
A Specification For Writing Internet Server Applications

A High Performance alternative to CGI Executables

Introduction to CGI

CGI (Common Gateway Interface) is an interface for running external programs or gateways under an
information server. Currently the only supported information servers are HTTP servers. What we refer
to gateways are really programs which handle information requests and return the appropriate
document or generate a document on the fly. With CGI, your server can serve information which is not
in a form readable by the client (such as an SQL database), and act as a gateway between the two to
produce something which the client can use.

With the ever expanding services being made available through the Web, more and more CGI
applications will be developed. This calls for a closer look at the existing method of server executing
CGI applications and possible ways of improving its performance.

The way a server responds to a request for CGI execution from a client browser is to create a new
process and pass the data received from the client browser through environment variables and stdin
and expects the results gathered by the CGI application, on stdout of the newly created process. The
server creates as many processes as the number of requests received, one per each request.

For more information on the CGI specification please refer to http://hoohoo.ncsa.uiuc.edu/cgi/

Drawbacks with current implementations

As explained above, the existing HTTP servers create a separate process for each request received.
The more concurrent requests, the more concurrent processes created by the server. Creating a
process for every request is time consuming, expensive in terms of server RAM and it can be
restrictive as far as sharing the resources of the server application itself.

One way to circumvent creating processes is to convert the current CGI executable into a DLL which
the server loads the first time a request is received for that DLL. Then the DLL stays in memory ready
to service other requests until the server decides that it's no longer needed.

Note    Even though this specification talks specifically about writing Internet Server Applications for
Windows NT, the same specification could be used to build a sharable image for any operating system,
provided the operating system supports loadable shared images. Process Software has built an
OpenVMS loadable image based on this specification for a web server running on OpenVMS.

Advantages of DLLs over Executables

In Microsoft® Windows™, dynamic linking provides a way for a process to call a function that is not part
of its executable code. The executable code for the function is located in a dynamic-link library (DLL),
containing one or more functions that    are compiled, linked, and stored separately from the processes
using them. For example, the Microsoft® Win32® application programming interface (API) is
implemented as a set of dynamic-link libraries, so any process using the Win32 API uses dynamic
linking.

There are two methods for calling a function in a DLL:

· Load-time dynamic linking occurs when an application's code makes an explicit call to a DLL
function. This type of linking requires that the executable module of the application be built by linking
with the DLL's import library, which supplies the information needed to locate the DLL function when
the application starts.

· Run-time dynamic linking occurs when a program uses the LoadLibrary and GetProcAddress
functions to get the starting address of a DLL function. This type of linking eliminates the need to link
with an import library.

This specification is aimed at are of the latter category of DLLs. These DLLs (also called Internet
Server Applications or ISAs) are loaded at run time by the HTTP server. They are called at common
entrypoints GetExtensionVersion() and HttpExtensionProc(). Details of this interaction are explained
more in detail in the following chapters.

Unlike .EXE type script executables, the ISA DLLs are loaded in the same address space as the HTTP
server. This means that all the resources that are made available by the HTTP server process are also
available to the ISA DLLs. There is minimal overhead associated with executing these applications as
there is no additional processes creation overhead for each request. Our preliminary benchmark
programs show that loading ISA DLLs in-process can perform considerably faster than loading them
into a new process. Additionally in-process applications scale much better under heavy load.

Since an HTTP server knows the list of ISA DLLs that are already in the memory, it is possible for the
server to unload the ISA DLLs that have not been    accessed in a configurable amount of time. By
preloading a ISA DLL the server could speed up even the first request for that ISA. Unloading ISA DLLs
that have not been used for some time will free up system resources.

The following picture explains how a ISA DLL interacts with an HTTP server with respect to the
interaction of script executables with an HTTP server.

ISA architecture and CGI Architecture

As you can see in the above picture, all of the ISA DLLs reside in the same process as the HTTP
server, while the conventional CGI apps run in different processes. Interaction between an HTTP
server and ISA DLL is via Extension Control Blocks(ECB). The ECB is explained in detail in the
following chapter. As the picture above shows, multiple ISA DLLs can co-exist in the same process as
the server. In case of conventional CGI executables, the server creates a separate process for each
request and server communicates with the created process via environment variables and stdin/stdout.

