
Getting Started 5–25

Lesson 1: A Tour of the Standard Program

The Standard Shell Window

The relationships between the shell window, the EmptyShellMenu,
and its toolbar are summarized in the diagram below:

StandardShellWindow EmptyShellMenu

No open child windows

LOGICAL PHYSICAL

No open child windows

EmptyShellMenu
EmptyShellMenu's

toolbarEmptyShellMenu's
toolbar

Opening a document (or child window) into the empty MDI shell
window alters the nature of the shell window. It is no longer empty,
but now holds another window in which data can be viewed and
manipulated. When it contains one or more open documents, the shell
window is referred to as the standard shell window. And, since the
documents show data, more functionality is needed to view and
manipulate the data—just the File and Help menus are no longer
sufficient.

StandardShellMenu In the Standard Menus Entity Browser, you will see another menu
entity named StandardShellMenu, but you will need to scroll down to
find it. Like EmptyShellMenu, this menu also has classes, resources,
defines, and methods that help define it.

If you double-click on the StandardShellMenu menu entity, you can
see that it contains not only File and Help menus, but several
additional menus and commands that let the user manipulate the
database in the child window.

5–26 CA-Visual Objects

Lesson 1: A Tour of the Standard Program

For example, if you maximize StandardShellMenu, you can see
standard Edit menu commands like Go to Top and Delete Record:

Also, like EmptyShellMenu, StandardShellMenu has its own toolbar.
(When you are finished looking at the menu, close the Menu Editor by
double-clicking on its system menu.)

Relationship to
Child Windows

It is important to note that the shell window is not the owner of the
StandardShellMenu. Instead, this menu is owned by the child
window that is currently open and selected (or has “ focus”). It is the
child window that contains the data, and, therefore, it is the child
window that requires the additional functionality provided by the
StandardShellMenu. When a child window has focus, the shell
window automatically “knows” to replace its own menu with the
child window’s menu.

For example, you might develop a shell window into which the user
can open a text editing window and a spreadsheet at the same time. In
this situation, not only would the menu for each type of child window
differ from that of the empty shell window, but the various types of
child windows would most likely have menus that were different from
one another. The shell window knows to display the appropriate
menu, depending on which child window has focus.

The Standard Program takes care of this for you—when you open a
child window for a database file into the shell window, the menu

Getting Started 5–27

Lesson 1: A Tour of the Standard Program

displayed in the shell window is repainted, so that instead of
EmptyShellMenu, the StandardShellMenu is displayed.

The replacement of one menu by another is accomplished through
methods in the StandardShellWindow class. Basically, the menu
selection to open a database file from EmptyShellMenu triggers an
event that calls the StandardShellWindow:FileOpen() method which,
in turn, calls a series of methods that instantiate the StdDataWindow
class for the chosen database file. The Init() method of this class
instantiates the StandardShellMenu class to display this new, more
functional menu. (The StdDataWindow class is discussed in more
detail in the next section.)

The relationships between the menus and toolbars displayed in the
standard shell window and its child windows are summarized in the
diagram below:

StandardShellWindow

LOGICAL PHYSICAL

EmptyShellMenu's
toolbar

Multiple child windows

StandardShellMenu

StandardShellMenu's

toolbar

EmptyShellMenu's
toolbar

StandardShellMenu

StandardShellMenu's

toolbar

Multiple child windows

Note that while the shell window replaces its menu with that of the
child window, it does not replace its toolbar. Instead, the shell
window keeps its initial toolbar (EmptyShellMenu’s), and each child
window has its own toolbar (StandardShellMenu’s).

The Child Windows

As mentioned in the previous section, the child windows opened in the
shell window are instantiated (albeit indirectly) by the
StandardShellWindow:FileOpen() method using a class named
StdDataWindow that is defined in the Standard Shell module.

5–28 CA-Visual Objects

Lesson 1: A Tour of the Standard Program

StdDataWindow If you access the Entity Browser for Standard Shell (close the
Standard Menus Entity Browser if it is still open) and double-click on
the StdDataWindow class entity, you will see from the source code
displayed that it derives from the DataWindow class:

Like the ShellWindow class, DataWindow is defined in the GUI
Classes library.

Note: The second line of code defines a variable to identify the
owner window.

Data Windows A data window is a special kind of window that is capable of
interacting intelligently with a database. The data window can easily
display the contents of the database and has preprogrammed methods
for moving among the records and manipulating the data (for
example, Go to Top and Delete Record). In fact, the
StandardShellMenu gets much of its functionality by directly invoking
methods defined in the DataWindow class.

Data Servers A data server is an object-oriented interface provided for interacting
with a database. It is through the data server that the data window
connects to a database and learns about its structure.

Although you can design both data windows and data servers for
specific databases using editors built into the IDE (as you will see in
subsequent lessons in this chapter), the Standard Program allows you
to open any .DBF file or SQL data source by instantiating it as a data
server (using the DBServer class defined in the DBF Classes library or
the SQLSelect class defined in the SQL Classes library). It takes

Getting Started 5–29

Lesson 1: A Tour of the Standard Program

advantage of the self-configuring properties of the DataWindow class
to design a data window “on-the-fly” for that data server. It is the
behavior that is built into the DBServer, SQLSelect, and DataWindow
classes—rather than anything remarkable done by the Standard
Program—that makes programming the self-configuring data
windows so easy.

