
South Seas Adventures 14–1

Chapter 14
Debugging Your Application

Objective

This lesson shows you how to use the Error Browser and Debugger to
debug your CA-Visual Objects applications. During this lesson, you
will use the Error Browser to quickly fix compiler errors and the
CA-Visual Objects Debugger to track down, then fix logic and runtime
errors.

Error Browser Exercise

The Error Browser is the primary tool for locating compiler errors and
is automatically displayed after any build, if an error or warning
occurs during compilation. The Error Browser displays the error
information, such as type and location of error, and provides easy
access to the line in question through the Source Code Editor. By
using the Error Browser, you will find that locating and fixing your
errors could not be easier.

Important! The errors which occur in this exercise involve reserved
words and undeclared variables. Before beginning this exercise,
choose the Compiler Options command from the Application menu and
make sure the Undeclared Variables check box is not selected. (If it is
checked, uncheck it.) To close this dialog box, choose OK.

Error Browser Exercise

14–2 CA-Visual Objects

Importing a Module with Errors

To explore the Error Browser, let’s import and compile a module with
several intentional errors.

1. Open the South Seas Adventures application by double-clicking
its button in the Application Browser.

2. Select the Import command from the File menu.

The Import Module dialog box is displayed:

3. Select the file _BUGGY.MEF, which is in your CA-Visual
Objects SAMPLES\SSATUTOR\FILES subdirectory, and choose
OK.

The ?Buggy module button appears as the first module in your
Module Browser. Note that the question mark in the module
name was replaced with an underscore when it was exported as an
.MEF file, to conform to DOS file naming rules.

Error Browser Exercise

South Seas Adventures 14–3

4. Choose the Build toolbar button to build the application.

Since there are errors in the code, you are presented with the Error
Browser. The compiler errors are displayed in a tree-like
structure that can be expanded or collapsed:

It is similar to the application’s Entity Browser, Menu Editor, and
Class Browser. In this structure, the first level indicates the
module, the second level indicates the entity, and the third (and
final) level indicates the line number and error message.

Resolving the Errors

Now, use the Error Browser to resolve the errors in this code.

1. Double-click on the first error, which appears as follows:

This brings you to the Source Code Editor with the cursor located
on the line where the error occurred:

LOCAL Date := Today() AS DATE

The error occurs because DATE is a reserved word and, therefore,
cannot be used as a variable.

Error Browser Exercise

14–4 CA-Visual Objects

2. Fix this code by changing the variable Date to dDate in the last
two lines of code, as follows:

LOCAL dDate := Today() AS DATE
RETURN (dDate)

3. Close the Source Code Editor by double-clicking on its system
menu and answering Yes when prompted to save your changes.

You are returned to the Error Browser and, since you have
resolved the first error, it no longer appears:

4. Double-click on the next error:

Again, you are brought directly into the Source Code Editor with
the cursor located on the line where the error occurs:

nValue := nValue +

The error message indicates that this line contains bad expression
syntax and it indeed has an incomplete statement.

5. Correct the statement by adding 10 to the end of the line, as
follows:

nValue := nValue + 10

Error Browser Exercise

South Seas Adventures 14–5

6. Close the Source Code Editor by double-clicking on its system
menu and answering Yes when prompted to save your changes.

Once again, you are in the Error Browser—now only two errors
are left, both regarding the same variable:

7. Double-click on the next error:

This error message indicates that the variable X is unknown to the
compiler, which means that it is not declared.

8. Remove the comment indicators (//) from the LOCAL statement,
just above the line you are currently on, to correct the problem:

LOCAL X AS INT

9. Close the Source Code Editor by double-clicking on its system
menu and answering Yes when prompted to save your changes.

This last correction resolved both remaining errors, so the Error
Browser now states “No errors in current application/library” :

Error Browser Exercise

14–6 CA-Visual Objects

10. Choose the Build toolbar button to rebuild the application.

The Error Browser now appears with another error:

The previous correction causes the compiler to discover a new
error. This error involves a type conversion that is not possible.

11. Double-click on the error to see the line in question.

By examining this line you can see that the function, FUNCTION
BugCode3(), returns an INT, although it was declared to return
type STRING. This is a good example of why strong typing is
beneficial at the development stage—an error of this nature,
although very obvious at compile time, might easily elude you at
runtime.