ISA DLLs need to be multithread safe since multiple requests will be received simultaneously. For more
information on how to write multi-thread safe DLLs please refer to any of the several articles on writing
multithreaded applications on MSDN or any of the several books on Win32 Programming.

Similarly, for information on thread-safe DLLs and the scope of usage of C-Runtime routines in a DLL,
please refer to any of the several articles on sharing data in a DLL on the MSDN CD-ROM.

Detailed Interaction between the HTTP server and ISA

The HTTP server communicates with the ISA via a data structure called Extension Control Block. This
data structure is explained in detail in the following section. A client uses an ISA just like its CGI
counterpart, except rather then referencing:

"http://scripts/foo.exe?Param1+Param2" in the CGI instance, the following form would be used:

"http://scripts/foo.dll?Param1+Param2"

This means that in addition to identifying the files with extensions .EXE and .BAT as CGI executables,
the server will also identify a file with .DLL extension as a script to execute. When the server loads
the .DLL, it calls the DLL at the entry point GetExtensionVersion() to get the version number of the
specification the Extension is based on and a short human readable description for server
administrators. For every client request, the HttpExtensionProc() entry point is called. The extension
receives the commonly needed information such as the Query String, Path Info, Method Name and the
translated path. Subsequent sections of this document explain in detail how to retrieve the data sent by
the client browser. The way the server communicates with the Extension DLL is via a data structure
called the EXTENSION_CONTROL_BLOCK.

The Extension Control Block contains the following fields

cbSize (IN) The size of this structure.

dwVersion (IN) The version information of this
specification. The HIWORD has the
major version number and the
LOWORD has the minor version
number.

ConnID (IN) A unique number assigned by the
HTTP server and NOT to be modified.

dwHttpStatusCode (OUT) The status of the current transaction
when the request is completed.

lpszLogData (OUT) Buffer of size
HSE_LOG_BUFFER_LEN. Contains
a null terminated log information
string, specific to the ISA, of the
current transaction. This log
information will be entered in the
HTTP server log. Maintaining a single
log file which with both HTTP server
and ISA transactions is very useful for
administration purposes.

lpszMethod (IN) The method with which the request
was made. This is equivalent to the
CGI variable REQUEST_METHOD.

lpszQueryString (IN) Null terminated string containing the
query information. This is equivalent
to the CGI variable QUERY_STRING.

LpszPathInfo (IN) Null terminated string containing extra
path information given by the client.
This is equivalent to the CGI variable
PATH_INFO.

lpszPathTranslated (IN) Null terminated string containing the
translated path. This is equivalent to
the CGI variable

PATH_TRANSLATED.

cbTotalBytes (IN) The total number bytes to be received
from the client. This is equivalent to
the CGI variable
CONTENT_LENGTH. If this value is
0xffffffff then there is four gigabytes or
more of available data.    In this case.
ReadClient() should be called until
no more data is returned.

cbAvailable (IN) The available number of bytes (out of
a total of cbTotalBytes) in the buffer
pointed to by lpbData. If
cbTotalBytes is the same as
cbAvailable the variable lpbData will
point to a buffer which contains all the
data as sent by the client. Otherwise
cbTotalBytes will contain the total
number of bytes of data received. The
ISA will then need to use the callback
function ReadClient() to read the rest
of the data (starting from an offset of
cbAvailable).

lpbData (IN) Points to a buffer of size cbAvailable
that has the data sent by the client.

lpszContentType (IN) Null terminated string containing the
content type of the data sent by the
client. This is equivalent to the CGI
variable CONTENT_TYPE.

Mandatory Entry Points For Internet Web Server Applications

All the DLLs written as Internet Web Server Applications must export the following two entry points.
They are:

GetExtensionVersion().When the HTTP server loads a ISA for the first time, after loading the DLL, it
calls the GetExtensionVersion() function. If this function does not exist, the call to load the ISA will fail.
The recommended implementation of this function is:

BOOL WINAPI GetExtensionVersion(HSE_VERSION_INFO *pVer)
{
 pVer->dwExtensionVersion = MAKELONG(HSE_VERSION_MINOR,
 HSE_VERSION_MAJOR);
 lstrcpyn(pVer->lpszExtensionDesc,
 "This is a sample Web Server Application",
 HSE_MAX_EXT_DLL_NAME_LEN);
 return TRUE;
}

The second required entry point is:

DWORD HttpExtensionProc(LPEXTENSION_CONTROL_BLOCK *lpEcb);

This entry point is similar to a main() function a the script executable. This entry point would use the
callback functions to read client data and decide on what action to be taken. Before returning back to
the server, a properly formatted response must be sent to the client via either the WriteClient() or the
ServerSupportFunction() APIs.

