
 Mail eXtension: OCX-32 International Release v1.60e

What is new in International Release v1.60e?

Overview:
General Information License Information
Installation Registering
Introduction Mail X Custom Address Support
Distribution FAQ

Technical Support About Mail X
Binding Mail Systems Supported
Right Button "Information" Mail X for Borland Delphi 1.0 & 2.0
Mail X for Visual Tools (MS Access 7.0, Visual FoxPro 3.0 & VC++ 4.0)

Mail eXtension VIM GATEWAY Sessions

Mail eXtension Drivers & MS Office

Mail eXtension Internet Driver RELEASE

Mail eXtension International Version

IMPORTANT : Mail eXtension OCX-32 & VIM 32 Libraries

MailX Custom Controls:
Form Control
Session Control
Message Control
Recipient Control
File Attachment Control

MailX for Visual Basic:
Visual Basic Global Const

MailX .INI Settings:
Mail eXtension INI Setting for VIM & SMTP drivers

MailX for Borland Delphi:
Mail eXtension Component

General Information

Mail eXtension is a SET of Visual Components that will ADD powerful e-mail capabilities to your Visual
Basic, MS Access, Visual FoxPro, & Visual C++ Applications in minutes!!!. Mail X is a real Object Oriented
Control based in the Microsoft Mail API (MAPI).

Mail X works with different Mail Systems    without changing your code:

Your Visual Applications will use Microsoft Mail, Microsoft Exchange, cc:Mail, Lotus Notes    &
SMTP/POP3 protocols

Mail eXtension introduce a powerful Binding capabilities that will reduce the amount of code necessary
with other Mail Controls.

Binding Mail X custom Control

INTERACTIVE MAILX:
Click the right button of your mouse and the Mail X Object Oriented Custom Control will Display all the
information you need!!!.

Right Click Information
Mail eXtension can be used with:

- Visual Basic 4.0
- MS Access 7.0, Visual C++ 4.0 & Visual FoxPro (OCX-32 Version)

More Information.... Contact us at:

CompuServe: CIS 73000,1661
Internet: 73000.1661@compuserve.com

Installation

Installing MAIL X is simple!!!,

Run the SETUP.EXE program available with the DEMO package. This Installation program will
run only under Windows 95, Windows NT 3.51 or later

NOTE: Be sure you have installed your Mail Client libraries (MAPI.DLL or VIM.DLL). You will need the 32
Bit version of VIM libraries available at the COMPUSERVE/LOTUSM forum when using MAILX32.OCX

CANT LOAD MAILX CUSTOM CONTROL?
If you can't load MAILX in Visual Basic, make sure you have the
MAILX32.LIC, MAILX32.OCX library in your PATH!!!. MAVIM32X.DLL
library is required for VIM sessions.

CAN'T LOGON INTO YOUR MAIL SYSTEM?
If Mail X can't logon into your MAIL system, make sure you have the Mail
Libraries (VIM32 or MAPI32) into your PATH directory.

Distribution

Mail X is royalty free after registering it. You can distribute it with any application that you develop with it.

One license is required for each developer using MAILX. Contact us for incredible quantity discounts!!!

REDISTRIBUTABLE COMPONENTS:
1- Mail eXtension OCX-32 version

- MAILX32.OCX Mail eXtension OCX 32 version
- MAVIM32X.DLL Mail eXtension 32 VIM router
- MAPSM32X.DLL Mail eXtension 32 SMTP/POP3 driver

Registering Mail eXtension

How can I register Mail eXtension Components?

When you register MailX, you will receive the PASSWORD to decrypt the FULL version of MAILX.

-CompuServe: GO SWREG, ID: 5762 (U.S. $229) (ONLY)

Why you should register Mail eXtension today?

1.- FREE Upgrades.    Mail X Registered users receive FREE upgrades. When registering Mail
eXtension using On-Line registration, you will receive your personal passwords for future FREE
upgrades. When new MAILX files are available (at Mail X Web Page) you will only need to download the
new REGISTERED FILES and apply your PASSWORD to the new file.

2.- FREE Technical Support (via e-mail): Terckland Software offer FREE unlimited technical support
via e-mail (only) to registered Users ONLY.

3.- Upgrade information: Notice of new versions, enhancements, and add-ins.

Technical Support

Mail eXtension support is provided by:

CompuServe: 73000,1661
Internet: 73000.1661@compuserve.com

Technical Support is ONLY available for Registered Users.

IMPORTANT: If you are an UNREGISTERED USER, We will ONLY reply messages for
Installation problems.

When contacting us for Technical Support please use the application included with the package for this
purpose OR send this information with your e-mail:

-Name:___________
-Serial Number: ________
-Company Name:__________
-Mail X Version Number:
-Mail X Version: OCX-16:__ OCX-32:__ VBX: __ VCL 16:__ VCL-32: __
-Mail System: cc:Mail: ___ Notes: ___ MS Mail___ Exchange____ Pop3/Smtp:___
-Operating System: WIN 3.1x: ___ Win 95: __ NT 3.51: ___ NT 4.0 ___

Binding MailX Custom Controls

Mail X introduce a powerful binding support never seen in other Visual Basic Custom Controls.

BINDING is necessary to associate two or more Mail X Custom Controls!!!. (i.e.: if you want to read a Mail
message in your inbox, you will need to associate or bind the MailX Session Control and the Mail X
Message Control).

NOTE: To BIND Mail X Custom Control you need to identify your Visual Basic Form!!!. Add one (1) Mail X Form Control and your
Application will be ready for the revolutionary Binding Support.

How to Bind Custom Control?

1. Be Sure to Include the Form Control in your Visual Basic Form that contains Mail X Custom Controls.
(The Form Control is necessary to Add the Binding Support to Visual Basic)

Form Control on your VB Form

2.    Add and PUSH the custom control you want to bind with. To PUSH a Mail X Custom control you only
need to select the Visual Object and Double click it with the right button of your mouse. You can also
push a Custom control by Selecting the Push Button in the Help Label.

Add a Mail X Session Control

Pushed Session Control

NOTE: When you Push a Custom Control it will look like a pressed button. The Help Label will Appear
if you click the right button once over the custom control.

3.    Add the Second Mail X Custom Control and Bind it with the Pushed control. To Bind two custom
control select the Second Mail X Custom Control and press <SHIFT + right button of your mouse>.
You can also select the Bind Button available in the Help Label.

Binding Custom Controls

Connection drawing over your VB Form

When You Bind Mail X Custom Controls, a Connection is drawn over your Visual Basic Form!!!. When
binding two Custom Control the Target BindString    property is modified indicating:

BINDSTRING: Formxxxx.MailX_CustomControl

The Formxxxx is the MXFormName property of the Mail X Form Custom Control, and the
MAILX_CustomControl is the NAME of the associated control.

Note: The Formxxx will only be added to your BindString Control property if the Binding Custom
Controls resides on different Forms.

To Connect Custom Control on different forms, be sure to include one Form
Control over each Visual Basic Form.

OTHER BINDINGS:
In the same way you BIND a Message control with the associated SESSION control you can

BIND:
* Recipient Controls with Message Controls
* File Attachment control with Message Controls

NOTE: Graphic Binding Support is only available for Visual Basic Applications. When using MS
Access, Visual FoxPro 3.0 or Visual C++ 4.0 you will need to use code-binding support

Mail Systems supported

Mail X supports:

- Microsoft Mail or Exchange,

- cc:Mail or Lotus Notes (VIM Libraries are required)

- SMTP/POP3 Protocols (WINSOCK Libraries are required)

Mail X is able to open two or more sessions (depending of your Mail System) from different mail
systems at the same time.

Mail X allows you to select the Mail System you want to work with at Runtime without changing your
code!!!

Right Button Information

The RIGHT button of your mouse will help you to:

- Push MAILX Custom Controls
- Bind Custom Controls
- Change Control Properties
- Display Information About the selected custom control

When you select a MAILX Custom Control you will only need to "CLICK" the right button of your mouse   
over the control and the " HELP LABEL " will be displayed. The "help label" displays the name of the
Custom Control and several button to: PUSH, BIND and Change properties of the selected control.

Help Label

 Help Label

The Help Label is always available when you click the RIGHT BUTTON of your mouse!!!. With the Help
Label, you can:

- Push,
- Bind, and
- Change the Mail X Control properties!!!

Push Control

Select The Mail X Custom Control you want to bind with.
The Custom Control currently selected looks like a pressed button.

 Bind Control

Associate two or more Mail X Custom Control.
Bind connection is drawn over your VB Form.

Change Mail X Custom Properties

Change the control properties with a Custom Dialog Box.

About Mail X
Mail X has been developed by:

Terckland Software
August 1996

Custom Control Developers for Visual Basic and Delphi.

CompuServe: 73000,1661
Internet: 73000.1661@compuserve.com

http://ourworld.compuserve.com/homepages/mailx

MAPI.DLL is distributed by Microsoft Corporation. MAPI.DLL & MAPI32.DLL are required to access
the Microsoft Mail or Microsoft Exchange Server.

VIM.DLL & VIM32.DLL are distributed by Lotus Corporation. VIM.DLL & VIM32.DLL are required for
MAILX to access the Mail Data information in your network!!!

What is New in v.1.60?
Mail eXtension INTERNATIONAL RELEASE v1.60e is the second mayor update of our Mail Custom Controls for
Visual Basic. This new version has been completely redesigned to enhance the VIM performance.

1. Full support for Visual Basic 4.0
Mail X v1.60 has been fully tested with the Enterprise Version of Visual Basic 4.0 for Windows. New 32 Bits
OCX custom controls for VB4. Mail eXtension now supports Microsoft Exchange Server sessions.

2. *New Mail eXtension International Release
Mail X 32-Bits drivers are now available for English, German, Spanish, Italian, French, Norwegian &
Icelandic. (VIM & SMTP/POP3 Drivers)

3. *New Mail eXtension SMTP/POP3 Driver
Mail X International Release 1.60e now includes the SMTP/POP3 BETA FINAL. The New Internet Driver
now support BinHex, Base 64 & UUDecoder, Quoted-Printable (Encoder/Decoder), MIME encoder, Address
Book Functions, Async 16 & 32 Bits Drivers, Internet Message Store,    etc

4. *New MS Access 7.0, Visual FoxPro & Visual C++4.0 support
Mail X is now compatible with your favorite development tool!. Mail-enable all your Windows 95 Applications
using Mail eXtension OCX-32 version 1.60

5. *New Microsoft Exchange Extended Mapi Interface implementation (OCX-32 only)
Mail X version 1.60 now implements an Extended Mapi Interface when using MS Exchange sessions. New
spooler actions for sending & receiving messages, retrieve current user name, change passwords, invoke
config dialog, profile wizards an so on!. (OCX-32 Version Only!)

6. *New Enhanced VIM Support
Mail X RELEASE v1.60 distributes the last version of MAVIM32X v.1.60. The MAPI interface has been
extended to enhance the VIM performance over 400%, VIM category support. Lotus Notes sessions are
now supported. VIM GATEWAY sessions are Now supported

7. *New Mail eXtension VIM / SMTP Enhanced Address Book support
Mail eXtension v1.60 now enhance VIM / SMTP Address Book User interface. New Find tool is available
when using Address Book User Interface.

8. Mail eXtension Now supports
Mail eXtension v1.60 supports:
-Lotus Notes
-Lotus cc:Mail
-Microsoft Exchange Server
-Microsoft Mail
-Internet Sessions (POP3 / SMTP3 protocols)
-Custom Simple Mapi (SMAPI) Libraries.

