Chapter 3
Object-Oriented Programming
Concepts

In This Chapter

Component In the first chapter of this guide, it was stated that object-oriented
Refers to both the programming (OOP)naturally lends itself to GUI environments by
compile-time class giving you the capability to develop complex systems through

definition and the
runtime object of that
class. May also refer to
a class library.

standard, reusab®mponentsin a manner that models the real
world.” In this chapter, we’ll explore some of the basic OOP
concepts and, in doing so, explain exactly what is meant by this
statement.

Why Object-Orientation?

What is the motivation for learning OOP? Furthermore, what possible
motivation is there to rewrite existing programs in an object-oriented
fashion?

The reasons are simple. First, it's a logical adaptation of the way we
already view the world. Our perception of the world is a collection of
objects that interact with each other; therefore, it is natural for us to
think of software development in the same way.

Secondly, it's a smart business decisiarbjects are intrinsically
modular and therefore encourage both reusability and safe,
incremental enhancements.

Finally, object-orientation fits the event-driven nature of GUI
programming rather well. We’ll examine all these reasons in greater
detail in this chapter, but first, let's explore this last point.

Getting Started 3-1

The Paradigm Shift

The Paradigm Shift

Paradigm
Model of behavior.

Event-Driven
Programming

People often speak of‘@aradigm shift when programming for GUI
environments. This is because Windows applications behave
differently from traditional DOS applications.

In applications developed before GUIs became commonplace, the
program dominated the conversation with the user. The program
asked the user for input and displayed output in return. When filling
in an insurance claim form, for example, the program led the user
through each item that it required.

In well-designed GUI applications, however, the user is in control.

Not only can users flip between applications at will, but they can also
choose what to do next in an application (for example, which fields in
the form to fill in and which to leave to the imagination of the
application). Windows applications, therefore, are said teveat-

driven, because the events generated by the user dictate what happens
in the application. This is contrary to DOS applications, in which the
program has control. (For more information about moving from DOS
to Windows, see thErogrammer’s Guide, Volume)|

Not surprisingly, the new paradigm has profound effects on how you
program. Flexible control for the user means changing the way you
program.

It is this shift to“the user’s in contrdlthat caused developers to
select object-orientation dlse way to tackle GUI development.

This is because event-driven behavior requires very modular
programming: the program must execute in tiny atomic units that can
start up at any time, do their task quickly, and finish. As we
previously stated and as you will soon see, objects are intrinsically
modular. Object-oriented programming, therefore, naturally lends
itself to GUI environments; traditional procedural programming
techniques do not.

3-2 CA-Visual Objects

The Paradigm Shift

Thinking in an
Object-Oriented Way

Note: This does not mean, however, that you need to throw out all
your code. Procedural programming does have its place in OOP;
however, instead of directing the application, it is used in smaller
units to handle the different actions that the user can perform.

Thinking in object-oriented terms also involves another shift:
changing the way you view software development. While object-
orientation helps meet the challenges of programming for event-
driven GUI environments, it doesn’t mix well with conventional
programming training.

Traditionally, programmers are taught to tackle a programming
problem by breaking it down into the operations that need to be
performed. We were taught to think about the steps involved in
solving a problem. We aligned ourselves with phecessevolved.

Solving a problem using an object-oriented approach, on the other
hand, means thinking about tthéngsin the system. By breaking

down large, complex things into smaller, simpler components, we
reach the same geakoftware that solves a problem. For example,
rather than seeing an inventory system in terms of reducing stock,
repricing, or posting to the general ledger, we would look at it in terms
of its elements-such as parts, pick orders, and warehouse-bamsl

their individual properties and associated actions.

It's easy to overcomplicate the difference between object-oriented
programming and traditional process-oriented programming.
However, in reality, it's just a matter of perspective. The plan and
overall objective are the same in both disciplinege’re still creating

a solution to a problem by breaking that problem into several simpler
ones. The only difference is in the approach we take to solving the
problem.

The biggest hurdle, then, is actually learning to think about
programming differently. But once you’'ve mastered it, you're likely
to find OOP a more intuitive way of doing things, because it more
closely resembles your natural thought processes already think

in an object-oriented way. (And OOP introduces a world of
advantages you haven’t even seen yet!)

