
South Seas Adventures 5–1

Chapter Chapter 55
Creating and Using WindowsCreating and Using Windows

ObjectiveObjective

This lesson covers the various types and styles of windows that
are available in CA-Visual Objects. The first objective is to
understand the difference between a Multiple Document
Interface (MDI) application and a Single Document Interface
(SDI) application.

Secondly, two of the most widely used types of windows—
modal dialog windows and MDI client windows—are discussed.
Modal dialog windows are commonly used in Windows
applications when a user response is essential before the
program can continue. An MDI client window (or child
application window) provides the added benefit of allowing you
to add data-aware behavior to your window.

In this lesson, you will learn how to:

Create an SDI application, using the TopAppWindow class

Create a MDI client window, using the ChildAppWindow
class

Create a modal dialog window, using the DialogWindow
class

Add data-aware behavior to a ChildAppWindow, using the
DataWindow class

Overview

5–2 CA-Visual Objects

OverviewOverview

CA-Visual Objects allows you to create both Single Document
Interface and Multiple Document Interface applications with
several types of windows based on subclassing the various
Window classes.

Single Document Interface ApplicationsSingle Document Interface Applications

The Single Document Interface (SDI) is a user-interface standard
for presenting and manipulating a single document within a
Windows application. An SDI application has one main window
in which the user can open and work with a single document.
SDI allows for a more classical (linear) approach to application
interface.

An SDI application can spawn a child window. However, when
the main window is closed, so is the child. The child window
can move outside the main application window, but it is bound
to the document held in the main application window.

Overview

South Seas Adventures 5–3

The Windows PIF Editor is a good example of an SDI
application, in that a child window appears when you click on
the Advanced push button:

Overview

5–4 CA-Visual Objects

Top Application WindowsTop Application Windows

As you have just seen in the PIF Editor example, a top
application window is the main window of an SDI application. It
has no owner windows. As with other application windows, a
top application window can have icons, captions, resizable
borders, menus, and system menus.

An application, however, can have more than one top application
window. From a user’s standpoint, multiple top application
windows would appear as multiple applications. To a
programmer, multiple top application windows could readily
share information and interaction.

The following example creates and invokes two top application
SDI-style windows, using the TopAppWindow class:

METHOD Start() CLASS App
LOCAL oTopAppWin AS TopAppWindow
LOCAL oWin2 AS TopAppWindow

oTopAppWin := TopAppWindow{}
// Create a top application window
oTopAppWin:Caption := "Top App Window"
// Assign new window caption
oTopAppWin:Origin := Point{150,150}
// Pixels from bottom left of screen
oTopAppWin:Size := Dimension{400,250}
// {width,height} of new window in pixels
oTopAppWin:Show()
// Show new window

oWin2 := TopAppWindow{}
oWin2:Caption := "Other Top App Window"
oWin2:Origin := Point{100,100}
oWin2:Size := Dimension{300,300}
oWin2:Show()

SELF:Exec()
 // Windows Exec() loop

Overview

South Seas Adventures 5–5

This code would create the following:

This application has two independent SDI windows that can
perform system functions (such as move, size, minimize, and so
on). You would use a TopAppWindow window as the top
window in any SDI application.

However, SDI applications are not as common as MDI
applications because the Multiple Document Interface handles
multiple tasks more robustly, as you will see next.

Overview

5–6 CA-Visual Objects

Multiple Document Interface ApplicationsMultiple Document Interface Applications

The multiple document interface (MDI) is a user-interface
standard for presenting and manipulating multiple documents
within a single Windows application. An MDI application has
one main window, in which the user can open and work with
several documents (for example, text files, databases, or
spreadsheets). Each document appears in its own child window
inside the main application window.

The CA-Visual Objects desktop is a good example of an MDI
application:

Because each child window has a frame, system menu, Maximize
and Minimize buttons, and an icon, the user can control it just as
if it were a normal, independent window. Child windows
however, cannot move outside the main application window.

