Lesson 1: A Tour of the Standard Program

The App:Start() Method

Every application you create in CA-Visual Objects requires some
function or method named Start() that serves to get the application
started; in the Standard Program, this is the App:Start() method. (You
were prompted for the name of the module to contain this code in the
Generate Application Framework dialog box presented earlier in this
lesson.)

Since we opened up App:Start() in the last section, you should still be
viewing the source code for this method in the Source Code Editor. It
looks something like this:

METHOD Start() CLASS App
LOCAL oWindow AS Window
Enable3DControls()
oWindow := StandardShellWindow{SELF}
oWindow:Show()
SELF:Exec()

What this does is declare, create, and show the shell window (it's
calledoWindowand is instantiated using the StandardShellWindow
class described in the next section). It also enables a sculpted, 3-D
look in your application, and then calls the App:Exec() method
actually, the source code rea@®ELF:Exec(), but that is easily
explained.

Before the App:Start() method is invoked, the App object is created by
the system automatically (that's why we called the App object
“invisible” earlier). You never need to instantiate an object of the

App class (as you do with all other objects used in an application), just
as you never need to explicitly invoke the App:Start() method. The
system does all of this for you in order to get your application started.

Once the App object exists and its Start() method is executing, App
calls its own methodsfor example, Execg-by referring to them

using SELF. SELF is a special keyword that refers to the object whose
method is currently executingfor example, SELF:Exec(). You also

see the SELF keyword used to instantiate the StandardShellWindow
class, which is further explained in the next section.

Getting Started 5-17

Lesson 1: A Tour of the Standard Program

Note: W.ithin the App:Start() method yaunustcall App:Exec().

Doing so invokes the Windows event handling loop for your
application, as well as the CA-Visual Objects event handling
mechanism. Unless you invoke App:Exec(), the system cannot start
sending you events. (See Default Event and Error Handling below.)

The Shell Window

Now that you have seen the App:Start() method, you understand how
the application gets started, so let's take a look at the shell window for
this application. It is defined in the Standard Shell module.

Assuming you are still viewing the App:Start() source code:

1. Double-click on the Source Code Editor’s system menu to close
it:

Double-click to close this window

I—'

=
NEEEFEENEEIE|
METHOD Start () CLASS App |
local oWindow as Window
EnskbleiDControls ()
oWindow := StandardihellWind
oWindow: Show ()
selfiExec|)

You are returned to the application-wide Entity Browser.
2. Double-click on the Entity Browser’s system menu to close it.
You are returned to the Module Browser.

3. Double-click on the Standard Shell module to open an Entity
Browser for it.

5-18 CA-Visual Objects

Lesson 1: A Tour of the Standard Program

Module-wide Entity Browser
for Standard Shell module

This opens a module-wide Entity Browser for the Standard Shell
module:

StandardShellWindow

= Modules of Order Entry M=
EEEEERCERE TR
= o 4] D[Z'Eﬁ 5
T A (e
@ (Define) HELPABOUT_PUSHBUTTON1 ‘—
@ (Define) HELPABOUT_THEFIXEDICON1 ‘
@ (Define) HELPABOUT_THEFIXEDTEXT1 ‘
© (Define) HELPABOUT_THEFIXEDTEXT?)
© (Define) HELPABOUT_THEFIXEDTEXTS]
@ Define_ IDI_STANDARDICON s
|

Recall that this type of Entity Browser displays only the entities in a
particular module. In this section, we will be taking a closer look at
the Standard Shell module as a whole; therefore, this Entity Browser

will be more convenient to use than the application-wide Entity
Browser.

The shell window for this MDI application wasstantiatedin the
App:Start() method using the StandardShellWindow class:

oWindow := StandardShellWindow{SELF}

You will see the clasdeclarationfor StandardShellWindow if you
scroll this Entity Browser down once or twice (i.e., Class
STANDARDSHELLWINDOW).

Getting Started 5-19

Lesson 1: A Tour of the Standard Program

Init() Method

Double-click on it to view the source code, and you will see that this
class derives from the ShellWindow class:

CLASS StandardSheIIWlndow INHEFlIT ShellWlndow
PROTECT aChildWindows AS ARRAY

EntLine: 1 Line: 1 Cal: 1 Length: 4

Note: The second line of code defines an array that will be used to
track the number of child windows opened in the application.

The ShellWindow class resides in the GUI Classes libray
mentioned earlier, this class is already configured to support MDI.
Since StandardShellWindow inherits from ShellWindow, it is
preconfigured for MDI support as well.

Close the Source Code Editor and when you return to the Entity
Browser, scroll through the listyou will see several methods defined
for the StandardShellwindow class.

Among the most important methods is StandardShellWindow’s Init()
method. It is called automatically by App:Start() upon instantiation of
the StandardShellWindow class.

5-20 CA-Visual Objects

Lesson 1: A Tour of the Standard Program

Scroll down to the StandardShellwWindow:Init() method and double-
click on it to view it in the Source Code Editor, so that we can see
what it does and do a little customizing.

EEEEERCERE R

[+]»

@ Meth STANDARDSHELLWINDOW:DROP |
Q Meth STANDARDSHELLWINDOW:FILEEXIT |
Q@ Meth STAND.ARDSHELLWINDOW:FILEPRINTEH]

Double-click here

Ll

@ Meth STANDARDSHELLWINDOW:NEWDATAWI‘
QO Meth STANDARDSHELLWINDOW:OPEN |
@ Meth STANDARDSHELLWINDOW:REMOVECHILI

=

method Init{ 0OwnerApp) class StandardShellWind ow

If desired, drag border to increase window size

After double-clicking on the Init() method, it is loaded in the Source
Code Editor:

Standard Shell of Order Entry M=

JJJJ o &8 | ¥|p|BB QAIR|@ || 5|
Egthod Init{ oOwneripp | class StandardShellWindow — |+
local o3B as Statusbar ﬂ

super: Init(oOwneripp |

J¢ Init the array of child windows
aChildWindows = {}

SetDeleted| .T.)