Getting Started 3-3

What Is an Object?

What Is an Object?

You are an object. So is the chair in which you're sitting. And this
manual you'’re reading. In fact, as you look around, you'll notice
plenty of objects. Your computer, your office, your coffee mug, your
chair. You already think in an object-oriented way.

And what do you notice about objects? In most cases, you'll probably
notice two things:

1. The object has certapropertiesthat help you figure out what it
is and classify it.

For example, a typical office chair has wheels, a seat, and a back.
2. The object haactionsassociated with it.

For example, the chair described above can roll across the floor.

In the object-oriented world of software development, this is also true.
An object—like a window or a check bexhas properties (like a

border or a caption) and actions (like displaying itself on the screen, in
the case of a window, or toggling the check mark indicator on and off,
in the case of a check box). However, instead of actions, they are
referred to asnethod{more on this later).

3-4 CA-Visual Objects

What Is a Class?

What Is a Class?

Class = Blueprint

Instantiate
Create an object from a
class.

To begin to think of programming in terms of the things in the system
(rather than the processes), it is imperative that you understand what it
means to classify something.

When we classify a thing, we createabstractionthat describes it.

For example, the office chair that we described earlier is a thing that
has wheels, a seat, and a back, and can roll across the floor. This is, of
course, an abstract definition. We don’t know what color the chair is,
what material it is made of, and so on, but it gives us some guidelines
in determining what is a chair and what isn't.

In OOP, alassis an abstract definition of something. Classes are
useful because they help us categorize and group things. They also
make it easier to createewthings. It's easy to create a thing if you
know—according to its definition-exactly what is needed to create it.
In many respects, then, a class is like a blueprint.

Consider a house. If you want to build a house, you don’t go to the
lumberyard, buy a truckload of timber and nails and paint, and start
building. Instead, you draw a blueprint of the house: without the
blueprint, you wouldn’t know how much wood to buy, what kind of
nails you need, etc. It would be impossible to construct an entire
house without a plan.

The blueprint for a house gives the builder all the necessary
information. It fully describes every part of the house—the placement
of the windows and doors, the number and kinds of fixtures, the
materials used in flooring, the pitch of the roof, etc. It is important

for the blueprint to be complete: for example, if no doors are shown in
the blueprint, the resulting house won’t have any either.

The blueprint is essentially the abstract definition for a house. In OOP
terminology, then, theHousé class would be the abstract definition
of a house thing (or object).

The blueprint, however, is not a housgou can't live in the

blueprint. If you wish to occupy the house described in your abstract
definition, you will need to create, orstantiate an actual house.

When you instantiate a class, you get an object of that-class
example, instantiating the House class results in a House object.

Getting Started 3-5

What Is a Class?

Class versus Object

Applying Object-
Oriented Thinking
to Software

Instantiation is important because a class is not very useful by itself.
It can’t do anything; it merely specifies the characteristics that an
object of a particular class would possess and how the object would
behave if it existed.

The difference between objects and classes is critical: objects exist in
space and time, whereas a class is an abstract definition, a plan you
use to construct those objects. (In software terminology, a class exists
at compile time, whereas an object does not exist until runtime.)

Let's apply what we've just learned to software. Suppose, for
example, you are designing an information system for a small
business to track employees, customers, inventory, sales
transactions, financial records, etc.

In this system, there are certain things that all employees have in
common—for example, they all have a name, age, and title. In
addition, the system should be able to print out these personal details
for each employee. By setting up these basic requirements, we've just
described the Employee class.

With this class, you can create a whole set of Employee objects, one
for each person in the company. Each Employee has its own data (for
example, John Smith, Cathy Jones, Rick Robertson) and the ability to
print.

3-6 CA-Visual Objects

What Is a Class?

(Properties)

(Methods)

Methods

Compile time

From the one class definition, you can create multiple objects. This
relationship is summarized in the following diagram:

Runtime

Employee Class
Name
Age
Title

Print

Employee object

|—1 John Smith, 28, Tester

Code for
Print method

Employee object

Rick Robertson, 41, Support

Employee object

Cathy Jones, 30, Programmer

Note: Since many objects of the same class can exist simultaneously,
you can assign them to variables to uniquely identify one object from
another. This is how you distinguish, for example, which Employee
object you want to print or which one’s name you want to know.

