
Getting Started 4–1

Chapter 4
An Overview of the IDE

In This Chapter

This chapter presents an overview of some of the features of
CA-Visual Objects. Its purpose is to help you gain both an
understanding of what features are available to you, as well as a
familiarity with the basics of working in CA-Visual Objects, so that
you can go on to complete the sample application introduced in the
next chapter.

Note: This chapter only touches upon some of the tools provided by
CA-Visual Objects. For complete details, please refer to the IDE User
Guide.

Repository-Based Development

Before you start to use CA-Visual Objects, you need to understand the
implications of moving from file-based development systems to a
repository-based development system.

No Need to Work
with Files

First of all, you do not have to deal with files when working with
CA-Visual Objects. Instead of an application that is comprised of
one or more files (.PRG, .CH, etc.), an application now consists of
one or more modules. In addition, all the items that were in your
files—such as functions and procedures—are now referred to as
entities.

Repository-Based Development

4–2 CA-Visual Objects

In CA-Visual Objects, all of these things—applications, modules, and
entities—are stored in a repository. While they are all still
manageable, editable pieces of the application, they are no longer file-
based—the repository holds them all. (For example, if you import
source code from another application into the repository, there is
seldom a need to work with external files of any kind once the files
are imported.)

Note: Modules in the repository can be linked to external files if you
prefer to maintain a file-based application. Also, CA-Visual Objects
provides File Import and Export commands that you can use for
maintaining backup files.

An Internal, Automated
MAKE Facility

Secondly, the repository manages all of the pieces of an application
for you. It automatically maintains the relationships between the
various entities of an application. Each time you build an
application, the repository “knows” what to compile based on
changes that you have made, and builds the application in the most
efficient way. Such automation eliminates the need for make files
and compiler and linker script files.

Applications

Modules

Entities

The repository is based on a hierarchical, object-oriented view of an
application. Applications (like “Order Entry”) and libraries (like the
GUI Classes library) consist of modules (such as “Customer
Review”) which in turn consist of entities (such as “CLASS
Customer” and “METHOD Customer:PlaceOrder”).

The highest level in the hierarchy is the application. In CA-Visual
Objects, an “application” can be defined as one of three types:
application, DLL, or library. Specifically, an application is
exportable as an executable file and a DLL as a dynamic shareable,
whereas a library is used only at compile time and is included in an
.EXE or .DLL file.

Modules, which form the second level in the hierarchy, are in many
ways comparable to traditional source files (for example, .PRG files).
They contain a group of logically related parts of the application, and
may be used to limit the visibility of variables, functions, classes, etc.
defined in the module.

Similarly, just as a typical .PRG file contains function and procedure
declarations, modules in CA-Visual Objects contain entities. Entities

The IDE Tools

Getting Started 4–3

form the third level in the hierarchy. An entity is any part of your
application that has a name and can be edited. Some of the available
entity types are:

■ windows ■ procedures ■ classes ■ globals
■ menus ■ functions ■ methods ■ constants
■ reports ■ resources ■ structures

The IDE Tools

CA-Visual Objects features an integrated development environment
(IDE) that provides you with a flexible, intuitive, and powerful
environment for creating applications.

Within this single desktop, you can access almost any of the IDE
features from any window at any time. You can also open and
simultaneously work with multiple windows and editors.

The IDE provides a rich set of tools that can be used to create
sophisticated, GUI applications. Like a hammer or ruler, a tool allows
you to create things. For example, there are browsers, which let you
organize and view your data, and editors, which allow you to create
windows, menus, source code, databases, reports, and icons.

Visual Editors Many of the editors in CA-Visual Objects are visual and, in almost all
cases, the flexibility and ease-of-use provided by the visual editors
can help you work more efficiently. Their point-and-click, drag-and-
drop design approach and WYSIWYG environment allow you to
develop an application visually, thereby improving the quality of the
application and reducing the total development time.

