Windows, actions—such as pressing a key and clicking a mouse—
are referred to as events. Applications written for the Windows
environment respond to these events, thus Windows applications are
considered to be event-driven.

A program performs a single task for each event it receives. Routines
must be supplied for each event. Because the order in which events
occur is unpredictable, these routines must be self-sustaining. That is,
the routine must be able to respond to the event with little or no
knowledge of what events may already have occurred or which events
may be pending. This may be seem like an impossible task, but since
the events are very well detailed, the job can be managed. This
provides a flexible and powerful programming interface.

Overview

10–2 CA-Visual Objects

In Windows, many events are generated as a result of user interaction
with your program. Key presses, mouse clicks, resizing a window,
and selecting a control are all events generated by the user.

Windows and Events Windows monitors all events in the environment and is responsible
for placing relevant event messages in a message queue for your
application. The GUI classes retrieve messages from the queue and
dispatch them to the appropriate routine in your application—an
event handler—for handling a particular event.

There is an inherent compatibility between event-driven programming
and object orientation. In an object-oriented program, messages are
sent to objects to communicate with them. In event-driven programs,
event messages are dispatched to application objects to notify them of
an event. In each case, how the message is handled is up to the object.
This natural similarity makes object-orientation an excellent
framework for developing event-driven systems.

CA-Visual Objects and
Events

CA-Visual Objects takes full advantage of this framework. When
the CA-Visual Objects dispatcher receives an event message from
Windows, it creates an event object. The dispatcher then sends a
message (invokes a method) to the appropriate window object.

The CA-Visual Objects Window classes inherit from the EventContext
class. It is through Window classes that events are propagated. They
are equipped with the necessary event-handler methods, all of which
provide default behavior.

Events and Your
Application

Although CA-Visual Objects provides default behavior, it is through
customizing these event-handler methods that your application can
really stand out in a crowd.

The event handlers provided by CA-Visual Objects are encapsulated
as methods of the Window class hierarchy. By subclassing the
appropriate window method, you can override or enhance the default
behavior.

Exercise

South Seas Adventures 10–3

In this lesson, you will examine the following list of events:

Event Name Occurs When

ButtonClick There is a mouse click on a push button, radio
button, or check box.

EditChange An edit control (such as a single or multiline
edit control) is modified.

Expose Part of the window needs repainting.

ListBoxSelect An item in a list box control (list box or
combo box) is selected.

Notify When a data window’s attached data server
sends a notification.

QueryClose A window is about to be closed.

For more information on event handlers, refer to the “Classes and
Methods” topic in the CA-Visual Objects online Help.

Exercise

Let’s now take a look at the event methods that are handled within the
NewPaymentWindow window in the South Seas Adventures
application:

1. Open the South Seas Adventures by double-clicking on its button
in the Application Browser.

2. Open the Payment:Forms module by double-clicking on its button
in the Module Browser.

Exercise

10–4 CA-Visual Objects

3. Open the NewPaymentWindow window by double-clicking on
this entity in the Entity Browser.

The Window Editor is displayed.

4. In the Data Window Properties window, scroll through the events
that are handled by the window (ActivateEvent, ButtonClick
Event, and so on).

Window
Events

If you want to customize the behavior of a window, just redefine
the event methods that you wish to change—it’s that simple.

ButtonClick,
EditChange, and
ListBoxSelect Events

A ButtonClick event occurs when any button control (radio button,
push button, or check box) is clicked.

An EditChange event occurs when any edit control (single or multiple
line) is modified.

A ListBoxSelect event occurs when an item in any list box control
(list box or combo box) is selected.

These events are all similar in nature, taking place when controls are
modified. Each of these events also share the appropriate event
handler method for all controls of the same type.

Exercise

South Seas Adventures 10–5

Creating an
EditChange() Method

Let’s add an EditChange() method to the NewPaymentWindow
window.

The new method prints the amount in word format across the payment
receipt as the amount is entered in the amount single-line edit control.

Amount in word format Amount edit control

1. Click on the EditChange Event property in the Data Window
Properties window, then click on the ellipsis button.

Ellipsis
button

This automatically launches the Source Code Editor. It also
supplies you with the base source code for your method:

METHOD EditChange(oCE) CLASS NewPaymentWindow
LOCAL oC := oCE:Control
LOCAL uValue
SUPER:EditChange(oCE)
// Put your changes here

RETURN

Exercise

10–6 CA-Visual Objects

2. Now, modify the EditChange() method as follows:

METHOD EditChange(oCE) CLASS NewPaymentWindow
LOCAL oC := oCE:Control
LOCAL uValue
SUPER:EditChange(oCE)
// Put your changes here

IF oC:NameSym == #MAmount

 oDCDollarsText:Value :=;
CWhole(Val(oDCmAmount:TextValue))

 oDCCentsText:Value :=;
CDecimal(Val(oDCmAmount:TextValue),2);

+ " /100 "
ENDIF

RETURN NIL

Note: The cWhole() and cDecimal() functions are located in the
App:Misc module.

