
Lesson 2: Setting Up the Data Servers

Getting Started 5–67

Customizing Field Properties

The next task is to define some properties for the other remaining
fields.

OrderNum Let’s start with OrderNum:

1. Click on the OrderNum field in the Include list box.

2. In the Properties window, click on the FS Caption property,
overtype the current contents with the text Order #, and press
Enter.

3. Click on the FS Description property, type Enter the order
number (required), and press Enter.

4. Scroll down to the Required property, click on it, click on the
down-arrow, and choose Yes from the list.

Changing this property to Yes will require that the user type a
value for the field in the resulting application.

5. Click on Required Diagnostic just below, type You must enter an
order number, and press Enter.

If the user attempts to skip the OrderNum field, this message will
be displayed.

6. Scroll down to Validation, click on it, type
{ |OrderNum| OrderNum > 0}, and press Enter.

This will require that the user type a positive order number. The
validation rule specified here is in the form of a code block.
Refer to the “Code Blocks” chapter in the Programmer’s Guide,
Volume III for more information.

7. Click on Validation Diagnostic just below, type The order
number must be positive, and press Enter.

If the user attempts to enter a negative number or zero into the
OrderNum field, this message will be displayed.

8. Click on the Save toolbar button.

Lesson 2: Setting Up the Data Servers

5–68 CA-Visual Objects

OrderPrice For the OrderPrice field, follow these steps.

1. Click on the OrderPrice field in the Include list box.

2. Click on the FS Caption property, edit the current contents so that
it reads Order Price, and press Enter.

3. Click on FS Description, type Enter the order price, and press
Enter.

4. Scroll down to the Picture property, click on it, type
" $$$$$$$.99" , and press Enter.

This will cause the value to display with leading dollar signs.

5. Optionally, you can continue to customize the remaining fields in
the data server by adding status bar descriptions and/or
customizing the default captions to make them more readable (for
example, for the Ship_Addrs field, you might change “Ship
Addrs” to “Shipping Address”).

If desired, however, you can skip this task.

6. Click on the Save toolbar button.

The FieldSpec Editor

Now, you will get a chance to experience the power of using field
specifications. What you’ll do is use the FieldSpec Editor to make a
small change to one of the field specifications shared by the two data
servers. You can then watch how the one change is automatically
propagated to the two data servers using that field specification.

Before starting on this task, close the DB Server Editor by double-
clicking on the system menu (save your changes if prompted).

Lesson 2: Setting Up the Data Servers

Getting Started 5–69

Now, double-click on the Customer module (displaying its Entity
Browser) and double-click on the Customer_Zip field specification
entity:

Double-click here

This invokes the FieldSpec Editor, as shown below:

As you can see, the workspace of the FieldSpec Editor is remarkably
similar to the Properties window of the DB Server Editor when a field
is selected. The only difference is that the field-specific properties—
that is, Name, Caption, Description, and HelpContext—are not
present.

Lesson 2: Setting Up the Data Servers

5–70 CA-Visual Objects

The FieldSpec Editor is provided primarily to let you create new field
specifications, independent of a particular data server, which can then
later be associated with fields in a data server. You can also use the
FieldSpec Editor to modify existing field specifications. If there are
any existing entities in the system already using field specifications
that you modify here (for example, a data server or a data window),
the changes you make in the FieldSpec Editor are automatically
propagated to those entities.

Let’s explore this last point in more detail. In our two data servers
(Customers and Orders), the Customer_Zip field specification is used
to format their individual zip code fields (if you recall, the Customer
data server you imported already contained the Customer_Zip field
specification, and you then associated that same field specification
with the Ship_Zip field in the Orders data server).

Modifying the Field
Specification

Let’s make a small change to this shared field specification in the
FieldSpec Editor:

1. Scroll to the Picture property and click on it.

2. Type " 99999" and press Enter.

3. Close the FieldSpec Editor and save your changes.

Viewing the Automatic
Change Propagation

Now let’s see how this one change has been propagated
automatically in the two data servers that use this field specification:

1. In the Customer module’s Entity Browser, double-click on the
Customer server entity.

The DB Server Editor is loaded, and the Customer data server is
opened.

2. In the Include list box, click on the Zip field.

Lesson 2: Setting Up the Data Servers

Getting Started 5–71

3. Click in the Properties window and scroll through it, until the
Picture property comes into view.

You will see the picture clause you just entered (which was not
there before).

4. Close both the DB Server Editor and the Customer module’s
Entity Browser.

5. Now double-click on the Orders module and then double-click on
the Orders server entity to open the Orders data server. Take a
look at its Ship_Zip field’s Picture property, and you will see that
it has changed too.

Since both data servers pick up the Picture property from the
Customer_Zip field specification entity you edited, both reflect the
change. If any other data servers used this field specification, they
would also reflect the change. In addition, if there were any data
windows using either of these data servers, the windows would also
pick up the change. CA-Visual Objects takes care of all of this
automatically.