Return Values

HSE_STATUS_SUCCESS
The ISA has finished processing and the server can disconnect and free up allocated resources.

HSE_STATUS_SUCCESS_AND_KEEP_CONN
The ISA has finished processing and the server should wait for the next HTTP request if the client
supports persistent connections. The application should only return this if it was able to send the
correct Content-Length header to the client. The server is not required to keep the session open.

HSE_STATUS_PENDING
The ISA has queued the request for processing and will notify the server when it has finished. See
HSE_REQ_DONE_WITH_SESSION under ServerSupportFunction.

HSE_STATUS_ERROR
The ISA has encountered an error while processing the request and the server can disconnect and
free up allocated resources.

GetServerVariable

Get information about a connection or about the server itself.

Prototype:
BOOL WINAPI GetServerVariable(;
HCONN hConn,
LPSTR lpszVariableName,
LPVOID lpvBuffer,
LPDWORD lpdwSize);

Parameters

hConn (IN)
Connection handle.

lpszVariableName (IN)
Null terminated string indicating which variable is being requested. Variable names are as defined in
the CGI specification located at http://hoohoo.ncsa.uiuc.edu/cgi/env.htm.

lpvBuffer (OUT)
Pointer to buffer to receive the requested information.

lpdwSize (IN/OUT)
Pointer to DWORD indicating the number of bytes available in the buffer. On successful completion
the DWORD contains the number of bytes transferred into the buffer (including the null terminating
byte).

Return Value

TRUE if successful, or FALSE if error. The Win32 API call GetLastError can be used to determine why
the call failed. Possible error values include:

ERROR_INVALID_PARAMETER Bad connection handle.

ERROR_INVALID_INDEX Bad or unsupported variable identifier.

ERROR_INSUFFICIENT_BUFFE
R

Buffer too small, required size
returned in *lpdwSize.

ERROR_MORE_DATA Buffer too small, only part of data
returned. The total size of the data is
not known.

ERROR_NO_DATA The data requested is not available.

Description: This function copies information (including CGI variables) relating to an HTTP connection,
or to the server itself, into a buffer supplied by the caller. Possible lpszVariableNames include:

AUTH_TYPE The type of authorization in use. If the
username has been authenticated by
the server, this will contain
Basic.Otherwise, it will not be
present.

CONTENT_LENGTH The number of bytes which the script
can expect to receive from the client.

CONTENT_TYPE The content type of the information
supplied in the body of a POST
request.

GATEWAY_INTERFACE The revision of the CGI specification
to which this server complies. The

current version is CGI/1.1.

PATH_INFO Additional path information, as given
by the client. This comprises the
trailing part of the URL after the script
name but before the query string (if
any).

PATH_TRANSLATED This is the value of PATH_INFO, but
with any virtual path name expanded
into a directory specification.

QUERY_STRING The information which follows the ? in
the URL which referenced this script.

REMOTE_ADDR The IP address of the client.

REMOTE_HOST The hostname of the client.

REMOTE_USER This contains the username supplied
by the client and authenticated by the
server. REQUEST_METHOD String
The HTTP request method.

SCRIPT_NAME The name of the script program being
executed.

SERVER_NAME The server's hostname (or IP
address) as it should appear in self-
referencing URLs.

SERVER_PORT The TCP/IP port on which the request
was received.

SERVER_PROTOCOL The name and version of the
information retrieval protocol relating
to this request. Normally HTTP/1.0.

SERVER_SOFTWARE The name and version of the
Professional Web Server under which
the CGI program is running.

AUTH_PASS This will retrieve the the password
corresponding to REMOTE_USER as
supplied by the client. It will be a null
terminated string.

