
South Seas Adventures 12–1

Chapter 12
Working with Draw Objects

Objective

In this lesson, you will learn how to display and manipulate bitmap
and text objects using the DrawObject classes. You will also see when
it is appropriate to display these objects.

Overview

The opening dialog box of the South Seas Adventures application
contains a bitmap and text, which were implemented using objects
from the DrawObject hierarchy. This dialog box is used as an
example in the exercise that follows.

As initially implemented, the opening dialog box is not resizable.
This is indicated by its thick border, as seen below:

Overview

12–2 CA-Visual Objects

To make things more interesting, the opening dialog box will be given
the capability to resize its contents based on its own size. This means,
that as the dialog box grows or shrinks, any text and pictures within it
grow or shrink proportionately.

These are the assumptions that were made prior to creating the dialog
box:

Entity Assumption

Window The window is divided into two equal parts.
The left side is used to display the bitmap.
The right side is used to display the text and
an OK push button.

Text The text is to be centered on the right side
of the window.

Text width and height The right side of the window can hold a
maximum number of lines (height) and a
maximum number of characters (width)
defined by the constants, LINES_DOWN
and CHARS_ACROSS, respectively.

OK button The OK push button is to be centered at the
bottom of the right side of the window. Its
size remains constant and is used to
determine the minimum height and width
of the window, since this button should
always remain visible.

Exercise

South Seas Adventures 12–3

Exercise

In the following exercise, you have the opportunity to examine the
source code in the South Seas Adventures application responsible for
creating and displaying the opening dialog box. During this exercise,
you will:

■ Modify the _OpeningDialog window entity to allow the opening
dialog box to be resized

■ Examine the source code necessary for resizing

■ Examine the source code for displaying and dynamically resizing
a bitmap

■ Examine the source code for displaying and dynamically resizing
text

■ Examine the source code for dynamically positioning the
OK push button

■ Run the application to see the results of the generated source code

Making the Dialog Box Resizable

Initially, the opening dialog box was set up to be a fixed size;
therefore, the first thing you will do in this lesson is make it resizable.
The ability to resize a dialog box is controlled by one of its style
properties. To change it, open the dialog box in the Window Editor as
follows:

1. From the South Seas Adventures Module Browser, double-click
on the Opening:Forms module button:

Exercise

12–4 CA-Visual Objects

An Entity Browser is displayed:

2. Double-click on the _OpeningDialog window entity.

3. The Window Editor, which was used to create the window and the
OK button, is displayed:

4. Scroll through the Dialog Window Properties window and select
the Style property.

Exercise

South Seas Adventures 12–5

5. Click on the Ellipsis button that appears in the value cell to the
right of the Style property:

Ellipsis
button

The Dialog Styles dialog box appears:

6. Click on the Resize radio button and choose OK.

This enables you to resize the South Seas Adventures application
opening dialog box.

7. Select the Save toolbar button.

8. Exit the Window Editor by double-clicking on its system menu.

Exercise

12–6 CA-Visual Objects

The Resize Event

When you make a window resizable, as described in the previous
steps, certain aspects of the physical resizing event are handled
automatically. When the user attempts to resize the window, the
system generates a Resize event that is, by default, handled by the
Window:Resize() event handler method. However, if you have any
special processing unique to your window, you must code a Resize()
method of your own to handle it. (This has already been done for the
OpeningDialog class.)

Note: The OpeningDialog class is a subclass created directly from
the _OpeningDialog class, which was generated by the Window
Editor. When working with code generated by CA-Visual Objects, it
is wise to use this strategy of subclassing for making code changes. If
you make changes directly to the generated code, you risk losing the
changes each time the editor needs to regenerate code.

To see how the Resize event is handled for the opening dialog box,
find the OpeningDialog:Resize() method in the Entity Browser and
double-click on it.