Instead of working directly in programs with the CA-Visual Objects
language, you can lay out the visual aspects of the application and
much of its functionality, providing ongoing evaluation of the
application as it is created, as well as meaningful feedback about the
design.

For example, to add controls (like check boxes or list boxes) to a
window using the Window Editor, you simply click an icon in a tool
palette and click in the window to place it. You can then manipulate

The IDE Tools

4–4 CA-Visual Objects

and define the control as desired (for example, resize, change colors
and fonts, or add code to handle events).

Likewise, when designing a menu in the Menu Editor, it is displayed
in a partially operational “preview” menu bar, so you can view what
your menus look like as you create them. This preview area is
continually updated as you work, providing immediate visual
feedback.

Creating an application in a visual fashion improves the quality of the
application and reduces the total development time, as it leads to a
better definition of what is needed and thereby provides for an
application that best meets the user’s needs.

Generating Code When you are finished designing in any of these editors and have
saved your work, CA-Visual Objects generates powerful and
straightforward object-oriented code based on the underlying class
libraries.

For example, creating a window in the Window Editor will generate a
subclass of the Window class. The generated code is not only
efficient and powerful, it is clean and maintainable and forms a solid
foundation for the future evolution of the application.

A Complete
Development
Environment

Of course, CA-Visual Objects provides a host of other
complementary tools to complete the development environment,
including a source code editor, a compiler, and a debugger.

The CA-Visual Objects IDE is designed to provide a productive
framework for developing all kinds of applications—including
mission-critical business systems—and is specifically designed to
support the iterative development paradigm.

The IDE Tools

Getting Started 4–5

All development tools provided in CA-Visual Objects are closely
integrated with the repository. In fact, all aspects of working with
application components—looking at them, analyzing their
relationships, and editing them—is done from the repository. This
ensures efficient development and protects the integrity of your
applications.

The Browsers

Browsers provide a convenient and organized way to view the data
that is currently stored in your repository. In CA-Visual Objects, you
can browse:

■ Applications, libraries, and DLLs

■ Modules

■ Entities

■ Classes

■ Errors

Most browsers in CA-Visual Objects can be customized to display a
particular subset of data. For example, the Class Browser displays
classes in a collapsible/expandable tree structure that lets you
determine what information to display.

In addition, the close integration of the browsers with the repository
provides easy access to the various editors. For example, double-
clicking on a source code entity (such as a GLOBAL or a METHOD)
in an Entity Browser loads the code for that entity in the Source Code
Editor, while double-clicking on a window entity loads the window
definition in the Window Editor.

Browsers, therefore, serve a variety of purposes. The views they
provide give you an overall picture of the data that is stored in your
repository. Browsers also allow you to manipulate that data—for
example, you can rename an application or move a module to another
application. Finally, they provide access to the various CA-Visual
Objects editors.

The IDE Tools

4–6 CA-Visual Objects

Application Browser

As you have already learned, in the CA-Visual Objects hierarchy,
applications are comprised of modules which contain entities. The
primary browsers, therefore, follow this top-down hierarchy:
Application Browser, Module Browser, and Entity Browser.

The Application Browser appears when you first start CA-Visual
Objects:

This window allows you to view what is currently stored and
maintained in the repository. Each button in the Application Browser
represents an application, library, or DLL.

Initially, the Application Browser displays all of the libraries supplied
by CA-Visual Objects. As you start to add to the repository, creating
your own applications, libraries, and DLLs, the Application Browser
will display them all.

The IDE Tools

Getting Started 4–7

If desired, you can customize this browser as you work. For example,
using the View Show menu command, you can choose to suppress the
display of applications, libraries, and/or DLLs. Likewise, you can use
the View Sort menu command to sort the buttons in the Application
Browser by name or by type and use the Name Filter area on the
toolbar to limit which names are displayed.

Double-clicking on one of these buttons “opens” it, displaying the
modules associated with that application, library, or DLL in a Module
Browser.

Note: You will soon see that you can have many different Module,
Entity, Class, and Error Browsers open at the same time. However,
there is only one Application Browser.