Visual Basic Global Const (OCXMAILX.BAS)

' Mail X Session Constants
Global Const ERROR_LOADING_LIBRARY = 1
Global Const ERROR_NOT_CONNECTED = 2
Global Const ERROR_EX_FUNCTION = 3
Global Const SESSION_NONE = 0
Global Const SESSION_MSMAIL = 1
Global Const SESSION_VIM = 2
Global Const SESSION_POP3SMTP = 3
Global Const SESSION_CUSTOMLIB = 4

Global Const ACTION_INVOKE_CONFIG = 1
Global Const ACTION_FORCE_DOWNLOAD = 2
Global Const ACTION_FORCE_UPLOAD = 3
Global Const ACTION_INVOKE_WIZARD = 4

' Mail X Message Constants
Global Const ACTION_DELETEMAIL = 1
Global Const ACTION_FINDNEXT = 2
Global Const ACTION_FINDFIRST = 3
Global Const ACTION_CLEARMSG = 4
Global Const ACTION_CLEARRECIP = 5
Global Const ACTION_CLEARFILE = 6
Global Const ACTION_NEW = 7
Global Const ACTION_REPLY = 8
Global Const ACTION_FORWARD = 9
Global Const ACTION_REPLYALL = 10
Global Const ACTION_COPYMSG = 11
Global Const ACTION_SAVEMSG = 12
Global Const ACTION_SENDMSG = 13

Global Const ERROR_MSG_NOTCONNECTED = 1
Global Const ERROR_MSG_NOTFETCH = 2
Global Const ERROR_MSG_NOT_BOUND = 3
Global Const ERROR_MSG_SENDMAIL = 4
Global Const ERROR_MSG_SAVEMSG = 5
Global Const ERROR_MSG_EMPTYMSG = 6
Global Const ERROR_MSG_DELETE = 7
Global Const ERROR_MSG_SETMSGID = 8
Global Const ERROR_MSG_FINDNEXT = 9
Global Const ERROR_MSG_FINDFIRST = 10
Global Const ERROR_MSG_FETCHMSG = 11
Global Const ERROR_MSG_EX_FUNCTION = 13

Global Const INBOX_MSG = 0
Global Const COMPOSE_MSG = 1

Global Const NEW_MSG = 0
Global Const REPLY_MSG = 1
Global Const FORWARD_MSG = 2
Global Const REPLYALL_MSG = 3

Global Const CLEAR_MSG = 0
Global Const CLEAR_RECIP = 1
Global Const CLEAR_FILE = 2

' Mail X Recipient Constants
Global Const ACTION_DETAILS = 1
Global Const ACTION_ADDRESS = 2
Global Const ACTION_ADDRECIPIENT = 3
Global Const ACTION_DEL_RECIPIENT = 4
Global Const ACTION_RECIP_SET = 5
Global Const ACTION_INSERTCUSTOM = 6
Global Const ACTION_ORIG_SET = 7

Global Const CLASS_ORIG = 0
Global Const CLASS_TO = 1
Global Const CLASS_CC = 2
Global Const CLASS_BCC = 3

Global Const MAPI_ORIG = 0
Global Const MAPI_TO = 1
Global Const MAPI_CC = 2
Global Const MAPI_BCC = 3

Global Const LIST_ONLY = 0
Global Const EDIT_TO = 1
Global Const EDIT_TO_CC = 2
Global Const EDIT_TO_CC_BCC = 3

Global Const ERROR_REC_NOTBOUND = 1
Global Const ERROR_REC_MSGNOT_BOUND = 2
Global Const ERROR_REC_EMPTY = 3
Global Const ERROR_REC_SESS_NOTCONNECT = 4
Global Const ERROR_REC_BADCONTROL = 5
Global Const ERROR_REC_AMBIGUOUS = 7

Global Const ORIGINATOR = 0
Global Const MSG_RECIPIENTS = 1

' Mail X FILE Constants
Global Const ACTION_DELETEFILE = 1
Global Const ACTION_REMOVEFILE = 2
Global Const ACTION_ADDFILE = 3
Global Const ACTION_FILESET = 4
Global Const ACTION_DELETE_TEMPFILE = 5

Global Const ERROR_DELETE_TEMP = 1
Global Const ERROR_FILE_EMPTY = 2
Global Const ERROR_FILE_NOT_BOUND = 3
Global Const ERROR_MSGNOT_BOUND = 4
Global Const ERROR_FILE_BADCONTROL = 5
Global Const ERROR_FILE_UNABLEADD = 7

Global Const NO_FLAGS = 0
Global Const MAPI_OLE = 1
Global Const MAPI_OLE_STATIC = 2

VIM 32 Libraries & Mail X OCX 32

Mail X OCX 32 requires the VIM 32 libraries distributed by LOTUS.

Updated Lotus cc:Mail VIM 32 libraries can be found in:

CompuServe: GO LOTUSM VIM Library
INTERNET: FTP: ftp.support.lotus.com

Copy the Files: VIM32.DLL, MEDB632.DLL & CHRSET32.DLL in your ..\SYSTEM directory.

NOTE: Mail X OCX 32 doesnt work with the 16 bit VIM libraries. Youll need to update your VIM libraries
with the VIM 32 files.

Mail eXtension ObjRef Property

OCX-32 Users:
Description:

Use this Property to retrieve the Object reference when using code-binding

Usage:
[form].MXFile1. BindWith ([form].MXMessage1. ObjRef)
[form].MXRecipient1. BindWith ([form].MXMessage1. ObjRef)
[form].MXMessage1. BindWith ([form].MXSession1. ObjRef)

Remarks:
Runtime only.
This Property is and is ONLY available for OCX-32 users

Data Type:
Long

Borland Delphi Users:

Description:
This property Copy or Fetch Mail eXtension Message, Recipient or File components

Usage:
[form].MXFile1. ObjRef =[form].MXMessage1. ObjRef {Fetch action}
[form].MXFile1. ObjRef =[form].MXFile2. ObjRef {Copy action}
[form].MXRecipient1. ObjRef =[form].MXMessage1. ObjRef {Fetch action}
[form].MXMessage1. ObjRef =[form].MXMessage2. ObjRef {Copy action}

Remarks:
Runtime only.
This Property is and is ONLY available for Borland DELPHI.
Visual Basic Developer can use the = operator:

[form].MFile1 =[form].MMess1 {Fetch action}
[form].MFile1=[form].MFile2 {Copy action}
[form].MReci1 =[form].MMess1 {Fetch action}
[form].MMess1 =[form].MMess2 {Copy action}

Data Type:
Pointer

 BindWith Method

Description:
This Method binds a Mail eXtension Component at Runtime. Use this method when using MS Visual
FoxPro, MS Access or Visual C++ 4.0

Usage:
[form].MXFile1. BindWith ([form].MXMessage1. ObjRef)
[form].MXRecipient1. BindWith ([form].MXMessage1. ObjRef)
[form].MXMessage1. BindWith ([form].MXSession1. ObjRef)

Remarks:
Only available when using Mail eXtension OCX -32 version.

 Mail eXtension OCX-32 Version 1.60
Terckland Programming
Windows solutions
Mail eXtension for Microsoft Access 7.0, Visual FoxPro & Visual C++ 4.0.

Mail eXtension OCX-32 Version 1.60 NOW supports the most popular Visual Development Tools!. Mail-
enable ALL your Windows 95 applications using Mail extension OCX-32

What is Code-Binding?

Code-binding associate Mail eXtension components at Runtime.
Visual binding support is only available for Visual Basic & Delphi programmers, you will need to use code-
binding when using another Visual development tool.

No Mail eXtension Form Control is required when using Code-Binding.

How to implement Code-Binding?
Because MailX Form Control is not required when using code-binding, you will only need to add MailX
Session, Message, Recipient & File Controls at design time. When loading your Visual Form, you will
need to use the ObjRef Property and BindWith Method in order to associate your Mail eXtension Controls
at Runtime.

Microsoft Access 7.0 Example:
Private Sub Form_Load()

MMsg1.BindWith (MSession1.ObjRef)
MReci1.BindWith (MMsg1.ObjRef)

End Sub

Microsoft Visual C++ 4.0 Example:
BOOL CFormDlg::OnInitDialog()
{

CDialog::OnInitDialog();
.
.
.
// TODO: Add your Mail eXtension Code-Binding support here
m_MMessage.BindWith(m_MSession.GetObjRef());

return TRUE;    // return TRUE    unless you set the focus to a control
}

Microsoft Visual FoxPro Example:
CLEAR
frmMyForm = CREATEOBJECT("FormMail")
frmMyForm.Closable = .F.    && Disable the Control menu box

*-- Bind the controls
frmMyForm.MailMess.BindWith(frmMyForm.MailSess.ObjRef)
frmMyForm.MailSess.Mail_Type=2
frmMyForm.SHOW    && Display the form
READ EVENTS    && Start event processing

DEFINE CLASS FormMail AS FORM

ADD OBJECT MailMess AS OleControl WITH ;
OleClass = 'MailX.MMsgCtrl'

ADD OBJECT MailSess AS OleControl WITH ;

OleClass = 'MailX.MSessCtrl'

ADD OBJECT QuitButton AS QuitBtn WITH ;
Name = "QuitButton"

ADD OBJECT SignOn AS SignOnBtn WITH ;
Name = "SignOn"

ADD OBJECT MsgCount AS MsgCountBtn WITH ;
Name = "MsgCount"

ENDDEFINE

DEFINE CLASS QuitBtn AS CommandButton    && Create Command button
Caption = '\<Quit'    && Caption on the Command button
Cancel = .T.    && Default Cancel Command button (Esc)
Left = 17    && Command button column
Top = 0    && Command button row
Width = 120
Height = 44    && Command button height
PROCEDURE Click

CLEAR EVENTS    && Stop event processing, close Form
ENDDEFINE

DEFINE CLASS SignOnBtn AS CommandButton    && Create Command button
Caption = "Sign On"    && Caption on the Command button
Cancel = .T.    && Default Cancel Command button (Esc)
Left = 17    && Command button column
Width = 120
Top = 50    && Command button row
Height = 44    && Command button height
PROCEDURE Click
ThisForm.MailSess.Logon=.T.

ENDDEFINE

DEFINE CLASS MsgCountBtn AS CommandButton    && Create Command button
Caption = "MsgCount"    && Caption on the Command button
Cancel = .T.    && Default Cancel Command button (Esc)
Left = 17    && Command button column
Width = 120
Top = 100    && Command button row
Height = 44    && Command button height
PROCEDURE Click
nCount=ThisForm.MailMess.MsgCount
if ThisForm.MailMess.ErrorNum=0 then

nRes = MESSAGEBOX('MessageCount='+STR(nCount),0,'Message Count')
endif

ENDDEFINE

 Mail X Drivers & MS Office
Terckland Programming
Windows solutions
Mail eXtension Drivers Version 1.61

The most powerful Mail Drivers for Visual Tools are now 100% compatibles with your MS Office
applications.

Mail eXtension Drivers 100% SMAPI Compatibles. Version 1.61

New Mail X Drivers:
VIM Driver Version 1.61.00 (16 & 32Bits)
SMTP/POP3 Driver PRE-RELEASE # 4 (16 & 32Bits)

now allow you to send messages from any MS Office or even any SMAPI compatible application to the
Internet/VIM using the New Mail X Drivers!

You will only need to apply these changes to your Windows workstation:
- 16 Bits System

Include the following keyword in your WIN.INI:
[Mail]
MAPIDLL=C:\WINDOWS\SYSTEM\MAPSM16X.DLL (if you are using Internet)
or
MAPIDLL=C:\WINDOWS\SYSTEM\MAVIM16X.DLL (if you are using VIM)

- 32 Bits Systems

Include this value into your Windows 95/NT Registry Database:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft Office\95\Mapidll\DLL32 = MAPSM32X.DLL
or
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft Office\95\Mapidll\DLL32 = MAVIM32X.DLL

(Use the Registry Editor)

Terckland Software
August 1996

 Mail eXtension for Visual Basic & Delphi
Terckland Programming
Windows solutions
Mail eXtension for Visual Basic 4.0.

Different messaging systems are offered by several vendors, and a wide range of applications have been
built to use them. But each of these messaging systems have different programming interfaces, making it difficult
for one application to interact with several of them at once. Until now, visual developers looking for a messaging
custom controls had few choices. VBX-based controls provide basic e-mail capabilities, but are limited to a specific
LAN-based system and dont support the new Visual programming tools standards.

Mail eXtension is e-mail custom controls finally done right. It provide the essential e-mail capabilities to mission-
critical applications and is compatible with several Mail Systems. Mail eXtension introduce a solid messaging
features that enable your applications to receive and send e-mails in minutes.

Mail eXtension architecture is a dramatic boost over current Visual Basic Custom Controls. Introducing its new
binding capabilities, Visual Basic & Delphi developers will associate mail objects in seconds. In addition, Mail
eXtension supports the most popular visual programming tools:

1- OCX-32 for Microsoft Visual Basic 4.0, MS Access 7.0, Visual FoxPro & Visual C++ 4.0

Mail Systems
Mail eXtension applications can be run on 32-bit platforms available on Windows 95 and Windows NT. Mail
eXtension-compliant application communicate with any messaging system as long as the appropriate drivers are
installed.
Our Mail API eXtension also boots the performance of different LAN-based systems.
Mail eXtension is compatible with most important Messaging Systems. Innovative Mail applications can be created
combining Visual Programming    with Lotus cc:Mail, Lotus Notes, Microsoft Exchange, Microsoft Mail,
SMTP/POP3 protocols.

How Mail eXtension works
Mail eXtension use a modular architecture. At one end is the Client application using the Mail eXtension
components. Extension drivers sit between the unique messaging systems and the SMAPI standard. At the Back-end
is the specific programming interface for different messaging systems.

Easy and Powerful binding
To reduce the time needed to associate Visual Component, Mail eXtension introduce a powerful graphic binding
support. Developers will only need to push & click custom controls when designing e-mail enabled Applications.

Distribution
Mail eXtension is Royalty Free distribution after registering it.

Mail eXtension is the perfect component for your Visual Basic applications.

For More information
Download your Mail eXtension DEMO:

-via CompuServe:
GO LOTUSM
VIM Library / MAILX61.EXE

-via FTP:
FTP FTP.WINSITE.COM
pub/pc/win95/programr/vbasic
MAILX6.ZIP

CALL: +58 (2) 976.7070

Mail Extension
Version Release 1.60e (International Version)
Terckland Programming,
E-Mail: 73000.1661@compuserve.com
Price: U.S. $ 229

Versions: OCX-32.

Platform: Windows 95 & NT.
Messaging System: Microsoft Mail, Microsoft Exchange, Lotus cc:Mail, Lotus Notes & SMTP / POP3 protocols

-
Terckland Programming
E-Mail: 73000.1661@compuserve.com

Mail eXtension Questions & Answers
Terckland

July 19, 1996

Q. Is there a VBX-version of Mail eXtension?
A. Yes, Terckland has included the Mail eXtension VBX Version in the MAIL X FULL DEMO package.
Visual Basic 3.0 & Delphi 1.0 examples are also included

Q. What files do I need for Mail eXtension?
A. Mail eXtension requires the MAPI32.DLL & VIM32.DLL in order to establish a mail session with
your Mail Server or Post Office

Q. The Mail eXtension Session Control returns Error Loading Mail Library?
A. The MAIL X Session control will return this error if your MAPI32.DLL or VIM32.DLL can not be
found in your workstation PATH. Please include the Mail library path in your AUTOEXEC.BAT

Q. Is the Mail eXtension source code available for registered users?
A. Mail eXtension Source Code is not currently available

Q. How can I send messages to an external recipient address?
A. Mail eXtension v1.60e now supports Custom Address. Mail eXtension Custom Address are useful
when sending messages to any gateway (or remote PostOffice) defined in your Mail Server. You only
have to specify your Recipient Address and Mail eXtension will try to send the e-mail through your
PostOffice.

