
DirectDraw Reference
This section contains reference information for the API elements that DirectDraw
provides. Reference material is divided into the following categories:

· Interfaces

· Functions

· Callback Functions

· Structures

· Return Values

· Pixel Format Masks

· Four Character Codes (FOURCC)

Interfaces
This section contains reference information about the interfaces used with the
DirectDraw component. The following interfaces are covered:

· IDDVideoPortContainer

· IDirectDraw2

· IDirectDrawClipper

· IDirectDrawColorControl

· IDirectDrawPalette

· IDirectDrawSurface3

· IDirectDrawVideoPort

IDDVideoPortContainer
Applications use the methods of the IDDVideoPortContainer interface to create and
manipulate DirectDrawVideoPort objects.

The methods of the IDDVideoPortContainer interface can be organized into the
following groups:

Creating objects CreateVideoPort

Video ports EnumVideoPorts

QueryVideoPortStatus

Connections GetVideoPortConnectInfo

in.doc – page 2

The IDDVideoPortContainer interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

AddRef

QueryInterface

Release

You can use the LPDDVIDEOPORTCONTAINER data type to declare a variable
that contains a pointer to an IDDVideoPortContainer interface. The Dvp.h header
file declares the LPDDVIDEOPORTCONTAINER with the following code:

typedef struct IDDVideoPortContainer FAR *LPDDVIDEOPORTCONTAINER;

IDDVideoPortContainer::CreateVideoPort
The IDDVideoPortContainer::CreateVideoPort method creates a
DirectDrawVideoPort object.

HRESULT CreateVideoPort(
 DWORD dwFlags,
 LPDDVIDEOPORTDESC lpDDVideoPortDesc,
 LPDIRECTDRAWVIDEOPORT FAR *lplpDDVideoPort,
 IUnknown FAR *pUnkOuter
);

Parameters

dwFlags
Reserved for future use. This parameter must be zero.

lpDDVideoPortDesc
Address of a DDVIDEOPORTDESC structure that describes the VideoPort
object to be created.

lplpDDVideoPort
Address of a variable that will be filled with a pointer to the new
DirectDrawVideoPort object’s IDirectDrawVideoPort interface if the call
succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, this method will return an error if this parameter is anything but NULL.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

in.doc – page 3

DDERR_INVALIDPARAMS

DDERR_NOCOOPERATIVELEVELSET

DDERR_OUTOFCAPS

DDERR_OUTOFMEMORY

IDDVideoPortContainer::EnumVideoPort
s

The IDDVideoPortContainer::EnumVideoPorts method enumerates all of the
video ports that the hardware exposes that are compatible with a provided video port
description.

HRESULT EnumVideoPorts(
 DWORD dwFlags,
 LPDDVIDEOPORTCAPS lpDDVideoPortCaps,
 LPVOID lpContext,
 LPENUMVIDEOCALLBACK lpEnumVideoCallback
);

Parameters

dwFlags
Reserved for future use. This parameter must be zero.

lpDDVideoPortCaps
Pointer to a DDVIDEOPORTCAPS structure that will be checked against the
available video ports. If this parameter is NULL, all video ports will be
enumerated.

lpContext
Address of a caller-defined structure that will be passed to each enumeration
member.

lpEnumVideoCallback
Address of the EnumVideoCallback function that will be called each time a
match is found.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

in.doc – page 4

IDDVideoPortContainer::GetVideoPortCo
nnectInfo

The IDDVideoPortContainer::GetVideoPortConnectInfo method retrieves the
connection information supported by all video ports.

