
South Seas Adventures 1–1

Chapter 1
Introduction

Welcome to South Seas Adventures!

Your adventure is to take a hands-on tour of a sample application,
South Seas Adventures, and to discover how quickly and easily you
can begin developing your own applications in CA-Visual Objects.
The application has been partially developed—allowing you to
complete the development process as you work through the tutorial.

South Seas Adventures simulates an operations support system that
might be used by the employees of a hypothetical company, South
Seas, Inc. Employees of the company act as booking agents to help
customers plan an “adventure,” consisting of several vacation
activities—such as parasailing, jet skiing, or dinner cruises.

Additionally, South Seas Adventures manages many other aspects of
the business, including subsystems to handle customer, employee,
order-entry, invoice, and payment information.

Welcome to South Seas Adventures!

1–2 CA-Visual Objects

Some of the system operations that are covered in the tutorial are
listed below:

■ Creation of an order for an adventure

■ Creation of an invoice

■ Recording of payment information

■ Preparing customer reports

■ Exporting data to an external SQL-based accounting system

Not only does the application have all the proper components to
satisfy the needs of South Seas, Inc. operations, it also employs many
user-friendly features (such as windows and toolbars) found in your
favorite Windows applications.

South Seas Adventures is an MDI (multiple document interface)
application that features a consistent, easy-to-use interface that
demonstrates how standard Windows features are created, using the
CA-Visual Objects IDE (integrated development environment). The
application allows you to view or browse through information easily,
as well as create or delete a customer record.

Welcome to South Seas Adventures!

South Seas Adventures 1–3

Some of these standard Windows features are shown below:

MDI Children

Shell Window

Custom
Toolbar

User-Defined Icons

Data
Browser

Context-Sensitive
Status Bar Messages

Each of these annotated areas will be discussed in greater detail in the
remainder of this chapter.

You will now discover how the application is developed—using the
CA-Visual Objects IDE tools.

Welcome to South Seas Adventures!

1–4 CA-Visual Objects

Using the Integrated Development Environment

CA-Visual Objects provides both a visual and incremental
development environment. It integrates the many different types of
building blocks, or entities, required to build a Windows application
like South Seas Adventures. Visual editors allow you to create
windows, menus, and other objects. Even more importantly, they
automatically generate the related source code entities. You can then
create and edit the relatively small number of source code entities that
define what happens when a push button is pressed or a menu
command is selected. Finally, you can create source code entities that
incorporate business and detailed program logic rules.

CA-Visual Objects
Repository

All of the entities are stored in the CA-Visual Objects repository.
The repository allows you access to all of the entities associated with
an application. The entities are organized into modules so that
similar entities can be grouped together to make them easy to locate.
There are several ways to view entities and modules in CA-Visual
Objects:

■ Module Browser

Allows you to select a module and display a list of its entities.

■ Entity Browser

Allows you to see all the entities in an application, organized by
entity type.

■ Class Browser

Allows you to see all the entities associated with a class.

The CA-Visual Objects IDE is well suited for incremental
development. You can create the data servers, windows, and menus in
any order. Once the interface is basically completed, you can start
adding source code entities that define what happens when a push
button or menu command is selected. The repository manages all the
building blocks, compiles the changed entities, and allows you to run
the application, so that you can revise the overall design and recreate
the building blocks in an incremental fashion.

Welcome to South Seas Adventures!

South Seas Adventures 1–5

Creating the Application Building Blocks

You will have the opportunity to add some of the key building blocks
to the South Seas Adventures application. Since certain exercises
require the use of a building block created in an earlier chapter, you
should work through the chapters in sequential order.

After you have completed the development of the application, it will
be capable of accessing and updating information about customers,
employees, adventures, activities, invoices, and payments. This is
accomplished through the use of a variety data-aware windows, dialog
windows, menus, and reports.

Here are the building blocks that you will create:

■ A data server for customer data based on the traditional Xbase
model of a .DBF file, and two SQL servers for data to be exported
to an accounting system

■ General field specifications, or field specs, that can be used with
existing data servers

■ A data-aware window to edit customer data, using the Auto
Layout feature with a data server

■ Controls for the customer data window

■ A menu and toolbar for the customer data window

■ An icon for the customer edit window

■ A resizable opening dialog box with a bitmap and a text object

■ A report that lists customers

■ A library and DLL for .INI file management activities

What You Should Know

1–6 CA-Visual Objects

What You Should Know

The South Seas Adventures application was created using an object-
oriented development system. If you are not familiar with object-
oriented systems, you can use the following background information
to assist you in getting the most out of this tutorial.

What Are Objects?

