
South Seas Adventures 2–1

Chapter 2
Exploring the CA-Visual Objects
Integrated Development
Environment

Objective

This chapter demonstrates how to use the CA-Visual Objects IDE to
first import the South Seas Adventures application and then view its
components. You will also learn how to build and run the application.

In addition, several CA-Visual Objects application design techniques
will be discussed as follows:

■ How to best organize files on your hard drive

■ How to name your modules

■ How to group entities into modules

Overview

Before you begin working on the tutorial exercises in this guide, there
are some fundamental concepts that you should know about the way
the components of a CA-Visual Objects application are organized and
designed.

As a programmer, you know the importance of working with a
development environment that is easy to manage. You must design a
directory structure, define modules that hold all application entities,
and be able to access them quickly.

Overview

2–2 CA-Visual Objects

Many of the details that commonly make your life difficult in other
programming environments, are automatically handled in CA-Visual
Objects.

Choosing a Directory Structure

This section describes how the files related to the South Seas
Adventures application are organized on your hard disk. Creating a
separate subdirectory allows you to easily separate the various
application components when you create install disks and backup sets.
For the purposes of this tutorial application, a distinct subdirectory
has been created. A more detailed description of the directory
structure is presented later in this guide.

For example, the South Seas Adventures application was placed in a
subdirectory called \SAMPLES\SSATUTOR. If you have installed
CA-Visual Objects to C:\CAVO, the File Manager will display the
following directory structure:

Overview

South Seas Adventures 0–3

The South Seas Directory Structure

This section describes each subdirectory within the South Seas
Adventures application development environment.

SSATUTOR This is the main runtime subdirectory. Any files necessary to run the
application will be placed here, such as:

� The application executable, DLL, and help files (.EXE, .DLL, and
.HLP, respectively)

� CA-RET report files (.RET)

� Data files (for example, .DBF and .NTX)

SSATUTOR\FILES This subdirectory is for resource files, such as bitmap (.BMP), icon
(.ICO) and cursor (.CUR) files. Since these files are included in the
executable file (.EXE or .DLL), your users do not really need the files
in this subdirectory. You can also use this area to keep any
application (.AEF) and module (.MEF) export files.

SSATUTOR\HELP Creating context-sensitive help for the application is a project in
itself. It can be easily segregated from the main development area.
See the “Adding Help to Your Application” chapter for more
information on creating help. The actual help file (SSA.HLP)
associated with the application will be placed in the \SSATUTOR
subdirectory.

The reasons for using this directory structure for the South Seas
Adventures application are:

■ The application development directory structure resembles a
user’s directory structure when the system is installed—resulting
in a similar environment.

■ It is easy to create an installation set since the runtime files are
kept in one place. The only other files needed by a user to run the
application are the DLLs required by CA-Visual Objects. (For
more information on DLLs, see the “Distributing Your
Application” chapter in this guide. Also, see Appendix A,
“Creating a Path-Independent Application.”)

Overview

2–4 CA-Visual Objects

Creating Path-Independent Applications

CA-Visual Objects runtime file handling depends on the location of
certain files (including database, report, and help files), as well as how
you specify their locations when you create the server, report, and help
building blocks.

To the extent possible, you should refrain from either specifying or
hard coding any path information for these building blocks in order to
maintain drive and directory independence for your application.
There are also several steps you need to perform when you design
entities using the CA-Visual Objects visual editors.

It is recommended that you refer to Appendix A, “Creating a Path-
Independent Application,” for more information related to path-
independent applications.

The CA-Visual Objects Repository

Many of the traditional development details are handled by the
CA-Visual Objects repository. The repository stores and organizes all
of the application building blocks (or entities). It also manages other
details of your application, including:

■ Source code files

■ Compiled code files

■ Binary design components (such as windows and menus)

■ Compiler options

■ Directory information

■ Dependency information

Overview

South Seas Adventures 0–5

You no longer have to deal with such details as the location of your
include (.CH), source code (.PRG), make (.RMK), or object (.OBJ)
files. When you save an application, all the relevant information is
stored in the repository files. This information can only be viewed or
utilized while you are working in the CA-Visual Objects IDE.