/¢ Enable Drag-and-drop into this shell

if ismethod(self,fEnshleDraglropClient)

=zelf: EnablelraglropClienti() +

«[T -
Line: 1 Col: 1

The first thing you notice is that this method takes a parameter called
oOwnerApp If you remember, the App:Start() method instantiated
this class using SELF as an argument, so the window knows who its
owner is (the App object).

Getting Started 5-21

Lesson 1: A Tour of the Standard Program

Then, StandardShellWindow:Init() invokes the Init() method of its
superclass, ShellWindow. This has two effects:

= It ensures that the internal data of the ShellWindow class is
properly initialized—that is the job of any Init() method.

= ltregisters the App object itself as tbenerof the
StandardShellWindow.

As you scroll through the rest of the method, you can see that there is
some code to initialize the array that will be used to track the number
of child windows opened in the application; to enable the window as a
drag-and-drop client; to enable a status bar and put some information
on it; to attach a menu to the window (more on this below); and to
define an icon for the window when it is minimized. (This icon is also
defined in the Standard Shell module as the IDI_STANDARDICON
resource and constant.)

Finally, there is code to create a caption (or title) for the window,
which you will now customize for this application. To do this:

1. Move the cursor to the line of code reading:
SELF:Caption := "Standard MDI Application"

2. Change it to:
SELF:Caption := "Order Entry"

Close the Source Code Editor (just double-click on its system menu)
and save your change by choosing Yes when prompted.

Other Methods When you return to the Entity Browser, you can see that beyond the
Init() method, StandardShellwWindow has methods to respond to events
generated by its menu, including one called Close() to shut down the
application (by calling the App:Quit() method) when the user closes
the shell window.

When you are finished browsing through the methods, you can close
the Entity Browser by double-clicking on its system menu.
The Empty Shell Window

When no child windows are open in the shell window, it is referred to
as theemptyshell window. This is the state of the shell window when

5-22 CA-Visual Objects

Lesson 1: A Tour of the Standard Program

EmptyShellMenu

Resource Entities

The Menu Entity

it is initially created by App:Start(), and the menu associated with the
empty shell window is necessarily sparse because of the limited
actions that you can perform when no data is present to manipulate.

In StandardShellWindow:Init(), the menu attached to the window was
instantiated with the following line of code:

SELF:Menu := EmptyShellMenu{SELF}

This EmptyShellMenu class is defined in the Standard Menus module.
Access the Entity Browser for this module and scroll through it:

= Modules of Order Entry n —
b8 =2 S| o0l (3l Vol
= : 5 (R
(O EMPTYSHELLMEND] [+ :
Start
Define IDA_EMPTYSHELLMENU —

Q

|
=] Define IDA_STANDARDSHELLMENU |
=] Define IDM_EMPTYSHELLMENU |
=] Define IDM_EMPTYSHELLMENU_FILE_I
=] Define IDM_EMPTYSHELLMENU_FILE_I

+

Along with the EmptyShellMenu class, you will see an
EmptyShellMenu_Accelerator class, an EmptyShellMenu menu
entity, resource entities for the menu and the accelerator, several
defines to identify properties of the menu, and Init() methods to
instantiate both classes mentioned. All of this code was generated by
the Menu Editor, which you will look at next.

For example, to define the empty shell menu and its accelerator keys
in a way that is understood by Windows, there are two resource
entities, RCMenudDM_EMPTYSHELLMENU and

RCAccl IDA_EMPTYSHELLMENU. You can look at these if you

like; they contain source code in the format that the Windows resource
compiler wants.

The actual menu entity contains information that allows the Menu
Editor to graphically display the menu layout so that you can edit it.
For example, EmptyShellMenu contains File and Help menus that are

Getting Started 5-23

Lesson 1: A Tour of the Standard Program

used to open child windows, set up printers, exit the application, and
get help.

If you like, you can double-click on the EmptyShellMenu menu entity
to get an idea of what this menu looks like in the Menu Editor (you'll
actually learn how to use this editor later in this chapter).

= CA-Visual Objects [~ [~
File Edit Yiew Tools Application Debug Window Help
=‘ Applications, Libraries and DLLs v| ‘||
&l = Modules of Order Entry b =
—} File Help
= : == =
L= =|Sl o° GBlun &% & == «f ¢ =1
+
J=m |14
d r &0pen =
1% 5 L =‘ Menu ltem Properties
qd [pen &S0L... EMPTYSHELLMENL =]
_C [~ Execute a SOL S&tatement... E— Vale
—_ P&rint Setup... Caption iFile
e Diescription
|_ L E&wit HelpContext File
|— =1 &Help Accelerator
Init. Enabled es
bl Iniit. Checked No
[—__ &Using help Button Brap
[C e Button Pos
L D
T

As you can see, EmptyShellMenu has just two menus: File and Help.
Note that the Menu Editor allows you to design a toolbar to be
associated with a menu. As part of the Standard Program,
EmptyShellMenu is paired with a toolbawhen you later attach
EmptyShellMenu to a window, the toolbar is automatically pulled in
at the same time.

Note: The toolbar is not part of the display that you normally see in
the Menu Editor. You can view it using the File Preview Toolbar
command.

When you are through looking at the menu, close the Menu Editor by
double-clicking on its system menu.

5-24 CA-Visual Objects

