
[

Levesque and Brachman, 1985

]

H.J. Levesque and R.J. Brachman. A fundamental tradeo�

in knowledge representation and reasoning (revised version). In R.J. Brachman and H.J.

Levesque, editors, Readings in Knowledge Representation, pages 41{70. Morgan Kaufmann,

Los Altos, CA, 1985.

[

Levesque, 1989

]

Hector J. Levesque. Logic and the complexity of reasoning. Technical Report

KRR-TR-89-2, Department of Computer Science, University of Toronto, Toronto, Ontario,

Canada, Jan 1989.

[

Patel-Schneider et al., 1990

]

P. Patel-Schneider, B. Owsnicki-Klewe, A. Kobsa, N. Guarino,

R. MacGregor, W.S. Mark, D.L. McGuinness, B. Nebel, A. Schmiedel, and J. Yen. Term

subsumption languages in knowledge representation. AI Magazine, 11(2):16{23, 1990.

[

Selman and Kautz, 1991a

]

Bart Selman and Henry Kautz. Knowledge compilation using horn

approximations. In Proceedings of AAAI-91, Anaheim, CA, 1991.

[

Selman and Kautz, 1991b

]

Bart Selman and Henry Kautz. Methods of knowledge compilation.

In Preparation, 1991.

[

Subramanian and Genesereth, 1987

]

Devika Subramanian and Michael R. Genesereth. The

relevance of irrelevance. In Proceedings of IJCAI-87, volume 1, page 416, 1987.

[

Ullman, 88

]

Je�rey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume

I. Computer Science Press, Rockville, MD, 88.

13

knowledge compilation approach appears suited for dealing with a large variety of knowledge

representations language | not only traditional logics.

Currently we are working on empirical evaluation of our knowledge compilation approach.

The domain under study is a small part of Forbus's qualitative process theory

[

Forbus, 1984

]

.

Qualitative axiomatizations of the physical world can be used to reason about everyday activities

such as boiling water, rolling balls, or perhaps even the steeplechasing crocodile mentioned in

the introduction. We hope to automatically convert the original non-Horn axiomization of

qualitative process theory into Horn approximations; in essence, automating part of the work

that Forbus performed when implementing his theory using the ATMS

[

Forbus, 1990

]

.

References

[

Boddy and Dean, 1988

]

Mark Boddy and Thomas Dean. Solving time dependent planning

problems. Technical report, Department of Computer Science, Brown University, 1988.

[

Brachman et al., 1990

]

Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-

Schneider, Lori Alperin Resnick, and Alexander Borgida. Living with classic: When and

how to use a kl-one-like language. In J. Sowa, editor, Formal Aspects of Semantic Networks.

Morgan Kaufmann, 1990.

[

Cook, 1971

]

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

3rd Annual ACM Symposium on the Theory of Computing, pages 151{158, 1971.

[

Craig, 1955

]

W. Craig. Three uses of the herbrand-gentzen theorem in relating model theory

and proof theory. Journal of Symbolic Logic, 22, 1955.

[

Dowling and Gallier, 1984

]

William F. Dowling and Jean H. Gallier. Linear time algorithms

for testing the satis�ability of propositional horn formula. Journal of Logic Programming,

3:267{284, 1984.

[

Doyle and Patil, 1991

]

J. Doyle and R. Patil. Two theses of knowledge representation: Lan-

guage restrictions, taxonomic classi�cation, and the utility of representation services. Arti�-

cial Intelligence, 48(3):261{298, 1991.

[

Forbus, 1984

]

K.D. Forbus. Qualitative process theory. Arti�cial Intelligence, 24:85{168, 1984.

[

Forbus, 1990

]

Kenneth D. Forbus. The qualitative process engine. In Deaniel S. Weld and

Johan de Kleer, editors, Readings in Qualitative Reasoning About Physical Systems, pages

220{235. Morgan Kaufmann, Los Altos, CA, 1990.

[

Heintze and Ja�ar, 1990

]

Nevin Heintze and Joxan Ja�ar. A �nite presentation theorem for

approximating logic programs. In Proceedings of POPL-90, page 197, 1990.