Overview

South Seas Adventures 5–7

Tip: Tip: As a general rule, whenever you see the Tile or
Cascade menu commands under the Window pull-down
menu, then you know you are dealing with an MDI
application.

Shell WindowsShell Windows

A shell window is similar to a top application window except
that it acts as an MDI parent window. All children of this
window act as MDI child windows. Most of the applications you
write will be MDI applications, simply because they are adept at
managing multiple tasks.

Dialog WindowsDialog Windows

Dialog windows (or dialog boxes) are used to present and gather
information. They can return a result that indicates user
interaction (for example, if the user pressed the OK or Cancel
push button). There are two types of dialog windows—modal
and modeless.

Dialog windows are generally used to present specific questions
to users and accept their responses; hence, they are generally
modal. CA-Visual Objects allows both modal and modeless
dialog windows.

Overview

5–8 CA-Visual Objects

Modal Dialog WindowsModal Dialog Windows

Modal dialog windows must be acknowledged before the current
thread of execution can continue. A further distinction must be
made between system modal and application modal dialogs
windows:

Dialog windows that are system modal must be
acknowledged (by a button click for instance), before any
execution by any currently running applications, including
the Windows desktop, can continue.

Dialog windows that are application modal stop only the
current application thread. The user is able to use the
Alt+Tab keystroke to jump to another application.

Dialog windows can be created as modal, by specifying the third
parameter of the DialogWindow:Init() method as TRUE.

Modeless Dialog WindowsModeless Dialog Windows

Modeless dialog windows, on the other hand, do not affect the
current execution thread. Although not used very often, a
modeless dialog window can be useful as a progress bar
indicator, or a search and replace routine in a text editor.

Dialog windows can be created as modeless, by specifying the
third parameter of the DialogWindow:Init() method as FALSE.

Child Application WindowsChild Application Windows

A child application window is an application window that
“belongs to” another window (its owner). Because a child
application window is not independent of the owner window, it
is always destroyed, hidden, or iconized when its owner window
is destroyed, hidden, or iconized. Also, child application
windows are never displayed outside of the boundaries of the
owner window.

Overview

South Seas Adventures 5–9

Child application windows do not have a default size and
position on their owner window. They must be assigned an
origin and size before they are displayed.

One way to create a ChildAppWindow object on an MDI shell
window is as follows:

METHOD Start() CLASS App
LOCAL oShellWin AS ShellWindow
LOCAL oChildAppWin AS ChildAppWindow

oShellWin := ShellWindow{}
oShellWin:Caption := "MDI Shell Window"
oShellWin:Origin := Point{150,150}
oShellWin:Size := Dimension{400,250}
oShellWin:Show()

oChildAppWin := ChildAppWindow{oShellWin}
// Create child window owned by oShellWin
oChildAppWin:Origin := Point{10,10}
// Relative to oShellWin
oChildAppWin:Size := Dimension{300,150}
oChildAppWin:Caption := "Child App Window"
oChildAppWin:EnableBorder()
// This allows resizing of the child window
oChildAppWin:EnableSystemMenu()
// Turns on the system menu
oChildAppWin:Show()

SELF:Exec()

When executed, this code produces the following:

Overview

5–10 CA-Visual Objects

Using the Window EditorUsing the Window Editor

In most cases, you will not write code to create your windows.
Data windows, in particular, are extremely complex. It is much
more convenient to use the Window Editor to do this for you.

The standard way to build a window is to design its layout in the
Window Editor. This produces a resource file that specifies what
controls the window has, along with their locations, sizes,
captions, and accelerators. It also generates a window subclass
and an Init() method, that associates names and further
annotations with each control. With such a redefined layout, the
window is displayed very quickly and the methods of the
window have enough information to act intelligently.

MDI Windows and MenusMDI Windows and Menus

In Windows, a child application window never displays a menu
(except for the system menu). However, it can own a menu. If
the child window is used as an MDI child under a shell window,
the child’s menu is displayed in the shell window. This is very
useful: for instance, when different child windows present
different types of data, they often need different menus. The
shell window automatically “knows” to replace its own menu
with the menu of the child window that has focus.

