
Writing an ISAPI Filter

Revision 0.5 (DRAFT)

XXX 0, 0000

Overview

This specification describes the basics of writing an ISAPI (Internet Server API) Filter for the Microsoft
Internet Information Server. An ISAPI filter is a replaceable dynamic link library (DLL) the server calls
on every HTTP (Hypertext Transfer Protocol) request. When the filter is loaded it tells the server what
sort of notifications it is interested in. After that, whenever the selected events occur, the filter is called
and given the opportunity to process that event.

ISAPI filters are powerful enough to allow for the following applications:

1. Custom authentication schemes

2. Compression

3. Encryption

4. Logging

5. Traffic analysis or other request analysis (looking for requests to "..\..\etc\password" for example)

Multiple filters can be installed. The notification order is based on the priority specified by the filter and
then the load order in the registry for any ties.

Note once a filter has expressed interest in a request, it will receive that data regardless of whether the
request is for a file, a CGI (Common Gateway Interface, a common HTTP server extension) application
or an ISAPI application.

About

ISAPI filters can be used to enhance the Microsoft Internet Information Server with custom features
such as enhanced logging of HTTP requests, custom encryption and compression schemes, or new
authentication methods. The filter applications sit between the network connection to the clients and
the HTTP server. Depending on the options that the filter application chooses, it can act on several
server actions, including reading raw data from the client, processing the headers, communications
over a secure port (PCT (Personal Communications Technology), SSL (Secure Sockets Layer), etc.),
or several other stages in the processing of the HTTP request.

Using ISAPI Filter APIs

Using the ISAPI filter APIs requires that the filter application's path is inserted into the registry.    When
the server starts up it reads this value and loads the DLLs listed. It then calls the GetFilterVersion
entrypoint to exchange version information and determine the notifications desired and priority to
deliver them. As the events happen, the server will notify each filter application (by calling the
HttpFilterProc entrypoints) that registered for that event in the priority order requested by
GetFilterVersion. In the event of a tie, the order listed in the registry is used.

DLL Entry Points

Every ISAPI filter DLL must export at least two entry points. These are GetFilterVersion and
HttpFilterProc. The GetFilterVersion entrypoint is passed a HTTP_FILTER_VERSION structure that
must be filled out with version information, requested events, and priority level. ISAPI filter applications
should only register for the events that are required. Registering for extraneous events can have a
significant negative impact on performance and scalability. After this exchange, every time the server
processes one of the available events it will call any filters that have registered for that event. The order
that the server will call the filters depends first on the priority specified in the dwFlags member of
HTTP_FILTER_VERSION by GetFilterVersion. In the event that two or more different filters have
registered for the same event at the same priority, the order that the filters were loaded from the
registry determines the order that they will be called.

When the HttpFilterProc entrypoint is called the filter will typically perform a switch on the
NotificationType parameter to determine what action to take. For example, an encryption or
compression filter will probably register for reading and writing raw data, while a logging filter will
probably only register for the log event. Most filters will also register for the end of net session event.
This event is a good time to recycle any buffers used by that client request. For performance reasons
most filters will probably keep a pool of filter buffers and only allocate or free when the pool becomes
empty or too large, so save on the overhead of the memory management. One useful callback is the
AllocMem callback in the HTTP_FILTER_CONTEXT structure. This will allocate memory that is
automatically freed when the communication with the client is terminated. As noted, this can have a
negative impact on performance, but with careful use it can be a valuable tool.

Functions

GetFilterVersion

BOOL WINAPI GetFilterVersion(
       
PHTTP_FILTER_VERSIO
N pVer

     );

Parameters

pVer
The HTTP_FILTER_VERSION structure pointed to by this parameter contains version information
for the server and fields for the client to indicate version number, notifications and priority desired.
There is also a space for the fiilter application to register a small description of itself.

Return Value

The return code indicates if the filter was properly loaded. If the filter returns FALSE then the filter
application will be unloaded and it will not receive any notifcations.