[

Lee, 1967

]

R. C. T. Lee. A Completeness Theorem and a Computer Program for Finding

Theorems Derivable From Given Axioms. PhD thesis, University of California at Berkeley,

Berkeley, CA, 1967.

12

construct leads to polynomial time computable subsumption. The restricted language is called

FL

�

.

So for e�cient subsumption, one can use the language FL

�

. But this language may not

be su�ciently expressive for practical applications. Knowledge compilation provides again an

alternative. In this case the idea is to take a concept description in the language FL and

to approximate it using two concept descriptions in FL

�

: a best lower-bound, i.e., the most

general more speci�c concept in FL

�

, and a best upper-bound, i.e, the most speci�c more

general (subsuming) concept in FL

�

.

As an example consider the �rst concept given above. It is not di�cult to see that the

concepts person and

(AND person

(ALL friend

(AND doctor

(SOME specialty))))

in FL

�

are examples of, respectively, an upper-bound and a lower-bound in FL

�

. (These

are also the best bounds in this case.) The system can store such bounds with the original

concept description, and use them to try to determine quickly whether the newly given concept

subsumes it or is subsumed by it.

More formally, we are dealing with the knowledge compilation system hFL;);FL;FL

�

;FL; f

L

; f

U

i,

in which) stands for \is subsumed by." We are currently working on anytime compilation

algorithms for computing the functions f

L

and f

U

. (Note that queries are assumed to be in

FL. We conjecture that the subsumption relation between a concept given in FL and one in

FL

�

(i.e., one of bounds) can be determined e�ciently.)

So far, we have treated our knowledge base as containing only a single concept description.

In general, a KB will of course contain a hierarchy of concepts

[

Brachman et al., 1990

]

. In that

case, we simply store bounds with each concept. When given a concept, the system can use

those bounds in determining the appropriate place of the new concept in the hierarchy.

5 Conclusions

We introduced the notion of knowledge compilation. The central idea behind knowledge com-

pilation is to translate (compile) declarative knowledge into a more e�cient form. A unique

advantage of our approach is the use of both lower and upper bounds can speed reasoning

without giving up correctness or completeness.

We discussed various concrete examples of our approach. In particular, we showed how

the procedures for compiling propositional theories into Horn theories

[

Selman and Kautz,

1991a

]

can be generalized to apply to other tractable classes of clauses. Those classes were

characterized using various closure conditions. The classes containing reverse-Horn clauses,

clauses with two or fewer literals, or clauses not containing a certain set of \irrelevant letters"

are examples of classes that satisfy the closure conditions. We also showed how to modify

our approach to handle the �rst-order case. Finally, we discussed the compilation of concept

descriptions given in a terminological representation languages. This example showed that our

11

Least upper-bounds do exist, as they do for any source and target languages | because

the empty set is a trivial upper-bound, and the least upper-bound is equivalent to the union

of all upper-bounds. However, de�nite clauses are not closed under subsumption; for exam-

ple, the non-de�nite clause :p subsumes the de�nite clause :p _ q. Therefore the original

LUB algorithm is not su�cient. A version of theorem 4 does hold, where \Horn" is replaced

by \de�nite clause", and can be used as the basis for an algorithm (for both the propositional

and �rst-order cases). For example, the de�nite clause LUB of f:pg is the set of all (binary)

de�nite clauses subsumed by :p, i.e., f:p_q; :p_r; :p_s; . . .g. In e�ect, :p is approximated

by \p implies anything," since the LUB is equivalent to fp � q; p � r; p � s; . . .g.

Both lower and upper bounds do exist when the source language as well as the target

language consists of de�nite clauses. Some recent research on the analysis of Prolog programs

(for use in, for example, optimization and program speci�cation) can be viewed as a kind of

knowledge compilation. For example,

[

Heintze and Ja�ar, 1990

]

describes how to construct a

recursive (i.e., decidable) approximation to a potentially non-recursive logic program. Their

method is based on modifying each predicate by relaxing the relationship between the arguments

to the predicate. For example, if a logic program computes (entails) fP (a; b) ^ P (c; d)g, the

approximation computes (entails) fP (a; b) ^ P (c; d) ^ P (a; d) ^ P (c; b)g. Thus their method

computes a lower-bound of the theory (but not in general the greatest lower-bound).

