
cancelSubscription

Method Cancels a subscription.

Syntax cancelSubscription (objectKey String) Logical

Description Cancels the subscription specified by objectKey. The next time you poll, OBEX removes
your name from the subscriber list in the publisher's object store. Call poll to do this under
program control. To get valid values for objectKey, call enumSubscriptions and take values
from the Object_Key field. This method does not delete the object from the object store; to do
that, you must call deleteObject.

If objectKey does not exist in the user's object store, this method fails. This method returns
True if it succeeds; otherwise, it returns False.

Example This example opens another form and uses it as a dialog box to get input. The code calls
enumSubscriptions to create a table of the subscriptions, then uses the TableName property
to bind that table to a table frame in the dialog form. Choose a subscription by moving the
cursor to a record in the table frame, then click OK in the dialog form. A call to
cancelSubscription cancels that subscription, a call to deleteObject removes the object from
the object store, and a call to poll removes the subscriber's name from the list in the
publisher's object store.

method pushButton(var eventInfo Event)
{
cancelSubscription
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- The wgDlg form contains an unbound table frame named dlgTF,
 an OK button that calls formReturn(True),
 and a Cancel button that calls formReturn(False).
}
 var
 wgDlg Form
 msgCaption, msgText,
 dlgName, dlgTitle,
 subsTbName, objectKey,
 acctName, acctTbName String
 dlgRetVal, inclSecnd Logical
 tb Table
 endVar

 ; Initialize variables.
 dlgName = "wgDialog"
 dlgTitle = "Choose a subscription to cancel."
 msgText = "Could not open " + dlgName + "."
 subsTbName = ":PRIV:usrSubs"
 acctTbName = ":PRIV:usrAcct"
 inclSecnd = True ; Include secondary accounts.

 ; Open the dialog form using WinStyleHidden to make it invisible.
 if not wgDlg.open(dlgName, WinStyleHidden + WinStyleDefault) then
 errorShow(msgText)
 return
 endIf

 wgDlg.Title = dlgTitle ; Set up the form.
 wgLib.enumSubscriptions(subsTbName) ; Create a table of the user's subscriptions.
 wgDlg.dlgTF.TableName = subsTbName ; Bind table frame to table of subscriptions.
 wgDlg.show(); Make the form visible.

 dlgRetVal = wgDlg.wait() ; Wait for user to make a choice.

; If user clicks the OK button, get the value of the Object_Key field in the
; record selected by the user (that is, the record containing the active field,
; the field that has focus).
 if dlgRetVal = True then
 objectKey = wgDlg.dlgTF.Object_Key.Value
 wgDlg.hide() ; Hide the dialog box (it's used later).
 wgLib.cancelSubscription(objectKey) ; Cancel the subscription.
 wgLib.deleteObject(objectKey) ; Delete object from object store.
 else
 wgDlg.close() ; Close the dialog box.
 return ; Exit the method. The user canceled the operation.
 endIf

 ; Set up the dialog box to list accounts.
 dlgTitle = "Choose an account to poll."
 wgDlg.Title = dlgTitle
 wgLib.enumAccounts(acctTbName, inclSecnd) ; Create a table of the user's accounts.
 wgDlg.dlgTF.TableName = acctTbName ; Bind table frame to table of accounts.
 wgDlg.show() ; Make the form visible.

 dlgRetVal = wgDlg.wait() ; Wait for user to make a choice.

; If user clicks the OK button, get the value of the AccountName field in the
; record selected by the user (that is, the record containing the active field,
; the field that has focus).
 if dlgRetVal = True then
 acctName = wgDlg.dlgTF.AccountName.Value
 wgLib.poll(acctName)
 endIf

 wgDlg.close() ; Close the dialog form.

 if tb.attach(subsTbName) then
 tb.delete() ; No further need for this data.
 endIf
 if tb.attach(acctTbName) then
 tb.delete() ; No further need for this data.
 endIf
endMethod

See Also deleteObject
enumSubscriptions

deleteObject

Method Deletes an object from the user's object store.

Syntax deleteObject (objectKey String) Logical

Description Deletes an object from the user's object store without asking for confirmation. Objects can be
publications, subscriptions, or alerts. objectKey specifies which object to delete. To get valid
values for objectKey, call enumAlerts, enumPublications, or enumSubscriptions and take
values from the Object_Key field.

When you use deleteObject to delete a subscription, you will continue to receive new
versions of the object unless you call cancelSubscription first.

If objectKey does not exist in the user's object store, this method fails. This method returns
True if it succeeds; otherwise, it returns False.

Example This example opens another form and uses it as a dialog box to get input. The code creates a
table listing the objects (alerts, publications, or subscriptions) you specify by choosing from a
drop-down edit list. Then it uses the TableName property to bind that table to a table frame in
the dialog form. You choose an object by moving the cursor to a record in the table frame,
then click the OK button in the dialog form to delete the object.

method pushButton(var eventInfo Event)
{
deleteObject
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- This form contains a drop-down edit list named objTypeList
 and a button that executes the following code.
- The form wgDlg contains an unbound table frame named dlgTF,
 an OK button that calls formReturn(True) and a
 Cancel button that calls formReturn(False).
}
 var
 wgDlg Form
 objType, objectKey, msgCaption,
 msgText, dlgName, dlgTitle,
 tbName, alertsTbName, pubsTbName, subsTbName String
 dlgRetVal, isSubscription Logical
 endVar

 ; Initialize variables.
 dlgName = "wgDialog"
 dlgTitle = "Choose an object to delete."
 msgCaption = "Object type required:"
 msgText = "Choose an object type from the Object Types list."
 alertsTbName = ":PRIV:usrAlert"
 pubsTbName = ":PRIV:usrPubs"
 subsTbName = ":PRIV:usrSubs"
 objType = objTypeList.Value
 isSubscription = No

 ; Find out which type of object to delete, and call the appropriate
 ; method to create a table listing objects in the user's object store.
 switch

 case objType = "Alert" : tbName = alertsTbName
 wgLib.enumAlerts(tbName)

 case objType = "Publication" : tbName = pubsTbName
 wgLib.enumPublications(tbName)

 case objType = "Subscription" : tbName = subsTbName
 wgLib.enumSubscriptions(tbName)
 isSubscription = Yes

 otherwise : msgInfo(msgCaption, msgText)
 return
 endSwitch

 ; Open the dialog form, using WinStyleHidden to make it invisible.
 if not wgDlg.open(dlgName, WinStyleHidden + WinStyleDefault) then
 errorShow(msgText)
 return
 endIf

 wgDlg.Title = dlgTitle; Set up the form.
 wgDlg.dlgTF.TableName = tbName ; Bind table frame to table enum'ed above.
 wgDlg.show() ; Make the form visible.
 dlgRetVal = wgDlg.wait(); Wait for user to make a choice.

 ; If user clicks the OK button, get the value of the Object_Key field
 ; in the record selected by the user.
 if dlgRetVal = True then
 objectKey = wgDlg.dlgTF.Object_Key.Value
 if isSubscription then
 wgLib.cancelSubscription(objectKey)
 endIf
 if wgLib.deleteObject(objectKey) then ; Delete the object
 message("Object deleted from the object store.")
 else
 wgDlg.close()
 errorShow()
 return
 endIf
 endIf

 wgDlg.close() ; Close the dialog form.
endMethod

See Also cancelSubscription

enumAccounts

Method Creates a table listing Object Exchange accounts.

Syntax enumAccounts (tableName String, includeSecondary Logical) Logical

Description Creates a table of account information, where tableName is the file name of the table to
create. The following table shows the structure.

Field name Type Description Sample values

AccountName A20 The name of the account "MCI-2", "myLANacct"

PrimaryOrSecondary A10 Is this account primary or
secondary?

"Primary", "Secondary"

TransportName A30 Which transport does this
account use?

"MCI", "LAN"

IsActive A3 Is this account active? "Yes", "No"

IsSelected A3 Is this account selected? Used
internally by the Workgroup
desktop.

"Yes", "No"

If includeSecondary is False, the table lists only primary accounts; if includeSecondary is
True, the table lists primary and secondary accounts.

This method requires a full lock on tableName. If the table contains data, this method
empties it without asking for confirmation. This method returns True if it succeeds;
otherwise, it returns False.

Example This example calls enumAccounts to create a table named :PRIV:UsrAccts listing your
accounts. Then it scans the table and assigns values to two drop-down edit lists: one lists
primary accounts, the other lists secondary accounts. Each list contains a list object named
listObj. A user could choose an item from one these lists to specify an account to poll. You
could check the value of the IsActive field of the UsrAccts table to find out if the account is
active before you try to poll it.

method pushButton(var eventInfo Event)
{
enumAccounts
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- The form contains drop-down edit lists named primAcctList and secAcctList.
- Each list contains a list object named listObj.
}
 var
 acctTbName String
 acctTb Table
 acctTC TCursor
 inclSecnd Logical
 endVar

 ; Initialize variables.
 acctTbName = ":PRIV:usrAcct"
 inclSecnd = True ; Include secondary accounts.

 ; Initialize list objects.

 primAcctList.listObj.List.Count = 0
 secAcctList.listObj.List.Count = 0

 wgLib.enumAccounts(acctTbName, inclSecnd) ; Create a table listing accounts.

 ; Fill the lists.
 acctTC.open(acctTbName)
 scan acctTC:
 switch
 case acctTC.PrimaryOrSecondary = "Primary" :
 primAcctList.listObj.List.Selection =
 primAcctList.listObj.List.Selection + 1
 primAcctList.listObj.List.Value = acctTC.AccountName

 case acctTC.PrimaryOrSecondary = "Secondary" :
 secAcctList.listObj.List.Selection =
 secAcctList.listObj.List.Selection + 1
 secAcctList.listObj.List.Value = acctTC.AccountName
 endSwitch
 endScan
 acctTC.close() ; Close the cursor before deleting the table.
 acctTb.attach(acctTbName)
 acctTb.delete() ; No further need for this data.
endMethod

See Also enumAlerts
enumPublications
enumSubscriptions

enumAlerts

Method Creates a table listing Object Exchange alerts.