Remarks

This API, implemented in the ISAPI filter application, is the first entrypoint called by the Internet
Information Server. It is important that only the necessary notifications are specified in the pVer-
>dwFlags member. Some notifications can have a strong impact on performance and scalability. In
addition to the notification flags described in the HttpFilterProc documentation, there are also priority
flags to specify which order to call the filter:

SF_NOTIFY_ORDER_DEFAULT
Load the filter at the default priority (recommended)

SF_NOTIFY_ORDER_LOW
Load the filter at the low priority.

SF_NOTIFY_ORDER_MEDIUM
Load the filter at a medium priority.

SF_NOTIFY_ORDER_HIGH
Load the filter at a high priority.

See Also

HttpFilterProc, HTTP_FILTER_VERSION

HttpFilterProc

DWORD WINAPI HttpFilterProc(
        PHTTP_FILTER_CONTEXT pfc,

        DWORD NotificationType,

        LPVOID pvNotification

     );

Parameters

pfc
The HTTP_FILTER_CONTEXT structure pointed to by this parameter contains context information.
The pFilterContext member can be used by the filter to associate any context information with the
HTTP request. The SF_NOTIFY_END_OF_NET_SESSION notification can be used to release any
such context information.

NotificationType
Indicates the type of event being processed. Valid types are:

SF_NOTIFY_SECURE_PORT
Notify application only for sessions over a secure port

SF_NOTIFY_NONSECURE_PORT
Notify application only for sessions over a secure port

SF_NOTIFY_READ_RAW_DATA
Allow the application to see the raw data. The data returned will contain both headers and data

SF_NOTIFY_PREPROC_HEADERS
The server has pre-processed the headers.

SF_NOTIFY_AUTHENTICATION
The server is authenticating the client.

SF_NOTIFY_URL_MAP
The server is mapping a logical URL to a physical path.

SF_NOTIFY_SEND_RAW_DATA
The server is sending raw data back to the client.

SF_NOTIFY_LOG
The server is writing information to the server log.

SF_NOTIFY_END_OF_NET_SESSION
The session with the client is ending.

pvNotification
Notification-specific structure

Notification Type pvNotification points to

SF_NOTIFY_READ_RAW_DATA
SF_NOTIFY_SEND_RAW_DATA

HTTP_FILTER_RAW_DATA

SF_NOTIFY_PREPROC_HEADERS HTTP_FILTER_PREPROC_HEADER
S

SF_NOTIFY_AUTHENTICATION HTTP_FILTER_AUTHENT

SF_NOTIFY_URL_MAP HTTP_FILTER_URL_MAP

SF_NOTIFY_LOG HTTP_FILTER_LOG

Return Code

Indicates how the application handled the event. Possible return codes are:

SF_STATUS_REQ_FINISHED
The filter has handled the HTTP request. The server should disconnect the session.

SF_STATUS_REQ_FINISHED_KEEP_CONN
Same as SF_STATUS_REQ_FINISHED except the server should keep the TCP session open if the
option was negotiated

SF_STATUS_REQ_NEXT_NOTIFICATION
The next filter in the notification chain should be called

SF_STATUS_REQ_HANDLED_NOTIFICATION
This filter handled the notification. No other handlers should be called for this particular notification
type

SF_STATUS_REQ_ERROR
An error occurred. The server should use GetLastError and indicate the error to the client

SF_STATUS_REQ_READ_NEXT
The filter is an opaque stream filter and we're negotiating the session parameters. Only valid for raw
read notification.

Remarks

This is where the core work of the ISAPI filter applications is done. The various structures pointed to by
pvNotification contain data and function pointers specific to these operations. See the structure details
for more information.

See Also

HTTP_FILTER_CONTEXT, HTTP_FILTER_RAW_DATA, HTTP_FILTER_PREPROC_HEADERS,
HTTP_FILTER_AUTHENT, HTTP_FILTER_URL_MAP, HTTP_FILTER_LOG

Structures

HTTP_FILTER_VERSION

typedef struct _HTTP_FILTER_VERSION
{
DWORD dwServerFilterVersion;
DWORD dwFilterVersion;
CHAR lpszFilterDesc[SF_MAX_FILTER_DESC_LEN+1];
DWORD dwFlags;
} HTTP_FILTER_VERSION, *PHTTP_FILTER_VERSION;

Members

dwServerFilterVersion [IN]
Version of the spec used by the server. The version of the current header file is
HTTP_FILTER_REVISION

dwFilterVersion [OUT]
Version of the spec used by the server. The version of the current header file is
HTTP_FILTER_REVISION

lpszFilterDesc[OUT]
Location to store a short string description of ISAPI filter application

dwFlags [OUT]
Combination of SF_NOTIFY_* flags to specify what events this application is interested in. See
HttpFilterProc for a list of valid flags.