12. Fix the error by converting the return value of the function to a
string, as follows:

RETURN Str(X)

13. Close the Source Code Editor by double-clicking on its system
menu and answering Yes when prompted to save your changes.

14. Choose the Build toolbar button to rebuild the application,
which should now compile without errors.

15. Close the Error Browser by double-clicking on its system menu
and return to the Module Browser.

Debugger Exercise

South Seas Adventures 14–7

Debugger Exercise

The CA-Visual Objects Debugger is the primary work space in the
IDE for tracking and correcting errors that occur at runtime. To access
the debugger from the various browsers and editors, use either the
Debug Run menu command or the Trace Expression toolbar button.

By using the Debugger you can:

■ Control the execution of your application while viewing the
source code in the Debug Source Code window

■ Execute any part of your application using one of several
execution modes, including a mode in which you step through the
code one line at a time

■ Conditionally stop program execution using breakpoints or by
pressing Ctrl+Alt+SysRq at any time

■ Monitor watch expressions in a separate window

■ Evaluate expressions on-the-fly

■ View and modify variables of all storage classes

■ View database, index, and other work area information in a
separate window

■ View and modify system settings

The most common type of errors that you will correct using the
Debugger are known as logic errors. Logic errors occur when the
application does not perform as intended, but does not crash or give
any other immediate indication of flaw (such as a runtime error
message). These types of errors are often the hardest to locate and the
area in which the Debugger excels.

Debugger Exercise

14–8 CA-Visual Objects

Viewing the Error

In this exercise, use the Debugger to track down a logic error that is
currently in the South Seas Adventures application:

1. Provided the application was successfully built at the end of the
previous exercise, you can run it now by choosing the Execute
toolbar button.

2. Log in to the application as usual (Name: User, Password:
Trainee).

3. Choose the New command from the File menu.

4. Select the Payment radio button from the New Record dialog box,
as follows:

5. Choose OK, to display the New Payment window.

6. Enter 12.34 in the Amount edit control, as follows:

As you enter an amount on this form, the dollars portion is printed
in word format in the Rcv’d line. The cents portion is also
displayed as nn/100.

Debugger Exercise

South Seas Adventures 14–9

Notice that the cents portion of the Rcv'd line shows 33/100
instead of 34/100. Entering several different values for the cents
portion, in the Amount edit control, gives you the following
results:

12.30 OK 30/100
12.31 OK 31/100
12.32 OK 32/100
12.33 OK 33/100
12.34 bad 33/100
12.35 bad 34/100
12.36 bad 35/100
12.37 bad 36/100
12.38 OK 38/100
12.39 OK 39/100

Obviously, there is something wrong with the routine used to strip
out the cents portion of the Amount value. Let’s try to locate this
error.

7. Close South Seas Adventures by double-clicking on its system
menu and choosing Yes when prompted.

Setting Debugging On

The CA-Visual Objects Debugger can be set at three levels:

■ Application level – provides debugging information for the entire
application. This is done in the application properties window.

■ Module level – provides debugging information for every entity
in the current module.

■ Entity level – provides debugging information only for the current
entity.

Debugger Exercise

14–10 CA-Visual Objects

Setting Debugging at the Module Level

The South Seas Adventures application currently does not have
debugging activated; therefore, you need to attach debugging
information to the entities or modules that you feel are affected. To
save you some time searching through code that you are unfamiliar
with, here are a few clues:

■ The routines that convert a numeric to its long string
representation are in the module called App:Misc.

■ The fixed text controls are assigned in the EditChange() method
of the class NewPaymentWindow, which is in the
Payment:Methods module.

Now, attach debugging information to the following module:

1. From the Module Browser, select the App:Misc module and click
the right mouse button.

The following local pop-up menu is displayed:

2. Check Debugging On, by clicking on it with the left mouse
button.

The App:Misc module now appears as follows:

Notice that the module button LED now shows a D+ indicator,
telling you that debugging is turned on for this module. Also, the
LED indicator changes from green to yellow, indicating that the
application needs to be recompiled.

Debugger Exercise

South Seas Adventures 14–11

Setting Debugging at the Entity Level

Next, set Debugging On for the EditChange() method of the
NewPaymentWindow class:

1. Locate the Payment:Forms module in the Module Browser and
double-click on it to open its Entity Browser.

2. Locate the NewPaymentWindow:EditChange() method and click
the right mouse button.

The following local pop-up menu appears:

3. Check Debugging On by clicking on it with the left mouse button.

The NewPaymentWindow:EditChange() method now appears as
follows:

Notice that the entity LED now shows a + indicator, telling you
that debugging is turned on for this entity. Also, the LED
indicator has changed from green to yellow, indicating that the
application needs to be recompiled.