Syntax enumAlerts (tableName String) Logical

Description Creates a table of data about alerts, where tableName is the file name of the table to create.
The following table shows the structure.

Field name Type Description Sample values

Object_DateCreated D The date the alert was
issued. Format depends on
system settings.

7/23/97

Object_TimeCreated A15 The time the alert was
issued. Format depends on
system settings.

"09:56:46.00"

Object_SeqNo S This alert's position in the
list.

1

Object_DateLastDistrib D Same as
Object_DateCreated

7/23/97

Object_TimeLastDistrib A15 Same as
Object_TimeCreated

"09:56:46.00"

Object_Key A60 String that identifies the
alert.

"&1917341207271993"

Object_DistributedBy A60 Name of user. "rhall"

Object_Description A80 Message describing the
alert condition.

"Post Office doesn't exist",
"You have a problem with
your address(es)"

Object_Tag A80 More information about
the alert or object.

"No object associated with
alert", "Q4 sales"

Object_NumberOfVersions N Version number of the
alert.

1.00

This method requires a full lock on tableName. If the table contains data, this method
replaces it without asking for confirmation. This method returns True if it succeeds;
otherwise, it returns False.

Example This example calls enumAlerts to create a table listing the alerts in the user's object store,
then scans the table for alerts more than two days old and calls deleteObject to delete them
from the object store. (The example for deleteObject shows a technique for deleting one
object at a time).

method pushButton(var eventInfo Event)
{
enumAlerts
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
}
 var
 ageDate Date

 alertsTbName,
 msgText String
 alertsTb Table
 alertsTC TCursor
 endVar

 ageDate = Date(today() - 2) ; 2 days old
 alertsTbName = ":PRIV:usrAlert"
 msgText = "Couldn't open " + alertsTbName

 wgLib.enumAlerts(alertsTbName) ; Create a table listing alerts.
 if alertsTC.open(alertsTbName) then
 alertsTC.edit()

 ; Scan the table for alerts more than 2 days old and
 ; delete them from the object store (not from the table).
 scan alertsTC:
 if alertsTC.Object_DateLastDistrib < ageDate then
 wgLib.deleteObject(alertsTC.Object_Key)
 endIf
 endScan

 alertsTC.endEdit()
 alertsTC.close() ; Close the cursor before deleting the table.

 alertsTb.attach(alertsTbName)
 alertsTb.delete() ; No further need for this data.
 else
 errorShow(msgText)
 return
 endIf

endMethod

See Also deleteObject
enumAccounts
enumPublications
enumSubscriptions
getAlertDetails

enumPublications

Method Creates a table listing the Paradox publications in the user's object store.

Syntax enumPublications (tableName String) Logical

Description Creates a table of data about the publications in the user's object store, where tableName is
the file name of the table to create. The following table shows the structure.

Field name Type Description Sample values

Object_DateCreated D The date the publication
was issued. Format
depends on system
settings.

7/23/97

Object_TimeCreated A15 The time the publication
was issued. Format
depends on system
settings.

"09:56:46.00"

Object_SeqNo S This publication's position
in the list.

1

Object_DateLastDistrib D The date the publication
was last distributed.
Format depends on system
settings.

7/23/97

Object_TimeLastDistrib A15 The time the publication
was last distributed.
Format depends on system
settings.

"09:56:46.00"

Object_Key A60 String that identifies the
publication.

"ORDERS.20491529"

Object_DistributedBy A60 Publications are always
distributed by OBEX.

"OBEX"

Object_Description A80 Message describing the
publication (may be user-
defined).

"Q3 Sales", "Save this as
NewCust.DB"

Object_Tag A80 More information about
the publication (supplied   
by OBEX).

"Publish,Pages,Text,
Table Data:Q4,1"

Object_NumberOfVersions N Version number of the
publication .

1.00

This method requires a full lock on tableName. If the table contains data, this method
replaces it without asking for confirmation.

This method returns True if it succeeds; otherwise, it returns False.

Example See deleteObject for an example showing how to call enumPublications; see
issueNewVersion for an example showing how to use the resulting table.

See Also enumAccounts
enumAlerts
enumSubscriptions

enumSubscriptions

Method Creates a table listing the subscriptions in the user's object store.

Syntax enumSubscriptions (tableName String) Logical

Description Creates a table of subscription data, where tableName is the file name of the table to create.
The following table shows the structure.

Field name Type Description Sample values

Object_DateCreated D The date the subscription
was created. Format
depends on system
settings.

7/23/97

Object_TimeCreated A15 The time the subscription
was created. Format
depends on system
settings.

"09:56:46.00"

Object_SeqNo S This subscription's
position in the list

1

Object_DateLastDistrib D The date the subscription
was last distributed.
Format depends on system
settings.

7/23/97

Object_TimeLastDistrib A15 The time the subscription
was last distributed.
Format depends on system
settings.

"09:56:46.00"

Object_Key A60 String that identifies the
subscription

"ISSUES.11755103",
"Q2orders"

Object_DistributedBy A60 Who distributed this
subscription?

"RGRETTER (Lan)"

Object_Description A80 Message describing the
subscription (may be user-
defined)

"Q3 Sales", "Orders by
state"

Object_Tag A80 More information about
the subscription (supplied
by The Object Exchange)

"Publish,Pages,Text,
File set:Orders,1"

Object_NumberOfVersions N Version number of the
subscription

1.00

This method requires a full lock on tableName. If the table contains data, this method
replaces it without asking for confirmation.

This method returns True if it succeeds; otherwise, it returns False.

Example See cancelSubscription, deleteObject, and modifySubscribers.

See Also enumAccounts
enumAlerts
enumPublications

getAlertDetails

Method Gets information about a specified Object Exchange alert.

Syntax getAlertDetails (objectKey String, var alertDetails String) Logical

Description Returns in alertDetails information about an Object Exchange alert, where objectKey is a
string identifying the alert. To get valid values for objectKey, call enumAlerts and take
values from the Object_Key field.

This method returns True if it succeeds; otherwise, it returns False.

Example This example shows how to display the details for each alert in a table. First, use enumAlerts
to create a table of alerts, then create a form bound to that table. Attach the following code to
the page's built-in action method to get alert details each time the form displays another
record.

method action(var eventInfo ActionEvent)
; This code is attached to the page's built-in action method.
{
getAlertDetails
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- USRALERT is a table created by calling enumAlerts.
- This form contains the following field objects:

 DateFld is bound to the Object_DateCreated field of USRALERT.
 TimeFld is bound to the Object_TimeCreated field of USRALERT.
 DescFld is bound to the Object_Description field of USRALERT.
 DetailsFld is an unbound field that displays the data returned by getAlertDetails.
}

 var
 alertDetails,
 dmTbName,
 dmFldName,
 objectKey String
 endVar

 ; Initialize variables.
 dmTbName = ":PRIV:usrAlert"
 dmFldName = "Object_Key"

 ; DataArriveRecord is triggered each time the form displays another record.
 if eventInfo.id() = DataArriveRecord then
 doDefault ; Execute the default code first.

 ; Get the value of the key field for this record.
 dmGet(dmTbName, dmFldName, objectKey)

 ; Use the value to call getAlertDetails.
 if objectKey <> "" then
 wgLib.getAlertDetails(objectKey, alertDetails)
 DetailsFld.Value = alertDetails
 else

 return
 endIf
 endIf

endMethod

Attach the following code to the built-in newValue method of the DescFld field object. It
forces the form to display details for the first alert when the form opens.

method newValue(var eventInfo Event)
 if eventInfo.reason() = StartUpValue then
 doDefault
 self.action(DataArriveRecord)
 endIf
endMethod

See Also enumAlerts
getNote

getFileList

Method Gets a list of the files in an object.

Syntax getFileList (objectKey String, backVersion SmallInt, var fileList ArrayOfStrings) Logical

Description Fills fileList with a list of the files in the object specified by objectKey. (Typically, objectKey
is used to specify a file set, but this method also works with Table Data and Query Results.)
To get valid values for objectKey, call enumPublications or enumSubscriptions and take
values from the Object_Key field.

If the object is a publication, fileList lists the full file name (including the path) of each file. If
the object is a subscription, fileList omits the path.

The argument backVersion specifies the version of the object, where a value of 0 specifies the
newest (last-issued) version, and larger values specify older versions. To find out how many
versions of an object are available, call enumPublications or enumSubscriptions, then
search for objectKey in the Object_Key field of the resulting table and read the value of the
Object_NumberOfVersions field for that record.

If objectKey or backVersion does not exist, this method fails. This method returns True if it
succeeds; otherwise, it returns False.

Example This example shows how to display the file list for a file set. When you click a radio button,
code attached to the field's built-in newValue method executes. It fills the drop-down edit list
with descriptions of each object of the specified type. Then, when you choose an item from
the list, code attached to the list's built-in newValue method executes and displays a view
dialog box listing the files in that file set.