Q. What Mail eXtension files should I distribute with my application?
A. You should only distribute your MAILX32.OCX version and the MAVIM32X.DLL library

Q. Why I cant run multiple instance of my application when using Lotus Notes R3?
A. The Lotus Notes VIM libraries only shared access to sessions across multiple threads, but not across
multiple processes.

Q. I have problems when deleting messages using Lotus Notes
A. When Deleting a Mail Message, You will have to re-scan" your active messages because Lotus Notes
automatically re-indexes message references.

Q. I have Lotus Notes & Lotus cc:Mail in my workstation. How can I choose between them?
A. The Mail eXtension VIM driver will Load the first VIM32.DLL available in your PATH. Nevertheless
you can try to load any specific version of VIM32.DLL using your WIN.INI file:
- INCLUDE in your WIN.INI File the following section

[MAILX]
VIM32=M:\CCDATA (Set your VIM32.DLL path)

Q. I have MS Mail & MS Exchange in my workstation. How can I choose between them?
A. The Mail eXtension Component will Load the first MAPI32.DLL available in your PATH.

Nevertheless you can try to load any specific version of MAPI32.DLL using the Custom Library Type

Q. Can I use Mail eXtension with MS Access, Visual C++ or Visual FoxPro?
A. Yes, Mail eXtension OCX-32 Version 1.60e NOW Support the most popular Visual Development
Tools. Because visual binding is only available for Visual Basic & Delphi programmers, you will need to

use code-binding with your applications.

Q. How can I set the Default Profile Name when using MS Exchange?
A. Use the MAILX Session User Property to set the Default Profile Name.

Q. How can I set the Internet Address Book File?
A. Use the MAILX section in your WIN.INI file:
[MAILX]
Internet AB Book=C:\MAILXDLL\Book.abx

Q. How can I set different TEMP directory when using the VIM/SMTP Driver?
A. Use the MAILX section in your WIN.INI file:
[MAILX]
TEMPDIR=C:\TEMP\

Q. How can I activate VIM Gateway Sessions?
A. Use the MAILX section in your WIN.INI file:
 [MAILX]
VIM_GATEWAY=1

Q. Can I remove the Mail X Internet message Store?
A. Yes, you can delete the ..\TEMP\INBOX.FLD directory and Mail X SMTP/POP3 driver will prompt

you to create a new message store when creating a new Internet Session

Q. How can I reset the Internet message Store?
A. Delete the ..\TEMP\INBOX.FLD directory and Mail X SMTP/POP3 driver will prompt you to create

a new message store when creating a new Internet Session

 Mail eXtension & Internet Support
Terckland Programming
Windows solutions
Mail eXtension Driver for SMTP/POP3 protocols.

Mail eXtension Version R1.60e now introduce the Internet Driver RELEASE Version
Internet Driver RELEASE sends & receive messages using SMTP/POP3 protocols.

Now features:
-UUDecoder
-Enhanced BinHex decoder
-Quoted-Printable (Encoder/Decoder)
-MIME encoder (base 64),
-Address Book functions,
-Internet Message Store,
-POP3 protocol,
-MIME decoder (base64),
-File attachment & Recipient handling
-New Messages arrived method

How to use the Mail eXtension Internet Driver?
When you Sign On the Internet Driver, set the User Name to your POP3 Account (NOTE: do not include your
domain name. I.e.: If your POP account is mailx@terckland.com,' your correct user name is mailx).

How to configure your Internet Servers?
When you Sign On the Internet Driver, Click over the Host configuration image in order to set the correct IP address
for your SMTP & POP3 Servers.

Is there any special property for the Internet Driver?
Yes, When using the Internet Driver, you can use the Session Properties: ReturnAddress, SMTPServer,
POP3Server, RealName & LeaveMailOnServer

Mail eXtension Web Pages:!
The Latest SMTP/POP3 Driver can be downloaded from:

http://ourworld.compuserve.com/homepages/mailx/betatest.htm

Terckland Software
August 1996

 Mail eXtension License Information
Terckland Programming
Windows solutions
END-USER LICENSE AGREEMENT FOR
MAIL EXTENSION COMPONENTS

By installing, copying, or otherwise using the SOFTWARE PRODUCT, you agree to be bound
by the terms of this EULA. If you do not agree to the terms of this Agreement, you are not
authorized to use the SOFTWARE PRODUCT.

1.    GRANT OF LICENSE. This EULA grants you the following rights:
Use MAIL EXTENSION in your development environment. Freely distribute it as a
RUNTIME component of    your applications. The author asks for NO royalties or run-time
fees. Also, this help file and accompanying demos do not have to be included in your
distribution package. You may also make copies of the SOFTWARE PRODUCT for backup
and archival purposes.

2.    RESTRICTIONS.
--You may not reverse engineer, decompile, or disassemble the SOFTWARE PRODUCT,

except and only to the extent that such activity is expressly permitted by applicable law
notwithstanding this limitation.

--You may not rent or lease the SOFTWARE PRODUCT.
--Modify MAIL EXTENSION, and this help file in any way.
--Remove any proprietary notices, labels, or marks on the program and accompanying

documentation (help file).
--Sell or resell MAIL EXTENSION and/or any of its accompanying products and

documentation, by itself or as part of another package, except as a RUNTIME component of
another application whose primary purpose is NOT illustration of the functionality of MAIL
EXTENSION.

3. TERMINATION. Your rights under this EULA terminate upon the termination of your Mail
eXtension EULA, or without prejudice to any other rights, TERCKLAND may terminate this
EULA if you fail to comply with the terms and conditions of this EULA. In such event, you
must destroy all copies of the SOFTWARE PRODUCT.

4. LIMITATION OF LIABILITY. The author of MAIL EXTENSION makes no warranties,
expressed or implied, in relation to this product. In no event shall the author be liable to you
for any damages, including any loss of profits, loss of data, including but not limited to
special, incidental, consequential, or indirect damages arising from the use of this software.

 Mail eXtension INI settings

Mail eXtension VIM & SMTP drivers store configuration information in your WIN.INI file
under the MAILX section:

Internet AB Book Use this Keyword to set the Path and File name of your
Internet Address Book

SMTP/POP3

POPSERVER Set your POP3 server name SMTP/POP3

SMTPSERVER Set your SMTP server name SMTP/POP3

TEMPDIR Set the TEMP directory for your File attachment storage SMTP/POP3 & VIM

Internet MsgStore Set the Internet Message Store PATH SMTP/POP3

SMTP WordWrap Set the Default WORD-WRAP status SMTP/POP3

SMTP Quoted-Printable Set Default QUOTED-PRINTABLE property SMTP/POP3

LEAVEMAILONSERVER Set the LeaveMailOnServer default status SMTP/POP3

VIM32 Set the Default VIM32.DLL library Path VIM

VIM16 Set the Default VIM.DLL library Path (16 Bits version) VIM

NOTES_ALL_BOOKS Set This Property to one (1) to indicate Lotus Notes session
to search All Address Books available when Resolving
recipients

VIM

VIMSEL_ENCRYPT Set to one (1) to indicate Lotus Notes Session to Encrypt
messages

VIM

VIMSEL_SIGN Set to one (1) to indicate Lotus Notes Session to Sign
messages

VIM

VIMSEL_DELIVERY_REPORT Set to one (1) to indicate Lotus Notes Session to receive
Delivery reports

VIM

VIMSEL_NONDELIVERY_REPORT Set to one (1) to indicate Lotus Notes Session to receive non
delivery reports

VIM

VIM_GATEWAY Set to one (1) to enable Lotus cc:Mail/Notes Gateway
Sessions

VIM

 Mail eXtension VIM Gateway Session
Mail eXtension International Release 1.60e NOW support Lotus cc:Mail GATEWAY Session!.

When using Gateway Session you can Sign On your Post Office as a PO User and Set the FROM or Originator
Header when sending messages.

To enable Gateway Session SET the clause VIM_GATEWAY in your WIN.INI file:

[MAILX]
VIM_GATEWAY=1

When you Sign On set the USER Property as the PostOffice you are logging in as (not the PostOffice you are
logging into)
Before Sending the Message SET the FROM clause using the NEW Recipient Action: A CTION_ORIG_SET

NOTE: DO NOT set this option if you are not sure about gateway
Sessions. If    you TURN ON this option, you will NOT be able to Sign
On as a User.

Terckland Software
August 1996

 Mail eXtension International Release
Terckland Programming
Windows solutions
Mail eXtension International Release

The Most Powerful Mail Control for Visual Tools is now available for your native language. The New
Mail eXtension 32 Bits Drivers (International Release 1.60e) NOW include MULTI-LANGUAGE
support for Windows 95 & Windows NT 3.51 or later…

Mail X 32-Bits Drivers (VIM & SMTP/POP3 protocols) are now available:
-English,
-Italian,
-German,
-Spanish,
-French,
-Norwegian &
-Icelandic

Set your native Language using your Windows 95 / Windows NT controls Panel and Mail X
Drivers will display the appropriate resource for your language!.

Terckland Software
August 1996

Mail eXtension Component for Borland Delphi
1.0 & 2.0

Mail eXtension RELEASE v1.60 introduce the MailX DCU for Borland Delphi 1.0 & 2.0

Files: ..\DELPHI1\MXMAILX.DCU (Mail eXtension for Delphi 1.0)
..\DELPHI20\MXMAILX.DCU (Mail eXtension for Delphi 2.0)
..\HELP\MAILX.HLP (Mail eXtension Help File)
..\HELP\MAILX.KWF (Mail eXtension Keyword File)

Installation:

1. Create a directory for the Mail eXtension Component.
2. Start up Borland Delphi
3. Select Options | Install Components
4. Install the Component using the MXMAILX.DCU file
5. Exit Delphi. (Do not save any changes to project, if asked).
6. Move the .hlp and .kwf files to the \delphi\bin directory.
7. Run the 'helpinst' program found in '.....\delphi\help'
8. Open File '......\delphi\bin\delphi.hdx'
9. Add the new keyword file (.kwf extension) found in the \delphi\bin directory
10. Select File|Save, then Exit
11. The component will be installed in the Mail eXtension tab and the help file will be active

Form Control
Properties

Overview:

The Mail X Form Control is required to enable the Visual binding capabilities of Mail X Custom Controls.

You should ADD only one (1) Form Control to each Visual Basic or Delphi FORM containing other Mail X
Custom Controls.

Note: All Mail X Custom Controls will
be referenced by the NAME associated
to the Form Control. The Name of the
Form Control is stored in the
MXFormName property.

MXFormName Property

Description:
The MXFormName Property contains the Name associated with your Control. By
Default, MAILX will name your Form Control: MXFormName: FormTagx.

You can change your MXFormName Property at Design Time (It should never be
done at runtime because associated MailX Custom Control will not be
bound!)!.When Changing the MXFormName property, be sure to Re-Bind your Mail
X Custom Controls associated with your Form.

Usage:
FormTagName$=[form].MForm.MXFormName

Data Type:
String

Properties:

- About
- BackColor
- Height
- Index
- Left
- MXFormName
- Name
- Tag
- Top
- Width

Session Control
Properties Event Methods

Overview:
The Session control is the principal object to access your Mail System. Mail X allows to establish

different sessions simultaneously (depending of your mail system) without changing your code. You just
need to select your Mail System when designing your application. Mail X is also able to select the Mail
System at runtime.

The Session Control Object ONLY handle your connection to your Mail Server, you will need to
bind a Message Control to handle your mail messages available in your inbox.

When using MS Exchange, use the User property to set the default profile name.

Click your Right button and change the Session Control properties with a Mail X Session Control
DialogBox

Note: You must have a Mail X Form Control before adding
Mail X Session Controls on your Visual Basic Form

Action

Description:
This property set a new Action in your Mail X Session Custom Control.

Usage:
[form].MSess. Action=i_NewAction

Values:

Action ID Number Description

ACTION_INVOKE_CONFIG 1 Invokes the Session Configuration Dialog.Not all Mail
eXtension Drivers supports this action

ACTION_FORCE_DOWNLOAD 2 Force spooler to retrieve new messages from
Transport service providers (ONLY available for
Extended Mapi drivers)

ACTION_FORCE_UPLOAD 3 Force spooler to send outgoing messages to all
Transport service providers (ONLY available for
Extended Mapi drivers)

ACTION_INVOKE_WIZARD 4 Show the Profile Wizard DialogBox (ONLY available for
Extended Mapi drivers)

Remarks:
This Property is runtime write only. An Error event will be generated if the action fails.

Data Type:
Integer

ChangePassword
Example

Description:
This property sets a new password that will be used when you logon your Mail
system.

Usage:
[form].MSess.ChangePassword= sz_NewUserPassword$

Remarks:
You must set a valid string to change your session password, otherwise, an error
will be generated. Note: Not all Mail eXtension Drivers supports this Property

Data Type:
String

CurrentFolder
Example

Description:
This property sets and returns the current folder or category that will be used
when you scan your messages.