Remarks

This structure is passed to the application's HttpFilterProc entrypoint by the server.

See Also

HttpFilterProc

HTTP_FILTER_CONTEXT

typedef struct _HTTP_FILTER_CONTEXT
{
DWORD cbSize;
DWORD Revision;
PVOID ServerContext;
DWORD ulReserved;
BOOL fIsSecurePort;
PVOID pFilterContext;
BOOL (WINAPI * GetServerVariable) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszVariableName,
 LPVOID lpvBuffer,
 LPDWORD lpdwSize
);
BOOL (WINAPI * AddResponseHeaders) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszHeaders,
 DWORD dwReserved
);
BOOL (WINAPI * WriteClient) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPVOID Buffer,
 LPDWORD lpdwBytes,
 DWORD dwReserved
);
VOID * (WINAPI * AllocMem) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 DWORD cbSize,
 DWORD dwReserved
);
BOOL (WINAPI * ServerSupportFunction) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 enum SF_REQ_TYPE sfReq,
 PVOID pData,
 DWORD ul1,
 DWORD ul2
);
} HTTP_FILTER_CONTEXT, *PHTTP_FILTER_CONTEXT;

Members

cbSize [IN]
Size of this structure, in bytes.

Revision [IN]
Revision level of this structure. This is less than or equal to the version of the spec,
HTTP_FILTER_REVISION.

ServerContext [IN]
Reserved for server use.

ulReserved [IN]
Reserved for server use.

fIsSecurePort [IN]

TRUE indicates that this event is over a secure port.

pFilterContext [IN/OUT]
A pointer to be used by the filter for any context information that the filter wants to associate with this
request. Any memory associated with this request can be safely freed during the
SF_NOTIFY_END_OF_NET_SESSION notification.

BOOL (WINAPI * GetServerVariable) (

Pointer to a function to retrieve information about the server and this connection.    See the ISAPI
application documentation for GetServerVariable for details.

 struct _HTTP_FILTER_CONTEXT * pfc, pfc passed to HttpFilterProc
 LPSTR lpszVariableName, Server variable to retrieve.
 LPVOID lpvBuffer, Buffer to store value of variable
 LPDWORD lpdwSize Size of buffer pointed to lpvBuffer
);
BOOL (WINAPI * AddResponseHeaders) (

Pointer to a function that adds a header to the HTTP response. See the ISAPI documentation on
ServerSupportFunction, HSE_SEND_RESPONSE_HEADER for details.

 struct _HTTP_FILTER_CONTEXT * pfc, pfc passed to HttpFilterProc
 LPSTR lpszHeaders, Pointer string containing headers to add.
 DWORD dwReserved Reserved for future use. Must be 0.
);
BOOL (WINAPI * WriteClient) (

Pointer to a function that sends raw data back to the client. See the ISAPI documentation on
WriteClient for details.

struct _HTTP_FILTER_CONTEXT * pfc, pfc passed to HttpFilterProc
 LPVOID Buffer, Buffer containing data to
 send to the client.
 LPDWORD lpdwBytes, Size of the buffer
 pointed to by Buffer.
 DWORD dwReserved Reserved for future use.
);
VOID * (WINAPI * AllocMem) (

Pointer to a function used to allocate memory. Any memory allocated with this function will
automatically be freed when the request is completed.

struct _HTTP_FILTER_CONTEXT * pfc, pfc passed to HttpFilterProc
 DWORD cbSize, Size of the buffer to allocate
 DWORD dwReserved Reserved for future use.
);
BOOL (WINAPI * ServerSupportFunction) (

Pointer to a function used to extend the ISAPI filter APIs. Parameters are specific to the extensions.

struct _HTTP_FILTER_CONTEXT * pfc,
 enum SF_REQ_TYPE sfReq,
 PVOID pData,
 DWORD ul1,
 DWORD ul2
);

Pointer to a function used to extend the ISAPI filter APIs. Parameters are specific to the extensions.
Possible values for sfReq are:

SF_REQ_SEND_RESPONSE_HEADER
Sends a complete HTTP server response header including the status, server version, message time
and MIME version.