The following code is loaded in the Source Code Editor:

METHOD Resize(oRSE) CLASS OpeningDialog

LOCAL oDim AS DIMENSION
LOCAL iMinHeight, iMinWidth AS INT

SUPER:Resize(oRSE)

// Put your changes here

Exercise

South Seas Adventures 12–7

// Screen size is based on size of the button
iMinHeight := SELF:oCCOkButton:Size:Height * 5
iMinWidth := SELF:oCCOkButton:Size:Width * 3

IF SELF:Size:Height < iMinHeight .OR. ;
 SELF:Size:Width < iMinWidth
 // Don't let screen get too small
 SELF:Size := Dimension{MAX(iMinWidth, ;
 SELF:Size:Width), Max(iMinHeight, ;
 SELF:Size:Height)}

ENDIF
// Repaint on every size since entire
// screen is proportional
SELF:Repaint()

RETURN NIL

The code checks the height and width of the window and, if necessary,
resets it. To make sure that the OK push button is always visible in
the dialog box, the size of the button was taken into consideration in
the calculation:

iMinHeight := SELF:oCCOkButton:Size:Height * 5
iMinWidth := SELF:oCCOkButton:Size:Width * 3

From this calculation, you can see that the minimum height of the
window is five times the height of the button. Similarly, the width of
the window is set to three times the width of the button.

The following line forces the window to repaint each time the window
is resized:

SELF:Repaint()

This forces an Expose event to occur. The Expose() event handler can
then repaint our objects in the window, which is discussed in more
detail later in this lesson.

Now that you have explored the Resize() method, it is time to move on
to the code in which the bitmap is displayed in this dialog box. Before
moving on, close the Source Code Editor by double-clicking on its
system menu.

Exercise

12–8 CA-Visual Objects

Using Bitmaps

The opening dialog box for the South Seas Adventures application
displays a bitmap image from a .BMP file.

To display a bitmap from a .BMP file, you must:

■ Declare the file as a resource

■ Create a BitmapObject (a subclass of DrawObject)

■ Create an Init() method for the Bitmap

Declaring a .BMP File as a Resource

A resource declaration statement is needed for accelerators, bitmaps,
cursors, dialogs, icons, and menus. The code for these is usually
generated by the associated visual editor. However, on occasion you
must directly enter the code for the resource declaration via a
RESOURCE statement in the Source Code Editor. Such is the case
with bitmap images.

Note: When the application is built, all RESOURCE statements are
sent directly to the Windows resource compiler.

To view the source code responsible for declaring the bitmap used in
the opening dialog box:

1. Close the Opening:Forms Entity Browser, and select the
App:Resources module by clicking on its module button:

2. Choose the Edit All Source toolbar button.

3. Find the RESOURCE SSABitmap entity, which reads as follows
(assuming you have installed CA-Visual Objects to C:\CAVO):

RESOURCE SSABitmap Bitmap;
c:\cavo\samples\ssatutor\files\ssa.bmp

4. Exit from the Source Code Editor by double-clicking on its
system menu.

Exercise

South Seas Adventures 12–9

Tip: Use either the Find toolbar button or the Go to Entity
toolbar button in the Source Code Editor to locate an entity
quickly.

Creating a Bitmap Object

The next step is to create an object of the Bitmap class that refers
directly to the resource declared in the previous steps. This has
already been done in the South Seas Adventures application, but it is
helpful to look at the source code to understand the connections.

Declaring a Bitmap
Subclass: SSABitmap

At this point, the App:Resources Entity Browser should still be open.

1. Locate the SSABitmap class entity, and double-click on it to load
it into the Source Code Editor.

You see the following line of code:

CLASS SSABitmap INHERIT Bitmap

2. Return to the Entity Browser by clicking on the Open toolbar
button.

3. Locate the SSABitmap:Init() method and double-click on it.

4. Scroll through the Source Code Editor window to view the source
code for both entities, which should look as follows:

CLASS SSABitmap INHERIT Bitmap

METHOD Init() CLASS SSABitmap
 SUPER:Init(ResourceID{ "SSABITMAP"})

 RETURN SELF

Exercise

12–10 CA-Visual Objects

This code is fairly straightforward. First, we have created a
subclass of the Bitmap class. Then, we have defined an Init()
method to be executed when objects of this subclass are
instantiated.