The following code is attached to the built-in newValue method of objTypeFld, an unbound
field object displayed as radio buttons.

method newValue(var eventInfo Event)
{
getFileList
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- Custom data types are declared in the form's Type window.
- This form contains an unbound field object named objTypeFld
 displayed as radio buttons, and an unbound drop-down edit list
 named objDescList that contains a list object named listObj.
- A custom method named addFileSetToList has been declared elsewhere.
- The following code executes when you choose one of the
 radio buttons in objTypeFld.
}
 var
 pubsTbName, subsTbName,
 objType, objectKey String
 objTC TCursor
 endVar

 ; Initialize variables.
 pubsTbName = ":PRIV:usrPubs"
 subsTbName = ":PRIV:usrSubs"

 if eventInfo.reason() = EditValue then
 doDefault

 objType = self.value

 switch
 case objType = "Publication" :
 wgLib.enumPublications(pubsTbName)
 objTC.open(pubsTbName)

 case objType = "Subscription" :
 wgLib.enumSubscriptions(subsTbName)
 objTC.open(subsTbName)
 endSwitch

 if addFileSetToList(objTC) then
 ; Display the first item in the list.
 objDescList.listObj.List.Selection = 1
 objDescList.Value = objDescList.listObj.List.Value
 else
 return
 endIf
 endIf
endMethod

Following is the code for the custom method addFileSetToList. It takes as an argument a
TCursor opened onto a table (either of publications or subscriptions) and calls
getObjectSummary for each object in the table. If the object is a file set (that is, if the value
of the SourceType index of the getObjectSummary DynArray is "File set"), this code adds a
description of the object to the drop-down edit list.

method addFileSetToList(const objTC TCursor) Logical
; Custom method called by objTypeFld::newValue
 var
 objSumDA DynArrayOfAny
 keyFld, daIndex, fileSetID,
 msgCaption, msgText String
 endvar

 ; Initialize variables.
 keyFld = "Object_Key"
 daIndex = "SourceType"
 fileSetID = "File set"
 msgCaption = "No file sets"
 msgText = "There are no file sets of this type."

 objDescList.listObj.List.Count = 0 ; Empty the list.
 setMouseShape(MouseWait)
 message("Filling list ...")

; Scan the table of objects. If an object is a file set,
; add its description to the drop-down edit list.

 scan objTC:
 wgLib.getObjectSummary(objTC.(keyFld), objSumDA)
 if objSumDA[daIndex] = fileSetID then
 objDescList.listObj.List.Selection =
 objDescList.listObj.List.Selection + 1

 objDescList.listObj.List.Value = objSumDA["Description"]
 endIf
 endScan

 setMouseShape(MouseArrow)
 message("")

 if objDescList.listObj.List.Count = 0 then
 msgInfo(msgCaption, msgText)
 return False
 else
 return True
 endIf
endMethod

The following code is attached to the built-in newValue method of objDescList, the drop-
down edit list. When you choose a file set description from the list, this code calls
getFileList to generate a list of the files in that file set. Then it displays the list in a view
dialog box.

method newValue(var eventInfo Event)

 var
 pubsTbName, subsTbName,
 descFldName, keyFldName,
 viewCaption, objectKey String
 backVer SmallInt
 fileListAR ArrayOfStrings
 objTC TCursor
 endvar

 ; Initialize variables.
 pubsTbName = ":PRIV:usrPubs"
 subsTbName = ":PRIV:usrSubs"
 descFldName = "Object_Description"
 keyFldName = "Object_Key"
 viewCaption = "File list: "
 backVer = 0 ; This example always uses the latest version.

 if eventInfo.reason() = EditValue then
 switch
 case objTypeFld.Value = "Publication" :
 objTC.open(pubsTbName)

 case objTypeFld.Value = "Subscription" :
 objTC.open(subsTbName)

 otherwise : msgInfo("Specify an Object Type.",
 "Choose Publication or Subscription.")
 return
 endSwitch

 if objTC.locate(descFldName, self.Value) then
 objectKey = objTC.(keyFldName)
 if wgLib.getFileList(objectKey, backVer, fileListAR) then

 fileListAR.view(viewCaption + self.Value)
 else
 errorShow("Could not get file list.")
 return
 endIf
 endIf
 endIf
endMethod

The following code is attached to the drop-down edit list's built-in close method. It empties
the list.

method close(var eventInfo Event)
 ; Empty the list.
 self.listObj.List.Count = 0
endMethod

See Also getObjectSummary

getNote

Method Gets the note that was sent with a publication or subscription.

Syntax getNote (objectKey String, backVersion SmallInt, var note String) Logical

Description Returns in note the note that was sent with the publication or subscription specified by
objectKey. To get valid values for objectKey, call enumPublications or enumSubscriptions
and take values from the Object_Key field. The argument backVersion specifies the version
of the object, where a value of 0 specifies the newest (last-issued) version, and larger values
specify older versions. To find out how many versions of an object are available, call
enumPublications or enumSubscriptions, then search for objectKey in the Object_Key
field of the resulting table and read the value of the Object_NumberOfVersions field for that
record

If objectKey or backVersion does not exist, this method fails. This method returns True if it
succeeds; otherwise, it returns False.

Example This example shows how to display the note attached to a specified subscription. First, use
enumSubscriptions to create a table of subscriptions named :PRIV:usrSubs, then create a
form bound to that table. Attach the following code to a button on the form. Run the form,
choose a subscription in the DescriptionTF table frame and click the button to display the
note for that subscription. By default, this code displays the note for the last-issued (newest)
version of the object; you can display notes for older versions by entering a value in the
BackVersionFld field object.

method pushButton(var eventInfo Event)
{
getNote
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- USRSUBS is a table created by calling enumSubscriptions.
- This form contains a table frame, field objects, and a button:

 DescriptionTF is a table frame bound to USRSUBS.
 It displays only the Object_Description field.
 The user highlights a field to select an object.
 DateFld is bound to the Object_DateLastDistrib field of USRSUBS.
 TimeFld is bound to the Object_TimeLastDistrib field of USRSUBS.
 FromFld is bound to the Object_DistributedBy field of USRSUBS.
 VersionsFld is bound to the Object_NumberOfVersions field of USRSUBS.
 BackVersionFld is an unbound field object.
 Note is a button. The user highlights a field to select an object,
 then clicks the button to execute the following code which
 displays the note in a dialog box.
}

 var
 dmTbName, dmFldName,
 objectKey, theNote,
 msgCaption, msgText,
 badVersionMsg String
 backVer SmallInt
 endVar

 ; Initialize variables.
 dmTbName = ":PRIV:usrSubs"
 dmFldName = "Object_Key"
 msgCaption = "Note"
 msgText = "Could not get note."
 badVersionMsg = "Enter a number from 0 to " +
 String((SmallInt(VersionsFld.Value) - 1))

 ; Get the value of the Object_Key field for the current record.
 dmGet(dmTbName, dmFldName, objectKey)

 ; Decide which version to use by reading the value of the BackVersion field
 ;object. If the field is blank, use 0.
 if BackVersion.Value = "" then
 backVer = 0
 else
 try
 backVer = SmallInt(BackVersion.Value)
 onFail
 msgStop("Invalid version number", badVersionMsg)
 errorClear()
 return
 endTry
 endIf
 if backVer > (Versions.Value - 1) then
 msgStop("Invalid version number", badVersionMsg)
 return
 endIf

 ; Get the note for the selected object.
 if wgLib.getNote(objectKey, backVer, theNote) then
 theNote.view(msgCaption)
 else
 errorShow(msgText)
 return
 endIf
endMethod

See Also getAlertDetails

getObexStatus

Method Fills a DynArray with Object Exchange status information.

Syntax getObexStatus (var obexStatus DynArrayOfAny) Logical

Description Fills the DynArray obexStatus with general Object Exchange status information. The
following table lists the DynArray indexes.

Index Description Sample values

ActiveAccount Name of active account "MCI",    "None",

"R&D LAN"

NumberOfAccounts Total number of user's OBEX
accounts

"3"

NumberOfAlerts Number of alerts in the
Object Exchange

"5"

NumberOfOutgoing Number of publications to be
issued

"2"

If the Object Exchange does not respond, this method fails. This method returns True if it
succeeds; otherwise, it returns False.

Example This example calls getObexStatus, then calls a custom method (assumed to be defined
elsewhere) to process alerts. The examples for enumAlerts and getAlertDetails show code
that processes alerts.

method pushButton(var eventInfo Event)
{
getObexStatus
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- Custom data types are declared in the form's Type window.
- A custom method named processAlerts has been defined elsewhere.
}
 var
 statusDA DynArrayOfAny
 daIndex String
 endVar

 ; Initialize variables.
 daIndex = "NumberOfAlerts"

 wgLib.getObexStatus(statusDA) ; Get OBEX status.

 ; If there are alerts, call a custom method to process them.
 ; You could also call statusDA.view("OBEX status")
 if SmallInt(statusDA[daIndex]) > 0 then
 processAlerts() ; Call a custom method (defined elsewhere).
 endIf
endMethod

See Also getObjectSummary

getObjectSummary

Method Fills a DynArray with summary information about an object.

Syntax getObjectSummary (objectKey String, var objectSummary DynArrayOfAny) Logical

Description Fills the DynArray objectSummary with data about the object specified by objectKey. Objects
can be alerts, publications, or subscriptions. To get valid values for objectKey, call
enumAlerts, enumPublications, or enumSubscriptions and take values from the
Object_Key field. If objectSummary already exists, this method overwrites it without asking
for confirmation. The following table lists the indexes of the DynArray.

Index Description Sample values

DateCreated Date object was created.
Format depends on system
settings.

"09/11/98"

DateLastDistributed Date object was last
distributed. Format
depends on system
settings.

"12/12/98"

Description Description of object (may
be user-defined).

"Sales by zip code"

DistributedBy Who distributed this
object?

RHALL (MHS)

MultiVersion Is this a multiversion
object?

"Yes", "No"

NumberOfVersions How many versions are
stored?

"1"

ObjectKey String that identifies the
object.

"ORDERS.1755103"

ObjectName Name of this object. "ORDERS"

SourceType What kind of object is it? "Table Data", "Query
Result", "File set"

Status Status of this object. "Available", "Pending"

Time Created Time object was created.
Format depends on system
settings.

"19:07:44.00"

TimeLastDistributed Time object was last
distributed. Format
depends on system
settings.

