
South Seas Adventures 17–1

Chapter 17
Using Libraries and Dynamic Link
Libraries

Objective

In this lesson, you will be introduced to the benefits of sharing code
among your applications using libraries and dynamic link libraries
(DLLs). Not only will you learn how to create a library and a DLL, as
well as the circumstances in which to use each, but you will be able to
produce a .DLL file that can be distributed easily to other
programmers or your end users.

Overview

Both libraries and DLLs provide a means of sharing code among your
applications. We explore each type of library in the following
sections.

Libraries

You can use a library (or shared library) in the same way a .LIB file is
used in developing DOS applications. Many of your CA-Visual
Objects applications may include the same library and share copies of
its code. This library is then linked into the executable (.EXE) file
when your application is generated.

Although a library is created much like an application, you cannot run
a library as a stand-alone application or create an executable (.EXE)
file from one.

Overview

17–2 CA-Visual Objects

The source code of libraries created in CA-Visual Objects may be
distributed by exporting the source code to an Application Export
Format (.AEF) file; however, this is not usually desirable. Another
option is to create a DLL, which provides more flexibility and several
advantages.

Dynamic Link Libraries

A DLL is maintained in an external file distinct from any other
application. It contains compiled and linked code that can be called
from and shared by many .EXE files. DLLs also allow your
applications to make better use of available memory, because they are
loaded only once, even when shared by many applications.

Memory Efficiency Using DLLs, you give your applications more memory for data. An
.EXE file owns, and can access, a data area called DGROUP (also
referred to as near data or static data) that typically holds your
STATIC variables and character constants. This area is limited to
64 KB. However, using DLLs, you can increase the total data memory
available area because each .DLL file also has its own DGROUP area.
Then, even though applications share the DLL code, each CA-Visual
Objects application gets its own copy of the DLL’s DGROUP.

Library Distribution DLLs are an ideal means for distributing your work to other
developers without giving away your source code. When you create a
.DLL file from the source code in your repository, a corresponding
.AEF file is also generated, defining the public protocol for the DLL.
The only source code you distribute is the .AEF file, which contains
only _DLL declaration statements that point to entities in the .DLL
file by name.

Once imported, this .AEF file is created as a library (rather than a
DLL) that can be included in the search path of any application
needing access to the .DLL file.

Ease of Application
Maintenance

DLLs make it easier to maintain your code. Since DLLs are linked
only at runtime, you can replace a .DLL file without suffering the
consequences of having to relink your .EXE file (provided that the
public protocol of the DLL has not changed). You will also save
development time, since you do not have to rebuild the entities
contained in a DLL whenever you rebuild an application.

Exercise

South Seas Adventures 17–3

Two DLL Types There are two types of DLLs: CA-Visual Objects and “ foreign-
hosted.” A CA-Visual Objects DLL can be used only with
CA-Visual Objects applications, supporting its unique language
features. A foreign-hosted DLL is a standard DLL that can also be
used by applications written on other platforms (for example, C).

Please refer to Shared Libraries and DLLs, in the Operating
Environment topic of the CA-Visual Objects online help, for
additional information relating to libraries and DLLs.

Exercise

This exercise demonstrates how to create a library and a DLL from
existing code in the South Seas Adventures application. In working
through the steps, you will also learn how to generate a .DLL file and
use the corresponding .AEF file defining its public protocol as a
library.

Creating and Using a Library

A library is created in much the same way as an application. It does
not, however, contain a Start() entity since the code of a library is not
intended to be run as a stand-alone application.

In this exercise, you are going to create a library called MyLib. You
transfer the IniFileSpec:Class module of the South Seas Adventures
application into the library, which can then be used in other
applications.

Creating a New Library Application

1. From the Application Browser, choose the New Application
toolbar button.

The Setup Application dialog box appears:

Exercise

17–4 CA-Visual Objects

2. Type MyLib in the Application Name edit control.

3. Uncheck all options in both the User Interface and the Database
group boxes.

4. To define the Application Type, click on the Library radio button
and choose OK.

The Properties dialog box is displayed:

Note that there is no path specified for a library application.

Exercise

South Seas Adventures 17–5

5. Since some of the functions in the new library will make
Windows API calls, include the Windows API library in the
search path by scrolling through the Available list box and
double-clicking on it.

6. Repeat step 5 for the DBF Classes library.

7. Choose OK.

The empty Module Browser of MyLib is displayed.

Moving Modules Between Applications

You now need to return to the South Seas Adventures application to
move the IniFileSpec:Class module to the Module Browser of MyLib:

1. Return to the Application Browser by selecting Applications,
Libraries, and DLLs from the Window menu.

2. Open the South Seas Adventures application by double-clicking
on its button in the Application Browser.

3. Select the Tile command from the Window menu.

4. Scroll through the Module Browser, and select the
IniFileSpec:Class module by clicking on its button.

5. Select the Move Module command from the File menu.

The Move Module to Another Application/Library dialog box is
displayed.

