Appendix A
Creating a Path-Independent
Application

Overview

This appendix describes what you must do to make sure that an
application can run successfully when it is installed on any drive or
directory. Creating such path-independent applications is an
important design objective.

The following diagram of the primary South Seas Adventures
application building blocks indicates that there are three types of
external files—help files, data/index files, and CA-RET report
definition files:

| SSA Shell Window |

|
| SSA Shell Menu |

Edit Customer Customer

Customer Data Report
Data Window Server Dialog

Customer Customer
Menu Report

Help Customer CA-RET

File Data File Re_port

and Indexes File

South Seas Adventures A-1

Establishing Drive and Directory Independence

Note: Rectangles with thick borders are the primary building blocks,
while those with thin borders are external files. Design linkages are
shown as thick lines, while external linkages are shown with thin
lines.

An application must be able to locate these files at runtime, so there
are several key steps that must be taken to remove possible path
dependency while you are creating the building blocks of your
application. CA-RET report files themselves contain information that
directs the report runtime engine to the location of the related data
files, so additional steps to remove path information from each
report’s query statement are required.

Establishing Drive and Directory Independence

Fixed Paths

The“Exploring the CA-Visual Objects Integrated Development
Environment chapter describes how the SSATUTOR directory
structure was chosen to facilitate the development process. In
addition to carefully planning the directory structure for the
developer’s development environment, it is important to think ahead
to the drive and directory possibilities when the application is
installed by an end user.

There are two possible approaches when planning your directory
structure, depending on where you want your data to reside.

If you are sure that the data files will always reside on a given drive
and directory, then you may want to use fixed paths for the data file
and index files specified in the DB Server Editor. This may be a
good choice if the data files are maintained on a single LAN drive
and directory. During the development process, you can keep your
test data files in these designated locations.

A-2 CA-Visual Objects

Establishing Drive and Directory Independence

User-Defined Paths

If the location of the data files depends upon the user’s choice of
installed directory, you should plan to keep your application help
files, data files, and report files in the application directory (that is,
where the .EXE file resides). In this case, you must not use any path
information when you define each DATA server and report. During
the development process, these files should be kept in the
application’s .EXE file directory (for example,
D:\CAVO\SAMPLES\SSATUTOR) specified in the Application
Properties dialog box.

This appendix addresses the second appreatite this is the more
likely scenarie—which places some restrictions on what you can do.
The fact that the application starts up from the directory that holds the
.EXE file allows you to specify path-independent linkages for your
external files.

There are several runtime considerations relating to finding these
external files:

= When running an executable file, the current directory is the
directory that holds the .EXE file. External files that have no
explicit path specified in the related application building blocks
will be successfully located if they are placed in this directory.

= When you use Save or Save As to store a report definition, the
path is stored in the report’s class entity. This path is required
during the development process. However, you can create a
special access entity to change this path to NULL_STRING at
runtime, allowing report files stored in the application directory
to be successfully opened.

= Each report file executes a query at runtime to locate the data
files and index files. One or more data servers must be specified
when you define a new report and any path information stored in
the data server at that time becomes part of the query statement.

South Seas Adventures A-3

Establishing Drive and Directory Independence

Achieving drive and directory independence for your reports requires
that you not use any path information in defining data servers.
Otherwise, the runtime query executed for each report will fail if the
data files are not in the fully specified location. The South Seas
Adventures application was designed to achieve drive and directory
independence. Therefore, there is no path information associated with
any data server.

Help Files

You can specify a help file name for a shell window or a data window
by using the Help File Name property that is specified in the Window
Editor. The Window Editor generates source code that creates the
linkage. For example, if the help file is SSA.HLP, the code is

SELF:HelpDisplay := HelpDisplay{ "ssa.hlp "}

where SELF is a shell window or data window. Here, a help display
object is created using the SSA.HLP file, and then using the
HelpDisplay assign of the Window class. This help linkage is path-
independent.

If we had included path information in the Help File Name property,
then it would be included in the source code. This would require that
the help file always be in the designated location, or that the path is
modified at runtime. Generally, you can simply remove all path
information from the Help File Name property and locate the help file
in the directory in which the application is installed.