"19:07:44.00"

VersionDepth How many versions can be
stored?

"2"

If objectKey does not exist in the user's object store, this method fails. This method returns
True if it succeeds; otherwise, it returns False.

Example This example shows how to display summary data for a specified subscription. First, use
enumSubscriptions to create a table named :PRIV:usrSubs, then create a form bound to that
table. Attach the following code to a button on the form. When you run the form, choose a
subscription in the DescriptionTF table frame and click the button to display summary data
for that subscription.

method pushButton(var eventInfo Event)
{
getObjectSummary
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- Custom data types are declared in the form's Type window.
- USRSUBS is a table created by calling enumSubscriptions.
- This form contains a table frame, field objects, and a button:

 DescriptionTF is a table frame bound to USRSUBS.
 It displays only the Object_Description field.
 DateFld is bound to the Object_DateLastDistrib field of USRSUBS.
 TimeFld is bound to the Object_TimeLastDistrib field of USRSUBS.
 FromFld is bound to the Object_DistributedBy field of USRSUBS.

 Summary is a button. The user highlights a field to select an object,
 then clicks the button to execute the following code which
 displays summary data in a dialog box.
}
 var
 objectKey,
 dmTbName, dmFldName,
 msgCaption, msgText String
 summaryDA DynArrayOfAny
 endVar

 ; Initialize variables.
 dmTbName = ":PRIV:usrSubs"
 dmFldName = "Object_Key"
 msgCaption = "Object Summary"
 msgText = "Could not get summary data."

 ; Get the value of the Object_Key field for the current record.
 dmGet(dmTbName, dmFldName, objectKey)

 ; Get summary data for the selected object.
 if wgLib.getObjectSummary(objectKey, summaryDA) then
 summaryDA.view(msgCaption)
 else
 errorShow(msgText)
 return
 endIf
endMethod

See Also getObexStatus

getSubscribers

Method Fills an array with addresses of subscribers to a specified publication.

Syntax getSubscribers (objectKey String, var subscribers ArrayOfStrings) Logical

Description Fills the array specified by subscribers with the addresses of subscribers to the publication
specified by objectKey. To get valid values for objectKey, call enumPublications and take
values from the Object_Key field.

This method returns True if it succeeds; otherwise, it returns False.

Example See modifySubscribers.

See Also enumSubscriptions
verifyAddresses

issueNewVersion

Method Issues a new version of an existing Paradox publication.

Syntax issueNewVersion (objectKey String, note String) Logical

Description Issues a new version of a publication specified by objectKey. To get valid values for
objectKey, call enumPublications and take values from the Object_Key field. The argument
note specifies the note to send with the new version. note can be either a quoted string
(maximum length: 255 characters) or an ObjectPAL String variable (maximum length:
32,767 characters).

Unlike transfer and publish, this method assumes that the object key for the table, query
result, or file set still exists in the object store of the sender.

If the publication no longer exists in the user's object store, this method fails. This method
returns True if it succeeds; otherwise, it returns False.

Note: Data is not sent to subscribers until you poll the appropriate account, either
interactively or by calling poll.

Example This example shows how to use a form to issue new versions of existing publications. First,
use enumPublications to create a table named :PRIV:usrPubs, then create a form bound to
that table. Run the form, choose a publication in the DescriptionTF table frame and click the
button to issue a new version of that publication. This code assumes you have declared a
custom method named pollAcct that polls a selected account (see the example for poll). This
code also displays a dialog box that prompts you to enter a note to send with the publication.

method pushButton(var eventInfo Event)
{
issueNewVersion
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- USRPUBS is a table created by calling enumPublications.
- A custom method named pollAcct is declared elsewhere.
- This form contains a table frame, field objects, and a button:

 DescriptionTF is a table frame bound to USRPUBS.
 It displays only the Object_Description field.
 The user highlights a field to select an object.
 DateFld is bound to the Object_DateLastDistrib field of USRPUBS.
 TimeFld is bound to the Object_TimeLastDistrib field of USRPUBS.

 New_Version is a button. The user highlights a field to select a
 publication, then clicks the button to execute the following
 code, which issues a new version of the publication.
}

 var
 objectKey,
 dmTbName, dmFldName,
 theNote, notePrompt,
 msgCaption, msgText String
 endVar

 ; Initialize variables.

 dmTbName = ":PRIV:usrPubs"
 dmFldName = "Object_Key"
 msgCaption = "Note"
 msgText = "Could not issue new version."
 notePrompt = "Enter a note or click Cancel."
 theNote = notePrompt

 ; Get the value of the Object_Key field for the current record.
 dmGet(dmTbName, dmFldName, objectKey)

 ; Open a dialog box where the user can enter a note.
 theNote.view(msgCaption)

 ; If the user clicks Cancel, the note won't change;
 ; it will be the same as the prompt.
 if theNote = notePrompt then
 theNote = ""
 endIf

 ; Issue a new version of the selected publication.
 if wgLib.issueNewVersion(objectKey, theNote) then
 ; Call a custom method to poll a selected account.
 ;(See the example for poll.)
 pollAcct()
 else
 errorShow(msgText)
 return
 endIf
endMethod

See Also publish
transfer
poll

modifySubscribers

Method Modifies the subscriber list for a publication in the user's object store.

Syntax modifySubscribers (objectKey String, var subscribers ArrayOfStrings,

 distributeLastVersion Logical) Logical

Description Modifies the subscriber list for a publication identified by objectKey. To get valid values for
objectKey, call enumPublications and take values from the Object_Key field.

subscribers is an array representing the new subscriber list. It stores the addresses of
workgroup members who will receive the publication. It completely replaces any existing
subscriber list for that publication. (Use getSubscribers to get the addresses of current
subscribers; use verifyAddresses to make sure subscriber addresses are valid.)

distributeLastVersion specifies whether to distribute the last-issued version of the publication
to new subscribers in the list. If you want new subscribers to receive the current version of
the publication in the object store, already received by other subscribers, specify True. In
other words, specify True to give new subscribers the data that other subscribers already
have. If you want new subscribers to start receiving versions only when the next version is
issued to all subscribers, specify False.

If objectKey does not exist in the user's object store, this method fails. This method returns
True if it succeeds; otherwise, it returns False.

Example This example shows how to create a form you can use to modify the subscriber list for a
specified publication. Start by using enumPublications to create a table of publications
named :PRIV:USRPUBS.DB. Then use Paradox interactively to
create :PRIV:TEMPADDR.DB, a table with one field: Subscribers, A100. Create the form
and bind it to the TempAddr table, select a tabular layout, then place an unbound drop-down
edit field and a button.

Declare the variable objectKey in the form's Var window to make it available to both the list
and the table frame.

Var
 objectKey String
endVar

The following code is attached to the drop-down list box's built-in open method. It assumes
the list box contains a list object named listObj. It uses the DataSource property and fills the
list with values from the Object_Description field of the UsrPubs table.

method open(var eventInfo Event)
 doDefault ; Execute the built-in code first.
 self.listObj.DataSource = "[:PRIV:UsrPubs.Object_Description]"
endMethod

The following code is attached to the list box's built-in newValue method. This code
executes when you choose an item from the list.

method newValue(var eventInfo Event)
; This code assumes custom data types are declared in the form's Type window.

var
keyFldName, descFldName,
addrFldName, pubsTbName String

i SmallInt
subAddrAR ArrayOfStrings
subAddrTC, pubsTC TCursor

endVar

if eventInfo.reason() = EditValue then
doDefault

; Initialize variables.
keyFldName = "Object_Key"
descFldName = "Object_Description"
addrFldName = "Subscribers"
pubsTbName = ":PRIV:usrPubs"

; Get the object key for this publication.
pubsTC.open(pubsTbName)
pubsTC.locate(descFldName, self.Value)
objectKey = pubsTC.(keyFldName)

; Use the object key to get subscriber addresses.
wgLib.getSubscribers(objectKey, subAddrAR)

TEMPADDR.edit() ; Put the table frame into Edit mode.
subAddrTC.attach(TEMPADDR) ; Attach a TCursor (also in Edit mode).
subAddrTC.empty()

; Copy addresses from the array to the TCursor.
for i from 1 to subAddrAR.size()

subAddrTC.insertAfterRecord()
subAddrTC.(addrFldName) = subAddrAR[i]

endFor
subAddrTC.postRecord()

TEMPADDR.reSync(subAddrTC) ; Update the table frame with data from the
TCursor.

endIf
endMethod

Now the user can edit address records in the table frame. When edits are complete, the user
can click OK to commit changes and modify the subscriber list.

The following code is attached to the OK button. It verifies the addresses in the new list, then
calls modifySubscribers to update the subscriber list for the publication.

method pushButton(var eventInfo Event)
; This code assumes custom data types are declared in the form's Type window.

var
updateNewSubs Logical
addrFldName String
subAddrAR ArrayOfStrings
subAddrTC TCursor

endVar

; Initialize variables.
addrFldName = "Subscribers"
updateNewSubs = Yes ; Send last-issued version to new subscribers.

TEMPADDR.endEdit() ; No more edits to the table frame.
subAddrTC.attach(TEMPADDR)

scan subAddrTC:
subAddrAR.addLast(subAddrTC.(addrFldName))

endScan

; Make sure the addresses are valid.
 if not wgLib.verifyAddresses(subAddrAR) then

errorShow("Invalid address")
return

endIf

 ; Modify the subscriber list and send the latest version
 ; of the publication to the new subscribers.

if not objectKey.isAssigned() then
; objectKey is declared in the form's Var window,
; and is assigned when you choose a value from the list.
msgInfo(" ", "Choose a publication from the list.")
return

endIf

 if wgLib.modifySubscribers(objectKey, subAddrAR, updateNewSubs) then
 pollAcct() ; Call a custom method (see the example for poll).
 else
 errorShow("Could not modify subscriber list.")
 endIf
endMethod

Attach the following code to the table frame's built-in close method.

method close(var eventInfo Event)
self.empty()

endMethod

See Also getSubscribers
enumSubscriptions

poll

Method Makes the Object Exchange poll an account.