Module Browser

After double-clicking on a button in the Application Browser,
CA-Visual Objects displays a Module Browser. For example, double-
clicking on the GUI Classes button displays the following:

The IDE Tools

4–8 CA-Visual Objects

Like the Application Browser, a Module Browser displays each
module as a button. You can display a Module Browser for every
application, library, and DLL in your repository.

Buttons in Module Browsers are arranged in alphabetical order.
Double-clicking on one of these buttons opens it, displaying its
entities in an Entity Browser.

Entity Browser

Double-clicking on a module brings up a new window that displays all
the entities defined in that module. This window is called an Entity
Browser.

For example, double-clicking on the Forms module in the GUI Classes
library displays the following:

Entity Browsers display each entity as a sculpted 3-D bar, grouped by
entity type in alphabetical order.

The IDE Tools

Getting Started 4–9

Like its predecessors, double-clicking on an entity causes an action.
However, rather than loading another browser, double-clicking on
something at the entity level starts an editor. For example, double-
clicking on a menu entity invokes the Menu Editor, while double-
clicking on a function entity activates the Source Code Editor.

Note that CA-Visual Objects allows you to browse entities on two
levels: you can either view all the entities within a module (as
described above) or all of the entities within an application.

To view all entities within an application, choose the Tools Entity
Browser command. For example, choosing this menu command for
the GUI Classes library would display the following:

The IDE Tools

4–10 CA-Visual Objects

Note that the items in this Entity Browser are displayed in a
collapsible/expandable tree structure (grouped by entity type) that
allows selective viewing of entities.

For example, collapse all branches in the entire tree by choosing the
View Collapse All menu command; you could then expand only one
branch to view its entities in more detail by clicking on the + icon to
the left of the branch:

Click to expand

just this branch

The IDE Tools

Getting Started 4–11

Class Browser

The Class Browser allows you to view all classes associated with an
application. Like the application-wide Entity Browser, it is accessed
via the Tools menu.

For example, choosing the Tools Class Browser command when the
GUI Classes library is the current selection displays the following:

The Class Browser is also similar to the application-wide Entity
Browser in that it displays the available classes in a
collapsible/expandable tree structure and can be used to access the
Source Code Editor by double-clicking on an item. The data displayed
in the Class Browser can also be further customized (for example, by
choosing the View Include Inherited menu command, you can view all
of the instance variables and methods inherited by a class, not just
those it owns).

The IDE Tools

4–12 CA-Visual Objects

Error Browser

During the development cycle, compiling (or building) an application
often results in errors. To help you locate and correct errors and
warnings quickly and efficiently, CA-Visual Objects provides an
Error Browser.

As you may have noticed by now, applications, modules, and entities
displayed in the various browsers you have seen so far include a small,
LED-style icon. These icons indicate compilation status. For
example, green means compiled successfully, while red denotes that
the item needs to be compiled.

Therefore, when you build an application and a module remains red,
the icon lets you know that the module contains one or more entities
that have errors. To quickly view and go to these errors, choose the
Tools Error Browser command. Choosing this command lists all the
entities in the application that have errors or warnings:

Similar to the Class Browser, the Error Browser displays the entities
in a collapsible/expandable tree structure. If you then double-click on
an error, you are brought directly to the line in the source code that
contains the error.

The IDE Tools

Getting Started 4–13

The Editors

CA-Visual Objects provides the following types of editors:

Editor Creates

Source Code Editor Source code entities, like functions, procedures,
globals, etc.

Data Server Editors Data server entities, as subclasses of the
DBServer, SQLSelect, and FieldSpec classes.

Window Editor Window entities (like data windows and dialog
boxes), as subclasses of the various Window
classes.

Menu Editor Menu entities (like menus and accelerators), as
subclasses of the Menu and Accelerator classes.

Report Editor
(CA-RET)

Report entities, as subclasses of the ReportQueue
class.

Icon Editor Icon and cursor entities, in the form of .ICO and
.CUR files.