A-4 CA-Visual Objects

Establishing Drive and Directory Independence

DB Server Data Files

If you create a data server by importing a .DBF file, path information
will automatically be placed in the File Name edit control. If you do
not remove the path information from the server before you save it,
the path will be stored in the CLASS definition, as follows:

CLASS Customer INHERIT DBServer

INSTANCE Customer_DBF_Path :=;
"c:\cavo\samples\ssatutor\ " AS STRING

Therefore, you must remove any path information for the data file or
any index file, leaving only the name of the file. If you do this,
NULL_STRING is stored in the instance variable, as shown below:

INSTANCE Customer_DBF_Path := "™ AS STRING

If, for some reason, you do want path information in the CLASS
definition, you can still change it at runtime by creating a special
access method for the instance variable. This access entity removes
path dependence at runtime:

ACCESS Customer_DBF_Path CLASS Customer
RETURN™

This next code allows you to specify the DBFS subdirectory of the
current directory,

ACCESS Customer_DBF_Path CLASS Customer
RETURN".\dbfs\

However, neither of these access methods address the problem of path
independence for reports. Nor does use of the SetDefault() function,
which allows you to specify a path that will be searched when
performing direct database actions.

Important! To achieve path independence in reports, you maist
have any path information stored in any data server building blocks.

South Seas Adventures A-5

Establishing Drive and Directory Independence

Report Files

CA-RET File Path

When you create a report you will use either the Save or Save As
command in the Report Editor to store the CA-RET file. If you are
creating a new report, the default location is your application .EXE
file directory; therefore, you must use Save As to locate it elsewhere.
The actual path location of the file is stored in the CLASS entity as
follows:

CLASS CAdvRpt INHERIT ReportQueue
INSTANCE CAdvRpt_File :=;
"c:\cavo\samples\ssatutor\cadvrpt.ret " AS STRING

This path is required so that the file can be opened when you want to
edit the report. Thus you must use a special access method to achieve
path independence in the end-user runtime environment. The South
Seas Adventures application includes an access that removes the path
dependency for each report. For example:

ACCESS CAdvRpt_File CLASS CAdvRpt
RETURN"cadvrpt.ret

While this access method achieves path independence at runtime, you
must also address the location of the report file during the
development process. The CA-RET file path in the CLASS statement
must be changed, if you have imported the South Seas Adventures
AEF file into a directory other than C:\CAVO and you wish to edit the
report definition.

You can change the CLASS statement by entering the Report Editor
and using Save As to save it to the desired location. When you
double-click on the report entity for the first time, a dialog box asks
you to type in the full path of the .RET file. When you do this and
close the dialog box, the Report Editor opens. The path in the CLASS
definition is updated to the new path.

A-6 CA-Visual Objects

Establishing Drive and Directory Independence

Query Path

When you create a new report, the Report Editor dialog box requires
that you choose one or more servers to define what fields are on the
report. If any of these servers contain path information for a data or
index file, it will be included in the query statement.

In order to achieve path independence, you must manually remove the
paths by using the Database Edit Query command. After doing this,
save the CA-RET file to the proper location. If you do not manually
remove path information from the query, you will get a CA-RET
runtime error if the data files cannot be found by using the designated
path.

Important! The best approach is to remove the path information from
the data servers, so that it is not passed to the Report Editor.

Icon, Cursor, and Bitmap Files

Icons, cursors, and bitmaps can be treated differently than help files,
data files, and report files, since they are directly incorporated in any
AEF export file or a generated .EXE file. When the South Seas
Adventures application was initially created, the RESOURCE
definitions of the icons, cursors, and bitmaps contained the path for
the .ICO file on the developer’'s disk drive. For example:

RESOURCE ITEM_ICON Icon ;
c:\cavo\samples\ssatutor\files

If you have installed CA-Visual Objects to C:\\CAVO, the file is stored
in this directory during the .AEF file import process. This path is not
useful on your machine, however, if you installed to some other drive
and directory. This is not a problem because CA-Visual Objects
automatically modifies the path during the import process. The file is
placed into the directory from which the import is taking place and the
RESOURCE statements will be automatically changed. For example,
if you installed to drive D:, the icon, cursor, and bitmap files will be
placed in the D:\CAVO\SAMPLES\SSATUTOR\FILES subdirectory.

South Seas Adventures A-7

Summary

Summary

Because this is automatically handled during the import process, no
further steps are necessary unless you wish to edit an icon or cursor
itself. If you try to edit such an icon entity and it is not in the same
location as the original .AEF file, a dialog box is displayed, indicating
that the file cannot be found. You must close this dialog box in order
to invoke the Icon Editor.

When in the Icon Editor, use the File Open command to open the file
from its new location. Then, use the Save command, type in the same
entity name, and choose OK to save the icon file and the icon entity.
Select Yes when asked about overwriting the existing file. If you are
working with a cursor entity, you must first change to the Cursor

Mode (from the Options menu) when you invoke the Icon Editor.

As you have just seen, there are essentially no runtime issues
associated with the paths for icons, cursors, and bitmaps, since they
are bundled into the .EXE file. The only issue is one of moving an
AEF file between two developer’'s machines with different directory
structures.

In addition, you have learned what you can do to make your help, data,
index, and report files path-independent.

A-8 CA-Visual Objects