Syntax poll (accountName String) Logical

Description Makes the Object Exchange poll accountName. To get valid values for accountName, call
enumAccounts and take values from the AccountName field.

If accountName does not exist, this method fails. This method returns True if it succeeds;
otherwise, it returns False.

Example This example shows how to poll a specified account. First, use enumAccounts to create a
table named :PRIV:UsrAccts. Place a drop-down edit list in the form, and set the DataSource
property of its list object to point to the AccountName field of the UsrAccts table. Then place
a button and attach the following code. Run the form, choose an account name from the list,
then click the button to poll that account.

method pushButton(var eventInfo Event)
{
poll
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- This form contains a button and a drop-down edit list field named acctList
 that lists OBEX accounts (see enumAccounts for an example).
The list field contains a list object named listObj.
 The user chooses an account name from the list, then clicks the
 button to execute the following code.
}
 var
 dateFldName, descFldName,
 msgCaption, msgText,
 subsTbName, acctTbName String
 pollDate Date
 subsTC TCursor
 newSubsAR Array[] String
 endVar

 ; Initialize variables.
 pollDate = today()
 acctName = acctList.Value
 dateFldName = "Object_DateLastDistrib"
 descFldName = "Object_Description"
 subsTbName = ":PRIV:usrSubs"
 msgCaption = "Account name required"
 msgText = "Choose an account name from the list."

 ; Make sure user chooses an account.
 if acctName = "" then
 msgInfo(msgCaption, msgText)
 return
 endIf

 ; Poll the account.
 if not wgLib.poll(acctName) then

 errorShow("Poll failed")
 return
 endIf
endMethod

The following code is attached to acctList, a field object displayed as a drop-down edit list.
This code assumes that acctList contains a list object named listObj. This code fills the list
with values from the AccountName field of the UsrAccts table.

method open(var eventInfo Event)
doDefault
self.listObj.DataSource = "[:PRIV:UsrAccts.AccountName]"

endMethod

See Also enumAccounts

publish

Method Creates a new multiversion publication.

Syntax publish (objectKey String,
objectType String,
description String,
var fileList ArrayOfStrings,
var subscribers ArrayOfStrings,
versionDepth SmallInt,
note String) Logical

Description Creates a new multiversion publication.    (Use transfer to send a single-version publication,
use issueNewVersion to send an updated version of an existing publication.)

Note: Data is not sent to subscribers until you poll the appropriate account, either
interactively or by calling poll.

For objectKey, you can specify a unique value yourself (maximum length: 40 characters) or
specify an empty string (""). If you specify an empty string, OBEX generates a unique value
when it sends the publication. If objectKey already exists, this method fails.

objectType can be "Table Data," "Query Result," or "File Set."

description is a string of up to 80 characters describing the object. You must supply a value
for description.

fileList is an array of one or more file names (including path or alias). If you are publishing
table data or a query result, this array should contain only one item: the file name of the table
or query (if it contains more than one, the other items are ignored). If you are publishing a
file set, this array contains the names of each file in the set.

subscribers is the subscriber list, an array containing the addresses of workgroup members
who will receive the publication. If any addresses in the list are syntactically invalid, OBEX
will create an alert when you poll, which you can access using the methods enumAlerts and
getAlertDetails. You can use verifyAddresses to make sure addresses are valid. You can use
modifySubscribers to add, change, or delete addresses in the subscriber list.

versionDepth specifies how many versions to make available to subscribers (maximum
value: 99). The version depth cannot be changed after the initial publication.

note is the note to send with the first version of this publication. It can be changed with every
new version (see issueNewVersion for more information). note can be either a quoted string
(maximum length: 255 characters) or an ObjectPAL String variable (maximum length:
32,767 characters).

This method returns True if it succeeds; otherwise, it returns False.

Example This example shows how to create a form for publishing objects. First, create a form bound
to :ADDRBOOK:Address, a table created by OBEX to store subscriber addresses, then place
objects in the form. Run the form and click a radio button to specify an object type. Next,
enter a description, a name, and a note in the appropriate fields. Then choose one address at a
time from the table frame and click Add to add the address to the list. When the list is
complete, click Publish to send the publication to the subscribers in the list.

The following code is attached to the Publish button. It displays the built-in Paradox Browser
so you can choose an object to publish, then calls publish to publish it, and then calls a
custom method named pollAcct to poll a selected account.

method pushButton(var eventInfo Event)
{
publish

Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- Custom data types are declared in the form's Type window.
- A custom method named pollAcct is declared elsewhere.
- The alias :ADDRBOOK: has been defined to point to the directory
 containing the ADDRESS table. (By default :ADDRBOOK: points to
C:\PDOXWIN\ADDRBOOK.)
- This form contains a table frame, field objects, and 2 buttons:

 pubTypeFld is an unbound field object displayed as 3 radio buttons.
 The user chooses a radio button to specify the type.

 pubDescFld is an unbound field object.
 The user types a description of the publication.

 pubNameFld is an unbound field object.
 The user types the name of the publication.

 pubNoteFld is an unbound field object.
 The user types a note about the publication.

 addrTF is a table frame bound to :ADDRBOOK:ADDRESS.
 The user highlights a field to select an address,
 then clicks the Add button add the address to
 Address List.

 addrListFld is an unbound field object displayed as a list.
 It contains a list object named addrListObj.

 Add is a button that copies an address from the
 Address Table to the Address List.

 Publish is a button that executes the following code to
 publish the publication.
}
 var
 FBI FileBrowserInfo {see System::fileBrowser for info}
 srcTb, srcQbe, srcFileSet,
 objectKey, objectName,
 msgText, pubType,
 pubNote, pubDesc String
 addrAR, fileListAR ArrayOfStrings
 addrCount, i, v SmallInt
 endVar

 ; Initialize variables.
srcTb = "Table Data"
srcQbe = "Query result"
srcFileSet = "File Set"

 v = 3 ; Allow three versions of the publication.
 pubDesc = pubDescFld.Value
 if pubDesc = "" then
 msgStop("Description required.", "Enter a description.")
 return

 endIf

 addrCount = addrListFld.addrListObj.List.Count
 if addrCount = 0 then
 msgStop("No addresses", "Specify at least one address.")
 ; For simplicity, this example requires at least one address.
 ; You could allow 0 addresses and call modifySubscribers before polling.
 return
 else
 addrAR.grow(addrCount) ; Set the array size to match the list size.
 endIf

 addrListFld.addrListObj.List.Selection = 1
 for i from 1 to addrCount
 addrAR[i] = addrListFld.addrListObj.List.Value
 addrListFld.addrListObj.List.Selection =
 addrListFld.addrListObj.List.Selection + 1
 endFor

 objectKey = "" ; Let OBEX create a key value.
 pubType = pubTypeFld.Value
 pubNote = pubNoteFld.Value
 msgText = "Unable to publish the document."

 switch
 case pubType = srcTb :
 FBI.SelectedType = fbTable
 FBI.AllowableTypes = fbTable

 ; Use the Browser to get one file name.
 if fileBrowser(objectName, FBI) then
 fileListAR.setSize(1)
 fileListAR[1] = objectName
 else
 errorShow()
 return
 endIf

 case pubType = srcQbe :
 FBI.SelectedType = fbQuery
 FBI.AllowableTypes = fbQuery

 ; Use the Browser to get one file name.
 if fileBrowser(objectName, FBI) then
 fileListAR.setSize(1)
 fileListAR[1] = objectName
 else
 errorShow()
 return
 endIf

 case pubType = srcFileSet :
 FBI.Path = workingDir()
 FBI.AllowableTypes = fbFiles

 ; Use the Browser to get a list (array) of file names

 if not fileBrowser(fileListAR, FBI) then
 errorShow()
 return
 endIf

 otherwise : msgInfo("Object type required.",
 "Choose Table Data, Query Result, or File Set.")
 return
 endSwitch

 pubNameFld.Value = fileListAR[1]

 ; Publish the document.
 if wgLib.publish(objectKey, pubType, pubDesc, fileListAR, addrAR, v, pubNote) then
pollAcct() ; Call a custom method (see the example for poll).
 else
 errorShow(msgText)
 return
 endIf
endMethod

The following code is attached to the Add button. It reads the current value from the table
frame and adds it to the list.

method pushButton(var eventInfo Event)
 var
 msgCaption, msgText String
 endVar

 ; Initialize variables.
 msgCaption = "No address"
 msgText = "Choose an address from the table."

 if addrTF.Address.Value = "" then
 ; If user didn't choose an address, display a message and exit.
 msgInfo(msgCaption, msgText)
 return
 else
 ; Add the selected address to the list.
 addrListFld.addrListObj.List.Selection = addrListFld.addrListObj.List.Count + 1
 addrListFld.addrListObj.List.Value = addrTF.Address.Value
 endIf
endMethod

See Also issueNewVersion
transfer

saveAs

Method Saves a specified version of an object that the user subscribes to into a table or directory.

Syntax saveAs (objectKey String, backVersion SmallInt,

targetObjectName String, fillTableNow Logical) Logical

Description Saves a specified version of objectKey into a table (if the object is table data or a query
result) or directory (if the object is a file set) specified in targetObjectName. To get valid
values for objectKey, call enumSubscriptions and take values from the Object_Key field.

The argument backVersion specifies the version of the object, where a value of 0 specifies the
newest (last-issued) version, and larger values specify older versions. To find out how many
versions of an object are available, call enumSubscriptions, then search for objectKey in the
Object_Key field of the resulting table and read the value of the Object_NumberOfVersions
field for that record.