These editors can be used to create all the components of a
sophisticated GUI application. All editors can be started by choosing
a command from the Tools menu:

The IDE Tools

4–14 CA-Visual Objects

Alternatively, you can also start an editor by clicking the New Entity
toolbar button in any Module Browser and choosing an editor from the
displayed list:

Click the New Entity button...

...to display a local pop-up menu
and choose an editor

And of course, as described earlier in this chapter, you can access an
editor from any Entity Browser, Class Browser, or Error Browser.

The IDE Tools

Getting Started 4–15

Source Code Editor

The Source Code Editor provides a powerful environment for writing
and editing code. For example, you can cut, copy, paste, delete, search
for, and replace text, as well as undo and redo editing actions, using
standard Windows techniques.

You can also fill in an incomplete function or method call with its
prototype using the Edit Insert Prototype command—a useful feature
if you have simply forgotten the correct syntax. For example, here’s
the CA-Visual Objects-inserted prototype for the Abs() function:

The Source Code Editor also provides visual feedback by continually
parsing each keystroke as you enter source code (or import or paste
text) to color-code text based on its structure. Keywords, literals, and
comments, for example, are all displayed in different colors, while
each entity is separated from the next by a horizontal marker.

The collapse/expand icons, available for every entity loaded, allow
you to collapse entities that you are not currently editing to provide a
cleaner view of the source code and to expand them again when you
need to work with them.

The IDE Tools

4–16 CA-Visual Objects

Data Server Editors

One of the primary tasks of any GUI database application is to enter,
modify, view, and utilize the information stored in databases. This is
facilitated by the use of ancillary information, like index files in the
Xbase model and WHERE and ORDER BY clauses in the SQL model.

The DB Server and
SQL Editors

CA-Visual Objects provides a set of editors—the DB Server Editor
and the SQL Editor—that let you create and modify data servers. A
data server is a high-level, abstract entity designed to give you a
consistent object-oriented interface for your database. The DB
Server Editor creates data servers based on the traditional Xbase
model of a database file, while the SQL Editor creates data servers
based on the SQL model of a table.

With both the DB Server and SQL Editors, you can import an existing
database structure and generate a default set of field specifications
(explained below in The FieldSpec Editor section) that you can
optionally modify. The DB Server Editor also lets you generate a
database file (and index files) from the data server definition using the
File Export command.

Note: No capability for creating SQL tables is provided in
CA-Visual Objects.

Using data servers offers you some significant benefits. For example,
many of the properties that you define for a data server and its field
specifications are designed to be used by data windows that you create
using the Window Editor. Thus, you need only define the attributes
for a data server once, and they will be automatically inherited and
used by any data window that is linked to that data server.

The IDE Tools

Getting Started 4–17

Similarly, changes to a data server (such as the validation rules or
picture formats for one or more fields) need only be made in one
place, the data server itself. Resources that use the data server will
automatically inherit those changes.

Using a data server also provides an integrated view of all the pieces
of information related to it. Without this comprehensive entity, you
would have to create and maintain the various pieces (tables, index
files, relations, and field specifications) independently. Additionally,
creating data servers for your database tables allows them to be easily
viewed and manipulated within the IDE (for example, using the Class
and Entity Browsers).

The FieldSpec Editor In many cases, the different data servers your application uses contain
similar, if not identical, fields (for example, all zip code fields are
typically the same, regardless of where they are used). You can either
define the properties of these common fields (such as validation and
formatting rules) each time you create a new data server, or you can
create a single field specification and reuse it in each data server that
needs it.

A field specification created in the FieldSpec Editor is essentially a set
of properties that are related to a field but are independent of any
particular data server. Thus, multiple data servers can access the same
property values for common fields (for example, if you create a Salary
field specification, you can simply reuse its properties when creating
an EmpSalary field in a data server for an Employee database).
Additionally, if you change a field specification, the change will
automatically propagate to all appropriate places.

The IDE Tools

4–18 CA-Visual Objects

Window Editor

The Window Editor is used for the interactive design of the various
windows of your application.