HRESULT GetVideoPortConnectInfo(
 DWORD dwPortId,
 LPDWORD lpNumEntries,
 LPDDVIDEOPORTCONNECT lpConnectInfo
);

Parameters

dwPortId
Video port ID of the video port for which the connection information will be
retrieved.

lpNumEntries
Address of a variable containing the number of entries that the array at
lpConnectInfo can hold. If this number is less than the total number of
connections, the method fills the array with as many entries as will fit, sets the
value at lpNumEntries to indicate the total number of connections, and returns
DDERR_MOREDATA.

lpConnectInfo
Address of an array of DDVIDEOPORTCONNECT structures that will be
filled with the connection options supported by the specified video port. If this
parameter is NULL, the method sets lpNumEntries to indicate the total number of
connections that the video port supports, then returns DD_OK.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_MOREDATA

IDDVideoPortContainer::QueryVideoPort
Status

The IDDVideoPortContainer::QueryVideoPortStatus method is not currently
implemented.

in.doc – page 5

HRESULT QueryVideoPortStatus(
 DWORD dwPortId,
 LPDDVIDEOPORTSTATUS lpVPStatus
);

Parameters

dwPortId
Video port ID of the video port for which the status information will be retrieved.

lpVPStatus
Address of a DDVIDEOPORTSTATUS structure that will be filled with
information about the status of the specified video port.

Return Values

This method returns DDERR_UNSUPPORTED.

IDirectDraw2
Applications use the methods of the IDirectDraw2 interface to create DirectDraw
objects and work with system-level variables. This section is a reference to the
methods of this interface. For a conceptual overview, see The DirectDraw Object.

The methods of the IDirectDraw2 interface can be organized into the following
groups:

Allocating memory Compact

Initialize

Creating objects CreateClipper

CreatePalette

CreateSurface

Device capabilities GetCaps

Display modes EnumDisplayModes

GetDisplayMode

GetMonitorFrequency

RestoreDisplayMode

SetDisplayMode

WaitForVerticalBlank

Display status GetScanLine

in.doc – page 6

GetVerticalBlankStatus

Miscellaneous GetAvailableVidMem

GetFourCCCodes

Setting behavior SetCooperativeLevel

Surfaces DuplicateSurface

EnumSurfaces

FlipToGDISurface

GetGDISurface

The IDirectDraw2 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

AddRef

QueryInterface

Release

You can use the LPDIRECTDRAW or LPDIRECTDRAW data types to declare a
variable that contains a pointer to an IDirectDraw or IDirectDraw2 interface. The
Ddraw.h header file declares these data types with the following code:

typedef struct IDirectDraw FAR *LPDIRECTDRAW;

typedef struct IDirectDraw2 FAR *LPDIRECTDRAW2;

IDirectDraw2::Compact
At present this method is only a stub; it has not yet been implemented.

HRESULT Compact();

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOEXCLUSIVEMODE

DDERR_SURFACEBUSY

in.doc – page 7

Remarks

This method moves all of the pieces of surface memory on the display card to a
contiguous block to make the largest single amount of free memory available. This
call fails if any operations are in progress.

The application calling this method must have its cooperative level set to exclusive.

IDirectDraw2::CreateClipper
The IDirectDraw2::CreateClipper method creates a DirectDrawClipper object.

HRESULT CreateClipper(
 DWORD dwFlags,
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,
 IUnknown FAR *pUnkOuter
);

Parameters

dwFlags
This parameter is currently not used and must be set to 0.

lplpDDClipper
Address of a pointer that will be filled with the address of the new
DirectDrawClipper object if this method returns successfully.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, IDirectDraw2::CreateClipper returns an error if this parameter is
anything but NULL.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOCOOPERATIVELEVELSET

DDERR_OUTOFMEMORY

Remarks

The DirectDrawClipper object can be attached to a DirectDrawSurface and used
during IDirectDrawSurface3::Blt, IDirectDrawSurface3::BltBatch, and
IDirectDrawSurface3::UpdateOverlay operations.

in.doc – page 8

To create a DirectDrawClipper object that is not owned by a specific DirectDraw
object, use the DirectDrawCreateClipper function.