4.4 Terminological Reasoning

We now consider frame-based knowledge representation languages as studied in

[

Levesque and

Brachman, 1985

]

(see also

[

Patel-Schneider et al., 1990

]

).

Levesque and Brachman consider a language FL in which one can describe structured

concepts in terms of other concepts, either complex or primitive. For example, if we wished

to describe people whose male friends are all doctors with some specialty, we could use the

concept:

(person with every male friend is a (doctor with a specialty)).

This concept is captured in FL by

(AND person

(ALL (RESTR friend male)

(AND doctor

(SOME specialty)))),

which contains all the constructs (the capitalized terms) used in the language. Levesque and

Brachman consider the complexity of determining whether one concept subsumes another. For

example, the concept

(person with every male friend is a doctor)

subsumes the one given above. Note that this can be determined without really knowing

anything about the various concepts used in these descriptions. Now, their central technical

result is that determining subsumption in FL is intractable, but that removing the RESTR

10

None the less, the restricted language may have better average-case complexity for a particular

domain. In this section we will examine the issues that arise in a straightforward extension of

restricted clausal knowledge compilation systems to the �rst-order case.

We have seen how the greatest-lower bound of a theory � can be computed by searching

through the space of L

T

-strengthenings of �. In order to decide if a candidate strengthening

�

0

lb

is a better lower-bound than the current strengthening �

lb

, the algorithm must check if

�

lb

j= �

0

lb

. In the �rst-order case this test is not recursive, so the simple search procedure could

become \stuck" at �

lb

, even if it is not the greatest lower-bound.

Fortunately, it is not di�cult to avoid this problem. The computation steps to determine

�

lb

j= �

0

lb

should be interleaved with the generation and test of the lexicographically next

candidate L

T

-strengthening �

00

lb

. If the test �

lb

j= �

00

lb

returns \true", the computation for

�

lb

j= �

0

lb

can be abandoned. Similarly the computation for �

lb

j= �

00

lb

can be interleaved

with the generation and test of the following candidate strengthening, and so forth. With this

modi�cation the generalized GLB algorithm is correct for any knowledge compilation system

where L

S

consists of �rst-order clauses, and L

T

is a class of �rst-order clauses which satis�es

the conditions of Theorem 1.

The basic LUB algorithm need not be modi�ed for �rst-order target languages that are

closed under subsumption. Theorems 2 and 3 thus hold true for �rst-order as well as for

propositional clauses, where \propositional letter" is understood to mean \predicate". While

the classes based on restricting the length of the clauses (or the predicates contained in the

clauses) are close, the �rst-order Horn and reverse Horn classes are not. For example, the

non-Horn clause 8x; y : P (x; b)_ P (a; y) properly subsumes the Horn clause P (a; b). Therefore

the LUB in the �rst-order Horn case must also incorporate Horn clauses that are subsumed by

non-Horn resolvants, as stated in the following theorem.

Theorem 4 A set of �rst-order clauses �

lub

is the least Horn upper-bound of a set of �rst-order

clauses � i� �

lub

is equivalent to the set of Horn clauses subsumed by resolvants of �.

Similar conditions apply to the reverse Horn case. In

[

Selman and Kautz, 1991b

]

we present an

algorithm for generating the LUB based on theorem 4.

Finally, we note that the query language L

Q

should be such that the negation of a query

falls in L

T

. Thus, in general, the queries will be existentially-quanti�ed sentences whose matrix

is a subset of DNF. For example, in the Horn case, each disjunct contains at most one negative

literal; in the binary clause case, each disjunct contains at most two literals; and so on.

4.3 De�nite Clauses and Logic Programs

A de�nite clause is a clause containing exactly one positive literal. Languages based on de�nite

clauses can be e�ciently implemented and have found widespread practical applications. For

example, function-free �rst-order de�nite clauses form the basis of the database language \dat-

alog"

[

Ullman, 88

]

, and general �rst-order de�nite clauses form the basis of the programming

language Prolog. (In both cases, non-logical operators such as \cut" and \failure to prove"

extend the logical basis.)