A single parameter, oCE, is passed automatically by CA-Visual
Objects to the method. This is a ControlEvent object, which
contains information about the event that just occurred.

The control event contains the control object, for which the event
was generated, as an access method. The supplied code places the
control object into a local variable in the declaration statement, as
follows:

LOCAL oC := oCE:Control

You want to check for EditChange events which occur in the
Amount field. The Amount field, on the NewPaymentWindow
window, is named MAmount.

You can access a control’s name using its NameSym variable, as
follows:

oC:NameSym

Note: In this case, you only want to do something when the
event is for the MAmount control, therefore, enclose your code
inside an IF statement. For example:

IF oC:NameSym == #MAmount
...

ENDIF

Exercise

South Seas Adventures 10–7

If you have more than one control to handle, you can use a DO
CASE statement in its place.

If the MAmount control is modified, the following code sets the
values of the oDCDollarText and oDCCentsText fixed text
controls (see the “Adding Controls to Your Windows” lesson in
this guide for more information on controls):

oDCDollarsText:Value :=;
CWhole(Val(oDCmAmount:TextValue))

oDCCentsText:Value :=;
CDecimal(Val(oDCmAmount:TextValue),2) +;

"/100 "

The CWhole() function returns the word format version of the
dollars portion (or whole part) of a numeric. The CDecimal()
function returns the string representation (or decimal part) of the
cents portion of a numeric.

Setting the oDCDollarsText and oDCCentsText fixed text controls
to new values automatically repaints them on the window.

Notice the call:

SUPER:EditChange(oCE)

This is done because your customization is an enhancement to the
current behavior of the control. You are not replacing it.
However, many other things could be happening in the default
behavior that, if unattended, could cause unpredictable results.

3. Save the source code by selecting the Save command from the
File menu.

4. Close the Source Code Editor by double-clicking on its system
menu.

5. Close the Window Editor by double-clicking on its system menu.

6. Build the application by selecting the Build toolbar button.

7. Run the application by selecting the Execute toolbar button.

Exercise

10–8 CA-Visual Objects

Verify the results using the following steps:

1. Select the New command from the File menu.

The New Record dialog box appears:

2. Select the Payment radio button and then choose OK.

The New Payment window appears.

3. Type a dollar value into the single-line edit control designated for
the amount paid.

As you type the amount, it is printed across the payment receipt in
word format.

4. Close the South Seas Adventures application by double-clicking
on its system menu.

As described earlier, the EditChange() method is called when any
of the edit controls on the window are modified. Similarly, the
ListBoxSelect() method is shared by list boxes and combo boxes
while the ButtonClick() method is shared by radio buttons and
push buttons.

Expose Event Expose events provide a method for allowing a window to be
repainted.

The Expose() method is invoked when a window:

■ Is first shown

■ Is partially uncovered by another window

■ Increases in size

■ Is being restored after being iconized

Exercise

South Seas Adventures 10–9

In this part of the exercise, the DrawObject classes are used to
demonstrate the use of the Expose() event handler method. The
DrawObject classes provide a mechanism for painting a window with
other displayable objects, such as bitmaps and ellipses.

In the South Seas Adventures application, the Change Password dialog
box (displayed by choosing the Change Password command from the
Options menu) allows the user who is currently logged in to modify
their password.

The user must first enter the current password and then type in a new
password twice. If the current password is typed correctly, the safe,
located next to the edit control, opens.

Invalid
Password

Valid
Password

This was accomplished by combining an EditChange() event handler
with an Expose() event handler.

1. Open the Password:Forms module by double-clicking on its
module button.

The _NewPasswordDialog window was created using the Window
Editor. Its generated _NewPasswordDialog class, was then
subclassed to the NewPasswordDialog class.

Exercise

10–10 CA-Visual Objects

2. Find the NewPasswordDialog class and double-click on its entity
button.

CLASS NewPasswordDialog INHERIT
_NewPasswordDialog

PROTECT LockedBitmap
PROTECT UnlockedBitmap
PROTECT oCurrentBitmap
PROTECT Server

This allows the addition of the instance variables needed for this
specialized window. These variables are assigned in the Init()
method of the NewPasswordDialog class.

3. Find the NewPasswordDialog:Init() method and double-click on
its entity button.

The oCurrentBitmap variable initially contains the “ locked safe”
bitmap object. It is changed to the “unlocked safe” bitmap object
in the NewPasswordDialog:EditChange() method, depending on
the status of the Confirm Current Password edit control.

