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Introduction to the ALPHA

Versions

In the beginning, the �le was without form, and void; and

emptiness was upon the face of the bits. And the Fingers of

the Author moved upon the face of the keyboard. And the Author

said, Let there be words, and there were words.

This is an ALPHA version of the Linux System Administrators' Guide. That means

that I don't even pretend it contains anything useful, or that anything contained

within it is factually correct. In fact, if you believe anything that I say in this version,

and you are hurt because of it, I will cruelly laugh at your face if you complain.

Well, almost. I won't laugh, but I also will not consider myself responsible for

anything.

The purpose of an ALPHA version is to get the stu� out so that other people can

look at it and comment on it. The latter part is the important one: Unless the author

gets feedback, the ALPHA version isn't doing anything good. Therefore, if you read

this `book', please, please, please let me hear your opinion about it. I don't care

whether you think it is good or bad, I want you to tell me about it.

If at all possible, you should mail your comments directly to me, otherwise there

is a largish chance I will miss them. If you want to discuss things in public (on one

of the comp.os.linux newsgroups or the mailing list), that is ok by me, but please

send a copy via mail directly to me as well.

I do not much care about the format in which you send your comments, but it is

essential that you clearly indicate what part of my text you are commenting on.

I can be contacted at the following e-mail addresses:

lars.wirzenius@helsinki.fi

1
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wirzeniu@cc.helsinki.fi

wirzeniu@cs.helsinki.fi

wirzeniu@kruuna.helsinki.fi

wirzeniu@hydra.helsinki.fi

(they're all actually the same account, but I give all these, just in case there is some

weird problem).

This text contains a lot of notes that I have inserted as notes to myself. They are

identi�ed with \META: ". They indicate things that need to be worked on, that are

missing, that are wrong, or something like that. They are mostly for my own bene�t

and for your amusement, they are not things that I am hoping someone else will write

for me.

If you think that this version of the manual is missing a lot, you are right. I am

including only those chapters that are at least half �nished. New chapters will be

released as they are written.
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The LDP Rhyme

1

A wondrous thing,

and beautiful,

'tis to write,

a book.

I'd like to sing,

of the sweat,

the blood and tear,

which it also took.

It started back in,

nineteen-ninety-two,

when users whined,

"we can nothing do!"

They wanted to know,

what their problem was,

and how to �x it

(by yesterday).

We put the answers in,

a Linux f-a-q,

hoped to get away,

from any more writin'.

"That's too long,

it's hard to search,

and we don't read it,

any-which-way!"

Then a few of us,

joined toghether

(virtually, you know),

to start the LDP.

1

The author wishes to remain anonymous. It was

posted to the LDP mailing list by Matt Welsh.

We started to write,

or plan, at least,

several books,

one for every need.

The start was fun,

a lot of talk,

an outline,

then a slew.

Then silence came,

the work began,

some wrote less,

others more.

A blank screen,

oh its horrible,

it sits there,

laughs in the face.

We still await,

the �nal day,

when everything,

will be done.

Until then,

all we have,

is a draft,

for you to comment on.
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Chapter 1

Introduction

I pride myself on the fact that my work has

no socially redeeming value.

(John Waters)

This manual, the Linux System Administrators' Guide, describes the system admin-

istration aspects of using Linux. It is intended for people who know next to nothing

about system administration (as in \what is it?"), but who have already mastered at

least the basics of normal usage, which means roughly the material covered by the

Linux Users' Guide. This manual also doesn't tell you how to install Linux; that is

described in the Installation and Getting Started document. There is some overlap

between all the Linux Documentation Project manuals, but they all look at things

from slightly di�erent angles. See below for more information about Linux manuals.

What, then, is system administration? It is all the things that one has to do to

keep a computer system in a useable shape. Things like backing up �les (and restoring

them if necessary), installing new programs, creating accounts for users (and deleting

them when no longer needed), making certain that the �lesystem is not corrupted,

and so on. If a computer were, say, a house, system administration would be called

maintenance, and would include cleaning, �xing broken windows, and other such

things. System administration is not called maintenance, because that would be too

simple.

1

The structure of this manual is such that many of the chapters should be usable

independently, so that if you need information about, say, backups, you can read just

1

There are some people who do call it that, but that's just because they have never read this manual, poor things.

5



6 Chapter 1. Introduction

that chapter.

2

This hopefully makes the book easier to use as a reference manual, and

makes it possible to read just a small part when needed, instead of having to read

everything. However, this manual is �rst and foremost a tutorial, and a reference

manual only as a lucky coincidence.

This manual is not intended to be used completely by itself. Plenty of the rest of the

Linux documentation is also important for system administrators. After all, a system

administrator is just a user with special privileges and duties. A very important

resource is the man pages, which should always be consulted when a command is not

familiar.

While this manual is targeted at Linux, a general principle has been that it should

be useful with other UNIX based operating systems as well. Unfortunately, since

there is so much variance between di�erent versions of UNIX in general, and in system

administration in particular, there is little hope to cover all variants. Even covering

all possibilities for Linux is di�cult, due to the nature of its development. There

is no one o�cial Linux distribution, so di�erent people have di�erent setups, many

people have a setup they have built up themselves. When possible, I have tried to

point out di�erences, and explain several alternatives. In order to cater to the hackers

and DIY types that form the driving force behind Linux development, I have tried to

describe how things work, rather than just listing \�ve easy steps" for each task. This

means that there is much information here that is not necessary for everyone, but

those parts are marked as such and can be skipped if you use a precon�gured system.

Reading everything will, naturally, increase your understanding of the system and

should make using and administering it more pleasant.

Like all other Linux related development, the work was done on a volunteer basis: I

did it because I thought it might be fun and because I felt it should be done. However,

like all volunteer work, there is a limit to how much e�ort I have been able to spend,

and also on how much knowledge and experience I have. This means that the manual

is not necessarily as good as it would be if a wizard had been paid handsomely to

write it and had spent a few years to perfect it. I think, of course, that it is pretty

nice, but be warned.

One particular point where I have cut corners is that I have not covered very

thoroughly many things that are already well documented in other freely available

manuals. This applies especially to program speci�c documentation, such as all the

details of using mkfs(8). I only describe the purpose of the program, and as much

2

If you happen to be reading a version that has a chapter on backups, that is.
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of its usage as is necessary for the purposes of this manual. For further informa-

tion, I refer the gentle reader to these other manuals. Usually, all of the referred to

documentation is part of the full Linux documentation set.

While I have tried to make this manual as good as possible, I would really like

to hear from you if you have any ideas on how to make it better. Bad language,

factual errors, ideas for new areas to cover, rewritten sections, information about how

various UNIX versions do things, I am interested in all of it. You can contact me via

electronic mail with the Internet domain address lars.wirzenius@helsinki.fi, or

by traditional paper mail using the address

Lars Wirzenius / Linux docs

Hernesaarentie 15 A 2

00150 Helsinki

Finland

Many people have helped me with this book, directly or indirectly. I would like

to especially thank Matt Welsh for inspiration and LDP leadership, Andy Oram

for igniting an almost dead spark again with much-valued feedback, Olaf Kirch for

showing me that it can be done, and Adam Richter at Yggdrasil and others for

showing me that other people can �nd it interesting as well.

H. Peter Anvin, R�emy Card, Theodore Ts'o, and Stephen Tweedie have let me

borrow their work (and thus make the book look thicker and much more impressive).

I am most grateful for this, and very apologetic for the earlier versions that sometimes

lacked proper attribution. Stephen Tweedie also let me borrow his comparison of the

xia and ext2 �lesystems, but that has since been dropped, since xia is no longer very

popular.

In addition, I would like to thank Mark Komarinski for sending his material in

1993 and the many system administration columns in Linux Journal. They are quite

informative.

Thanks to Erik Troan at Red Hat, for promising to make a plain text version of

this book available.

3

A minor accusation goes to Linus Torvalds for writing the damn system to write

about in the �rst place. That applies for the rest of /usr/src/linux/CREDITS as

well. Be ashamed, be ver ashamed.

Many useful comments have been sent by a large number of people. My miniature

black hole of an archive doesn't let me �nd all their names, but some of them are in

3

Erik, you can color yourself pressurized.
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alphabetical order: Paul Caprioli, Ales Cepek, Marie-France Declerfayt, Olaf Flebbe,

Helmut Geyer, Larry Green�eld and his father, Stephen Harris, Jyrki Havia, Jim

Haynes, York Lam, Timothy Andrew Lister, Jim Lynch, Dan Poirier, Daniel Quinlan,

Philippe Steindl. My apologies to anyone I have forgotten.

1.1 The Linux Documentation Project

The Linux Documentation Project, or LDP, is a loose team of writers, proofreaders,

and editors who are working together to provide complete documentation for the

Linux operating system. The overall coordinator of the project is Matt Welsh, who

is aided by Lars Wirzenius and Michael K. Johnson.

This manual is one in a set of several being distributed by the LDP, including a

Linux Users' Guide, System Administrators' Guide, Network Administrators' Guide,

and Kernel Hackers' Guide. These manuals are all available in L

A

T

E

X source format,

.dvi format, and postscript output by anonymous FTP from sunsite.unc.edu, in

the directory /pub/Linux/docs/LDP, and from tsx-11.mit.edu, in the directory

/pub/linux/docs/guides.

We encourage anyone with a penchant for writing or editing to join us in improving

Linux documentation. If you have Internet e-mail access, you can contact Matt Welsh

at mdw@sunsite.unc.edu.



Chapter 2

Overview of a Linux System

A quote is needed.

This chapter gives an overivew of a Linux system. First, the major services provided

by the operating system are described. Then, the programs that implement these

services are described with a considerable lack of detail. The purpose of this chapter

is to give an understanding of the system as a whole, so each part is described in

detail elsewhere.

2.1 Various parts of an operating system

A UNIX operating system consists of a kernel and some system programs. There

also some application programs for doing work. The kernel is the heart of the

operating system

1

. It keeps track of �les on the disk, starts programs and multiplexes

the processor and other hardware between them to provide multitasking, assigns

memory and other resources to various processes, receives packets from and sends

packets to the network, and so on. The kernel does very little by itself, but it provides

tools with which all services can be built. It also prevents anyone from accessing the

hardware directly, forcing everyone to use the tools it provides. This way the kernel

can control who gets to do what and can provide some protection for users from each

other. The tools provided by the kernel are used via system calls; see manual page

section 2 for more information on these.

The system programs use the tools provided by the kernel to implement the var-

1

In fact, it is often mistakenly considered to be the operating system itself, but it is not. An operating system

provides many more services than a plain kernel.

9



10 Chapter 2. Overview of a Linux System

ious services required from an operating system. System programs, and all other

programs, run `on top of the kernel', in what is called the user mode. The di�erence

between system and application programs is one of intent: applications are intended

for getting useful things done (or for playing, if it happens to be a game), whereas

system programs are needed to get the system working. A word processor is an

application; telnet is a system program. The di�erence is often somewhat blurry,

however, and is important only to compulsive categorizers.

An operating system can also contain compilers and their corresponding libraries

(GCC and the C library in particular under Linux), although not all programming

languages need be part of the operating system. Documentation, and sometimes even

games, can also be part of it. Traditionally, the oeprating system has been de�ned

by the contents of the installation tape or disks; with Linux it is not as clear since

the stupid thing is spread all over the FTP sites of the world.

2.2 Important parts of the kernel

The Linux kernel consists of several important parts: process management, memory

management, hardware device drivers, �lesystem drivers, network management, and

various other bits and pieces. Figure 2.1 shows some of them.

Probably the most important parts of the kernel (nothing else works without them)

are the memory management and the process management. Memory management

takes care of assigning memory areas and swap space areas to processes, parts of

the kernel, and for the bu�er cache. Process management creates processes, and

implements the multitasking by switching the active process on the processor.

At the lowest level, the kernel contains a hardware device driver for each kind

of hardware it supports. Since the world is full of di�erent kinds of hardware, the

number of hardware device drivers is large. There are often many otherwise similar

pieces of hardware that di�er in how they are controlled by software. The similarities

make it possible to have general classes of drivers that support similar operations;

each member of the class has the same interface to the rest of the kernel but di�ers

in what it needs to do to implement them. For example, all hard disk drivers look

alike to the rest of the kernel, i.e., they all have operations like `initialize the drive',

`read sector N', and `write sector N'.

Some software services provided by the kernel itself have similar properties. For

example, the various network protocols have been abstracted into one programming

interface, the BSD socket library. Another example are the various �lesystems Linux
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System call interface

Virtual filesystem

management

IDE harddisk

driver

Floppy diskIDE hard disk

Various filesystem

drivers

Floppy disk

driver

Memory

manager

Process

manager

Ethernet card

Abstract network

services (sockets)

TCP/IP protocol

drivers

Ethernet card

driver

Hardware

Kernel

Normal programs

Kernel

User level programs

Figure 2.1: Some of the more important parts of the Linux kernel.

supports: the kernel contains a virtual �lesystem (VFS) that contains all the op-

erations for a �lesystem, and a �lesystem driver for each supported �lesystem. When

some entity tries to use a �lesystem, the request goes via the VFS, which routes the

request to the proper �lesystem driver.

2.3 Major services in a UNIX system

This section describes some of the more important UNIX services, but without much

detail. They are described more thorougly in later chapters.
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2.3.1 init

The single most important service in a UNIX system is provided by init. init is

started as the �rst process of every UNIX system, as the last thing the kernel does

when it boots. When init starts, it continues the boot process by doing various

startup chores (checking and mounting �lesystems, starting daemons, etc).

The exact list of things that init does depends on which 
avor it is; there are

several to choose from. init usually provides the concept of single user mode, in

which no one can log in and root uses a shell at the console; the usual mode is called

multiuser mode. Some 
avors generalize this as run levels; single and multiuser

modes are considered to be two run levels, and there can be additional ones as well,

for example, to run X on the console.

When the system is running, the two most important tasks of init is to make sure

gettys are working (to make sure logins work), that various daemons are running, and

to adopt orphan processes (processes whose parent has died; in UNIX all processes

must be in a single tree, so orphans must be adopted).

When the system is shut down, it is init that is in charge of killing all other

processes, unmounting all �lesystems and stopping the processor, along with anything

else that it feels like doing.

2.3.2 Logins from terminals

Logins from terminals (via serial lines) and the console (when not running X) are

provided by the getty program. init starts a separate instance of getty for each

terminal for which logins are to be allowed. getty reads the username and runs the

login program, which reads the password. If the username and password match,

login runs the shell. When the shell terminates, i.e., the user logs out, or when

login terminated because the username and password didn't match, init notices

this and starts a new instance of getty. The kernel has no notion of logins, this is

all handled by the system programs.

2.3.3 Syslog

The kernel and many system programs produce error, warning, and other messages.

It is often important that these messages can be viewed later, even much later, so they

should be written to a �le. The program doing this is syslog. It can be con�gured

to sort the messages to di�erent �les according to writer or degree of importance.
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For example, kernel messages are often directed to a separate �le from the others,

since kernel messages are often more important and need to be read regularly to spot

problems.

2.3.4 Periodic command execution: cron and at

Both users and the system administrator often need to run speci�c commands peri-

odically. For example, the system administrator might want to run a command to

clean the directories with temporary �les (/tmp and /var/tmp) from old �les, to keep

the disks from �lling up, since not all programs clean up after themselves correctly.

The cron service is set up to do this. Each user has a crontab, where he lists the

commands he wants to execute and the times they should be executed. The crond

daemon takes care of starting the commands when speci�ed.

The at service is similar to cron, but it is once only: the command is executed at

the given time, but it is not repeated.

2.3.5 Graphical user interface

UNIX and Linux don't incorporate the user interface into the kernel; instead, they

let it be implemented by user level programs. This applies for both text mode and

graphical environments.

This arrangement makes the systemmore 
exible, but has the disadvantage that it

is simple to implement a di�erent user interface for each program, making the system

harder to learn.

The graphical environment primarily used with Linux is called the X Window

System (X for short). X also does not implement a user interface; it only implements

a window system, i.e., tools with which a graphical user interface can be implemented.

The three most popular user interface styles implemented over X are Athena, Motif,

and Open Look.

2.3.6 Networking

Networking is the act of connecting two or more computers so that the can commu-

nicate with each other. The actual methods of connecting and communicating are

slightly complicated, but the end result is very attractive.
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UNIX operating systems have many networking features. Most basic services|

�lesystems, printing, backups, etc|can be done over the network. This can make

system administration easier, since it allows centralized administration, while still

reaping in the bene�ts of microcomputing and distributed computing, such as lower

costs and better fault tolerance.

However, this book merely glances at networking; see the Linux Network Admin-

istrators' Guide for more information, including a basic descriptions of how networks

operate.

2.3.7 Network logins

Network logins work a little di�erently than normal logins. There is a separate phys-

ical serial line for each terminal via which it is possible to log in. For each person

logging in via the network, there is a separate virtual network connection, and there

can be any number of these

2

. It is therefore not possible to run a separate getty for

each possible virtual connection. There are also several di�erent ways to log in via

network, telnet and rlogin being the major ones in TCP/IP networks.

Network logins have, instead of a herd of gettys, a single daemon (per way of

logging in; telnet and rlogin have separate daemons) that listens for all incoming

login attempts. When it notices one, it starts a new instance of itself to handle that

single attempt; the original instance continues to listen for other attempts. The new

instance works similarly to getty.

2.3.8 Network �le systems

One of the more useful things that can be done with networking services is sharing

�les via a network �le system. The one usually used is called the Network File

System, or NFS, developed by Sun.

With a network �le system any �le operations done by a program on one machine

are sent over the network to another computer. This fools the program to think

that all the �les on the other computer are actually on the computer the program is

running on. This makes information sharing extremely simple, since it requires no

modi�cations to programs.

2

Well, at least there can be many. Network bandwidth still being a scarce resource, there is still some practical

upper limit to the number of concurrent logins via one network connection.
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2.3.9 Mail

Electronic mail is usually the most important method for communicating via com-

puter. An electronic letter is stored in a �le using a special format, and special mail

programs are used to send and read the letters.

Each user has an incoming mailbox (a �le in the special format), where all new

mail is stored. When someone sends a mail, the mail program locates the receiver's

mailbox and appends the letter to the mailbox �le. If the receiver's mailbox is in

an another machine, the letter is sent to the other machine, which delivers it to the

mailbox as it best sees �t.

The mail system consists of many programs. The delivery of mail to local or remote

mailboxes is done by one program (e.g., sendmail or smail), while the programs

users use are many and varied (e.g., Pine or elm). The mailboxes are usually stored

in /var/spool/mail.

2.3.10 Printing

Only one person can use a printer at one time, but it is uneconomical not to share

printers between users. The printer is therefore managed by software that implements

a print queue: all print jobs are put into a queue and whenever the printer is done

with one job, the next one is sent to it automatically. This relieves the users from

organizing the print queue and �ghting over control of the printer.

3

The print queue software also spools the printouts on disk, i.e., the text is kept

in a �le while the job is in the queue. This allows an application program to spit out

the print jobs quickly to the print queue software; the application does not have to

wait until the job is actually printed to continue. This is really convenient, since it

allows one to print out one version, and not have to wait for it to be printed before

one can make a completely revised new version.

2.4 The �lesystem layout

The �lesystem is divided into many parts; usually along the lines of a root �lesystem

with /bin, /lib, /etc, /dev, and a few others; a /usr �lesystem with programs and

unchanging data; a /var �lesystem with changing data (such as log �les); and a /home

3

Instead, they form a new queue at the printer, waiting for their printouts, since no-one ever seems to be able to

get the queue software to know exactly when anyone's printout is really �nished. This is a great boot for intra-o�ce

social relations.
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�lesystem for everyone's personal �les. Depending on the hardware con�guration and

the decisions of the system administrator, the division can be di�erent; it can even

be all in one �lesystem.

Chapter 5 describes the �lesystem layout in some detail; the Linux Filesystem

Standard covers it in somewhat more detail.



Chapter 3

Boots And Shutdowns

This chapter needs a quote. Suggestions, anyone?

This section explains what goes on when a Linux system is turned on and o�, and

how it should be done properly.

3.1 An overview of boots and shutdowns

The act of turning on a computer system and making its operating system to be

loaded

1

is called booting. The name comes from an image of the computer pulling

itself up from its bootstraps, but the act itself slightly more realistic.

During bootstrapping the computer �rst loads a small piece of code called the

bootstrap loader, which in turn loads and starts the operating system. The boot-

strap loader is usually stored in a �xed location on a hard disk or a 
oppy. The reason

for this two step process is that the operating system is big and complicated, but the

�rst piece of code that the computer loads must be very small (a few hundred bytes),

to avoid making the hardware unnecessarily complicated.

Di�erent computers do the bootstrapping di�erently. For PC's, the computer

(well, it's BIOS) reads in the �rst sector (called the boot sector) of a 
oppy or hard

disk. The bootstrap loader is contained withing this sector. It loads the operating

system from elsewhere on the disk (or from some other place).