Within the Init() method, note the use of the ResourceID class,
which provides a unique identifier for a resource based on its
name. You could declare your resources using unique identifiers
rather than names, but working with resource names and
converting them using the ResourceID class is much easier.

5. When you are finished looking at this source code, close the
Source Code Editor by double-clicking on its system menu.

Instantiating an
SSABitmap Object

After defining the class and instantiation code for the new bitmap, it
is necessary to give the opening dialog box access to the bitmap.
The most logical place to do this is from within the
OpeningDialog:Init() method.

1. Close the App:Resources Entity Browser, and open the Entity
Browser for the Opening:Forms module by double-clicking on its
module button.

2. Find the OpeningDialog class entity, and double-click on it to
view it in the Source Code Editor.

You see the following code:

CLASS OpeningDialog INHERIT _OpeningDialog
PROTECT LogoBitmap

3. Return to the Entity Browser by clicking on the Open toolbar
button.

4. Find the OpeningDialog:Init() method and double-click on it.

5. Scroll through the Source Code Editor window to view the source
code for both entities—it should look as follows:

CLASS OpeningDialog INHERIT _OpeningDialog
PROTECT LogoBitmap

METHOD Init(oParent) CLASS OpeningDialog
SUPER:Init(oParent)
LogoBitmap := SSABitmap{}

RETURN SELF

Exercise

South Seas Adventures 12–11

In the OpeningDialog:Init() method, the LogoBitmap instance
variable (declared in CLASS OpeningDialog) is set to an
SSABitmap object. Creating the bitmap in this manner allows
you to create the object once, as part of the window instantiation,
and then reuse it each time the window is redrawn.

6. When you are finished looking at this source code, close the
Source Code Editor by double-clicking on its system menu.

Using a Bitmap Object to Draw a Bitmap on a Window

Now, let’s look at the code in which the bitmap is actually drawn on
the dialog box. Earlier, when we discussed resizing a window via the
Resize event, we mentioned the Expose event that was triggered as a
result of calling the Window:Repaint() method. The Expose event can
now be viewed in greater detail.

The Expose Event An Expose event occurs whenever the windows needs repainting. This
can occur under any of the following circumstances:

■ The window is first shown

■ The window is partially uncovered by another window

■ The window changes in size

■ The window is being restored after being minimized

■ A call is made to the window’s Repaint() or
RepaintBoundingBox() method

At this point, the Opening:Forms Entity Browser should still be open.
Find the OpeningDialog:Expose() method, and double-click on it to
load it into the Source Code Editor.

Exercise

12–12 CA-Visual Objects

The following lines of code define the available size (adjusted to
remove four pixels for each border) where the available width for the
bitmap is the integer iMidWidth:

// Get screen height and width minus borders
iHeight:= SELF:Size:Height-8
iWidth:=SELF:Size:Width-8
iMidWidth:=INT(iWidth/2)

Now let’s examine the SELF:Draw() line of code (located around line
14) which is responsible for drawing the SSABitmap:

// Draw bitmap sized and positioned
// relative to screen
SELF:Draw(BitmapObject{Point{2, 2}, ;

Dimension{iMidWidth - 4, iHeight - 4}, ;
LogoBitmap})

This is a fairly complicated line of code. Let’s examine its individual
components to get a better understanding of what is going on:

BitmapObject{...} Creates a bitmap draw object.

Point{2, 2} Defines the point, in pixels, at which to start drawing the
bitmap object.

Dimension{iMidWidth-4, iHeight-4} Defines the pixel width and
height of the object to be drawn. In this case, the width is half the
window width less four pixels, and the height is the window height
less four pixels. This ensures that the size of the bitmap is always
relative to the size of the window.

LogoBitmap The bitmap object that was assigned when the opening
dialog box was created.

SELF:Draw(...) Draws the logo on the dialog box.