The repository provides you with a three-level hierarchical,
object-oriented view of an application. It allows you easy access to
the many entities that define the application.

Application Component Hierarchy

Application Level The application is the top level in the hierarchy. GLOBAL variables
are visible across the entire application.

Module Level Modules exist on the second level of the hierarchy. Modules are
similar in nature to traditional source code files, since they contain
and encapsulate the supporting entities. STATIC GLOBAL variables
are visible only within the module.

Entity Level Entities are the smallest identifiable components of your application
and are analogous to the functions, procedures, constants, and class
definitions of traditional source files. The CA-Visual Objects
repository manages each entity as a separate unit. LOCAL variables
are visible to the creating entities only.

Automated Make and Entity-Level Compiling

The repository also keeps cross-reference information between the
entities of your application. When you build your application,
CA-Visual Objects knows which entities it has to compile, based on
the changes you have made—only the entities that have changed will
get recompiled. This is known as “entity-level” incremental
compiling. Hence, you no longer need a traditional “make” file.

Overview

2–6 CA-Visual Objects

Grouping Your Entities into Modules

Module Design Considerations

As a programmer, you may often find yourself wondering how many
modules are appropriate for the given application. There are a few
general rules that may be helpful in this process, as described below:

1. The IDE visual editors place all source code entities related to a
primary design entity in the same module as the design entity.

2. To avoid confusion, do not mix data servers, menus, and windows
in the same module.

3. To avoid having too many entities in a module, restrict a module
so that it contains no more than two or three windows or one
menu, if possible. Although a question of personal choice, most
modules should have between 20 and 100 entities.

4. Where possible, place all custom source-code entities (developer-
coded) in a module other than the one in which the window or
menu resides. You may have to cut and paste source code
between modules to accomplish this.

5. Use descriptive two-part names for the modules. Do not make the
names too long; otherwise, the size of the buttons in the module
browser will become excessively wide.

In the South Seas Adventures application, many of the module names
begin with the name of one of the business data types: adventure,
customer, employee, invoice, item, and payment. The second part of
the module name is a word such as class, data, forms, menu, methods,
or reports. This naming convention indicates what is contained in the
module. Note that the developer-coded methods are placed in the
Methods modules.

Overview

South Seas Adventures 0–7

Module Naming Conventions

This section discusses some of the tutorial modules in depth in order
to demonstrate how the design considerations were applied. What you
are striving for in your naming convention is ease of management in
the future. Take advantage of long names for modules as well as
entities. This will make the components of your application easier to
recognize.

The names of the South Seas Adventures application modules are all
two-part names separated by a colon (for example, Adventure:Data).
The first part defines the primary focus of the entities in the module
and the second part identifies what the entities are used for. For
example, “ :Forms” indicates that the module contains data windows,
dialog windows, or a shell window.

To give you a practical idea of how these naming conventions are
applied, let’s now examine some of the Adventure modules:

Adventure:Data This module contains all entities related to the two data servers
associated directly with an adventure, the adventure header file
(ADVHDR.DBF) and the adventure detail file (ADVDTL.DBF).

Adventure:Forms This module contains all the entities required for the adventure forms.
The Window Editor was used to create these forms; therefore, the
entities of the most concern within this module are naturally the
window entities. There are actually five forms (window entities) in
this module that let you add, edit, or browse data in the data servers
mentioned above. These forms are named as follows:

■ AdventureBrowser

■ AdventureDetailSubform

■ AdventureSubform

■ EditAdventureWindow

■ NewAdventureWindow

Overview

2–8 CA-Visual Objects

The AdventureSubform is a tabular display used on the
AdventureBrowser window, and the AdventureDetailSubform is a
tabular display of the items in the master-detail
EditAdventureWindow.

Adventure:Methods This module contains all the methods that were not generated
automatically by the CA-Visual Objects editors. This code was
separated from the generated code to make it easier to locate.