It is not possible, in general, to �nd a de�nite clause lower-bound of a general theory. For

example, there is no de�nite clause lower-bound for the theory f:pg.

9

Theorem 2 Let � be any set of clauses and � a set of clauses such that if C 2 � and C

0

subsumes C, then C

0

2 �. Then �

lub

is the least upper-bound in terms of �-clauses of � i� �

lub

is equivalent to the set of � resolvants of �.

As we noted before, it is not actually necessary to compute all the � resolvants of �, but

only a subset logically equivalent to the entire set, as in the Horn case. All of the classes of

restricted clauses mentioned above meet the condition of being closed under subsumption.

Another interesting class which satis�es theorems 1 and 2 consists of clauses not containing

a given set of propositional letters. (The �-strengthening of the clause p, where p is a prohibited

letter, is the empty clause | that is, false.) While such a class may not have better worst-

case complexity than the unrestricted language, it may be empirically desirable to \compile

away" certain propositions. Subramanian and Genesereth

[

Subramanian and Genesereth, 1987

]

present a formal system for inferring that certain propositions are irrelevant to the computation

of a given class of queries. Given this sense of what is irrelevant, knowledge compilation can

then be used as way to remove the irrelevant information and simplify the theory.

The class of clauses not containing a given set of letters has the following special property,

which follows from Craig's Interpolation Lemma

[

Craig, 1955

]

: The LUB is just as good as the

original theory for answering queries not containing the prohibited letters. Formally:

Theorem 3 Let � be a set of clauses and both � and L

Q

sets of clauses not containing a given

set of propositional letters. Suppose � 2 L

Q

, and �

lub

is the the least upper-bound in terms of

�-clauses of �. Then � j= � i� �

lub

j= �.

Example: Let the set of propositions be instantiations of the two-place predicates F and

R over a given set of individuals fa; b; cg. We interpret F as meaning \father of", and R as

meaning \related to". The following axiom schema capture the usual relationship between these

predicates, where the variables x, y, and z are instantiated over the given set of individuals:

F (x; y) � R(x; y)

R(x; y)^ R(y; z) � R(x; z)

R(x; y) � R(y; x)

Suppose � consists of these axioms together with a set of facts about speci�c father-of rela-

tionships: fF (a; b); F (b; c) _ F (a; c)g. If it were known that queries would concern only the

related-to predicate, it would be useful to compute the LUB that prohibits the letter F . This

yields a theory (equivalent to) the last two axiom schema (transitivity and re
exivity) together

with the the facts fR(a; b); R(b; c)g.

4.2 First-Order Theories

A further natural extension of restricted clausal forms is to �rst-order languages. In the �rst-

order case, the worst-case complexity of the general and restricted languages are the same. For

example, satis�ability for �rst-order clauses and �rst-order Horn clauses is equally undecidable.

4

4

A �rst-order clause is a sentence in prenex form containing only universal quanti�ers, whose matrix

is a disjunction of (�rst-order) literals. A �rst-order Horn clause is a �rst-order clause containing at

most one positive literal.

8

most one negative literal. (In this case the query language is strictly more expressive than either

L

T

or L

S

. The negation of such queries, however, is equivalent to a set of Horn clauses of the

same size as the original query, so the linear time algorithm for satis�ability of Horn clauses can

be used for query answering.) f

L

is given by the sequence of candidate Horn-strengthenings

of �, as in the previous section, where the last element of the sequence is in fact the GLB.

Similarly, f

L

is the sequence of larger and larger sets of Horn resolvants where the last such set

is the LUB.

4 Other Instances of Knowledge Compilation

4.1 Restricted Clausal Forms

An entire class of knowledge compilation systems can be realized by generalizing the algorithms

for the propositional Horn case. The idea of a Horn-strengthening is generalized as follows:

De�nition: �-strengthening

Let � be a particular set of clauses. A clause in that set is called a �-clause. A clause C

T

is a

�-strengthening of a clause C i� C

T

� C and there is no �-clause C

0

T

such that C

T

� C

0

T

� C.

A �-strengthening of a set of clauses is a set of �-strengthenings of each clause.