See Also

IDirectDrawSurface3::GetClipper, IDirectDrawSurface3::SetClipper

IDirectDraw2::CreatePalette
The IDirectDraw2::CreatePalette method creates a DirectDrawPalette object for
this DirectDraw object.

HRESULT CreatePalette(
 DWORD dwFlags,
 LPPALETTEENTRY lpColorTable,
 LPDIRECTDRAWPALETTE FAR *lplpDDPalette,
 IUnknown FAR *pUnkOuter
);

Parameters

dwFlags
One or more of the following flags:

DDPCAPS_1BIT Indicates that the index is 1 bit. There are two entries in the
color table.

DDPCAPS_2BIT Indicates that the index is 2 bits. There are four entries in
the color table.

DDPCAPS_4BIT Indicates that the index is 4 bits. There are 16 entries in the
color table.

DDPCAPS_8BITENTRIES Indicates that the index refers to an 8-bit color index. This
flag is valid only when used with the DDPCAPS_1BIT,
DDPCAPS_2BIT, or DDPCAPS_4BIT flag, and when the
target surface is in 8 bpp. Each color entry is 1 byte long
and is an index to a destination surface's 8-bpp palette.

DDPCAPS_8BIT Indicates that the index is 8 bits. There are 256 entries in
the color table.

DDPCAPS_ALLOW256 Indicates that this palette can have all 256 entries defined.

lpColorTable
Address of an array of 2, 4, 16, or 256 PALETTEENTRY structures that will
initialize this DirectDrawPalette object.

lplpDDPalette
Address of a pointer that will be filled with the address of the new
DirectDrawPalette object if this method returns successfully.

pUnkOuter

in.doc – page 9

Allows for future compatibility with COM aggregation features. Presently,
however, IDirectDraw2::CreatePalette returns an error if this parameter is
anything but NULL.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOCOOPERATIVELEVELSET

DDERR_OUTOFMEMORY

DDERR_UNSUPPORTED

IDirectDraw2::CreateSurface
The IDirectDraw2::CreateSurface method creates a DirectDrawSurface object for
this DirectDraw object.

HRESULT CreateSurface(
 LPDDSURFACEDESC lpDDSurfaceDesc,
 LPDIRECTDRAWSURFACE FAR *lplpDDSurface,
 IUnknown FAR *pUnkOuter
);

Parameters

lpDDSurfaceDesc
Address of the DDSURFACEDESC structure that describes the requested
surface. You should set any unused members of DDSURFACEDESC to zero
before calling this method. A DDSCAPS structure is a member of
DDSURFACEDESC.

lplpDDSurface
Address of a pointer to be initialized with a valid DirectDrawSurface pointer if
the call succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, IDirectDraw2::CreateSurface returns an error if this parameter is
anything but NULL.

Return Values

If the method succeeds, the return value is DD_OK.

in.doc – page 10

If the method fails, the return value may be one of the following error values:

DDERR_INCOMPATIBLEPRIMARY

DDERR_INVALIDCAPS

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDPIXELFORMAT

DDERR_NOALPHAHW

DDERR_NOCOOPERATIVELEVELSET

DDERR_NODIRECTDRAWHW

DDERR_NOEMULATION

DDERR_NOEXCLUSIVEMODE

DDERR_NOFLIPHW

DDERR_NOMIPMAPHW

DDERR_NOOVERLAYHW

DDERR_NOZBUFFERHW

DDERR_OUTOFMEMORY

DDERR_OUTOFVIDEOMEMORY

DDERR_PRIMARYSURFACEALREADYEXISTS

DDERR_UNSUPPORTEDMODE

IDirectDraw2::DuplicateSurface
The IDirectDraw2::DuplicateSurface method duplicates a DirectDrawSurface
object.

HRESULT DuplicateSurface(
 LPDIRECTDRAWSURFACE lpDDSurface,
 LPLPDIRECTDRAWSURFACE FAR *lplpDupDDSurface
);

Parameters

lpDDSurface
Address of the DirectDrawSurface structure to be duplicated.

lplpDupDDSurface
Address of the DirectDrawSurface pointer that points to the newly created
duplicate DirectDrawSurface structure.