Initially, it is set to the locked safe bitmap, since the edit control
is blank. When the window is first displayed, the window
Expose() method is invoked.

4. Find the NewPasswordDialog:Expose() method and double-click
on its entity button.

METHOD Expose(oEE) CLASS NewPasswordDialog

SUPER:Expose(oEE)

// If the exposed area includes the bitmap
// area
IF oCurrentBitmap:BoundingBox:;

Overlap(oEE:ExposedArea)
// Draw the current bitmap
SELF:Draw(oCurrentBitmap)

ENDIF

RETURN NIL

This method first calls the method of the same name in the
superclass to ensure that the normal refreshing takes place.

Next, the customization of the Expose() method is added. To
display a DrawObject object, the Window:Draw() method is used,
passing it the object to be drawn as a parameter. However, the

Exercise

South Seas Adventures 10–11

safe bitmaps are only drawn if the newly exposed area covers the
bitmap.

As discussed above, the Expose event is only triggered under
certain circumstances. When the user enters the correct
password, the bitmap must be updated on the window. You must
force a repaint of the window.

5. Find the NewPasswordDialog:EditChange() method and double-
click on its entity button.

To force a repaint of the window, the Window:Repaint() and
WindowRepaintBoundingBox() methods are used. These
methods create Expose events on the window.

METHOD EditChange(oCE) CLASS NewPasswordDialog

LOCAL oControl := oCE:Control

SUPER:EditChange(oCE)

...

// The edit control contains the current
// password?
IF Upper(;

Trim(oDCCurrentPasswordSLE:TextValue));
== Upper(Trim(Server:Password))

// Set the current bitmap to the
// UNLOCKED safe.
oCurrentBitmap := UNLOCKEDBITMAP

// Move the focus to the next SLE
oDCNewPasswordSLE:SetFocus()

ELSE
// Set the current bitmap to the LOCKED
// safe.
oCurrentBitmap := LOCKEDBITMAP

ENDIF

// Force a repaint of the bitmap area
SELF:RepaintBoundingBox;

(oCurrentBitmap:BoundingBox)
...

RETURN NIL

When the user types into the Confirm Current Password edit
control, its value is compared against the user’s password in the
database. If the two values match, oCurrentBitmap is updated to

Exercise

10–12 CA-Visual Objects

the UnlockedBitmap object. If the two values do not match,
oCurrentBitmap is updated to the LockedBitmap object. The
SELF:RepaintBoundingBox() method is then invoked.

Exercise

South Seas Adventures 10–13

The SELF:RepaintBoundingBox() is used, since only this portion
of the window is being modified. This type of optimization can
be crucial when designing complex windows with many different
displayed objects.

6. Close the Source Code Editor by double-clicking on its system
menu.

7. Run the application by selecting the Execute button on the
toolbar.

Verify the results using the following steps:

1. Log in to the application as user.

2. Enter trainee as the password.

3. Select the Change Password command from the Options menu.

The Change Password dialog box appears:

4. In the Confirm Current Password edit control, type trainee.

The safe now opens and the focus moves to the New Password
control.

5. Choose Cancel to close the dialog box.

6. Close the South Seas Adventures application by double-clicking
on its system menu.

Exercise

10–14 CA-Visual Objects

Notify Events The NotifyEvent event only occurs for data windows and is created
by an attached server. This event is crucial for a data window, since
the data window uses this handler to keep itself in sync with its
attached server.

For example, if the oServer:Skip() method is invoked, the server first
notifies the data window of its intention to change records. This gives
the data window the opportunity to save any of the edit controls on its
window to the current record before the record pointer is moved.
Once control is returned to the server, it then moves the pointer. The
server then notifies the data window that it has repositioned the record
pointer. The data window then updates its controls from the server.

Your program can make use of this mechanism.

The example you are about to see uses the Notify() method to update
the window caption. Each time the record pointer moves, the window
caption reflects the new record.

1. Open the Item:Methods module by double-clicking on its Module
Browser button.

2. Find the EditItemWindow:Notify() method and double-click on
its entity button.

METHOD Notify(kNotifyName,uDescription);
CLASS EditItemWindow

LOCAL xRetNotify := ;
SUPER:Notify(kNotifyName,uDescription)

// Set new window caption
IF kNotifyName >= NOTIFYFIELDCHANGE

SELF:Caption := ;
Trim(GetToken(SELF:Caption,1,;
"- ")) + " - " +;
Trim(SELF:Server:Item_ID)

ENDIF

// If something has changed...
IF kNotifyName == NOTIFYFIELDCHANGE

SELF:Owner:BroadcastMessage(SELF,#Item)
ENDIF

RETURN xRetNotify

Exercise

South Seas Adventures 10–15

The Notify() method receives a constant rather than an Event
object. This constant identifies the event that occurred in the
attached server. The possible values are prioritized and
guaranteed to be in a specific order, thus you can use the
following code,

IF kNotifyName >= NOTIFYFIELDCHANGE

to identify any event that involves a field change.