Usage:
sz_CurFolderName$=[form].MSess.CurrentFolder
[form].MSess.CurrentFolder = sz_NewFolderName$

Remarks:
You must set a valid FolderName; otherwise you will not be able to read to your
messages. This New Property is only available with the VIM Driver (cc:Mail). Set
CurrentFolder= (empty string), when using the Inbox

Data Type:
String

CurrentUser

Description:
This property returns the Current User Name

Usage:
sz_CurUserName$=[form].MSess.CurrentUser

Remarks:
This New Property is only available with the VIM Driver (cc:Mail).

Data Type:
String

DefaultPath
Example

Description:
This property sets and returns the DefaultPath used when you access your Mail
Server.

Usage:
sz_DefaultPath=[form].MSess.DefaultPath
 [form].MSess.DefaultPath= sz_DefaultPath

Remarks:
This New Property is only available with the VIM Driver (cc:Mail)

Data Type:
String

DisplayErrors

Description:
This property sets and returns the error handling state.
When setting the DisplayErrors property, the Session Control will Display a
message box when an error occurs.

Usage:
b_DisplayErrors=[form].MSess.DisplayErrors
 [form].MSess.DisplayErrors= b_DisplayErrors

Data Type:
BOOL

 DownLoadMsg

Description:
Set this property to force a download of all new messages from the mail server to
a user's Inbox during the sign-in process. Use this flag so that an application can
deal with the user's complete set of messages when it signs in. When set, a
progress indicator popup is displayed and automatically removed when the
process is complete. Use of this flag may increase processing time.

Usage:
b_DownLoadMsg=[form].MSess.DownLoadMsg
 [form].MSess.DownLoadMsg= b_DownLoadMsg

Data Type:
BOOL

ErrorText

Description:
This property sets and returns the String associated with the last error. The
ErrorText is the string that appears in the Error Message Box

Usage:
sz_ErrorText$=[form].MSess.ErrorText

Data Type:
String

ErrorNum

Description:
This property returns the Number of the Last error.

Values:

Error Code Error Num Description

ERROR_LOADING_LIBRARY 1 Mail Library (VIM or MAPI) could not
be loaded

ERROR_NOT_CONNECTED 2 Mail X Could not complete the
Logon process. Check The User and
Password Properties

ERROR_EX_FUNCTION 3 Mail X Function error or Not
supported by Driver

Usage:
i_ErrorNum=[form].MSess.ErrorNum

Data Type:
Integer

FolderCount

Description:
This property returns the container category count available in your VIM Session.

Usage:
i_FolderCount=[form].MSess.FolderCount

Remarks:
This New Property is only available for VIM Driver (cc:Mail / Notes)

Data Type:
Long Integer

FolderNum

Description:
This property sets and returns the current category number being used by the
MailX Session control.

Usage:
i_FolderNum=[form].MSess.FolderNum
[form].MSess.FolderNum = i_NewFolderNum

Remarks:
This New Property is only available for VIM Driver (cc:Mail / Notes). Set
FolderNum=0 when using the Inbox.

Data Type:
Long Integer

 LeaveMailOnServer

Description:
The LeaveMailOnServer property sets & returns the status of your POP3 delete command.

Usage:
b_LeaveMail=[form].MSess. LeaveMailOnServer
 [form].MSess. LeaveMailOnServer = b_LeaveMail

Remarks:
Set this property to FALSE to remove All messages from your POP3 server after downloading
messages to your Local Internet Message Store. Set this property to TRUE to leave all messages in
your POP3 mailbox.

Data Type:
BOOL

 Logon
Example

Description:
The Logon property returns the status of your mail connection.
The Logon property is also set to establish or cancel a connection to your mail server.

Values:

Value Description

TRUE -1 Connection is established with your Mail server
FALSE 0 Cancel a connection previously established.

Usage:
b_LogonStatus=[form].MSess.Logon
 [form].MSess.Logon= b_Logon

Data Type:
BOOL

LogonUI
Example

Description:
Set this property if the control should display a dialog box to prompt for name and
password (if required). When this flag is not set, the Session Control does not
display a sign-on dialog box and returns an error if the user is not signed in.

Usage:
b_LogonUI =[form].MSess.LogonUI
 [form].MSess.LogonUI= b_LogonUI

Data Type:
BOOL

Mail_Type

Description:
Sets and returns the current Mail system being used by the MailX session
control.

Usage:
i_MailType =[form].MSess.Mail_Type
 [form].MSess.Mail_Type= i_MailType

Settings:

Value Description

NONE 0 none mail system is currently selected. This value is
useful when selecting the Mail System at Runtime.

EXCHANGE 1 Microsoft Mail or Exchange (MAPI.DLL is required)
VIM 2 cc:Mail or Notes for Windows (VIM.DLL library is

required)
POP3SMTP 3 POP3/SMTP protocols.
CUSTOM 4 Custom Simple Mapi Library (see MapiCustomLibName)

Data Type:
Integer

MapiCustomLibName

Description:
Set this property if you want to establish a session with a Custom Simple Mapi
Library.

Usage:
sz_MapiCustomLib$=[form].MSess. MapiCustomLibName
 [form].MSess. MapiCustomLibName = sz_MapiCustomLib$

Data Type:
String

NewSession

Description:
Set this property if you want to establish a session other than the current one.
For instance, if a mail client is already running, another MAPI electronic mail
client can piggyback on the session created by the mail client application. Do not
set if you want the default session (if it still exists).

Usage:
b_NewSession =[form].MSess.NewSession
 [form].MSess.NewSession= b_NewSession

Data Type:
BOOL

Password
Example

Description:
This property sets and returns the password that will be used when you logon
your Mail system.

Usage:
sz_UserPassword$=[form].MSess.Password
[form].MSess.Password= sz_UserPassword$

Remarks:
You must set a valid Password to logon your Mail System, otherwise, an error will
be generated.

Data Type:
String

POPath
Example

Description:
This property returns the Post Office path used by the current session.

Usage:
sz_UserPassword$=[form].MSess.POPath

Remarks:
You must have an active Mail session with your server. This new property is Only
available with the VIM & SMTP Driver (cc:Mail / Internet Message Store).

Data Type:
String

POPServer

Description:
This property sets and returns the current POPServer name

Usage:
sz_Server$=[form].MSess.POPServer
[form].MSess.POPServer =sz_Server$

Remarks:
This new property is Only available with the Internet Driver

Data Type:
String

SMTPServer

Description:
This property sets and returns the current SMTPServer name

Usage:
sz_Server$=[form].MSess.SMTPServer
[form].MSess.SMTPServer =sz_Server$

Remarks:
This new property is Only available with the Internet Driver

Data Type:
String

RealName

Description:
This property sets and returns the Real name of the Current User

Usage:
sz_UserName $=[form].MSess.RealName
[form].MSess.RealName = sz_UserName$

Remarks:
This new property is Only available with the Internet Driver

Data Type:
String

ReturnAddress

Description:
This property sets and returns the Return Address used when sending messages
to your SMTP server.

Usage:
sz_Address$=[form].MSess. ReturnAddress
[form].MSess. ReturnAddress =sz_Address$

Remarks:
This new property is Only available with the Internet Driver

Data Type:
String

User
Example

Description:
This property sets and returns the name that will be use when you logon your
Mail system.

Usage:
sz_UserName$=[form].MSess.User
[form].MSess.User= sz_UserName$

Remarks:
When using Microsoft Exchange, use this property to set the Profile name
used when logon your Exchange Server. You must set a valid UserName to
logon your Mail System, otherwise, an error will be generated.

Data Type:
String

Error Event

Description:
Occurs whenever an errors is generated by the Session Control.

Syntax:
Sub MSess_Error ()

Remarks:
If you Set the DisplayErrors property, a Message Box will be displayed before the Error Event occurs.

InvokeConfigDialog Method

Description:
This method invokes the config dialog for your current Mail Driver.

Usage:
[form].MMsg. InvokeConfigDialog

Remarks:
This Method is only available with the Mail eXtension OCX version. Not all Mail drivers supports this
method

IsLogon Method
Example

Description:
This Method returns the current session state.

Usage:
[form].MMsg. IsLogon

Remarks:
Only available with the Mail eXtension OCX & DCU version. Returns TRUE for active session; otherwise
return FALSE.

 MailLogon Method

Description:
This Method open or close a mail session with your server

Usage:
[form].MMsg. MailLogon [TRUE|FALSE]

Remarks:
Only available with the Mail eXtension OCX & DCU version.

 NewMessages Method

Description:
This Method check if any new message has arrived to your Container

Usage:
bArrived= [form].MMsg. NewMessages

Remarks:
Only available with the Mail eXtension VIM Driver.

Changing Session Properties

You can change the Mail X session properties with a click on the Help Label button.

The Mail X Session Control Dialog Box is only available at Design time.

Session Control Dialog Box

Properties:

- About - Logon
- Action - LogonUI
- ChangePassword - Mail_Type
- CurrentFolder - MapiCustomLibName
- CurrentUser - Name
- DefaultPath - NewSession
- DisplayErrors - ObjRef
- DownLoadMsg - Password
- ErrorText - POPath
- ErrorNum - POPServer
- FolderCount - RealName
- FolderNum - ReturnAddress
- Height - SMTPServer
- Index - Top
- Left - User
- LeaveMailOnServer - Width

Events:
- Error

Methods:
- InvokeConfigDialog
- IsLogon
- MailLogon
- NewMessages

Example

The following code uses a MailX Session control, edit box and a button on a form. The code reads the
user default path and try to Sign On the User in your Lotus cc:Mail Post Office:

Visual Basic Code:

Sub Command1_Click ()
        MSess1.DefaultPath = Text1.Text
        MSess1.LogonUI = True
        MSess1.Logon = True
        If MSess1.Logon = True Then
                MsgBox "Successful Sign On!!!"
        Else
                MsgBox "Unable to Sign On your Post Office"
        End If
End Sub

Delphi Code:

procedure TForm1.Button1Click(Sender: TObject);
begin
          MXSession1.DefaultPath:=Edit1.Text;
          MXSession1.LogonUI:=true;
          MXSession1.Logon:=true;
          if MXSession1.Logon=true then
                Application.MessageBox('Succesful Sign On',
  'Mail eXtension',
  MB_OK)
          else
                Application.MessageBox('Unable to Sign on your Post Office',
  'Mail eXtension',
  MB_OK);
end;

Example

The following code uses a MailX Session control, edit box and a button on a form. The code set a new
password for the current Session in your Lotus cc:Mail Post Office:

Visual Basic Code:

Sub Command1_Click ()
        MSess1.ChangePassword = Text1.Text
        If MSess1.ErrorNum = 0 Then
                MsgBox "Password Change!!!"
        Else
                MsgBox "Unable to Change Password"
        End If
End Sub

Delphi Code:

procedure TForm1.Button1Click(Sender: TObject);
begin
          MXSession1.ChangePassword:=Edit1.Text;
          if MXSession1.ErrorNum=0 then
                Application.MessageBox('Password Changed',
  'Mail eXtension',
  MB_OK)
          else
                Application.MessageBox('Unable to change Password',
  'Mail eXtension',
  MB_OK);
end;

Example

The following code uses a MailX Session control, MailX Message Control, MailX Form Control, edit box
and a button on a form. The code set the Current Folder or category indicated by the user and returns the
number of Message availables in your Folder:

Visual Basic Code:

Sub Command1_Click ()
        MSess1.CurrentFolder = Text1.Text
        NumMsg = MMsg1.MsgCount
        MsgBox "Num Messages=" + Str$(NumMsg)
End Sub

Delphi Code:

procedure TForm1.Button1Click(Sender: TObject);
var
      szNumMsg: string;
begin
          MXSession1.CurrentFolder:=Edit1.Text;
          szNumMsg:='Num Messages='+IntToStr(MXMessage1.MsgCount)+#0;
          Application.MessageBox(@szNumMsg[1],
  'Mail eXtension',
  MB_OK)
end;

Example

The following code uses a MailX Session control, 2 Edit Boxes and a button on a form. The code Sign On
the User indicated in the Edit Box.

Visual Basic Code:

Sub Command1_Click ()
        MSess1.User = Text1.Text
        MSess1.Password = Text2.Text
        MSess1.Logon = True
        If MSess1.Logon = True Then
                MsgBox "Succesful Sign On"
        Else
                MsgBox "Unable to Sign On"
        End If
End Sub

Delphi Code:

procedure TForm1.Button1Click(Sender: TObject);
begin
          MXSession1.User:=Edit1.Text;
          MXSession1.Password:=Edit2.Text;
          MXSession1.Logon:=true;
          if MXSession1.Logon=true then
                Application.MessageBox('Successful Sign On',
  'Mail eXtension',
  MB_OK)
          else
                Application.MessageBox('Unable to Sign On',
  'Mail eXtension',
  MB_OK);

end;

Example

The following code uses a MailX Session control, 2 Edit Boxes and a button on a form. The code Sign On
the User indicated in the Edit Box.

Visual Basic Code:

Sub Command1_Click ()
        MSess1.User = Text1.Text
        MSess1.Password = Text2.Text
        MSess1.Logon = True
        If MSess1.IsLogon Then
                MsgBox "Succesful Sign On"
        Else
                MsgBox "Unable to Sign On"
        End If
End Sub

Delphi Code:

procedure TForm1.Button1Click(Sender: TObject);
begin
          MXSession1.User:=Edit1.Text;
          MXSession1.Password:=Edit2.Text;
          MXSession1.Logon:=true;
          if MXSession1.IsLogon then
                Application.MessageBox('Successful Sign On',
  'Mail eXtension',
  MB_OK)
          else
                Application.MessageBox('Unable to Sign On',
  'Mail eXtension',
  MB_OK);

end;

Example

The following code uses a MailX Session control, 2 Edit Boxes and a button on a form. The code Sign On
the User indicated in the Edit Box and return The Current Lotus cc:Mail Post Office Path.