ALL_HTTP All HTTP headers that were not
already parsed into one of the above
variables. These variables are of the
form HTTP_<header field name>.

HTTP_ACCEPT Special case HTTP header. Values of
the Accept: fields are concatenated,
separated by ", ". E.g. if the following
lines are part of the HTTP header:

accept: */*; q=0.1
accept: text/html
accept: image/jpeg

then the HTTP_ACCEPT variable will
have a value of:

/; q=0.1, text/html, image/jpeg

ReadClient

Read data from the body of the client's HTTP request.

Prototype:
BOOL ReadClient(;
HCONN hConn,
LPVOID lpvBuffer,
LPDWORD lpdwSize);

Parameters

hConn (IN)
Connection handle.

lpvBuffer (OUT)
Pointer to buffer area to receive the requested information.

lpdwSize (IN/OUT)
Pointer to DWORD indicating the number of bytes available in the buffer. On return *lpdwSize will
contain the number of bytes actually transferred into the buffer.

Return Value

TRUE on success; FALSE if error. If the call fails, the Win32 API GetLastError may be called to
determine the cause of the error.

Description: This function reads information from the body of the Web client's HTTP request into the
buffer supplied by the caller. Thus, the call might be used to read data from an HTML form which uses
the POST method. If more than *lpdwSize    bytes are immediately available to be read, ReadClient will
return after transferring that amount of data into the buffer. Otherwise it will block waiting for data to
become available. If the socket, on which the server is listening to client, is closed, it will return TRUE
but with zero bytes read.

WriteClient

Write data to the client.

Prototype:
BOOL WriteClient(;
HCONN hConn,
LPVOID lpvBuffer,
LPDWORD lpdwSize,
DWORD dwReserved);

Parameters

hConn (IN)
Connection handle.

lpvBuffer (OUT)
Pointer to the data to be written.

LpdwSize (IN/OUT)
Pointer to the number of bytes in the buffer. On return this will be updated to the number of bytes
actually sent on this call. Only if an error has occurred will this be less than the number of bytes in
the buffer.

dwReserved
Reserved for future use.

Return Value

TRUE on success; FALSE if error. If the call fails, the Win32 API GetLastError may be called to
determine the cause of the error.

Description: This function sends information to the HTTP client from the buffer supplied by the caller.

ServerSupportFunction

To provide the ISAs with some general purpose functions as well as functions that are specific to HTTP
server implementation.

Prototype:
BOOL ServerSupportFunction(;
HCONN hConn,
DWORD dwHSERequest,
LPVOID lpvBuffer,
LPDWORD lpdwSize,
LPDWORD lpdwDataType);

Note    General purpose functions should have a dwHSERequest value larger than 1000. Values
up to 1000 are reserved for mandatory ServerSupportFunctions and should not be used.

The following section describes the various defined values for dwHSERequest.

HSE_REQ_SEND_URL_REDIRECT_RESP
Sends a 302(URL Redirect) message to the client. No further processing is needed after the call.
This operation is similar to specifying "URI: <URL>" in a CGI script header. The variable lpvBuffer
should point to a null terminated string of URL. Variable lpdwSize should have the size of lpvBuffer.
Variable lpdwDataType is ignored.

HSE_REQ_SEND_URL
Sends the data specified by the URL to the client as if the client had requested that URL. The Null
terminated URL pointed by lpvBuffer, MUST be on the server and must not specify protocol
information(i.e. it must begin with a '/').

No further processing is required after this call. Variable lpdwSize points to a DWORD holding the
size of lpvBuffer. Variable lpdwDataType is ignored.

HSE_REQ_SEND_RESPONSE_HEADER
Sends a complete HTTP server response header including the status, server version, message time
and MIME version. The ISA should append other HTTP Headers at the end such as the Content-
Type, Content-Length etc followed by an extra '\r\n'.

lpvBuffer
Points to a null terminated optional status string(i.e 401 Access Denied". If this buffer is null, a
default response of "200 Ok" will be sent by this function.

lpdwDataType
This is a zero terminated string pointing to optional headers or data to be appended and sent with
the header. If this is NULL, the header will be terminated by a '\r\n' pair.

lpdwSize
Points to the size of the buffer lpdwDataType.

