
South Seas Adventures 0–1

Chapter 15
Adding Help to Your Applications

Objective

This lesson shows you how to implement an online help system for
your CA-Visual Objects applications.

Overview

An online help system can mean the difference between the success
and failure of your application. Applications are often judged on the
existence and quality of their online help.

The creation of an online help system is non-trivial and its design
should be included at the start of your application’s development.

When designing an online help system, you must decide upon the
level of detail you want to provide, and how best to organize the
hierarchy of the help topics. Once the system is designed, you must
provide the written text and build the help system.

Using the Windows help system offers several advantages to you, as it
is installed with every copy of Microsoft Windows 3.x. First of all, it
automatically loads the help system within your application when
context-sensitive help is requested. Additionally, users can be
expected to have some familiarity with its operation, because most
Windows applications provide an online help system.

Context-Sensitive Help

CA-Visual Objects not only provides the capability for attaching help
to your application, but also provides the mechanism to invoke

Overview

15–2 CA-Visual Objects

context-sensitive help. Context-sensitive help is based on the current
state of the application, or context, in which the user requests help.

F1 Pressing the F1 key invokes help based on the menu command or
control that currently has focus. For example, to obtain help on a
menu command or control, the user need only highlight it and press
F1.

If no control or menu command has focus when F1 is pressed, the
default behavior is to display the Contents topic defined in the
associated help file.

Shift+F1 Pressing Shift+F1 allows the user to select an item using a special
help cursor that consists of an arrow and a question mark. To get help
on a control or menu command, the user presses Shift+F1, then locates
and clicks on the control or menu command with the help cursor.

If no help is available for the item selected, the default behavior is to
display the Contents topic defined in the associated help file.

Exercise

South Seas Adventures 0–3

Exercise

During this exercise, you will discover how the South Seas Adventures
help system is implemented. You will also learn where in your
application to specify the associated help file, and how to set context-
sensitive help—for a window, a control in a window, and a menu
command.

Implementing Context-Sensitive Help

Typically, an application has only one help file for the entire
application. When you assign a help file to a shell window, each of its
child windows, unless another help file is specified, uses the same
help file as its parent. However, the architecture used by CA-Visual
Objects makes it very easy to define a separate help file for each
window.

Attaching Your Help File

Let’s see how attaching a help file is accomplished in the South Seas
Adventures application:

1. Double-click on the South Seas Adventures application button in
the Application Browser.

2. Open the SSA Shell:Forms module by double-clicking on its
button in the Module Browser.

3. Find the _SSAWindow window entity, and double-click on it to
open the Window Editor.

4. Find the Help File Name property in the Shell Window Properties
window:

Exercise

15–4 CA-Visual Objects

By assigning the Help File Name property to SSA.HLP the
following line of code is generated in the Init() method of the
_SSAWindow:

SELF:HelpDisplay := HelpDisplay{ "SSA.HLP"}

The HelpDisplay class in this code establishes a link between the
South Seas Adventures shell window (_SSAWindow) and the
SSA.HLP help file.

5. Close the Window Editor by double-clicking on its system menu.

6. Close the Entity Browser for SSA Shell:Forms by double-clicking
on its system menu.

HelpRequest Event
System

When help is requested by the user, a HelpRequest event is
generated. The CA-Visual Objects dispatcher then invokes the
window’s HelpRequest() method, passing it a HelpRequestEvent
object. The HelpRequestEvent class is used to describe the context,
and item combinations, for which help is requested.

The default HelpRequest() method (from the Window class) invokes
help, based on the information in the HelpRequestEvent object:

METHOD HelpRequest(oHRE) CLASS Window
...
SELF:HelpDisplay:Show(oHRE:HelpContext)
...
RETURN NIL

The HelpDisplay:Show() method invokes WinHelp, with the
oHRE:HelpContext parameter representing the keyword that WinHelp
searches for in the help file.