As you can see in the previous diagram, a class definition sets up two
things for its objects: the properties it can have and the actions it can
perform.

The code portion of an objesthe actions that it can perforss
defined by methods of its class. In the above example, the Employee
class has just one method, named Print.

Methods define what a class of objects is capable of doing. They are a
lot like functions (they have parameters, declarations, programming
statements, and return values), but they're different in that they are
defined for a specific class and invoked for a specific object of that
class.

Getting Started 3-7

What Is a Class?

Properties

State

The code inside the class (that of its methods) can see the data of the
object that it is acting upon. Code outside the class (often called
externalcode) usually sees only methods. This ability of the class to
hide its data (omstance variablesfrom external code is called
encapsulation

So, how does external code get to the data? There are two ways:
throughexported instance variables through special methods,
calledaccessandassignmethods (also calledrtual variableg. The

term propertyrefers to either an exported instance variable or a virtual
variable (in other words, any data visible to code that is external to the
class is a property of that class).

Exported instance variables are sometimes frowned upon because they
violate the encapsulation principle by making the object’s data
directly available to external code.

Virtual variables, on the other hand, allow data to be passed back and
forth between an object and external code without violating the
encapsulation rule. Access methods deliver data from the inside of an
object to the outside, and assign methods deliver data from the outside
of an object to the inside.

When an object is created at runtime, you can assign values to its

properties and thereby changestate Thus, all objects of the same

class have the same properties, but the state of one object may be
different from that of another. For example, all employees have a

name, but one may Bi€athy Jones,while another i$Rick

Robertson.

Similarly, all objects of the same class share exactly the same
behavior via the methods defined in the class at compile time. The
methods, however, do not change from one object to another (for
example, the code for printing all objects in a class is identical,
regardless of the object’s state).

(The principle of encapsulation is discussed further later in this
chapter in the Additional Strengths of OOP section.)

3-8 CA-Visual Objects

Inheritance: Superclasses and Subclasses

Inheritance: Superclasses and Subclasses

Returning to the House
Example

Not only are classes useful for creating many instances of the same
type of object, but they are also helpful in setting ineaarchy of
related classes. In this hierarchy, there igapritancerelationship
among the various levelseach new level in the hierarchinherits
from” the previous, higher level.

To understand this concept in an abstract sense, let’s return to the
house example for a moment. Imagine the architect who will design
the blueprints for all the houses in a development. The houses, aside
from small differences, are basically identical. Should the architect
draw a set of blueprints for each house from scratch? No, that would
be reinventing the wheel unnecessatibll that is really needed is a
single, generic blueprint which contaiosly the details that will be

the same in all housed~rom the onémastet blueprint, the

architect can then design new blueprints to add the details that are
unique for each house.

For example, some of the houses are to have a two-car garage, others a
one-car garage. The architect, then, would design three blueprints:

one master blueprint and two secondary blueprints, both of which

inherit from the master but add their own unique details (one for a
house with a one-car garage and another for a house with a two-car
garage).

Think of the master blueprint as a starting point, and imagine that it is
drawn on a transparency. When new features need to be added to the
base design, the architect simply places another transparency on top of
the original and draws the additions on it.

When the two transparencies are separated, the first will have only the
generic design. This is tiseiperclassor parent. When the two
transparencies are together, a house with embellishments is the one
designed. This is theubclassor child. It inherits all the

characteristics of the parent but defines a more specific kind of house
by adding characteristics of its own.

Getting Started 3-9

Inheritance: Superclasses and Subclasses

Subclassing the
Employee Class

Moving back to our Employee class, suppose you decided to add a
property to store the person’s salary. If the person is full-time, they
are salaried and entitled to benefits; if they are part-time, they are
paid hourly, overtime may need to be calculated, and benefits are not
granted. Therefore, it's not really just a simple matter of adding a
Salary property to the Employee clasthere are far too many other
issues involved.