Server extensions should append other information at the end, such as Content-type, Content-length
etc followed by an extra '\r\n'.

Parameters

pData
Zero terminated string pointing to optional status string (i.e., "401 Access Denied") or NULL for the
default response of "200 OK".

ul1
Zero terminated string pointing to optional data to be appended and set with the header. If NULL, the
header will be terminated with an empty line.

SF_REQ_ADD_HEADERS_ON_DENIAL
If the server denies the HTTP request, add the specified headers to the server error response. This
allows an authentication filter to advertise its services without filtering every request. Generally the
headers will be WWW-Authenticate headers with custom authentication schemes but    no restriction
is placed on what headers may be specified.

Parameters

pData
Zero terminated string pointing to one or more header lines with terminating '\r\n'.

SF_REQ_SET_NEXT_READ_SIZE
Only used by raw data filters that return SF_STATUS_READ_NEXT.

Parameters

ul1
size in bytes for the next read.

HTTP_FILTER_RAW_DATA

typedef struct _HTTP_FILTER_RAW_DATA
{
PVOID pvInData;
DWORD cbInData;
DWORD cbInBuffer;
DWORD dwReserved;
} HTTP_FILTER_RAW_DATA, *PHTTP_FILTER_RAW_DATA;

Members

pvInData [IN]
Pointer to the data buffer (input or output).

cbInData [IN]
Amount of data in the buffer pointed to by pvInData.

cbInBuffer [IN]
Size of the buffer pointed to by pvInData.

dwReserved [IN]
Reserved for future use.

Remarks

This structure is passed to the SF_NOTIFY_READ_RAW_DATA and SF_NOTIFY_SEND_RAW_DATA
notification routines.

See Also

HttpFilterProc

HTTP_FILTER_PREPROC_HEADERS

typedef struct _HTTP_FILTER_PREPROC_HEADERS
{
BOOL (WINAPI * GetHeader) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszName,
 LPVOID lpvBuffer,
 LPDWORD lpdwSize
);
BOOL (WINAPI * SetHeader) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszName,
 LPSTR lpszValue
);
BOOL (WINAPI * AddHeader) (
 struct _HTTP_FILTER_CONTEXT * pfc,
 LPSTR lpszName,
 LPSTR lpszValue
);
DWORD dwReserved;
} HTTP_FILTER_PREPROC_HEADERS, *PHTTP_FILTER_PREPROC_HEADERS;

Members

BOOL (WINAPI * GetHeader) (
struct _HTTP_FILTER_CONTEXT * pfc,
LPSTR lpszName,
LPVOID lpvBuffer,
LPDWORD lpdwSize
);

Pointer to a function that retrieves the specified header value. Header names should include the trailing
colon (':').    The special values 'method', 'url' and 'version' can be used to retrieve the individual
portions of the request line.

pfc
Filter context for this request from he pfc passed to the HttpFilterProc.

lpszName
The name of the header to retrieve.

lpvBuffer
Pointer to a buffer of size lpdwSize where the valueof the header will be stored.

BOOL (WINAPI * SetHeader) (
struct _HTTP_FILTER_CONTEXT * pfc,
LPSTR lpszName,
LPSTR lpszValue
);

Pointer to a function used to change or delete the value of a header.

pfc
Filter context for this request from he pfc passed to the HttpFilterProc.

lpszName
Pointer to the name of the header to change or delete.

lpszValue
Pointer to the string to change the header to, or a pointer to '\0' to delete the header.

BOOL (WINAPI * AddHeader) (
struct _HTTP_FILTER_CONTEXT * pfc,
LPSTR lpszName,
LPSTR lpszValue
);

Pointer to a function to add a header.

pfc
Filter context for this request from he pfc passed to the HttpFilterProc.

lpszName
Pointer to the name of the header to change or delete.

lpszValue
Pointer to the string to change the header to, or a pointer to '\0' to delete the header.