.DBF Files In fact, the generated code is quite simple. For example, this is the
flow of control for opening a .DBF file:

■ StandardShellWindow:FileOpen() displays a standard File Open
dialog box to allow the user to select a .DBF file name and calls
its DoOpenFile() method using the resulting file name.

■ DoOpenFile() verifies that it has a valid file name and calls
NewDataWindow() using the file name.

■ NewDataWindow() instantiates StdDataWindow using owner, file
name, and data server parameters and registers this new window
as a child of the shell window.

■ Finally, StdDataWindow:Init() instantiates a generic data
window, registers its owner and menu, instantiates a DBServer for
the chosen file and links it to the data window, and displays the
new data window in browse view.

5–30 CA-Visual Objects

Lesson 1: A Tour of the Standard Program

Note: You can open all of these methods in the Source Code Editor
at the same time and easily follow the logic described here. After you
have loaded one (FileOpen(), for example), click the Open toolbar
button to switch back to the Standard Shell Entity Browser, double-
click on another entity (perhaps DoOpenFile()), and it will be added to
the source code currently loaded in the Source Code Editor.

SQL Data Sources The source code responsible for opening a SQL data source is located
in the Standard SQL module. Among other things, this module
contains code for a dialog window (StandardSQLDialog) that is
opened in response to the File Open SQL menu command. Here is
what happens when the StandardSQLDialog window is opened:

■ StandardSQLDialog:Init() defines the controls for the dialog and
StandardSQLDialogSub:Init() calls the GetTables() method.

■ GetTables() displays the standard SQL Data Sources dialog box to
allow the user to select a data source (this is accomplished by
instantiating a SQLConnection object). Then, GetTables()
populates the list box control on the StandardSQLDialog window
using the tables in the selected data source.

■ When control returns from GetTables() to Init(), the
StandardSQLDialog window shows a list box of tables. When the
user selects a table, the Open_Table() method is called.

■ Open_Table() generates a SELECT statement based on the chosen
table and instantiates a SQLSelect data server from the SQL data
source using that statement.

■ Finally, Open_Table() instantiates a StdDataWindow object for
the server and changes the display mode of the new data window
to form view.

Getting Started 5–31

Lesson 1: A Tour of the Standard Program

Default Event and Error Handling

In a moment, we will build and run the Standard Program so that you
can see the windows and menus in action, but first it will help to
understand something about the basic event handling logic that is
already built into the application. However, before moving on, close
the Source Code Editor and the Entity Browser for the Standard Shell
module. Doing so will return you to the Module Browser for the
Order Entry application.

Event Handling To briefly explain event handling, we’ll start with the Windows
environment. Windows provides a flexible, interactive environment
in which multiple applications can be active and available
simultaneously. To achieve this, all applications running under
Windows interact with Windows—and possibly other GUI
applications—through a message queue.

The message queue receives messages from both the operating system
kernel and other applications. These messages are used to notify
applications of events that require attention. For example, if the user
presses a button or selects a menu in an application, an event is posted
to the message queue. (The Windows message queue maintains both
user-generated and system-generated events.)

The message queue then notifies the various applications of the events
that pertain to them. When programming for Windows, therefore,
your applications must know how to handle (interpret, respond to, and
generate) events.

In CA-Visual Objects, the basic event handling logic is this: a
command event (such as a menu or push button selection) is sent first
to the lowest-level window that has focus. If that window has no
mechanism for dealing with the event, the event is passed up to the
window’s owner. This propagation of an event up the ownership chain
continues until some window handles the event or until it finally
reaches the App, where it most likely ends up doing nothing.

5–32 CA-Visual Objects

Lesson 1: A Tour of the Standard Program

Some examples of built-in event generation and handling in the
Standard Program have already been mentioned in this section. For
example, in the empty shell window when the File Open menu
command or the Open toolbar button is selected, a FileOpen event is
generated, causing the StandardShellWindow:FileOpen() method to be
invoked.

The event names for menu commands are defined in the Menu Editor,
as you will see later in this chapter. CA-Visual Objects processes
these events automatically by trying to match the event name first to a
method, then to a Window or ReportQueue subclass of the same name.
The event is then handled either by invoking the method or
instantiating an object of the subclass.

This automatic propagation is quite useful. In an MDI application, for
example, File Save and File Print are normally handled by the child
window because these commands are specific to each document, while
File Open and File Print Setup are more general and are, therefore,
normally handled by the shell window.

Again, you can see this illustrated in the Standard Program. The
StandardShellMenu has both a File Open menu command and an Open
toolbar button, but the child window that owns this menu does not
have a FileOpen() method. So, when the FileOpen event is generated
from a child window, it ends up being handled by the
StandardShellWindow:FileOpen() method.

Error Handling There is also some error handling provided by the Standard Program.
For example, if you attempt to open anything other than a .DBF file
with the File Open menu command, you’ll receive a message similar
to the following:

