
171www.pcpro.co.uk PC PRO July 2005

FEATURES
Tutorial

L
ast month, we used
Delphi to create a Win32
application; in other
words, a traditional

Windows program (we’ve included
a PDF of this article on the cover
disc; just click on the Editorial
tab). This month, we concentrate
on writing applications for the
.NET Framework. Delphi gives us
the choice of creating two
significantly different types of .NET
application. We can either create a
Windows Forms application or a
VCL (Visual Component Library)
Forms application. Before going
any further, let’s consider the
differences between Windows
Forms, VCL Forms and Win32.

Win32 programs are compiled into
machine code, which is executed by the
computer hardware. Applications written
for .NET, on the other hand, are compiled
into an intermediate language, which is
run not by the hardware but by a software
system known as the Common Language
Runtime (CLR). The CLR provides a
protective layer between the hardware
and any running programs. A Win32
program has no such protection; if it
encounters an error, it can easily crash. If
it allocates memory and fails to deallocate
it later, it may cause memory leaks,
which can degrade the performance of your
entire system.

SAFETY FIRST
The CLR looks after object creation and
memory management of .NET applications.
It performs automatic memory garbage
collection to reclaim resources when objects
are no longer needed, which reduces the risk
of memory leaks. It also handles errors in

order to minimise the risk of disastrous
program crashes.

The .NET Library contains a hierarchy
of classes, which supply various controls
such as Forms and Buttons and can help you
do maths, save and load files, and perform all
kinds of other useful tasks. The .NET Library
could be said to supersede other class
libraries such as Microsoft’s Foundation
Classes (MFC) for C++ and the Win32
VCL for Delphi.

This being so, you may wonder why
Delphi 2005 includes a new version of the
VCL for .NET. One reason is that Delphi
programmers are already familiar with the
VCL and may prefer to carry on using it.
Moreover, existing Win32 Delphi programs
can be converted, relatively painlessly, for
use with the .NET VCL, as we explained
last month. This month, we explore some of
the differences between Delphi’s two
alternative types of .NET project,
while creating a simple text editor using
both Delphi’s VCL Forms and Microsoft’s
Windows Forms.

A VCL EDITOR
Let’s begin by using the VCL. Select
File | New | VCL Forms Application
– Delphi For .NET. In the Tool
palette, find the Win32 category.
Drop a TRichEdit control onto the
blank form. With this control
selected, use the Object Inspector
to set its Align property to alClient.
This causes it to fill the form. We
don’t want the rich edit control to
display its name, so double-click
the Lines property. A String List
editor will pop up. Delete the text
‘RichEdit1’ and click OK.

Now, select TMainMenu from
the Standard category of the Tool
Palette and drop a menu onto the

form. The small box, which represents the
menu, won’t be visible when the program is
run. Double-click the box to load the menu
designer. Currently the menu is blank. Let’s
add a File menu. In the Object Inspector, enter
‘File’ next to the Caption property. This causes
a top-level file menu to be added in the menu
editor and moves the selection to its right.

If you wanted to add another top-level
item, you’d do so by adding items to the
right of the File menu. In fact, we want to
add drop-down items. To do this, click the
File menu, then select the blank item that
appears beneath it. Give it the caption
‘Open’. In a similar way, add two more
drop-down items with the captions ‘Save’
and ‘Exit’.

Now we’ll add some code to each
drop-down menu item. In the menu editor,
double-click the Open item. This creates a
procedure called Open1Click(). Edit this so
that it looks like the following:

procedure TForm1.Open1Click(Send

er: TObject);

Programming with
Delphi 2005
Huw Collingbourne explains how to use Delphi 2005 to build
your own text-editing application for .NET

FEATURES
Tutorial

PC PRO July 2005 www.pcpro.co.uk170

For an example of the kind of powerful applications possible with Delphi,
try out our VCL Editor project on this month’s cover disc.

Continued on p172

How to obtain Delphi 2005
We included a copy of Delphi 2005 Personal Edition on last month’s cover DVD. You can order a copy for £2.50 (inc P&P) by calling Dennis Direct on 01789 490215

171www.pcpro.co.uk PC PRO July 2005

FEATURES
Tutorial

Delphi automatically creates an empty Windows Forms
application with a blank form at the centre of the design
workspace. Click the RichTextBox component in the Tool Palette,
then click the blank form to drop a rich text box onto it. This
supplies the main editing features to the application.

The first thing to do when beginning any new project in Delphi is
to select the target platform. Here, we want to build a ‘standard’
.NET program rather than a program for Delphi’s VCL, so you’ll
need to select ‘Windows Forms Application for .NET’ from the
File | New menu.

1 2

Drop a MainMenu item from the Components category of the
Tool Palette onto the form. Notice that this is a non-visible
control so it’s automatically positioned beneath the form.
To create a labelled menu item, select the first item on the
form itself and enter the text ‘File’.

In order to make the RichTextBox control fill the entire form, you
need to set its Dock property. Do this by clicking Dock in the
Properties page of the Object Inspector. A box pops up to let you
pick the kind of docking you need. Click the centre of this box.

3 4

Continue to add drop-down menu items by entering ‘Open’,
‘Save’ and ‘Exit’ into the text areas of each menu item. When you
want to add code to a menu item, double-click it. Alternatively,
select Click from the Events page of the Object inspector. This
takes you into the code editor.

5 6

You’ll now need to enter the code for each click-handling method,
as explained in this month’s tutorial. Notice that, when you enter
a full stop after the name of a .NET class or namespace, a
selection list of available functions and properties appears.
Just click the item you need.