Return Values

If the method succeeds, the return value is DD_OK.

in.doc – page 11

If the method fails, the return value may be one of the following error values:

DDERR_CANTDUPLICATE

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_OUTOFMEMORY

DDERR_SURFACELOST

Remarks

This method creates a new DirectDrawSurface object that points to the same surface
memory as an existing DirectDrawSurface object. This duplicate can be used just like
the original object. The surface memory is released after the last object referencing it
is released. A primary surface, 3-D surface, or implicitly created surface cannot be
duplicated.

IDirectDraw2::EnumDisplayModes
The IDirectDraw2::EnumDisplayModes method enumerates all of the display
modes the hardware exposes through the DirectDraw object that are compatible with
a provided surface description.

HRESULT EnumDisplayModes(
 DWORD dwFlags,
 LPDDSURFACEDESC lpDDSurfaceDesc,
 LPVOID lpContext,
 LPDDENUMMODESCALLBACK lpEnumModesCallback
);

Parameters

dwFlags
DDEDM_REFRESHRATES Enumerates modes with different refresh rates.

IDirectDraw2::EnumDisplayModes guarantees that a particular
mode will be enumerated only once. This flag specifies whether the
refresh rate is taken into account when determining if a mode is
unique.

DDEDM_STANDARDVGAMODES Enumerates Mode 13 in addition to the 320x200x8 Mode X mode.

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be checked against
available modes. If the value of this parameter is NULL, all modes are
enumerated.

lpContext

in.doc – page 12

Address of an application-defined structure that will be passed to each
enumeration member.

lpEnumModesCallback
Address of the EnumModesCallback function that the enumeration procedure
will call every time a match is found.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

Remarks

This method enumerates the dwRefreshRate member of the DDSURFACEDESC
structure; the IDirectDraw::EnumDisplayModes method does not contain this
capability. If you use the IDirectDraw2::SetDisplayMode method to set the refresh
rate of a new mode, you must use IDirectDraw2::EnumDisplayModes to enumerate
the dwRefreshRate member.

See Also

IDirectDraw2::GetDisplayMode, IDirectDraw2::SetDisplayMode,
IDirectDraw2::RestoreDisplayMode

IDirectDraw2::EnumSurfaces
The IDirectDraw2::EnumSurfaces method enumerates all of the existing or
possible surfaces that meet the search criterion specified.

HRESULT EnumSurfaces(
 DWORD dwFlags,
 LPDDSURFACEDESC lpDDSD,
 LPVOID lpContext,
 LPDDENUMSURFACESCALLBACK lpEnumSurfacesCallback
);

Parameters

dwFlags
One of the following flags:

DDENUMSURFACES_ALL

in.doc – page 13

Enumerates all of the surfaces that meet the search criterion.

DDENUMSURFACES_CANBECREATED

Enumerates the first surface that can be created and meets the search
criterion.

DDENUMSURFACES_DOESEXIST

Enumerates the already existing surfaces that meet the search criterion.

DDENUMSURFACES_MATCH

Searches for any surface that matches the surface description.

DDENUMSURFACES_NOMATCH

Searches for any surface that does not match the surface description.

lpDDSD
Address of a DDSURFACEDESC structure that defines the surface of interest.

lpContext
Address of an application-defined structure that will be passed to each
enumeration member.

lpEnumSurfacesCallback
Address of the EnumSurfacesCallback function the enumeration procedure will
call every time a match is found.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

Remarks

If the DDENUMSURFACES_CANBECREATED flag is set, this method attempts to
temporarily create a surface that meets the criterion. Note that as a surface is
enumerated, its reference count is increased—if you are not going to use the surface,
use IDirectDraw::Release to release the surface after each enumeration.

