
163www.pcpro.co.uk PC PRO June 2005

FEATURES
Tutorial

D
elphi’s integrated development
environment lets you design,
edit, compile and debug your
programs quickly and simply.

And it supports two programming languages:
Delphi’s traditional Object Pascal and
Microsoft’s new C# (pronounced ‘C sharp’).
This month, we introduce you to the main
features of Delphi 2005 and get you up and
running with some sample programs.

THE DELPHI DESIGNER
Let’s begin by taking a quick tour of Delphi’s
visual design tools. Start Delphi and click
New on the File menu. A submenu pops out
listing the available project types. Scroll
down this menu and select ‘VCL Forms
Application – Delphi For Win32’. At this
point, a blank form appears. Forms are a
visual method of designing your
application’s GUI, taking a lot of the donkey
work out of point-and-click program
design. We can create an application simply
by dropping components onto this form
from the Tool Palette at the bottom right-
hand corner of the Delphi environment.

The components in the Tool Palette are
arranged into groups. You can switch from
one group to another by clicking the
Categories button and making a selection
from the drop-down list. For now, we’ll
stick with the Standard group. Click TEdit
in the Tool Palette, then click somewhere on
the blank form. A new TEdit control,
named Edit1, will appear at the position
where you clicked. You can move the TEdit
control by dragging it with the mouse and
resize it by selecting and dragging an edge or
a corner. Go back to the Tool Palette and
click TButton, then drop one of these onto
the form. You’ll now have a button named
Button1. You can change the name of the
button using the Object Inspector at the
bottom left of the Delphi workspace. Scroll
to the bottom of the Inspector and find the
Caption property in the Visual group. Select

‘Button1’ in the right-hand column and edit
this to ‘Click Me!’. Notice that this causes
the caption of the button on the form to
change too.

COMMAND AND CONTROL
Having learnt how to put controls onto a
form and alter their properties, it’s
remarkably easy to create applications of
considerable complexity with minimal
coding. To prove this, we’ll create a
Windows Explorer-style file browser. Start a
new project with File | New | VCL Forms
Application. When prompted, don’t bother
saving your changes to the current project.
In the Tool Palette, scroll down to the
Samples category at the bottom of the list.
Select TShellTreeView and click the form to
drop the ShellTreeView1 component onto
it. Making sure this component is still

selected, find its Align property in the
Layout group of the Object Inspector.
Currently, this property is set to ‘alNone’.
Click the down-facing arrow to the right of
the property to display a list of available
values. Select ‘alLeft’. Note that the
component now aligns itself to the left of
the form.

Drop a TShellListView onto the grey
area of the form. Set its Align property to
‘alClient’. This causes it to occupy the blank
(client) area so that it fills the part of the
form not already taken up by the
ShellTreeView component.

RUNNING YOUR APPLICATION
Now Press F9 or click the green arrowhead
in the Delphi icon bar to run your
application. As you can see, this shows the
directory tree of your disk and the files in

Programming with
Delphi 2005, Part 1
Huw Collingbourne begins a new series of Delphi workshops
by explaining how to make the most of Delphi 2005

FEATURES
Tutorial

PC PRO June 2005 www.pcpro.co.uk162

To create an Explorer-like file manager, just drop two controls onto a form and set three properties in the
Object Inspector.

ON THIS MONTH’S DVD

Borland’s Delphi 2005 is one of

the most powerful programming

systems available for

Windows.The exclusive Personal

Edition included with the DVD

Edition this month provides all

the tools you need to develop

your own programs for Windows,

including Microsoft’s new .NET

Framework.

Continued on p165

163www.pcpro.co.uk PC PRO June 2005

FEATURES
Tutorial

When beginning work on a new application, you first need to
select the type of project from the File menu. Delphi 2005
supports both the Delphi Object Pascal language and the C#
language. All this month’s projects are VCL Forms applications
using Delphi For Win32.

Delphi 2005 has an integrated development environment in
which you can design, code, debug and compile programs. If you
prefer free-floating windows, select Classic Undocked from the
Layout combo at the top of the screen. The welcome page shown
here has links to tutorials and help documents.

1 2

To write Object Pascal code in the editor, click the Code tab at
the bottom of the workspace. Notice that different code
elements such as keywords and comments are displayed in
different colours. You can customise the colours and other
features of the editor by selecting Options from the Tools menu.