4. Choose the Build toolbar button to rebuild the application.

Debugger Exercise

14–12 CA-Visual Objects

Running the Application Using the Debugger

Now you are ready to debug the application. First, clear some space
on your Windows desktop so that you can see the Debugger while the
application is running.

1. Size and position the CA-Visual Objects window so that it takes
up only the top half of your screen.

2. Select the Trace Expression toolbar button.

The Enter An Expression dialog box appears:

3. Choose OK to run the application, beginning with the Start()
entity.

After choosing OK in the opening dialog box, the Debugger is
invoked automatically when the application hits the first entity
that has debugging set on.

The code for the FullWinSize() function is visible in the Debug
Source Code window:

Any code that has debugging enabled can be seen in the Debug
Source Code window.

4. To load the source code for the EditChange() method, choose
Modules of South Seas from the Window menu and click on the
Payment:Forms module.

Debugger Exercise

South Seas Adventures 14–13

5. From the Entity Browser, double-click on the
NewPaymentWindow:EditChange() method.

The code is brought into the Debug Source Code window:

6. Choose the Execute toolbar button, to run the application.

7. Log in to the application as usual (Name: User, Password:
Trainee).

8. Size the South Seas Adventures application window, so that it
takes up the bottom half of your screen, as follows:

You are now ready to debug the application.

Debugger Exercise

14–14 CA-Visual Objects

Locating the Bug

At this point, you should have the South Seas Adventures application
active and positioned on the lower half of your screen and CA-Visual
Objects should be positioned on the top half of your screen.

1. From the South Seas Adventures main window, select the New
command from the File menu.

2. Select the Payment radio button from the New Record dialog box
and choose OK:

3. In the Amount edit control , enter 12.3:

Debugger Exercise

South Seas Adventures 14–15

Setting a Breakpoint

You are now ready to invoke the Debugger and to inspect the variables
to determine what is happening. To help with your analysis, let’s set a
breakpoint in the EditChange() method:

1. Switch focus to the Debug Source Code window.

2. Select the following line of code, located in the EditChange()
method:

oDCCentsText:Value := CDecimal(...) + "/100 "

3. Choose the Set/Reset Breakpoint toolbar button.

The line of source code changes colors to indicate that a
breakpoint has been set:

4. Select the Amount edit control in the South Seas Adventures
application window and enter 4 after the 12.3 that you entered
earlier (the amount should now appear as 12.34).

The Debugger has stopped on the line that you set as the
breakpoint.

Debugger Exercise

14–16 CA-Visual Objects

Evaluating Expressions

Now you can inspect the variable values.

1. Choose the Evaluate toolbar button.

The Evaluate Expression dialog box appears.

2. Type oDCmAmount:TextValue in the Expression edit control.

This represents the character value of the Amount edit control
where you are entering data.

3. Choose Evaluate.

The evaluation produces the correct result of 12.34 in the Result
edit control:

4. The error must occur deeper in the code, therefore, type the
following in the Expression edit control:

CDecimal(VAL(oDCmAmount:TextValue),2)

This represents the return value of the call to the CDecimal()
function.

5. Choose Evaluate.

The Result edit control now produces the incorrect result of 33
instead of 34:

Debugger Exercise

South Seas Adventures 14–17

You have now determined that the problem can be traced to the
CDecimal() function.

6. Choose Cancel to close the Evaluate Expression dialog box.

Tracing into a Module

Let’s load the CDecimal() function and inspect it.

1. Choose the Trace Entity toolbar button to enter into the entity on
the line that is currently executing.

The CDecimal() function is loaded into the Debug Source Code
window under the EditChange() method. If you scroll up, you can
see that there are now three entities in the Debug Source Code
window.

After analyzing this function, you see that it has only one line of
code:

nCents := (10^nDec)*(nAmount - Integer(nAmount))

2. To start the function call, click on the Execute Next Line toolbar
button (or select the Step command from the Debug menu).

Let’s look at all the local variables now.