Adventure:Reports This module contains a report entity as well as a window entity. The
window entity is in this module because it is a dialog box that defines
the scope of the report that will be created.

In addition to modules that relate to one of the six business data types,
you will also need some application-related modules. These contain
entities used in several places. In the South Seas Adventures
application, the general purpose modules include:

Password:Forms This module contains the password dialog window and related entities.

SSAChild:Menu This module contains the menu attached to the child windows.

SSAShell:Forms This module contains the shell window (SSAWindow) for the
application.

SSAShell:Menu This module contains the menu attached to the shell window.

App:Misc This module contains miscellaneous entities that can become a library
or a DLL.

App:Resources This module contains any cursors, bitmaps, and icons that the
application needs.

App:Start This module contains the application Start() method and any global
entities for the application.

Now that you know the basics about how application components are
handled and designed, you are ready for a hands-on tour of the IDE.
You will discover the ways it can help you work with your
application—during various stages of development.

Exercise

South Seas Adventures 0–9

Exercise

In the following exercise, you will open the CA-Visual Objects
Application Browser, import the South Seas Adventures application,
set some application properties, compile the application, and then run
it.

Using the Application Browser

Browsers provide you with a logical way to access and view the
components of your application. There are three browsers in
CA-Visual Objects, one for each level in the repository hierarchy
(application, module, and entity).

Let’s look at the Application Browser by performing the following
steps:

1. Start CA-Visual Objects from the program manager by
double-clicking on the CA-Visual Objects program icon.

The Application Browser, the first in the series of browsers,
appears on the desktop:

Exercise

2–10 CA-Visual Objects

Initially, the Application Browser displays all of the libraries
supplied with CA-Visual Objects. Each library is represented by
a button in this window. Similarly, the applications and libraries
that you create also appear as buttons in this window.

2. Notice the CA-Visual Objects default icons that are displayed on
the buttons in the Application Browser. These distinctive icons
help you visually distinguish between applications and libraries.

The following table shows the default CA-Visual Objects icons:

Icon Description

CA-Visual Objects System library icon

Application icon (which you can create)

User-defined library icon

User-defined DLL icon

You can also create your own application icon, which you will
learn more about in the “Working with Icons and Cursors”
chapter in this guide.

Exercise

South Seas Adventures 0–11

3. The Application Browser provides you with those commands that
enable you to manage your applications—New, Open, Copy,
Rename, and so on. Choose the File menu and inspect its pull-
down menu to view all of the commands available to you:

The Import and Export commands are provided to allow you to
move applications to and from external disk files, since
applications are stored in the repository. You will find these
options useful for trading applications with other developers and
for backup purposes.

Exercise

2–12 CA-Visual Objects

Importing the Application

Let’s begin by importing the South Seas Adventures application which
is used throughout the remainder of this tutorial.

1. Choose the Import command from the File menu.

The Import Application dialog box appears:

2. Select SSA.AEF. This is the South Seas Adventures application
export file. It can be found in your CA-Visual Objects
\SAMPLES\SSATUTOR\FILES subdirectory.

3. Choose OK.

After the application is imported, a new button appears in the
Application Browser. This button represents the South Seas
Adventures application, as shown below:

Exercise

South Seas Adventures 0–13

Notice the palm tree icon on the South Seas Adventures
application button:

This icon is associated with the application through the
Application Properties dialog box, which you will learn about in
the next section.

Configuring Your Application Environment

For the purposes of the tutorial, there are a few settings that you may
have to modify, based on how you installed CA-Visual Objects. You
will also look at the compiler options that are available to you.

Application Properties

As suggested previously, you should create a subdirectory for each
application or library that you create. This ensures that your disk
stays organized, by keeping files for each application separate, and
eliminates confusion about what files belong to a specific application.
The path for EXE and DLL files can then be set to the application’s
subdirectory.