If the table or directory does not exist, Paradox creates it automatically. If targetObjectName
is a table and already exists, it is emptied and filled with the data in objectKey. This method
requires a full lock on the table. If targetObjectName is a file set and already exists, it retains
all of its current data, and any file data that does not already exist in the file set is added to it.

Important: Files in a file set are not accessible until you call saveAs because they are stored
in a compressed format in the user's object store. Calling saveAs uncompresses the files into
a directory.

fillTableNow is relevant only to tables sent as Table Data or Query Result, not to tables sent
in a file set. Specify True to create the table along with its data. Specify False to create an
empty table; you can call tableRefresh to fill the table later. When you're working with a file
set, you still must supply a value for fillTableNow (otherwise your code won't compile);
however, the value is ignored when the code executes.

If objectKey does not exist in the user's object store, this method fails. This method returns
True if it succeeds; otherwise, it returns False.

Example This example shows how to choose an object from a list of subscriptions and save it. First,
use enumSubscriptions to create a table named :PRIV:usrSubs, then create a form and bind
it to that table. Place a table frame, field object, and button. Run the form, choose an object
from the list of descriptions, then click Save. A dialog box prompts you to name the object,
then a call to saveAs saves the object, using that name.

method pushButton(var eventInfo Event)
{
saveAs
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- USRSUBS is a table created by calling enumSubscriptions.
- This form contains a table frame, field objects, and a button:

 DescriptionTF is a table frame bound to USRSUBS.
 It displays only the Object_Description field.
 The user highlights a field to select an object.
 FromFld is bound to the Object_DistributedBy field of USRSUBS.

 Save is a button. The user highlights a field to select an object,
 then clicks the button to execute the following code.
}

 var
 fillNow Logical
 dmTbName,
 objectKey, objFldName,
 newObjName, promptText,
 saveOkText, saveErrText String
 backVersion SmallInt
 endVar

 ; Initialize variables.
 fillNow = True ; This value is ignored if the object is a file set.
 backVersion = 0 ; This example saves the latest version of the object.
 dmTbName = ":PRIV:usrSubs"
 objFldName = "Object_Key"
 promptText = "Enter a name for the object."
 newObjName = promptText
 saveOkText = "Object saved."
 saveErrText = "Object not saved."

 newObjName.view("New object name")
 if newObjName = promptText then
 message(saveErrText)
 return
 endIf

 ; Get the value of the Object_Key field
 ; for the current record of the table specified in dmTbName.
 dmGet(dmTbName, objFldName, objectKey)

 if wgLib.saveAs(objectKey, backVersion, newObjName, fillNow) then
 message(saveOkText)
 else
 errorShow(saveErrText)
 endIf
endMethod

See Also enumSubscriptions

tableRefresh

Method Refreshes a table with a specified version from the object store.

Syntax tableRefresh (objectKey String,
    backVersion SmallInt,
    tableName String,
    var dateLastTaken Date,
    var timeLastTaken String) Logical

Description Refreshes tableName with the data contained in objectKey. To get valid values for objectKey,
call enumSubscriptions and take values from the Object_Key field.

The argument backVersion specifies the version of the object, where a value of 0 specifies the
newest (last-issued) version, and larger values specify older versions. To find out how many
versions of an object are available, call enumSubscriptions, then search for objectKey in the
Object_Key field of the resulting table and read the value of the Object_NumberOfVersions
field for that record.

This method requires a full lock on tableName. If the table specified by tableName does not
exist, Paradox creates it automatically.

This method returns in dateLastDistributed and timeLastDistributed the date and time the last
version of this object was distributed, irrespective of the value of backVersion. You can
compare these values to the date and time returned by getObjectSummary to make sure
you're always working with the lastest data.

If objectKey does not exist in the user's object store, this method fails. This method returns
True if it succeeds; otherwise, it returns False.

Example This example shows how to create a form that updates a table with the latest data from your
object store when you click a button. First, use enumSubscriptions to create a table
named :PRIV:usrSubs, then create a form and bind it to the table. Place a table frame and a
button. Create a second form containing an unbound table frame and a button. Save the
second form and name it :PRIV:tempForm. This form is a template. Run the first form and
choose an object by selecting a record in the table frame. When you click the button, a call to
saveAs writes the data from the selected object to a table with that name. Then the template
form opens and displays that table. This form contains a button you can click to call
getObjectSummary and tableRefresh to refresh the table (if necessary) with the latest data
from the object store. (You could also modify this code slightly and attach it to the form's
built-in timer method to make the form refresh the data automatically.)

Following is the code from the first form's Var window.

Var
wgLib Library
lastDate Date
lastTime,
objectKey,
tbName String
backVer SmallInt

endVar

The following code is attached to the Save With Form button's built-in pushButton method.
It saves an object to a table, then calls the custom method saveWithForm to display that
table in a form.

method pushButton(var eventInfo Event)
{

tableRefresh
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- Custom data types are declared in the form's Type window.
- USRSUBS is a table created by calling enumSubscriptions.
- This form contains a custom method named saveWithForm.
- This form contains a table frame and a button:

 DescriptionTF is a table frame bound to USRSUBS.
 It displays only the Object_Description field.

 btnSaveWithForm is a button. The user highlights a field to select an object,
 then clicks the button to execute the following code.
}
 const
 fillNow = Yes
 dmTbName = ":PRIV:usrSubs"
 dmObjFldName = "Object_Key"
 okText = "Table updated successfully."
 promptText = "Enter a file name."
 endConst

 var
 saveIt String
 objSumDA DynArrayOfAny
 endVar

 ; Initialize variables.
 backVer = 0 ; Declared in form::Var. This example uses the latest version.
 tbName = promptText ; Declared in form::Var.

 ; Get the value of the Object_Key field for the current record of the table.
 dmGet(dmTbName, dmObjFldName, objectKey)

 wgLib.getobjectSummary(objectKey, objSumDA)
 if objSumDA["SourceType"] = "File Set" then
 return ; This example doesn't handle file sets.
 endIf

 ; Name the object before saving it.
 tbName = ":PRIV:" + objSumDA["ObjectName"]
 saveIt = msgQuestion("Save As", "Save table as: " + tbName + " ?")
 if saveIt <> "Yes" then
 message("Table not saved.")
 return
 endIf

 if wgLib.saveAs(objectKey, backVer, tbName, fillNow) then
 if saveWithForm(objectKey, tbName) then ; Call a custom method.
 message(okText)
 else
 errorShow("saveWithForm")
 return
 endIf

 else
 errorShow("saveAs")
 return
 endIf
endMethod

Following is the code for saveWithForm, a custom method declared at the form level. This
method loads the template form and binds it to the new table created by the call to saveAs in
the pushButton method.

method saveWithForm(const objectKey String, const tbName String) Logical
{
 Custom method called by btnSaveToForm::pushButton.
 Assumptions:
 - The template form :PRIV:tempForm has been created and saved.
 It contains an unbound table frame named tempTF and
 a text box named objKeyTxt.
}

 var
 tempForm Form
 tempFormName String
 endVar

 ; Initialize variables.
 tempFormName = ":PRIV:tempForm.fsl"

 if tempForm.load(tempFormName) then
 tempForm.tempTF.TableName = tbName
 tempForm.objKeyTxt.Text = objectKey
 ; Write the value of objectKey to a text box so code attached to the template
 ; form can use it to call getObjectSummary and tableRefresh.
 else
 return False
 endIf

 if tempForm.save(tbName) then
 tempForm.run()
 tempForm.bringToTop()
 return True
 else
 errorShow()
 tempForm.close()
 return False
 endIf
endMethod

Following is code from the template form's Var window.

Var
 wgLib Library
 lastDate Date
 lastTime,
 objectKey,
 tbName String

 backVer SmallInt
endVar

When the template form opens, the following code calls tableRefresh to update it with the
latest data from the object store.

method open(var eventInfo Event)
if eventInfo.isPreFilter()
 then
 ; This code executes for each object on the form.

 else
 ; This code executes only for the form.
 doDefault
 wgLib.open("C:\\PDOXWIN\\WORKGRP\\WGPAL")

 objectKey = objKeyTxt.Text
 tbName = self.TableName
 backVer = 0

 ; Refresh the table with the latest data from the object store,
 ; and assign values to global variables lastDate and lastTime.
 if not wgLib.tableRefresh(objectKey, backVer, tbName, lastDate, lastTime) then
 errorShow("open -> tableRefresh")
 return
 endIf
endIf
endMethod

The following code is attached to the built-in pushButton of the Refresh Now button in the
template form. It calls getObjectSummary and tableRefresh as needed to update the form
with the latest data from the object store.

method pushButton(var eventInfo Event)
 var
 objSumDA DynArrayOfAny
 endVar
 if wgLib.getObjectSummary(objectKey, objSumDA) then
 objStoreDate = objSumDA["DateLastDistributed"]
 objStoreTime = objSumDA["TimeLastDistributed"]
 else
 errorShow()
 return
 endIf

 ; Global variables lastDate, lastTime, objectKey, backVer, and tbName
 ; are assigned in form::open.
 if (objStoreDate > lastDate) OR
 (objStoreDate = lastDate AND objStoreTime > lastTime) then
 wgLib.tableRefresh(objectKey, backVer, tbName, lastDate, lastTime)
 else
 message("This is the latest version.")
 return
 endIf
endMethod

See Also enumSubscriptions

transfer

Method Sends an object to subscribers.

Syntax transfer (objectKey String,
objectType String,
description String,
var fileList ArrayOfStrings,
var subscribers ArrayOfStrings
note String) Logical

Description Sends an object to subscribers. For objectKey, you can supply a unique value yourself
(maximum length: 40 characters) or you can specify an empty string(""). If you specify an
empty string, OBEX generates a unique value for objectKey when it transfers the object.

Note: Data is not sent to subscribers until you poll the appropriate account, either
interactively or by calling poll.