After Linux has been loaded, it initializes the hardware and device drivers, and

1

On early computers, it wasn't enough to merely turn on the computer, you had to manually load the operating

system as well. These new-fangled thing-a-ma-gigs do it all by themselves.

17
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then runs init(8). init starts other processes to allow users to log in, and do things.

The details of this part will be discussed below.

In order to shut down a Linux system, �rst all processes are told to terminate (this

makes them close any �les and do other necessary things to keep things tidy), then

�lesystems and swap areas are unmounted, and �nally a message is printed to the

console that the power can be turned o�. If the proper procedure is not followed,

terrible things can and will happen; most importantly, the �lesystem bu�er cache

might not be 
ushed, which means that all data in it is lost and the �lesystem on

disk is inconsistent, and therefore possibly unusable.

3.2 The boot process in closer look

You can boot Linux either from a 
oppy or from the hard disk. The installation

section in the Getting Started guide tells you how to install Linux so you can boot it

the way you want to.

When the computer is booted, the BIOS will do various tests to check that ev-

erything looks all-right,

2

and will then start the actual booting. It will choose a disk

drive (typically the �rst 
oppy drive, if there is a 
oppy inserted, otherwise the �rst

hard disk, if one is installed in the computer; the order might be con�gurable, how-

ever) and will then read its very �rst sector. This is called the boot sector; for a

hard disk, it is also called the master boot record, since a hard disk can contain

several partitions, each with their own boot sectors.

The boot sector contains a small program (small enough to �t into one sector)

whose responsibility is to read the actual operating system from the disk and start

it. When booting Linux from a 
oppy disk, the boot sector contains code that just

reads the �rst few hundred blocks (depending on the actual kernel size, of course) to

a predetermined place in memory. On a Linux boot 
oppy, there is no �lesystem, the

kernel is just stored in consecutive sectors, since this simpli�es the boot process. It

is possible, however, to boot from a 
oppy with a �lesystem, by using LILO.

When booting from the hard disk, the code in the master boot record will examine

the partition table (also in the master boot record), identify the active partition (the

partition that is marked to be bootable), read the boot sector from that partition, and

then start the code in that boot sector. The code in the partition's boot sector does

what a 
oppy disk's boot sector does: it will read in the kernel from the partition

and start it. The details vary, however, since it is generally not useful to have a

2

These is called the power on self test, or POST for short.
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separate partition for just the kernel image, so the code in the partition's boot sector

can't just read the disk in sequential order, it has to �nd the sectors whereever the

�lesystem has put them. There are several ways around this problem, but the most

common way is to use LILO. (The details about how to do this are irrelevant for this

discussion, however; see the LILO documentation for more information, it is most

thorough.)

When booting with LILO, it will normally go right ahead and read in and boot the

default kernel. It is also possible to con�gure LILO to be able to boot one of several

kernels, or even other operating systems than Linux, and it is possible for the user to

choose which kernel or operating system is to be booted at boot time. LILO can be

con�gured so that if one holds down the alt , shift , or ctrl key at boot time (i.e.

when LILO is loaded), LILO will ask what is to be booted and not boot the default

right away. Alternatively, LILO can be con�gured so that it will always ask, with an

optional timeout that will cause the default kernel to be booted.

The are other boot loaders than LILO. However, since LILO has been written

especially for Linux, it has some features that are useful and that only it provides,

for example the ability to pass arguments to the kernel at boot time, or overriding

some con�guration options built into the kernel. Hence, it is usually the best choice.

Among the alternatives are bootlin and bootactv.

3

Booting from 
oppy and from hard disk have both their advantages, but generally

booting from the hard disk is nicer, since it avoids the hassle of playing around with


oppies. It is also faster. However, it can be more troublesome to install the system

so it can boot from the hard disk, so many people will �rst boot from 
oppy, then,

when the system is otherwise installed and working well, will install LILO and start

booting from the hard disk.

After the Linux kernel has been read into the memory, by whatever means, and is

started for real, roughly the following things happen:

� The Linux kernel is installed compressed, so it will �rst uncompress itself. The

beginning of the compressed kernel contains a small uncompressed program that

does this.

� If you have a super-VGA card that Linux recognizes and that has some special

text modes (such as 100 columns by 40 rows), Linux asks you which mode you

want to use. During the kernel compilation, it is possible to preset a video mode,

so that this is never asked. This can also be done with LILO or rdev(8).

3

I don't know much about any of the alternatives. If and when I learn, I will add more descriptions.
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� After this the kernel checks what other hardware there is (hard disks, 
oppies,

network adapters: : : ), and con�gures some of its device drivers appropriately;

while it does this, it outputs messages about its �ndings. For example, when I

boot, I it looks like this:

LILO boot:

Loading linux.

Console: colour EGA+ 80x25, 8 virtual consoles

Serial driver version 3.94 with no serial options enabled

tty00 at 0x03f8 (irq = 4) is a 16450

tty01 at 0x02f8 (irq = 3) is a 16450

lp_init: lp1 exists (0), using polling driver

Memory: 7332k/8192k available (300k kernel code, 384k reserved, 176k data)

Floppy drive(s): fd0 is 1.44M, fd1 is 1.2M

Loopback device init

Warning WD8013 board not found at i/o = 280.

Math coprocessor using irq13 error reporting.

Partition check:

hda: hda1 hda2 hda3

VFS: Mounted root (ext filesystem).

Linux version 0.99.pl9-1 (root@haven) 05/01/93 14:12:20

The exact texts are di�erent on di�erent systems, depending on the hardware,

the version of Linux being used, and how it has been con�gured.

� Then the kernel will try to mount the root �lesystem. The place is con�gurable

at compilation time, or any time with rdev or LILO. The �lesystem type is

detected automatically. If the mounting of the root �lesystem fails, for example

because you didn't remember to include the corresponding �lesystem driver in

the kernel, the kernel panics and halts the system (there isn't much it can do,

anyway).

The root �lesystem is usually mounted read-only (this can be set in the same

way as the place). This makes it possible to check the �lesystem while it is

mounted; it is not a good idea to check a �lesystem that is mounted read-write.

� After this, the kernel starts the program init(8) (located in /sbin/init) in

the background (this will always become process number 1). init does various

startup chores. The exact things it does depends on the version being used; see

chapter ?? for more information.

� init then starts a getty(8) for virtual consoles and serial lines. getty is the

program which lets people log in via virtual consoles and serial terminals. init

may also start some other programs, depending on how it is con�gured.

� After this, the boot is complete, and the system is up and running normally.
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3.3 More about shutdowns

META: two di�erent implemetnations of shutdown? one that uses reboot/halt as

internal binaries that shouldn't be run by hand?

It is important to follow the correct procedures when you shut down a Linux

system. If you fail do so, your �lesystems probably will become trashed and the �les

probably will become scrambled. This is because Linux has a disk cache that won't

write things to disk at once, but only at intervals. This greatly improves performance

but also means that if you just turn o� the power at a whim the cache may hold a lot

of data and that what is on the disk may not be a fully working �lesystem (because

only some things have been written to the disk).

Another reason against just 
ipping the power switch is that in a multi-tasking

system there can be lots of things going on in the background, and shutting the power

can be quite disastrous. This is especially true for machines that several people use

at the same time.

The commands for properly shutting down a Linux system are shutdown(8) and

halt(8) (both are located in /sbin). There are two usual ways of using them.

If you are running a system where you are the only user, the usual way of using

shutdown is to quit all running programs, log out on all virtual consoles, log in as root

on one of them (or stay logged in as root if you already are, but you should change

to the root directory, to avoid problems with unmounting), then give the command

halt or shutdown -h now (substitute now with a plus sign and a number in minutes

if you want a delay, though you usually don't on a single user system) or halt.

Alternatively, if your system has many users, use the command shutdown -h +time

message, where time is the time in minutes until the system is halted, and message

is a short explanation of why the system is shutting down.

root # shutdown -h +10 'We will install a new disk. System should

> be back on-line in three hours.'

This will warn everybody that the system will shut down in ten minutes, and that

they'd better get lost or loose data. The warning is printed to every terminal on

which someone is logged in, including all xterms.

Broadcast message from root (ttyp0) Wed Aug 2 01:03:25 1995...

We will install a new disk. System should
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be back on-line in three hours.

The system is going DOWN for system halt in 10 minutes !!

The warning is automatically repeated a few times before the boot, with shorter and

shorter intervals as the time runs out. You can't use a delay with halt; it is seldom

appropriate to use halt on a multiuser system.

META: /etc/inittab can give commands to execute when halting/rebooting

When the real shutting down starts after any delays, all �lesystems (except the root

one) are unmounted, user processes (if anybody is still logged in) are killed, daemons

are shut down, all �lesystem are unmounted, and generally everything settles down.

When that is done, shutdown prints out a message that you can power down the

machine. Then, and only then, should you move your �ngers towards the power

switch.

Sometimes, although rarely on any good system, it is impossible to shut down

properly. For instance, if the kernel panics and crashes and burns and generally

misbehaves, it might be completely impossible to give any new commands, hence

shutting down properly is somewhat di�cult, and just about everything you can do

is hope that nothing has been too severely damaged and turn o� the power. If the

troubles are a bit less severe (say, somebody merely hit your keyboard with an axe),

and the kernel and the update program still run normally, it is probably a good idea

to wait a couple of minutes to give update(8) a chance to 
ush the bu�er cache, and

only cut the power after that.

Some people like to shut down using the command sync(8)

4

three times, waiting

for the disk I/O to stop, then turn o� the power. If there are no running programs, this

is about equivalent to using shutdown. However, it does not unmount any �lesystems

and this can lead to problems with the ext2fs \clean �lesystem" 
ag. The triple-sync

method is not recommended.

(In case you're wondering: the reason for three syncs is that in the early days of

UNIX, when the commands were typed separately, that usually gave su�cient time

for most disk I/O to be �nished.)

3.4 Rebooting

Rebooting means booting the system again. This can be accomplished by �rst shut-

ting it down completely, turning power o�, and then turning it back on. A simpler

4

sync 
ushes the bu�er cache.
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way is to ask shutdown to reboot the system, instead of merely halting it. This is

accomplished by using the -r option to shutdown, for example, by giving the com-

mand shutdown -r now. You can also use the reboot command (which, like halt,

doesn't wait until it perpetrates its foul deed).

3.5 Single user mode

The shutdown command can also be used to bring the system down to single user

mode, in which no one can log in, but root can use the console. This is useful for

system administration tasks that can't be done while the system is running normally.

Single user mode is discussed more thoroughly in chapter ??.

3.6 Emergency boot 
oppies

It is not always possible to boot a computer from the hard disk. For example, if you

make a mistake in con�guring LILO, you might make your system unbootable. For

these situations, you need an alternative way of booting that will always work (as

long as the hardware works). For typical PC's, this means booting from the 
oppy

drive.

Most Linux distributions allow one to create an emergency boot 
oppy during

installation. It is a good idea to do this. However, many such boot disks contain

only the kernel, and assume you will be using the programs on the distributions'

installation disks to �x whatever problem you have. Sometimes those programs aren't

enough; for example, you might have to restore some �les from backups made with

software not on the installation disks.

Thus, it might be necessary to create a custom root 
oppy as well. The Bootdisk

HOWTO by Graham Chapman contains instructions for doing this. You must, of

course, remember to keep your emergency boot and root 
oppies up to date.

You can't use the 
oppy drive you use to mount the root 
oppy for anything else.

This can be inconvenient if you only have one 
oppy. However, if you have enough

memory, you can con�gure your boot 
oppy to load the root disk to a ramdisk (the

boot 
oppy's kernel needs to be specially con�gured for this). This frees the 
oppy

drive after the root 
oppy has been loaded to a ramdisk.
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Chapter 4

Using Disks and Other Storage

Media

On a clear disk you can seek forever.

When you install or upgrade your system, you need to do a fair amount of work on

your disks. You have to make �lesystems on your disks so that �les can be stored on

them and reserve space for the di�erent parts of your system.

This chapter explains all these initial activities. Usually, once you get your system

set up, you won't have to go through the work again, except for using 
oppies. You'll

need to come back to this chapter if you add a new disk or want to �ne-tune your

disk usage.

The basic tasks in administering disks are:

� Format your disk. This does various things to prepare it for use, such as checking

for bad sectors. (Formatting is nowadays not necessary for most hard disks.)

� Partition a hard disk, if you want to use it for several activities that aren't

supposed to interfere with one another. One reason for partitioning is to store

di�erent operating systems on the same disk. Another reason is to keep user

�les separate from system �les, which simpli�es back-ups and helps protect the

system �les from corruption.

� Make a �lesystem (of a suitable type) on each disk or partition. The disk means

nothing to Linux until you make a �lesystem; then �les can be created and

accessed on it.

25
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� Mount di�erent �lesystems to form a single tree structure, either automatically,

or manually as needed. (Manually mounted �lesystems usually need to be un-

mounted manually as well.)

Chapter 6 contains information about virtual memory and disk caching, of which

you also need to be aware of when using disks.

This chapter explains what you need to know for hard disks and 
oppies. Unfortu-

nately, because I lack the equipment, I cannot tell you much about using other types

of media, such as tapes or CD-ROM's.

4.1 Two kinds of devices

UNIX, and therefore Linux, recognizes two di�erent kinds of devices: random-access

block devices (such as disks), and character devices (such as tapes and serial lines),

some of which may be serial, and some random-access. Each supported device is

represented in the �lesystem as a device �le. When you read or write a device �le,

the data comes from or goes to the device it represents. This way no special programs

(and no special application programming methodology, such as catching interrupts

or polling a serial port) are necessary to access devices; for example, to send a �le to

the printer, one could just say

ttyp5 root ~ $ cat �lename > /dev/lp1

ttyp5 root ~ $

and the contents of the �le are printed (the �le must, of course, be in a form that the

printer understands). However, since it is not a good idea to have several people cat

their �les to the printer at the same time, one usually uses a special program to send

the �les to be printed (usually lpr(1)). This program makes sure that only one �le

is being printed at a time, and will automatically send �les to the printer as soon as

it �nishes with the previous �le. Something similar is needed for most devices. In

fact, one seldom needs to worry about device �les at all.

Since devices show up as �les in the �lesystem (in the /dev directory), it is easy

to see just what device �les exist, using ls(1) or another suitable command. In the

output of ls -l, the �rst column contains the type of the �le and its permissions.

For example, inspecting a serial device gives on my system

ttyp5 root ~ $ ls -l /dev/cua0

crw-rw-rw- 1 root uucp 5, 64 Nov 30 1993 /dev/cua0
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ttyp5 root ~ $

The �rst character in the �rst column, i.e., `c' in crw-rw-rw- above, tells an informed

user the type of the �le, in this case a character device. For ordinary �les, the �rst

character is `-', for directories it is `d', and for block devices `b'; see the ls(1) man

page for further information.

Note that usually all device �les exist even though the device itself might be not

be installed. So just because you have a �le /dev/sda, it doesn't mean that you

really do have an SCSI hard disk. Having all the device �les makes the installation

programs simpler, and makes it easier to add new hardware (there is no need to �nd

out the correct parameters for and create the device �les for the new device).

4.2 Hard disks

This subsection introduces terminology related to hard disks. If you already know

the terms and concepts, you can skip this subsection.

See �gure 4.1 for a schematic picture of the important parts in a hard disk. A hard

disk consists of one or more circular platters,

1

of which either or both surfaces are

coated with a magnetic substance used for recording the data. For each surface, there

is a read-write head that examines or alters the recorded data. The platters rotate

on a common axis; a typical rotation speed is 3600 rotations per minute, although

high-performance hard disks have higher speeds. The heads move along the radius

of the platters; this movement combined with the rotation of the platters allows the

head to access all parts of the surfaces.

The processor (CPU) and the actual disk communicate through a disk controller.

This relieves the rest of the computer from knowing how to use the drive, since the

controllers for di�erent types of disks can be made to use the same interface towards

the rest of the computer. Therefore, the computer can say just \hey disk, gimme

what I want", instead of a long and complex series of electric signals to move the

head to the proper location and waiting for the correct position to come under the

head and doing all the other unpleasant stu� necessary. (In reality, the interface to

the controller is still complex, but much less so than it would otherwise be.) The

controller can also do some other stu�, such as caching, or automatic bad sector

replacement.

The above is usually what one needs to understand about the hardware. There

1

The platters are made of a hard substance, e.g., aluminium, which gives the hard disk its name.
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is also a bunch of other stu�, such as the motor that rotates the platters and moves

the heads, and the electronics that control the operation of the mechanical parts, but

that is mostly not relevant for understanding the working principle of a hard disk.

The surfaces are usually divided into concentric rings, called tracks, and these in

turn are divided into sectors. This division is used to specify locations on the hard

disk and to allocate disk space to �les. To �nd a given place on the hard disk, one

might say \surface 3, track 5, sector 7". Usually the number of sectors is the same

for all tracks, but some hard disks put more sectors in outer tracks (all sectors are

of the same physical size, so more of them �t in the longer outer tracks). Typically,

a sector will hold 512 bytes of data. The disk itself can't handle smaller amounts of

data than one sector.

From above

From the side

Rotation

Track

Sector

Read/write head

Cylinder

Platter

Surfaces

Figure 4.1: A schematic picture of a hard disk.

Each surface is divided into tracks (and sectors) in the same way. This means that

when the head for one surface is on a track, the heads for the other surfaces are also

on the corresponding tracks. All the corresponding tracks taken together are called

a cylinder. It takes time to move the heads from one track (cylinder) to another,

so by placing the data that is often accessed together (say, a �le) so that it is within

one cylinder, it is not necessary to move the heads to read all of it. This improves
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performance. It is not always possible to place �les like this; �les that are stored in

several places on the disk are called fragmented.

The number of surfaces (or heads, which is the same thing), cylinders, and sectors

vary a lot; the speci�cation of the number of each is called the geometry of a hard

disk. The geometry is usually stored in a special, battery-powered memory location

called theCMOS RAM, from where the operating system can fetch it during bootup

or driver initialization.

Unfortunately, the BIOS

2

has a design limitation, which makes it impossible to

specify a track number that is larger than 1024 in the CMOS RAM, which is too

little for a large hard disk. To overcome this, the hard disk controller lies about the

geometry, and translates the addresses given by the computer into something that

�ts reality. For example, a hard disk might have 8 heads, 2048 tracks, and 35 sectors

per track

3

. Its controller could lie to the computer and claim that it has 16 heads, 1024

tracks, and 35 sectors per track, thus not exceeding the limit on tracks, and translates

the address that the computer gives it by halving the head number, and doubling the

track number. The math can be more complicated in reality, because the numbers

are not as nice as here (but again, the details are not relevant for understanding

the principle). This translation distorts the operating system's view of how the disk

is organized, thus making it impractical to use the all-data-on-one-cylinder trick to

boost performance.

The translation is only a problem for IDE disks. SCSI disks use a sequential sector

number (i.e., the controller translates a sequential sector number to head/cylinder/sector),

and a completely di�erent method for the CPU to talk with the controller, so they

are insulated from the problem. Note, however, that the computer might not know

the real geometry of an SCSI disk either.

Since Linux often will not know the real geometry of a disk, its �lesystems don't

even try to keep �les within a single cylinder. Instead, it tries to assign sequentially

numbered sectors to �les, which almost always gives similar performance. The issue

is further complicated by on-controller caches, and automatic prefetches done by the

controller.

Each hard disk is represented by a separate device �le. There can (usually) be only

two IDE hard disks. These are known as /dev/hda and /dev/hdb, respectively. SCSI

hard disks are known as /dev/sda, /dev/sdb, and so on. Similar naming conventions

exist for other hard disk types Note that the device �les for the hard disks give access

2

The BIOS is some built-in software stored on ROM chips. It takes care, among other things, of the initial stages

of booting.

3

The numbers are completely imaginary.
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to the entire disk, with no regard to partitions (which will be discussed below), and

it's easy to mess up the partitions or the data in them if you aren't careful. The disks'

device �les are usually used only to get access to the master boot record (which will

also be discussed below).

4.3 Floppies

A 
oppy disk consists of a 
exible membrane covered on one or both sides with similar

magnetic substance as a hard disk. The 
oppy disk itself doesn't have a read-write

head, that is included in the drive. A 
oppy corresponds to one platter in a hard

disk, but is removable and one drive can be used to access di�erent 
oppies, whereas

the hard disk is one indivisible unit.

Like a hard disk, a 
oppy is divided into tracks and sectors (and the two corre-

sponding tracks on either side of a 
oppy form a cylinder), but there are many fewer

of them than on a hard disk.

A 
oppy drive can usually use several di�erent types of disks; for example, a 3

1

2

inch drive can use both 720 kB and 1.44 MB disks. Since the drive has to operate a bit

di�erently and the operating system must know how big the disk is, there are many

device �les for 
oppy drives, one per combination of drive and disk type. Therefore,

/dev/fd0H1440 is the �rst 
oppy drive (fd0), which must be a 3

1

2

inch drive, using

a 3

1

2

inch, high density disk (H) of size 1440 kB (1440), i.e., a normal 3

1

2

inch HD


oppy. For more information on the naming conventions for the 
oppy devices.