However, it is possible that CA-Visual Objects is installed to a
different drive or directory, for instance to D:\CAVO. If so, you must
modify one of the high-level properties of the application—namely,
the path for the generated EXE and DLL files. You can modify the
properties of an application or library at any time during development.
The application’s Properties dialog box allows you to specify the
following:

■ Application name

■ Application type

■ Libraries to include in your search path

■ Path for a generated file (.EXE or .DLL)

Exercise

2–14 CA-Visual Objects

■ Program Manager group in which to place the program icon for
your generated .EXE file

■ Default debugging status

■ Whether the generated .EXE or .DLL file should include
CA-Visual Objects runtime files

Now, let’s see how this applies to the South Seas Adventures
application. If you have installed CA-Visual Objects on a drive and
directory other than C:\CAVO, you must modify the application
properties as follows:

1. Select the Application Properties toolbar button.

The Properties of South Seas dialog box appears:

2. In the Path for EXE and DLL Files edit control, type the drive and
directory to which you installed CA-Visual Objects. For example,
if you installed CA-Visual Objects to the D:\CAVO directory, set
the path to:

D:\CAVO\SAMPLES\SSATUTOR\SSA.EXE

Exercise

South Seas Adventures 0–15

3. Choose OK.

For more information on application properties, see “Browsing
Applications, Modules, Entities, and Classes” in the IDE User
Guide.

Compiler Options

Before attempting to compile the application, it is wise to review its
compiler options. You can specify different compiler options for each
application at any time during the development process.

Let’s now look at the compiler options for South Seas Adventures
application:

1. Select the Application Compiler Options toolbar button to view
the compiler options available to you.

The Compiler Options dialog box appears:

2. Notice that the default system compiler options, with the
exception of All in the Compiler Warnings group, are used for the
South Seas Adventures application.

3. Choose OK to close the Compiler Options dialog box.

For more information on compiler options, see the CA-Visual Objects
on-line help or “Working in the CA-Visual Objects Desktop” in the
IDE User Guide.

Exercise

2–16 CA-Visual Objects

Using the Module and Entity Browsers

In the following exercise, you will open the CA-Visual Objects
Module Browser, examine the entities in a module, and use the Entity
Browser to look at the various types of entities.

1. Open the South Seas Adventures application by double-clicking
on its button in the Application Browser:

2. Double-click on the Adventure:Data module to examine its
entities.

The Entity Browser appears:

There are two server entities (AdvHdr and AdvDtl), each
associated with many field spec entities. Further down in the list,
you will find the two data server classes and related methods,
accesses, and assigns.

Note: If an entity name is surrounded by parentheses, the
variable or function is local (for example, STATIC DEFINE).

Exercise

South Seas Adventures 0–17

3. Scroll through the list, and double-click on one of the two Init()
methods and a few access and assign entities to see the kind of
source code that is generated by the DB Server Editor.

4. Close the Source Code Editor by double-clicking on its system
menu.

5. Close the Module Browser by double-clicking on its system
menu.

6. Choose the Entity Browser command from the Tools menu.

You can now see all of the access entities, although if you scroll
through the entity list, you will see the other entities in the
Adventure:Data module.

7. Click on the Collapse All toolbar button to view all of the entity
types:

8. Click on the plus button to the left of the Wind. entity label to
see all of the window entities.

Exercise

2–18 CA-Visual Objects

9. Scroll down until you see the window entity named
AdventureBrowser, as shown below:

The windows above it are the dialog windows, while those below
it are the other data windows. If you were to double-click on any
window entity, a Window Editor session would be started.

10. Click on the Collapse All toolbar button again to return to the
prior view.

11. Experiment with some of the other categories, and double-click
on some of the entities to examine them.

12. Close the Entity Browser by double-clicking on its system menu.

Exercise

South Seas Adventures 0–19

Using the Class Browser

In the following exercise, you will open the CA-Visual Objects Class
Browser, and examine a class and a subclass, including their various
types of entities.

1. Select the Class Browser command from the Tools menu.

The first class name shown is _AboutDialog and the second is
AdvDtl.