When you begin a new project, a blank form appears in the
workspace. You can add controls to the form by dragging them
from the Tool Palette seen here at the bottom right. Controls are
grouped into categories that can be navigated by clicking the
Categories button.

3 4

Here, we’re setting the colour coding for strings in Delphi’s
Options dialog box. First, we’ve selected String from the Element
list then picked Blue as the Foreground colour. You can select
other options such as Code Insight from the tree view on the
left of the dialog.

5 6

Now we’re using Code Insight in the Delphi editor. We’ve
entered a full stop after the name of one of the controls on the
form, and a Code Insight selection list immediately shows us
the available properties and ‘methods’ (procedures) that can
be used with it.

Walkthrough 1: setting up the IDE

PC PRO June 2005 www.pcpro.co.uk164

FEATURES
Tutorial

165www.pcpro.co.uk PC PRO June 2005

FEATURES
Tutorial

Here, we’ve loaded the swat.dpr project, which implements a
simple game. Note that the project comprises three code (‘.pas’)
units and three forms (‘.dfm’). These are shown in the Project
Manager at the top right. The form contains several controls,
which are shown in the Structure panel at the top left.

Delphi comes with many sample projects. To load one of them,
navigate to the \Demos subdirectory beneath the \BDS\3.0
installation directory and open either the Borland Development
Studio Project file (with the extension .bdsproj) or, for Delphi Win32
applications, the Delphi Project File (with the extension .dpr).

1 2

We’ve double-clicked the New item’s OnClick event, which
causes Delphi to display the source code of the event-handling
method, New1Click(). We’ve double-clicked the left-hand margin
of the editor in order to put a breakpoint on a line of code and
add some variable names to the Watch List window.

3 4

The program pauses on our breakpoint and we can now examine
the current values of the watched variables. If you’re familiar
with Assembly language, you can trace the execution of an
application, one line at a time, in the CPU window. Otherwise,
you can trace execution in Delphi code.

5 6

After a hard session of debugging, it’s time to relax with a
game. In Borland’s Swat!, you appropriately have to kill as many
bugs as you can by hitting them on the head with a little
hammer. Pay attention to the way the Timer object is used to
animate the graphics.

The MainMenu1 control, seen just beneath the Game menu on
the form, isn’t displayed at runtime. To create a menu system,
double-click MainMenu1 to pop up the menu editor. Here the
New menu item is selected and its OnClick event is shown in the
Object Inspector panel.

Walkthrough 2: exploring a demo project

PC PRO June 2005 www.pcpro.co.uk164

FEATURES
Tutorial

165www.pcpro.co.uk PC PRO June 2005

FEATURES
Tutorial

the current directory. The only problem is
that when you select a new directory in one
control, this doesn’t change the directory in
the other one. That’s easy to fix. Close the
running application and in the design
workspace select ShellListView1 at the right
of the form. Scroll the Object Inspector to
the Linkage group. Select the ShellTreeView
property and, from the drop-down list, pick
ShellTreeView1. Run the application again
with F9. The two controls should now work
in unison.

CRACKING THE CODE
Of course, there’s a limit to what you can do
by setting properties in the designer. In order
to develop real-world applications, you’ll
need to write some program code. Rather
than a trivial ‘Hello World!’ program, we’ll
try for something a bit more useful as a first
real application.

Start a new VCL Forms Application for
Win32. Drop onto the form three TEdit
controls, one beneath the other, and set their
Name properties to SubTotal, Vat and
GrandTotal. This is going to be a VAT
calculator, which will calculate tax based on
a value entered into the SubTotal edit box.
Drop a button onto the form, name it
CalcBtn and set its Caption to ‘Calculate’.