Visual Basic Code:

Sub Command1_Click ()
        MSess1.User = Text1.Text
        MSess1.Password = Text2.Text
        MSess1.Logon = True
        If MSess1.IsLogon Then
                MsgBox PostOffice Path=+Msess1.POPath
        Else
                MsgBox "Unable to Sign On"
        End If
End Sub

Delphi Code:

procedure TForm1.Button1Click(Sender: TObject);
var
      szOffice: string;
begin
          MXSession1.User:=Edit1.Text;
          MXSession1.Password:=Edit2.Text;
          MXSession1.LogonUI:=true;
          MXSession1.Logon:=true;
          if MXSession1.IsLogon then
          begin
                szOffice:='PostOffice Path='+MXSession1.POPath+#0;
                Application.MessageBox(@szOffice[1],
  'Mail eXtension',
  MB_OK);
          end
          else
                Application.MessageBox('Unable to Sign On',
  'Mail eXtension',
  MB_OK);

end;

Example

The following code uses a MailX Session control, 2 Edit Boxes and a button on a form. The code Sign On
the User indicated in the Edit Box. Mail eXtension will display the Sign On Dialog Box if user activate The
LogonUI property

Visual Basic Code:

Sub Command1_Click ()
        MSess1.User = Text1.Text
        MSess1.Password = Text2.Text
        If MsgBox("Try to Display Sign On?", 4, "Mail eXtension") = 6 Then
                MSess1.LogonUI = True
        Else
                MSess1.LogonUI = False
        End If

        MSess1.Logon = True
        If MSess1.Logon = True Then
                MsgBox "Successful Sign On!!"
        Else
                MsgBox "Unable to Sign On"
        End If
End Sub

Delphi Code:

procedure TForm1.Button1Click(Sender: TObject);
begin
          MXSession1.User:=Edit1.Text;
          MXSession1.Password:=Edit2.Text;
          if MessageBox(0,'Try to display Sign On Dialog','Mail eXtension',4)=6 then
                MXSession1.LogonUI:=true
          else
                MXSession1.LogonUI:=False;
          MXSession1.Logon:=true;
          if MXSession1.IsLogon then
          begin
                Application.MessageBox('Successful Sign On',
  'Mail eXtension',
  MB_OK);
          end
          else
                Application.MessageBox('Unable to Sign On',
  'Mail eXtension',
  MB_OK);
end;

 Mail X Message Control
Properties Methods Events

Overview:
The Mail X Message Control is used to handle any message in your Inbox. You can also compose (New,
Reply, Forward) a new message to be sent through your Mail Server.

Because Mail X Message Control handle one Inbox message, you must add many controls as you need
in your Visual Basic Form to handle different messages simultaneously.

The Message Control only handle information relative to the E-Mail Message (Subject, Note Text, etc.). To
obtain or set the File Attachments or the Message Recipients you should use the appropriate Mail X
controls.

Click your Right button and change the Message Control properties with a Mail X Message Control
DialogBox

Note: You must have a Mail X Form Control before
adding Message Control on your Visual Basic Form

Action
Example Example2

Description:
This property set a new Action in your Mail X Message Custom Control.

Usage:
[form].MMsg. Action=i_NewAction

Values:

Action ID Number Description

ACTION_DELETEMAIL 1 Delete the current message from the message inbox
ACTION_FINDNEXT 2 Fetch the next message of the message inbox.
ACTION_FINDFIRST 3 Fetch the first message of the message inbox
ACTION_CLEARMSG 4 Clear the current message
ACTION_CLEARRECIP 5 Clear the message recipient descriptors
ACTION_CLEARFILE 6 Clear the file attachment descriptors of the current

message
ACTION_NEW 7 Composes a message. Clears all of the components of the

compose buffer
ACTION_REPLY 8 Replies to a message. Copies the currently fetched

message to the compose buffer as a reply and adds RE: to
the beginning of the Subject line.The currently indexed
message originator becomes the outgoing message
recipient, then text is copied, and so on.

ACTION_FORWARD 9 Forwards a message. Copies the currently indexed
message to the compose buffer as a forwarded message
and adds FW: to the beginning of the Subject line.

ACTION_REPLYALL 10 Replies to all message recipients. Same as Reply, except
that all other To: and CC: recipients are maintained.

ACTION_COPYMSG 11 Copy the Subject and the NoteText from the inbox
message to the compose buffer.

ACTION_SAVEMSG 12 Save the current message in the inbox
ACTION_SENDMSG 13 The current message is sent. If the DisplaySendDialog

property is set, all message properties associated with a
message being built in the compose buffer form the basis
for the displayed message dialog box. Changes made in
the dialog box, however, do not alter information in the
compose buffer.

Remarks:
This Property is runtime write only. An Error event will be generated if the action fails.

Data Type:
Integer

BindString

Description:
Returns the binding connection string

Usage:
hsz_BindingString$=[form].MMsg. BindString

Remarks:
The string contains the Form and the name of the bound control

Data Type:
String

BodyAsFile
Example

Description:
Set this property when you want the message body written to a temporary file and added to the
attachment list as the first attachment.

Usage:
b_BodyAsFile=[form].MMsg. BodyAsFile
[form].MMsg. BodyAsFile=b_BodyAsFile

Data Type:
BOOL

ConversationID

Description:
Returns a string indicating the conversation thread ID to which this message belongs.

Usage:
hsz_ConversationID$=[form].MMsg. ConversationID

Data Type:
String

DisplayErrors
Description:

This property sets and returns the error handling state.
When setting the DisplayErrors property, the Message Control will Display a
message box when an error occurs.

Usage:
b_DisplayErrors=[form].MMsg.DisplayErrors
[form].MMsg. DisplayErrors=b_DisplayErrors

Remarks:
Regardless of this value, the ErrorNum and ErrorText properties are changed before an Error Event is
generated

Data Type:
BOOL

DisplaySendDialog
Example

Description:
Set this property if the message control should display a dialog box to prompt for recipients and other
sending options. When this flag is not set, the message control does not display a dialog box, but at
least one recipient must be specified.

Usage:
b_DisplayDialog=[form].MMsg. DisplaySendDialog
[form].MMsg. DisplaySendDialog=b_DisplayDialog

Remarks:
See also Action property.

Data Type:
BOOL

EnvelopeOnly
Example

Description:
Set this property when you don't want the function to copy file attachments to temporary files or
return the note text. All other message information (except for temporary filenames) is returned. Setting
this flag usually reduces the processing time required for the function.

Usage:
b_EnvelopeOnly =[form].MMsg. EnvelopeOnly
[form].MMsg. EnvelopeOnly=b_EnvelopeOnly

Data Type:
BOOL

ErrorNum
Example

Description:
This property returns the number of the last error.

Usage:
i_ErrorNum%=[form].MMsg. ErrorNum

Values:

Error Code Number Description

ERROR_MSG_NOTCONNECTED 1 Session has not been established with your
mail server.

ERROR_MSG_NOTFECTH 2 Unable to execute the operation because the
message Control is empty

ERROR_MSG_NOT_BOUND 3 The Message Control is NOT bound
ERROR_MSG_SENDMAIL 4 Unable to Send Current Message
ERROR_MSG_SAVEMSG 5 Unable to save the current message
ERROR_MSG_EMPTYMSG 6 The current message is Empty
ERROR_MSG_DELETE 7 Unable to delete the current message
ERROR_MSG_SETMSGID 8 Unable to find the message by the Msg ID
ERROR_MSG_FINDNEXT 9 Unable to fetch the next message
ERROR_MSG_FINDFIRST 10 Unable to fetch the first message
ERROR_MSG_FETCHMSG 11 Unable to fetch the inbox message
ERROR_MSG_EX_FUNCTION 13 Extended function Error or NOT supported by

Mail eXtension Driver
ERROR_MSG_SEND_BADRECIP 14 Unable to Send Current Message. (BAD

RECIPIENT ERROR)

Remarks:
This property is set to zero (0) before another action gets executed.

Data Type:
Integer

ErrorText

Description:
This properties contains the last error text.

Usage:
hsz_ErrorText$=[form].MMsg. ErrorText

Remarks:
This property is set regardless of the DisplayErrors property.

Data Type:
String

FastFetch

Description:
Use this property to execute a partial fetch. FastFetch is useful when scanning inbox, If Mail eXtension
Driver supports Fast Fetch you will notice 100% faster performance

Usage:
bFast=[form].MMsg. FastFetch
[form].MMsg. FastFetch = bFast

Remarks:
When using Fast Fetch, Mail eXtension Driver will only return: MsgID, Subject, Originator, Date,
IsUnread, MsgType & ReturnReceipt Properties.

Data Type:
Boolean

FetchMsg
Example

Description:
Use this property to Fetch an inbox message

Usage:
i_MsgNum=[form].MMsg. FetchMsg
[form].MMsg. FetchMsg=i_MsgNum

Remarks:
The property will fetch the message number specified. This property returns zero (0) if no message is
fetched.

Data Type:
Long Integer

FetchMsgType

Description:
Sets and returns the message type. To specify an interpersonal mail message, specify an empty string,
"".

Usage:
b_FetchMsgType $=[form].MMsg. FetchMsgType
[form].MMsg. FetchMsgType=b_FetchMsgType$

Data Type:
String

IsBinded
Description:

Returns the binding state of the Mail X Message Control.

Usage:
b_IsBinded=[form].MMsg. IsBinded

Remarks:
Returns TRUE if the control is succesfully bound, otherwise a FALSE is returned

Data Type:
BOOL

MarkAsRead
Examples

Description:
Set MarkAsRead when you want the Mail X Message Control to mark the message as read. Any
unsuccessful fetch leaves the message unread.

Usage:
b_MarkAsRead =[form].MMsg. MarkAsRead
[form].MMsg. MarkAsRead= b_MarkAsRead

Data Type:
BOOL

MsgCount
Example

Description:
Returns the number of Messages available in the Inbox.

Usage:
i_MessagetCount%=[form].MMsg. MsgCount

Data Type:
Long Integer

MsgID
Example

Description:
Returns the MessageID of the current message.

Usage:
hsz_MsgID$=[form].MMsg. MsgID
[form].MMsg. MsgID= hsz_MsgID$

Remarks:
When SETTING this property, the Mail X Message Control will search for an inbox box message that
match the specified message ID; if found, the message is fetched, otherwise the Mail X Message control
is flushed.

Data Type:
String

MsgType

Description:
Returns the message type of the current message.

Usage:
hsz_MsgType$=[form].MMsg. MsgType
[form].MMsg. MsgType= hsz_MsgType$

Remarks:
A empty string indicates an interpersonal message (IPM) type.

Data Type:
String

NoteText
Example

Description:
Sets an returns the note text of the current message.

Usage:
hsz_NoteText$=[form].MMsg. NoteText
[form].MMsg. NoteText= hsz_NoteText$

Remarks:
An Empty string is returned if the Message control is flushed or empty.

Data Type:
VB: String
Delphi: TStrings

Priority

Description:
Sets an returns the priority of the current message.

Usage:
i_Priority=[form].MMsg. Priority
[form].MMsg. Priority = i_Priority

Settings:

ID Value Description

NORMAIL 0 Normal Priority
LOW 1 Low importance
HIGH 2 High importance

Remarks:
Only available for VIM Driver

Data Type:
Integer

ReceiptRequested

Description:
Sets and returns the state of the receipt requested flag.

Usage:
b_ReceiptRequested =[form].MMsg. ReceiptRequested
[form].MMsg. ReceiptRequested= b_ReceiptRequested

Data Type:
BOOL

SaveMsg

Description:
Sets and returns the state of the Save message flags

Usage:
b_ SaveMsg =[form].MMsg. SaveMsg
[form].MMsg. SaveMsg = b_ SaveMsg

Remarks:
Only available for VIM Driver

Data Type:
BOOL

SentMsg

Description:
Sets and returns the state of the Sent message flags

Usage:
b_ SentMsg =[form].MMsg. SentMsg
[form].MMsg. SentMsg = b_ SentMsg

Data Type:
BOOL

SortMsg

Description:
Set this property if you want to sort the inbox messages in the same order as received. Fetching a
message may take longer if this flag is set.

Usage:
b_SortMsg =[form].MMsg. SortMsg
[form].MMsg. SortMsg= b_SortMsg

Data Type:
BOOL

Subject
Example

Description:
Sets an returns the subject    of the current message.

Usage:
hsz_Subject$=[form].MMsg. Subject
[form].MMsg. Subject = hsz_Subject$

Remarks:
An Empty string is returned if the Message control is flushed or empty.

Data Type:
String

SuppressAttach

Description:
Set this property when you don't want Message Control to copy file attachments, but instead
just return message text.

Usage:
b_SuppressAttach =[form].MMsg. SuppressAttach
[form].MMsg. SuppressAttach= b_SuppressAttach

Remarks:
This flag is ignored if EnvelopeOnly is set. The flag should reduce the time required by the Message
Control.

Data Type:
BOOL

TimeFormat

Description:
Sets and returns the time format being used when reading the TimeReceived property.