The best solution, then, is to subclass the Employee class to define
two new classes, namégullTime” and“PartTime”

The newsubclasseéFullTime and PartTime) inherit everything from
their superclasg§Employee)}—both their data (name, age, title) and
their methods (Print):

Employee
Name
Superclass —————————> Age
Title
Print
FullTime / \ PartTime
Name Name
Subcl Age Age
ubclasses Title Title
Print Print

The subclass, then, can define its own unique data and methods, as
well as modify the behavior of its inherited methods (as opposed to
rewriting the originals).

For example, you need to have separate code to handle the salary
calculations in the FullTime and PartTime subclasses because they are
not computed in the same way. Thus, objects created from the
FullTime and PartTime classes would still have all the basic
characteristics of an Employee, but each would have a specialized

3-10 CA-Visual Objects

Inheritance: Superclasses and Subclasses

Salary property, computed differently depending on the object’s class.
Each would also have properties unique
to it, as shown below:

Employee
Name
Superclass ————————> Age
Title
Print
FullTime PartTime
Name Name
Age Age
Subclasses ——————> Title Title
Salary Salary
Benefits Overtime
Print Print

Note: The interface to these two subclasses is identical. In both
cases, you refer to Salary without knowing or caring how the
underlying class computes the value.

Inheritance is not necessarily only one level degpu could

potentially go on to create more subclasses and perhaps even
subclasses from those subclasses. If you look at inheritance like a
tree, a subclass inherits not only from its immediate parent but from
all of its ancestors.

Inheritance, then, is the programming technique by which you adapt
the behavior of a component without changing that component.
Because you can give the component new behavior without in any way
destabilizing it, you achieve safe, incremental enhancement. You
progress from a stable status to an improved stable status.

Getting Started 3-11

A Real-World Example

A Real-World Example

Let's return again to the information system for which we designed

the Employee class. What components would you likely need for this
system? Well, a database for sure. In fact, you'll probably need
several tables to keep track of employees, customers, inventory, sales
transactions, financial records, etc.

You might also want a calendar, which will be used to track shipments
and billing dates. Finally, you'll probably want some mechanism
through which you can generate reports (for example, total sales per
month or a customer mailing list).

We're already on the path to creating an object-oriented information
system, merely by the fact that we’re thinking of the components of
the system as classesables, a calendar, and a report generator.

The Table Let’s consider a single table first. We need to build the structure of
the table by specifying what fields to include, what their data type
should be, and other details. Next, we need to implement actions
(methods) to make this table operational.

What are the methods we want to apply to a table object? Well,
certainly, we’ll want to add records and delete records. We'll also
want to search for records, and possibly edit them. Thus, we've
already determined four basic methods that will be available to every
table we create.

Let's pause and take a look at what we've done. We designed a table
structure, as well as several methods that we can use to provide access
to the information in that table. By doing so, we've created our first
class definition. Using this abstract definition of a table as the

“master blueprint,we can now continue by creating more specific

table designs, adding fields and functionality specific to each table, if
necessary.

Tip: In fact, a class that has these methods is supplied with
CA-Visual Objects. It is called DBServer and is located in the
DBF Classes library.

3-12 CA-Visual Objects

A Real-World Example

The Calendar

The Report Generator

Communicating
Between Objects

Once we've designed the table, we can move on to the calendar. To
keep the design simple, the calendar will hold information by month
and day only. We can represent the calendar as an array of month
objects. Each month object has an array of day objects, and we
schedule appointments for these days. Each day has an array of
appointments.

Now that we have the calendar object’s structure defined, what
methods will we possibly need? We'll definitely need a method to
make an appointment and one to cancel an appointment. Perhaps a
method to mark employees’ vacation days would be helpful, too.

You've probably got the idea by now. When we go to create our
report generator class, we’'ll have to create its structure, which might
include the page format and the information source. And for action, it
would have at least a single method to send output to the printer.

You may have noticed that the three classes we've imagined have
methods that apply only to themselves. For instance, the methods
that add, delete, edit, and search records in the table act only upon
the table itself, not on the calendar or the report generator.