The names for 
oppy drives are complex, however, and Linux therefore has a

special 
oppy device type that automatically detects the type of the disk in the drive.

It works by trying to read the �rst sector of a newly inserted 
oppy using di�erent


oppy types until it �nds the correct one. This naturally requires that the 
oppy is

formatted �rst. The automatic devices are called /dev/fd0, /dev/fd1, and so on.

The parameters the automatic device uses to access a disk can also be set using

the program setfdprm(8). This can be useful if you need to use disks that do not

follow any usual 
oppy sizes, e.g., if they have an unusual number of sectors, or if the

autodetecting for some reason fails and the proper device �le is missing.

Linux can handle many nonstandard 
oppy disk formats in addition to all the

standard ones. Some of these require using special formatting programs. We'll skip

these disk types for now.
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4.4 Formatting

Formatting is the process of writing marks on the magnetic media that are used

to mark tracks and sectors. Before a disk is formatted, its magnetic surface is a

complete mess of magnetic signals. When it is formatted, some order is brought into

the chaos by essentially drawing lines where the tracks go, and where they are divided

into sectors. The actual details are not quite exactly like this, but that is irrelevant.

What is important, is that a disk cannot be used unless it has been formatted.

The terminology is a bit confusing here: in MS-DOS, the word formatting is used to

cover also the process of creating a �lesystem (which will be discussed below). There,

the two processes are often combined, especially for 
oppies. When the distinction

needs to be made, the real formatting is called low-level formatting, while making

the �lesystem is called high-level formatting. In UNIX circles, the two are called

formatting and making a �lesystem, so that's what is used in this book as well.

For IDE and some SCSI disks the formatting is actually done at the factory and

doesn't need to be repeated; hence most people rarely need to worry about it. In

fact, formatting a hard disk can cause it to work less well, for example because a disk

might need to be formatted in some very special way to allow automatic bad sector

replacement to work.

Disks that need or can be formatted, often require a special program anyway,

because the interface to the formatting logic inside the drive is di�erent from drive to

drive. The formatting program is often either on the controller BIOS, or is supplied

as an MS-DOS program; neither of these can easily be used from within Linux.

During formatting one might encounter bad spots on the disk, called bad blocks

or bad sectors. These are sometimes handled by the drive itself, but even then, if

more of them develop, something needs to be done to avoid using those parts of the

disk. The logic to do this is built into the �lesystem; how to add the information into

the �lesystem is described below. Alternatively, one might create a small partition

that covers just the bad part of the disk; this approach might be a good idea if the

bad spot is very large, since �lesystems can sometimes have trouble with very large

bad areas.

Floppies are formatted with fdformat(8). The 
oppy device �le to use is given

as the parameter. For example, the following command would format a high density,

3

1

2

inch 
oppy in the �rst 
oppy drive:

ttyp5 root ~ $ fdformat /dev/fd0H1440

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
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Formatting ... done

Verifying ... done

ttyp5 root ~ $

Note that if you want to use an autodetecting device (e.g., /dev/fd0), you must set

the parameters of the device with setfdprm(8) �rst. To achieve the same e�ect as

above, one would have to do the following:

ttyp5 root ~ $ setfdprm /dev/fd0 1440/1440

ttyp5 root ~ $ fdformat /dev/fd0

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.

Formatting ... done

Verifying ... done

ttyp5 root ~ $

It is usually more convenient to choose the correct device �le that matches the type

of the 
oppy. Note that it is unwise to format 
oppies to contain more information

than what they are designed for.

fdformatwill also validate the 
oppy, i.e., check it for bad blocks. It will try a bad

block several times (you can usually hear this, the drive noise changes dramatically).

If the 
oppy is only marginally bad (due to dirt on the read/write head, some errors

are false signals), fdformat won't complain, but a real error will abort the validation

process. The kernel will print log messages for each I/O error it �nds; these will go

to the console or, if syslog is being used, to the �le /usr/adm/messages. fdformat

itself won't tell where the error is (one usually doesn't care, 
oppies are cheap enough

that a bad one is automatically thrown away).

ttyp5 root ~ $ fdformat /dev/fd0H1440

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.

Formatting ... done

Verifying ... read: Unknown error

ttyp5 root ~ $

The badblocks(8) command can be used to search any disk or partition for bad

blocks (including a 
oppy). It does not format the disk, so it can be used to check

even existing �lesystems. The example below checks a 3

1

2

inch 
oppy with two bad

blocks.

ttyp5 root ~ $ badblocks /dev/fd0H1440 1440

718
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719

ttyp5 root ~ $

badblocks outputs the block numbers of the bad blocks it �nds. Most �lesystems can

avoid such bad blocks. They maintain a list of known bad blocks, which is initialized

when the �lesystem is made, and can be modi�ed later. The initial search for bad

blocks can be done by the mkfs command (which initializes the �lesystem), but later

checks should be done with badblocks and the new blocks should be added with

fsck. We'll describe mkfs and fsck later.

4.5 Partitions

A hard disk can be divided into several partitions. Each partition functions as if it

were a separate hard disk. The idea is that if you have one hard disk, and want to

have, say, two operating systems on it, you can divide the disk into two partitions.

Each operating system uses its partition as it wishes and doesn't touch the other

one's. This way the two operating systems can co-exist peacefully on the same hard

disk. Without partitions one would have to buy a hard disk for each operating system.

Floppies are not partitioned. There is no technical reason against this, but since

they're so small, partitions would be useful only very rarely.

4.5.1 The MBR, boot sectors and partition table

The information about how a hard disk has been partitioned is stored in its �rst sector

(that is, the �rst sector of the �rst track on the �rst disk surface). The �rst sector is

the master boot record (MBR) of the disk; this is the sector that the BIOS reads

in and starts when the machine is �rst booted. The master boot record contains a

small program that reads the partition table, checks which partition is active (that

is, marked bootable), and reads the �rst sector of that partition, the partition's boot

sector (the MBR is also a boot sector, but it has a special status and therefore a

special name). This boot sector contains another small program that reads the �rst

part of the operating system stored on that partition (assuming it is bootable), and

then starts it.

The partitioning scheme is not built into the hardware, or even into the BIOS. It is

only a convention that many operating systems follow. Not all operating systems do

follow it, but they are the exceptions. Some operating systems support partitions, but

they occupy one partition on the hard disk, and use their internal partitioning method



34 Chapter 4. Using Disks and Other Storage Media

within that partition. The latter type exists peacefully with other operating systems

(including Linux), and does not require any special measures, but an operating system

that doesn't support partitions cannot co-exist on the same disk with any other

operating system.

As a safety precaution, it is a good idea to write down the partition table on a

piece of paper, so that if it ever corrupts you don't have to lose all your �les. (A bad

partition table can be �xed with fdisk).

4.5.2 Extended and logical partitions

The original partitioning scheme for PC hard disks allowed only four partitions. This

quickly turned out to be too little in real life, partly because some people want more

than four operating systems (Linux, MS-DOS, OS/2, Minix, FreeBSD, NetBSD, or

Windows/NT, to name a few), but primarily because sometimes it is a good idea to

have several partitions for one operating system. For example, swap space is usually

best put in its own partition for Linux instead of in the main Linux partition for

reasons of speed (see below).

To overcome this design problem, extended partitions were invented. This trick

allows partitioning a primary partition into sub-partitions. The primary partition

thus subdivided is the extended partition; the subpartitions are logical partitions.

They behave like primary

4

partitions, but are created di�erently.

The partition structure of a hard disk might look like that in �gure 4.2. The disk is

divided into three primary partitions, the second of which is divided into two logical

partitions. Part of the disk is not partitioned at all. The disk as a whole and each

primary partition has a boot sector.

4.5.3 Partition types

The partition tables (the one in the MBR, and the ones for extended partitions)

contain one byte per partition that identi�es the type of that partition. This attempts

to identify the operating system that uses the partition, or what it uses it for. The

purpose is to make it possible to avoid having two operating systems accidentally

using the same partition. However, in reality, operating systems do not really care

about the partition type byte; e.g., Linux doesn't care at all what it is. Worse, some

of them use it incorrectly; e.g., at least some versions of DR-DOS ignore the most

signi�cant bit of the byte, while others don't.

4

Illogical?
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Figure 4.2: A sample hard disk partitioning.

There is no standardization agency to specify what each byte value means, but

some commonly accepted ones are included in the table in table 4.1. The same list is

available in the Linux fdisk(8) program.

Table 4.1: Partition types (from the Linux fdisk(8) program).

0 Empty 40 Venix 80286 94 Amoeba BBT

1 DOS 12-bit FAT 51 Novell? a5 BSD/386

2 XENIX root 52 Microport b7 BSDI fs

3 XENIX usr 63 GNU HURD b8 BSDI swap

4 DOS 16-bit <32M 64 Novell c7 Syrinx

5 Extended 75 PC/IX db CP/M

6 DOS 16-bit �32M 80 Old MINIX e1 DOS access

7 OS/2 HPFS 81 Linux/MINIX e3 DOS R/O

8 AIX 82 Linux swap f2 DOS secondary

9 AIX bootable 83 Linux native � BBT

a OS/2 Boot Manag 93 Amoeba

4.5.4 Partitioning a hard disk

There are many programs for creating and removing partitions. Most operating

systems have their own, and it can be a good idea to use each operating system's
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own, just in case it does something unusual that the others can't. Many of the

programs are called fdisk, including the Linux one, or variations thereof. Details on

using the Linux fdisk are given on its man page. The cfdisk command is similar

to fdisk, but has a nicer (full screen) user interface.

When using IDE disks, the boot partition (the partition with the bootable kernel

image �les) must be completely within the �rst 1024 cylinders. This is because the

disk is used via the BIOS during boot (before the system goes into protected mode),

and BIOS can't handle more than 1024 cylinders. It is sometimes possible to use a

boot partition that is only partly within the �rst 1024 cylinders. This works as long

as all the �les that are read with the BIOS are within the �rst 1024 cylinders. Since

this is di�cult to arrange, it is a very bad idea to do it; you never know when a kernel

update or disk defragmentation will result in an unbootable system. Therefore, make

sure your boot partition is completely within the �rst 1024 cylinders.

Some newer versions of the BIOS and IDE disks can, in fact, handle disks with

more than 1024 cylinders. If you have such a system, you can forget about the

problem; if you aren't quite sure of it, put it within the �rst 1024 cylinders.

Each partition should have an even number of sectors, since the Linux �lesystems

use a 1 kB block size, i.e., two sectors. An odd number of sectors will result in the

last sector being unused. This won't result in any problems, but it is ugly, and some

versions of fdisk will warn about it.

Changing a partition's size usually requires �rst backing up everything you want

to save from that partition (preferably the whole disk, just in case), deleting the

partition, creating new partition, then restoring everything to the new partition.

There is a program for MS-DOS, called fips, which does this without requiring the

backup and restore, but for other �lesystems it is still necessary.

4.5.5 Device �les and partitions

Each partition and extended partition has its own device �le. The naming convention

for these �les is that a partition's number is appended after the name of the whole

disk, with the convention that 1{4 are primary partitions (regardless of how many

primary partitions there are) and 5{8 are logical partitions (regardless of within which

primary partition they reside). For example, /dev/hda1 is the �rst primary partition

on the �rst IDE hard disk, and /dev/sdb7 is the third extended partition on the

second SCSI hard disk.



4.6. Filesystems 37

4.6 Filesystems

4.6.1 What are �lesystems?

A �lesystem is the methods and data structures that an operating uses to keep

track of �les on a disk or partition that is, the way the �les are organized on the disk.

The word is also used to refer to a partition or disk that is used to store the �les

or the type of the �lesystem. Thus, one might say \I have two �lesystems" meaning

one has two partitions on which one stores �les, or that one is using the \extended

�lesystem", meaning the type of the �lesystem.

The di�erence between a disk or partition and the �lesystem it contains is impor-

tant. A few programs|including, reasonably enough, programs that create �lesystems|

operate directly on the raw sectors of a disk or partition; if there is an existing �le

system there it will be destroyed or seriously corrupted. Most programs operate on a

�lesystem, and therefore won't work on a partition that doesn't contain one (or that

contains one of the wrong type).

Before a partition or disk can be used as a �lesystem, it needs to be initialized,

and the bookkeeping data structures need to be written to the disk. This process is

called making a �lesystem.

Most UNIX �lesystem types have a similar general structure, although the exact

details vary quite a bit. The central concepts are superblock, inode, data block,

directory block, and indirection block. The superblock contains information

about the �lesystem as a whole, such as its size (the exact information here depends

on the �lesystem). An inode contains all information about a �le, excepts its name.

The name is stored in the directory, together with the number of the inode. A

directory entry consists of a �lename and the number of the inode which represents

the �le. The inode contains the numbers of several data blocks, which are used to

store the data in the �le. There is space only for a few data block numbers in the

inode, however, and if more are needed, more space for pointers to the data blocks

is allocated dynamically. These dynamically allocated blocks are indirect blocks; the

name indicates that in order to �nd the data block, one has to �nd its number in the

indirect block �rst.

UNIX �lesystems usually allow one to create a hole in a �le (this is done with

lseek(2); check the manual page), which means that the �lesystem just pretends

that at a particular place in the �le there is just zero bytes, but no actual disk sectors

are reserved for that place in the �le (this means that the �le will use a bit less disk

space). This happens especially often for small binaries, Linux shared libraries, some
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databases, and a few other special cases. (Holes are implemented by storing a special

value as the address of the data block in the indirect block or inode. This special

address means that no data block is allocated for that part of the �le, ergo, there is

a hole in the �le.)

Holes are moderately useful. On the author's system, a simple measurement

showed a potential for about 4 MB of savings through holes of about 200 MB to-

tal used disk space. That system, however, contains relatively few programs and no

database �les. The measurement tool is described in appendix B.

4.6.2 Filesystems galore

Linux supports several types of �lesystems. As of this writing the most important

ones are:

minix The oldest, presumed to be the most reliable, but quite lim-

ited in features (some time stamps are missing, at most 30

character �lenames) and restricted in capabilities (at most

64 MB per �lesystem).

xia A modi�ed version of the minix �lesystem that lifts the limits

on the �lenames and �lesystem sizes, but does not otherwise

introduce new features. It is not very popular, but is reported

to work very well.

ext2 The most featureful of the native Linux �lesystems, currently

also the most popular one. It is designed to be easily upwards

compatible, so that new versions of the �lesystem code do not

require re-making the existing �lesystems.

ext An older version of ext2 that wasn't upwards compatible. It

is hardly ever used in new installations any more, and most

people have converted to ext2.

In addition, support for several foreign �lesystem exists, to make it easier to exchange

�les with other operating systems. These foreign �lesystems work just like native

ones, except that they may be lacking in some usual UNIX features, or have curious

limitations, or other oddities.

msdos Compatibility with MS-DOS (and OS/2 and Windows NT)

FAT �lesystems.



4.6. Filesystems 39

umsdos Extends the msdos �lesystem driver under Linux so that Linux

can see long �lenames, owners, permissions, links, and device

�les. This allows a normal msdos �lesystem to be used as if

it were a Linux one, thus removing the need for a separate

partition for Linux.

iso9660 The standard CD-ROM �lesystem; the popular Rock Ridge

extension to the CD-ROM standard that allow longer �le

names is supported automatically.

nfs A networked �lesystem that allows sharing a �lesystem be-

tween many computers to allow easy access to the �les from

all of them.

hpfs The OS/2 �lesystem.

sysv SystemV/386, Coherent, and Xenix �lesystems.

META: ifs, userfs The choice of �lesystem to use depends on the situation. If

compatibility or other reasons make one of the non-native �lesystems necessary, then

that one must be used. If one can choose freely, then it is probably wisest to use ext2,

since it has all the features but does not su�er from lack of performance.

There is also the proc �lesystem, usually accessible as the /proc directory, which

is not really a �lesystem at all, even though it looks like one. The proc �lesystem

makes it easy to access certain kernel data structures, such as the process list (hence

the name). It makes these data structures look like a �lesystem, and that �lesystem

can be manipulated with all the usual �le tools. For example, to get a listing of all

processes one might use the command

ttyp5 root ~ $ ls -l /proc

total 0

dr-xr-xr-x 4 root root 0 Jan 31 20:37 1

dr-xr-xr-x 4 liw users 0 Jan 31 20:37 63

dr-xr-xr-x 4 liw users 0 Jan 31 20:37 94

dr-xr-xr-x 4 liw users 0 Jan 31 20:37 95

dr-xr-xr-x 4 root users 0 Jan 31 20:37 98

dr-xr-xr-x 4 liw users 0 Jan 31 20:37 99

-r--r--r-- 1 root root 0 Jan 31 20:37 devices

-r--r--r-- 1 root root 0 Jan 31 20:37 dma

-r--r--r-- 1 root root 0 Jan 31 20:37 filesystems
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-r--r--r-- 1 root root 0 Jan 31 20:37 interrupts

-r-------- 1 root root 8654848 Jan 31 20:37 kcore

-r--r--r-- 1 root root 0 Jan 31 11:50 kmsg

-r--r--r-- 1 root root 0 Jan 31 20:37 ksyms

-r--r--r-- 1 root root 0 Jan 31 11:51 loadavg

-r--r--r-- 1 root root 0 Jan 31 20:37 meminfo

-r--r--r-- 1 root root 0 Jan 31 20:37 modules

dr-xr-xr-x 2 root root 0 Jan 31 20:37 net

dr-xr-xr-x 4 root root 0 Jan 31 20:37 self

-r--r--r-- 1 root root 0 Jan 31 20:37 stat

-r--r--r-- 1 root root 0 Jan 31 20:37 uptime

-r--r--r-- 1 root root 0 Jan 31 20:37 version

ttyp5 root ~ $

(There will be a few extra �les that don't correspond to processes, though. The above

example has been shortened.)

Note that even though it is called a �lesystem, no part of the proc �lesystem

touches any disk. It exists only in the kernel's imagination. Whenever anyone tries

to look at any part of the proc �lesystem, the kernel makes it look as if the part

existed somewhere, even though it doesn't. So, even though there is a multi-megabyte

/proc/kmem �le, it doesn't take any disk space.

4.6.3 Which �lesystem should be used?

There is usually little point in using many di�erent �lesystems. Currently, ext2fs

is the most popular one, and it is probably the wisest choice. Depending on the

overhead for bookkeeping structures, speed, (perceived) reliability, compatibility, and

various other reasons, it may be advisable to use another �le system. This needs to

be decided on a case-by-case basis.

4.6.4 Creating a �lesystem

Filesystems are created, i.e., initialized, with the mkfs(8) command. There is actually

a separate program for each �lesystem type. mkfs is just a front end that runs the

appropriate program depending on the desired �lesystem type. The type is selected

with the -t fstype option.

The programs called by mkfs have slightly di�erent command line interfaces. The
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common and most important options are summarized below; see the manual pages

for more.

-t fstype Select the type of the �lesystem.

-c Search bad bad blocks and initialize the bad block list accordingly.

-l �lename Read the initial bad block list from the �le �lename.

To create an ext2 �lesystem on a 
oppy, one would give the following commands:

ttyp6 root ~ $ fdformat -n /dev/fd0H1440

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.

Formatting ... done

ttyp6 root ~ $ badblocks /dev/fd0H1440 1440 > bad-blocks

ttyp6 root ~ $ mkfs -t ext2 -l bad-blocks /dev/fd0H1440

mke2fs 0.5a, 5-Apr-94 for EXT2 FS 0.5, 94/03/10

360 inodes, 1440 blocks

72 blocks (5.00%) reserved for the super user

First data block=1

Block size=1024 (log=0)

Fragment size=1024 (log=0)

1 block group

8192 blocks per group, 8192 fragments per group

360 inodes per group

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

ttyp6 root ~ $

First, the 
oppy was formatted (the -n option prevents validation, i.e., bad block

checking). Then bad blocks were searched with badblocks, with the output redirected

to a �le, bad-blocks. Finally, the �lesystem was created, with the bad block list

initialized by whatever badblocks found.

The -c option could have been used with mkfs instead of badblocks and a separate

�le. The example below does that.

ttyp6 root ~ $ mkfs -t ext2 -c /dev/fd0H1440

mke2fs 0.5a, 5-Apr-94 for EXT2 FS 0.5, 94/03/10

360 inodes, 1440 blocks
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72 blocks (5.00%) reserved for the super user

First data block=1

Block size=1024 (log=0)

Fragment size=1024 (log=0)

1 block group

8192 blocks per group, 8192 fragments per group

360 inodes per group

Checking for bad blocks (read-only test): done

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

ttyp6 root ~ $

The -c is more convenient than a separate use of badblocks, but badblocks is

necessary for checking after the �lesystem has been created.