A knowledge compilation system is created by letting the source language L

S

be the set of

arbitrary clauses, and the target language L

T

be such a clause set �. Suppose such a � is closed

under resolution (i.e., the resolvents of two �-clauses is a �-clause). Then the completeness

theorem for resolution

[

Lee, 1967

]

tells us that any (non-tautologous) clause C entailed by a

set of �-clauses � must be subsumed by a clause C

0

which has a resolution proof from �; and

therefore C

0

is a �-clause itself. In other words, � entails a �-strengthening of C. Further

suppose that any clause in the source language has a �-strengthening. Then the GLB in terms

of �-clauses of a theory � can be computed by searching for a (local) maximum in the space of

�-strengthenings of �. This proves the following theorem:

Theorem 1 Let � be any set of clauses and � a set of clauses such that (i) the resolvant of any

two clauses in � is also in �, and (ii) any clause in � is subsumed by some clause in �. Then

�

glb

is a greatest lower-bound in terms of �-clauses i� �

glb

is equivalent to a �-strengthening

of �, and there is no �-strengthening �

0

glb

such that �

glb

j= �

0

glb

and �

0

glb

6j= �

glb

.

Horn, reverse Horn (clauses containing at most one negative literal), and clauses containing

two or fewer literals are examples of tractable classes of propositional clauses that meet the

conditions of this theorem.

Recall that the Horn LUB of a theory is equivalent to the set of all its Horn resolvants.

This is due to the resolution completeness theorem and the fact that propositional Horn clauses

are closed under subsumption. The latter condition is necessary because one could otherwise

imagine cases where resolution only yielded non-Horn clauses which subsumed the entailed

Horn clauses. Thus the generalized computation of the Horn LUB is based on the following

theorem:

7

The LUB algorithm shown in Figure 2 exploits that fact that the LUB is logically equiva-

lent to the set of Horn resolvents of the theory. Since even a Horn theory can have exponentially

many resolvents (all Horn), it is very ine�cient to simply generate all resolvents of the original

theory while collecting the Horn ones. It su�cient, however, to resolve only pairs of clauses

containing at least one non-Horn clause

[

Selman and Kautz, 1991b

]

.

3 General Framework

Computing Horn approximations is just one kind of knowledge compilation. This section de�nes

a general framework for approximating a knowledge base. The next section presents a number

of di�erent instances of this general framework.

A knowledge compilation system is a tuple hL; j=;L

S

;L

T

;L

Q

; f

L

; f

U

i containing the follow-

ing components:

L is a formal language. We identify a language with the set of all its sentences.

j= is a consequence relation over sets of sentences in L. In most of the examples we

will study j= has its usual meaning of logical entailment, but the framework

allows j= to represent other relationships, such as subsumption.

L

S

is the \source" sublanguage of L, used to express a general knowledge base.

L

T

is the \target" sublanguage of L, used to express approximations to the general

knowledge base. It should be easier in some sense (analytically or empirically)

to determine if a query is a consequence of a set of sentences in L

T

than of a

set sentences in L

S

.

L

Q

is the \query" sublanguage of L.

f

L

is a function mapping a theory to a (potentially in�nite) sequence of (better

and better) lower-bounds (de�ned analogously to the Horn case). Ideally the

last element of the sequence is the greatest lower-bound (GLB).

f

U

is a function mapping a theory to a (potentially in�nite) sequence of (better and

better) upper-bounds (again, de�ned analogously to the Horn case). Ideally

the last element of the sequence is the least upper-bound (LUB).

Suppose a knowledge compilation system is presented a query � 2 L

Q

after performing i

compilation steps on the source theory �. Let �

lb

be the i-th element of f

L

(�) (or the last

element if i is greater than the length of f

L

(�)), and �

ub

be the i-th (or similarly the last)

element of f

U

(�). As described earlier, if �

lb

6j=� then the system answers \no", if �

ub

j=� then

the system answers \yes", and otherwise it answers \unknown". A de�nite answer of \yes" or

\no" always agrees with the answer to the question \does �j=�?", even if the lower (upper)

bound is not the greatest (least) bound.