The shell window menu itself is used only when:

There are no open child windows

The active child window does not have an associated menu

It should be pointed out that this ownership causes some unique
behavior. If an event is called from a menu, the application looks
to the currently selected window—the window with focus—for a
method to invoke (that is, a method of the current window class).
If it cannot find one, it looks to the owner window. This allows
you to add a method to a shell window, which can easily be
invoked from any ChildAppWindow’s menu.

For more information on event propagation in menus, see the
“Creating Menus and Toolbars” chapter in this guide.

Overview

South Seas Adventures 5–11

Data WindowsData Windows

The DataWindow class inherits from the ChildAppWindow class,
acquiring its behavior. It also adds data-aware behavior that
enables it to interact intelligently with data servers.

When connected to a data server, a data window forms a view of
the server that allows for direct access and manipulation of the
server’s data.

Server UseServer Use

A data window is connected to a server via the Use() method.
When this connection is established, each edit control on the
window is connected to a field in the data server based on
matching names: a field named CustName in the server is
connected to the control named CustName in the data window.
Assigning a value to a control automatically propagates it to the
server.

Data PropagationData Propagation

When a control is connected to a field in a data server, a value
entered into the control, or assigned to the appropriate name
from the program, is automatically propagated to the server.
Thus, after executing this statement,

oCustomerWindow:CustName := "Albert Stanley"

the CustName field in the server has the correct value. This is
referred to as name-based linkages.

Values are propagated up from the data server to the data
window when the server repositions itself, or when another
window makes a change. This requires no special action: after
executing a Skip() method or assigning a value to a field, every
window connected to the server is automatically updated to
reflect the change.

Overview

5–12 CA-Visual Objects

Master Detail OptionMaster Detail Option

Data windows can be associated with servers in two ways: in a
single-server or dual-server (master-detail) relationship.

The Master Detail Option in CA-Visual Objects allows you to link
a window to two data servers in a master-detail relationship. In
this case, a data window is created for the master server with a
nested sub-data window for the detail server.

This produces a sub-data window or “subform control.” The
sub-data window is just another window control (like a push
button or single-line edit control), except that it represents a
subset of a joined table. One of the fields in the master data
server would be used to perform a SetSelectiveRelation() to the
detail server based on its controlling order.

For example, the Edit Invoice window of the South Seas
Adventures application contains a master-detail relationship:

Only a data window can own a sub-data window because it is
the only window type that can deal with data-related events.

Overview

South Seas Adventures 5–13

Form and Browse ViewForm and Browse View

A data window can take on two different view modes:

Form view contains individual controls for the data fields for
a single record

Browse view contains a spreadsheet-like data browser for
displaying multiple records

The data window can be initially displayed in either mode, and
can be switched to the other mode at any time (implemented by
using the DataWindow:ViewAs() method). Any data window
supports both appearances, although you can, of course, choose
not to provide a way to select one mode or the other by
deactivating or removing one of the standard menu commands.

The two view modes provide the same set of facilities: the same
data linkage facilities, the same display options, and the same
data manipulation methods. From the perspective of the
application, a data window has the same behavior and the same
data properties regardless of view mode.

Data ValidationData Validation

Data entered by the user is automatically validated using any one
of the validation rules for the field specification attached to a
control or column. (For more detail on the validation rules
provided, see the “Defining Field Specifications” chapter in this
guide.) If data fails the validation test, the diagnostic message of
the validation rule is displayed on the status bar. The data
window does not propagate invalid information down to the
server or to other windows, nor does it take any action that
requires writing the invalid value to the server.

In addition, CA-Visual Objects allows the specification of a
ValidateRecord() method for the window as a whole, for the
purpose of cross-field validation. This method, if provided, is
called after all the fields have passed their individual validations.

Overview

5–14 CA-Visual Objects

Action MethodsAction Methods

The DataWindow class also provides action methods that
correspond to the general capabilities of all data servers:
GoTop(), GoTo(), GoBottom(), SkipNext(), SkipPrevious(),
Append(), Delete(), and so on. The DataWindow versions of
these methods verify the validation status of the controls on the
window. If everything is valid, the window invokes the
corresponding method of the data server.