Help Context Property You can specify Help Context strings for windows, menu commands,
controls, and field specs. The Help Context property is the means by
which CA-Visual Objects enables your application to supply context-
sensitive help. CA-Visual Objects extracts the Help Context
property of the item (such as control or menu command) for which
the user requests help. This Help Context is then used in the call to
WinHelp.

WinHelp performs a keyword search for a topic that matches the Help
Context string. If a match is found, the topic is displayed. If you do
not specify a Help Context property for the specified item, or if the

Exercise

South Seas Adventures 0–5

Help Context specified is not found, WinHelp displays the Contents
topic of your help file.

Help for a Window

The South Seas Adventures help file has a topic, called Employees,
which describes editing employee data. If the user requests help when
an Edit Employee window is open, you want WinHelp to display this
topic. The following steps show how this is accomplished.

1. Open the Employee:Forms module by double-clicking on its
button in the Module Browser.

2. Locate and double-click on the EditEmployeeWindow entity to
open the Window Editor.

3. Scroll through the Data Window Properties window until you see
the Help Context property:

4. Set the Help Context property to Employees.

When help for this window is requested, WinHelp now displays
the Employees topic.

Exercise

15–6 CA-Visual Objects

Help for Controls

The South Seas Adventures help file has another topic, called
Employee Controls, which describes all of the controls in the
EditEmployee window. When help is requested for any of these
controls, the following steps enable WinHelp to display this topic:

1. Select the First_Name single-line edit control in the upper-left
corner of the EditEmployee window:

edit control

Click here to enter
Help Context property

First_Name

2. Select the Help Context property from the Single-Line Edit
Properties window. Enter the text Employee Controls as the
Help context; make sure to leave a space between the two words.

3. The Help Contexts for the other fields have already been
supplied with the same value, so choose the Save toolbar button
to save your changes.

A Warning Box could appear because you have imported this
window as part of the SSA.AEF file and it has not previously been
edited and saved.

4. Choose Yes to save.

Exercise

South Seas Adventures 0–7

5. Close the Window Editor by double-clicking on its system menu.

6. Close the Entity Browser for Employee:Forms by double-clicking
on its system menu.

Help for a Menu Command

The South Seas Adventures help file has another topic, called
Password, which describes how to change the current user’s password.
The following steps show how this help topic is associated with the
Change Password command in the Options menu:

1. Open the SSA Child:Menu module by double-clicking on its
button in the Module Browser.

2. Find the SSAChildMenu menu entity and double-click on it to
open the Menu Editor.

3. Scroll through the Menu Editor and click on the Change Password
menu item under the Options menu.

The Help Context property for this item is already set to
Password, as shown in the Menu Item Properties window:

4. Close the Menu Editor by double-clicking on its system menu.

5. Close the Entity Browser for SSA Child:Menu by double-clicking
on its system menu.

Exercise

15–8 CA-Visual Objects

Invoking Context-Sensitive Help

Now, let’s test the context-sensitive help for your application.

1. Choose the Build toolbar button.

2. Choose the Execute toolbar button.

3. Log in to the application as usual (Name: User,
Password: Trainee).

4. Select the Open command from the File menu.

5. Click on the Employee radio button, and choose OK.

6. From the Employee Browser, choose Edit.

The Edit Employee window is displayed:

Exercise

South Seas Adventures 0–9

Help for the Window

This section shows you how to obtain help for the entire Edit
Employee window.

1. Press Shift+F1 to display the help cursor.

2. Click on the Edit Employee window’s title bar.

The South Seas Adventures Help window appears, displaying the
Employees topic:

3. When you are finished reviewing the help text, close the Help
window by double-clicking on its system menu.

Exercise

15–10 CA-Visual Objects

Help for a Control

This section shows you how to obtain help for a control within a
window.