HSE_REQ_DONE_WITH_SESSION
If the server Extension wants to hold onto the session because they have extended processing
requirements, they need to tell the server when the session is finished so that the server can close it
and free the related structures. Variables lpvBuffer, lpdwSize and lpdwDataType are all ignored.

lpvBuffer
Points to a DWORD indicating the status code of the request.

Header File Associated with this Specification

Copyright (c) 1995    Process Software Corporation

Copyright (c) 1995    Microsoft Corporation

Module Name    : HttpExt.h

Abstract :

This module contains    the structure definitions and prototypes for the version 1.0 HTTP Server
Extension interface.

#ifndef _HTTPEXT_H
#define _HTTPEXT_H

#include <windows.h>

#define HSE_VERSION_MAJOR 1 // major version of this spec
#define HSE_VERSION_MINOR 0 // minor version of this spec
#define HSE_LOG_BUFFER_LEN 80
#define HSE_MAX_EXT_DLL_NAME_LEN 256

typedef LPVOID HCONN;

// the following are the status codes returned by the Extension DLL

#define HSE_STATUS_SUCCESS 1
#define HSE_STATUS_SUCCESS_AND_KEEP_CONN 2
#define HSE_STATUS_PENDING 3
#define HSE_STATUS_ERROR 4

// The following are the values to request services with the
ServerSupportFunction.
// Values from 0 to 1000 are reserved for future versions of the interface

#define HSE_REQ_BASE 0
#define HSE_REQ_SEND_URL_REDIRECT_RESP (HSE_REQ_BASE + 1)
#define HSE_REQ_SEND_URL (HSE_REQ_BASE + 2)
#define HSE_REQ_SEND_RESPONSE_HEADER (HSE_REQ_BASE + 3)
#define HSE_REQ_DONE_WITH_SESSION (HSE_REQ_BASE + 4)
#define HSE_REQ_END_RESERVED 1000

//
// passed to GetExtensionVersion
//

typedef struct _HSE_VERSION_INFO {

 DWORD dwExtensionVersion;
 CHAR lpszExtensionDesc[HSE_MAX_EXT_DLL_NAME_LEN];

} HSE_VERSION_INFO, *LPHSE_VERSION_INFO;

//
// passed to extension procedure on a new request
//

typedef struct _EXTENSION_CONTROL_BLOCK {

 DWORD cbSize; // size of this struct.
 DWORD dwVersion; // version info of this spec
 HCONN ConnID; // Context number not to be modified!
 DWORD dwHttpStatusCode; // HTTP Status code
 CHAR lpszLogData[HSE_LOG_BUFFER_LEN];// null terminated log info
specific to this Extension DLL

 LPSTR lpszMethod; // REQUEST_METHOD
 LPSTR lpszQueryString; // QUERY_STRING
 LPSTR lpszPathInfo; // PATH_INFO
 LPSTR lpszPathTranslated; // PATH_TRANSLATED

 DWORD cbTotalBytes; // Total bytes indicated from client
 DWORD cbAvailable; // Available number of bytes
 LPBYTE lpbData; // pointer to cbAvailable bytes

 LPSTR lpszContentType; // Content type of client data

 BOOL (WINAPI * GetServerVariable) (HCONN hConn,
 LPSTR lpszVariableName,
 LPVOID lpvBuffer,
 LPDWORD lpdwSize);

 BOOL (WINAPI * WriteClient) (HCONN ConnID,
 LPVOID Buffer,
 LPDWORD lpdwBytes,
 DWORD dwReserved);

 BOOL (WINAPI * ReadClient) (HCONN ConnID,
 LPVOID lpvBuffer,
 LPDWORD lpdwSize);

 BOOL (WINAPI * ServerSupportFunction)(HCONN hConn,
 DWORD dwHSERRequest,
 LPVOID lpvBuffer,
 LPDWORD lpdwSize,
 LPDWORD lpdwDataType);

} EXTENSION_CONTROL_BLOCK, *LPEXTENSION_CONTROL_BLOCK;

//
// these are the prototypes that must be exported from the extension DLL
//

BOOL WINAPI GetExtensionVersion(HSE_VERSION_INFO *pVer);
DWORD WINAPI HttpExtensionProc(EXTENSION_CONTROL_BLOCK *pECB);