Objects are special types of programming entities—like windows,
controls, menus, or toolbars—that have properties associated with
them (like a border or caption) and can perform specific actions (like
displaying itself on the screen, in the case of a window, or toggling the
check mark indicator, in the case of a check box control).

These animated objects are generally created, and ultimately
destroyed, in response to something the end user does via the
application interface. Every time a user accesses a data table and it is
connected to the application, a data server and related field spec
objects are created. Also, special objects that relate to a problem-
specific business process (such as creating an invoice) may be created.

What Can Objects Do?

They can walk, talk, and listen! The developer can specify what
actions are possible for each type of object; this is done by creating
source code entities called methods. An object can also provide
information for use by other objects or by the business logic routines
in the application; the way an object talks is defined in access source
code entities. An object can also receive information via assign
source code entities, which can modify its current state.

How Are Objects Defined?

Objects are defined by a special kind of source code entity called a
class. Approximately 90 percent of all classes you need are defined
automatically by CA-Visual Objects. A class specifies the blueprint

What You Should Know

South Seas Adventures 1–7

for each type of object and typically inherits most of its properties
from another class, called the parent class.

However, in some situations you may want to define a class from
scratch. A special Init() method defines all the related details of what
must be done when the object is created. Additional methods can be
defined to specify the other desired behaviors of the object, including
what information can be received by it (assigns) or provided by it
(accesses).

How Are Objects Created and Destroyed?

Objects are created in the runtime environment by the CA-Visual
Objects runtime system. End-user actions trigger source code that
creates a new object; this process is called instantiation since a new
instance of the object is created. Each object is given an internal
name by the runtime system to allow it to manage the activities and
communications for all the existing objects. Objects are destroyed as
a result of end-user actions. For example, the menu, data server, and
controls for a data window are destroyed when the end user closes a
window. All windows are destroyed when the end user closes the
application.

How Do Objects Interact?

All actions and communications between objects and other variables
are managed by the CA-Visual Objects runtime system. When an end
user starts an application, a well-defined environment, or universe, is
created. Once objects are created in response to end-user actions, all
the behaviors and information transfers progress according to the
source code specifics. Each object is a well-behaved automaton that
does what is asked of it, speaks only when spoken to, and accepts only
certain kinds of information. An end user is the invisible hand that
triggers the creation, activities, and destruction of each object.

When Does It All Begin and End?

The runtime universe begins when the user starts the application. This
triggers the App:Start() method, which is similar to CA-Clipper’s

What You Should Know

1–8 CA-Visual Objects

START() function. The App:Start() method defines the shell window
to be opened, and then triggers the running of the application with the
App:Exec() method. The end user then defines all the other events,
including the creation and destruction of objects. Finally, the
application is closed when the App:Quit() method is activated.

How Are Objects Used in South Seas Adventures?

If you have not used objects before, you should be reassured by the
fact that approximately 90 percent of all the classes, methods,
accesses, and assigns in the South Seas Adventures application are
generated automatically by CA-Visual Objects. Every time you use
one of the visual editors and save whatever it is you are creating, all
the related source code entities are generated.

This tutorial also highlights the few classes that are not generated
automatically. These classes include dialog window classes that
inherit properties of dialog windows generated by the Window Editor,
an Invoice class created from scratch, and two file specification
classes.

Creating Objects When you create an object, it is named in the source code like any
other variable, but the letter “o” is used as a prefix for the name. For
example, since “oDC” indicates that an object is a data-aware
control, a single-line edit control on a window could be named
oDCFirst_Name. It would then be instantiated with the following
source code:

oDCFirst_Name := SingleLineEdit{...}

This control is instantiated from the parent class (the standard
SingleLineEdit class) according to the details and parameters within
the {} braces. These curly braces indicate that an object is being
instantiated.

What You Should Know

South Seas Adventures 1–9

Working with Objects You can access character information from the object, by using the
Value access of the parent SingleLineEdit class:

cTempName := oDCFirst_Name:Value

Or you can assign character information to the object with the Value
assign of the parent class:

oDCFirst_Name:Value := cNewName

If you want to clear the contents of this control, use the name of the
object followed by the Clear() method defined for the parent class, as
follows:

oDCFirst_Name:Clear()

Finally, remember that all the interactions between objects are
handled automatically by the CA-Visual Objects runtime engine.
Once the end user starts the application, all these details should be of
no concern to the developer.

That is all you really need to know about objects to benefit from the
South Seas Adventures tutorial. Remember that as you create data
servers, windows, and menus with the visual editors, the related
object-oriented code is generated automatically. That means that the
majority of your time as a developer can be spent designing the
interface and business logic, while you leave the intricacies of
creating a Windows application to CA-Visual Objects.

