
South Seas Adventures 6–1

Chapter 6
Adding Controls to Your Windows

Objective

This lesson examines the many controls you can add to your windows.
CA-Visual Objects provides several predefined classes that your
program can use to create these controls. When you finish this lesson,
you should be familiar with all of the controls on the Window Editor
Tool Palette.

Overview

Controls allow users to communicate with an application. They can
be placed on both data and dialog windows. The major difference is
that on dialog windows, the data associated with a control is buffered
by the control, while data window controls can be tied directly to a
field in a data server. Also, some controls are tied specifically to a
data window (like a subdata window control).

In the previous lesson, you briefly saw single-line edit controls. The
following exercise provides greater detail about the controls listed
below:

■ Single-line edit

■ Multiline edit

■ Combo box

■ Check box

■ Radio button

■ Radio button group

■ List box

Overview

6–2 CA-Visual Objects

■ Group box

■ Fixed icon

■ Push button

All of these controls can be created, using the Window Editor Tool
Palette, shown in the figure below:

Pointer

Check box

Single-line edit

List box

Vertical scrollbar

Group box

Fixed text

Sub-data window

Push button

Radio button

Multiline edit

Combo box

Horizontal scroll bar

Radio group box

Fixed icon

You may have wondered how the data window in the previous lesson
is capable of storing and retrieving data between the database and the
controls on the Customer window. Essentially, the data window uses
name-based linkages to the data server.

If the control’s name has a corresponding field in the data server, the
data window automatically associates the two when retrieving and
storing data. If a control has no corresponding field in a data server,
the data held in the control is not automatically retrieved from, or
stored to, a data file, and consequently, must be manipulated by your
program.

When you created the Customer window using Auto Layout, single-
line edit controls were created based on the Customer DB server.
Each of these data controls are named according to the fields in the
data server.

Exercise

South Seas Adventures 6–3

Exercise

Single-Line Edit (SLE) Controls

Single-line edit controls are the most widely used type of data-entry
control. These controls are ideally suited to fields such as names,
descriptions, numeric amounts, and dates.

Data is displayed in the control as text. The user can enter and delete
characters, as well as cut, copy, and paste text. The characters in the
control are formatted according to the field specification of its
corresponding field in the database, or according to an attached
FieldSpec object.

Single-line edit controls can be used to capture text, numeric, date,
and logical types of data. Any necessary conversions are done
automatically by the data window.

The following exercise demonstrates the use of single-line edit
controls as data servers:

1. Open the Customer:Forms module by double -clicking its button.

2. Open the EditCustomerWindow window entity by double
-clicking on it.

Exercise

6–4 CA-Visual Objects

3. Select the single-line edit control to the right of the First Name:
label by clicking on it.

4. Inspect the Name property in the Single-Line Edit Properties
window. This represents the name of the field in the Customer
data server (in this case, First_Name).

Multi Line Edit (MLE) Controls

A multiline edit control differs from a single-line edit control in its
ability to accept multiple lines of text. Editing functions (like cut and
paste) are also available within this control. Multiline edit controls
are suited to descriptive information, such as comments, notes, and
addresses.

Exercise

South Seas Adventures 6–5

Creating the MLE Control

Now, let’s change the Notes single-line edit control on the
EditCustomerWindow to a multiline edit control. The Notes field is a
memo field, and therefore lends itself well to a multiline edit control.

1. To delete the Notes single-line edit control and the Note: label,
click on each and press the Delete key.

Note: If you hold the Ctrl key while clicking on these controls,
both are selected and may be deleted simultaneously.

2. Click on the multiline edit control Tool Palette button.

This selects a multiline edit control.

Exercise

6–6 CA-Visual Objects

3. Place the control by clicking on the window canvas area. Position
it to the right of the State single-line edit control, about halfway
across the window canvas area. Size it so that it is about 1 inch
high and 2 inches wide.

This control has not been tied to a field in a table yet. In the
Properties window, notice it is named theMultiLineEdit1.

4. Change the Name property to Notes. This corresponds to the
Notes field in the Customer table.

5. You also want it to inherit specific field spec properties. In the
Properties window, change the FieldSpec property to
CUSTOMER_NOTES.

Exercise

South Seas Adventures 6–7

Viewing Your Results

You can now build and run the application to ensure that your changes
worked. Do not close the Window Editor—since you will return here
for the following exercises.

1. Select the Build button from the toolbar. (This also performs a
“save” operation.)

2. Select the Execute button from the toolbar.

3. When the application starts, select the Open command from the
Files menu and open the Customer file.

4. Click the Edit toolbar button and you will see the window you are
working on.

The multiline edit control should now be visible in the window.