3. Select the View Locals command from the Debug menu.

The Local/Private Variables window displays, indicating:

NCENTS = 0
NAMOUNT = 12.34
NDEC = 2

4. Select the Step command from the Debug menu to execute the
line that calculates nCents.

You can see that the value of nCents is 33, which is incorrect:

Debugger Exercise

14–18 CA-Visual Objects

The line is executed as follows:

nCents := (10^2)*(12.34 - Integer(12.34))
 := (100) *(12.34 - 12)
 := (100) *(.339999999...)
 := 33.99999999
nCents -> 33 since nCents is type INT

The error occurs because of the way some decimal numbers are
stored in binary format. Without presenting a discussion on
numerical analysis for computers, suffice to say that adding .5 to
the end of the expression corrects the problem. Change the line
to:

nCents := (10^nDec)*(nAmount-Integer(nAmount))+.5

5. To verify this expression, choose the Evaluate Expression
command from the Debug menu.

The Evaluate Expression dialog box appears.

6. Enter the corrected expression as follows:

nCents:=(10^nDec)*(nAmount-Integer(nAmount))+.5

7. Choose Evaluate.

The Result edit control now produces the correct result of 34:

8. Choose Cancel to close the dialog box.

Debugger Exercise

South Seas Adventures 14–19

Modifying Variables

The test shows that the new expression works for nAmount equal to
12.34. However, from the earlier testing, we know that the program
fails for other values. To check out the validity of the new expression,
for other nAmount values, use the Local/Private Variables window to
change nAmount to a couple of different values and test the results
each time.

Perform the following steps to validate the new expression:

1. Highlight the nAmount variable and click the right mouse button.

The following local pop-up menu appears:

2. Choose Modify variable by clicking on it with the left mouse
button.

The Modify Variable dialog box appears:

3. Enter 12.35 and choose OK.

The Local/Private Variables window is updated with the new
amount.

4. Choose the Expressions command from the Debug menu.

The Evaluate Expression dialog box appears.

5. Enter the corrected expression, in the Expression edit control, as
follows:

nCents:=(10^nDec)*(nAmount-Integer(nAmount))+.5

6. Choose Evaluate.

Debugger Exercise

14–20 CA-Visual Objects

The Result edit control now displays 35, which is correct:

7. If you like, you may repeat steps 1 through 6, using an nAmount
value of 12.36.

8. When you are finished testing, and are confident that the new
expression is valid, choose Cancel to close the Evaluate
Expression dialog box.

9. Close the Local/Private Variables window by double-clicking on
its system menu.

Correcting the Error

Now that you have found the bug, you can close down the South Seas
Adventures application and the Debugger and fix the source code for
the CDecimal() function.

1. Choose the Execute toolbar button to return to the application.

2. Double-click on its system menu to close the South Seas
Adventures application and choose OK to confirm.

The Result of Process dialog box, which indicates that the
debugger is about to be closed, appears:

3. Choose OK to close the Debugger and return to the
Payment:Forms Entity Browser.

4. Close this Entity Browser by double-clicking on its system menu.

5. Maximize your CA-Visual Objects desktop.

Debugger Exercise

South Seas Adventures 14–21

6. Open the App:Misc module by double-clicking on its module
button.

7. To make the correction, double-click on the CDecimal() entity to
load it into the Source Code Editor.

8. Correct the line of code so that it reads:

nCents:=(10^nDec)*(nAmount-Integer(nAmount))+.5

9. Close the Source Code Editor by double-clicking on its system
menu and choosing Yes when prompted to save the changes.

10. Rebuild the application using the Build toolbar button.

11. Run the application to test the new results using the Execute
toolbar button.

12. Log in to the application as usual (Name: User, Password:
Trainee).

13. Select the New command from File menu.

The New Record dialog box appears:

14. Select the Payment radio button, then choose OK.

15. Enter 12.34 in the Amount edit control of the New Payment
window, as follows:

Summary

14–22 CA-Visual Objects

Notice that the cents portion of the Rcv’d line is now correct.

16. If you like, you can experiment with other amount values.

17. When you are finished, close the South Seas Adventures
application by double-clicking on its system menu and choosing
Yes when prompted.

Summary

This lesson provided you with an understanding of some of the key
features of the error detection and debugging facilities provided in
CA-Visual Objects. You used the Error Browser to diagnose and fix
compiler errors and the Debugger to resolve a runtime error. For
additional information, see “Debugging Your Applications” in the IDE
User Guide.

The next lesson shows how to implement an online help system for
your CA-Visual Objects applications.