Double-click the button to create an
event-handling procedure for the default
Click event – you can code methods to
handle other events such as key presses
using the Events tab in the Object Inspector.
Delphi creates an empty event-handling
method called CalcBtnClick(). This method
will be called automatically and its
associated code run whenever the Calculate
button is clicked. Edit this by adding the
following code:

procedure TForm1.CalcBtnClick(

Sender: TObject);

var

 st, vt, gt : real;

 errcode : integer;

begin

 Val(SubTotal.Text, st, errcode);

 if errcode = 0 then

 begin

 vt := (st * 0.175);

 gt := vt + st;

 Vat.Text := FloatToStr(vt);

 GrandTotal.Text:= FloatToStr(gt);

 end;

end;

DELPHI SYNTAX
Before attempting to run this project, check
your code carefully. Delphi’s Object Pascal
language requires that each variable be
declared in the VAR section beneath the
procedure header. Variables of the same

type may be separated by commas,
followed by a colon, the type name (for
example, integer) and a semi-colon. Each
procedure starts with the begin keyword
and ends with the end keyword followed
by a semi-colon. These two keywords
perform a similar function to the curly-
brace delimiters {} in C-like languages
and Java. Code blocks are also delimited
by begin and end. Expressions are
terminated by semi-colons. Note that
Pascal isn’t case-sensitive, so you can mix
cases at will.

We use the standard Val() procedure
to convert the string SubTotal.Text to a
real number, st. If this fails, the integer
variable errcode returns the index of the
problem character in the string. The
FloatToStr() function returns the string
representation of a floating-point value. You
can find out more about Delphi’s standard
functions by highlighting the function name
in the editor and pressing F1 to display help.
The value returned by FloatToStr() can be
assigned to a string variable or property
using Pascal’s ‘:=’ (colon-equals) assignment
operator. Note that a single equals sign
in Pascal is used to test equality as in
the expression if errcode = 0. When
assigning a value, a colon must precede the
equals sign.

Run the program. If there are any syntax
errors, Delphi displays error messages at the
bottom of the screen and highlights the
erroneous line of code. Fix any errors, then
run the program again. If you still have
problems, you can load our test1.dpr project
all ready to go on the cover DVD. Try
entering a numerical value into the first edit
box, SubTotal. When you click the button,
the code above will be executed. Assuming
there’s no error in your input, the code
converts the string in the SubTotal box to a
floating-point value, multiplies this by 0.175
to obtain a 17.5 per cent VAT value and adds
this to the original value to obtain the VAT-
inclusive grand total. The values are then
converted back to strings and displayed in
the edit boxes Vat and GrandTotal.

MAKING REFINEMENTS
As it stands, this program does nothing
when it encounters an input error. It would
be more civilised if it at least produced a
meaningful error message. We’ve rewritten
the project to add this feature in the
Calctest.dpr project, also on the cover DVD.
It would be better still if the user could
optionally calculate a subtotal from a grand
total. We’ve added this feature to the project
too. These projects also introduce some
more complex Object Pascal coding
techniques, which are described in
comments in the source code. Take some
time to study them and you’ll get a better
feel for Delphi’s object-orientation features.

PORTING AN APPLICATION TO .NET
Up to now we’ve been developing Win32
applications, which is the traditional
method for Windows visual programs.
However, what happens if we decide we’d
like to port our applications to run under
the Microsoft .NET Framework? The .NET
Framework has a huge library of classes and
routines, which hide and extend the
capabilities of the standard Windows API.

Delphi Win32 projects use a different
library called the VCL (Visual Component
Library), which is, unfortunately,
incompatible with the .NET Framework.
Borland’s solution to this problem has been
to write a new version of the VCL to interface
with .NET. This means that, in many cases,
we can instantly convert an old Win32
Delphi program to run under .NET. There
are some things that can’t be automatically
converted and will require recoding; these are
documented in the Help system.

In order to convert our CalcVat program,
you must first delete the Borland Development
Studio Project file, CalcVat.bdsproj. We’ve
supplied a copy of this project in the
\calcvatToNET directory so that you can
delete this file without any worries about
damaging the original project. Now load the
Win32 Delphi project file Calcvat.dpr into
Delphi. A message appears, asking if you’d
like to upgrade the project for .NET or
Win32. Select Delphi For .NET. The project
is immediately converted. You now have
your first ready-to-run .NET application.

GOING FURTHER
If we’ve managed to whet your appetite for
Delphi programming, you may want to try
out some of the sample projects that you’ll
find in the \Demos subdirectory beneath your
\Borland\BDS installation directory. Initially,
we suggest you stick to the \DelphiWin32
projects. There are additional tutorial
resources available from the Welcome screen,
which can be selected from a tabbed page.

Our finished VAT calculator adds or subtracts VAT from
a value and deals with user input errors.

Continued from p162

Next month: We’ll continue to look
at Delphi 2005 with a guide to
developing applications for the
.NET Framework.