The process to prepare to �lesystems on hard disks or partitions is the same as for


oppies, except that the formatting isn't needed.

4.6.5 Mounting and unmounting

Before one can use a �lesystem, it has to be mounted. The operating system then

does various bookkeeping things to make sure that everything works. Since all �les

in UNIX are in a single directory tree, the mount operation will make it look like the

contents of the new �lesystem are the contents of an existing subdirectory in some

already mounted �lesystem.

For example, �gure 4.3 shows three separate �lesystems, each with their own root

directory. When the last two �lesystems are mounted below /home and /usr, respec-

tively, on the �rst �lesystem, we can get a single directory tree, as in �gure 4.4.
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Figure 4.3: Three separate �lesystems.

The mounts could be done as in the following example:
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Figure 4.4: /home and /usr have been mounted.

ttyp6 root ~ $ mount /dev/hda2 /home

ttyp6 root ~ $ mount /dev/hda3 /usr

ttyp6 root ~ $

The mount(8) command takes two arguments. The �rst one is the device �le cor-

responding to the disk or partition containing the �lesystem. The second one is the

directory below which it will be mounted. After these commands the contents of the

two �lesystems look just like the contents of the /home and /usr directories, respec-

tively. One would then say that \/dev/hda2 is mounted on /home", and similarly

for /usr. To look at either �lesystem, one would look at the contents of the directory

on which it has been mounted, just as it were any other directory. Note the di�erence

between the device �le, /dev/hda2, and the mounted-on directory, /home. The device

�le gives access to the raw contents of the disk, the mounted-on directory gives access

to the �les on the disk. The mounted-on directory is called the mount point.

The mounted-on directory need not be empty, although it must exist. Any �les

in it, however, will be inaccessible by name while the �lesystem is mounted. (Any

�les that have already been opened will still be accessible. Files that have hard links

from other directories can be accessed using those names.) There is no harm done

with this, and it can even be useful. For instance, some people like to have /tmp

and /usr/tmp synonymous, and make /tmp be a symbolic link to /usr/tmp. When

the system is booted, before the /usr �lesystem is mounted, a /usr/tmp directory

residing on the root �lesystem is used instead. When /usr is mounted, it will make

the /usr/tmp directory on the root �lesystem inaccessible. If /usr/tmp didn't exist

on the root �lesystem, it would be impossible to use temporary �les before mounting

/usr.

If you don't intend to write anything to the �lesystem, use the -r switch for mount



44 Chapter 4. Using Disks and Other Storage Media

to do a readonly mount. This will make the kernel stop any attempts at writing

to the �lesystem, and will also stop the kernel from updating �le access times in the

inodes. Read-only mounts are necessary for unwritable media, e.g., CD-ROM's.

The alert reader has already noticed a slight logistical problem. How is the

�rst �lesystem (called the root �lesystem, because it contains the root directory)

mounted, since it obviously can't be mounted on another �lesystem? Well, the answer

is that it is done by magic.

5

The root �lesystem is magically mounted at boot time,

and one can rely on it to always be mounted|if the root �lesystem can't be mounted,

the system does not boot. The name of the �lesystem that is magically mounted as

root is either compiled into the kernel, or set using LILO or rdev.

The root �lesystem is usually �rst mounted readonly. The startup scripts will then

run fsck(8) to verify its validity, and if there are no problems, they will re-mount

it so that writes will also be allowed. fsck must not be run on a mounted �lesystem,

since any changes to the �lesystem while fsck is running will cause trouble. Since

the root �lesystem is mounted readonly while it is being checked, fsck can �x any

problems without worry, since the remount operation will 
ush any metadata that

the �lesystem keeps in memory.

On many systems there are other �lesystems that should also be mounted auto-

matically at boot time. These are speci�ed in the /etc/fstab �le; see the fstab(5)

man page for details on the format. The details of exactly when the extra �lesystems

are mounted depend on many factors, and can be con�gured by each administrator

if need be. When the chapter on booting is �nished, you may read all about it there.

When a �lesystem no longer needs to be mounted, it can be unmounted with

umount(8)

6

. umount takes one argument: either the device �le or the mount point.

For example, to unmount the directories of the previous example, one could use the

commands

ttyp6 root ~ $ umount /dev/hda2

ttyp6 root ~ $ umount /usr

ttyp6 root ~ $

See the man page for further instructions on how to use the command. It is imperative

that you always unmount a mounted 
oppy. Don't just pop the 
oppy out of the drive!

Because of disk caching, the data is not necessarily written to the 
oppy until you

unmount it, so removing the 
oppy from the drive too early might cause the contents

5

For more information, see the kernel source or the Kernel Hackers' Guide.

6

It should of course be unmount(8), but the n mysteriously disappeared in the 70's, and hasn't been seen since.

Please return it to Bell Labs, NJ, if you �nd it.
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to become garbled. If you just read from the 
oppy, this is not very likely, but if you

write, even accidentally, the result may be catastrophic.

Mounting and unmounting requires super user priviledges, i.e., only root can do

it. The reason for this is that if any user can mount a 
oppy on any directory, then

it is rather easy to create a 
oppy with, say, a Trojan horse disguised as /bin/sh, or

any other often used program. However, it is often necessary to allow users to use


oppies, and there are several ways to do this:

� Give the users the root password. This is obviously bad security, but is the

easiest solution. It works well if there is no need for security anyway, which is

the case on many non-networked, personal systems.

� Use a program such as sudo(8) to allow users to use mount. This is still bad

security, but doesn't directly give super user priviledges to everyone.

7

� Make the users use mtools, a package for manipulating MS-DOS �lesystems,

without mounting them. This works well if MS-DOS 
oppies are the only thing

that is needed, but is rather awkward otherwise.

� List the 
oppy devices and their allowable mount points together with the suit-

able options in /etc/fstab.

The last alternative can be implemented by adding a line like the following to /etc/fstab:

/dev/fd0 /floppy msdos user,noauto

The columns are: device �le to mount, directory to mount on, �lesystem type, and

options. The noauto option stops this mount to be done automatically when the

system is started (i.e., it stops mount -a from mounting it). The user option allows

any user to mount the �lesystem, and, because of security reasons, disallows execution

of programs (normal or setuid) and interpretation of device �les from the mounted

�lesystem. After this, any user can mount a 
oppy with an msdos �lesystem with the

following command:

ttyp6 root ~ $ mount /
oppy

ttyp6 root ~ $

The 
oppy can (and needs to, of course) be unmounted with the corresponding umount

command.

META: What to do if several types of 
oppies are needed?

7

It requires several seconds of hard thinking on the users' behalf.
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4.6.6 Keeping �lesystems healthy

Filesystems are complex creatures, and as such, they tend to be somewhat error-prone.

A �lesystem's correctness and validity can be checked using the fsck(8) command.

It can be instructed to repair any minor problems it �nds, and to alert the user if

there any unrepairable problems. Fortunately, the code to implement �lesystems is

debugged quite e�ectively, so there are seldom any problems at all, and they are

usually caused by power failures, failing hardware, or operator errors; for example,

by not shutting down the system properly.

Most systems are setup to run fsck automatically at boot time, so that any errors

are detected (and hopefully corrected) before the system is used. Use of a corrupted

�lesystem tends to make things worse: if the data structures are messed up, using

the �lesystem will probably mess them up even more, resulting in more data loss.

However, fsck can take a while to run on big �lesystems, and since errors almost

never occur if the system has been shut down properly, a couple of tricks are used to

avoid doing the checks in such cases. The �rst is that if the �le /etc/fastboot exists,

no checks are made. The second is that the ext2 �lesystem has a special marker in

its superblock that tells whether the �lesystem was unmounted properly after the

previous mount. This allows e2fsck (the version of fsck for the ext2 �lesystem)

to avoid checking the �lesystem if the 
ag indicates that the unmount was done

(the assumption being that a proper unmount indicates no problems). Whether the

/etc/fastboot trick works on your system depends on your startup scripts, but the

ext2 trick works every time you use e2fsck|it has to be explicitly bypassed with an

option to e2fsck to be avoided. (See the e2fsck(8) man page for details on how.)

The automatic checking only works for the �lesystems that are mounted automat-

ically at boot time. Use fsck manually to check other �lesystems, e.g., 
oppies.

If fsck �nds unrepairable problems, you need either in-depth knowlege of how

�lesystems work in general, and the type of the corrupt �lesystem in particular, or

good backups. The latter is easy (although sometimes tedious) to arrange, the former

can sometimes be arranged via a friend, the Linux newsgroups and mailing lists, or

some other source of support, if you don't have the know-how yourself. I'd like to tell

you more about it, but my lack of education and experience in this regard hinders

me. The debugfs(8) program by Theodore T'so should be useful.

fsck must only be run on unmounted �lesystems, never on mounted �lesystems

(with the exception of the read-only root during startup). This is because it accesses

the raw disk, and can therefore modify the �lesystem without the operating system

realizing it. There will be trouble, if the operating system is confused.
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It can be a good idea to periodically check for bad blocks. This is done with the

badblocks command. It outputs a list of the numbers of all bad blocks it can �nd.

This list can be fed to fsck to be recorded in the �lesystem data structures so that

the operating system won't try to use the bad blocks for storing data. The following

example will show how this could be done.

ttyp6 root ~ $ badblocks /dev/fd0H1440 1440 > bad-blocks

ttyp6 root ~ $ fsck -t ext2 -l bad-blocks /dev/fd0H1440

Parallelizing fsck version 0.5a (5-Apr-94)

e2fsck 0.5a, 5-Apr-94 for EXT2 FS 0.5, 94/03/10

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Check reference counts.

Pass 5: Checking group summary information.

/dev/fd0H1440: ***** FILE SYSTEM WAS MODIFIED *****

/dev/fd0H1440: 11/360 files, 63/1440 blocks

ttyp6 root ~ $

4.7 Disks without �lesystems

Not all disks or partitions are used as �lesystems. A swap partition, for example, will

not have a �lesystem on it. Many 
oppies are used in a tape-drive emulating fashion,

so that a tar or other �le is written directly on the raw disk, without a �lesystem.

This has the advantages of making more of the disk usable (a �lesystem always has

some bookkeeping overhead) and more easily compatible with other systems: the tar

�le format is the same on all systems, while �lesystems are di�erent on most systems.

You will quickly get used to disks without �lesystems if you need them. Bootable

Linux 
oppies also do not necessarily have a �lesystem, although that is also possible.

One reason to use raw disks is to make image copies of them. For instance, if the

disk contains a partially damaged �lesystem, it is a good idea to make an exact copy

of it before trying to �x it, since then you can start again if your �xing breaks things

even more. One way to do this is to use dd(1):

ttyp2 root /usr/tmp $ dd if=/dev/fd0H1440 of=
oppy-image

2880+0 records in
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2880+0 records out

ttyp2 root /usr/tmp $ dd if=
oppy-image of=/dev/fd0H1440

2880+0 records in

2880+0 records out

ttyp2 root /usr/tmp $

The �rst dd makes an exact image of the 
oppy to the �le floppy-image, the second

one writes the image to the 
oppy. (The user has presumably switched the 
oppy

before the second command. Otherwise the command pair is of doubtful usefulness.)

4.8 Allocating disk space

4.8.1 Partitioning schemes

It is not easy to partition a disk in the best possible way. Worse, there is no universally

correct way to do it; there are too many factors involved.

The traditional way is to have a (relatively) small root �lesystem, which contains

/bin, /etc, /dev, /lib, /tmp, and other stu� that is needed to get the system

up and running. This way, the root �lesystem (in its own partition or on its own

disk) is all that is needed to bring up the system. The reasoning is that if the root

�lesystem is small and is not heavily used, it is less likely to become corrupt when

the system crashes, and you will therefore �nd it easier to �x any problems caused by

the crash. Then you create separate partitions or use separate disks for the directory

tree below /usr, the users' home directories (often under /home), and the swap space.

Separating the home directories (with the users' �les) in their own partition makes

backups easier, since it is usually not necessary to backup programs (which reside

below /usr). In a networked environment it is also possible to share /usr among

several machines (e.g., by using NFS), thereby reducing the total disk space required

by several tens or hundreds of megabytes times the number of machines.

The problem with having many partitions is that it splits the total amount of free

disk space into many small pieces. Nowadays, when disks and (hopefully) operating

systems are more reliable, many people prefer to have just one partition that holds

all their �les. On the other hand, it can be less painful to back up (and restore) a

small partition.

For a small hard disk (assuming you don't do kernel development), the best way to

go is probably to have just one partition. For large hard disks, it is probably better to

have a few large partitions, just in case something does go wrong. (Note that `small'
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and `large' are used in a relative sense here; your needs for disk space decide what

the threshold is.)

If you have several disks, you might wish to have the root �lesystem (including

/usr) on one, and the users' home directories on another.

It is a good idea to be prepared to experiment a bit with di�erent partitioning

schemes (over time, not just while �rst installing the system). This is a bit of work,

since it essentially requires you to install the system from scratch several times, but

it is the only way to be sure you do it right.

4.8.2 Space requirements

The Linux distribution you install will give some indication of how much disk space

you need for various con�gurations. Programs installed separately may also do the

same. This will help you plan your disk space usage, but you should prepare for the

future and reserve some extra space for things you will notice later that you need.

The amount you need for user �les depends on what your users wish to do. Most

people seem to need as much space for their �les as possible, but the amount they

will live happily with varies a lot. Some people do only light text processing and will

survive nicely with a few megabytes, others do heavy image processing and will need

gigabytes.

By the way, when comparing �le sizes given in kilobytes or megabytes and disk

space given in megabytes, it can be important to know that the two units can be

di�erent. Some disk manufacturers like to pretend that a kilobyte is 1000 bytes and

a megabyte is 1000 kilobytes, while all the rest of the computing world uses 1024 for

both factors. Therefore, my 345 MB hard disk is really a 330 MB hard disk.

8

Swap space allocation is discusses in section 6.5.

4.8.3 Examples of hard disk allocation

I used to have a 109 MB hard disk. Now I am using a 330 MB hard disk. I'll explain

how and why I partitioned these disks.

The 109 MB disk I partitioned in a lot of ways, when my needs and the operating

systems I used changed; I'll explain two typical scenarios. First, I used to run MS-

DOS together with Linux. For that, I needed about 20 MB of hard disk, or just

8

Sic transit discus mundi.
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enough to have MS-DOS, a C compiler, an editor, a few other utilities, the program

I was working on, and enough free disk space to not feel claustrophobic. For Linux,

I had a 10 MB swap partition, and the rest, or 79 MB, was a single partition with

all the �les I had under Linux. I experimented with having separate root, /usr, and

/home partitions, but there was never enough free disk space in one piece to do much

interesting.

When I didn't need MS-DOS anymore, I repartitioned the disk so that I had a

12 MB swap partition, and again had the rest as a single �lesystem.

The 330 MB disk is partitioned into several partitions, like this:

5 MB root �lesystem

10 MB swap partition

180 MB /usr �lesystem

120 MB /home �lesystem

15 MB scratch partition

The scratch partition is for playing around with things that require their own par-

tition, e.g., trying di�erent Linux distributions, or comparing speeds of �lesystems.

When not needed for anything else, it is used as swap space (I like to have a lot of

open windows).

4.8.4 Adding more disk space for Linux

Adding more disk space for Linux is easy, at least after the hardware has been properly

installed (the hardware installation is outside the scope of this book). You format

it if necessary, then create the partitions and �lesystem as described above, and add

the proper lines to /etc/fstab so that it is mounted automatically.

4.8.5 Tips for saving disk space

The best tip for saving disk space is to avoid installing unnecessary programs. Most

Linux distributions have an option to install only part of the packages they contain,

and by analyzing your needs you might notice that you don't need most of them. This

will help save a lot of disk space, since many programs are quite large. Even if you

do need a particular package or program, you might not need all of it. For example,

some on-line documentation might be unnecessary, as might some of the Elisp �les

for GNU Emacs, some of the fonts for X11, or some of the libraries for programming.
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If you cannot uninstall packages, you might look into compression. Compression

programs such as gzip(1) or zip(1) will compress (and uncompress) individual �les

or groups of �les. The gzexe system will compress and uncompress programs invisibly

to the user (unused programs are compressed, then uncompressed as they are used).

The experimental DouBle system will compress all �les in a �lesystem, invisibly to

the programs that use them. (If you are familiar with products such as Stacker for

MS-DOS, the principle is the same.)
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Chapter 5

Directory Tree Overview

This chapter needs a quote. Suggestions, anyone?

This chapter describes the important parts of a standard Linux directory tree, based

on the FSSTND �lesystem standard. It outlines the normal way of breaking the di-

rectory tree into separate �lesystems with di�erent purposes and gives the motivation

behind this particular split. Some alternative ways of splitting are also described.

META: The next version of the FSSTND (1.3?) will cause many minor changes,

and some new ones, due to work to make the FSSTND work for BSD systems as well.

5.1 Background

This chapter is loosely based on the Linux �lesystem standard, FSSTND, version 1.2

(see the bibliography), which attempts to set a standard for how the directory tree

in a Linux system is organized. Such a standard has the advantage that it will be

easier to write or port software for Linux, and to administer Linux machines, since

everything will be in their usual places. There is no authority behind the standard

that forces anyone to comply to it, but it has got the support of most, if not all

Linux distributions. It is not a good idea to break with the FSSTND without very

compelling reasons. The FSSTND attempts to follow Unix tradition and current

trends, making Linux systems familiar to those with experience with other Unix

systems, and vice versa.

This chapter is not as detailed as the FSSTND. A system administrator should

also read the FSSTND for a complete understanding.

53
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This chapter does not explain all �les in detail. The intention is not to describe

every �le, but to give an overview of the system from a �lesystem point of view.

Further information of each �le is available elsewhere in this manual or the manual

pages.

The full directory tree is intended to be breakable into smaller parts, each on

its own disk or partition, to accomodate to disk size limits and to ease backup and

other system administration. The major parts are the root, /usr, /var, and /home

�lesystems. Each part has a di�erent purpose. The directory tree has been designed

so that it works well in a network of Linux machines which may share some parts of

the �lesystems over a read-only device (e.g., a CD-ROM), or over the network with

NFS.

The roles of the di�erent parts of the directory tree are described below.

� The root �lesystem is speci�c for each machine (it is generally stored on a local

disk, although it could possibly be downloaded to a ramdisk during bootup) and

contains the �les that are necessary for booting the system up, and to bring it

up to such a state that the other �lesystems may be mounted. The contents of

the root �lesystem will therefore be su�cient for the single user state. It will

also contain tools for �xing a broken system, and for recovering lost �les from

backups.

� The /usr �lesystem contains all commands, libraries, manual pages, and other

unchanging �les needed during normal operation. No �les in /usr should be

speci�c for any given machine, nor should they be modi�ed during normal use.

This allows the �les to be shared over the network, which can be cost-e�ective

since it saves disk space (there can easily be hundreds of megabytes in /usr), and

can make administration easier (only the master /usr needs to be changed when

updating an application, not each machine separately). Even if the �lesystem is

on a local disk, it could be mounted read-only, to lessen the chance of �lesystem

corruption during a crash.

� The /var �lesystem contains �les that change, such as spool directories (for

mail, news, printers, etc), log �les, formatted manual pages, and temporary

�les. Traditionally everything in /var has been somewhere below /usr, but that

made it impossible to mount /usr read-only.

� The /home �lesystem contains the users' home directories, i.e., all the real data on

the system. Separating home directories to their own directory tree or �lesystem

makes backups easier; the other parts often do not have to be backed up, or at
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least not as often (they seldom change). A big /home might have to be broken

on several �lesystems, which requires adding an extra naming level below /home,

e.g., /home/students and /home/staff.

Although the di�erent parts have been called �lesystems above, there is no require-

ment that they actually be on separate �lesystems. They could easily be kept in a

single one if the system is a small single-user system and he wants to keep things sim-

ple. The directory tree might also be divided into �lesystems di�erently, depending on

how large the disks are, and how space is allocated for various purposes. The impor-

tant part, though, is that all the standard names work; even if, say, /var and /usr are

actually on the same partition, the names /usr/lib/libc.a and /var/adm/messages

must work, for example by moving �les below /var into /usr/var, and making /var

a symlink to /usr/var.

The Unix �lesystem structure groups �les according to purpose, i.e., all commands

are in one place, all data �les in another, documentation in a third, and so on. An

alternative would be to group �les �les according to the program they belong to,

i.e., all Emacs �les would be in one directory, all T

E

X in another, and so on. The

problem with the latter approach is that it makes it di�cult to share �les (the program

directory often contains both static and shareable and changing and non-shareable

�les), and sometimes to even �nd the �les (e.g., manual pages in a huge number

of places, and making the manual page programs �nd all of them is a maintenance

nightmare).

5.2 The root �lesystem

The root �lesystem should generally be small, since it contains very critical �les and

a small, infrequently modi�ed �lesystem has a better chance of not getting corrupted.

