
Lesson 1: A Tour of the Standard Program

Getting Started 5–11

A Tour of the CA-Visual Objects Desktop

Your desktop should now look as follows:

New Module Browser with four modules

By simply completing three dialog boxes, your new application
already contains four modules: Standard Menus, Standard Shell,
Standard SQL, and Start. Let’s take a closer look at this Module
Browser.

Note: The Standard SQL module is generated because we included
the SQL Classes library when we originally created this application.
If you do not require access to SQL data sources in your own
applications and do not include the SQL Classes library, this portion
of the Standard Program will not be generated.

Lesson 1: A Tour of the Standard Program

5–12 CA-Visual Objects

Using the Module Browser

Every Module Browser includes some built-in details that point out
useful information about the modules in an application:

Debugging indicator

Entity count

Compilation status indicator

Debugging Indicator For example, there is a debugging indicator that lets you know
whether the debug flag for a particular module is on (D+), off (D-), or
controlled by the application to which it belongs (D).

Compilation Status
Indicator

The Module Browser also features an LED-style compilation status
indicator. Compilation status is indicated by color: green means
compiled successfully, red denotes that the module needs to be
compiled (either because it has compilation errors or because one of
its entities has been modified since the last build), and yellow
indicates that it has never been compiled.

Note: If desired (for example, if you are working with an LCD
monitor), you can change the indicators so that they use symbols
rather than colors to denote compilation status (a check mark for
green, an X for red, and a question mark for yellow). Choose the
System Options command on the File Setup menu, and turn off the
Color LEDs check box.

Lesson 1: A Tour of the Standard Program

Getting Started 5–13

Entity Count Finally, there is an entity count for each module, indicating the
number of entities in a particular module. An entity is the smallest
named unit of the application, such as a function or method definition.
For example, the Start module has one entity, the App:Start() method.

Using the Application-Wide Entity Browser

Let’s now take a look at the various entities created by CA-Visual
Objects by choosing the Tools Entity Browser command. Doing so
displays an application-wide Entity Browser, listing every entity in the
new application:

If you scroll through this Entity Browser, you can see that the
Standard Program contains a host of entities, including classes,
defines, menus, methods, and resources. Displaying these entities in
the application-wide Entity Browser provides a useful and
customizable means of viewing them (for example, you can collapse
the tree or set a name filter).

Lesson 1: A Tour of the Standard Program

5–14 CA-Visual Objects

Accessing the Editors

The Entity Browser also offers you easy access to these entities.
Double-clicking on an entity in the Entity Browser displays that entity
in its associated editor. For example, scroll down to the Methods
branch, find the App:Start() method, and double-click on it:

Use the scroll bar to move down to the Start() entity

Double-click to open

CA-Visual Objects displays its code in the Source Code Editor:

Lesson 1: A Tour of the Standard Program

Getting Started 5–15

A Closer Look at the Application

The App:Start() method is a good place to begin exploring the
structure of the Standard Program, and we will take a closer look at it
in this section along with the rest of the generated source code. But
first, it will help you to understand some of the basic concepts
underlying the structure of an MDI application.

MDI Application Structure

The Windows MDI applications are structured around the presentation of multiple
windows. They typically use a shell window as the main, or “owner,”
window. The documents that are opened in the shell window are
referred to as child windows. Child windows are owned by the shell.

In the Standard Program, the shell window is created using the
StandardShellWindow class. This class inherits from the
ShellWindow class in order to add more functionality to the basic
shell window, while preserving what is already there (for more
information on inheritance and subclassing, refer to “Object Oriented
Programming Concepts” in this guide). Thus, characteristic of most
MDI applications, the Standard Program defines a shell window in
which you can open any number of child windows.

When we speak of child windows, we are referring to windows that are
owned by the shell window. These windows are typically derived
from one of two classes: ChildAppWindow or DataWindow.

The DataWindow class actually inherits from the ChildAppWindow
class and adds functionality to support linking the window directly to
a database through a data server. Thus a data window is a kind of
child window. We, therefore, use the terms “child window” and “data
window” interchangeably in this discussion.

Lesson 1: A Tour of the Standard Program

5–16 CA-Visual Objects

Note: An SDI application, by contrast, is structured around
displaying a single document at a time. Typically, it uses a top
window (based on the TopAppWindow class) as the owner window,
and a ChildAppWindow or DataWindow as the child. The difference
is that with a top window as owner, only a single child window can be
open at a time.

The App Object Just as each child window has the shell window as its owner,
everything in a CA-Visual Objects GUI application has an owner.
This is a very important concept that controls much of the action in
the application.

At the highest level, the topmost window in an MDI application—the
shell—is owned by the App, an invisible object that controls the basic
event processing of the system.

App

owns

Shell
Window

Child
Windows

owns

The App object represents the overall application—it starts, runs,
stops, and handles all events (such as mouse clicks and keystrokes) in
the application.