Remarks

This structure is pointed to by the pvNotification in the HttpFilterProc when NotificationType is
SF_NOTIFY_PREPROC_HEADERS when the server is about to process the client headers

See Also

HttpFilterProc

HTTP_FILTER_AUTHENT

typedef struct _HTTP_FILTER_AUTHENT
{
CHAR * pszUser;
DWORD cbUserBuff;
CHAR * pszPassword;
DWORD cbPasswordBuff;
} HTTP_FILTER_AUTHENT, *PHTTP_FILTER_AUTHENT;

Members

pszUser [IN/OUT]
Pointer to a string containing the username for this request.    An empty string indicates an
anonymous user.

cbUserBuff [IN]
Size of the buffer pointed to by pszUser.    This is guaranteed to be at least SF_MAX_USERNAME.

pszPassword [IN/OUT]
Pointer to a string containing the password for this request.

cbPasswordBuff [IN]
Size of the buffer pointed to by pszPassword.    This is guaranteed to be at least
SF_MAX_PASSWORD.

Remarks

This structure is pointed to by the pvNotification in the HttpFilterProc when NotificationType is
SF_NOTIFY_AUTHENTICATION when the server is about to authenticate the client. This can be used
to implement a different authentication scheme.

See Also

HttpFilterProc

HTTP_FILTER_URL_MAP

typedef struct _HTTP_FILTER_URL_MAP
{
const CHAR * pszURL;
CHAR * pszPhysicalPath;
DWORD cbPathBuff;
} HTTP_FILTER_URL_MAP, *PHTTP_FILTER_URL_MAP;

Members

pszURL [IN]
Pointer to the URL that is being mapped to a physical path.

pszPhysicalPath [IN/OUT]
Pointer to the buffer where the physical path is stored.

cbPathBuff [IN]
Size of the buffer pointed to by pszPhysicalPath.

Remarks

This structure is pointed to by the pvNotification in the HttpFilterProc when NotificationType is
SF_NOTIFY_URL_MAP when the server is about to map the specified URL to a physical path. Filters
can modify the physical path in place.

See Also

HttpFilterProc

HTTP_FILTER_LOG

typedef struct _HTTP_FILTER_LOG
{

const CHAR * pszClientHostName;
const CHAR * pszClientUserName;
const CHAR * pszServerName;
const CHAR * pszOperation;
const CHAR * pszTarget;
const CHAR * pszParameters;
DWORD dwHttpStatus;
DWORD dwWin32Status;
} HTTP_FILTER_LOG, *PHTTP_FILTER_LOG;

Members

pszClientHostName [IN/OUT]
Client's host name.

pszClientUserName [IN/OUT]
Client's user name.

pszServerName [IN/OUT]
Name of the server the client connected to.

pszOperation [IN/OUT]
HTTP command.

pszTarget [IN/OUT]
Target of the HTTP command.

pszParameters [IN/OUT]
Parameters passed to the HTTP command.

dwHttpStatus [IN/OUT]
HTTP return status.

dwWin32Status [IN/OUT]
Win32 Error code.

Remarks

This structure is pointed to by the pvNotification in the HttpFilterProc when NotificationType is
SF_NOTIFY_LOG when the server is about to log information to the server log file. The strings cannot
be changed but pointers can be replaced. If the string pointers are changed, the memory they point to
must remain valid until the next notification.

The DLL Entry Points

Every filter is contained in a separate DLL with 2 common entrypoints. These are GetFilterVersion and
HttpFilterProc. When the DLL is loaded GetFilterVersion is called which lets the filter know the
version of the server and allows the filter to tell the server the version of the filter and the events that
the filter is interested in. After this the server will call the filter's HttpFilterProc entrypoint with
appropriate notifications. Note that filters should only register for notifications that the filter needs to see
- some filter notifications are very expensive in terms of CPU resources and I/O throughput and can
have a dramatic effect on the speed and scalability of the Microsoft Internet Information Server.

BOOL
WINAPI
GetFilterVersion(
 HTTP_FILTER_VERSION * pVer
);

DWORD
WINAPI
HttpFilterProc(
 HTTP_FILTER_CONTEXT * pfc,
 DWORD NotificationType,
 VOID * pvNotification
);

