
South Seas Adventures 16–1

Chapter 16
Using Windows API Functions

Objective

In this lesson, you will learn how to call Windows API functions
directly from CA-Visual Objects. It will demonstrate how to expand
the functionality of your applications, as well as illustrate how
Windows programs work on a low level.

When you have completed this lesson, you will be able to use the
Windows API functions in your CA-Visual Objects applications to
provide functionality not found in the native CA-Visual Objects
language classes. You will also have a better understanding of how
Windows programs work.

Overview

What Is the
Windows API?

Windows provides more than just the graphical shell in which our
applications run. It also consists of over 600 built-in functions available to
any Windows program at runtime. These functions range from creating and
manipulating windows and menus, to simple network functions. The
Windows API also provides predefined data structures and message
definitions that your programs can use.

CA-Visual Objects provides the capability to use as little or as much
of the Windows API as we wish. Indeed, we can write entire
CA-Visual Objects programs using only Windows API calls.
However, we would lose the ability to use many of the object classes
provided. If a function is provided by both CA-Visual Objects and the
Windows API, it is preferable to use the CA-Visual Objects function.

Overview

16–2 CA-Visual Objects

Calling Windows API
Functions

Calling Windows API functions is as simple as calling any other function.
The only stipulation is that the function’s prototype must be provided. The
Windows API library does precisely this, as well as defining Windows data
structures and messages. For example, this is the prototype for the
MessageBox() function, which provides a simple modal dialog box:

_DLL FUNC MessageBox(hParent AS WORD, ;
pszText AS PSZ, ;
pszCapt AS PSZ, ;
siFlags AS SHORTINT) AS SHORTINT

PASCAL:USER.1

The _DLL FUNC statement indicates that the MessageBox() function
resides in an external DLL. The parameters for MessageBox() are the
parent window’s handle (a unique identifier within Windows), the
message text and caption as zero-terminated strings, and the flags
indicating the type of message box desired. The function returns a
value which is defined as a short integer, in this case a number
corresponding to the user’s selection from the message box. The
function follows the Pascal calling convention and resides in the
USER library. In this particular case, USER does not refer to a DLL
but to USER.EXE.

Calling this function is as simple as:

MessageBox(SELF:Handle(), ;
 String2Psz("This is a test message. "), ;
 String2Psz("Test "), _OR(MB_ICONINFORMATION, ;
 MB_OK))

This function would display the following dialog box:

Overview

South Seas Adventures 16–3

The following table is a list of functions that will be examined in this
lesson:

Function Name Purpose

DispatchMessage() Dispatches a message to the
appropriate window within an
application

GetFreeSpace() Retrieves the amount of global
memory available (i.e., physical
memory and virtual memory)

GetFreeSystemResources() Retrieves the free system resource
space as a percentage

GetMessage() Waits for a message to enter the
queue until a WM_QUIT message
is encountered

GetSystemMetrics() Retrieves various system settings

GetWindowsDirectory() Retrieves the path, including the
drive, in which Windows is
installed

GetProfileInt() Retrieves the value of an integer
from within the specified section
of the Windows initialization file,
WIN.INI

GetProfileString() Retrieves a string from within the
specified section of WIN.INI

GetPrivateProfileInt() Retrieves the value of an integer
from within the specified section
of the specified initialization
(.INI) file

Continued

Overview

16–4 CA-Visual Objects

Continued

Function Name Purpose

GetPrivateProfileString() Retrieves a string from within the
specified section of the specified
initialization file

PeekMessage() Checks for a message in the
queue, allowing Windows to
process messages for other
applications if none are present
for this application

TranslateMessage() Translates a message into a
character message and posts the
message to the application’s
message queue

WritePrivateProfileString() Copies a string into the specified
section of the specified
initialization file

WriteProfileString() Copies a string into the specified
section of WIN.INI

Exercise

South Seas Adventures 16–5

Exercise

Let’s begin this lesson by examining some of the Windows API
functions:

1. Open the Windows API library by double-clicking on its button in
the Application Browser:

The module browser appears.

2. Open the Windows (functions) module by double-clicking on its
module button:

The list of Windows API functions appears in an Entity Browser.

3. Scroll down the list of entities until the GetFreeSpace() function
is highlighted.

4. Open GetFreeSpace() by double-clicking on this entity.

Its prototype is displayed in the Source Code Editor:

_DLL FUNC GetFreeSpace(x AS WORD) AS DWORD
PASCAL:KERNEL.169

This shows that GetFreeSpace() is from an external DLL, has a
parameter which is of the word data type, returns a double word
value, follows the Pascal calling convention, and resides in the
KERNEL library. In this particular case, KERNEL does not refer
to a DLL, but to KRNLx.EXE, where x is either 286 or 386. This
is one of the resident programs loaded when Windows is started.
The final part of the prototype (.169) identifies the number of the
function within the library.