Concurrency ControlConcurrency Control

The concurrency control mode identifies when and how records
are locked and released. This mode can be set by assigning a
constant to the ConcurrencyControl instance variable of a data
window. Because of this instance variable, you do not have to
worry about locks in many situations. The available constants
that you can set are defined, as follows:

ConstantConstant DescriptionDescription

CCFILE All the records in the entire set provided
by the server are locked throughout.
This is not very practical for windows
associated with all the records of a
server, since it would correspond to a file
lock. It is intended to be used in
conjunction with method
DataWindow:SetSelectiveRelation().

CCNONE The data window provides no automatic
record locking; the application is
required to do all locking explicitly.

Continued

Overview

South Seas Adventures 5–15

Continued

ConstantConstant DescriptionDescription

CCOPTIMISTIC No locks are maintained continuously.
Before any update is done, the record is
reread from disk and compared with
what was previously read into the buffer.
If it matches, the record is locked, the
update is done, and the lock is released.
If it does not match, a failure is returned
and the new data is propagated up to the
window. This is the default.

CCREPEATABLE All records that have been read are
maintained locked. The user is
guaranteed that when moving back
among previously viewed data, they are
unchanged.

CCSTABLE The record that the window is sitting on
is always kept locked. Note that when in
browse view, the row that the cursor is
on represents the current record.

The data window provides built-in facilities for concurrency
control, automatically setting and releasing record locks as
appropriate. Once the appropriate mode has been selected by
assigning one of the available constants to the
ConcurrencyControl instance variable, record movements and
changes use the concurrency control facilities of the data server
to take and release locks. If taking a lock fails because another
user controls the record, the data window action fails; the default
action of the data window is to display a message in the status
bar.

Overview

5–16 CA-Visual Objects

Disconnected ControlsDisconnected Controls

If controls are not linked by name, they essentially become
buffers. The data window treats these as ordinary controls and
takes no action relative to the attached server. This is often the
desired approach when one wishes to perform actions that
should be buffered from the server until a user completes all
tasks on a window (for example, completing the required fields
before creating a new record).

Consider the case where you are using a regular data window
with linked controls to do your edits. All validations are being
done automatically. Suppose the application has to be able to
add new records to the table. The simplest method is to put a
button on the edit window that appends a blank record. After
appending the record, the user may decide to cancel the update.
Now, you have the problem of deleting the blank record.

This is avoided in the South Seas Adventures application by
buffering all append operations. In the application, auto-layout
is initially used to populate the data window. The names are
then changed to disconnect the controls from the fields in the
server that they represent. If the user clicks the OK button,
then—and only then—does the record append occur.

Exercise

South Seas Adventures 5–17

ExerciseExercise

Viewing an MDI ApplicationViewing an MDI Application

Let’s take a closer look at an MDI application and its shell
window and various child windows.

The Shell WindowThe Shell Window

The South Seas Adventures application uses a shell window as
its MDI parent window. It was created using the Window
Editor. Let’s inspect that window now.

1. Open the SSA Shell:Forms module, by double-clicking its
module button:

2. Double-click on the window entity called _SSAWindow.

You are presented with the shell window for the South Seas
Adventures application:

Exercise

5–18 CA-Visual Objects

Notice that the Shell Window Properties dialog box shows
the name of the class as _SSAWindow.

3. Close the Window Editor by double-clicking on its system
menu.

Subclassing Your WindowsSubclassing Your Windows

What if the windows created by the Window Editor do not do
everything that you want them to do? What if you want to add
some more functionality? You do not want to throw away the
Window Editor and code from scratch. A useful technique is to
subclass from the code that the Window Editor generates for you.

In the South Seas Adventures application, there is a need to keep
track of all child windows that have been instantiated. A new
class called SSAWindow is used to do this; it inherits from
_SSAWindow. The SSAWindow class is used to instantiate the
South Seas Adventures application shell window. Let’s see what
is involved.