As part of the IDirectDraw interface, this method did not support any values other
than zero for the dwFlags parameter.

IDirectDraw2::FlipToGDISurface
The IDirectDraw2::FlipToGDISurface method makes the surface that GDI writes
to the primary surface.

HRESULT FlipToGDISurface();

in.doc – page 14

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOTFOUND

Remarks

This method can be called at the end of a page-flipping application to ensure that the
display memory that GDI is writing to is visible to the user.

See Also

IDirectDraw2::GetGDISurface

IDirectDraw2::GetAvailableVidMem
The IDirectDraw2::GetAvailableVidMem method retrieves the total amount of
display memory available and the amount of display memory currently free for a
given type of surface.

HRESULT GetAvailableVidMem(
 LPDDSCAPS lpDDSCaps,
 LPDWORD lpdwTotal,
 LPDWORD lpdwFree
);

Parameters

lpDDSCaps
Address of a DDSCAPS structure that indicates the hardware capabilities of the
proposed surface.

lpdwTotal
Address of a variable that will be filled with the total amount of display memory
available.

lpdwFree
Address of a variable that will be filled with the amount of display memory
currently free that can be allocated for a surface that matches the capabilities
specified by the structure at lpDDSCaps.

in.doc – page 15

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDCAPS

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NODIRECTDRAWHW

If NULL is passed to either lpdwTotal or lpdwFree, the value for that parameter is not
returned.

Remarks

The following C++ example demonstrates using
IDirectDraw2::GetAvailableVidMem to determine both the total and free display
memory available for texture-map surfaces:

LPDIRECTDRAW2 lpDD2;

DDSCAPS ddsCaps;

DWORD dwTotal;

DWORD dwFree;

ddres = lpDD->QueryInterface(IID_IDirectDraw2, &lpDD2);

if (FAILED(ddres))

.

.

.

ddsCaps.dwCaps = DDSCAPS_TEXTURE;

ddres = lpDD2->GetAvailableVidMem(&ddsCaps, &dwTotal, &dwFree);

if (FAILED(ddres))

.

.

.

This method provides only a snapshot of the current display-memory state. The
amount of free display memory is subject to change as surfaces are created and
released. Therefore, you should use the free memory value only as an approximation.
In addition, a particular display adapter card may make no distinction between two
different memory types. For example, the adapter might use the same portion of
display memory to store z-buffers and textures. So, allocating one type of surface (for
example, a z-buffer) can affect the amount of display memory available for another
type of surface (for example, textures). Therefore, it is best to first allocate an
application's fixed resources (such as front and back buffers , and z-buffers) before

in.doc – page 16

determining how much memory is available for dynamic use (such as texture
mapping).

This method was not implemented in the IDirectDraw interface.

IDirectDraw2::GetCaps
The IDirectDraw2::GetCaps method fills in the capabilities of the device driver for
the hardware and the hardware-emulation layer (HEL).

HRESULT GetCaps(
 LPDDCAPS lpDDDriverCaps,
 LPDDCAPS lpDDHELCaps
);

Parameters

lpDDDriverCaps
Address of a DDCAPS structure that will be filled with the capabilities of the
hardware, as reported by the device driver. Set this parameter to NULL if device
driver capabilities are not to be retrieved.

lpDDHELCaps
Address of a DDCAPS structure that will be filled with the capabilities of the
HEL. Set this parameter to NULL if HEL capabilities are not to be retrieved.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

You can only set one of the two parameters to NULL to exclude it. If you set both to
NULL the method will fail, returning DDERR_INVALIDPARAMS.

IDirectDraw2::GetDisplayMode
The IDirectDraw2::GetDisplayMode method retrieves the current display mode.