5. Close the Source Code Editor, the Window (functions) Entity
Browser, and the Modules of Windows API Module Browser.

Exercise

16–6 CA-Visual Objects

Windows Memory Information

To begin, let’s examine the use of GetFreeSpace() and
GetFreeSystemResources() in the South Seas Adventures application.
As you will see, this is a very simple process.

Most Windows applications have a dialog called the About box, which
shows information such as the system’s revision level and perhaps
displays credits for the development team. You may also have noticed
that some applications display Windows memory information. The
About dialog box in the South Seas Adventures application does
precisely this by calling GetFreeSpace() and
GetFreeSystemResources().

1. Open the South Seas Adventures application by double-clicking
on its button in the Application Browser.

2. Open the About:Forms module by double-clicking on its button in
the Module Browser:

The base class for the About box is called _AboutDialog.
However, we have subclassed _AboutDialog into AboutDialog so
that we can add the resource and memory information while
maintaining the capability to modify the _AboutDialog using the
Window Editor.

3. Scroll down the list of entities until AboutDialog:Init() is
highlighted.

4. Open the AboutDialog:Init() method by double-clicking on it.

5. Note the code assigning the caption values to
oDCFreeMemoryText and oDCFreeResourcesText:

SELF:oDCFreeResourcesText:Caption:=FreeResources(
)
SELF:oDCFreeMemoryText:Caption:=FreeMemory()

Exercise

South Seas Adventures 16–7

FreeMemory() and FreeResources() are defined by the South Seas
Adventures application in the App:Misc module. If you like,
access the Entity Browser for this module and load the source
code for each of these functions into the Source Code Editor. You
will see that FreeMemory() consists solely of a call to
GetFreeSpace(), and the appropriate formatting:

FUNCTION FreeMemory() AS STRING

LOCAL cRetString AS STRING,;
dwFreeMem AS DWORD

dwFreeMem := GetFreeSpace(0) / 1024

cRetString := AllTrim(Str(dwFreeMem)) + ;
" Kb Free "

RETURN cRetString

Similarly, FreeResources() formats the return value from
GetFreeSystemResources():

FUNCTION FreeResources() AS STRING

LOCAL cRetString AS STRING, ;
wResources AS WORD

wResources := GetFreeSystemResources(0)

cRetString := AllTrim(Str(wResources)) +;
"% Free "

RETURN cRetString

Note: The FreeMemory() and FreeResources() functions that are
being used to call underlying Windows API functions are referred
to as wrapper functions. This is a common programming
technique that allows you to perform the conversions between the
CA-Visual Objects and Windows data types in one location,
freeing you from performing these conversions repeatedly in your
code.

6. Close all open Source Code Editors and Entity Browsers by
double-clicking on the appropriate system menus.

These two examples have allowed you to view information about the
current Windows environment. Now you will examine how to use
Windows API calls to modify the appearance of the South Seas
Adventures application.

Exercise

16–8 CA-Visual Objects

Windows Metric Information

The GetSystemMetrics() function retrieves information about various
system metrics (for example, the heights and widths of various
elements displayed by Windows). You will now examine the use of
this function to set the size of a window to the full size of the screen
without maximizing the window.

1. Open the SSA Shell:Forms module from the Module Browser by
double-clicking on its button:

2. Open the SSAWindow:Init() method by double-clicking on its
button. Note the function call assigning the return value from the
function FullWinSize() to the window’s size attribute. This code
makes the window occupy the entire screen, without having to be
maximized:

SELF:Size := FullWinSize()

FullWinSize(), defined in the App:Misc module, determines the
actual maximum size of the window by calling the Windows
function GetSystemMetrics():

FUNCTION FullWinSize() AS Dimension

LOCAL oDim AS Dimension, ;
nHeight AS SHORTINT, ;
nWidth AS SHORTINT

nHeight := GetSystemMetrics(SM_CYSCREEN)
nWidth := GetSystemMetrics(SM_CXSCREEN)

oDim := Dimension{nWidth, nHeight}

RETURN oDim

Exercise

South Seas Adventures 16–9

The parameter passed to GetSystemMetrics() indicates which
system value is to be returned. In this case SM_CXSCREEN
instructs GetSystemMetrics() to return the width of the screen,
and SM_CYSCREEN returns the height of the screen. In
FullWinsize(), these two values are combined as a Dimension
object, which is used to set the size of a window.