Usage:
hsz_TimeFormat$=[form].MMsg. TimeFormat
[form].MMsg. TimeFormat= hsz_TimeFormat$

Values:

Command Description

%A Full weekday name
%a Abbreviated weekday name
%B Full month name
%b Abbreviated month name
%d Day of the month as a decimal number (01-31)
%H Hour in 24 hour format (00-23)
%I Hour in 12 hour format (01-12)
%j Day of the year as a decimal number (001-366)
%m Month as a decimal number (01-12)
%M Minute as a decimal number (00-59)
%p Current locales AM/PM indicator for a 12-hour clock
%S Second as a decimal number (00-59)
%w Weekday as a decimal number (0-6)
%y Year without the century as a decimal number (00-99)
%Y Year with the century as a decimal number
%% Percent sign

Data Type:
String

TimeReceived

Description:
Returns a string indicating the date a message is received. The format depends of the TimeFormat
property.

Usage:
hsz_TimeReceived$=[form].MMsg. TimeReceived

Data Type:
String

UnreadMsg
Example

Description:
Set this property if the Mail X Message Control should enumerate only unread messages.

Usage:
b_UnreadMsg =[form].MMsg. UnreadMsg
[form].MMsg. UnreadMsg= b_UnreadMsg

Remarks:
When this flag is not set, all messages are available.

Data Type:
BOOL

WorkingMsg
Example

Description:
Select the current message you are working with.

Usage:
i_WorkingMsg =[form].MMsg. WorkingMsg
[form].MMsg. WorkingMsg= i_WorkingMsg

Settings:

ID Value Description

INBOX_MSG 0 Inbox Message
COMPOSE_MSG 1 Compose message

Data Type:
Integer

Error Event

Description:
Occurs whenever an errors is generated by the Message Control.

Syntax:
Sub MMsg_Error ()

Remarks:
If you Set the DisplayErrors property, a Message Box will be displayed before the Error Event occurs.

AddItem Method
Example

Description:
Adds an item to the Mail X Message control at run time.

Usage:
[form].MMsg. AddItem item[,index%]

Settings:

Value Number Description

NEW_MSG 0 Create a new message with a subject indicated by the
item string

REPLY_MSG 1 Reply the current fetched message
FORWARD_MSG 2 Forward the current fetched message
REPLYALL_MSG 3 Reply all recipients of the current fetched message

Remarks:
if no index is specified, a new message is created.

 Remove Method

Description:
Remove the current message item.

Usage:
[form].MMsg. RemoveItem index%

Settings:

Value Number Description

CLEAR_MSG 0 Flush the current message
CLEAR_RECIP 1 Flush the recipients of the current message
CLEAR_FILE 2 Flush the file attachment of the current message

Clear Method

Description:
Flush the current message.

Usage:
[form].MMsg. Clear

MoveToFolder Method

Description:
Move the current message.to the specified folder.

Usage:
[form].MMsg. MoveToFolder    folderName

Remarks:
If the specified folder doesnt exist, Mail eXtension will create it in your Post office. (Only available with
cc:Mail). When using the Mail eXtension VBX version, use the MoveToFolder property ([form].MMsg.
MoveToFolder=folderName)

RemoveFromFolder Method

Description:
Remove the current message.from the specified folder.

Usage:
[form].MMsg. RemoveFromFolder    folderName

Remarks:
Only available with cc:Mail sessions. When using the Mail eXtension VBX version, use the
RemoveFromFolder property ([form].MMsg. RemoveFromFolder=folderName)

Changing Message Control Properties
You can change the Mail X Message properties with a click on the Help Label button.

The Mail X Message Control Dialog Box is only available at Design time.

Message Control Dialog Box

Properties:

- About - MsgID
- Action - MsgType
- BindString - Name
- BodyAsFile - NoteText
- ConversationID - ObjRef
- DisplayErrors - Priority
- DisplaySendDialog - ReceiptRequested
- EnvelopeOnly - SaveMsg
- ErrorNum - SentMsg
- ErrorText - SortMsg
- FastFetch - Subject
- FetchMsg - SuppressAttach
- FetchMsgType - Tag
- Height - TimeFormat
- Index - TimeReceived
- IsBinded - Top
- Left - UnreadMsg
- MarkAsRead - Width
- MsgCount - WorkingMsg

Events:
- Error

Methods:
- AddItem
- BindWith
- RemoveItem
- Clear
- MoveToFolder
- RemoveFromFolder

Example

The following code uses a MailX Session control, Message Control, Recipient Control, 3 Edit Boxes and a
button on a form. The code compose and Send an e-mail with the Subject, NotePart and the Receipient
Address indicated by the User

Visual Basic Code:

Sub Command2_Click ()
        If MSess1.Logon = True Then
                MReci1.Clear
                MReci1.ResolveName = szAddress.Text
                If MReci1.ResolveName = "" Then
                        MsgBox "Recipient NOT FOUND"
                Else
                        MReci1.Action = ACTION_ADDRECIPIENT
                        MMsg1.Action = ACTION_NEW
                        MMsg1.WorkingMsg = COMPOSE_MSG
                        MReci1.Action = ACTION_RECIP_SET
                        MMsg1.Subject = szSubject
                        MMsg1.NoteText = szNoteText
 
                        MMsg1.Action = ACTION_SENDMSG
 
                        If MMsg1.ErrorNum = 0 Then
                                MsgBox "Message has been sent"
                        Else
                                MsgBox "Error Sending The Mail message"
                        End If
                End If
        Else
                MsgBox "No Active Session available"
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control, Edit Box and a
button on a form. The code Fetch the Next Message and display the Subject in the Edit Box

Visual Basic Code:

Sub Command4_Click ()
        MMsg1.Action = ACTION_FINDNEXT
        Text1 = MMsg1.Subject
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control, Edit Box and a
button on a form. The code Fetch the Next Message and save the Message Note Part as a file
attachment in your temporary directory

Visual Basic Code:

Sub Command4_Click ()
        MMsg1.BodyAsFile = True
        MMsg1.Action = ACTION_FINDNEXT
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control, 3 Edit Boxes and a
button on a form. The code compose and Send an e-mail with the Subject, NotePart and the Receipient
Address indicated by the User. The Send Dialog is shown if the user set the DisplaySendDialog property

Visual Basic Code:

Sub Command2_Click ()
        If MSess1.Logon = True Then
                MReci1.Clear
                MReci1.ResolveName = szAddress.Text
                If MReci1.ResolveName = "" Then
                        MsgBox "Recipient NOT FOUND"
                Else
                        MReci1.Action = ACTION_ADDRECIPIENT
                        MMsg1.Action = ACTION_NEW
                        MMsg1.WorkingMsg = COMPOSE_MSG
                        MReci1.Action = ACTION_RECIP_SET
                        MMsg1.Subject = szSubject
                        MMsg1.NoteText = szNoteText
 
                        If MsgBox("Display Send Dialog", 4, "Mail eXtension") = 6 Then
                                MMsg1.DisplaySendDialog = True
                        Else
                                MMsg1.DisplaySendDialog = False
                        End If
                        MMsg1.Action = ACTION_SENDMSG

 
                        If MMsg1.ErrorNum = 0 Then
                                MsgBox "Message has been sent"
                        Else
                                MsgBox "Error Sending The Mail message"
                        End If
                End If
        Else
                MsgBox "No Active Session available"
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control, 2 Edit Boxes and a
button on a form. The code Fetch the Message number indicated by the User and display the Subject in
the Edit Box if the Fetch operation is successful

Visual Basic Code:

Sub Command3_Click ()
        nNum = Val(Text1.Text)
        MMsg1.FetchMsg = nNum
        If MMsg1.ErrorNum = 0 Then
                Text2.Text = MMsg1.Subject
        Else
                MsgBox "Error FetchMsg"
        End If

End Sub

Example

The following code uses a MailX Session control, Message Control, Edit Box and a button on a form. The
code counts the number of message availables in your Inbox or current Folder.

Visual Basic Code:

Sub Command1_Click ()
        Text1.Text = Str$(MMsg1.MsgCount)
End Sub

Example

The following code uses a MailX Session control, 2 Message Controls, Edit Box and a button on a form.
The code Read the Message ID from one message control and display this value in the Edit Box. The
Second Message Control will fetch the same Message if the User Indicate this action.

NOTE: You can also use the = operator to clone a Message Control.

Visual Basic Code:

Sub Command1_Click ()
        MMsg1.Action = ACTION_FINDFIRST
        Text1.Text = MMsg1.MsgID
        If MsgBox("Copy this Message to another Control?", 4, "Mail eXtension") = 6 Then
              MMsg2.MsgID = MMsg1.MsgID
              Text2.Text = MMsg2.MsgID
        End If
End Sub

Clone Example

Sub Command1_Click ()
        MMsg1.Action = ACTION_FINDFIRST
        Text1.Text = MMsg1.MsgID
        If MsgBox("Copy this Message to another Control?", 4, "Mail eXtension") = 6 Then
              MMsg2 =.MsgID
          End If
End Sub

Example

The following code uses a MailX Session control, Message Control, Edit Box and a button on a form. The
code Fetch the Next Message and return the Message Subject.

Visual Basic Code:

Sub Command4_Click ()
        MMsg1.EnvelopeOnly = True
        MMsg1.Action = ACTION_FINDNEXT
        Text1.Text = MMsg1.Subject
End Sub

Example

The following code uses a MailX Session control, Message Control, Edit Box and a button on a form. The
code Fetch the Next Message and return the Message Subject. If the Message is Unread, MAILX
Message Control will mark it as Read when fetching the new message.

Visual Basic Code:

Sub Command4_Click ()
        MMsg1.MarkAsRead = True
        MMsg1.Action = ACTION_FINDNEXT
        Text1.Text = MMsg1.Subject
End Sub

Example

The following code uses a MailX Session control, Message Control, Edit Box and a button on a form. The
code Fetch the Next Message and return the Message Note Part.

Visual Basic Code:

Sub Command4_Click ()
        MMsg1.EnvelopeOnly = False
        MMsg1.Action = ACTION_FINDNEXT
        Text1.Text = MMsg1.NoteText
End Sub

Example

The following code uses a MailX Session control, Message Control, Edit Box and a button on a form. The
code compose a new message a set the Subject Indicated by the User

Visual Basic Code:

Sub Command4_Click ()
                        MMsg1.Action = ACTION_NEW
                        MMsg1.WorkingMsg = COMPOSE_MSG
                        MMsg1.Subject = Text1.Text
End Sub

Example

The following code uses a MailX Session control, Message Control and a button on a form. The code
Fetch the First Message and Reply the message

Visual Basic Code:

Sub Command4_Click ()
        MMsg1.Action = ACTION_FINDFIRST
        If MMsg1.ErrorNum = 0 Then
                MMsg1.AddItem "", 1
                MMsg1.Action = ACTION_SENDMSG
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control and a button on a form. The code
reads all the Unread Messages availables in the Current Folder or Inbox

Visual Basic Code:

Sub Command2_Click ()
        If MSess1.Logon = True Then
                MMsg1.UnreadOnly = True
                MMsg1.MarkAsRead = True
                MMsg1.Action = 3
                While MMsg1.ErrorNum = 0
                        ' You Should Process your Message
                        MsgBox MMsg1.Subject, 0, "Subject"
                        DoEvents
                        MMsg1.Action = 2
                Wend
                MsgBox "Unread Scanning Complete!!!"
        End If
End Sub

Recipient Control
Properties Methods Events

Overview:
The Mail X Recipient Control is used to handle the recipients associated with a message

contained in a Mail X Message Control. You can query or add new recipients to the current message
contained in the Message Control.

The Recipient Control only handle information relative to the recipients of a message (Name,
address, class, etc). To obtain or set the recipients of a mail message, BIND the Mail X Recipient Control
to the Message Control.

Mail eXtension NOW supports Custom Address. You can send you message to any Recipient address you
specify. Mail eXtension Custom Address can be used to deliver any message to different gateway defined
in your PostOffice or Mail Server.

Click your Right button and change the Recipient Control properties with a Mail X Recipient Control
DialogBox

Note: You must have a Mail X Form Control before
adding Mail X Recipient Control on your Visual Basic Form

Action
Example Example2

Description:
This property set a new Action in your Mail X Recipient Custom Control.

Usage:
[form].MRecipient. Action=i_NewAction

Values:

Action ID Number Description

ACTION_DETAILS 1 Display a Details Dialog box of the current Recipient
ACTION_ADDRESS 2 Display the Default ADDRESS DIALOG BOX
ACTION_ADDRECIPIENT 3 Add the recipients pointed by the Resolve Name

property.
ACTION_DEL_RECIPIENT 4 Delete the recipient descriptor pointed by the

recipient control.
ACTION_RECIP_SET 5 Set the Recipient of the current Working Message

being used in the bound message control
ACTION_INSERTCUSTOM 6 Add a Custom Recipient to your Mail eXtension

Recipient Control.
ACTION_ORIG_SET 7 Set the Message Originator (ONLY valid for VIM

Gateway Session)

Remarks:
This Property is runtime write only. An Error event will be generated if the action fails.

Data Type:
Integer

AddRecipientClass
Example

Description:
Sets and returns the Default Recipient class used when adding new recipient descriptors.

Usage:
e_RecipientClass=[form].MRecip. AddRecipientClass
[form].MRecip. AddRecipientClass=e_RecipientClass

Settings:

Value ID Num. Description

TO 1 Recipient Class = To
CC 2 Recipient Class = Cc
BCC 3 Recipient Class = Bcc

Remarks:
This value is used when adding new recipient to the control (Action, Methods).

Data Type:
ENUM

AddressCaption
Example

Description:
Sets and returns the string being used when the Default Address DialogBox is used.

Usage:
hsz_CurrentCaption$=[form].MRecip. AddressCaption
[form].MRecip. AddressCaption=hsz_NewCaption$

Remarks:
If this property is an empty string, the Address Book caption is used by default. See Action property.