Window Types You can create several types of windows in the Window Editor, based
on subclasses of the standard GUI Classes Window class. For
example, you can create MDI shell windows, data entry screens
(called data windows), and dialog boxes.

Tool Palette To design these windows, the Window Editor features a floating tool
palette. To place a control on a window (such as a push button, list
box, or scroll bar), just click a button in the tool palette and click in
the window.

You can then go on to define properties for your windows and the
various controls you place on them (for example, you may want to
specify the text that should appear in the status bar when a window or
control is selected, or an ID for use in a context-sensitive help
system).

Controls and Actions One important property of certain controls is an event name. This is
because in Windows applications, certain types of controls initiate
actions, or events (for example, when the user clicks the OK button in
a dialog box, the program processes the information entered in the
dialog box and closes it).

The Window Editor makes it easy for you to associate actions with
these types of controls by allowing you to specify an event name as a
property. You have the option of using any method, window, or report
that is visible to your application as an event name and can even
specify source code for a customized event name method from within
the Window Editor.

There are many different types of controls that you can define in the
Window Editor, but before going on to describe them, a few words
about data windows are in order.

The IDE Tools

Getting Started 4–19

Data-Aware Windows The integration of the various tools in the CA-Visual Objects IDE
provides some powerful benefits, one of which is the ability to create
data windows. Data windows are data-aware because they “know”
about the data server(s) upon which they are intended to operate.

A data window knows about a data server by a link that you establish
between it and one or more data servers. Once a data window and a
data server are linked, you can actually link individual controls in the
window (such as edit controls and check boxes) with fields in the data
server.

When you link a window control to a field, you are actually linking it
with the field specification associated with that field—the control,
therefore, automatically inherits and uses all of the field
specification’s properties (for example, its validation and formatting
rules).

By their very nature, data windows are capable of interacting
intelligently with data servers. For example, data windows can easily
display the contents of a data server and have preprogrammed
methods for moving among the records and manipulating the data in a
data server (i.e., Go to Top and Delete Record).

Not only are data windows powerful additions to your applications,
but they are also easy to create. Using the Window Editor’s Auto
Layout feature, you can quickly link a data window with one or two
data servers, creating either a single-server or master-detail data
window, respectively.

When you use Auto Layout, CA-Visual Objects automatically creates
a fixed text caption and edit control for every available field in the
associated data server(s). (See Types of Controls later in this section
for details about these controls.)

The IDE Tools

4–20 CA-Visual Objects

For instance, here is an example of a data-aware window created using
the Auto Layout feature:

Captions and edit controls
created for each field Tool palette

Properties window

Types of Controls The tool palette in the Window Editor contains a host of buttons
representing different controls. (If you prefer, the Window Editor also
features an Edit Select from Palette menu command, which allows you
to place controls by choosing commands from a menu.)

The IDE Tools

Getting Started 4–21

The following is an overview of some of the various types of controls
you can create (they are listed in alphabetical order).

Check boxes indicate a set of options that are either on or off. If
more than one check box is present on a window, the user can select as
many as are applicable. The state of a check box is indicated in the
box to its left: if there is an X in the box, it is selected; otherwise, it is
not.

You might use a check box on a data window to indicate a logical
field. Checking the box would indicate a value of TRUE, while
unchecking it would indicate a value of FALSE. For example:

Combo boxes are list boxes with a single-line edit control attached
at the top. The user can either type a value directly into the edit
control, or click on the down-arrow button to the right to open a list
box from which to make a selection. The selection is used to fill in
the edit control, which can then be edited.

In a data window, you can use a combo box instead of a list box when
the field value has more possibilities than you care to list. By placing
the most commonly used values in the associated list box, you give
the user a quick way to make a selection, without removing the
flexibility of entering values that are not listed, as shown here:

Edit controls present a blank area on a window into which the user
can enter data from the keyboard. They come in two varieties, as
shown below: single-line for entering one line of text, and multi-line
for entering several. The user can edit the text in an edit control with
the normal mouse and menu commands.