2. Click on the plus button, to the left of the _AboutDialog class.

The _AboutDialog class name remains highlighted.

3. Examine the right half of the window.

You will find an Init() method and nine protected variables:

Exercise

2–20 CA-Visual Objects

4. Click on the AboutDialog entity, which is a subclass of
_AboutDialog.

The Class Browser displays the following:

Note that the right side of the browser now shows only two
methods, Init() and OKButton(). These two methods are defined
explicitly for the subclass, while all other properties of the parent
class are inherited. The subject of inheritance is discussed in
greater detail in the “ Inheritance and Subclassing” chapter.

5. When you have finished exploring the classes and their related
methods, close the Class Browser by double-clicking on its
system menu.

Exercise

South Seas Adventures 0–21

Building the Application

Once you have imported (or finished developing) your application, it
can be easily compiled. To build the South Seas Adventures
application:

1. Click on the South Seas Adventures application button in the
Application Browser:

2. Choose the Build toolbar button.

Note: When you import an application, none of the entities are
compiled. The South Seas Adventures application could be
considered a medium-sized application, so this initial build could
take some time. Subsequent builds will be much faster, since
only those entities that need compiling, based on your changes,
will be compiled.

Once compilation is completed, you will see “Build Done”
displayed on the status bar. The Module Browser appears
showing all the modules for the South Seas Adventures
application:

Once your program compiles successfully—indicated by a green LED
on the application button—you can run your program. The next
section discusses how to do this.

Exercise

2–22 CA-Visual Objects

Running the Application

During development, you can either run your application dynamically
from the IDE or you can generate an .EXE file and run it from the
Program Manager.

Regardless of the option you choose, when the application is run, the
current directory will be set to the path specified in the Application
Properties dialog box. This allows you to test both versions from the
same directory.

Throughout this tutorial, you will be asked to run (or execute) the
application. When you do so—by either clicking on the Execute
toolbar button (or by selecting the Application Execute menu
command)—the following opening dialog box is displayed:

To continue, simply click on the OK button. Because of the nature of
the South Seas Adventures application, a login dialog box was created
as part of the application design and is required to enter the system.

Exercise

South Seas Adventures 0–23

The Login dialog box appears:

You can enter the system by logging in using the following procedure:

1. Type User in the Name edit control.

2. Type Trainee in the Password edit control.

3. Choose OK.

Running the Program Dynamically

As you incrementally develop your application, and then compile your
latest changes, you can run it without even having to leave your IDE
environment. To do this, perform the following steps:

1. Click on the South Seas Adventures application button in the
Application Browser:

2. Click on the Execute toolbar button to run the program from the
IDE.

3. Choose OK in the South Seas Adventures opening dialog box.

4. Choose Cancel in the Login dialog box to close the application.

An Error dialog box appears.

5. Choose OK to close the Error dialog box.

Exercise

2–24 CA-Visual Objects

Creating and Running an Executable File

Typically, after you have finished development you will want to create
a stand-alone executable program (.EXE) which can be run without the
CA-Visual Objects IDE.

To create the .EXE file and run this program, perform the following
steps:

1. Click on the South Seas Adventures application button in the
Application Browser:

2. Click on the Make EXE toolbar button.

Once the .EXE file has been generated, the Program Manager will
be brought to the foreground. Your application icon will be in the
program group specified in the Application Properties dialog box:

Summary

South Seas Adventures 0–25

3. You may now run the program by double-clicking on the South
Seas Adventures application icon.

The opening dialog box appears.

4. Choose OK.

5. Choose Cancel in the Login dialog box to close the application.

An Error dialog box appears.

6. Choose OK to close the Error dialog box and return to the
Program Manager.

7. Press Alt+Tab to return to CA-Visual Objects.

Summary

This chapter provided a brief overview of the IDE, as well as some
useful tips to make your application development easier. If you need
more information on using and navigating through the IDE, see the
CA-Visual Objects IDE User Guide.

You can now move on the next chapter, which shows you how to
create and use a data server, an integral part of the South Seas
Adventures application.