Important! You should always use the Expose() method when
displaying DrawObject class entities. Also, use the Window:Draw()
method to display your individual DrawObject. Never use the
DrawObject:Draw() method directly, as it is called by the
Window:Draw() method.

Exercise

South Seas Adventures 12–13

Using Text Objects

The Expose() event handler method also has code for displaying the
text on the dialog box. This is accomplished using the TextObject
class, which is like BitmapObject in that it is a subclass of
DrawObject.

You should still have the source code on your window at this point.
Just below the line of code discussed previously for drawing the
bitmap, you should see the following lines of code:

iFontWidth := INT(iMidWidth / CHARS_ACROSS)
iFontHeight := INT(iHeight / LINES_DOWN)

These lines calculate the width and height of the font, in canvas
coordinates, used to display the text. The width is calculated as the
window width divided by the number of characters allowed
(CHARS_ACROSS). The height is calculated as the window height
divided by the number of lines allowable (LINES_DOWN). In this
way, the font is scaled based on the size of the window.

Note: Both CHARS_ACROSS (set to 30) and LINES_DOWN (set to
7) are defined as constants in this same module. If you wish, you can
view them in the Source Code Editor by clicking on the Open toolbar
button and then double-clicking the corresponding entity in the
browser.

Next, the font is instantiated using the height and width calculated
previously:

oTextFont := Font{FONTROMAN, ;
 Dimension{iFontWidth, iFontHeight}}

Exercise

12–14 CA-Visual Objects

Finally, the TextObject object is created and drawn on the dialog box.
The code for doing this is similar to the code for drawing the bitmap
that you saw earlier. The TextObject object is instantiated within the
call to SELF:Draw(), and the starting point is determined dynamically,
based on the font and window size:

sLine1 := "South Seas Adventures "
SELF:Draw(TextObject{Point{iMidWidth + ;
 Int((CHARS_ACROSS-Len(sLine1))/2) * ;

iFontWidth, ;
 Int(Float(iHeight) * .5)}, sLine1, ;

oTextFont})

Dynamic Positioning of Controls

The OK push button is the only entity on the window that is not
scaled—although it could be. Since this is the only push button
control on the window, it is best to fix its size as you could not afford
to lose it to resizing.

This button, however, is dynamically positioned so that it is always
visible. The positioning of the OK button is also handled within the
Expose() event handler, which should still be on your window. Look
immediately below the line of code discussed previously for drawing
the text, and you see the following lines of code:

// Position push button
oCCOkButton:Origin := Point{ ;
 Int((Float(iWidth) * .75) - ;
 (oCCOkButton:Size:Width / 2)), 10}

In this code, oCCOkButton is the name of the push button object. By
calculating its Origin property based on the current width of the dialog
box, the position of the OK push button is computed at runtime each
time the dialog box is redisplayed.

Exercise

South Seas Adventures 12–15

Viewing the Results in the Application

This concludes the overview of the source code used to control the
opening dialog box. If you like, you can verify and examine the
results in the South Seas Adventures application.

1. Close the Source Code Editor by double-clicking on its system
menu.

2. Close the Opening:Forms Entity Browser by double-clicking on
its system menu.

3. Even though you have not made any source code changes, you
need to rebuild the application, using the Build toolbar button,
because of the minor change you made earlier in the Window
Editor.

4. Run the South Seas Adventures application by clicking the
Execute toolbar button.

The opening dialog box is displayed:

Note that it has a thin border, to indicate that it is now resizable.

5. Resize the dialog box by dragging the right border to the left.
Note that everything except the push button is scaled down, as
shown below:

Summary

12–16 CA-Visual Objects

6. Continue to resize the dialog box to see the results of the source
code you have been reviewing. When you are done verifying the
results, choose OK.

7. At the Login dialog box, choose the Cancel button.

Summary

In this lesson, you learned how to use the BitmapObject and
TextObject classes, and how to scale objects created by these classes
according to the window in which they reside. You also learned about
the Expose and Resize events.

In the following lesson, you will learn how to use CA-RET to define,
customize, preview, and print a report.