// the following type declarations is for the server side

typedef BOOL (WINAPI * PFN_GETEXTENSIONVERSION)(HSE_VERSION_INFO *pVer);
typedef DWORD (WINAPI * PFN_HTTPEXTENSIONPROC)(EXTENSION_CONTROL_BLOCK
*pECB);

#endif // end definition _HTTPEXT_H

Notes to Application Developers

The application will get called at HttpExtensionProc() and will be passed a pointer to ECB structure.
The application will then decide on what exactly needs to be done, by reading the client input (by
calling the functions GetServerVariable() and, if necessary, ReadClient()). This is similar to setting up
environment variables and reading stdin.

Since the ISA DLL is loaded in the same process as the HTTP server, an access violation by the ISA
may crash some HTTP servers. As a result you should ensure the integrity of the ISA by testing it
thoroughly. ISAs that misbehave may also corrupt the server's memory space or may result in memory
or resource leaks if they fail to properly cleanup after themselves. To take help with this problem, many
HTTP servers will wrap the ISA entry points in a __try/__except clause so that access violations (or
other exceptions) will not directly affect the server. For more information on __try/__except clause
please refer to the Win32 API documentation

The main entry point in the ISA, HttpExtensionProc()takes only one input parameter - a pointer to
structure of type EXTENSION_CONTROL_BLOCK. Application developers are not expected to
change the following fields in ECB structure: cbSize, dwVersion & ConnID.

Application developers are encouraged to initialize their DLL automatically by defining an entry point
function for the DLL (e.g DllMain()). The OS will call this entry point function by default, the first time a
LoadLibrary() call or the last time a FreeLibrary() call is made for that DLL, or when a new thread is
created or destroyed in the process.

Application developers are encouraged to maintain statistical information or any information pertaining
to the DLL within the DLL itself. By creating appropriate forms one could measure the
usage/performance of a DLL remotely. Also, this information could be exposed via the Performance
APIs for integration with PerfMon. The lpszLogData field of the ECB can also be used to log data to
the Windows NT event viewer.

Steps to convert existing CGI scripts to ISA DLLs

This chapter explains the basic requirements for converting an existing CGI script executable to a ISA
DLL. Like any other DLL, WEB Server Applications should be thread safe. This means more than one
client will be executing the same function at the same time, so the code should follow safety
procedures in modifying a global or static variable. By using appropriate synchronization techniques,
such as critical sections and semaphores, this issue can be properly handled. For more explanation on
writing thread safe DLLs please refer to the documentation in the Win32 SDK and on MSDN.

The primary differences between a ISA DLL and a CGI executable include the following:

· An ISA will receive most of its data through the lpbData member of the ECB as opposed to reading
it from stdin. For any additional data the extension will need to use the ReadClient() callback
function.

· The common CGI variables are provided in the ECB. For other variables, call GetServerVariable().
In a CGI executable these are retrieved from the environment table using getenv().

· When sending data back to the client use the WriteClient() callback functions instead of writing to
stdout.

· When specifying a completion status, rather then sending a "Status: NNN xxxxx..." to stdout, either
send the header directly using the WriteClient() callback function, or use the
HSE_REQ_SEND_RESPONSE_HEADER ServerSupportFunction.

· When specifying a redirect with the "Location:" or "URI:" header rather then writing the header to
stdout use the HSE_REQ_SEND_URL (if the URL is local) or
HSE_REQ_SEND_URL_REDIRECT_RESP (if the URL is remote or unknown)
ServerSupportFunction callback function.

Conclusions, Acknowledgments and Contact Information

The above proposal by Process Software Corporation is aimed at helping the third party script
executable developers to optimize their application and improve the performance. We welcome any
suggestions or concerns that you may have and please send them directly to me at the email address
ramanathan@process.com.

I would appreciate your feedback especially on the ServerSupportFunction. If you have any specific
server variable to be returned to an Extension DLL, please drop me a mail and we'll consider including
that.

I would like to acknowledge the valuable suggestions made by Chris Adie of EMWAC, UK and I thank
him for reviewing the document as it was being written.