1. Open the SSAWindow class by double-clicking on its entity
button.

You are presented with a Source Code Editor window:

It shows that an instance variable called aChildWindows has
been added to the SSAWindow class. SSAWindow is
subclassed from _SSAWindow (which is generated from the
Window Editor). A reference to each child window is stored
in the aChildWindows array as it is opened.

Exercise

South Seas Adventures 5–19

Let’s see how child windows are opened and tracked.

2. Close the Source Code Editor by double-clicking on its
system menu.

3. At this point, you should already have the SSA Shell:Forms
Entity Browser active. Double-click on the
SSAWindow:FileOpen() method.

In the source code for the FileOpen() method, notice the new
window being added to the array of windows:

Note: Note: Keeping track of all child windows is a useful
technique, since the application can now perform operations
against all child windows. For example, South Seas
Adventures is designed to allow closing all child windows
without closing the application. This is accomplished by the
CloseAllChildren() method. You will look at this code next.

Exercise

5–20 CA-Visual Objects

4. Close the Source Code Editor and double-click on the
SSAWindow:CloseAllChildren() method in the SSA
Shell:Forms Entity Browser.

The code for the CloseAllChildren() method is displayed:

5. Close the Source Code Editor window by double-clicking on
its system menu.

Exercise

South Seas Adventures 5–21

Creating a Modal Dialog BoxCreating a Modal Dialog Box

In this exercise, you will create a standard “warning” dialog box
that is modal. Typically, a modal dialog box shows your users
some information and then returns some value.

Warning Box Modal Dialog WindowsWarning Box Modal Dialog Windows

The WarningBox class creates a simple modal dialog box that
asks users for verification before an action occurs. Let’s see what
is involved in creating one:

1. In the SSA Shell:Forms Module Browser, double-click on the
SSAWindow:QueryClose() method.

The Source Code Editor appears:

When this code is executed, the warning dialog box looks
like the following:

Exercise

5–22 CA-Visual Objects

Modal dialog windows actually stop your code by replacing
the App:Exec() loop with their own Execute() loop.

2. Close the Source Code Editor by double-clicking on its
system menu.

3. Close the Entity Browser for SSA Shell:Forms by double-
clicking on its system menu.

Retrieving Values from Modal Dialog WindowsRetrieving Values from Modal Dialog Windows

It is pretty simple to get one result back from a dialog box—how
about many results?

In the South Seas Adventures application, selecting the Invoices
command from the Report menu invokes the following dialog
box:

When DialogWindow objects (such as the one shown above) are
closed using EndDialog(), their TextControl objects—such as
single-line edit controls, check boxes, etc.—are destroyed. This
means that the TextControl objects cannot be queried after the
user clicks the OK or Cancel buttons.

Exercise

South Seas Adventures 5–23

The method used in the South Seas Adventures application to
circumvent this problem is to:

Use the Window Editor to create a dialog window

Subclass and create any necessary instance variables

Exercise

5–24 CA-Visual Objects

Update the instance variables when the user clicks OK

This methodology allows you to write code that would query the
results of the dialog box as follows:

oDialog := InvcRptDialog{SELF}
oDialog:Show()

DO CASE
CASE oDialog:nDestination == PRINT_PRINTER

// Send report to printer
CASE oDialog:nDestination == PRINT_SCREEN

// Send report to screen
CASE oDialog:nDestination == PRINT_FILE

// Send report to file
OTHERWISE

// Do nothing
ENDCASE

Exercise

South Seas Adventures 5–25

Creating a Data WindowCreating a Data Window

In this exercise, you are going to create a data window to support
the editing of customer records. This data window will be
attached to the Customer data server. You will use the Auto
Layout feature to propagate the data, and then add an OK push
button.

Importing a Support ModuleImporting a Support Module

The support methods for related push buttons have already been
created for you, and are stored in a module export file (.MEF) for
you to import:

1. Open the South Seas Adventures application by
double-clicking on its button in the Application Browser.

2. Select the Import command from the File menu.

3. From the Import dialog box, select the TUTWIND.MEF file
located in the SAMPLES\SSATUTOR\FILES subdirectory
which can be found below the CA-Visual Objects installed
directory.