The case of knowledge compilation using propositional Horn clauses �ts into this framework

as follows: L is propositional logic, j= is propositional entailment, L

S

is the set of clauses, L

T

is the set of Horn clauses, and L

Q

contains two kinds of formulas: (1) conjunctions of clauses

(CNF); and (2) disjunctions of conjunctions of literals (DNF), where each disjunct contains at

6

LUB Algorithm

Input: a set of clauses � = �

H

[�

N

, where

�

H

is a set of Horn clauses, and �

N

is a

set of non-Horn clauses.

Output: a least Horn upper-bound of �.

begin

loop

try to choose clause C

0

2 �

H

[�

N

and

C

1

2 �

N

, such that C

2

= Resolve(C

0

; C

1

)

is not subsumed by any clause in �

H

[�

N

if no such choice is possible then exit loop

if C

2

is Horn then

delete from �

H

and �

N

any clauses

subsumed by C

2

�

H

:= �

H

[fC

2

g

else

delete from �

N

any clauses subsumed by C

2

�

N

:= �

N

[fC

2

g

end if

end loop

return �

H

end

Figure 2: Algorithm for generating a least Horn upper-bound.

5

GLB Algorithm

Input: a set of clauses � = fC

1

; C

2

; . . . ; C

n

g.

Output: a greatest Horn lower-bound of �.

begin

L := the lexicographically �rst Horn{

strengthening of �

loop

L

0

:= lexicographically next Horn{

strengthening of �

if none exists then exit

if L j= L

0

then L := L

0

end loop

remove subsumed clauses from L

return L

end

Figure 1: Algorithm for generating a greatest Horn lower-bound.

2.3 Computing Horn Approximations

We now turn to the problem of generating Horn approximations. As shown in

[

Selman and

Kautz, 1991a

]

, there does not exist a polynomial time procedure for generating such approxi-

mations (provided P6=NP). Computing the Horn approximations is therefore treated as a com-

pilation process in which the computational cost is amortized over the total set of subsequent

queries to the KB. Since the approximations may be needed for query answering before the

compilation process �nishes, it is desirable to employ procedures that can output lower- and

upper-bounds as intermediate results, generating better and better bounds over time. That is,

the approximation algorithms should be \anytime" procedures

[

Boddy and Dean, 1988

]

.

Central to our algorithm for computing the GLB (Figure 1) is the following notion.

De�nition: Horn-strengthening

A Horn clause C

H

is a Horn-strengthening of a clause C = fx

1

; . . . ; x

n

g i� C

H

� C and there

is no Horn clause C

0

H

such that C

H

� C

0

H

� C.

TheGLB algorithm systematically searches through the various possible Horn-strengthenings

of the clauses of the original theory, looking for a most general one. This approach is illustrated

with the following example.

Example: Consider the theory (:p _ q) ^ (p _ q _ r). The GLB algorithm �rst tries the

Horn-strengthening L = (:p _ q) ^ p, and then L

0

= (:p _ q) ^ q. Since L j= L

0

, L is set to

L

0

, and the algorithm proceeds. (L is used to store best bound obtained so far.) Since the last

Horn strengthening (:p_ q)^ r is not an improvement, the algorithm returns q as a GLB (the

clause (:p _ q) is removed because it is subsumed by q).

Note that theGLB algorithm is indeed an anytime algorithm: L represents some lower-bound

whenever the algorithm is interrupted.

4

2.2 Using Bounds for Fast Inference

Let us now consider how these approximations can be used to improve the e�ciency of a knowl-

edge representation system. Suppose a knowledge base (KB) contains the set of clauses �, and

we want to determine whether the formula � is implied by the KB. The system can proceed

as follows. First, it tries to obtain an answer quickly by using the Horn approximations. If

�

lub

j= � then it returns \yes, logically follows" or if �

glb

6j= � then it returns \no, does not log-

ically follow." So far, the procedure takes only time linear in the length of the approximations.

(We assume that the lengths of the Horn approximations are roughly the same as that of the

original theory; we return to this issue below.) In case no answer is obtained, the system could

simply return \don't know," or it could decide to spend more time and use a general inference

procedure to determine the answer directly from the original theory.

2

Thus the system can

answer certain queries in linear time, resulting in a improvement in its overall response time.

Exactly how many queries can be handled directly by the Horn approximations depends on

how well the bounds characterize the original theory. Note that we give up neither soundness

nor completeness, because we can always fall back to the original theory.