A corrupted root �lesystem will generally mean that the system becomes unbootable

except with special measures (e.g., from a 
oppy), so you don't want to risk it.

The root directory generally doesn't contain any �les, except perhaps the standard

boot image for the system, usually called /vmlinuz. All other �les are in subdirecto-

ries in the root �lesystems:

/bin Commands needed during bootup that might be used by normal users

(probably after bootup).

/sbin Like /bin, but the commands are not intended for normal users, al-
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though they may use them if necessary and allowed.

/etc Con�guration �les speci�c to the machine.

/root The home directory for user root.

/lib Shared libraries needed by the programs on the root �lesystem.

/lib/modules Loadable kernel modules, especially those that are needed to boot

the system when recovering from disasters (e.g., network and �lesystem

drivers).

/dev Device �les.

/tmp Temporary �les. Programs running after bootup should use /var/tmp,

not /tmp, since the former is probably on a disk with more space.

/boot Files used by the bootstrap loader, e.g., LILO. Kernel images are often

kept here instead of in the root directory. If there are many kernel

images, the directory can easily grow rather big, and it might be better

to keep it in a separate �lesystem. Another reason would be to make

sure the kernel images are within the �rst 1024 cylinders of an IDE

disk.

/mnt Mount point for temporary mounts by the system administrator. Pro-

grams aren't supposed to mount on /mnt automatically. /mntmight be

divided into subdirectories (e.g., /mnt/dosa might be the 
oppy drive

using an MS-DOS �lesystem, and /mnt/exta might be the same with

an ext2 �lesystem).

/proc, /usr, /var, /home Mount points for the other �lesystems.

5.2.1 The /etc directory

The /etc directory contains a lot of �les. Some of them are described below. For

others, you should determine which program they belong to and read the manual

page for that program. Many networking con�guration �les are in /etc as well, and

are described in the Networking Administrators' Guide.

/etc/rc or /etc/rc.d or /etc/rc?.d Scripts or directories of scripts to run at startup

or when changing the run level. See the chapter on init for further
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information.

/etc/passwd The user database, with �elds giving the username, real name, home

directory, encrypted password, and other information about each user.

The format is documented in the passwd(5) manual page.

/etc/fdprm Floppy disk parameter table. Describes what di�erent 
oppy disk for-

mats look like. Used by setfdprm(1). See the setfdprm(8) manual

page for more information.

/etc/fstab Lists the �lesystems mounted automatically at startup by the mount

-a command (in /etc/rc or equivalent startup �le). Under Linux, also

contains information about swap areas used automatically by swapon

-a. See section 4.6.5 and the mount(8)manual page for more informa-

tion.

/etc/group Similar to /etc/passwd, but describes groups instead of users. See the

group(5) manual page for more information.

/etc/inittab Con�guration �le for init(8).

/etc/issue Output by getty before the login prompt. Usually contains a short

description or welcoming message to the system. The contents are up

to the system administrator.

/etc/magic The con�guration �le for file(1). Contains the descriptions of various

�le formats based on which file guesses the type of the �le. See the

magic(8) and file(1) manual pages for more information.

/etc/motd Themessage of the day, automatically output after a successful login.

Contents are up to the system administrator. Often used for getting

information to every user, such as warnings about planned downtimes.

/etc/mtab List of currently mounted �lesystems. Initially set up by the scripts,

and updated automatically by the mount command. Used when a list

of mounted �lesystems is needed, e.g., by the df(1) command.

/etc/shadow Shadow password �le on systems with shadow password software in-

stalled. Shadow passwords move the encrypted password from /etc/passwd

into /etc/shadow; the latter is not readable by anyone except root.

This makes it harder to crack passwords.
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/etc/login.defs Con�guration �le for the login(1) command.

/etc/printcap Like /etc/termcap, but intended for printers. Di�erent syntax.

/etc/profile, /etc/csh.login, /etc/csh.cshrc Files executed at login or startup

time by the Bourne or C shells. These allow the system administrator to

set global defaults for all users. See the manual pages for the respective

shells.

/etc/securetty Identi�es secure terminals, i.e., the terminals from which root is

allowed to log in. Typically only the virtual consoles are listed, so that

it becomes impossible (or at least harder) to gain superuser privileges

by breaking into a system over a modem or a network.

/etc/shells Lists trusted shells. The chsh(1) command allows users to change

their login shell only to shells listed in this �le. ftpd, the server process

that provides FTP services for a machine, will check that the user's shell

is listed in /etc/shells and will not let people log in unles the shell is

listed there.

/etc/termcap The terminal capability database. Describes by what \escape se-

quences" various terminals can be controlled. Programs are written so

that instead of directly outputting an escape sequence that only works

on a particular brand of terminal, they look up the correct sequence to

do whatever it is they want to do in /etc/termcap. As a result most

programs work with most kinds of terminals. See the termcap(5),

curs termcap(3), and terminfo(5) manual pages for more informa-

tion.

META: HOSTNAME, adjtime, disktab, gettydefs, networking (exports, host.conf,

hosts, hosts.equiv, inetd.conf, named.*, networks, ntp.conf, protocols, resolv.conf,

rpc, services, syslog.conf), mtools, and so forth.

5.2.2 The /dev directory

The /dev directory contains the special device �les for all the devices. The device �les

are named using special conventions; these are described in appendix C. The device

�les are created during installation, and later with the /dev/MAKEDEV script. The

/dev/MAKEDEV.local is a script written by the system administrator that creates

local-only device �les or links (i.e., those that are not part of the standard MAKEDEV,
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such as device �les for some non-standard device driver).

5.3 The /usr �lesystem

The /usr �lesystem is often large, since all programs are installed there. All �les in

/usr usually come from a Linux distribution; locally installed programs and other

stu� goes below /usr/local. This makes it possible to update the system from

a new version of the distribution, or even a completely new distribution, without

having to install all programs again. Some of the subdirectories of /usr are listed

below (some of the less important directories have been dropped; see the FSSTND

for more information).

/usr/X11R6 The X Window System, all �les. To simplify the development and

installation of X, the X �les have not been integrated into the rest of

the system. There is a directory tree below /usr/X11R6 similar to that

below /usr itself.

/usr/X386 Similar to /usr/X11R6, but for X11 Release 5.

/usr/bin Almost all user commands. Some commands are in /bin or in /usr/local/bin.

/usr/sbin System administration commands that are not needed on the root

�lesystem, e.g., most server programs.

/usr/man, /usr/info, /usr/doc Manual pages, GNU Info documents, and miscel-

laneous other documentation �les, respectively.

/usr/include Header �les for the C programming language. This should actually

be below /usr/lib for consistency, but the tradition is overwhelmingly

in support for this name.

/usr/lib Unchanging data �les for programs and subsystems, including some

site-wide con�guration �les. The name lib comes from library; origi-

nally libraries of programming subroutines were stored in /usr/lib.

/usr/local The place for locally installed software and other �les.
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5.4 The /var �lesystem

The /var contains data that is changed when the system is running normally. It is

speci�c for each system, i.e., not shared over the network with other computers.

/var/catman A cache for man pages that are formatted on demand. The source

for manual pages is usually stored in /usr/man/man*; some manual

pages might come with a pre-formatted version, which is stored in

/usr/man/cat*. Other manual pages need to be formatted when they

are �rst viewed; the formatted version is then stored in /var/man so

that the next person to view the same page won't have to wait for

it to be formatted. (/var/catman is often cleaned in the same way

temporary directories are cleaned.)

/var/lib Files that change while the system is running normally.

/var/local Variable data for programs that are installed in /usr/local (i.e., pro-

grams that have been installed by the system administrator). Note that

even locally installed programs should use the other /var directories if

they are appropriate, e.g., /var/lock.

/var/lock Lock �les. Many programs follow a convention to create a lock �le in

/var/lock to indicate that they are using a particular device or �le.

Other programs will notice the lock �le and won't attempt to use the

device or �le.

/var/log Log �les from various programs, especially login (/var/log/wtmp,

which logs all logins ans logouts into the system) and syslog (/var/log/messages,

where all kernel and system program message are usually stored). File

in /var/log can often grow inde�nitely, and may require cleaning at

regular intervals.

/var/run Files that contain information about the system that is valid until the

system is next booted. For example, /var/run/utmp contains informa-

tion about people currently logged in.

/var/spool Directories for mail, news, printer queues, and other queued work. Each

di�erent spool has its own subdirectory below /var/spool, e.g., the

mailboxes of the users are in /var/spool/mail.
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/var/tmp Temporary �les that are large or that need to exist for a longer time

than what is allowed for /tmp. (Although the system administrator

might not allow very old �les in /var/tmp either.)

5.5 The /proc �lesystem

The /proc �lesystem contains a illusionary �lesystem. It does not exist on a disk.

Instead, the kernel creates it in memory. It is used to provide information about the

system (originally about processes, hence the name). Some of the more important

�les and directories are explained below. The /proc �lesystem is described in more

detail in the proc(5) manual page.

/proc/1 A directory with information about process number 1. Each process has

a directory below /proc with the name being its process identi�cation

number.

/proc/cpuinfo Information about the processor, such as its type, make, model, and

perfomance.

/proc/devices List of device drivers con�gured into the currently running kernel.

/proc/dma Shows which DMA channels are being used at the moment.

/proc/filesystems Filesystems con�gured into the kernel.

/proc/interrupts Shows which interrupts are in use, and how many of each there

have been.

/proc/ioports Which I/O ports are in use at the moment.

/proc/kcore An image of the physical memory of the system. This is exactly the

same size as your physical memory, but does not really take up that

much memory; it is generated on the 
y as programs access it. (Re-

member: unless you copy it elsewhere, nothing under /proc takes up

any disk space at all.)

/proc/kmsg Messages output by the kernel. These are also routed to syslog.

/proc/ksyms Symbol table for the kernel.
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/proc/loadavg The `load average' of the system; three meaningless indicators of

how much work the system has to do at the moment.

/proc/meminfo Information about memory usage, both physical and swap.

/proc/modules Which kernel modules are loaded at the moment.

/proc/net Status information about network protocols.

/proc/self A symbolic link to the process directory of the program that is looking

at /proc. When two processes look at /proc, they get di�erent links.

This is mainly a convenience to make it easier for programs to get at

their process directory.

/proc/stat Various statistics about the system, such as the number of page faults

since the system was booted.

/proc/uptime The time the system has been up.

/proc/version The kernel version.

Note that while the above �les tend to be easily readable text �les, they can sometimes

be formatted in a way that is not easily digestable. There are many commands that

do little more than read the above �les and format them for easier understanding. For

example, the free program reads /proc/meminfo and converts the amounts given in

bytes to kilobytes (and adds a little more information, as well).



Chapter 6

Memory Management

Minnet, jag har tappat mitt minne,

�ar jag svensk eller �nne

kommer inte ih�ag: : :

Inne, �ar jag ute eller inne

jag har luckor i minnet,

s�ad�ar sm�a ALKO-H

�

AL

Men besinne,

man t�atar med det br�annvin man f�ar,

fast�an minnet och helan g�ar.

(Bosse

�

Osterberg)

This section describes the Linux memory management features, i.e., virtual memory

and the disk bu�er cache. The purpose and workings and the things the system

administrator needs to take into consideration are described.

6.1 What is virtual memory?

Linux supports virtual memory, that is, using a disk as an extension of RAM so

that the e�ective size of usable memory grows correspondingly. The kernel will write

the contents of a currently unused block of memory to the hard disk so that the

memory can be used for another purpose. When the original contents are needed

again, they are read back into memory. This is all made completely transparent
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to the user; programs running under Linux only see the larger amount of memory

available and don't notice that parts of them reside on the disk from time to time.

Of course, reading and writing the hard disk is slower (on the order of a thousand

times slower) than using real memory, so the programs don't run as fast. The part

of the hard disk that is used as virtual memory is called the swap space.

Linux can use either a normal �le in the �lesystem or a separate partition for swap

space. A swap partition is faster, but it is easier to change the size of a swap �le

(there's no need to repartition the whole hard disk, and possibly install everything

from scratch). When you know how much swap space you need, you should go for a

swap partition, but if you are uncertain, you can use a swap �le �rst, use the system

for a while so that you can get a feel for how much swap you need, and then make a

swap partition when you're con�dent about its size.

You should also know that Linux allows one to use several swap partitions and/or

swap �les at the same time. This means that if you only occasionally need an unusual

amount of swap space, you can set up an extra swap �le at such times, instead of

keeping the whole amount allocated all the time.

6.2 Creating a swap area

A swap �le is an ordinary �le; it is in no way special to the kernel. The only thing

that matters to the kernel is that it has no holes, and that it is prepared for use with

mkswap(8). It must reside on a local disk, however; it can't reside in a �lesystem

that has been mounted over NFS.

The bit about holes is important. The swap �le reserves the disk space so that

the kernel can quickly swap out a page without having to go through all the things

that are necessary when allocating a disk sector to a �le. The kernel merely uses any

sectors that have already been allocated to the �le. Because a hole in a �le means

that there are no disk sectors allocated (for that place in the �le), it is not good for

the kernel to try to use them.

One good way to create the swap �le without holes is through the following com-

mand:

ttyp5 root ~ $ dd if=/dev/zero of=/extra-swap bs=1024 count=1024

1024+0 records in

1024+0 records out

ttyp5 root ~ $



6.3. Using a swap area 65

where /extra-swap is the name of the swap �le and the size of is given after the

count=. It is best for the size to be a multiple of 4, because the kernel writes out

memory pages, which are 4 kilobytes in size. If the size is not a multiple of 4, the

last couple of kilobytes may be unused.

A swap partition is also not special in any way. You create it just like any other

partition; the only di�erence is that it is used as a raw partition, that is, it will

not contain any �lesystem at all. It is a good idea to mark swap partitions as type

82 (Linux swap); this will the make partition listings clearer, even though it is not

strictly necessary to the kernel.

After you have created a swap �le or a swap partition, you need to write a signature

to its beginning; this contains some administrative information and is used by the

kernel. The command to do this is mkswap(8), used like this:

ttyp5 root ~ $ mkswap /extra-swap 1024

Setting up swapspace, size = 1044480 bytes

ttyp5 root ~ $

Note that the swap space is still not in use yet: it exists, but the kernel does not use

it to provide virtual memory.

The Linux memory manager limits the size of each swap area to 127.5 MB. A

larger swap space can be created, but only the �rst 127.5 MB are actually used. You

can, however, use up to 16 swap spaces simultaneously, for a total of almost 2 GB.

1

6.3 Using a swap area

An initialized swap area is taken into use with swapon(8). This command tells the

kernel that the swap area can be used. The path to the swap area is given as the

argument, so to start swapping on a temporary swap �le one might use the following

command.

swapon /usr/tmp/temporary-swap-file ttyp5 root ~ $ swapon /extra-swap

ttyp5 root ~ $

Swap areas can be used automatically by listing them in the /etc/fstab �le.

/dev/hda8 swap swap defaults

1

A gigabyte here, a gigabyte there, pretty soon we start talking about real memory.
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The startup scripts will run the command swapon -a, which will start swapping on

all the swap areas listed in /etc/fstab. Therefore, the swapon command is usually

used only when extra swap is needed.

You can monitor the use of swap areas with free(1). It will tell the total amount

of swap space used. The same information is available via top(1), or using the proc

�lesystem in �le /proc/meminfo. It is currently di�cult to get information on the

use of a speci�c swap area.

A swap area can be removed from use with swapoff(8). It is usually not necessary

to do it, except for temporary swap areas. Any pages in use in the swap area are

swapped in �rst; if there is not su�cient physical memory to hold them, they will then

be swapped out (to some other swap area). If there is not enough virtual memory to

hold all of the pages Linux will start to trash; after a long while it should recover,

but meanwhile the system is unusable. You should check (e.g., with free) that there

is enough free memory before removing a swap space from use.

All the swap areas that are used automatically with swapon -a can be removed

from use with swapoff -a; it looks at the �le /etc/fstab to �nd what to remove.

Any manually used swap areas will remain in use.

Sometimes a lot of swap space can be in use even though there is a lot of free

physical memory. This can happen for instance if at one point there is need to swap,

but later a big process that occupied much of the physical memory terminates and

frees the memory. The swapped-out data is not automatically swapped in until it is

needed, so the physical memory may remain free for a long time. There is no need to

worry about this, but it can be comforting to know what is happening.

6.4 Sharing swap areas with other operating systems

Virtual memory is built into many operating systems. Since they each need it only

when they are running, i.e., never at the same time, the swap areas of all but the

currently running one are being wasted. It would be more e�cient for them to share a

single swap area. This is possible, but can require a bit of hacking. The Tips-HOWTO

contains some advice on how to implement this.
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6.5 Allocating swap space

Some people will tell you that you should allocate twice as much swap space as you

have physical memory, but this is a bogus rule. Here's how to do it properly:

1. Estimate your total memory needs. This is the largest amount of memory you'll

probably need at a time, that is the sum of the memory requirements of all the

programs you want to run at the same time. This can be done by running at the

same time all the programs you are likely to ever be running at the same time.

For instance, if you want to run X, you should allocate about 8 MB for it,

gcc wants several megabytes (some �les need an unusually large amount, up to

several tens of megabytes, but usually about four should do), and so on. The

kernel will use about a megabyte by itself, and the usual shells and other small

utilities perhaps a few hundred kilobytes (say a megabyte together). There is no

need to try to be exact, rough estimates are �ne, but you might want to be on the

pessimistic side. Remember that if there are going to be several people using the

system at the same time, they are all going to consumememory. (However, if two

people run the same program at the same time, the total memory consumption

is usually not double, since code pages and shared libraries exist only once.) The

free(8) and ps(1) commands are useful for estimating the memory needs.

2. Add some security to the estimate in step 1. This is because estimates of program

sizes will probably be wrong, because you'll probably forget some programs you

want to run, and to make certain that you have some extra space just in case. A

couple of megabytes should be �ne. (It is better to allocate too much than too

little swap space, but there's no need to over-do it and allocate the whole disk,

since unused swap space is wasted space; see later about adding more swap.)

Also, since it is nicer to deal with even numbers, you can round the value up to

the next full megabyte.

3. Based on the computations in steps 1 and 2, you know how much memory you'll

be needing in total. So, in order to allocate swap space, you just need to subtract

the size of your physical memory from the total memory needed, and you know

how much swap space you need. (On some versions of UNIX, you need to allocate

space for an image of the physical memory as well, so the amount computed in

step 2 is what you need and you shouldn't do the subtraction.)

4. If your calculated swap area is very much larger than your physical memory

(more than a couple times larger), you should probably invest in more physical

memory, otherwise performance will be too low.
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6.6 The bu�er cache

Reading from a disk

2

is very slow compared to accessing (real) memory. In addition,

it is common to read the same part of a disk several times during relatively short

periods of time. For example, one might �rst read an e-mail message, then read the

letter into an editor when replying to it, then make the mail program read it again

when copying it to a folder. Or, consider how often the command ls might be run

on a system with many users. By reading the information from disk only once and

then keeping it in memory until no longer needed, one can speed up all but the �rst

read. This is called disk bu�ering, and the memory used for the purpose is called

the bu�er cache.

Since memory is, unfortunately, a �nite, nay, scarce resource, the bu�er cache

usually cannot be big enough (it can't hold all the data one ever wants to use). When

the cache �lls up, the data that has been unused for the longest time is discarded and

the memory thus freed is used for the new data.

Disk bu�ering works for writes as well. On the one hand, data that is written

is often soon read again (e.g., a source code �le is saved to a �le, then read by the

compiler), so putting data that is written in the cache is a good idea. On the other

hand, by only putting the data into the cache, not writing it to disk at once, the

program that writes runs quicker. The writes can then be done in the background,

without slowing down the other programs.

Most operating systems have bu�er caches (although they might be called some-

thing else), but not all of them work according to the above principles. Some are

write-through: the data is written to disk at once (it is kept in the cache as well,

of course). The cache is called write-back if the writes are done at a later time.

Write-back is more e�cient than write-through, but also a bit more prone to errors:

if the machine crashes, or the power is cut at a bad moment, or the 
oppy is removed

from the disk drive before the data in the cache waiting to be written gets written,

the changes in the cache are usually lost. This might even mean that the �lesystem

(if there is one) is not in full working order, perhaps because the unwritten data held

important changes to the bookkeeping information. Because of this, you should never

turn o� the power without using a proper shutdown procedure (see an as yet unwrit-

ten chapter), or remove a 
oppy from the disk drive until it has been unmounted (if

it was mounted) or after whatever program is using it has signaled that it is �nished

and the 
oppy drive light doesn't shine anymore. The sync(8) command 
ushes

the bu�er, i.e., forces all unwritten data to be written to disk, and can be used when

2

Except a RAM disk, for obvious reasons.
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one wants to be sure that everything is safely written. In traditional UNIX systems,

there is a program running in the background which does a sync every 30 seconds, so

it is usually not necessary to use sync. Linux has an additional daemon, bdflush(8),

that does a more imperfect sync more frequently to avoid the sudden freeze due to

heavy disk I/O that sync sometimes causes.