5. When you are finished, return to the EditCustomerWindow
Window Editor session for the next set of changes.

Combo Box Controls

Using combo box controls, you can avoid the need for a user to know
the exact data your program expects, as well as having to write
validation code. For example, if the State_ID control were to remain a
single-line edit control, it would require the user to be familiar with
the abbreviations for 50 U.S. states. Additionally, every entry would
have to be validated to insure that a valid code was entered.

We will now create a combo box control for the State_ID field:

1. Delete the State_ID single-line edit control by clicking on it and
pressing the Delete key.

2. Click on the combo box Tool Palette button.

This selects a combo box control.

Exercise

6–8 CA-Visual Objects

3. Drop the control by clicking on the window canvas area. Position
it next to the State ID: label. Size it roughly as shown in the
figure below:

This control has not been tied to a field in any table yet. In the
Properties window, notice it is named theComboBox1.

4. Change the Name property to STATE_ID. This ensures that the
data window stores and retrieves values to and from the State_ID
field of the Customer data server.

5. You also want it to inherit specific field spec properties. In the
Properties window, change the FieldSpec property by selecting
CUSTOMER_STATE_ID from the drop-down list box.

This ensures that any special validations applied to the field
specification are tied to your combo box.

Exercise

South Seas Adventures 6–9

6. Now, you need to tell the combo box what to display. Select the
Fill Using property, then click on the ellipsis button.

button
ellipsis

You are prompted by the Fill Using dialog box. The Fill Using
property of the combo box allows you to fill its list with either an
array, the contents of a data server, or a method.

The State table and server have already been created and
populated with valid state codes and names, so let’s use it here.

7. Select the Use Server radio button.

8. From the Server combo box, select STATE.

The Server group box also provides the option to display one
server field and return another to the field attached to the control.
This feature allows you to retain your normalized databases while
showing the user more descriptive information. In this case, let’s
display the state name instead of the state code.

9. Select NAME from the Display field combo box.

10. Select STATE_ID in the Return field combo box, since it is the
only field that appears in both servers.

11. Choose OK to close the Fill Using dialog box.

To disable a user’s ability to enter invalid codes, you can change the
style on the combo box to Drop-Down List. Using this type of combo
box forces the user to select a value in the list.

Exercise

6–10 CA-Visual Objects

1. Double-click on the State_ID combo box on the window canvas
area.

The Combo Box Styles dialog box appears:

2. Select the Drop-Down List radio button in the Combo Box Type
group box.

You may also want to ensure that your list items get sorted
alphabetically when the list is displayed.

3. Select the Sort check box in the Combo Box Styles group box.

4. Choose OK.

Note: You can now build and run the application as before to test
your changes. When you are finished, return to the
EditCustomerWindow Window Editor session for the next set of
changes.

Exercise

South Seas Adventures 6–11

Check Box Controls

A check box is a square box with associated text that usually appears
to the right of the check box. It acts as a toggle switch, allowing a
user to turn an option on or off. Thus, it is usually used to represent
logical fields.

When the check box is linked to a logical field in the data server, a
value of TRUE in the server represents the checked (or on) state of the
check box, while a value of FALSE represents the unchecked (or off)
state.

One of the properties of a check box provides for a three-state check
box. The third state is dimmed and indicates that the check box status
is unknown (or undefined).

The check box states are shown in the following dialog box:

The Customer data server has a logical field named “Single” to
represent marital status. Now, we will put a check box control beside
the Sex field to represent single status:

Note: More recent releases of CA-Visual Objects 1.0 may already
have automatically placed a check box control for this field on the
window. In this case, for the purposes of this exercise, delete the
check box and then continue with Step 2.

1. Delete the Single: single-line edit control and label by clicking on
them and pressing the Delete key.

2. Click on the check box Tool Palette button.

This selects a check box control.

Exercise

6–12 CA-Visual Objects

3. Place the control by clicking on the window canvas area. Position
it next to the Sex: label.

This control has not been tied to a field in a table yet. In the
Properties window, notice it is named theCheckBox1.

4. Change the Name property to Single.

This ensures that the data window stores and retrieves values to
and from the Single field of the Customer data server.

Exercise

South Seas Adventures 6–13

5. We also want it to inherit specific field spec properties. In the
Properties window, change the FieldSpec property to
CUSTOMER_SINGLE .

This ensures that any special validations applied to the field
specification are always tied to your check box.

6. We also want to change the caption to reflect the true nature of
the field. In the Properties window, change the Caption property
to Single.