South Seas Adventures Application Design

1–10 CA-Visual Objects

South Seas Adventures Application Design

Let’s now begin to take a closer look at the internal workings of the
South Seas Adventures application by examining its various
components. This section can be used as a road map to what follows
in the tutorial.

Creating the Primary Building Blocks

Entities that are created by the CA-Visual Objects visual editors are
discussed in this section. You will learn how easily they can be
created and incorporated into an application.

Data Tables, Servers, and Fields

The South Seas Adventures application provides access to information
about customers, employees, adventures, activity items, invoices, and
payments—the six primary types of business data used in the
application—by means of the following data structures:

Data Tables The types of tables that are needed to store primary (and other types)
of data are listed below:

■ Individual DBF tables for storing customer, employee, item, and
payment information.

■ Paired DBF tables for adventures and invoices (one for header
information and the other for a varying number of detail records).

For example, an adventure is defined for a customer whose
vacation travel spans a fixed period of time (header information)
and contains one or more adventure activity items (detail
information).

South Seas Adventures Application Design

South Seas Adventures 1–11

■ SQL tables for accounting invoices (AccInv) and accounting
payments (AccPay), simulating the external accounting system.

■ DBF lookup tables (State, SysKey, and Tender).

Data Servers A data server must be created as an interface to each of these tables.
You can use the DB Server and SQL Editors to accomplish this task
quickly and easily. The IDE automatically creates the server entities
and all the related field spec entities when you save a server from its
editor.

The South Seas Adventures application requires data servers for the
DBF tables and SQL data servers for the accounting tables. You will
see how the Customer, AccInvc, and AccPay servers are created in the
“Working with Data Servers” chapter.

Data Fields When a data server is created, the data fields for each server are
defined in either the DB Server or SQL Editor. Typically, the server is
created by importing a STRUCTURE from a .DBF file or an SQL
table. If this is not done, the name, length, and type must be specified
for each data field. The related field spec entities for each data field
are automatically created when you save the server.

You will get the opportunity to examine the field specifications for
various data fields within the South Seas Adventures application.

South Seas Adventures Application Design

1–12 CA-Visual Objects

Data Windows

Data windows not only provide access to information that you need—
but also allow the user to create, edit, and delete records. All the
related source code entities needed to perform these functions
(classes, methods, accesses, assigns, and defines) are created
automatically when you save your window design.

The following data windows are used in the South Seas Adventures
application:

■ Browser window

Contains a subform that displays a table showing several data
fields for all records and an edit control for searching the table.
One table is used for each business data type.

■ Subform window

Contains a multi-column tabular display for use in the browser
window. One table is used for each business data type.

■ New window

Used to create a new record. It applies to all business data types,
except invoices (since invoices are created from the Edit
Adventure window).

■ View window

Used for viewing payment information, which is not editable.

■ Edit window

Used to edit all fields of a single record. It applies to the
customer, employee, and item business data types.

■ Master-detail edit window

Used to display header information and a detail subform. It
applies to adventure and invoice business data types.

■ Detail subform

Contains a tabular display for use in a master-detail edit window.
It applies to adventure and invoice detail data.

You will learn how to create the Edit Customer data window as part of
this tutorial.

South Seas Adventures Application Design

South Seas Adventures 1–13

Shell and Dialog Windows

A shell window provides the framework for all the other windows and
menus in your application. Dialog windows provide a way to
communicate with the end user. These windows are also designed
using the Window Editor and all the related source code entities are
created automatically when you save the window design.

The South Seas Adventures application contains a single shell window
and several dialog windows, including:

■ Shell window: SSAWindow

■ Navigational dialog windows: Opening, FileNew, FileOpen

■ Print dialog windows: CustAdv, CustRpt, InvcRpt, PayRpt,
Printer, PrintReport

■ Other dialog windows: About, Find, Login, NewPassword,
Progress

Window Controls

CA-Visual Objects has many types of controls that can be used in a
window design. These controls are derived from standard classes.
When you save a window design, the required source code for each
control is automatically generated. Alternatively, you can make use
of these controls by writing source code directly.

The majority of the controls are called “data-aware” controls, because
they can be directly linked to a field in a data server, and therefore,
can directly communicate with a field in a data table. When the
Window Editor generates source code, the object name is prefixed
with the three letters, “oDC” .

A few types of controls are not data-aware—for instance, push
buttons, radio buttons, fixed text objects, fixed icons, and group boxes.
Object names for these controls are prefixed with “oCC” .