Data Type:
String

AddressEditNum
Example

Description:
Sets and returns the number of Edit Boxes that are used when the Address Dialog Box is used.

Usage:
i_EditNum=[form].MRecip. AddressEditNum
[form].MRecip. AddressEditNum=i_EditNum

Values:

Value Num Description

LIST_ONLY 0 Display only the Address List Box
EDIT_TO 1 Display 1 edit Box (To:)
EDIT_TO_CC 2 Display 2 edit boxes (To: and Cc:)
EDIT_TO_CC_BCC 3 Display 3 edit boxes (To:, Cc: and Bcc:)

Remarks:
See Action property.

Data Type:
Integer

BindString

Description:
Returns the binding connection string

Usage:
hsz_BindingString$=[form].MRecip. BindString

Remarks:
The BindString string contains the Form and the name of the bound control

Data Type:
String

DetailModifiable

Description:
Set this property if the Recipient Control have to modify the recipient information when the
ResolveName property is used.

Usage:
b_IsModify=[form].MRecip. DetailModifiable
[form].MRecip. DetailModifiable=b_Modify

Remarks:
If this property is FALSE, The ResolveName property will return an error if the recipients are not found in
the address book.

Data Type:
BOOL

DisplayErrors

Description:
This property sets and returns the error handling state.
When setting the DisplayErrors property, the Recipient Control will Display a
message box when an error occurs.

Usage:
b_DisplayErrors=[form].MRecip.DisplayErrors
[form].MRecip. DisplayErrors=b_DisplayErrors

Remarks:
Regardless of this value, the ErrorNum and ErrorText properties are changed before an Error Event is
generated

Data Type:
BOOL

ErrorNum
Example

Description:
This property returns the number of the last error.

Usage:
i_ErrorNum%=[form].MRecip. ErrorNum

Values:

Error Code Number Description

ERROR_REC_NOTBOUND 1 The Recipient Control is NOT bound
ERROR_REC_MSGNOT_BOUND 2 The Bound Message Control is not

correctly bound
ERROR_REC_EMPTY 3 The Recipient control is empty
ERROR_REC_SESS_NOCONNNECT 4 The indirect session control is not

connected
ERROR_REC_BADCONTROL 5 Unable to clone MAILX recipient

control
ERROR_REC_AMBIGUOUS 7 Ambiguous Recipients when Resolving

address

Remarks:
This property is set to zero (0) before another action gets executed.

Data Type:
Integer

ErrorText

Description:
This properties contains the last error text.

Usage:
hsz_ErrorText$=[form].MRecip. ErrorText

Remarks:
This property is set regardless of the DisplayErrors property.

Data Type:
String

FetchRecipient
Example

Description:
Fetch or Flush the message recipients of the bound message control.

Usage:
b_IsFetched=[form].MRecip. FetchRecipient
[form].MRecip. FetchRecipient=b_Fetch

Remarks:
Return TRUE if the Recipient controls contains recipient descriptors, otherwise a FALSE is returned.

Data Type:
BOOL

FetchType
Example

Description:
Set and returns the current type of recipients being fetched.

Usage:
i_FetchType%=[form].MRecip. FetchType
[form].MRecip. FetchType=i_FetchType%

Settings:

Value Number Description

Originator 0 Fetch the Originator recipient
Msg Recipients 1 Fetch the message recipients

Data Type:
Enum

IsBinded

Description:
Returns the binding state of the Mail X Recipient Control.

Usage:
b_IsBinded=[form].MRecip. IsBinded

Remarks:
Returns TRUE if the control is successfully bound, otherwise a FALSE is returned

Data Type:
BOOL

RecipientAddress

Description:
Sets and Return the current recipient address.

Usage:
hsz_RecipientAddress$=[form].MRecip. RecipientAddress
[form].MRecip. RecipientAddress=hsz_RecipientAddress$

Remarks:
returns an empty string if the Recipient control is empty or not fetched.

Data Type:
String

RecipientClass

Description:
Sets and returns the current recipient class.

Usage:
i_RecipientClass&=[form].MRecip. RecipientClass
[form].MRecip. RecipientClass=i_RecipientClass&

Values:

Value Number Description

MAPI_ORIG 0 Originator
MAPI_TO 1 Recipient Class = To:
MAPI_CC 2 Recipient Class = Cc:
MAPI_BCC 3 Recipient Class = Bcc:

Data Type:
Integer

RecipientCount
Example

Description:
Returns the number of Recipients available in the Recipient Control.

Usage:
i_RecipientCount%=[form].MRecip. RecipientCount

Remarks:
You need to Fetch or Add recipients to include new recipient descriptors in the Mail X Recipient Control

Data Type:
Long Integer

RecipientName
Example

Description:
Sets and Return the current recipient name.

Usage:
hsz_RecipientName$=[form].MRecip. RecipientName
[form].MRecip. RecipientName=hsz_RecipientName$

Remarks:
returns an empty string if the Recipient control is empty or not fetched.

Data Type:
String

RecipientNum
Example

Description:
This property sets and returns the current recipient descriptor number being used by the control

Usage:
l_CurrentRecipientNum&=[form].MRecip. RecipientNum
[form].MRecip. RecipientNum=l_CurrentRecipientNum&

Remarks:
If you set an invalid recipient number, the recipient control points to the last valid descriptor.

Data Type:
Long Integer

ResolveDialog

Description:
Sets and returns the current Resolve Dialog state of the control

Usage:
b_DisplayResolveDialog=[form].MRecip. ResolveDialog
[form].MRecip. ResolveDialog=b_DisplayResolveDialog

Remarks:
If TRUE, a Resolve Dialog Box will be shown when resolving recipient names, Otherwise the address
name being resolved will be deleted from the list.

Data Type:
BOOL

ResolveName
Example

Description:
This property resolves a mail recipient's name (as entered by a user) to an unambiguous address list
entry. This property return the corrected address list.

Usage:
 [form].MRecip. ResolveName=hsz_AddressList$
hsz_CorrectedAddressList=[form].MRecip. ResolveName

Remarks:
When setting this property, you can pass a list of address name to be resolved:

Name1;Name2;Name3....

Optionally , you can prompt the user to choose between ambiguous entries if necessary (Set the
Resolve Dialog property).

Data Type:
String

Error Event

Description:
Occurs whenever an errors is generated by the Recipient Control.

Syntax:
Sub MRecip_Error ()

Remarks:
If you Set the DisplayErrors property, a Message Box will be displayed before the Error Event occurs.

AddItem Method

Description:
Adds a Recipient to the Mail X Recipient control.

Usage:
[form]. MRecip. AddItem AddressNameList

Remarks:
This Method resolves a mail recipient's name (as entered by a user) to an unambiguous address list
entry, optionally prompting the user to choose between ambiguous entries if necessary (See
ResolveDialog Property). You can ADD a list of address name to be included:

Name1;Name2;Name3....

The index values has no meaning.

Remove Method

Description:
Remove the specified recipient descriptor.

Usage:
[form]. MRecip. RemoveItem index%

Remarks:
The index value indicates the file descriptor number (or position) that will be deleted.

Clear Method
Example

Description:
Flush the current Recipient descriptor list.

Usage:
[form]. MRecip. Clear

Refresh Method
Example

Description:
Set the current recipient descriptor list to the bound Mail X Message Control.

Usage:
[form]. MRecip. Refresh

Changing Recipient Control Properties

You can change the Mail X Recipient properties with a click on the Help Label button.

The Mail X Recipient Control Dialog Box is only available at Design time.

Recipient Control Dialog Box

Properties:

- About - IsBinded
- Action - Left
- AddRecipientClass - Name
- AddressCaption - ObjRef
- AddressEditNum - RecipientAddress
- BindString - RecipientClass
- DetailModifiable - RecipientCount
- DisplayErrors - RecipientName
- ErrorNum - RecipientNum
- ErrorText - ResolveDialog
- FetchRecipient - ResolveName
- FetchType - Tag
- Height - Top
- Index - Width

Methods:
- AddItem
- BindWith
- RemoveItem
- Clear
- Refresh

Events:
- Error

Example

The following code uses a MailX Session control, Message Control, Recipient Control and a button on a
form. The code display the Address Book.

Visual Basic Code:

Sub BtnAddressDialog_Click ()
        MReci1.Action = ACTION_ADDRESS
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control,    Edit Box and a
button on a form. The code resolves the Address Name and, if it is found in the Book directory, It will be
added to the Recipient Control

Visual Basic Code:

Sub BtnResolve_Click ()
        MReci1.ResolveName = Text1.Text
        If MReci1.ResolveName <> "" Then
                MReci1.Action = ACTION_ADDRECIPIENT
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control,    Edit Box and a
button on a form. The code resolves the Address Name and, if it is found in the Book directory, It will be
added to the Recipient Control as CC recipient

Visual Basic Code:

Sub BtnResolve_Click ()
        MReci1.ResolveName = Text1.Text
        If MReci1.ResolveName <> "" Then
                MReci1.AddRecipientClass = CLASS_CC
                MReci1.Action = ACTION_ADDRECIPIENT
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control and a button on a
form. The code display the Address Book with a custom Title.

Visual Basic Code:

Sub BtnAddressDialog_Click ()
        MReci1.AddressCaption = My Own Caption ""
        MReci1.Action = ACTION_ADDRESS
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control and a button on a
form. The code display the Address Book with the recipient List ONLY

Visual Basic Code:

Sub BtnAddressDialog_Click ()
        MReci1.AddressEditNum =0
        MReci1.AddressCaption = My Own Caption
        MReci1.Action = ACTION_ADDRESS
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control, Edit Box and a
button on a form. The code read the first message and fetch the Originator Recipient, The Recipient
Name is shown in the Edit Box

Visual Basic Code:

Sub Command1_Click ()
        MMsg1.Action = ACTION_FINDFIRST
        If MMsg1.ErrorNum = 0 Then
                MReci1.FetchType = ORIGINATOR
                MReci1.FetchRecipient = True
                MReci1.RecipientNum = 1
                Text1.Text = MReci1.RecipientName
        End If
End Sub

Mail eXtension Custom Address
Lotus cc:Mail Example Lotus Notes Example

Overview:

Mail eXtension Custom Address are useful when sending messages to any gateway (or remote PostOffice) defined
in your Mail Server. You only have to specify your Recipient Address and Mail eXtension will try to send the e-mail
through your PostOffice.

Mail eXtension will generate an error if your Recipient Address is not supported by your PostOffice

How to use Custom Recipient Address?

To create a Custom Address, you have to add a blank recipient descriptor into your Recipient Control:

MReci1.Action = ACTION_INSERTCUSTOM

When you insert the Custom Recipient, You will have to set the RecipientAddress in order to specify your Custom
Address:

(Lotus cc:Mail example)
MReci1.Action = ACTION_INSERTCUSTOM
MReci1.RecipientAddress = Mark Green at PostOffice
MReci1.RecipientName = Mark Green at PostOffice

(Lotus Notes example)
MReci1.Action = ACTION_INSERTCUSTOM
MReci1.RecipientAddress = @Mgreen@tpd.com
MReci1.RecipientName = @Mgreen@tpd.com

(Microsoft Exchange Server)
MReci1.Action = ACTION_INSERTCUSTOM
MReci1.RecipientAddress = Mgreen@tpd.com
MReci1.RecipientName = Mgreen@tpd.com

NOTE: You have to indicate the Complete address recipient in order to send your Mail Message

Example

The following code uses a MailX Session control, Message Control, Recipient Control, 2 EditBoxes and a
button on a form. The code will send a Simple e-Mail message to the external Lotus cc:Mail PostOffice
INET-PO

Visual Basic Code:

Sub Command1_Click ()
        If MSess1.Logon = True Then
                MReci1.Clear
                MReci1.AddRecipientClass= CLASS_TO
                MReci1.Action = ACTION_INSERTCUSTOM
                MReci1.RecipientAddress = "Jimmy@company.com at INET-PO"
                MReci1.RecipientName = "Jimmy@company.com at INET-PO"
                MMsg1.Action = ACTION_NEW
                MMsg1.WorkingMsg = COMPOSE_MSG
                MReci1.Refresh
                MMsg1.Subject = Text1.Text
                MMsg1.NoteText = Text2.Text
                MMsg1.Action = ACTION_SENDMSG
                If MMsg1.ErrorNum = 0 Then
                                MsgBox "Message has been sent"
                Else
                                MsgBox "Error Sending The Mail message"
                End If
          Else
                MsgBox "No Active Session available"
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control and a button on a
form. The code will fetch the first message and returns the Number of recipients

Visual Basic Code:

Sub Command3_Click ()
        MMsg1.Action = ACTION_FINDFIRST
        If MMsg1.ErrorNum = 0 Then
                MReci1.FetchType = MSG_RECIPIENTS
                MReci1 = MMsg1
                MsgBox "Number of Recipients=" + Str$(MReci1.RecipientCount)
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control, 2 EditBoxes and a
button on a form. The code will send a Simple e-Mail message through the Lotus Notes Server

Visual Basic Code:

Sub Command1_Click ()
        If MSess1.Logon = True Then
                MReci1.Clear
                MReci1.AddRecipientClass= CLASS_TO
                MReci1.Action = ACTION_INSERTCUSTOM
                MReci1.RecipientAddress = "@Jimmy@company.com"
                MReci1.RecipientName = "@Jimmy@company.com "
                MMsg1.Action = ACTION_NEW
                MMsg1.WorkingMsg = COMPOSE_MSG
                MReci1.Refresh
                MMsg1.Subject = Text1.Text
                MMsg1.NoteText = Text2.Text
                MMsg1.Action = ACTION_SENDMSG
                If MMsg1.ErrorNum = 0 Then
                                MsgBox "Message has been sent"
                Else
                                MsgBox "Error Sending The Mail message"
                End If
          Else
                MsgBox "No Active Session available"
        End If
End Sub

 Mail X File Control
Properties Methods Events

Overview:
The Mail X File Control is used to handle the attachments associated with a message contained

in a Mail X Message Control. You can query or add new file attachments to the current message
contained in the Message Control.