Notify() also receives a second parameter, <uDescription>, which
is not always used.

For more information on the Notify() method, see the
“DataWindow Class” topic in the CA-Visual Objects online Help.

When the Notify() method is invoked, the window captions are
modified to reflect the current Item_ID.

SELF:Caption := ;
Trim(GetToken(SELF:Caption, 1, "- ")) +;

" - " +;
Trim(SELF:Server:Item_ID)

3. Run the application by selecting the Execute toolbar button.

Verify the results, using the following steps:

1. Select the Open command from the File menu.

The Open File dialog appears:

2. Select the Item radio button and click OK.

Exercise

10–16 CA-Visual Objects

3. When the Item browser appears, select an item from the browser
and click on the Edit toolbar button.

The Edit Item window appears:

4. To verify that the Notify() method is working, make changes
and return to the Item browser; then click on the record
movement buttons on the toolbar to view the changes.

5. Close the South Seas Adventures application by double-clicking
on its system menu.

6. Close the Source Code Editor by double-clicking on its system
menu.

QueryClose Event The QueryClose event occurs when a request has been made to close
a window. This request can be brought about by double-clicking on
a window’s system menu or invoking a window’s EndWindow()
method, among other actions.

These two actions post a WM_Close message in the applications event
queue. The CA-Visual Objects dispatcher then invokes the window’s
QueryClose() method.

The return value of your QueryClose() method determines if the
window gets closed. If your QueryClose() method returns TRUE, the
window is closed; otherwise, it remains open.

Exercise

South Seas Adventures 10–17

This can be very useful. The example you will examine uses the
QueryClose() method to prompt the user prior to exiting the
application, as in the following figure:

1. Open the SSA Shell:Forms module by double-clicking on its
module button.

2. Select the Edit All Source in Module toolbar button.

3. Find the SSAWindow:FileExit() method and double-click on its
entity button.

METHOD FileExit() CLASS SSAWindow

SELF:EndWindow()

RETURN NIL

SSAWindow is the South Seas Adventures shell window. In an
MDI application, double-clicking on the shell window’s system
menu is analogous to requesting to exit the application. You also
want this behavior when the user selects the Exit command from
the File menu. To provide this functionality, invoke the window’s
EndWindow() method.

4. Find the SSAWindow:QueryClose() method and double-click on
its entity button.

METHOD QueryClose(oEvent) CLASS SSAWindow

LOCAL oWB AS WarningBox
LOCAL lLeave := FALSE AS LOGIC
SUPER:QueryClose(oEvent)

// Prompt the user before exit
oWB := WarningBox{SELF,;

"South Seas Adventures ",;
"Are you sure you want to leave? " }

oWB:Type := BOXICONQUESTIONMARK + BUTTONYESNO

IF oWB:Show() == BOXREPLYYES
lLeave := TRUE

ENDIF

Exercise

10–18 CA-Visual Objects

...

RETURN lLeave

When the user chooses to exit the application, a warning box
provides an opportunity to keep the application open.

// Prompt the user before exit
oWB := WarningBox{SELF,;

"South Seas Adventures ",;
"Are you sure you want to leave? "}

oWB:Type := BOXICONQUESTIONMARK + BUTTONYESNO

IF oWB:Show() == BOXREPLYYES

If the user chooses Yes, the return parameter, lLeave is changed
to TRUE and the window is allowed to close.

5. Find the SSAWindow:CloseAllChildren() method and double-
click on its entity button.

METHOD CloseAllChildren() CLASS SSAWindow

LOCAL i AS WORD
LOCAL wLen AS WORD
LOCAL lSuccess AS LOGIC
LOCAL aTmpChildWindows
lSuccess := TRUE

aTmpChildWindows := AClone(aChildWindows)
wLen := ALen(aTmpChildWindows)

FOR i := 1 TO wLen
aTmpChildWindows[i]:EndWindow()

NEXT

RETURN (Len(aChildWindows) == 0)

If all of the child windows end up closing, the CloseAllChildren()
method returns TRUE. The QueryClose() method also returns
TRUE, thereby freeing the way for CA-Visual Objects to continue
closing the application.

Summary

South Seas Adventures 10–19

Summary

In this lesson, you have learned about events and event-driven
applications. You now know how CA-Visual Objects receives and
dispatches events. Additionally, you have seen how to customize your
own windows, using a wide variety of event handlers.

The next lesson shows you how to use icons and cursors to enhance
the “ look” of your applications.