We could also just as easily have given our objects methods that allow
them to interact with each other. For example, the table might have
methods to send the name of a person who has a scheduled
appointment to the calendar. The calendar would then have a method
to receive that name. The calendar might need a method to send
information to the report generator to print a daily schedule of
appointments. The report generator might need to access information
from the table to create a report.

However, these methods would break the encapsulation of the
individual classes. The right way to handle this is for a controlling
object, such as a window, to manage traffic between the various
objects.

Getting Started 3-13

Additional Strengths of OOP

Additional Strengths of OOP

Encapsulation

Client

The code that uses a
class, or the person
who writes that code.

We mentioned earlier that there were other benefits to OOP. Let's
discuss some of these now.

Encapsulatiorrefers to the insulation of the inside of a thing from
changes you make outside it (and vice versa). It is the hiding or
protecting of data.

When you develop classes, it is not necessary foclibet of those
classes to understand the inner workings of the class. For example,
how exactly the Employee class goes about implementing its Print
method is irrelevant to the clieabnly the fact that it exists and

works is important. Or, to use a more simplistic example, the
average person probably knows next to nothing about how a
television works, and doesn’t care as long as it turns on and off,
switches channels on command, and presents a high-quality picture.

From a software perspective, encapsulation plays an important role.
When you design a class, you can hide certain data, so that when an
object is instantiated from the class, the data is invisible to other
objects. This allowsontrolled accest data: the only way that code
outside the class can touch protected data is through methods or
properties. Any external modification to the data, therefore, is done
only with “permissiort.

If we consider the television example again, a person really should not
(and therefore cannot) bypass the volume control and manipulate the
volume by touching the television’s internal working parts.
Encapsulation prevents this. By hiding internal details of objects, and
giving access only to things that should be accessed, encapsulation
provides a simple and safe framework for working with objects and

the data they hold.

3-14 CA-Visual Objects

Additional Strengths of OOP

Modularity and Reusability

Standard Components
= Reusability

Modularity =
Safe, Incremental
Enhancements

When constructing a house, you always use prefabricated
components: girders, door frames, sink units. When constructing a
computer, you assemble prefabricated integrated circuits, power
supplies, and disk drives. Nobody would consider producing such
complex artifacts from concrete and raw timber, from silicon and
iron ore.

The same should be true for softwarget, when constructing

software applications, often equally complex, the tradition of using
prefabricated components is not as well established. The proliferation
of OOP, however, has started to address this shortcoming.

Object-orientation extends the developers’ ability to write modular,
reusable code. Objects are essentially packaged code and data.
Bolstered by encapsulation and inheritance, objects become powerful
application building blocks. Future applications will be easier to
create because they will be programmed by simply assembling
component parts-imagine constructing a personnel package by just
bundling together the payroll system and employee benefits
components!

In the long run, however, software construction is probably going to
be more demanding than the construction of a house or computer,
because it continuously requires adjustment and elaboration.

For this reason, the standard components must be easy to modify and
adapt to new uses and circumstances, and the architecture must allow
the continuous rearrangement of components and addition of new
components.

The tenets of object-orientation hold that proven code rarely needs to
be touched when enhancements or other changes are necessary.
Unless code written in the past is found to be incoxect

incompatible with future interface desigasode need not be

modified. Instead, changes are made by creating a subclass through
inheritance and coding only what is new or different. Therefore, only
one version of any piece of code need ever exiside is reusable.

In addition, class definitions can be grouped together in user-defined
libraries. Over time, these libraries can grow to form powerful

Getting Started 3-15

The CA-Visual Objects Libraries

application building blocks. Since new functionality is added via
inheritance, source code in the class library never changes (and
consequently, user-defined class libraries are easier to maintain than
function libraries).

Because objects are intrinsically modular and reusable, programmers
automatically achieve several benefits:

= There is less code to write and debug. The development cycle,
therefore, is streamlined and more productive.

= The quality of resulting applications is higher, since reused
components are more frequently used and therefore better tested.

= Reusability decreases maintenandeis easier to make changes
(both enhancements and corrections) without side effects.

= Because code is of higher quality and is better tested, and because
development time is streamlined, programmers can focus more on
design, creating applications that are more sophisticated and
robust.