The File Control only handle information relative to the file attachments of a message (name,
path, position, flags, etc.). To obtain or set the file attachments of a mail message, BIND the Mail X File
Control to the Message Control.

How to retrieve File Attachments?

Click your Right button and change the File Control properties with a Mail X File Control DialogBox

Note: You must have a Mail X Form Control before adding
Mail X File Control on your Visual Basic Form

 Action
Example

Description:
This property set a new Action in your Mail X File Custom Control.

Usage:
[form].MFile. Action=i_NewAction

Values:

Action ID Number Description

ACTION_DELETEFILE 1 Remove the current file entry. File Position and
Count property are modified

ACTION_REMOVEFILE 2 Remove the current file entry and delete the
temporary file created when the message was
read

ACTION_ADDFILE 3 Add a New File attachment.. The Display
Dialog Property must be set

ACTION_FILESET 4 Set the File attachment of the current Working
Message being used in the bound message
control

ACTION_DELETE_TEMPFILE 5 Delete the temporary file created when the
message was read

Remarks:
This Property is runtime write only. An Error event will be generated if the action fails.

Data Type:
Integer

 AttachmentPosition
Example

Description:
Sets and returns the position of the current attachment in the message body.

Usage:
i_AttachPosition%=[form].MFile. AttachmentPosition
[form].MFile. AttachmentPosition=i_AttachPosition%

Remarks:
Attachments replace the character found at a certain position in the message body. Applications may not
place two attachments in the same location within a message, and attachments may not be placed
beyond the end of the message body.

Data Type:
Long Integer

 BindString

Description:
Returns the binding connection string

Usage:
hsz_BindingString$=[form].MFile. BindString

Remarks:
The BindString string contains the Form and the name of the bound control

Data Type:
String

 DisplayDialog
Example

Description:
Sets and returns the Display Dialog state

Usage:
b_DisplayDialog=[form].MFile. DisplayDialog
[form].MFile. DisplayDialog=b_DisplayDialog

Remarks:
When this property is set, a add file dialog box (Open File Common Dialog) will be shown when file
attachments are added to the control.

Data Type:
BOOL

 DisplayErrors

Description:
This property sets and returns the error handling state.
When setting the DisplayErrors property, the File Control will Display a message
box when an error occurs.

Usage:
b_DisplayErrors=[form].MFile.DisplayErrors
[form].MFile. DisplayErrors=b_DisplayErrors

Remarks:
Regardless of this value, the ErrorNum and ErrorText properties are changed before an Error Event is
generated

Data Type:
BOOL

 ErrorNum

Description:
This property returns the number of the last error.

Usage:
i_ErrorNum%=[form].MFile. ErrorNum

Values:

Error Code Number Description

ERROR_DELETE_TEMP 1 Unable to delete the Temporary File attachment
ERROR_FILE_EMPTY 2 Unable to execute the operation because the File

Control is empty
ERROR_FILE_NOT_BOUND 3 The File Control is NOT bound
ERROR_MSGNOT_BOUND 4 The bound Message Control is not correctly bound
ERROR_FILE_BADCONTROL 5 Error while cloning MailX File Control
ERROR_FILE_UNABLEADD 7 Unable to add file attachment

Remarks:
This property is set to zero (0) before another action gets executed.

Data Type:
Integer

 ErrorText

Description:
This properties contains the last error text.

Usage:
hsz_ErrorText$=[form].MFile. ErrorText

Remarks:
This property is set regardless of the DisplayErrors property.

Data Type:
String

 FetchFile
Example

Description:
This property is set to fetch or flush the file attachment of the bound message control

Usage:
b_FetchFile=[form].MFile. FetchFile
[form].MFile. FetchFile=b_FetchFile

Settings:

Values Num Description

TRUE -1 Fetch the file attachment of the bound message
                               FALSE 0 Flush the current file attachment available in the

control.

Remarks:
This property returns TRUE, whenever a file attachment descriptor is available in the control.

Data Type:
BOOL

 FileCount
Example

Description:
Returns the number of File attachment available in the File Control.

Usage:
i_FileCount%=[form].MFile. FileCount

Remarks:
You need to Fetch or Add file attachment to include new file descriptors in the File Control

Data Type:
Long Integer

 FileFlags

Description:
Sets and returns the Flags of the current File Attachment.

Usage:
l_CurrentFlags&=[form].MFile. FileFlags
[form].MFile. FileFlags=l_NewFlags&

Settings:

Value Number Description

NO_FLAGS 0 No Flags defined
MAPI_OLE 1 OLE Object
MAPI_OLE_STATIC 2 Static OLE Object

Data Type:
Long Integer

 FileName
Example

Description:
Returns the name of the current file attachment.

Usage:
hsz_FileName$=[form].MFile. FileName

Remarks:
The result may be an empty string if no attachment are available in the controls.

Data Type:
String

 FileNum
Example

Description:
This property sets and returns the current file descriptor number being used by the control

Usage:
l_CurrentFileNum&=[form].MFile. FileNum
[form].MFile. FileNum=l_CurrentFileNum&

Remarks:
If you set an invalid file number, the File control points to the last valid descriptor.

Data Type:
Long

 FilePath

Description:
This property returns the path and file name of the temporary file attachment.

Usage:
hsz_FilePath$=[form].MFile. FilePath

Remarks:
The result may be an empty string if no attachment are available in the controls.

Data Type:
String

 IsBinded

Description:
Returns the binding state of the Mail X File Control.

Usage:
b_IsBinded=[form].MFile. IsBinded

Remarks:
Returns TRUE if the control is successfully bound, otherwise a FALSE is returned

Data Type:
BOOL

 Error Event

Description:
Occurs whenever an errors is generated by the File Control.

Syntax:
Sub MFile_Error ()

Remarks:
If you Set the DisplayErrors property, a Message Box will be displayed before the Error Event occurs.

 AddItem Method
Example

Description:
Adds a File attachment to the Mail X File control.

Usage:
[form].MFile. AddItem FileName

Remarks:
If the FileName is not found; The Add File Dialog Box will be displayed.

Remarks:
The index values has no meaning.

 Remove Method

Description:
Remove the specified file descriptor and    its temporary file.

Usage:
[form].MFile. RemoveItem index%

Remarks:
The index value indicates the file number that will be deleted.

 Clear Method
Example

Description:
Flush the current File descriptor list.

Usage:
[form].MFile. Clear

 Refresh Method
Example

Description:
Set the current File descriptor list to the bound Mail X Message Control.

Usage:
[form].MFile. Refresh

 Changing File Control Properties

You can change the Mail X file properties with a click on the Help Label button.

The Mail X File Control Dialog Box is only available at Design time.

File Control Dialog Box

 Retrieving File Attachments
When reading Mail Messages, The 'Reading Properties' will change the behaviour of your Mail X
Message control.

Reading Properties:
-BodyAsFile
-EnvelopeOnly
-MarkAsRead
-SuppressAttach

By default, Mail X Message Control sets:
BodyAsFile=FALSE
EnvelopeOnly=FALSE
SupressAttach=TRUE
MarkAsRead=TRUE

Set 'EnvelopeOnly' when you don't want MailX to copy file attachments to temporary files or return the
note text. All other message information (except for temporary filenames) is returned. Setting this flag
usually reduces the processing time required for the function.

Set 'SupressAttach' when you don't want MAPIReadMail (SMAPI function) to copy file attachments, but
instead just return message text. This flag is ignored if 'EnvelopeOnly' is set. The flag should reduce the
time required by the MAPIReadMail function.

Set 'BodyAsFile' when you want the message body written to a temporary file and added to the
attachment list as the first attachment, instead of returning a pointer to the message body.

If setting SupressAttach=TRUE (default behaviour), you will be able to 'read' the File Attachment Name
but the temporary File will not be created (The MFile.FilePath will return an Empty string); In order to
'create' the temporary File Attachments, you will have to set SupressAttach=FALSE &
EnvelopeOnly=FALSE when reading your Mail Message.

NOTE: When Creating TEMPORARY File Attachment, You will have to remove them manually. The Mail
eXtension MFILE control contains some actions to delete the temporary File:
(MFile1.Action=ACTION_REMOVEFILE).

Properties:

- About - FileName
- Action - FileNum
- AttachmentPosition - FilePath
- BindString - Height
- DisplayDialog - Index
- DisplayErrors - IsBinded
- ErrorNum - Left
- ErrorText - Name
- FetchFile - ObjRef
- FileCount - Tag
- FileFlags - Top

- Width

Events:
- Error

Methods:
- AddItem
- BindWith
- RemoveItem
- Clear
- Refresh

Example

The following code uses a MailX Session control, Message Control, Recipient Control, File Control and a
button on a form. The code will compose a new message and set a file Attachment

Visual Basic Code:

Sub Command2_Click ()
        If MSess1.Logon = True Then
                MReci1.Clear
                MReci1.ResolveName = szAddress.Text
                If MReci1.ResolveName = "" Then
                        MsgBox "Recipient NOT FOUND"
                Else
                        MReci1.Action = ACTION_ADDRECIPIENT
                        MMsg1.Action = ACTION_NEW
                        MMsg1.WorkingMsg = COMPOSE_MSG
                        MReci1.Action = ACTION_RECIP_SET
                        MMsg1.Subject = szSubject
                        MMsg1.NoteText = szNoteText
                        MFile1.Clear
                        MFile1.AddItem szFileName.Text
                        If MFile1.FileCount = 0 Then MsgBox "Error Setting File Attachment"
                        MFile1.Action = ACTION_FILESET
 
                        MMsg1.Action = ACTION_SENDMSG
 
                        If MMsg1.ErrorNum = 0 Then
                                MsgBox "Message has been sent"
                        Else
                                MsgBox "Error Sending The Mail message"
                        End If
                End If
        Else
                MsgBox "No Active Session available"
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, Recipient Control, File Control and a
button on a form. The code will compose a new message and set a file Attachment

Visual Basic Code:

Sub Command2_Click ()
        If MSess1.Logon = True Then
                MReci1.Clear
                MReci1.ResolveName = szAddress.Text
                If MReci1.ResolveName = "" Then
                        MsgBox "Recipient NOT FOUND"
                Else
                        MReci1.Action = ACTION_ADDRECIPIENT
                        MMsg1.Action = ACTION_NEW
                        MMsg1.WorkingMsg = COMPOSE_MSG
                        MReci1.Action = ACTION_RECIP_SET
                        MMsg1.Subject = szSubject
                        MMsg1.NoteText = szNoteText
                        MFile1.Clear
                        If MsgBox("Display AddFile Dialog?", 4, "Mail eXtension") = 6 Then
                                MFile1.DisplayDialog = True
                        Else
                                MFile1.DisplayDialog = False
                        End If
                        MFile1.AddItem szFileName.Text
                        If MFile1.FileCount = 0 Then MsgBox "Error Setting File Attachment"
                        MFile1.Refresh
 
                        MMsg1.Action = ACTION_SENDMSG
 
                        If MMsg1.ErrorNum = 0 Then
                                MsgBox "Message has been sent"
                        Else
                                MsgBox "Error Sending The Mail message"
                        End If
                End If
        Else
                MsgBox "No Active Session available"
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, File Control and a button on a form.
The code will fetch the first message and returns the Number of File Attachments

Visual Basic Code:

Sub Command3_Click ()
        MMsg1.Action = ACTION_FINDFIRST
        If MMsg1.ErrorNum = 0 Then
                MFile1 = MMsg1
                MsgBox "Number of Files=" + Str$(MFile1.FileCount)
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, File Control and a button on a form.
The code will fetch the first message and returns the Number of File Attachments

Visual Basic Code:

Sub Command3_Click ()
        MMsg1.Action = ACTION_FINDFIRST
        If MMsg1.ErrorNum = 0 Then
                MFile1.FetchFile = True
                MsgBox "Number of Files=" + Str$(MFile1.FileCount)
        End If
End Sub

Example

The following code uses a MailX Session control, Message Control, File Control and a button on a form.
The code will add two File Attachments and will set the Attachment position

Visual Basic Code:

Sub Command2_Click ()
        MFile1.Clear
        MFile1.AddItem "C:\CONFIG.SYS"
        MFile1.FileNum = 1
        MFile1.AttachmentPosition = 1
        MFile1.AddItem "C:\AUTOEXEC.BAT"
        MFile1.FileNum = 2
        MFile1.AttachmentPosition = 2
        MsgBox "File Count=" + Str$(MFile1.FileCount)
End Sub

Example

The following code uses a MailX Session control, Message Control, File Control and a button on a form.
The code will fetch the first message and returns the FileName of the first FileAttachment available in
your message

Visual Basic Code:

Sub Command3_Click ()
        MMsg1.Action = ACTION_FINDFIRST
        If MMsg1.ErrorNum = 0 Then
                MFile1 = MMsg1
                If MFile1.FileCount>0 then
                        MFile1.FileNum = 1
                        MsgBox MFile1.FileName
                Endif
        End If
End Sub