The interactive Workgroup Desktop has no feature that does what transfer does. When you
use transfer to send an object, that object is not added to the publications in the object store
of the sender. It is added to the list of subscriptions in the receiver's object store, but it is
never updated. In other words, transfer is a one-time, single-version operation. Use publish
(equivalent to the Publish button on the Workgroup Desktop SpeedBar) to send a
multiversion publication.

If objectKey already exists, this method fails. This method returns True if it succeeds;
otherwise, it returns False.

objectType can be "Table Data," "Query Result," or "File Set."

description is a string of up to 80 characters describing the object. You must supply a value
for description.

fileList is an array of one or more file names (including path or alias). If you are sending
table data or a query result, this array should contain only one item: the file name of the table
or query (if it contains more than one, the other items are ignored). If you are sending a file
set, this array contains the names of each file in the set.

subscribers is an array containing the addresses of subscribers who will receive the object. If
any addresses in the list are invalid, the Object Exchange will create an alert when you poll,
which you can access using the methods enumAlerts and getAlertDetails. Use
verifyAddresses to make sure subscriber addresses are valid.

note is the note to send with the object. note can be either a quoted string (maximum length:
255 characters) or an ObjectPAL String variable (maximum length: 32,767 characters).

Example This example shows how to create a form for transferring objects. First, create a form bound
to :ADDRBOOK:Address, a table created by OBEX to store subscriber addresses, then place
objects. Run the form and click a radio button to specify an object type. Next, enter a
description, a name, and a note in the appropriate fields. Then choose one address at a time
from the table frame and click Add to add the address to the list. When the list is complete,
click Transfer to send the publication to the subscribers in the list.

The following code is attached to the Transfer button. It displays the built-in Paradox
Browser so you can choose an object to send, then calls transfer and a custom method
named pollAcct (see the example for poll) to send it.

method pushButton(var eventInfo Event)
{
transfer
Assumptions:
- wgLib is a Library var declared in the form's Var window.

- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- Custom data types are declared in the form's Type window.
- A custom method named pollAcct has been declared elsewhere.
- The alias :ADDRBOOK: has been defined to point to the directory
 containing the Address table.
- This form contains a table frame, field objects, and 2 buttons:

 pubTypeFld is an unbound field object displayed as 3 radio buttons.
 The user chooses a radio button to specify the type.

 pubDescFld is an unbound field object.
 The user types a description of the publication.

 pubNameFld is an unbound field object.
 The user types the name of the publication.

 pubNoteFld is an unbound field object.
 The user types a note about the publication.

 addrTF is a table frame bound to :ADDRBOOK:ADDRESS.
 The user highlights a field to select an address,
 then clicks Add to add the address to the Address List.

 addrListFld is an unbound field object displayed as a list.
 It contains a list object named addrListObj.

 Add is a button that copies an address from the
 Address table to the Address list.

 Transfer is a button that executes the following code to
 transfer the publication.
}
 var
 FBI FileBrowserInfo {see System::fileBrowser for info}
 srcTb, srcQbe,
 srcFileSet, objectKey,
 msgText, pubType,
 pubNote, pubDesc,
 objectName String
 addrAR, fileListAR ArrayOfStrings
 addrCount, i SmallInt
 endVar

 ; Initialize variables.
 pubDesc = pubDescFld.Value
 if pubDesc = "" then
 msgStop("Description required.", "Enter a description.")
 return
 endIf

 addrCount = addrListFld.addrListObj.List.Count
 if addrCount = 0 then
 msgStop("No addresses", "Specify at least one address.")
 return
 else

 addrAR.grow(addrCount) ; Set the array size to match the list size.
 endIf

 addrListFld.addrListObj.List.Selection = 1
 for i from 1 to addrCount
 addrAR[i] = addrListFld.addrListObj.List.Value
 addrListFld.addrListObj.List.Selection =
 addrListFld.addrListObj.List.Selection + 1
 endFor

 srcTb = "Table Data"
 srcQbe = "Query Result"
 srcFileSet = "File Set"
 objectKey = "" ; Let OBEX create a key value.
 pubType = pubTypeFld.Value
 pubNote = pubNoteFld.Value
 msgText = "Unable to transfer the document."

 switch
 case pubType = srcTb :
 FBI.SelectedType = fbTable
 FBI.AllowableTypes = fbTable

 ; Use the Browser to get one file name.
 if fileBrowser(objectName, FBI) then
 fileListAR.setSize(1)
 fileListAR[1] = objectName
 else
 errorShow()
 return
 endIf

 case pubType = srcQbe :
 FBI.SelectedType = fbQuery
 FBI.AllowableTypes = fbQuery

 ; Use the Browser to get one file name.
 if fileBrowser(objectName, FBI) then
 fileListAR.setSize(1)
 fileListAR[1] = objectName
 else
 errorShow()
 return
 endIf

 case pubType = srcFileSet :
 FBI.Path = workingDir()
 FBI.AllowableTypes = fbFiles

 ; Use the Browser to get a list (array) of file names.
 if not fileBrowser(fileListAR, FBI) then
 errorShow()
 return
 endIf
 otherwise : msgInfo("Object type required.",
 "Choose Table Data, Query Result, or File Set.")

 return

 endSwitch

 pubNameFld.Value = fileListAR[1]

 ; Transfer the document.
 if wgLib.transfer(objectKey, pubType, pubDesc, fileListAR, addrAR, pubNote) then
 pollAcct() ; Call a custom method (see the example for poll).
 else
 errorShow(msgText)
 endIf

endMethod

The following code is attached to the Add button. It reads the current value from the table
frame and adds it to the list.

method pushButton(var eventInfo Event)
 var
 msgCaption, msgText String
 endVar

 ; Initialize variables.
 msgCaption = "No address"
 msgText = "Choose an address from the table."

 if addrTF.Address.Value = "" then
; If user didn't choose an address, display a message and exit.
 msgInfo(msgCaption, msgText)
 return
 else
; Add the selected address to the list.
 addrListFld.addrListObj.List.Selection = addrListFld.addrListObj.List.Count + 1
 addrListFld.addrListObj.List.Value = addrTF.Address.Value
 endIf
endMethod

See Also issueNewVersion
publish
poll

verifyAddresses

Method Verifies one or more addresses.

Syntax verifyAddresses (var addresses ArrayOfStrings) Logical

Description Verifies addresses specified in the array addresses. This method returns True if it succeeds
and all addresses in the array are valid; otherwise, it returns False. An address is valid if the
syntax is correct and the specified transport has an active primary account configured. This
method does not verify that the address exists; it verifies only the syntax.

Example This example shows how to verify addresses stored in a table. First, create a table of
addresses (see getSubscribers and the example for modifySubscribers for more
information), then create a form bound to that table. Place a table frame and a button in the
form, then attach the following code to the button's built-in pushButton method. This code
reads each record of the table into an array, then calls verifyAddresses to make sure that
each address is valid.

method pushButton(var eventInfo Event)
{
verifyAddresses
Assumptions:
- wgLib is a Library var declared in the form's Var window.
- wgLib is opened in the form's built-in open method.
- All workgroup methods are declared in the form's Uses window.
- Custom data types are declared in the form's Type window.
- SUBADDR is a table (created elsewhere) that lists subscriber addresses.
- This form contains a table frame and a button:

 subAddrTF is a table frame named subAddrTF bound to SUBADDR.
 It displays only the Address field.

 OK is a button. The user clicks this button to execute
 the following code to verify the list of addresses
 in the table frame.
}
 var
 subAddrAR ArrayOfStrings
 addrFldName,
 errCaption, errText,
 okCaption, okText String
 subAddrTC TCursor
 endVar

 ; Initialize variables.
 addrFldName = "Address"
 errCaption = "Address list is empty."
 errText = "Enter at least one subscriber address or click Cancel."
 okCaption = "Addresses are OK"
 okText = "All addresses are valid."

 ; The table frame must contain at least one address.
 if subAddrTF.nRecords() = 0 then
 msgInfo(errCaption, errText)
 return
 endIf

 ; Attach a TCursor to the table frame, then read from the TCursor
 ; to fill the array (without UI overhead).
 subAddrTC.attach(subAddrTF)
 scan subAddrTC:
 subAddrAR.addLast(subAddrTC.(addrFldName))
 endScan

 ; Check subAddrAR for invalid addresses.
 if wgLib.verifyAddresses(subAddrAR) then
 msgInfo(okCaption, okText)
 else
 errorShow("Invalid subscriber address")
 return
 endIf
endMethod

See Also getSubscribers

Using Workgroup Methods

To use a workgroup method in your own code, call it from the WGPAL library. Calling a method from
the WGPAL library is like calling a method in any other ObjectPAL library. The basic steps are:

1. Declaring Workgroup Methods

2. Declaring Custom Data Types

3. Declaring Workgroup Error Constants

4. Opening the WGPAL Library

5. Calling a Workgroup Method

A template form named WGTMPLT.FSL is installed by default in C:\PDOXWIN\EXAMPLES when you
install OBEX. This form has all the workgroup methods, custom data types, and workgroup error
constants declared in the form's Uses, Type, and Const windows. Code attached to this form's built-in
open method opens the WGPAL library. Use this form as a foundation for building your own
applications.

See Also

Alphabetic List of ObjectPAL Workgroup Methods

Declaring Workgroup Methods

Declare the methods in a Uses window (typically at the form level). For example, suppose you want to
use the custom methods cancelSubscription and enumAccounts. Put the syntax for each method in
the Uses window:
Uses ObjectPAL
 cancelSubscription(objectKey String) Logical
 enumAccounts(tableName String, includeSecondary Logical) Logical
EndUses

You may find it convenient to declare all the custom methods when you start to develop your
application. Workgroup Method Declarations lists these declarations for the custom methods so you
can copy them to the Clipboard and paste them directly into your code. Put the code at the form level
to make it available to all objects the form contains.