1. With the Given Name edit control in focus, press F1.

The South Seas Adventures Help window appears, displaying the
Edit Employee Controls topic:

2. When you are finished reviewing the help text, close the Help
window by double-clicking on its system menu.

3. Choose Cancel to close the Edit Employee window.

4. Choose Close to close the Employee Browser.

Exercise

South Seas Adventures 0–11

Help for a Menu Command

To get help for a menu command:

1. Press Shift+F1 to display the help cursor.

2. Using the help cursor, choose the Change Password command
from the Options menu.

The South Seas Adventures Help window appears, displaying the
Change Password topic:

3. When you are finished reviewing the help text, close the Help
window by double-clicking on its system menu.

Exercise

15–12 CA-Visual Objects

Implementing Direct Calls to Help

Many Windows applications provide their users with help from other
sources. Some of these sources are menu commands, button controls,
and event processes.

Menu Commands

Help can be invoked in response to a menu command selection. To
implement help from a menu command you can:

■ Trap menu selection events, using the MenuSelect() event handler
method

■ Create a separate menu event method for the menu command

This section show how the South Seas Adventures application creates
a separate menu event method for a menu command.

1. Choose the Class Browser command from the Tools menu to open
the South Seas Adventures Class Browser.

2. Locate the _SSAWindow class in the left pane of the browser, and
click on the Expand button to its left.

The SSAWindow class appears below _SSAWindow in a tree-like
structure:

Exercise

South Seas Adventures 0–13

3. Click on the SSAWindow class.

4. Find the SSAWindow:HelpContents() method in the right pane of
the Class Browser, and double-click on it to open the Source Code
Editor. The following code is displayed:

METHOD HelpContents() CLASS SSAWindow

SELF:HelpDisplay:Show("HelpIndex ")

RETURN SELF

This method illustrates how to call the help system directly using
the HelpDisplay:Show() method. You can pass a help context
keyword as the parameter for HelpDisplay:Show() function or, as
shown in this example, one of the following reserved keywords to
access a standard help feature.

Help Context Help

HelpIndex Displays the Contents topic as defined
in the application help file

HelpOnHelp Displays the Contents topic as defined
in your Windows help file (normally
WINHELP.HLP, in which the Contents
topic is How to Use Help)

5. Close the Source Code Editor by double-clicking on its system
menu.

Exercise

15–14 CA-Visual Objects

Push Button Controls

Calling help in response to a push button click is implemented in the
same manner as menu commands. In the South Seas Adventures
application, this is illustrated using the Help push button on the
Change Password dialog box:

1. Locate the _NewPasswordDialog class in the left pane of the
Class Browser, and click on the Expand button to its left.

The NewPasswordDialog class appears below
_NewPasswordDialog in a tree-like structure.

2. Click on the NewPasswordDialog class.

3. Find the NewPasswordDialog:HelpButton() method in the right
pane of the Class Browser, and double-click on it to open the
Source Code Editor.

In this case, HelpDisplay:Show() is called using the Password
help context keyword:

METHOD HelpButton() CLASS NewPasswordDialog

SELF:HelpDisplay:Show("Password ")

RETURN SELF

Therefore, the same help topic associated with the Options
Change Password menu command is displayed when the user
clicks on the Help button of the Change Password dialog box.

4. Close the Source Code Editor by double-clicking on its system
menu.

5. Close the Class Browser by double-clicking on its system menu.

Exercise

South Seas Adventures 0–15

Event Processing by Name

The NewPasswordDialog:HelpButton() method and the
SSAWindow:HelpContents() method are linked to their respective
controls by name. In the case of the Help Contents menu command,
the method name to call is defined as part of the SSAShellMenu menu
entity. Let’s see how this is accomplished:

1. Double-click on the SSA Shell:Menu module button to open its
Entity Browser.

2. Double-click on the SSAShellMenu menu entity to open it in the
Menu Editor.

3. Scroll through the Menu Editor and select the Contents menu item
under the Help menu.

The Properties window is updated to display the properties for the
selected menu command. It is the Event Name property that
determines the name of the method to invoke when this menu
command is chosen. In this case, it is set to HelpContents, as
expected:

4. Close the Menu Editor by double-clicking on its system menu.

5. Close the Entity Browser by double-clicking on its system menu.

If you follow steps similar to those above to load the
_NewPasswordDialog window entity (located in the Password:Forms
module) in the Window Editor, you will see that the Event Name
property for the bottom-right push button is set to HelpButton.