That’s all there is to creating a data server. If you have not already
done so, close all copies of the DB Server Editor currently in use, and
return to the Entity Browser for the Orders module. From there, we’ll
take a closer look at the source code generated by the DB Server
Editor for the Orders data server you just created.

The Source Code

As you may have been observing, each time you choose the Save
toolbar button or menu command while in an editor, simply designing

Lesson 2: Setting Up the Data Servers

5–72 CA-Visual Objects

pieces of an application in an editor and then saving your work
automatically causes CA-Visual Objects to generate code. This code
can be modified in the Source Code Editor if desired, but typically you
will use the editors to make changes and then regenerate code when
you save the changes.

Nevertheless, even though you probably won’t be directly modifying
the generated code, it may help to take a closer look at exactly what
was just generated for you, so that you get a better understanding of
how all of the generated source fits together.

Tip: You can follow this discussion by scrolling through the
Entity Browser to view the various entities or, if you like, you can
double-click on the entities to view them in the Source Code
Editor.

Server and Field
Specification Entities

To start with, when you design a data server in the DB Server Editor,
CA-Visual Objects creates a single server entity. There is also a
field specification entity for each field in the data server. The
purpose of this design is to let you easily edit the entire data server
with the DB Server Editor or just an individual field specification in
the FieldSpec Editor.

Class Entities There are also class entities for the data server and each of its field
specifications. If you double-click on the Orders class entity, for
example, you will see that it inherits from the DBServer class, which
is defined in the DBF Classes library. Notice, too, that the associated
database file for this data server—ORDER_DBF_PATH—is defined
as an instance variable of the Orders class as part of this inheritance.

Furthermore, each field specification class entity inherits from the
FieldSpec class, also defined in the DBF Classes library.

Lesson 2: Setting Up the Data Servers

Getting Started 5–73

Define Entities There are define entities for the Caption and Description properties for
the data server and each of its fields. This information is used
throughout the generated source code (isolating it in this manner
makes maintaining the source code easier).

Access/Assign Entities Next, there are access/assign method entities for each field, which
provide an object-oriented interface to the database fields.

Init() Method Entities Finally, there are Init() method entities for the data server and each of
its fields.

For the data server, the Init() method does the following:

■ Sets up a file specification for the database file

The FileSpec class helps you manage files, keeping track of
information such as the name and location of the file (called the
file specification.) (See the “File Handling” chapter in the
Programmer’s Guide, Volume II for more specific information.)

■ For each field, defines a hyperlabel, instantiates the appropriate
field specification class, and sets up a data field using the
DataField class

The HyperLabel class helps you keep track of certain information
associated with an object (called the object’s hyperlabel), such as
a name, caption, description, and help context ID. (See the
“Hyperlabels” chapter in the Programmer’s Guide, Volume II for
more specific information.)

■ Sets up a file specification for each index file and opens the files
in the appropriate order

Lesson 2: Setting Up the Data Servers

5–74 CA-Visual Objects

For the field specifications, the Init() methods define hyperlabels for
each field specification and assign values to the various properties.

Now that you have imported the Customer data server and set up the
Orders data server, the OE Data Servers library is complete. There are
only two steps left to complete this lesson: building the OE Data
Servers library and associating it with the Order Entry application.
Before continuing, close the Source Code Editor if you are using it to
view the generated code, and choose No if prompted to save changes.

Building the OE Data Servers Library

Anytime you import a new library or make changes to an existing one,
it is necessary to build the library to make sure that there are no errors
in the source code and to make it available in compiled form to any
applications that use it.

You’ve already gone through the process of building the Standard
Program in the previous lesson—building a library is no different.
Simply click on the Build button when the library has focus, and
you’re done.

Lesson 2: Setting Up the Data Servers

Getting Started 5–75

Adding the Library to Order Entry’s Search Path

After it is built, you need to add this library to the search path of the
Order Entry application. In CA-Visual Objects, an application’s
properties include its name, type (that is, application, library, or DLL),
and its associated libraries, among other things.

Recall that in the first lesson of this tutorial, you initially specified
these items for the application when you created it. However, you can
change an application’s properties at any time using the Application
Properties menu command.

Let’s use this command now to add the OE Data Servers library to the
Order Entry application’s path:

1. If you haven’t already done so, build the library by clicking the
Build button.

2. Close the Orders Entity Browser and the OE Data Servers Module
Browser.

You are returned to the Application Browser.

3. Click the Order Entry application button to select it.

4. Choose the Application Properties menu command.

Lesson 2: Setting Up the Data Servers

5–76 CA-Visual Objects

5. When the Properties dialog box is displayed, add the OE Data
Servers library to your application by double-clicking on it in the
Available list box:

Double-click here

OE Data Servers is then added to the Included list box.

6. Choose OK.

Summary

That concludes the lesson in setting up data servers. You’ve taken a
big step in customizing the Order Entry application, but you won’t be
able to see the results of what you’ve done until you set up a data
window that uses these data servers. Therefore, let’s move on to the
next lesson and do just that.