The IDE Tools

4–22 CA-Visual Objects

Edit controls are probably the most commonly used controls on data
windows and are often used to represent fields into which the user
may type almost any value.

Fixed icons are graphic pictures that can be placed anywhere in a
window. They are created with any graphics application, including the
CA-Visual Objects Icon Editor. An example of a fixed icon is the
question mark common to many warning dialog boxes:

Fixed text displays a caption or label anywhere within a window. A
common use of this type of control is to create a caption for a single-
line edit control, a feature that is utilized by the Window Editor’s
Auto Layout feature. For example:

Group boxes visually indicate a set of related controls. They
provide a caption to describe the controls, but serve no other purpose.
They are most often used to display a group of related check boxes.
On a dialog box, for example, you might give the user the option of
choosing several styles for displaying text:

The IDE Tools

Getting Started 4–23

List boxes display a list of choices to the user and allow the user to
scroll through them and select one. In a dialog box, you might use a
list box to allow the user to select a file name. On a data window, you
might use a list box to display all possible values for a particular field.
For example:

Push buttons react when the user chooses them by generating an
event (see Controls and Actions earlier in this section). Some
examples of push buttons are the standard OK and Cancel push
buttons, shown below, used to close a dialog box or a Commit push
button on a data window that commits the edits you have made.

Radio buttons behave like check boxes unless contained in a radio
button group box (described below), but their appearance is different.
A selected radio button contains a black dot, as shown in the next
illustration.

Radio button group boxes visually indicate a group of radio
buttons. Like a regular group box, they provide a descriptive caption
for the controls they contain, but they have another special purpose—
only one of the radio buttons within a radio button group box can be
selected at any time. When the user chooses a new radio button in the
group box, the previously selected one is turned off.

Each radio button group box behaves independently. In other words,
you can place several groups of radio buttons on the same window,
and the user can select exactly one radio button in each group box.

The IDE Tools

4–24 CA-Visual Objects

Radio button group boxes let you use radio buttons to present a set of
choices to the user. For example, you might use a radio button group
box on a data window to fill in a field that can only take on a limited
number of values, such as a Temperature field that must be either
“Cold,” “ Warm,” or “Hot” :

Scroll bars display a gauge that the user can adjust using a scroll
box or scroll arrows. They come in two varieties: horizontal and
vertical. You could use a scroll bar on a data window to graphically
represent a numeric field. For example:

Note: The scroll bars discussed here, although visually and
functionally identical, do not apply to the windows themselves, but
rather to the data that the window displays. Window scroll bars (and
scroll bars in list boxes and combo boxes) are handled dynamically in
CA-Visual Objects applications, depending on their current size and
the amount of data that needs to be displayed.

Sub-data windows are simply data windows that you place on other
data windows as controls (they are also referred to as subforms).
Typically you would use a sub-data window to show a master-detail
relationship between two related data servers. (We will create such a
data window later as part of the tutorial in the next chapter, “Learning
the Basics.”)

The IDE Tools

Getting Started 4–25

Menu Editor

The Menu Editor, shown below, provides a powerful yet easy way to
create menus and toolbars for your applications.

Auto Layout First of all, like the Window Editor, the Menu Editor features an Auto
Layout feature. In the Menu Editor, however, Auto Layout is used to
add one or more predefined, standard menus to an application. For
example, at the touch of a button, you can add File, Edit, View,
Window, and Help menus to your application. In addition, each of
these predefined menus (like File) contains a set of default menu
items (for example, New, Open, and Save), for which default
properties are already supplied, including event names and toolbar
buttons.

For example, the following shows the properties initially set for the
predefined File Open menu command:

File Open command

Properties initially defined for File Open

The IDE Tools

4–26 CA-Visual Objects

Auto Layout provides a quick way to get started with your menu
structures—you can use the resulting menus as is, or you can
customize them as desired to fit your application. Of course, you can
easily create your own custom menu structures in the Menu Editor.