To make this discussion more concrete, consider the following interpretation of the propo-

sitional letters in the previous example:

p � Sally is a doctor

q � Sally is a lawyer

r � Sally is rich

s � Sally is a vegetarian

The theory � can be understood as asserting that if Sally is a doctor, then she is rich; if Sally

is a lawyer, then she is rich; and Sally is a doctor or a lawyer. The LUB asserts that Sally

is rich (r), and suppose the system generates the GLB that asserts that Sally is a rich doctor

(p^ r). Now, the query \Does it follow that Sally is rich?" can immediately be answered \yes"

because r is implied by the LUB. The query \Does it follow that Sally is a doctor?" is answered

\don't know" because a is not implied by the LUB; the fact that it follows from the GLB is

not relevant. Finally, the query \Does it follow that Sally is a vegetarian?" is answered \no",

because s is not implied by the GLB.

Note these questions can all be answered in time linear in the size of the upper and lower

bounds; thus, even if � were expanded to contain many more complex domains axioms the

queries could still be answered e�ciently. Furthermore, the GLB is always no larger than the

original theory � itself. However, one can construct theories which have an exponentially larger

least Horn upper-bound. We are currently investigating the question of whether it is always

possible to generate a compact encoding of the LUB (one polynomial in the size of �) by

introducing new propositional letters.

The system as described does not make any closed world assumptions; for example, it

does not conclude \Sally is not a vegetarian." There may be a connection, however, between

knowledge compilation and closed world reasoning, in that the logical closure of a theory is a

lower bound of the theory.

3

2

The general inference procedure could still use the approximations to prune its search space.

3

This observation is due to Mukesh Dalal and David Etherington.

3

conjunctive normal form (a conjunction of disjuncts), so they can be represented by a set of

clauses.

In general, determining whether a given formula (the query) follows from a set of formulas

in a knowledge base is intractable (provided P 6= NP)

[

Cook, 1971

]

. However, when the

knowledge base contains only Horn clauses the problem can be solved in linear time

[

Dowling

and Gallier, 1984

]

. We therefore take as the goal of our knowledge compilation process the

translation of an arbitrary set of clauses into a logically equivalent set of Horn clauses. Since

an exact translation is often not possible, we use two sets of Horn clauses to approximate the

original theory. The basic idea is to bound the set of models (satisfying truth assignments) of

the original theory from below and from above by Horn theories. In the following de�nition,

M(�) denotes the set of satisfying truth assignments of the theory �.

De�nition: Horn lower-bound and Horn upper-bound

Let � be a set of clauses. The sets �

lb

and �

ub

of Horn clauses are respectively a Horn

lower-bound and a Horn upper-bound of � i�

M(�

lb

) �M(�) �M(�

ub

)

or, equivalently,

�

lb

j= � j= �

ub

Note that the bounds are de�ned in terms of models. The reader is cautioned not to associate

\lower" with \logically weaker": The lower bound has fewer models than the original theory,

and is thus logically stronger than (i.e., implies) the original theory; whereas the upper bound

has more models and is thus logically weaker than (i.e., is implied by) the original theory.

Instead of simply using any pair of bounds to characterize the initial theory, we wish to use

the best possible ones: a greatest Horn lower-bound and a least Horn upper-bound.

De�nition: Greatest Horn lower-bound (GLB)

Let � be a set of clauses. The set �

glb

of Horn clauses is a greatest Horn lower-bound of � i�

�

glb

j= � and there is no set �

0

of Horn clauses such that �

glb

j= �

0

j= � and � 6j= �

0

.

De�nition: Least Horn upper-bound (LUB)

Let � be a set of clauses. The set �

lub

of Horn clauses is a least Horn upper-bound of � i�

� j= �

lub

and there is no set �

0

of Horn clauses such that � j= �

0

j= �

lub

and �

0

6j= �.

We call these bounds Horn approximations of the original theory �. The LUB is unique (up

to logical equivalence) because the conjunction of any two upper bounds is another, possibly

smaller upper-bound.