Exercise

17–6 CA-Visual Objects

6. Select MyLib in the To Application drop-down list box, and
choose OK.

The IniFileSpec:Class module is now in the Module Browser of
MyLib:

Notice that all of the modules in the South Seas Adventures
application that were using any of the functions in the
IniFileSpec:Class module need to be rebuilt. This is because they
have lost their link to the functions you moved to the library. You
can fix this by including MyLib in the application’s search path
and rebuilding the library, as shown next.

Building the Library

In order to use the library, you must first build it:

1. Select the MyLib Module Browser by clicking on its window.

2. Choose the Build toolbar button.

3. Clean up the desktop by closing the Module Browser for MyLib,
and then choose the Cascade command from the Window menu.

Exercise

South Seas Adventures 17–7

Speeding Up Library Processing

Using a library, you can speed up the generation of an .EXE file and
the dynamic execution of applications by creating a prefix (.PFX) file.
A .PFX file contains a sorted index of all entities contained in the
library. The linker will search through this index when looking for
entities not defined in your application.

1. To generate the .PFX file, select the Prefix Lib command from the
Application menu.

The .PFX file is created in the same subdirectory as the
CA-Visual Objects repository (for example, C:\CAVO\DATA).

Note: You should recreate this file whenever you modify a
library entity.

2. Close the MyLib Module Browser by double-clicking on its
system menu.

The library is now ready to be used in the South Seas Adventures
application.

Using the Library

To use a library in an application, you must include it in the
application’s search path. Let’s do this for the South Seas Adventures
application, using your new library:

1. Select the South Seas Adventures Module Browser by clicking on
its button.

2. Choose the Application Properties toolbar button.

The Properties dialog box appears.

3. Scroll through the Available list box and select MyLib by double-
clicking on it.

4. Choose OK.

Exercise

17–8 CA-Visual Objects

5. Rebuild the South Seas Adventures application by clicking on
the Build toolbar button again.

The South Seas Adventures application is now ready to be executed
and runs just as before. Where it used to access code from its own
IniFileSpec:Class module, however, it now accesses code from the
library, MyLib.

Creating and Using a DLL

If many of your applications use common code, it would be wise to
provide this code as one or more DLLs. At runtime, a .DLL file is
shared by the applications that use its code.

This exercise will take you through the steps to create a DLL from a
library and use it from the repository, as well as to create a stand-
alone .DLL file, which can be easily distributed and maintained.
Lastly, you will learn how to create a foreign-hosted DLL to be used
with non-CA-Visual Objects applications.

Creating a New DLL Application

You are now going to create a DLL from a copy of the MyLib library,
as follows:

1. From the Application Browser, select the MyLib application by
clicking on its button.

2. Select the Copy command from the File menu.

The Copy Application dialog box appears:

3. Type MyDLL as the new application name in the To Application
edit control and choose OK.

Exercise

South Seas Adventures 17–9

4. Select the newly created MyDLL application from the
Application Browser.

5. Choose the Application Properties toolbar button.

The Properties dialog box is displayed.

6. To change the Application Type to DLL, select the DLL option
and choose OK.

7. Type in the full path for the DLL (for example,
C:\CAVO\SAMPLES\SSATUTOR).

8. Choose the Build toolbar button.

You have now created a DLL within the repository, and it is now
ready to be used in the South Seas Adventures application.

Using a DLL

At this point, you have created a DLL—although no .DLL file has
been generated (a step which comes later in this lesson). You can
still, however, use the DLL stored in the repository in the same way
that you used the MyLib shared library.

1. From the Application Browser, select the South Seas Adventures
application by double-clicking on its button.

2. Choose the Application Properties toolbar button.

The Properties dialog box is displayed.

3. Scroll through the Included list box and remove MyLib by
double-clicking on it.

4. Scroll through the Available list box and select MyDLL by
double-clicking on it.

5. Choose OK.

6. Choose the Build toolbar button to recompile the entire
application.

The South Seas Adventures application is now ready to be executed
and will run just as before. However, where it used to access code
from the library, MyLib, it now accesses code from the DLL library,

Exercise

17–10 CA-Visual Objects

MyDLL. A few more steps will be necessary to create and use an
external .DLL file.

Creating a .DLL File

To use a CA-Visual Objects .DLL file, you must do the following:

■ Create the physical .DLL file

■ Create a library defining the public protocol for the DLL

■ Include the public protocol library in the search path of the
application

Let’s first create the .DLL file:

1. From the Application Browser, select MyDLL by clicking on its
button.

2. Choose the Application Properties toolbar button.

The Application Properties dialog box appears.