3. Close all open Source Code Editors and Entity Browsers by
double-clicking on the appropriate system menus.

Profile Functions

Many Windows applications, including Windows itself, use
initialization (.INI) files to contain configuration information. The
Windows API provides several functions for using these files. In the
South Seas Adventures application, we have defined two classes for
manipulating .INI files. These are IniFileSpec and a subclass called
WinIniFileSpec. Both of these classes use the Windows profile
functions for dealing with .INI files.

IniFileSpec Class The IniFileSpec class is used for reading and writing any .INI file, and
is a subclass of the FileSpec class.

1. Open the Class Browser for the South Seas Adventures
application by choosing the Class Browser command from the
Tools menu.

2. Highlight the IniFileSpec Class in the left pane of the Class
Browser.

Exercise

16–10 CA-Visual Objects

3. Examine the IniFileSpec:GetString() method by double-clicking
on its button in the right pane of the Class Browser. GetString()
is used to retrieve a string value from the specified .INI file:

METHOD GetString(sSection, sEntry) ;
CLASS IniFileSpec

LOCAL sValue AS STRING
LOCAL ptrBuffer AS PTR

ptrBuffer := MemAlloc(INI_STRING_LEN)

GetPrivateProfileString(Psz(sSection),;
Psz(sEntry), Psz(""),;
Psz(_CAST, ptrBuffer),;
INI_STRING_LEN, Psz(SELF:FullPath))

sValue := Psz2String(Psz(_CAST, ptrBuffer))

MemFree(ptrBuffer)

RETURN Trim(sValue)

The GetString() method is passed two parameters: the name of the
section and the name of the specific entry to be retrieved.
GetPrivateProfileString() is the Windows API function used to
retrieve the string value from an .INI file other than WIN.INI. It
expects six parameters:

■ .INI file section name

■ Name of the entry to be retrieved

■ Default value for the string if no entry exists in the file

■ Pointer to the return string

■ Size of the return string

■ Name of the .INI file.

Note that the strings passed to GetPrivateProfileString() are all
converted to PSZ, or zero-terminated strings, which is the
standard for Windows.

GetPrivateProfileString() returns the requested string by
assigning it to the pointer passed by ptrBuffer. This is the same
concept as passing a parameter by reference—you are passing the
memory location of the string.

Exercise

South Seas Adventures 16–11

To do so, you must first allocate memory for the return string by
using MemAlloc(), which is passed the amount of memory to be
allocated. In this case the value is stored in the constant
INI_STRING_LEN, which is defined as 1024 bytes.

Note: Any memory allocated using MemAlloc() must be freed
by calling the MemFree() function when the space is no longer
needed.

Finally, the string retrieved from the .INI file is converted from a
pointer to a CA-Visual Objects string, and this value is returned
by the method.

4. Close the Source Code Editor by double-clicking on its system
menu.

WinIniFileSpec Class The WinIniFileSpec class differs from the IniFileSpec class in that it
is used to read from and write to WIN.INI. The IniFileSpec class is
used for manipulating any .INI file.

WinIniFileSpec inherits from the IniFileSpec class and, thus, shares
the attributes and methods of IniFileSpec. However, some changes
are necessary in order to restrict the .INI file access to WIN.INI, as
these classes use different Windows API functions. Where the
IniFileSpec class uses “private” profile functions, such as
GetPrivateProfileString(), WinIniFileSpec uses functions such as
GetProfileString(). These functions assume that the file to be
read/written is WIN.INI.

When instantiating the IniFileSpec class, the .INI file name is passed.
The Init() method of the IniFileSpec class includes the code that
appends the drive and path, if they are not available, and assigns it to
SELF:FullPath. This code will be activated, as well as the code in the
Init() method of its ancestor class, the FileSpec class. However
WinIniFileSpec always uses WIN.INI, so a file name is not required.

Exercise

16–12 CA-Visual Objects

There are other differences between the Init() methods for the
WinIniFileSpec and IniFileSpec classes which you will now see:

1. Click the Expand button to the left of the IniFileSpec class in the
left pane of the Class Browser.

Its subclass, WinIniFileSpec, appears in a tree-like structure
beneath IniFileSpec.