The “Adding Controls to Your Windows” chapter steps you through
the process of placing controls on the Edit Customer window created
in “Creating and Using Windows.”

South Seas Adventures Application Design

1–14 CA-Visual Objects

Application Menus

Menus allow a user to communicate with an application to perform an
action. The Auto Layout feature of the Menu Editor can be used to get
a quick start on your menu design. You can then add or delete menu
items. You can also define a toolbar for the menu. When you save a
menu design, the Menu Editor automatically generates all the source
code entities for the menu.

The SSAShellMenu menu is the one associated with the main shell
window that you see when the application begins. It allows you to
select the next window to be opened. This child window has an
associated SSAChildMenu menu that invokes various data windows.

In the “Creating Menus and Toolbars” chapter, you will create the
CustomerMenu menu, which will then be attached to the Edit
Customer window.

Event Handlers

Once the primary building blocks are created, you can begin to write
the source code that defines what should happen, for instance, when
the user activates a push button or a particular menu command. A
Window class method (or event handler) can be created that holds the
code that is executed when a push button is clicked. The Window
Editor allows you to write this source code during a work session, by
invoking the Source Code Editor. In the Menu Editor, you must
specify the name of a window, report, or method for each menu item.

South Seas Adventures Application Design

South Seas Adventures 1–15

In addition, you can create special methods that are activated when
certain events occur in a window (for example, when any button on a
window is clicked or the contents of any edit control is modified).
This type of source code must be included in special window event
handler methods, which can also be done easily during a Window
Editor work session.

You will learn about window event handlers for the South Seas
Adventures application in the “Customizing Window Event Handlers”
chapter.

As you define the event handlers for your controls and menu items,
the building blocks of your application are linked together. At this
point in the development process, you can begin to run the application
from the IDE to see how the various components work together.

Reports

Reporting can be a powerful feature in a business application. The
CA-Visual Objects Report Editor allows you to specify which tables
are to be used in a report, by defining the data server names. Once
you select a report style—tabular, form, labels, letter, or freestyle—a
basic report definition is generated which you can then modify. When
you save the report definition, an external CA-RET file is generated,
as well as several related source code entities.

There are several reports that are supplied with the South Seas
Adventures application that you can examine. In the “Reporting with
CA-RET” chapter, you will also create a report that lists all customers.

South Seas Adventures Application Design

1–16 CA-Visual Objects

Help Systems

Another primary building block of an application is the help system.
This can be an important part of making your application easy-to-use.

Context-sensitive help can easily be designed into your application.
First, you must create a help file that has all the required help topics.
You must then attach the help file to the application by specifying the
help file name as a property of the shell window. An individual help
topic can be designated in the visual editors for each window, control,
menu item, server, and field. Thus, there are many linkages between
the application and the help file.

You will add help to the South Seas Adventures application in the
“Adding Help to Your Applications” chapter.

Icons, Cursors, and Draw Objects

In addition to the primary building blocks, there are a few more
entities that you can add to your application that can enhance the
“ look” of your application, including icons and cursors.

You will create an icon (MyIcon) in the “Creating and Using Icons
and Cursors” chapter of this guide. You will also see how to work
with bitmaps and text objects in “Working with Draw Objects,” and
learn how the Window:Draw() method can be used to display them.

South Seas Adventures Application Design

South Seas Adventures 1–17

Linking the Primary Building Blocks

The following diagram illustrates the basic structure of the South Seas
Adventures application and the relationships among the primary
building blocks (those that can be created using the editors in the
CA-Visual Objects IDE):

 Edit

 Data Window

 Customer
 Menu

Customer
 Data
 Server

 Customer
 Data File
 and Indexes

 Customer
 Report
 Dialog

Customer
 Report

Help
File

 CA-RET
 Report
 File

SSA Shell Window

SSA Shell Menu

 Customer

Note: Rectangles with thick borders are the primary building blocks,
while those with thin borders are external files. Design linkages are
shown as thick lines, while external linkages are shown with thin
lines.

The main application window is the shell menu, which allows you to
open a data or dialog window. Menus are associated with windows,
and data servers act as the interface between data windows and
external data files. There can be many linkages to the help file.
Finally, each report is linked to an external report definition file which
provides a linkage to the data files.

South Seas Adventures Application Design

1–18 CA-Visual Objects

Completing the Remaining Building Blocks

At this point, you have learned how the CA-Visual Objects visual
editors help simplify the development process when creating many of
the required application entities. Now, let’s look at some of the
remaining building blocks that you will need.