Radio Button and Radio Button Group Controls

In radio button group controls, individual radio buttons provide
mutually exclusive responses to a condition where only one choice is
required. When you click a radio button, it is checked (or on). If you
then click another radio button within the same radio button group, the
radio button you first clicked on is unchecked (or off).

The radio button is an oddity in the Button class, since it is not tied
directly to a data field. Instead, it is grouped (with other radio
buttons) into a radio button group control. Unless you create distinct
radio button groups, all the radio buttons on a window are members of
the same radio button group. A radio button group control can be tied
to an actual field in a data server.

In the Window Editor, each radio button can be assigned a group
value. When retrieving data from the server, the radio button group
selects the radio button whose group value corresponds to the data
value in the server. When storing data to the server, the radio button
group uses the group value of the currently selected radio button.

Exercise

6–14 CA-Visual Objects

You will now attach a radio button group, with Male and Female
options, to the Sex field on the Customer window. The Sex field is an
ideal candidate for radio buttons, since there are only two choices,
Male and Female.

1. Select and delete both the Sex: label and single-line edit control.

2. Select the radio button group Tool Palette button and then move
the mouse to the desired location on the window canvas area.
Click the mouse button again to place and position the radio
button group box.

3. Size the radio button group so that it is similar to the following:

Exercise

South Seas Adventures 6–15

4. The radio button group is the control that gets linked to the data
server. In the Properties window, change the Name property to
Sex.

5. Change the Caption property to &Sex.

Notice that the S is now underlined. This allows the user to press
Alt+S to move directly to the control. Now, let’s place two radio
buttons inside of the radio button group box. The radio buttons
are able to be placed one above the other in a column.

6. Click the radio button Tool Palette button and place a radio
button in the radio button group box as shown below:

Exercise

6–16 CA-Visual Objects

This radio button will be used for the Male option. The control is
not directly linked to the data server, therefore its name should
differ from the fields of the database. Although, it is not
necessary to rename the field, it is still a good idea to do so.

7. Type MaleRadioButton in the Name property cell.

8. The Group Value property contains the actual value that is used
by the radio button group. Click on this property and type M .

9. Now, click on the Caption property and type Male. This is
displayed on the window, to the right of the radio button it
represents.

Exercise

South Seas Adventures 6–17

10. Add the Female radio button following steps 7 through 9. Place it
below the Male radio button. You can name the control
FemaleRadioButton. Set the Group Value property to F and the
Caption to Female.

Note: You can now build and run the application as before to test
your changes. When you are finished, return to the Window Editor for
the next set of changes.

List Box Controls

The list box control is a collection of text strings. It is displayed as a
scrollable, columnar list within a rectangle. A list box can allow
either a single selection or multiple selections.

In a single selection list box, the user can select the item that the
cursor is on by pressing the spacebar or clicking the left mouse button.
In a multiple selection list box, the spacebar or mouse button toggles
the selected state.

Exercise

6–18 CA-Visual Objects

Navigation is accomplished by use of the vertical scroll bar and the
navigation keys (Up/Down arrow and PageUp/PageDown keys) if
there are more elements than can fit in the display area. Pressing a
letter key moves the cursor and the selection highlight bar to the first
item in the list starting with that letter.

You will use a list box to represent the salutation field of the customer
data server. The list box has to represent the Mr., Mrs., and Ms.
salutations.

Note: You could have used a combo box or a radio button group to
represent this just as easily. Because you have already seen those
controls, let’s use the list box control here:

1. Delete the Salutation single-line edit control and label by clicking
on each and pressing the Delete key.

2. Select the list box Tool Palette button. This selects a list box
control.

3. Place the control by clicking on the window canvas area. Position
it to the right of the Country field as shown in the following
figure. Size it to about 1.5 inches high by 1 inch.

This control has not yet been linked to a field in a table. In the
Properties window, notice it is named theListBox1.

Exercise

South Seas Adventures 6–19

4. Change the Name property to Salutation.

This ensures that the data window stores and retrieves values to
and from the Salutation field of the Customer data server.

5. You also want it to inherit specific field spec properties. In the
Properties window, change the FieldSpec property to
CUSTOMER_SALUTATION .

This ensures that any special validations applied to the field
specification are always tied to your list box.

Now, we must create an array for use in filling the list box.