2. Highlight WinIniFileSpec in the left pane, and double-click its
Init() method in the right pane to view its code in the Source Code
Editor, as shown below:

METHOD Init() CLASS WinIniFileSpec

LOCAL sValue AS STRING
LOCAL ptrBuffer AS PTR
LOCAL wLen AS WORD

ptrBuffer := MemAlloc(WIN_DIR_LEN)

wLen := GetWindowsDirectory(;
Psz(_CAST, ptrBuffer), WIN_DIR_LEN)

sValue := Psz2String(Psz(_CAST, ptrBuffer))

MemFree(ptrBuffer)

SUPER:Init(sValue + "\WIN.INI ")

RETURN SELF

In order to instantiate the ancestor, FileSpec, you need the file
name. Since you cannot assume that Windows is always installed
in C:\WINDOWS, you must determine the path in which it is
installed. The GetWindowsDirectory() function does precisely
this.

GetWindowsDirectory() is passed a pointer to the string which
will be assigned the full path in which Windows is installed. It is
also passed the length of the string.

With the Windows directory in hand, you can now initialize
WinIniFileSpec’s ancestor, FileSpec, with the Windows directory
and WIN.INI.

3. Close the Source Code Editor by double-clicking on its system
menu.

Exercise

South Seas Adventures 16–13

Note: Several other functions, not discussed in this section, allow
you to read integer values from .INI files, as well as write values to
.INI files. These are GetPrivateProfileInt(), GetProfileInt(),
WritePrivateProfileString(), and WriteProfileString().

Loop Processing

In business applications, often it is required to process data in loops.
In DOS applications, there is usually nothing else happening in the
system since there is no multitasking, and therefore, this processing is
fine. It’s a different story in Windows.

Windows is a multitasking operating environment. It is quite
conceivable that you will have multiple applications running at the
same time. When your program goes into a loop, it essentially freezes
all other activity in Windows. That’s because of the type of
multitasking that Windows implements.

Windows offers a non-preemptive type of multitasking, which means
that Windows will not interrupt code in progress unless you let it. It
will only task-switch during calls to the GetMessage(),
PeekMessage(), and WaitMessage() functions.

The Message System Windows maintains a message queue for each running application.
When an event occurs (such as keyboard or mouse input), Windows
translates it into a message which is placed in the appropriate
application’s message queue. It is then up to the application to fetch
the message and act on it.

In other development environments, a GetMessage() loop is used to
fetch and dispatch messages, which would typically be found in the
application’s WinMain() function. Here is the CA-Visual Objects
syntax equivalent of this loop:

DO WHILE GetMessage(@msg, hwnd, 0, 0)
 TranslateMessage(@msg)
 DispatchMessage(@msg)
ENDDO

Exercise

16–14 CA-Visual Objects

The GetMessage() function waits for a message to enter its queue. All
messages, except for WM_QUIT, will then be translated and
dispatched to the appropriate window procedure within the
application.

GetMessage() will return a 0 if it encounters the WM_QUIT message
in its queue, which in turn exits the loop.

CA-Visual Objects provides us with a framework where this type of
“manual coding” of the message loop is unnecessary, although still
available. In making use of the CA-Visual Objects rich GUI Classes
library, this GetMessage() loop is replaced by a single method call to
class App:

METHOD Start() CLASS App

// Open windows etc...

SELF:Exec() // Start receiving events

The Exec() method is essentially a GetMessage() loop with another
layer of functionality. CA-Visual Objects retrieves the messages, then
dispatches them, as Event objects, to the appropriate event handlers in
your program. See the “Customizing Window Event Handlers”
chapter in this guide for more on event handlers.

Not only does the GetMessage() function allow your programs to
receive messages, it is also the key to Windows multitasking. During
the GetMessage() call, if no messages are present in the application’s
queue, Windows switches to another running application that has
messages waiting. Once it has serviced those messages, control will
come back to your program. This is sort of an optimistic type of
multitasking. If any one application in the system does not allow
others to receive messages, then that’s it—no other application will
run during this period.

Exercise

South Seas Adventures 16–15

If, for example, you have the Windows Clock program up and you
start into a loop that will take a while to execute, the clock, which
usually runs in the background, will stop running until the loop has
done and control returns to Windows:

DO WHILE (lALongTime)
 // Do some data processing
ENDDO

You must, therefore, get a call into the GetMessage() function while
in your loop.