3. Make sure you enter the full path for the .DLL file as the
SAMPLES\SSATUTOR subdirectory of your CA-Visual Objects
directory, and choose OK.

4. Select the Make DLL command from the Application menu.

The Select Target Type of DLL dialog box is displayed:

5. The CA-Visual Objects DLL radio button is selected by default.
Choose OK to accept the default setting and close the dialog box.

This creates two files: MYDLL.DLL and MYDLL.AEF. The
.DLL file contains the executable code, and the .AEF file contains
the prototypes that you will use to access the DLL.

Both files are written to the path for the .DLL file as specified in
the Application Properties dialog box.

Exercise

South Seas Adventures 17–11

6. When the process is complete, close the Module Browser for
MyDLL by double-clicking on its system menu.

Tip: At this point, the .DLL and .AEF files can be distributed to
other CA-Visual Objects programmers.

Using a CA-Visual Objects .DLL

To have your application access the code stored in a .DLL file, you
must define the prototypes to the entities you want to access, similar
to the way Windows API library contains the prototypes to the
functions available in Windows.

For .DLLs that are created in CA-Visual Objects, this is done for you
when you generate the .DLL file. All you have to do is import the
generated .AEF file and include it in the application’s search path.

Importing Your
.AEF file

Let’s import the sample MYDLL.AEF file:

1. From the Application Browser, select the Import command from
the File menu.

2. Select MYDLL.AEF from the SAMPLES\SSATUTOR
subdirectory of your CA-Visual Objects directory, and choose
OK.

A new application is added to the Application Browser, as
illustrated below:

Exercise

17–12 CA-Visual Objects

The new application, MyDLL DLL, was given a unique name by
CA-Visual Objects which added “DLL” to the end of the
application name from which it was created (MyDLL).

As its button icon indicates, the new application is a shared
library. It contains only the prototypes of the entities in
MYDLL.DLL.

3. Choose the Application Properties toolbar button.

The Properties dialog box appears.

4. Scroll through the Available list box and select the Windows API
library by double-clicking on it.

5. Repeat step 4 for the DBF Classes library.

6. Choose OK.

7. Build the new library by selecting the Build toolbar button.

Tip: If there are entities in the DLL that are not intended for
direct use by the programmer, their prototypes can be removed
from the library. You would then re-export the library as an .AEF
file for distribution.

Including Your .DLL
in an Application

Finally, to use this new .DLL file, you must include the library which
contains its prototypes in your application search path.

Let’s include your new library in the South Seas Adventures
application:

1. From the Application Browser, select the South Seas Adventures
application by clicking on its button.

2. Choose the Application Properties toolbar button.

The Properties dialog box appears.

3. Scroll through the Included list box and remove MyDLL by
double-clicking on it.

4. Scroll through the Available list box and select MyDLL DLL by
double-clicking on it.

Exercise

South Seas Adventures 17–13

5. Choose OK.

6. Select the Build toolbar button to rebuild the revised South Seas
Adventures application which includes the new library.

From now on, South Seas Adventures will use the external .DLL file
and not the one in your repository. Therefore, any change to the
repository source code must be followed by generating the
.DLL/.AEF pair and importing the .AEF library once again.
Otherwise, the dependent application will not recognize the change.

Creating and Using a Foreign-Hosted DLL

You can create a foreign-hosted DLL simply by following these steps:

1. Select the Make DLL command from the Application menu.

The Select a Target Type of DLL dialog box is displayed:

2. Click on the Foreign-hosted DLL radio button and choose OK.

However, in the case of the MyDLL library, an attempt to generate a
foreign-hosted DLL would result in an error. This is because the
MyDLL library does not abide by the rules set out for foreign-hosted
DLLs.

Much care must be taken when creating foreign-hosted .DLLs for any
platform. Please refer to Foreign-Hosted DLLs, in the Operating
Environment topic of the CA-Visual Objects online help, for exact
details on the “do’s and don’ts” of creating and using foreign-hosted
DLLs.

Summary

17–14 CA-Visual Objects

Summary

In this lesson, you have learned how use libraries and dynamic link
libraries to make your applications more efficient. First, you learned
to share code between applications by using libraries. You
accomplished this by moving a module’s code into a shared library
and making use of it in an application. The next step was to link this
library into your application.

Finally, you learned how to create DLLs, so that your code is shared at
runtime. You also learned how to create and use an external .DLL file
so that your code can be developed with the most flexibility and
portability.

In the next lesson you will create installation disks, and learn how to
use Install Maker and CA-Installer for the proper distribution of you
CA-Visual Objects applications.