The following diagram summarizes how the different types of
application entities are created:

Visual Editor
Design Entities

Developer-Coded
Entities

System-Generated
Entities

Cursors Functions Defines

Data servers Global variables Resources

Field specs Classes Classes*

Icons Accesses Accesses*

Menus Assigns Assigns*

Reports Methods Methods*

SQL servers

Windows

Aside from the visual editor design entities, the remaining entities are
created either by the developer or the system. You do not need to be
concerned with the system-generated entities, since they are generated
automatically.

Depending on the amount of customization you want to make to your
interface design, and the complexity of the event-handler methods,
about one-third to one-half of your development time may be spent on
creating the visual editor-generated building blocks, while the
remaining time can be spent developing your own custom code.

The next two sections describe developer-coded and system-generated
entities in greater detail.

South Seas Adventures Application Design

South Seas Adventures 1–19

Developer-Coded Entities

Your part in the development process lies in the creation of
methods—such as event handlers—that describe what should happen
when an end user clicks on a push button or selects a menu command.

In the South Seas Adventures application, subclasses for the shell
window and the dialog windows are used to demonstrate how code
reuse can greatly reduce your overall development time. (Subclassing
is discussed in greater detail in the “ Inheritance and Subclassing”
chapter.) A few special window event handlers are also used, as you
will see in the “Customizing Window Event Handlers” chapter.

System-Generated Entities

Entities that are generated automatically by CA-Visual Objects
typically represent approximately 80 to 90 percent of the entities for
an application like South Seas Adventures. The define entities make
up about a third of the entities in the entire application. The vast
majority of the other system-generated entities—including classes,
access methods, and assign methods—are automatically generated by
the IDE visual editors (as indicated by an asterisk in the previous
table).

South Seas Adventures Application Design

1–20 CA-Visual Objects

Linking the Remaining Building Blocks

The following diagram illustrates the entire structure of the South
Seas Adventures application, including the supplementary building
blocks, and the relationships among all the entities:

Edit

Data Window

 Customer
 Menu

Customer
 Data
 Server

 Customer
 Data File
 and Indexes

 Customer
 Report
 Dialog

Customer
 Report

Help File
SSA.HLP

CA-RET
 Report File

 CUSTLIST.RET

SSA Shell Window

SSA Shell Menu

Customer

Other
Cntrls

 Related
 Field Specs

M

M

M

M

M

M

M

Key: M = method (event handler, button, or menu event)

Data
Cntrls

Other
Cntrls

Data
Cntrls

Note: As noted earlier, rectangles with thick borders are the primary
building blocks, while those with thin borders are external files.
Design linkages are shown as thick lines, while external linkages are
shown with thin lines.

This diagram expands upon the primary building block diagram,
showing several additional relationships among the application
entities.

South Seas Adventures Application Design

South Seas Adventures 1–21

It shows the controls that you can place on each window when you are
using the Window Editor. There are two types of controls—data
controls, which could be linked directly to the fields in a data server
(and, therefore, to a data file) and other controls, which are not data-
aware. These other controls are used to accept user-control actions
(associated with push buttons and radio buttons) or as inanimate
display objects (such as, group boxes, fixed icons, and fixed text).

Secondly, the important role played by field specs is shown as the
rectangle adjacent to the data server. Note the design linkage to the
data controls (via the name of the data server associated with a
window). A dialog window may contain both types of controls, but
there is no connection between a dialog’s data controls to the fields in
a data server and data file.

Lastly, you will notice the areas where the developer can explicitly
code methods to describe how the application should act when the user
makes certain control choices. These methods fall into the developer-
generated entity category. Each place where a developer-coded
method could be created is indicated by the letter “M.” There are
three types of such event-oriented methods:

■ Push button methods

Can be added to indicate what should happen when the user clicks
on a specific push button (refer to the “Creating and Using
Windows” and “Adding Controls to Your Windows” chapters for
more information).

■ Menu event methods

Can be added to indicate what should happen when the user
selects a specific menu command. As discussed in “Creating
Menus and Toolbars,” each menu item has a related event, which
can either be the name of a window, report, or method.

■ Event handler methods

Can be added to any type of window. These methods are
activated when the user takes certain actions on a window, such as
clicking a mouse button or changing the contents of any edit
control on the window (refer to “Customizing Window Event
Handlers” for more information).

Begin Your South Seas Adventure...

1–22 CA-Visual Objects

Begin Your South Seas Adventure...

Now, it is your turn to explore the world of CA-Visual Objects. The
tutorial exercises take some time to work through, so try to complete a
few chapters in each work session. Most importantly, you should
complete the chapters in order, since certain exercises depend upon
the building blocks created in earlier chapters.

Enjoy your adventure!