Walkthrough: a text editor in six steps

PC PRO July 2005 www.pcpro.co.uk172

FEATURES
Tutorial

begin

 if FileExists(‘testfile.

txt’) then

 RichEdit1.Lines.Load

FromFile(‘testfile.txt’)

 else ShowMessage(‘Cannot

find testfile.txt!’);

end;

Here FileExists() is a function
provided by the VCL. It returns a
true value if the named file exists
on disk, otherwise it returns false.
RichEdit1 is an instance of the
TRichEdit class. If you scroll up
the code, you can see that Delphi
has automatically added this
declaration:

RichEdit1: TRichEdit;

TRichEdit is the VCL’s
‘wrapper’ around the rich edit control
provided by Windows. Its Lines property
represents the individual lines of text, and
LoadFromFile() is a VCL method that loads
a file from disk into the Lines of the rich edit
control. Finally, ShowMessage() is another
VCL procedure that simply displays the
specified text.

Now double-click the Save item in the
menu editor and edit the Save1Click()
method as follows:

procedure TForm1.Save1Click(Send

er: TObject);

begin

 RichEdit1.Lines.SaveToFile(‘t

estfile.txt’);

end;

Finally, double-click the Exit item and
edit its method as follows:

procedure TForm1.Exit1Click(Send

er: TObject);

begin

 Close;

end;

And that’s it. You can now run the
program by pressing F9. If you have any
problems, load the completed project,
SimpleEditor.bdsproj, from the cover DVD.
When it runs, select File | Open. You’ll see
an error message because the specified
file doesn’t yet exist. Try entering a few lines
of text. The rich edit control provides basic
editing commands such as <Control-Left>
and <Control-Right> to move backward
and forward one word at a time,
and <Control-Z> to undo the last sequence
of deletions.

Once you’ve entered text, select File |
Save. To verify that the text has been saved
to a file, delete the text and select File |
Open. Your saved text will be reloaded.
Of course, a lot more work needs to be
done in order to make this a really useful
editor. But for now, let’s see how to
create a similar application using the .NET
Windows Forms library instead of the
Delphi VCL.

A WINDOWS FORMS EDITOR
Start a Windows Forms Application Delphi
For .NET project. Notice that the Tool
Palette displays fewer categories than
previously and many of the components have
different names. The rich editing control,
for example, isn’t called RichEdit but
RichTextBox. Drop a RichTextBox onto the
form. To make it fill the form, we no longer
set the Align property. Instead, we set its
Dock property. When you press the down
arrow next to Dock in the Object Inspector, a
diagram pops up. Click the centre box in the
diagram to cause the RichTextBox to dock
against all four sides of the form. To delete
the text from the control, select its Text
property and delete ‘RichTextBox1’.

Now add a MainMenu from the
Components category of the Toolbox.
Notice that in the Windows Forms designer,
all non-visible controls such as menus are
placed beneath the design workspace rather
than on the form itself. To add menu items,
select the MainMenu1 control. A blank
menu appears on the form with the first item
containing the text, ‘Type Here’. To add a
file menu, enter the text ‘File’ onto the blank
menu. Now carry on adding the three other
labels to the drop-down menu: ‘Open’,
‘Save’ and ‘Exit’. Double-click the Open
menu item to create an empty event-
handling method and add this code between
the BEGIN and END keywords:

if System.IO.File.Exists(‘testfil

e.rtf’) then

 RichTextBox1.LoadFile(‘testfil

e.rtf’)

 else MessageBox.Show(‘Cannot

find testfile.rtf’);

In a similar way, create an event handler
for the Save item and add this code:

 RichTextBox1.SaveFile(‘testfile

.rtf’);

Finally, create an event handler for the
Exit item and add this:

 Close();

Although broadly similar to the code we

added in the previous VCL project,
you’ll see some obvious differences.
For example, MessageBox is a .NET
class and Show() is one of its
methods, while System.IO is a
namespace (a named group of .NET
classes), File is a class inside this
namespace, and Exists() is a method
of the File class. We’re obliged to put
a fully qualified ‘path’ to the File
class, since ‘File’ is a Pascal keyword.
We also need to add the System.IO
namespace to the ‘uses’ section of the
code unit. You can do that scrolling
to the top, adding a comma between
the final item in the ‘uses’ section and
the terminating semi-colon, and
entering System.IO. You can now
press F9 to compile and run this

program. If you have problems, load up our
project, WinFormEdit.bdsproj.

By default, the richtextbox control saves
rich text format (RTF) files. You can verify
this by formatting some text in a word
processor and copying this into the editing
window of the running WinFormEditor
program. The formatting of the copied text
will be retained. Select File | Save. Now
delete all the text and select File | Open. You
should see that the reloaded file still contains
the formatting.

BEYOND THE BASICS
Obviously, the two text editors that we’ve
programmed this month are very basic; they
don’t even let us choose a name when saving
a document, or select a new file to load from
disk. Nor do they provide any options to
put text in italics or bold, change its colour
or use multiple font styles. These features
aren’t difficult to implement in Delphi. To
prove this point, we’ve included a more
complete editor on the cover CD and DVD.
Load up the VCLEditor.bdsproj project.
This is a VCL for .NET project, which
includes the ability to apply a broad range
of text formatting. It even displays the
format of the currently selected text in the
buttons and combo boxes in its toolbar. For
good measure, we’ve also given it cut, copy,
paste and undo options plus a find-and-
replace dialog.

Experienced programmers can examine
the source code to see how all these features
have been implemented. If you find the code
overwhelming, don’t panic: next month,
we’ll explain in detail how to add formatting
options to a Windows Forms text editor
using a mix of Delphi’s Object Pascal and
Microsoft’s C# languages.

Next month: We’ll get to grips with
the C# language and find out how
we can use it to add features to our
text editor.

Notice that, when you design a VCL application, the menu is edited in a
separate window rather than on the form itself.