Exercise

15–16 CA-Visual Objects

Invoking Help Using Menu Commands and Push Buttons

Now, let’s run the South Seas Adventures application again to see the
menu command and push button help calls in action:

1. Choose the Execute toolbar button to run South Seas
Adventures.

2. Log in to the application as usual (Name: User,
Password: Trainee).

3. Choose the Contents command from the Help menu.

The South Seas Adventures Help window appears, displaying the
main table of contents:

4. When you are finished reviewing the help text, close the Help
window by double-clicking on its system menu.

5. Choose the Change Password command from the Options menu.

Exercise

South Seas Adventures 0–17

6. When the Change Password dialog box is displayed, choose the
Help push button.

The South Seas Adventures Help window appears, displaying the
Change Password topic:

7. When you are finished reviewing the help text, close the Help
window by double-clicking on its system menu.

8. Choose Cancel to close the Change Password dialog box.

9. Close the South Seas Adventures application by double-clicking
on its system menu, and answering Yes when prompted.

Exercise

15–18 CA-Visual Objects

Creating Help Files

Creating Windows help support for your application is a three-step
process:

1. Create the required help system source files (such as topic and
project files).

2. Compile the source files, using the HC31.EXE help compiler that
comes with CA-Visual Objects. This creates a help file that is
ready to be used by the WINHELP.EXE program.

3. Create the links in your application that use the help system.

The complete help subsystem, provided with the South Seas
Adventures application, resides in your CA-Visual Objects
SAMPLES\SSATUTOR\HELP subdirectory. If you are interested in
how the help system is put together, you can study the files described
in this section in more detail.

Topic Files

A topic file contains the text of your help file for one or more topics.
The topic file also contains the codes needed to link topics together.

The help compiler requires topic files coded in Rich Text Format
(RTF). To create a file in this format, you can use a simple ASCII text
editor, or you can use a word processor that can export files in this
format.

Using a simple text editor requires you to explicitly code your help
topics using the rich text coding syntax. On the other hand, using a
word processor that can export in RTF format can reduce your task
dramatically. Using simple formatting commands and footnotes to
create the document, you then export it in RTF format. The document
is translated into the appropriate commands and codes, that can then
be compiled by the Help compiler.

Exercise

South Seas Adventures 0–19

For more information on creating the help source files, see the
CA-Visual Objects online help for Creating Help Files.

The South Seas Adventures topic file, SSA.DOC, was created using
Microsoft Word for Windows. The file was then exported to rich text
format as SSA.RTF. You can retrieve the SSA.RTF file with your
program editor to view the RTF codes.

Project File

The project file contains a list of source files required to create the
help file. It also contains window definitions and compiler directives.

The South Seas Adventures help project is stored in the SSA.HPJ file.

Graphic Files

All other file types allowed are graphic files, and are optional. These
include the following:

■ .BMP – Contains a single graphic in the Windows bitmap format.

■ .WMF – Contains a single graphic in the Windows metafile
format.

■ .SHG – Graphic file produced by SHED.EXE (Hotspot Editor).
The Hotspot Editor allows you to create links to help topics from
a selected area of a graphic image, and is supplied with
CA-Visual Objects.

■ .MRB: Contains more than one version of the same bitmap at
different screen resolutions. This is a multiple resolution bitmap
file produced by the MRBC.EXE.

Summary

15–20 CA-Visual Objects

Summary

In this lesson you have implemented online help for a CA-Visual
Objects application and, through the Help Context property, you now
know how to implement context-sensitive help. You have also seen
how to make calls directly to the Windows Help system, and are now
familiar with the files required to create a help file.

In the next lesson, you will use the Windows API functions in a
CA-Visual Objects program to provide functionality not found in the
native CA-Visual Objects language classes.