The cache does not actually bu�er �les, but blocks, which are the smallest units

of disk I/O (under Linux, they are usually 1 kB). This way, also directories, super

blocks, other �lesystem bookkeeping data, and non-�lesystem disks are cached.

The e�ectiveness of a cache is primarily decided by its size. A small cache is next

to useless: it will hold so little data that all all cached data is 
ushed from the cache

before it is reused. The critical size depends on how much data is read and written,

and how often the same data is accessed. The only way to know is to experiment.

If the cache is of a �xed size, it is not very good to have it too big, either, because

that might make the free memory too small and cause swapping (which is also slow).

To make the most e�cient use of real memory, Linux automatically uses all free RAM

for bu�er cache, but also automatically makes the cache smaller when programs need

more memory.

Under Linux, you do not need to do anything to make use of the cache, it happens

completely automatically. Except for following the proper procedures for shutdown

and removing 
oppies, you do not need to worry about it.



70 Chapter 6. Memory Management



Chapter 7

Logging In And Out

This chapter needs a quote. Suggestions, anyone?

This section describes what happens when a user logs in or out. The various inter-

actions of background processes, log �les, con�guration �les, and so on are described

in some detail.

7.1 Logins via terminals

Figure 7.1 shows how logins happen via terminals. First, init makes sure there is a

getty program for the terminal connection (or console). getty listens at the terminal

and waits for the user to notify that he is ready to login in (this usually means that

the user must type something). When it notices a user, getty outputs a welcome

message (stored in /etc/issue), and prompts for the username, and �nally runs the

login program. login gets the username as a parameter, and prompts the user for

the password. If these match, login starts the shell con�gured for the user; else it

just exits and terminates the process (perhaps after giving the user another chance

at entering the username and password). init notices that the process terminated,

and starts a new getty for the terminal.

Note that the only process new process is created by init (using the fork(2)

system call); getty and login only replace the program running in the process (using

the exec(3) system call).

A separate program for noticing the user is needed for serial lines, since it can be

(and traditionally was) complicated to notice when a terminal becomes active. getty
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also adapts to the speed and other settings of the connection, which is important

especially for dial-in connections, where these parameters may change from call to

call.

There are several versions of getty and init in use, all with their good and bad

points. It is a good idea to learn about the versions on your system, and also about

the other versions (you could use the Linux Software Map to search them). If you

don't have dial-in's, you probably don't have to worry about getty, but init is still

important.

7.2 Logins via the network

Two computers in the same network are usually linked via a single physical cable.

When they communicate over the network, the programs in each computer that take

part in the communication are linked via a virtual connection, a sort of imaginary

cable. As far as the programs at either end of the virtual connection are concerned,

they have a monopoly on their own cable. However, since the cable is not real, only

imaginary, the operating systems of both computers can have several virtual con-

nections share the same physical cable. This way, using just a single cable, several

programs can communicate without having to know of or care about the other com-

munications. It is even possible to have several computers use the same cable; the

virtual connections exist between two computers, and the other computers ignore

those connections that they don't take part in.

That's a complicated and over-abstracted description of the reality. It might,

however, be good enough to understand the important reason why network logins are

somewhat di�erent from normal logins. The virtual connections are established when

there are two programs on di�erent computers that wish to communicate. Since it is

in principle possible to login from any computer in a network to any other computer,

there is a huge number of potential virtual communications. Because of this, it is not

practical to start a getty for each potential login.

There is a single process corresponding to getty that handles all network logins.

When it notices an incoming network login (i.e., it notices that it gets a new virtual

connection to some other computer), it starts a new process to handle that single

login. The original process remains and continues to listen for new logins.

To make things a bit more complicated, there is more than one communication

protocol for network logins. The two most important ones are telnet and rlogin.

In addition to logins, there are many other virtual connections that may be made (for
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FTP, Gopher, HTTP, and other network services). It would be ine�ective to have a

separate process listening for a particular type of connection, so instead there is only

one listener that can recognize the type of the connection and can start the correct

type of program to provide the service. This single listener is called inetd; see the

\Linux Network Administrators' Guide" for more information.

7.3 What login does

The login program takes care of authenticating the user (making sure that the user-

name and password match), and of setting up an initial environment for the user by

setting permissions for the serial line and starting the shell.

Part of the initial setup is outputting the contents of the �le /etc/motd (short

for message of the day) and checking for electronic mail. These can be disabled by

creating a �le called .hushlogin in the user's home directory.

If the �le /etc/nologin exists, logins are disabled. That �le is typically created

by shutdown(8) and relatives. login checks for this �le, and will refuse to accept a

login if it exists. If it does exist, login outputs it contents to the terminal before it

quits.

login logs all failed login attempts in a system log �le (via syslog). It also logs

all logins by root. Both of these can be useful when tracking down intruders.

Currently logged in people are listed in /var/run/utmp. This �le is valid only until

the system is next rebooted or shut down; it is cleared when the system is booted. It

lists each user and the terminal (or network connection) he is using, along with some

other useful information. The who, w, and other similar commands look in utmp to

see who are logged in.

All successful logins are recorded into /var/log/wtmp. This �le will grow without

limit, so it must be cleaned regularly, for example by having a weekly cron job to

clear it.

1

The last command browses wtmp.

Both utmp and wtmp are in a binary format (see the utmp(5) manual page); it is

unfortunately not convenient to examine them without special programs.

1

Good Linux distributions do this out of the box.
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7.4 X and xdm

META: X implements logins via xdm; also: xterm -ls

7.5 Access control

The user database is traditionally contained in the /etc/passwd �le. Some systems

use shadow passwords, and have moved the passwords to /etc/shadow. Sites with

many computers that share the accounts use NIS or some other method to store

the user database; they might also automatically copy the database from one central

location to all other computers.

The user database contains not only the passwords, but also some additional infor-

mation about the users, such as their real names, home directories, and login shells.

This other information needs to be public, so that anyone can read it. Therefore the

password is stored encrypted. This does have the drawback that anyone with access

to the encrypted password can use various cryptographical methods to guess it, with-

out trying to actually log into the computer. Shadow passwords try to avoid this

by moving the password into another �le, which only root can read (the password

is still stored encrypted). However, installing shadow passwords later onto a system

that did not support them can be di�cult.

With or without passwords, it is important to make sure that all passwords in a

system are good, i.e., not easily guessable. The crack program can be used to crack

passwords; any password it can �nd is by de�nition not a good one. While crack

can be run be intruders, it can also be run by the system adminstrator to avoid bad

passwords. Good passwords can also be enforced by the passwd(1) program; this is

in fact more e�ective in CPU cycles, since cracking passwords requires quite a lot of

computation.

The user group database is kept in /etc/group; for systems with shadow pass-

words, there can be a /etc/shadow.group.

root usually can't login via most terminals or the network, only via terminals

listed in the /etc/securetty �le. This makes it necessary to get physical access to

one of these terminals. It is, however, possible to log in via any terminal as any other

user, and use the su command to become root.
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7.6 Shell startup

When an interactive login shell starts, it automatically executes one or more pre-

de�ned �les. Di�erent shells execute di�erent �les; see the documentation of each

shell for further information.

Most shells �rst run some global �le, for example, the Bourne shell (/bin/sh)

and its derivatives execute /etc/profile; in addition, they execute

~

/.profile.

/etc/profile allows the system administrator to have set up a common user en-

vironment, especially by setting the PATH to include local command directories in

addition to the normal ones. On the other hand,

~

/.profile allows the user to cus-

tomize the environment to his own tastes by overriding, if necessary, the default

environment.
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init: fork +

exec("/sbin/getty")

getty: wait for user

do they match?

login: exec("/bin/sh")

sh: read and execute

commands

sh: exit

login: exit

login: read password

exec("/bin/login")

getty: read username,

no

yes

START

Figure 7.1: Logins via terminals: the interaction of init, getty, login, and the shell (here,

/bin/sh).
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Introduction

Linux is a Unix-like operating system, which runs on PC-386 computers. It was

implemented �rst as extension to the Minix operating system [9] and its �rst versions

included support for the Minix �lesystem only. The Minix �lesystem contains two

serious limitations: block addresses are stored in 16 bit integers, thus the maximal

�lesystem size is restricted to 64 mega bytes, and directories contain �xed-size entries

and the maximal �le name is 14 characters.

We have designed and implemented two new �lesystems that are included in the

standard Linux kernel. These �lesystems, called \Extended File System" (Ext fs) and

\Second Extended File System" (Ext2 fs) raise the limitations and add new features.

In this paper, we describe the history of Linux �lesystems. We brie
y introduce the

fundamental concepts implemented in Unix �lesystems. We present the implemen-

tation of the Virtual File System layer in Linux and we detail the Second Extended

File System kernel code and user mode tools. Last, we present performance measure-

ments made on Linux and BSD �lesystems and we conclude with the current status

77
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of Ext2fs and the future directions.

A.1 History of Linux �lesystems

In its very early days, Linux was cross-developed under the Minix operating system.

It was easier to share disks between the two systems than to design a new �lesystem,

so Linus Torvalds decided to implement support for the Minix �lesystem in Linux.

The Minix �lesystem was an e�cient and relatively bug-free piece of software.

However, the restrictions in the design of the Minix �lesystem were too limiting,

so people started thinking and working on the implementation of new �lesystems in

Linux.

In order to ease the addition of new �lesystems into the Linux kernel, a Virtual

File System (VFS) layer was developed. The VFS layer was initially written by Chris

Provenzano, and later rewritten by Linus Torvalds before it was integrated into the

Linux kernel. It will be described in section A.3 of this paper.

After the integration of the VFS in the kernel, a new �lesystem, called the \Ex-

tended File System" was implemented in April 1992 and added to Linux 0.96c. This

new �lesystem removed the two big Minix limitations: its maximal size was 2 giga

bytes and the maximal �le name size was 255 characters. It was an improvement over

the Minix �lesystem but some problems were still present in it. There was no support

for the separate access, inode modi�cation, and data modi�cation timestamps. The

�lesystem used linked lists to keep track of free blocks and inodes and this produced

bad performances: as the �lesystem was used, the lists became unsorted and the

�lesystem became fragmented.

As a response to these problems, two new �lesytems were released in Alpha version

in January 1993: the Xia �lesystem and the Second Extended File System. The Xia

�lesystem was heavily based on the Minix �lesystem kernel code and only added a few

improvements over this �lesystem. Basically, it provided long �le names, support for

bigger partitions and support for the three timestamps. On the other hand, Ext2fs was

based on the Extfs code with many reorganizations and many improvements. It had

been designed with evolution in mind and contained space for future improvements.

It will be described with more details in section A.4.

When the two new �lesystems were �rst released, they provided essentially the

same features. Due to its minimal design, Xia fs was more stable than Ext2fs. As the

�lesystems were used more widely, bugs were �xed in Ext2fs and lots of improvements
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and new features were integrated. Ext2fs is now very stable and has become the de-

facto standard Linux �lesystem.

The table A.1 contains a summary of the features provided by the di�erent �lesys-

tems.

Table A.1: Summary of the �lesystem features

Minix FS Ext FS Ext2 FS Xia FS

Max FS size 64 MB 2 GB 4 TB 2 GB

Max �le size 64 MB 2 GB 2 GB 64 MB

Max �le name 16/30 c 255 c 255 c 248 c

3 times support No No Yes Yes

Extensible No No Yes No

Var. block size No No Yes No

Maintained Yes No Yes ?

A.2 Basic File System Concepts

Every Linux �lesystem implements a basic set of common concepts derivated from

the Unix operating system [2]: �les are represented by inodes, directories are simply

�les containing a list of entries and devices can be accessed by requesting I/O on

special �les.

A.2.1 Inodes

Each �le is represented by a structure, called an inode. Each inode contains the

description of the �le: �le type, access rights, owners, timestamps, size, pointers to

data blocks. The addresses of data blocks allocated to a �le are stored in its inode.

When a user requests an I/O operation on the �le, the kernel code converts the

current o�set to a block number, uses this number as an index in the block addresses

table and reads or writes the physical block. Figure A.1 represents the structure of

an inode.
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Direct blocks

Indirect blocks

Double indirect

blocks

inode

Infos

Figure A.1: Structure of an inode

A.2.2 Directories

Directories are structured in a hierarchical tree. Each directory can contain �les and

subdirectories.

Directories are implemented as a special type of �les. Actually, a directory is a �le

containing a list of entries. Each entry contains an inode number and a �le name.

When a process uses a pathname, the kernel code searchs in the directories to �nd

the corresponding inode number. After the name has been converted to an inode

number, the inode is loaded into memory and is used by subsequent requests.

Figure A.2 represents a directory.

A.2.3 Links

Unix �lesystems implement the concept of link. Several names can be associated

with a inode. The inode contains a �eld containing the number associated with the

�le. Adding a link simply consists in creating a directory entry, where the inode

number points to the inode, and in incrementing the links count in the inode. When

a link is deleted, i.e. when one uses the rm command to remove a �lename, the kernel

decrements the links count and deallocates the inode if this count becomes zero.
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Inode table
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i2

i4

i1

name1

name2

name3

name4

Figure A.2: Structure of a directory

This type of link is called a hard link and can only be used within a single �lesystem:

it is impossible to create cross-�lesystem hard links. Moreover, hard links can only

point on �les: a directory hard link cannot be created to prevent the apparition of a

cycle in the directory tree.

Another kind of links exists in most Unix �lesystems. Symbolic links are simply

�les which contain a �lename. When the kernel encounters a symbolic link during

a pathname to inode conversion, it replaces the name of the link by its contents,

i.e. the name of the target �le, and restarts the pathname interpretation. Since a

symbolic link does not point to an inode, it is possible to create cross-�lesystems

symbolic links. Symbolic links can point to any type of �le, even on nonexistent �les.

Symbolic links are very useful because they don't have the limitations associated to

hard links. However, they use some disk space, allocated for their inode and their

data blocks, and cause an overhead in the pathname to inode conversion because the

kernel has to restart the name interpretation when it encounters a symbolic link.

A.2.4 Device special �les

In Unix-like operating systems, devices can be accessed via special �les. A device

special �le does not use any space on the �lesystem. It is only an access point to the

device driver.

Two types of special �les exist: character and block special �les. The former allows

I/O operations in character mode while the later requires data to be written in block

mode via the bu�er cache functions. When an I/O request is made on a special �le,

it is forwarded to a (pseudo) device driver. A special �le is referenced by a major
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number, which identi�es the device type, and a minor number, which identi�es the

unit.

A.3 The Virtual File System

A.3.1 Principle

The Linux kernel contains a Virtual File System layer which is used during system

calls acting on �les. The VFS is an indirection layer which handles the �le oriented

system calls and calls the necessary functions in the physical �lesystem code to do

the I/O.

This indirection mechanism is frequently used in Unix-like operating systems to

ease the integration and the use of several �lesystem types [5, 8].

When a process issues a �le oriented system call, the kernel calls a function con-

tained in the VFS. This function handles the structure independent manipulations

and redirects the call to a function contained in the physical �lesystem code, which

is responsible for handling the structure dependent operations. Filesystem code uses

the bu�er cache functions to request I/O on devices. This scheme is illustrated on

�gure A.3.

A.3.2 The VFS structure

The VFS de�nes a set of functions that every �lesystem has to implement. This inter-

face is made up of a set of operations associated to three kinds of objects: �lesystems,

inodes, and open �les.

The VFS knows about �lesystem types supported in the kernel. It uses a table

de�ned during the kernel con�guration. Each entry in this table describes a �lesystem

type: it contains the name of the �lesystem type and a pointer on a function called

during the mount operation. When a �lesystem is to be mounted, the appropriate

mount function is called. This function is responsible for reading the superblock

from the disk, initializing its internal variables, and returning a mounted �lesystem

descriptor to the VFS. After the �lesystem is mounted, the VFS functions can use

this descriptor to access the physical �lesystem routines.

A mounted �lesystem descriptor contains several kinds of data: informations that

are common to every �lesystem types, pointers to functions provided by the physical

�lesystem kernel code, and private data maintained by the physical �lesystem code.
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Figure A.3: The VFS Layer

The function pointers contained in the �lesystem descriptors allow the VFS to access

the �lesystem internal routines.

Two other types of descriptors are used by the VFS: an inode descriptor and an

open �le descriptor. Each descriptor contains informations related to �les in use

and a set of operations provided by the physical �lesystem code. While the inode

descriptor contains pointers to functions that can be used to act on any �le (e.g.

create, unlink), the �le descriptors contains pointer to functions which can only act

on open �les (e.g. read, write).

A.4 The Second Extended File System

A.4.1 Motivations

The Second Extended File System has been designed and implemented to �x some

problems present in the �rst Extended File System. Our goal was to provide a pow-

erful �lesystem, which implements Unix �le semantics and o�ers advanced features.
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Of course, we wanted to Ext2fs to have excellent performance. We also wanted to

provide a very robust �lesystem in order to reduce the risk of data loss in intensive

use. Last, but not least, Ext2fs had to include provision for extensions to allow users

to bene�t from new features without reformatting their �lesystem.

A.4.2 \Standard" Ext2fs features

The Ext2fs supports standard Unix �le types: regular �les, directories, device special

�les and symbolic links.

Ext2fs is able to manage �lesystems created on really big partitions. While the

original kernel code restricted the maximal �lesystem size to 2 GB, recent work in

the VFS layer have raised this limit to 4 TB. Thus, it is now possible to use big disks

without the need of creating many partitions.

Ext2fs provides long �le names. It uses variable length directory entries. The

maximal �le name size is 255 characters. This limit could be extended to 1012 if

needed.

Ext2fs reserves some blocks for the super user (root). Normally, 5% of the blocks

are reserved. This allows the administrator to recover easily from situations where

user processes �ll up �lesystems.

A.4.3 \Advanced" Ext2fs features

In addition to the standard Unix features, Ext2fs supports some extensions which are

not usually present in Unix �lesystems.

File attributes allow the users to modify the kernel behavior when acting on a set

of �les. One can set attributes on a �le or on a directory. In the later case, new �les

created in the directory inherit these attributes.

BSD or System V Release 4 semantics can be selected at mount time. A mount

option allows the administrator to choose the �le creation semantics. On a �lesystem

mounted with BSD semantics, �les are created with the same group id as their parent

directory. System V semantics are a bit more complex: if a directory has the setgid

bit set, new �les inherit the group id of the directory and subdirectories inherit the

group id and the setgid bit; in the other case, �les and subdirectories are created with

the primary group id of the calling process.

BSD-like synchronous updates can be used in Ext2fs. A mount option allows

the administrator to request that metadata (inodes, bitmap blocks, indirect blocks
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and directory blocks) be written synchronously on the disk when they are modi�ed.

This can be useful to maintain a strict metadata consistency but this leads to poor

performances. Actually, this feature is not normally used, since in addition to the

performance loss associated with using synchronous updates of the metadata, it can

cause corruption in the user data which will not be 
agged by the �lesystem checker.

Ext2fs allows the administrator to choose the logical block size when creating the

�lesystem. Block sizes can typically be 1024, 2048 and 4096 bytes. Using big block

sizes can speed up I/O since fewer I/O requests, and thus fewer disk head seeks, need

to be done to access a �le. On the other hand, big blocks waste more disk space: on

the average, the last block allocated to a �le is only half full, so as blocks get bigger,

more space is wasted in the last block of each �le. In addition, most of the advantages

of larger block sizes are obtained by Ext2 �lesystem's preallocation techniques (see

section A.4.5).

Ext2fs implements fast symbolic links. A fast symbolic link does not use any data

block on the �lesystem. The target name is not stored in a data block but in the inode

itself. This policy can save some disk space (no data block needs to be allocated) and

speeds up link operations (there is no need to read a data block when accessing such

a link). Of course, the space available in the inode is limited so not every link can be

implemented as a fast symbolic link. The maximal size of the target name in a fast

symbolic link is 60 characters. We plan to extend this scheme to small �les in a near

future.

Ext2fs keeps track of the �lesystem state. A special �eld in the superblock is used

by the kernel code to indicate the status of the �le system. When a �lesystem is

mounted in read/write mode, its state is set to \Not Clean". When it is unmounted

or remounted in read-only mode, its state is reset to \Clean". At boot time, the

�lesystem checker uses this information to decide if a �lesystem must be checked.

The kernel code also records errors in this �eld. When an inconsistency is detected

by the kernel code, the �lesystem is marked as \Erroneous". The �lesystem checker

tests this to force the check of the �lesystem regardless of its apparently clean state.

Always skipping �lesystem checks may sometimes be dangerous so Ext2fs provides

two ways to force checks at regular intervals. A mount counter is maintained in the

superblock. Each time the �lesystem is mounted in read/write mode, this counter

is incremented. When it reaches a maximal value (also recorded in the superblock),

the �lesystem checker forces the check even if the �lesystem is \Clean". A last check

time and a maximal check interval are also maintained in the superblock. These

two �elds allow the administrator to request periodical checks. When the maximal

check interval has been reached, the checker ignores the �lesystem state and forces a
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�lesystem check.