You can also use WGTMPLT.FSL, a template form installed by default in C:\PDOXWIN\EXAMPLES
when you install OBEX. This form has all the workgroup methods, custom data types, and workgroup
error constants declared in the form's Uses, Type, and Const windows. Code attached to this form's
built-in open method opens the WGPAL library.

Declaring Custom Data Types

Certain custom methods in the WGPAL library use two custom data types:

DynArrayOfAny, a DynArray of AnyType values.
ArrayOfStrings, an Array of String values.

To call a method that uses a custom type, you must declare that type, either in a Type window or in a
Type block before the variable declaration section in the method itself.

The following Type block declares the custom data types used by the workgroup methods. You can
copy and paste this code into a form's Type window to make the custom types available to all objects
in the form.
Type
 DynArrayOfAny = DynArray[] AnyType
 ArrayOfStrings = Array[] String
EndType

You can also use WGTMPLT.FSL, a template form installed by default in C:\PDOXWIN\EXAMPLES
when you install OBEX. This form has all the workgroup methods, custom data types, and workgroup
error constants declared in the form's Uses, Type, and Const windows. Code attached to this form's
built-in open method opens the WGPAL library.

Declaring Workgroup Error Constants

The WGPAL library uses constants to represent errors. If you want to test for these errors in your own
code (see Using Workgroup Error Constants), you must declare the constants in your forms. Paste the
following code into your form's Const window:
Const
 ; Error-code constants
 peWGPdoxWorkgroup = 1010 ; Workgroup Desktop Error.
 peWGCannotRunForm = 1020 ; Unable to run Workgroup form.
 peWGCannotConnectToObex = 1030 ; Unable to connect to OBEX. No DDE
conversation established.
 peWGObexCommandFail = 1040 ; Unable to execute OBEX command.
 peWGObjectNonExistent = 1050 ; Object key does not exist in object
store.
 peWGVersionNonExistent = 1060 ; Object version does not exist in
object store.
 peWGAccountNonExistent = 1070 ; Account name does not exist.
 peWGObjectKeyExist = 1080 ; Object key already exists.
 peWGBadObjectKey = 1090 ; Object key has not been supplied or
is invalid.

 peWGBadVersion = 1100 ; The version number is outside the
allowable range.
 peWGBadObjectType = 1110 ; Invalid object type.
 peWGBadObjectDescr = 1120 ; Object description must be from 1 to
80 characters.
 peWGBadFileSpec = 1130 ; Invalid file specification.
 peWGCannotCreateFile = 1140 ; Could not create file.
 peWGCannotOpenFile = 1150 ; Could not open file.
 peWGCannotAccessFile = 1160 ; Could not access file.
 peWGCannotExecQuery = 1170 ; Could not execute stored query.
 peWGNoAnswerTable = 1180 ; Query does not produce an answer
table.
 peWGCannotCreateTable = 1190 ; Could not create table.

 peWGCannotOpenTable = 1200 ; Could not open table.
 peWGCannotAccessTable = 1210 ; Could not access table.
 peWGCannotFillTable = 1220 ; Could not fill table.
 peWGCannotCopyTable = 1230 ; Could not copy table.
 peWGTableStructChanged = 1240 ; The structure of a table bound to a
Workgroup form has changed.
 peWGAddressProblem = 1250 ; Addressing problem.
 peWGOutOfContext = 1260 ; Request not appropriate in this
context.
endConst

You can also use WGTMPLT.FSL, a template form installed by default in C:\PDOXWIN\EXAMPLES
when you install OBEX. This form has all the workgroup methods, custom data types, and workgroup
error constants declared in the form's Uses, Type, and Const windows. Code attached to this form's
built-in open method opens the WGPAL library.

Using Workgroup Error Constants

To use workgroup error constants in your own code, you must first declare them. See Declaring
Workgroup Error Constants. The workgroup error constants are custom ObjectPAL constants; when
you use them to test for errors, add the predefined constant UserError to the workgroup error constant.
For example,
if not wglib.enumSubscriptions(":PRIV:usrSubs") then
 if errorCode() = peWGCannotCreateTable + UserError then
 errorShow("Could not create the table.")
 endIf
endIf

For more information about declaring and using custom constants, see the Paradox ObjectPAL
documentation.

Opening the WGPAL Library

Before you can call methods from the WGPAL library, you must open it. To open the library, do the
following:

1. Declare a Library variable.

2. Call the open method defined for the Library type.

For example, you could put the following code in the form's Var window to declare a Library variable
and make it available to all objects in the form.
Var
 wgLib Library
EndVar

Next, attach the following code (you can copy and paste it if you want to) to the form's built-in open
method. This code executes and opens the library when the form opens.
method open(var eventInfo Event)
 var
 userWgDir, userWinDir, libName,
 winIniSection, winIniVar String
 endVar

 if eventInfo.isPreFilter() then
 ; This code executes for each object on the form.

 else
 ; This code executes only for the form.
 doDefault ; Important: execute the default code first!

 ; Initialize variables.
 libName = "\\WGPAL"
 winIniSection = "PDOXWIN"
 winIniVar = "wgDir"
 userWinDir = windowsDir() ; Get the path to user's WINDOWS directory.

; The path to the user's workgroup directory is stored in a variable in the
PDOXWIN
; section of WIN.INI. The variable's name is wgDir. The following statement
calls
; System::readProfileString to read this variable's value from WIN.INI

 userWgDir= readProfileString(userWinDir + "\\win.ini", winIniSection,
winIniVar)

 if not wgLib.open(userWgDir + libName) then
 errorShow("Couldn't open the WGPAL library.")
 endIf
 endIf
endMethod

You can also use WGTMPLT.FSL, a template form installed by default in C:\PDOXWIN\EXAMPLES
when you install OBEX. This form has all the workgroup methods, custom data types, and workgroup
error constants declared in the form's Uses, Type, and Const windows. Code attached to this form's
built-in open method opens the WGPAL library.

Calling a Workgroup Method

After you declare the methods, types, and a Library variable and open the WGPAL library, you can call
workgroup methods in your own code. For example, the following code is attached to a button's built-in
pushButton method. It calls the workgroup method enumPublications to create a table of the
publications stored in your Object Exchange, then opens a table window to display the data.
method pushButton(var eventInfo Event)
 var
 tableName String
 myPubsTV TableView
 endVar

 ; Initialize variables.
 tableName = "mypubs"

 ; Call the workgroup method.
 wgLib.enumPublications(tableName)
 myPubsTV.open(tableName) ; Open the table for viewing.
endMethod

Alphabetic List of ObjectPAL Workgroup Methods

Click a method for complete reference information:

cancelSubscription Cancels a subscription.
deleteObject Deletes an object from the user's object store.
enumAccounts Creates a table listing Object Exchange accounts.
enumAlerts Creates a table listing Object Exchange alerts.
enumPublications Creates a table listing the Paradox publications in the user's object store.
enumSubscriptions Creates a table listing the subscriptions in the user's object store.
getAlertDetails Gets information about a specified Object Exchange alert.
getFileList Gets a list of the files in a file set.
getNote Gets the note that was sent with a publication or subscription.
getObexStatus Fills a DynArray with Object Exchange status information.
getObjectSummary Fills a DynArray with summary information about an object in the user's object store.
getSubscribers Fills an array with addresses of subscribers to a specified publication.
issueNewVersion Issues a new version of an existing Paradox publication.
modifySubscribers Modifies the subscriber list for a publication in the user's object store.
poll Makes the Object Exchange poll a specified account.
publish Creates a new multiversion publication.
saveAs Saves the last-issued version of an object into a table or directory.
tableRefresh Refreshes a table with a specified version from the object store.
transfer Sends an object to subscribers.
verifyAddresses Verifies one or more subscriber addresses.

Workgroup Method Declarations

The following Uses . . . endUses block declares all the custom workgroup methods in the WGPAL
library. You can copy and paste this code into a form's Uses window to make the workgroup methods
available to all objects in the form. To call one of these methods, you must first open the WGPAL
library (see Opening the WGPAL Library).
Uses ObjectPAL
 cancelSubscription(objectKey String) Logical
 deleteObject(objectKey String) Logical
 enumAccounts(tableName String, includeSecondary Logical) Logical
 enumAlerts(tableName String) Logical
 enumPublications(tableName String) Logical
 enumSubscriptions(tableName String) Logical
 getAlertDetails(objectKey String, var alertDetails String) Logical
 getFileList(objectKey String, var fileList ArrayOfStrings) Logical
 getNote (objectKey String, backVersion SmallInt, var note String)
Logical
 getObexStatus(var obexStatus DynArrayOfAny) Logical
 getObjectSummary(objectKey String, var objectSummary DynArrayOfAny)
Logical
 getSubscribers(objectKey String, var subscribers ArrayOfStrings)
Logical
 issueNewVersion(objectKey String, note String) Logical
 modifySubscribers(objectKey String,
 var subscribers ArrayOfStrings,
 distributeLastVersion Logical) Logical

 poll(accountName String) Logical

 publish(objectKey String,
 objectType String,
 description String,
 var fileList ArrayOfStrings,
 var subscribers ArrayOfStrings,
 versionDepth SmallInt,
 note String) Logical

 saveAs(objectKey String,
 backVersion SmallInt,
 targetObjectName String,
 fillTableNow Logical) Logical

 tableRefresh(objectKey String,
 backVersion SmallInt,
 fileName String,
 var dateLastTaken Date,
 var timeLastTaken String) Logical

 transfer(objectKey String,
 objectType String,
 description String,
 var fileList ArrayOfStrings,
 var subscribers ArrayOfStrings,
 note String) Logical

 verifyAddresses(var addresses ArrayOfStrings) Logical
endUses