6. Select Modules of South Seas from the Window menu to return to
the Module Browser.

7. Select the App:Start() module and click on the Open All Source
toolbar button.

8. Press the Enter key to create a blank line. On this blank line, type
the following line of code:

GLOBAL GlobalArraySalutation := { " Mr. " , " Mrs. " ,;
" Ms. " } AS ARRAY

9. Close the Source Code Editor by double-clicking on its system
menu. Choose Yes to save the revised source code.

10. Return to the Window Editor by selecting its session from the
Window menu.

Exercise

6–20 CA-Visual Objects

11. Now we need to tell the list box what to display. Select the Fill
Using property and then click on the ellipsis button.

You are prompted with the Fill Using dialog window. The Fill
Using property allows you to fill the list box list with either an
array, the contents of a data server, or from a specified method.

12. Select the Use Global Array radio button and type
GlobalArraySalutation in the Name edit control. Then choose
OK.

Let’s look at the available styles for the list box.

Exercise

South Seas Adventures 6–21

13. Double-click the Salutation list box control on the window canvas
area.

The List Box Styles dialog box appears:

14. Deselect the Vert. Scroll Bar check box in the List box Styles
group. You do not need the scroll bar because all of the items fit
into the display area.

You also want to ensure that your list items get sorted
alphabetically when the list is displayed.

15. Select the Sort check box in the List Box Styles group and then
choose OK.

Note: You can now build and run the application as before to test
your changes. When you are finished, return to the
EditCustomerWindow window canvas area for the next set of changes.

Exercise

6–22 CA-Visual Objects

Group Box Controls

The group box control has no relation to data fields or variables. It is
used only to visually group controls, however, it can affect the
controls that are within it by means of its tab and group style settings.

The group box allows you to add a labeled box to a window. These are
useful for enhancing the aesthetic quality of a window, for setting up
tab stops, and for making certain groups of controls unselectable.

1. Select the group box Tool Palette button and place a group box
control on top of the Salutation list box.

2. Size the group box control so that it surrounds the list box.

Exercise

South Seas Adventures 6–23

3. Change Name property to SalutationGroupBox and the group
box Caption property to Salutation.

Note: You can now build and run the application as before to test
your changes. When you are finished, return to the
EditCustomerWindow window canvas area for the next set of changes.

Fixed Icon Controls

The next control we will look at is the fixed icon control. This control
allows you to add icons to your data windows and dialog windows.
The purpose of the fixed icon control is for aesthetic purposes only.

1. Click the Fixed Icon Tool Palette button to select it, and then
move the mouse to the desired location on the window canvas
area (any free spot on the window is fine).

2. Click the mouse button again.

Exercise

6–24 CA-Visual Objects

This places a fixed icon control on the window canvas area:

3. In the Fixed Icon Properties window, change the Caption property
to SSAICON.

The Caption property holds the name of an icon that is already a
part of, or associated with, your application.

Note: You can now build and run the application as before to test
your changes. When you are finished, return to the
EditCustomerWindow window canvas area for the next set of changes.

Exercise

South Seas Adventures 6–25

Push Button Controls

Push button controls are command controls that trigger an action
without retaining any type of on/off indication. There are two types of
push buttons. Standard option push buttons are the most commonly
used. Default option push buttons have a slightly thicker border, and
may be activated by the Enter key whenever a non-push button control
has input focus. As this implies, only one push button on a dialog
window should have the default option type.

Generally, a dialog window has an OK button and a Cancel button to
accept or abort whatever the dialog window is trying to do. The OK
button was added in the “Creating and Using Windows” chapter.
Now, to add the Cancel push button to your Customer window:

1. Select the Push Button icon on the Tool Palette and then move
the mouse to the top-right corner on the window canvas area.

This places a push button onto your window canvas area, just
below the OK button.

Exercise

6–26 CA-Visual Objects

2. In the Push Button Properties dialog box, change the Name
property to CancelButton. Also, change the Caption property to
Cancel.

3. Scroll down so you can see the bottom of the window.

Exercise

South Seas Adventures 6–27

4. Select the window by clicking in an area with no controls, and
drag the lower border up. Adjust the list box and group box size
so that the window looks as follows:

Note: You can now build and run the application as before to test
your changes. When you are finished, return to the
EditCustomerWindow window canvas area for the next set of changes.

Exercise

6–28 CA-Visual Objects

Programming Techniques

The following section deals with some of the more intricate aspects of
creating controls for your windows.

Tab and Group Stops

Now that you have created a data entry window, you need to control
the order in which a user tabs through the controls. Of course, the Tab
key moves you forward through the controls, while Shift +Tab moves
back. The default tab order moves top-to-bottom, left-to-right,
according to window placement. This may not always be acceptable.
For example, if you had a window design consisting of two columns,
you may want to move down to the bottom of the left column before
moving to the top of the right.