Creating Toolbars For each menu structure you create, you can enable or disable a
corresponding toolbar. If enabled, you can choose which items in the
menu structure should have corresponding buttons displayed on the
toolbar, as well as which graphic should be used to represent each
item. In addition, if desired, you can choose the File Preview Toolbar
menu command while in the Menu Editor to preview a menu
structure’s toolbar.

Menu Items and Events Like some window controls, an important property of items on a menu
is an event name. This is because menu items, like certain window
controls, initiate actions or events. The Menu Editor makes it easy for
you to associate actions with menu items using the event name
property, exactly as previously described for the Window Editor.

The IDE Tools

Getting Started 4–27

CA-RET

CA-RET is a state-of-the-art report publishing tool that has been
integrated with CA-Visual Objects to allow you to create sophisticated
reports.

CA-RET has its own environment that you can use to create, edit, and
print reports. To create a report, simply choose the Tools Report
Editor command to launch CA-RET from directly within the
CA-Visual Objects IDE.

Then, choose a data server (DB or SQL) and a report style (CA-RET
provides the following report styles: tabular, form, mailing label,
form letter, and freestyle), and enter a name for the report definition.

Based on those choices, CA-RET lays out an initial report, which can
then be customized as desired. For example:

The IDE Tools

4–28 CA-Visual Objects

CA-RET’s initial report can be customized by adding report details
like literal, database, and computed fields; CA-RET spreadsheet-like
functions; and text. You can also add graphics using CA-RET’s
drawing features. Typeface, color, and size can be selected for your
report text, and you can add bolding, italics, and other print features.

Once a report has been designed and saved, in addition to saving the
report on disk as an .RET file, CA-Visual Objects automatically
generates object-oriented code that you can use to access the report
(for example, print it or allow the user to preview it on screen) from
within your application.

The integration of CA-RET makes it easy to incorporate professional-
quality reports into your CA-Visual Objects applications. And, since
CA-Visual Objects also includes the royalty-free CA-RET Runtime,
you can deliver this powerful report technology free with any of your
applications.

Note: Refer to the IDE User Guide and Programmer’s Guide,
Volume II for more in-depth information about using CA-RET with
CA-Visual Objects.

Icon Editor

The Icon Editor is launched using the Tools Icon Editor command.
Using the Icon Editor, you can create custom icons and cursors for
your applications using a drag-and-drop interface that allows you to
work with several images at the same time. Icons and cursors are
saved in standard Windows .ICO and .CUR files (respectively) that
can be defined to your application as resources.

The IDE Tools

Getting Started 4–29

The Debugger

The CA-Visual Objects Debugger provides advanced tools for tracking
and correcting errors that occur at runtime. For example, you can:

■ Control the execution of your application while viewing the
source code in the Source Code window

■ Execute any part of your application using one of several
execution modes, including a mode in which you step through the
code one line at a time

■ Conditionally stop program execution using breakpoints or by
pressing Ctrl+Alt+SysRq at any time

■ Monitor watch expressions in a separate window

■ Evaluate expressions on-the-fly

■ View and modify variables of all storage classes

■ View database, index, and other work area information in a
separate window

■ View and modify system settings

In addition, CA-Visual Objects allows you to set debugging options at
any level—for a single entity or module, or for an entire application—
and to override the current default setting at the next lower level.

This means, for example, that if you have a successful, stable
application and decide to add new features to it, you can save valuable
time by testing and debugging only the new module or entity. It also
means that, with new applications, you can debug the application
piece-meal by setting the application-level debug flag on, and
selectively turning off the debug flags for modules and entities that
you are not currently interested in debugging.

What’s Next

4–30 CA-Visual Objects

What’s Next

This chapter has given you an overview of the browsers and visual
editors that make up the CA-Visual Objects IDE. These tools provide
an immediate means for you to examine and control your applications
and will become even more useful as your application increases in
sophistication. Building upon the tour provided in this chapter, the
next chapter teaches you how to use CA-Visual Objects with a “hands-
on” tutorial.