Ext2fs o�ers tools to tune the �lesystem behavior. The tune2fs program can be

used to modify:

� the error behavior. When an inconsistency is detected by the kernel code, the

�lesystem is marked as \Erroneous" and one of the three following actions can

be done: continue normal execution, remount the �lesystem in read-only mode

to avoid corrupting the �lesystem, make the kernel panic and reboot to run the

�lesystem checker.

� the maximal mount count.

� the maximal check interval.

� the number of logical blocks reserved for the super user.

Mount options can also be used to change the kernel error behavior.

An attribute allows the users to request secure deletion on �les. When such a �le

is deleted, random data is written in the disk blocks previously allocated to the �le.

This prevents malicious people from gaining access to the previous content of the �le

by using a disk editor.

Last, new types of �les inspired from the 4.4 BSD �lesystem have recently been

added to Ext2fs. Immutable �les can only be read: nobody can write or delete

them. This can be used to protect sensitive con�guration �les. Append-only �les can

be opened in write mode but data is always appended at the end of the �le. Like

immutable �les, they cannot be deleted or renamed. This is especially useful for log

�les which can only grow.

A.4.4 Physical Structure

The physical structure of Ext2 �lesystems has been strongly in
uenced by the layout

of the BSD �lesystem [6]. A �lesystem is made up of block groups. Block groups are

analogous to BSD FFS's cylinder groups. However, block groups are not tied to the

physical layout of the blocks on the disk, since modern drives tend to be optimized

for sequential access and hide their physical geometry to the operating system.

The physical structure of a �lesystem is represented on �gure A.4.

Each block group contains a redundant copy of crucial �lesystem control infor-

mations (superblock and the �lesystem descriptors) and also contains a part of the

�lesystem (a block bitmap, an inode bitmap, a piece of the inode table, and data

blocks). The structure of a block group is represented on �gure A.5.
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Figure A.4: Physical structure of an Ext2 �lesystem
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Figure A.5: Structure of a block group

Using block groups is a big win in terms of reliability: since the control structures

are replicated in each block group, it is easy to recover from a �lesystem where the

superblock has been corrupted. This structure also helps to get good performances:

by reducing the distance between the inode table and the data blocks, it is possible

to reduce the disk head seeks during I/O on �les.

In Ext2fs, directories are managed as linked lists of variable length entries. Each

entry contains the inode number, the entry length, the �le name and its length.

By using variable length entries, it is possible to implement long �le names without

wasting disk space in directories. The structure of a directory entry is shown on

�gure A.6.

inode number entry length name length �lename

Figure A.6: Structure of a directory entry

As an example, �gure A.7 represents the structure of a directory containing three

�les: file1, long file name, and f2.

A.4.5 Performance optimizations

The Ext2fs kernel code contains many performance optimizations, which tend to

improve I/O speed when reading and writing �les.

Ext2fs takes advantage of the bu�er cache management by performing readaheads:

when a block has to be read, the kernel code requests the I/O on several contiguous

blocks. This way, it tries to ensure that the next block to read will already be loaded

into the bu�er cache. Readaheads are normally performed during sequential reads on
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Figure A.7: Example of directory

�les and Ext2fs extends them to directory reads, either explicit reads (readdir(2)

calls) or implicit ones (namei kernel directory lookup).

Ext2fs also contains many allocation optimizations. Block groups are used to

cluster together related inodes and data: the kernel code always tries to allocate data

blocks for a �le in the same group as its inode. This is intended to reduce the disk

head seeks made when the kernel reads an inode and its data blocks.

When writing data to a �le, Ext2fs preallocates up to 8 adjacent blocks when

allocating a new block. Preallocation hit rates are around 75% even on very full

�lesystems. This preallocation achieves good write performances under heavy load.

It also allows contiguous blocks to be allocated to �les, thus it speeds up the future

sequential reads.

These two allocation optimizations produce a very good locality of:

� related �les through block groups

� related blocks through the 8 bits clustering of block allocations.

A.5 The Ext2fs library

To allow user mode programs to manipulate the control structures of an Ext2 �lesys-

tem, the libext2fs library was developed. This library provides routines which can

be used to examine and modify the data of an Ext2 �lesystem, by accessing the

�lesystem directly through the physical device.

The Ext2fs library was designed to allow maximal code reuse through the use of

software abstraction techniques. For example, several di�erent iterators are provided.

A program can simply pass in a function to ext2fs block interate(), which will be

called for each block in an inode. Another iterator function allows an user-provided

function to be called for each �le in a directory.

Many of the Ext2fs utilities (mke2fs, e2fsck, tune2fs, dumpe2fs, and debugfs)

use the Ext2fs library. This greatly simpli�es the maintainance of these utilities, since

any changes to re
ect new features in the Ext2 �lesystem format need only be made

in one place | in the Ext2fs library. This code reuse also results in smaller binaries,

since the Ext2fs library can be built as a shared library image.
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Because the interfaces of the Ext2fs library are so abstract and general, new pro-

grams which require direct access to the Ext2fs �lesystem can very easily be written.

For example, the Ext2fs library was used during the port of the 4.4BSD dump and

restore backup utilities. Very few changes were needed to adapt these tools to Linux:

only a few �lesystem dependent functions had to be replaced by calls to the Ext2fs

library.

The Ext2fs library provides access to several classes of operations. The �rst class

are the �lesystem-oriented operations. A program can open and close a �lesystem,

read and write the bitmaps, and create a new �lesystem on the disk. Functions are

also available to manipulate the �lesystem's bad blocks list.

The second class of operations a�ect directories. A caller of the Ext2fs library can

create and expand directories, as well as add and remove directory entries. Functions

are also provided to both resolve a pathname to an inode number, and to determine

a pathname of an inode given its inode number.

The �nal class of operations are oriented around inodes. It is possible to scan the

inode table, read and write inodes, and scan through all of the blocks in an inode.

Allocation and deallocation routines are also available and allow user mode programs

to allocate and free blocks and inodes.

A.6 The Ext2fs tools

Powerful management tools have been developed for Ext2fs. These utilities are used

to create, modify, and correct any inconsistencies in Ext2 �lesystems. The mke2fs

program is used to initialize a partition to contain an empty Ext2 �lesystem.

The tune2fs program can be used to modify the �lesystem parameters. As ex-

plained in section A.4.3, it can change the error behavior, the maximal mount count,

the maximal check interval, and the number of logical blocks reserved for the super

user.

The most interesting tool is probably the �lesystem checker. E2fsck is intended

to repair �lesystem inconsistencies after an unclean shutdown of the system. The

original version of e2fsck was based on Linus Torvald's fsck program for the Minix

�lesystem. However, the current version of e2fsck was rewritten from scratch, using

the Ext2fs library, and is much faster and can correct more �lesystem inconsistencies

than the original version.

The e2fsck program is designed to run as quickly as possible. Since �lesystem
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checkers tend to be disk bound, this was done by optimizing the algorithms used by

e2fsck so that �lesystem structures are not repeatedly accessed from the disk. In

addition, the order in which inodes and directories are checked are sorted by block

number to reduce the amount of time in disk seeks. Many of these ideas were originally

explored by [3] although they have since been further re�ned by the authors.

In pass 1, e2fsck iterates over all of the inodes in the �lesystem and performs

checks over each inode as an unconnected object in the �lesystem. That is, these

checks do not require any cross-checks to other �lesystem objects. Examples of such

checks include making sure the �le mode is legal, and that all of the blocks in the

inode are valid block numbers. During pass 1, bitmaps indicating which blocks and

inodes are in use are compiled.

If e2fsck notices data blocks which are claimed by more than one inode, it invokes

passes 1B through 1D to resolve these con
icts, either by cloning the shared blocks

so that each inode has its own copy of the shared block, or by deallocating one or

more of the inodes.

Pass 1 takes the longest time to execute, since all of the inodes have to be read

into memory and checked. To reduce the I/O time necessary in future passes, critical

�lesystem information is cached in memory. The most important example of this

technique is the location on disk of all of the directory blocks on the �lesystem. This

obviates the need to re-read the directory inodes structures during pass 2 to obtain

this information.

Pass 2 checks directories as unconnected objects. Since directory entries do not

span disk blocks, each directory block can be checked individually without reference

to other directory blocks. This allows e2fsck to sort all of the directory blocks by

block number, and check directory blocks in ascending order, thus decreasing disk

seek time. The directory blocks are checked to make sure that the directory entries

are valid, and contain references to inode numbers which are in use (as determined

by pass 1).

For the �rst directory block in each directory inode, the `.' and `..' entries are

checked to make sure they exist, and that the inode number for the `.' entry matches

the current directory. (The inode number for the `..' entry is not checked until pass

3.)

Pass 2 also caches information concerning the parent directory in which each di-

rectory is linked. (If a directory is referenced by more than one directory, the second

reference of the directory is treated as an illegal hard link, and it is removed).

It is noteworthy to note that at the end of pass 2, nearly all of the disk I/O which
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e2fsck needs to perform is complete. Information required by passes 3, 4 and 5 are

cached in memory; hence, the remaining passes of e2fsck are largely CPU bound,

and take less than 5-10% of the total running time of e2fsck.

In pass 3, the directory connectivity is checked. E2fsck traces the path of each

directory back to the root, using information that was cached during pass 2. At this

time, the `..' entry for each directory is also checked to make sure it is valid. Any

directories which can not be traced back to the root are linked to the /lost+found

directory.

In pass 4, e2fsck checks the reference counts for all inodes, by iterating over all the

inodes and comparing the link counts (which were cached in pass 1) against internal

counters computed during passes 2 and 3. Any undeleted �les with a zero link count

is also linked to the /lost+found directory during this pass.

Finally, in pass 5, e2fsck checks the validity of the �lesystem summary informa-

tion. It compares the block and inode bitmaps which were constructed during the

previous passes against the actual bitmaps on the �lesystem, and corrects the on-disk

copies if necessary.

The �lesystem debugger is another useful tool. Debugfs is a powerful program

which can be used to examine and change the state of a �lesystem. Basically, it

provides an interactive interface to the Ext2fs library: commands typed by the user

are translated into calls to the library routines.

Debugfs can be used to examine the internal structures of a �lesystem, manually

repair a corrupted �lesystem, or create test cases for e2fsck. Unfortunately, this

program can be dangerous if it is used by people who do not know what they are

doing; it is very easy to destroy a �lesystem with this tool. For this reason, debugfs

opens �lesytems for read-only access by default. The user must explicitly specify the

-w 
ag in order to use debugfs to open a �lesystem for read/wite access.

A.7 Performance Measurements

A.7.1 Description of the benchmarks

We have run benchmarks to measure �lesystem performances. Benchmarks have been

made on a middle-end PC, based on a i486DX2 processor, using 16 MB of memory

and two 420 MB IDE disks. The tests were run on Ext2 fs and Xia fs (Linux 1.1.62)

and on the BSD Fast �lesystem in asynchronous and synchronous mode (FreeBSD

2.0 Alpha | based on the 4.4BSD Lite distribution).
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We have run two di�erent benchmarks. The Bonnie benchmark tests I/O speed on

a big �le | the �le size was set to 60 MB during the tests. It writes data to the �le

using character based I/O, rewrites the contents of the whole �le, writes data using

block based I/O, reads the �le using character I/O and block I/O, and seeks into the

�le. The Andrew Benchmark was developed at Carneggie Mellon University and has

been used at the University of Berkeley to benchmark BSD FFS and LFS. It runs

in �ve phases: it creates a directory hierarchy, makes a copy of the data, recursively

examine the status of every �le, examine every byte of every �le, and compile several

of the �les.

A.7.2 Results of the Bonnie benchmark

The results of the Bonnie benchmark are presented in table A.2.

Table A.2: Results of the Bonnie benchmark

Char Block Rewrite Char Block

Write Write Read Read

(KB/s) (KB/s) (KB/s) (KB/s) (KB/s)

BSD Async 710 684 401 721 888

BSD Sync 699 677 400 710 878

Ext2 fs 452 1237 536 397 1033

Xia fs 440 704 380 366 895

The results are very good in block oriented I/O: Ext2 fs outperforms other �lesys-

tems. This is clearly a bene�t of the optimizations included in the allocation routines.

Writes are fast because data is written in cluster mode. Reads are fast because con-

tiguous blocks have been allocated to the �le. Thus there is no head seek between

two reads and the readahead optimizations can be fully used.

On the other hand, performance is better in the FreeBSD operating system in

character oriented I/O. This is probably due to the fact that FreeBSD and Linux do

not use the same stdio routines in their respective C libraries. It seems that FreeBSD

has a more optimized character I/O library and its performance is better.

A.7.3 Results of the Andrew benchmark

The results of the Andrew benchmark are presented in table A.3.
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Table A.3: Results of the Andrew benchmark

P1 P2 P3 P4 P5

Create Copy Stat Grep Compile

(ms) (ms) (ms) (ms) (ms)

BSD Async 2203 7391 6319 17466 75314

BSD Sync 2330 7732 6317 17499 75681

Ext2 fs 790 4791 7235 11685 63210

Xia fs 934 5402 8400 12912 66997

The results of the two �rst passes show that Linux bene�ts from its asynchronous

metadata I/O. In passes 1 and 2, directories and �les are created and BSD syn-

chronously writes inodes and directory entries. There is an anomaly, though: even

in asynchronous mode, the performance under BSD is poor. We suspect that the

asynchronous support under FreeBSD is not fully implemented.

In pass 3, the Linux and BSD times are very similar. This is a big progress against

the same benchmark run six months ago. While BSD used to outperform Linux by

a factor of 3 in this test, the addition of a �le name cache in the VFS has �xed this

performance problem.

In passes 4 and 5, Linux is faster than FreeBSD mainly because it uses an uni�ed

bu�er cache management. The bu�er cache space can grow when needed and use more

memory than the one in FreeBSD, which uses a �xed size bu�er cache. Comparison

of the Ext2fs and Xiafs results shows that the optimizations included in Ext2fs are

really useful: the performance gain between Ext2fs and Xiafs is around 5{10 %.

A.8 Conclusion

The Second Extended File System is probably the most widely used �lesystem in the

Linux community. It provides standard Unix �le semantics and advanced features.

Moreover, thanks to the optimizations included in the kernel code, it is robust and

o�ers excellent performance.

Since Ext2fs has been designed with evolution in mind, it contains hooks that can

be used to add new features. Some people are working on extensions to the current

�lesystem: access control lists conforming to the Posix semantics [7], undelete, and

on the 
y �le compression.
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Ext2fs was �rst developed and integrated in the Linux kernel and is now actively

being ported to other operating systems. An Ext2fs server running on top of the GNU

Hurd has been implemented. People are also working on an Ext2fs port in the LITES

server, running on top of the Mach microkernel [1], and in the VSTa operating system.

Last, but not least, Ext2fs is an important part of the Masix operating system [4],

currently under development by one of the authors.

Acknowledgments

The Ext2fs kernel code and tools have been written mostly by the authors of this

paper. Some other people have also contributed to the development of Ext2fs either by

suggesting new features or by sending patches. We want to thank these contributors

for their help.



Bibliography

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid A. Tevanian, and

M. Young. Mach: A New Kernel Foundation For UNIX Development. In Pro-

ceedings of the USENIX 1986 Summer Conference, June 1986.

[2] M. Bach. The Design of the UNIX Operating System. Prentice Hall, 1986.

[3] E. Bina and P. Emrath. A Faster fsck for BSD Unix. In Proceedings of the

USENIX Winter Conference, January 1986.

[4] R. Card, E. Commelin, S. Dayras, and F. M�evel. The MASIX Multi-Server Op-

erating System. In OSF Workshop on Microkernel Technology for Distributed

Systems, June 1993.

[5] S. Kleiman. Vnodes: An Architecture for Multiple File System Types in Sun

UNIX. In Proceedings of the Summer USENIX Conference, pages 260{269, June

1986.

[6] M. McKusick, W. Joy, S. Le�er, and R. Fabry. A Fast File System for UNIX.

ACM Transactions on Computer Systems, 3:181{197, August 1984.

[7] Institute of Electrical and Inc Electronics Engineers. Security interface for the

portable operating system interface for computer environments - draft 13, 1992.

[8] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin. An Implementation of a

Log-Structured File System for UNIX. In Proceedings of the USENIX Winter

Conference, January 1993.

[9] A. Tanenbaum. Operating Systems: Design and Implementation. Prentice Hall,

1987.

95



96 BIBLIOGRAPHY



Appendix B

Measuring Holes

This appendix contains the interesting part of the program used to measure the

potential for holes in a �lesystem. The source distribution of the book contains the

full source code (sag/measure-holes/measure-holes.c).

int process(FILE *f, char *filename) {

static char *buf = NULL;

static long prev_block_size = -1;

long zeroes;

char *p;

if (buf == NULL || prev_block_size != block_size) {

free(buf);

buf = xmalloc(block_size + 1);

buf[block_size] = 1;

prev_block_size = block_size;

}

zeroes = 0;

while (fread(buf, block_size, 1, f) == 1) {

for (p = buf; *p == '\0'; )

++p;

if (p == buf+block_size)

zeroes += block_size;

}

if (zeroes > 0)

printf("%ld %s\n", zeroes, filename);

if (ferror(f)) {

errormsg(0, -1, "read failed for `%s'", filename);

return -1;

}

return 0;

}
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Appendix C

The Linux Device List

This is the device list, maintained by H. Peter Anvin (Peter.Anvin@linux.org), at

ftp://ftp.yggdrasil.com/pub/device-list/devices.tex. The rest of this text

is by Peter.

C.1 Introduction

This list is the successor to Rick Miller's Linux Device List, which he stopped main-

taining when he lost network access in 1993. It is a registry of allocated major device

numbers, as well as the recommended /dev directory nodes for these devices.

This list is available via FTP from ftp.yggdrasil.com in the directory /pub/device-list;

�lename is devices.format where format is txt (ASCII), tex (L

A

T

E

X), dvi (DVI) or

ps (PostScript). In cases of discrepancy, the L

A

T

E

X version has priority.

This document is included by reference into the Linux FilesystemStandard (FSSTND).

The FSSTND is available via FTP from tsx-11.mit.edu in the directory

/pub/linux/docs/linux-standards/fsstnd.

To have a major number allocated, or a minor number in situations where that

applies (e.g. busmice), please contact me. Also, if you have additional information

regarding any of the devices listed below, I would like to know.