Example: Consider the non-Horn theory � = (:p _ r) ^ (:q _ r) ^ (p _ q). p ^ q ^ r is an

example of a Horn lower-bound; both p^r and q^r are GLBs; (:p_r)^ (:q_r) is an example

of a Horn upper-bound; and r is the LUB. The reader can verify these bounds by noting that

(p ^ q ^ r) j= (p ^ r) j= � j= r j= ((:p _ r) ^ (:q _ r))

Moreover, there is no Horn theory �

0

di�erent from p ^ r such that (p ^ r) j= �

0

j= �. Similar

properties hold of the other GLB and of the LUB.

2

1 Introduction

A striking feature of commonsense reasoning is that it is fast. People can quickly and ef-

fortlessly perform such tasks as planning a trip, interpreting a story, or answering a question

without relying solely on memory. Levesque [89] gives the example of the question, \Could

a crocodile run a steeplechase?" You can answer the question immediately, even though you

have never thought about it before! The \logicist" approach to arti�cial intelligence represents

commonsense knowledge by logical formulas, and views reasoning as a kind of formal theorem-

proving. This accounts for the
exibility of commonsense reasoning, but not its speed. In both

theory and practice the complexity of theorem-proving with general logical theories is very

high|exponential or worse.

One way to make the logicist approach more computationally attractive is to restrict the ex-

pressive power of the representation language, so that fast, special-purpose inference algorithms

can be employed. But this usually renders the language too limited for practical application

[

Doyle and Patil, 1991

]

, and leaves unanswered the question of what to do with information

that cannot be represented in the restricted form.

This paper describes an approach to e�cient symbolic inference called knowledge compi-

lation, which overcomes these objections. We allow the knowledge base to be speci�ed in a

general, unrestricted representation language. The system then computes approximations to

the knowledge base in a restricted and e�cient language. We show how the approximations

can be used to speed up inference without giving up correctness or completeness: computa-

tional costs are simply shifted from \run time" question-answering to the \o�-line" compilation

process.

The paper begins with an example of approximating general propositional theories by Horn

theories. Next we describe the general knowledge compilation framework, and examine a num-

ber of other knowledge compilation systems, including ones involving generalizations of Horn

clauses, �rst-order theories, logic programs, and terminological logics.

2 Compiling Propositional Theories

This section brie
y introduces the knowledge compilation approach using the concrete example

of approximating general propositional theories by Horn theories. This form of knowledge

compilation was �rst introduced in

[

Selman and Kautz, 1991a

]

. That paper gives a much more

detailed account; the reader who is familiar with it can proceed to the next section.

2.1 De�nitions

We assume a standard propositional language, and use p, q, r, and s to denote propositional

letters and x, y, and z to denote literals (a literal is either a propositional letter, called a positive

literal, or its negation, called a negative literal). A clause is a disjunction of literals, and can

be represented by the set of literals it contains. A clause is Horn if and only if it contains at

most one positive literal; a set of such clauses is called a Horn theory. Formulas are given in

1

A General Framework for Knowledge

Compilation

Henry Kautz and Bart Selman

AI Principles Research Department

AT&T Bell Laboratories

Murray Hill, NJ 07974 USA

kautz@research.att.com

selman@research.att.com

Abstract

Computational e�ciency is a central concern in the design of knowledge represen-

tation systems. In order to obtain e�cient systems it has been suggested that one

should limit the form of the statements in the knowledge base or use an incomplete infer-

ence mechanism. The former approach is often too restrictive for practical applications,

whereas the latter leads to uncertainty about exactly what can and cannot be inferred

from the knowledge base. We present a third alternative, in which knowledge given in a

general representation language is translated (compiled) into a tractable form| allowing

for e�cient subsequent query answering.

We show how propositional logical theories can be compiled into Horn theories that

approximate the original information. The approximations bound the original theory

from below and above in terms of logical strength. The procedures are extended to other

tractable languages (for example, binary clauses) and to the �rst-order case. Finally,

we demonstrate the generality of our approach by compiling concept descriptions in a

general frame-based language into a tractable form.

This paper appears in the Proceedings of the International Workshop on Processing Declarative

Knowledge, Kaiserlautern, Germany, July 1991. Book version of the proceedings forthcoming from

Springer-Verlag.