By selecting the Control Order command from the Edit menu, you can
see the order in which the controls get focus. If you scroll down to the
bottom of the list, you will see the problem.

Exercise

South Seas Adventures 6–29

The MaleRadioButton and the FemaleRadioButton should
immediately follow the Sex radio button group control. These should
be promoted to reflect this. To do this, perform the following steps:

1. Click on the MaleRadioButton entry and then use the up arrow
button (to the right of the vertical scroll bar) to move it just below
the Sex entry.

2. Click on the FemaleRadioButton entry and position it just below
the MaleRadioButton entry in the list.

3. Click on the Single check box entry and move it up so it follows
FemaleRadioButton.

Your window should now look as follows:

4. Choose OK to close the Control Order dialog box.

5. Close the Window Editor by double-clicking on its system menu
and select Yes to save the revised design.

You can force tabbing to occur in any order that you wish, based on
the order you specify. But how do you decide what gets focus and
what does not? The operating system provides all the logic to move
input focus from one control to another, with a little help from you
and from the styles that can be applied to a control.

Exercise

6–30 CA-Visual Objects

Double-clicking on any control on your window brings up the Styles
dialog box for that control. Although the dialog box for each style has
certain differences depending on the control, they all have a Basic
Styles section. For example, on the Radio Buttons Styles dialog box,
you see three check boxes, corresponding to the following options:

■ Disabled

If checked, this option dims the control to prevent it from
obtaining input focus. This is often adjusted programatically.

■ Tab Stop

If checked, this option allows the control to be part of the tabbing
sequence.

■ Group Stop

If checked, this option turns the control into a group control.
Once a group box has input focus, any command controls inside it
are navigable through the cursor keys. This is especially useful in
grouping radio buttons.

When you add a control to the window canvas area, the default styles
are as follows:

Control Type Tab Stop Group Stop

Push button Yes No

Check box Yes No

Radio button Yes No

Single-line edit Yes No

Multiline edit Yes No

List box Yes No

Combo box Yes No

Scroll bars No No
Continued

Exercise

South Seas Adventures 6–31

Continued

Control Type Tab Stop Group Stop

Radio button group No Yes

Group box No Yes

Fixed text No No

Fixed icon No No

Sub data window N/A N/A

This works fine for the most part, but here are a few tips:

■ You should disable the tab stop on a radio button if it is in a radio
button group. Any radio button that is inside that group has an
implied tab stop.

■ Do not put tab stops on controls that do not allow data entry like
fixed text, fixed icon, and group box controls.

■ Group stops should be reserved for group box controls and radio
button group controls. By the same token, the controls contained
in the group should not have a tab stop.

Control Order and Multiple Groups

Control order for multiple groups can also require special attention.
The problem is that one group does not end until the next group
begins. In short, imagine you have several radio buttons in a radio
button group box. The radio button group has the group style selected.

Now let’s say that you have a separate set of radio buttons. The
default Windows action is to assume that this set of radio buttons
belongs to the first radio button group. This is wrong, and to fix it,
you would create a second radio button group for the second set of
radio buttons. This would cause a new group to start, ending the first
group—since every radio button group has the group style checked. If
you do not use either a group box or a radio button group, you can set
the group style for any other control so it starts a different group.

Exercise

6–32 CA-Visual Objects

Naming Controls

Your data-entry window is complete, but before completing this
chapter, let’s discuss the naming convention that was used in naming
the controls.

For data windows you create that need to update fields in a table, it is
easy. You use the field name as the control name, since a name-based
association exists with the attached data server to apply changes to
fields directly for you.

What about controls that are not linked to fields? They can be called
anything, except the name of a field in an attached server. Long
names are supported, giving you the ability to create descriptive
names. The convention that is used is to name the button according to
its type, followed by a string that described the type of control in
question. For example:

■ A push button labeled Edit is called EditButton

■ A radio button labeled Payment is called PaymentRadioButton

■ A single-line edit that represented a search string is called
SearchSLE

■ A list box representing the state is called StateListBox

Using this convention, you see that your control name tells you what
the entity represents, as well as the properties you can expect it to
have.

Note: You can now build and run the application as before to test
your changes. This lesson is complete, so you can close the Window
Editor and return to the Module Browser.

Summary

South Seas Adventures 6–33

Summary

At this point, you have seen most of the window controls in use. You
have explored how these controls are interrelated through the use of
tab stops and group stops. With these tools at your disposal, you can
now generate almost any kind of dialog window for your users.

In the next lesson, you will learn about inheritance and subclassing
principles, which are the most important concepts in object-oriented
programming.