4. Choose OK.

Creating a Data Window TemplateCreating a Data Window Template

1. In the South Seas Adventures Module Browser, select the
Customer:Forms module by clicking on its button.

2. Select the Window Editor command from the Tools menu.

The Window Editor dialog box appears, allowing you to
define the type of window (DATAWINDOW is already
selected) and its name:

Exercise

5–26 CA-Visual Objects

3. Type EditCustomerWindow in the Name edit control.

4. Choose OK.

The Window Editor is displayed:

The Window Editor provides you with a window template
for you to use in designing a data window.

5. In the Data Window Properties box, choose the Menu
property and select SSACHILDMENU in the drop-down list
box.

Exercise

South Seas Adventures 5–27

This attaches the SSAChildMenu menu to the data window.

6. Choose the Caption property and type Edit Customer.

This caption is used for the title of the data window title.

Designing Your Window LayoutDesigning Your Window Layout

Auto Layout is a convenient way to create and position edit
controls on a template window very quickly. Each control
corresponds to a data field of the selected data server. It is
recommended that you use the Auto Layout feature and then
edit and/or move the controls as you require.

1. Click on the Auto Layout toolbar button.

The Auto Layout dialog box appears:

2. Select the Single Server option.

3. Select CUSTOMER from the Server drop-down list box.

4. Choose OK.

Exercise

5–28 CA-Visual Objects

This automatically lays out all of the fields defined to the
Customer data server on the window template, as shown below:

If you want, you can edit, move, or delete any of these fixed text
and single-line edit controls from the predefined data window.

Adding a Push ButtonAdding a Push Button

Now let’s add a push button to the data window.

1. Select the Push Button icon from the Window Editor’s tool
palette.

2. Drop the push button control at the top right-hand corner of
the data window template:

Exercise

South Seas Adventures 5–29

3. Change the Caption property to OK, using the Push Button
Properties Window:

4. Change the Name property to OKButton:

This conforms to the naming convention used throughout
the application.

5. Select the Click Event property and click on the Ellipsis
button.

This allows you to edit the method to be executed when the
button is clicked:

Exercise

5–30 CA-Visual Objects

6. The EditCustomerWindow:OKButton() method appears in
the Source Code Editor:

You do not need to make any changes to the OKButton()
method source code.

Compiling and Testing Your ChangesCompiling and Testing Your Changes

To verify the results of your changes:

1. Close the Source Code Editor window by double-clicking on
its system menu.

2. Close the Window Editor by double-clicking on its system
menu. Select Yes when prompted to save the changed
entities, if you made changes.

3. Build the application by clicking on the Build toolbar
button.

4. Run the South Seas Adventures application by clicking on
the Execute toolbar button.

5. Log in as usual (Name: User, Password: Trainee).

Exercise

South Seas Adventures 5–31

6. Select the Open command from the File menu.

You are presented with the Open File dialog box:

7. Start a Customer file edit session by clicking on the Customer
radio button.

8. Choose OK.

This opens the Customer Browser window:

9. Click on the name Baker in the Customer Browser window,
and then click on the Edit toolbar button to open the newly
created Edit Customer window.

Summary

5–32 CA-Visual Objects

10. Choose OK to close the Edit Customer window.

11. When you are finished, exit the South Seas Adventures
application by double-clicking on its system menu.

In the “Adding Controls to Your Windows” chapter of this
guide, you will come back to this window to add a Cancel
push button.

SummarySummary

This lesson covered a lot of information regarding window
creation. You should now understand the difference between
SDI and MDI applications and have a good understanding of the
most commonly used window types, including:

Shell windows

Dialog windows

Data windows

You should also know how to use the Window Editor Auto
Layout feature to quickly create an application editing window.

In the next lesson, you will discover the various controls that you
can use to customize your windows—including radio buttons,
check boxes, and list boxes.