Summary

Hopefully, it's becoming clear that object-orientation is a good way to
manage GUI applications. OOP is the answer to many of the
programming complexities and challenges presented by GUI
environments. Windows development is the perfect place to put
object-oriented theory into practice.

But it doesn't stop there. Applications in general can be thought of
and implemented in object-oriented terms, whether or not they are
GUI, whether or not they utilize databases, or even if they perform
only rudimentary tasks.

The CA-Visual Objects Libraries

To facilitate object-oriented programming, CA-Visual Objects
includes a set of extensive libraries. These libraries provide very
powerful building blocks for your applications.

3-16 CA-Visual Objects

The CA-Visual Objects Libraries

System Classes

In fact, much of the power of CA-Visual Objects comes from its
libraries. They provide an elegant and extensible way of using
supporting services. They integrate well, not only with the
programming language but also with the IDE (for example, the Class
Browser). Libraries also provide an extremely effective way of
insulating application code from platform-specific implementation
details.

CA-Visual Objects provides the following class and function libraries:
= System Classes

= GUI Classes

= DBF Classes

= SQL Classes

= Report Classes

= System Library

« DBF

= Terminal

= Windows API

This library defines classes that are used by the other system class
libraries (that is, GUI Classes, DBF Classes, and SQL Classes).
Whenever you associate one of these class libraries with your
application, you should also associate System Classes with it. To use
the code generated by the Menu, DB Server, FieldSpec, SQL Server,

and Window Editors, yomustassociate this library with your
application.

Getting Started 3-17

The CA-Visual Objects Libraries

GUI Classes

DBF Classes

SQL Classes

Report Classes

This library contains over a hundred classes that allow you to create
the objects required for a full-featured GUI. It includes facilities for
creating windows, menus, push buttons, scroll bars, status bars, list
boxes, and so on, and also includes simple shapes and other
abstractions associated with a GUI.

Using the GUI Classes library also gives you access to the Standard
Program (which you will explore thoroughly ihearning the Basié¢s
later in this guide), robust error and exception handling, and a wide
range of stock objects, such as useful icons, bitmaps, and colors.

You must associate this library with your applications if you plan to
use code generated by the Window Editor and/or the Menu Editor.

This library provides an OOP interface to Xbase .DBF files using
classes and methods instead of traditional commands and functions. It
must be associated with your applications if you plan to use code
generated by the DB Server Editor.

This library provides an OOP interface to SQL tables using classes
and methods instead of traditional SQL statements, and must be
associated with your applications if you plan to use code generated by
the SQL Editor.

As described earlier, SQL database access is accomplished using the
ODBC protocol. Therefore, for your convenience, this library also
contains ODBC API function definitions that can be used to program
directly to the ODBC API.

Note: The ODBC API functions are not specific to CA-Visual

Objects and, therefore, are not included in our documentation. Refer
to the standard ODBC documentation provided by your ODBC vendor
for details about these functions.

This library provides an OOP interface to CA-RET, and must be
associated with your applications if you plan to use code generated by
the Report Editor.

3-18 CA-Visual Objects

What's Next

System Library

DBF

Terminal

Windows API

What's Next

This library provides basic system function support. It also provides a
small subset of Windows API functions and constants that are used by
the system. It is automatically associated with every CA-Visual
Objects application.

This library provides support for traditional Xbase database
commands and functions like SKIP and EOF(). It must be associated
with your applications if you plan to use these techniques.

This library contains compatibility commands and functions for
traditional Xbase screen I/O techniques (for example,
@...SAY...GET). You should associate this library with your
applications only if you plan to use the terminal emulation layer.

This library contains Windows API function, constant, and structure
definitions. You should associate this library with your applications
only if you plan to exploit low-level, system programming.

Note: The Windows API functions are not specific to CA-Visual
Objects and, therefore, are not included in our documentation. Refer
to yourMicrosoft Windows Software Development Kit Programmer’s
Reference, Volume II: Functiofsr details about these functions.

To gain a better understanding of the features available to you, the
next chapter points out some of the various features of the CA-Visual
Objects development environment.

Getting Started 3-19

What's Next

3-20 CA-Visual Objects