The CA-Visual Objects App:Exec() method accepts a parameter,
<kConstant>, which can be one of the following:

■ EXECNORMAL, the default, executes until the application is
closed

■ EXECWHILEEVENT executes while there are events queued

The EXECNORMAL form of the call is what you would expect to find
in the Start() method of your application. This form of the call
actually waits for events to occur and exits only once the application
is closed. This is not what you would want to use in your loop.
Although messages would be processed, your loop would stop at the
Exec() call:

DO WHILE (lALongTime)
// Do some data processing

// Code will stop here...waiting till
// application closes
SELF:Exec(EXECNORMAL)

ENDDO

Instead you would pass the EXECWHILEEVENT constant to the
Exec() method. Each time around the loop, the Exec() method allows
Windows to service other message queues:

DO WHILE (lALongTime)
// Do some data processing

// SELF refers to the current App object
SELF:Exec(EXECWHILEEVENT)

ENDDO

Exercise

16–16 CA-Visual Objects

Just as App:Exec(EXECNORMAL) is like the GetMessage() loop,
App:Exec(EXECWHILEEVENT) is like the following PeekMessage()
loop:

DO WHILE PeekMessage(@msg, 0, 0, 0, PM_REMOVE)
TranslateMessage(@msg)
DispatchMessage(@msg)

ENDDO

PeekMessage() is similar to GetMessage(). It looks into the message
queue; and, if no messages are present, Windows will switch to
another running application that has messages waiting. Once it has
serviced those messages, control will come back to your application;
however, instead of waiting for messages like GetMessage(),
PeekMessage() returns 0, thus exiting the loop.

Selecting Which
Messages Are
Processed

In the South Seas Adventures application, the Submit Invoices and
Payments command from the Options menu uses a progress bar to
give a visual status as it loops through the invoices and payments in
the system:

While the operation is occurring, we want only the progress bar to be
updated, while the rest of the application remains still. We also want
other applications in the environment to continue running. The
App:Exec(EXECWHILEEVENT) method processes messages for any
window in the application, so we cannot use it in this case and must
rely on Windows API functions to accomplish the task.

1. Open the App:Misc module by double-clicking on its button:

Exercise

South Seas Adventures 16–17

2. Find and open the YieldMessageLoop() function by
double-clicking on its button:

FUNCTION YieldMessageLoop(oWindow)

LOCAL msg AS _WINMSG
LOCAL hwnd AS WORD

IF oWindow == NIL
// Allows all windows to receive events
hwnd := 0

ELSE
// Allows a specific window to
// receive events
hwnd := WORD(oWindow:Handle())

ENDIF

DO WHILE (PeekMessage(@msg, hwnd, 0, 0, ;
PM_REMOVE))

TranslateMessage(@msg)
DispatchMessage(@msg)

ENDDO

RETURN NIL

The YieldMessageLoop() function implements its own
PeekMessage() loop. The second parameter to the PeekMessage()
function, hwnd, allows you to specify the handle of the window
for which you want to process messages. YieldMessageLoop()
accepts one parameter, a window object, from which we can
extract that handle: oWindow:Handle(). When the hwnd
parameter is 0, behavior is similar to that exhibited by
App:Exec(EXECWHILEEVENT) (that is, messages to any
window in the current application are processed).

3. Close the Source Code Editor by double-clicking on its system
menu. Similarly, close the Entity Browser for App:Misc.

4. To see where this function is used, open the Progress:Forms
module by double-clicking on its module button.

5. Select the Edit All Source in Module command from the Edit
menu.

Exercise

16–18 CA-Visual Objects

6. Find the ProgressDialog:Advance() method. Because this is the
method that actually updates the progress bar in the dialog
window, it is the ideal place for calling the message loop:

METHOD Advance(sUpdateText);
CLASS ProgressDialog

// Update the bar properties
...

// Give other processes a shot!
YieldMessageLoop(SELF)

RETURN NIL

7. This method, which is in the App:Misc module, calls the
YieldMessageLoop() function, passing SELF (the ProgressDislog
object) as a parameter:

FUNCTION YieldMessageLoop(oWindow)
LOCAL msg IS _WINMSG
LOCAL hwnd AS WORD

IF oWindow == NIL
//Allow all windows to receive events
hwnd := 0

ELSE
//Allow a a specific window to receive
events
hwnd := WORD(oWindow:Handle())

ENDIF

DO WHILE
(PeekMessage(@msg,hwnd,0,0,PM_REMOVE)

TRANSLATE Message (@msg)
DISPATCH Message (@msg)

ENDDO

RETURN NIL

8. This concludes our exercise. Return to the Application Browser
by closing the Source Code Editor and all other open browsers.

Summary

South Seas Adventures 16–19

Summary

In this chapter, you have learned about the Windows API functions
and how to use direct calls to the Windows API in your CA-Visual
Objects applications.

In the next lesson, you will be able to create a library and a DLL in
order to share code among your applications.