Allocations marked (68k) apply to Linux/68k only.
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C.2 Major numbers

0 Unnamed devices (NFS mounts, loopback devices)

1 char Memory devices

block RAM disk

2 char Reserved for PTY's <tytso@athena.mit.edu>

block Floppy disks

3 char Reserved for PTY's <tytso@athena.mit.edu>

block First MFM, RLL and IDE hard disk/CD-ROM interface

4 char TTY devices

5 char Alternate TTY devices

6 char Parallel printer devices

7 char Virtual console access devices

8 block SCSI disk devices

9 char SCSI tape devices

block Multiple disk devices

10 char Non-serial mice, misc features

11 block SCSI CD-ROM devices

12 char QIC-02 tape

block MSCDEX CD-ROM callback support

13 char PC speaker

block 8-bit MFM/RLL/IDE controller

14 char Sound card

block BIOS harddrive callback support

15 char Joystick

block Sony CDU-31A/CDU-33A CD-ROM

16 char Reserved for scanners

block GoldStar CD-ROM

17 char Chase serial card (Under development)

block Optics Storage CD-ROM (Under development)

18 char Chase serial card { alternate devices

block Sanyo CD-ROM (Under development)

19 char Cyclades serial card

block Double compressed disk

20 char Cyclades serial card { alternate devices

block Hitachi CD-ROM (Under development)

21 char Generic SCSI access

22 char Digiboard serial card
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block Second MFM, RLL and IDE hard disk/CD-ROM interface

23 char Digiboard serial card { alternate devices

block Mitsumi proprietary CD-ROM

24 char Stallion serial card

block Sony CDU-535 CD-ROM

25 char Stallion serial card { alternate devices

block First Matsushita (Panasonic/SoundBlaster) CD-ROM

26 block Second Matsushita (Panasonic/SoundBlaster) CD-ROM

27 char QIC-117 tape

block Third Matsushita (Panasonic/SoundBlaster) CD-ROM

28 char Stallion serial card { card programming

block Fourth Matsushita (Panasonic/SoundBlaster) CD-ROM

block ACSI disk (68k)

29 char Universal frame bu�er

block Aztech/Orchid/Okano/Wearnes CD-ROM

30 char iBCS-2

block Philips LMS-205 CD-ROM

31 char MPU-401 MIDI

block ROM/
ash memory card

32 block Philips LMS-206 CD-ROM

33 block Modular RAM disk

34{223 Unallocated

224{254 Local use

255 Reserved

C.3 Minor numbers

0 Unnamed devices (NFS mounts, loopback devices)

0 reserved as null device number

1 char Memory devices

1 /dev/mem Physical memory access

2 /dev/kmem Kernel virtual memory access

3 /dev/null Null device

4 /dev/port I/O port access
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5 /dev/zero Null byte source

6 /dev/core OBSOLETE { should be a link to /proc/kcore

7 /dev/full Returns ENOSPC on write

block RAM disk

1 /dev/ramdisk RAM disk

2 char Reserved for PTY's <tytso@athena.mit.edu>

block Floppy disks

0 /dev/fd0 Controller 1, drive 1 autodetect

1 /dev/fd1 Controller 1, drive 2 autodetect

2 /dev/fd2 Controller 1, drive 3 autodetect

3 /dev/fd3 Controller 1, drive 4 autodetect

128 /dev/fd4 Controller 2, drive 1 autodetect

129 /dev/fd5 Controller 2, drive 2 autodetect

130 /dev/fd6 Controller 2, drive 3 autodetect

131 /dev/fd7 Controller 2, drive 4 autodetect

To specify format, add to the autodetect device number

0 /dev/fd? Autodetect format

4 /dev/fd?d360 5.25" 360K in a 360K drive

1

20 /dev/fd?h360 5.25" 360K in a 1200K drive

1

48 /dev/fd?h410 5.25" 410K in a 1200K drive

64 /dev/fd?h420 5.25" 420K in a 1200K drive

24 /dev/fd?h720 5.25" 720K in a 1200K drive

80 /dev/fd?h880 5.25" 880K in a 1200K drive

1

8 /dev/fd?h1200 5.25" 1200K in a 1200K drive

1

40 /dev/fd?h1440 5.25" 1440K in a 1200K drive

1

56 /dev/fd?h1476 5.25" 1476K in a 1200K drive

72 /dev/fd?h1494 5.25" 1494K in a 1200K drive

92 /dev/fd?h1600 5.25" 1600K in a 1200K drive

1

12 /dev/fd?u360 3.5" 360K Double Density

16 /dev/fd?u720 3.5" 720K Double Density

1

120 /dev/fd?u800 3.5" 800K Double Density

2

52 /dev/fd?u820 3.5" 820K Double Density

68 /dev/fd?u830 3.5" 830K Double Density
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84 /dev/fd?u1040 3.5" 1040K Double Density

1

88 /dev/fd?u1120 3.5" 1120K Double Density

1

28 /dev/fd?u1440 3.5" 1440K High Density

1

124 /dev/fd?u1600 3.5" 1600K High Density

1

44 /dev/fd?u1680 3.5" 1680K High Density

3

60 /dev/fd?u1722 3.5" 1722K High Density

76 /dev/fd?u1743 3.5" 1743K High Density

96 /dev/fd?u1760 3.5" 1760K High Density

116 /dev/fd?u1840 3.5" 1840K High Density

3

100 /dev/fd?u1920 3.5" 1920K High Density

1

32 /dev/fd?u2880 3.5" 2880K Extra Density

1

104 /dev/fd?u3200 3.5" 3200K Extra Density

108 /dev/fd?u3520 3.5" 3520K Extra Density

112 /dev/fd?u3840 3.5" 3840K Extra Density

1

36 /dev/fd?CompaQ Compaq 2880K drive; probably obsolete

1

Autodetectable format

2

Autodetectable format in a Double Density (720K) drive only

3

Autodetectable format in a High Density (1440K) drive only

NOTE: The letter in the device name (d, q, h or u) signi�es the type of drive

supported: 5.25" Double Density (d), 5.25" Quad Density (q), 5.25" High Density

(h) or 3.5" (any type, u). The capital letters D, H, or E for the 3.5" models have been

deprecated, since the drive type is insigni�cant for these devices.

3 char Reserved for PTY's <tytso@athena.mit.edu>

block First MFM, RLL and IDE hard disk/CD-ROM interface

0 /dev/hda Master: whole disk (or CD-ROM)

64 /dev/hdb Slave: whole disk (or CD-ROM)

For partitions, add to the whole disk device number

0 /dev/hd? Whole disk

1 /dev/hd?1 First primary partition

2 /dev/hd?2 Second primary partition

3 /dev/hd?3 Third primary partition

4 /dev/hd?4 Fourth primary partition
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5 /dev/hd?5 First logical partition

6 /dev/hd?6 Second logical partition

7 /dev/hd?7 Third logical partition

: : :

63 /dev/hd?63 59th logical partition

4 char TTY devices

0 /dev/console Console device

1 /dev/tty1 First virtual console

: : :

63 /dev/tty63 63rd virtual console

64 /dev/ttyS0 First serial port

: : :

127 /dev/ttyS63 64th serial port

128 /dev/ptyp0 First pseudo-tty master

: : :

191 /dev/ptysf 64th pseudo-tty master

192 /dev/ttyp0 First pseudo-tty slave

: : :

255 /dev/ttysf 64th pseudo-tty slave

Pseudo-tty's are named as follows:

� Masters are pty, slaves are tty;

� the fourth letter is one of pqrs indicating the 1st, 2nd, 3rd, 4th series of 16

pseudo-ttys each, and

� the �fth letter is one of 0123456789abcdef indicating the position within the

series.

5 char Alternate TTY devices

0 /dev/tty Current TTY device

64 /dev/cua0 Callout device corresponding to ttyS0

: : :

127 /dev/cua63 Callout device corresponding to ttyS63
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6 char Parallel printer devices

0 /dev/lp0 First parallel printer (0x3bc)

1 /dev/lp1 Second parallel printer (0x378)

2 /dev/lp2 Third parallel printer (0x278)

Not all computers have the 0x3bc parallel port, hence the "�rst" printer may be

either /dev/lp0 or /dev/lp1.

7 char Virtual console access devices

0 /dev/vcs Current vc text access

1 /dev/vcs1 tty1 text access

: : :

63 /dev/vcs63 tty63 text access

128 /dev/vcsa Current vc text/attribute access

129 /dev/vcsa1 tty1 text/attribute access

: : :

191 /dev/vcsa63 tty63 text/attribute access

NOTE: These devices permit both read and write access.

8 block SCSI disk devices

0 /dev/sda First SCSI disk whole disk

16 /dev/sdb Second SCSI disk whole disk

32 /dev/sdc Third SCSI disk whole disk

: : :

240 /dev/sdp Sixteenth SCSI disk whole disk

Partitions are handled in the same way as for IDE disks (see major number 3) except

that the limit on logical partitions is 11 rather than 59 per disk.

9 char SCSI tape devices

0 /dev/st0 First SCSI tape

1 /dev/st1 Second SCSI tape

: : :

128 /dev/nst0 First SCSI tape, no rewind-on-close

129 /dev/nst1 Second SCSI tape, no rewind-on-close
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: : :

block Multiple disk devices

0 /dev/md0 First device group

1 /dev/md1 Second device group

: : :

The multiple device driver is used to span a �lesystem across multiple physical disks.

10 char Non-serial mice, misc features

0 /dev/logibm Logitech bus mouse

1 /dev/psaux PS/2-style mouse port

2 /dev/inportbm Microsoft Inport bus mouse

3 /dev/atibm ATI XL bus mouse

4 /dev/jbm J-mouse

4 /dev/amigamouse Amiga Mouse (68k)

5 /dev/atarimouse Atari Mouse (68k)

128 /dev/beep Fancy beep device

129 /dev/modreq Kernel module load request

11 block SCSI CD-ROM devices

0 /dev/sr0 First SCSI CD-ROM

1 /dev/sr1 Second SCSI CD-ROM

: : :

The pre�x /dev/scd instead of /dev/sr has been used as well, and might make more

sense.

12 char QIC-02 tape

2 /dev/ntpqic11 QIC-11, no rewind-on-close

3 /dev/tpqic11 QIC-11, rewind-on-close

4 /dev/ntpqic24 QIC-24, no rewind-on-close

5 /dev/tpqic24 QIC-24, rewind-on-close

6 /dev/ntpqic120 QIC-120, no rewind-on-close

7 /dev/tpqic120 QIC-120, rewind-on-close

8 /dev/ntpqic150 QIC-150, no rewind-on-close
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9 /dev/tpqic150 QIC-150, rewind-on-close

The device names speci�ed are proposed { if there are \standard" names for these

devices, please let me know.

block MSCDEX CD-ROM callback support

0 /dev/dos cd0 First MSCDEX CD-ROM

1 /dev/dos cd1 Second MSCDEX CD-ROM

: : :

13 char PC speaker

0 /dev/pcmixer Emulates /dev/mixer

3 /dev/pcsp Emulates /dev/dsp (8-bit)

4 /dev/pcaudio Emulates /dev/audio

5 /dev/pcsp16 Emulates /dev/dsp (16-bit)

block 8-bit MFM/RLL/IDE controller

0 /dev/xda First XT disk whole disk

64 /dev/xdb Second XT disk whole disk

Partitions are handled in the same way as IDE disks (see major number 3).

14 char Sound card

0 /dev/mixer Mixer control

1 /dev/sequencer Audio sequencer

2 /dev/midi00 First MIDI port

3 /dev/dsp Digital audio

4 /dev/audio Sun-compatible digital audio

6 /dev/sndstat Sound card status information

8 /dev/sequencer2 Sequencer { alternate device

16 /dev/mixer1 Second soundcard mixer control

17 /dev/patmgr0 Sequencer patch manager

18 /dev/midi01 Second MIDI port

19 /dev/dsp1 Second soundcard digital audio

20 /dev/audio1 Second soundcard Sun digital audio

33 /dev/patmgr1 Sequencer patch manager
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34 /dev/midi02 Third MIDI port

50 /dev/midi03 Fourth MIDI port

block BIOS harddrive callback support

0 /dev/dos hda First BIOS harddrive whole disk

64 /dev/dos hdb Second BIOS harddrive whole disk

128 /dev/dos hdc Third BIOS harddrive whole disk

192 /dev/dos hdd Fourth BIOS harddrive whole disk

Partitions are handled in the same way as IDE disks (see major number 3).

15 char Joystick

0 /dev/js0 First joystick

1 /dev/js1 Second joystick

block Sony CDU-31A/CDU-33A CD-ROM

0 /dev/sonycd Sony CDU-31A CD-ROM

16 char Reserved for scanners

block GoldStar CD-ROM

0 /dev/gscd GoldStar CD-ROM

17 char Chase serial card (Under development)

0 /dev/ttyH0 First Chase port

1 /dev/ttyH1 Second Chase port

: : :

block Optics Storage CD-ROM (Under development)

0 /dev/optcd Optics Storage CD-ROM

18 char Chase serial card { alternate devices

0 /dev/cuh0 Callout device corresponding to ttyH0

1 /dev/cuh1 Callout device corresponding to ttyH1

: : :
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block Sanyo CD-ROM (Under development)

0 ? Sanyo CD-ROM

19 char Cyclades serial card

32 /dev/ttyC0 First Cyclades port

: : :

63 /dev/ttyC31 32nd Cyclades port

It would make more sense for these to start at 0...

block \Double" compressed disk

0 /dev/double0 First compressed disk

: : :

7 /dev/double7 Eighth compressed disk

128 /dev/cdouble0 Mirror of �rst compressed disk

: : :

135 /dev/cdouble7 Mirror of eighth compressed disk

See the Double documentation for an explanation of the \mirror" devices.

20 char Cyclades serial card { alternate devices

32 /dev/cub0 Callout device corresponding to ttyC0

: : :

63 /dev/cub31 Callout device corresponding to ttyC31

block Hitachi CD-ROM (Under development)

0 /dev/hitcd Hitachi CD-ROM

21 char Generic SCSI access

0 /dev/sg0 First generic SCSI device

1 /dev/sg1 Second generic SCSI device

: : :

22 char Digiboard serial card
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0 /dev/ttyD0 First Digiboard port

1 /dev/ttyD1 Second Digiboard port

: : :

block Second MFM, RLL and IDE hard disk/CD-ROM interface

0 /dev/hdc Master: whole disk (or CD-ROM)

64 /dev/hdd Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the �rst interface (see major number 3).

23 char Digiboard serial card { alternate devices

0 /dev/cud0 Callout device corresponding to ttyD0

1 /dev/cud1 Callout device corresponding to ttyD1

: : :

block Mitsumi proprietary CD-ROM

0 /dev/mcd Mitsumi CD-ROM

24 char Stallion serial card

0 /dev/ttyE0 Stallion port 0 board 0

1 /dev/ttyE1 Stallion port 1 board 0

: : :

64 /dev/ttyE64 Stallion port 0 board 1

65 /dev/ttyE65 Stallion port 1 board 1

: : :

128 /dev/ttyE128 Stallion port 0 board 2

129 /dev/ttyE129 Stallion port 1 board 2

: : :

192 /dev/ttyE192 Stallion port 0 board 3

193 /dev/ttyE193 Stallion port 1 board 3

: : :

block Sony CDU-535 CD-ROM

0 /dev/cdu535 Sony CDU-535 CD-ROM

25 char Stallion serial card { alternate devices

0 /dev/cue0 Callout device corresponding to ttyE0

1 /dev/cue1 Callout device corresponding to ttyE1
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: : :

64 /dev/cue64 Callout device corresponding to ttyE64

65 /dev/cue65 Callout device corresponding to ttyE65

: : :

128 /dev/cue128 Callout device corresponding to ttyE128

129 /dev/cue129 Callout device corresponding to ttyE129

: : :

192 /dev/cue192 Callout device corresponding to ttyE192

193 /dev/cue193 Callout device corresponding to ttyE193

: : :

block First Matsushita (Panasonic/SoundBlaster) CD-ROM

0 /dev/sbpcd0 Panasonic CD-ROM controller 0 unit 0

1 /dev/sbpcd1 Panasonic CD-ROM controller 0 unit 1

2 /dev/sbpcd2 Panasonic CD-ROM controller 0 unit 2

3 /dev/sbpcd3 Panasonic CD-ROM controller 0 unit 3

26 char Frame grabbers

0 /dev/wvisfgrab Quanta WinVision frame grabber

block Second Matsushita (Panasonic/SoundBlaster) CD-ROM

0 /dev/sbpcd4 Panasonic CD-ROM controller 1 unit 0

1 /dev/sbpcd5 Panasonic CD-ROM controller 1 unit 1

2 /dev/sbpcd6 Panasonic CD-ROM controller 1 unit 2

3 /dev/sbpcd7 Panasonic CD-ROM controller 1 unit 3

27 char QIC-117 tape

0 /dev/rft0 Unit 0, rewind-on-close

1 /dev/rft1 Unit 1, rewind-on-close

2 /dev/rft2 Unit 2, rewind-on-close

3 /dev/rft3 Unit 3, rewind-on-close

4 /dev/nrft0 Unit 0, no rewind-on-close

5 /dev/nrft1 Unit 1, no rewind-on-close

6 /dev/nrft2 Unit 2, no rewind-on-close

7 /dev/nrft3 Unit 3, no rewind-on-close
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block Third Matsushita (Panasonic/SoundBlaster) CD-ROM

0 /dev/sbpcd8 Panasonic CD-ROM controller 2 unit 0

1 /dev/sbpcd9 Panasonic CD-ROM controller 2 unit 1

2 /dev/sbpcd10 Panasonic CD-ROM controller 2 unit 2

3 /dev/sbpcd11 Panasonic CD-ROM controller 2 unit 3

28 char Stallion serial card { card programming

0 /dev/staliomem0 First Stallion I/O card memory

1 /dev/staliomem1 Second Stallion I/O card memory

2 /dev/staliomem2 Third Stallion I/O card memory

3 /dev/staliomem3 Fourth Stallion I/O card memory

block Fourth Matsushita (Panasonic/SoundBlaster) CD-ROM

0 /dev/sbpcd12 Panasonic CD-ROM controller 3 unit 0

1 /dev/sbpcd13 Panasonic CD-ROM controller 3 unit 1

2 /dev/sbpcd14 Panasonic CD-ROM controller 3 unit 2

3 /dev/sbpcd15 Panasonic CD-ROM controller 3 unit 3

block ACSI disk (68k)

0 /dev/ada First ACSI disk whole disk

16 /dev/adb Second ACSI disk whole disk

32 /dev/adc Third ACSI disk whole disk

: : :

240 /dev/adp Sixteenth ACSI disk whole disk

Partitions are handled in the same way as for IDE disks (see major number 3) except

that the limit on logical partitions is 11 rather than 59 per disk.

29 char Universal frame bu�er

0 /dev/fb0current First frame bu�er

1 /dev/fb0autodetect

: : :

16 /dev/fb1current Second frame bu�er

17 /dev/fb1autodetect

: : :
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The universal frame bu�er device is currently supported only on Linux/68k. The

current device accesses the frame bu�er at current resolution; the autodetect one at

bootup (default) resolution. Minor numbers 2{15 within each frame bu�er assignment

are used for speci�c device-dependent resolutions. There appears to be no standard

naming for these devices.

block Aztech/Orchid/Okano/Wearnes CD-ROM

0 /dev/aztcd Aztech CD-ROM

30 char iBCS-2 compatibility devices

0 /dev/socksys Socket access

1 /dev/spx SVR3 local X interface

2 /dev/inet/arp Network access

2 /dev/inet/icmp Network access

2 /dev/inet/ip Network access

2 /dev/inet/udp Network access

2 /dev/inet/tcp Network access

iBCS-2 requires /dev/nfsd to be a link to /dev/socksys and /dev/X0R to be a link

to /dev/null.

block Philips LMS CM-205 CD-ROM

0 /dev/cm205cd Philips LMS CM-205 CD-ROM

/dev/lmscd is an older name for this drive. This driver does not work with the

CM-205MS CD-ROM.

31 char MPU-401 MIDI

0 /dev/mpu401data MPU-401 data port

1 /dev/mpu401stat MPU-401 status port

block ROM/
ash memory card

0 /dev/rom0 First ROM card (rw)

: : :

7 /dev/rom7 Eighth ROM card (rw)

8 /dev/rrom0 First ROM card (ro)
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: : :

15 /dev/rrom0 Eighth ROM card (ro)

16 /dev/flash0 First 
ash memory card (rw)

: : :

23 /dev/flash7 Eighth 
ash memory card (rw)

24 /dev/rflash0 First 
ash memory card (ro)

: : :

31 /dev/rflash7 Eighth 
ash memory card (ro)

The read-write (rw) devices support back-caching written data in RAM, as well as

writing to 
ash RAM devices. The read-only devices (ro) support reading only.

32 block Philips LMS CM-206 CD-ROM

0 /dev/cm206cd Philips LMS CM-206 CD-ROM

33 block Modular RAM disk

0 /dev/ram0 First modular RAM disk

1 /dev/ram1 Second modular RAM disk

: : :

255 /dev/ram255 256th modular RAM disk

34{223 Unallocated

224{254 Local/experimental use

For devices not assigned o�cial numbers, this range should be used, in order to avoid

con
ict with future assignments. Please note that MAX CHRDEV and MAX BLKDEV in

linux/include/linux/major.hmust be set to a value greater than the highest used

major number. For a kernel using local/experimental devices, it is probably easiest

to set both of these equal to 256. The memory cost above using the default value of

64 is 3K.

255 Reserved
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C.4 Additional /dev directory entries

This section details additional entries that should or may exist in the /dev directory.

It is preferred that symbolic links use the same form (absolute or relative) as is

indicated here. Links are classi�ed as hard or symbolic depending on the preferred

type of link; if possible, the indicated type of link should be used.

C.4.1 Compulsory links

These links should exist on all systems:

/dev/fd /proc/self/fd symbolic File descriptors

/dev/stdin fd/0 symbolic Standard input �le descriptor

/dev/stdout fd/1 symbolic Standard output �le descriptor

/dev/stderr fd/2 symbolic Standard error �le descriptor

C.4.2 Recommended links

It is recommended that these links exist on all systems:

/dev/X0R null symbolic Used by iBCS-2

/dev/nfsd socksys symbolic Used by iBCS-2

/dev/core /proc/kcore symbolic Backward compatibility

/dev/scd? sr? hard Alternate name for CD-ROMs

C.4.3 Locally de�ned links

The following links may be established locally to conform to the con�guration of the

system. This is merely a tabulation of existing practice, and does not constitute a

recommendation. However, if they exist, they should have the following uses.

/dev/mouse mouse port symbolic Current mouse device

/dev/tape tape device symbolic Current tape device

/dev/cdrom CD-ROM device symbolic Current CD-ROM device

/dev/modem modem port symbolic Current dialout device

/dev/root root device symbolic Current root �lesystem
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/dev/swap swap device symbolic Current swap device

/dev/modem should not be used for a modem which supports dialin as well as dialout,

as it tends to cause lock �le problems. If it exists, /dev/modem should point to the

appropriate dialout (alternate) device.

C.4.4 Sockets and pipes

Non-transient sockets or named pipes may exist in /dev. Common entries are:

/dev/printer socket lpd local socket

/dev/log socket syslog local socket
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