HRESULT GetDisplayMode(
 LPDDSURFACEDESC lpDDSurfaceDesc
);

in.doc – page 17

Parameters

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be filled with a description
of the surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTEDMODE

Remarks

An application should not save the information returned by this method to restore the
display mode on clean-up. The application should use the
IDirectDraw2::RestoreDisplayMode method to restore the mode on clean-up,
thereby avoiding mode-setting conflicts that could arise in a multiprocess
environment.

See Also

IDirectDraw2::SetDisplayMode, IDirectDraw2::RestoreDisplayMode,
IDirectDraw2::EnumDisplayModes

IDirectDraw2::GetFourCCCodes
The IDirectDraw2::GetFourCCCodes method retrieves the FOURCC codes
supported by the DirectDraw object. This method can also retrieve the number of
codes supported.

HRESULT GetFourCCCodes(
 LPDWORD lpNumCodes,
 LPDWORD lpCodes
);

Parameters

lpNumCodes
Address of a variable that contains the number of entries that the array pointed to
by lpCodes can hold. If the number of entries is too small to accommodate all the
codes, lpNumCodes is set to the required number and the array pointed to by
lpCodes is filled with all that fits.

in.doc – page 18

lpCodes
Address of an array of variables that will be filled with FOURCC codes
supported by this DirectDraw object. If you specify NULL, lpNumCodes is set to
the number of supported FOURCC codes and the method will return.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

IDirectDraw2::GetGDISurface
The IDirectDraw2::GetGDISurface method retrieves the DirectDrawSurface object
that currently represents the surface memory that GDI is treating as the primary
surface.

HRESULT GetGDISurface(
 LPDIRECTDRAWSURFACE FAR *lplpGDIDDSSurface
);

Parameters

lplpGDIDDSSurface
Address of a DirectDrawSurface pointer to the DirectDrawSurface object that
currently controls GDIs primary surface memory.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOTFOUND

See Also

IDirectDraw2::FlipToGDISurface

in.doc – page 19

IDirectDraw2::GetMonitorFrequency
The IDirectDraw2::GetMonitorFrequency method retrieves the frequency of the
monitor being driven by the DirectDraw object.

HRESULT GetMonitorFrequency(
 LPDWORD lpdwFrequency
);

Parameters

lpdwFrequency
Address of the variable that will be filled with the monitor frequency, reported in
Hz.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

IDirectDraw2::GetScanLine
The IDirectDraw2::GetScanLine method retrieves the scan line that is currently
being drawn on the monitor.

HRESULT GetScanLine(
 LPDWORD lpdwScanLine
);

Parameters

lpdwScanLine
Address of the variable that will contain the scan line the display is currently on.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

in.doc – page 20

DDERR_UNSUPPORTED

DDERR_VERTICALBLANKINPROGRESS

Remarks

Scan lines are reported as zero-based integers. The returned scan line value is
between 0 and n, where scan line 0 is the first visible scan line on the screen and n is
the last visible scan line, plus any scan lines that occur during vblank. So, in a case
where an application is running at 640´480, and there are 12 scan lines during
vblank, the values returned by this method will range from 0 to 491.

See Also

IDirectDraw2::GetVerticalBlankStatus, IDirectDraw2::WaitForVerticalBlank

IDirectDraw2::GetVerticalBlankStatus
The IDirectDraw2::GetVerticalBlankStatus method retrieves the status of the
vertical blank.

HRESULT GetVerticalBlankStatus(
 LPBOOL lpbIsInVB
);

Parameters

lpbIsInVB
Address of the variable that will be filled with the status of the vertical blank.
This parameter is TRUE if a vertical blank is occurring, and FALSE otherwise.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

Remarks

To synchronize with the vertical blank, use the
IDirectDraw2::WaitForVerticalBlank method.

See Also

IDirectDraw2::GetScanLine, IDirectDraw2::WaitForVerticalBlank

in.doc – page 21

IDirectDraw2::Initialize
The IDirectDraw2::Initialize method initializes the DirectDraw object that was
created by using the CoCreateInstance COM function.

HRESULT Initialize(
 GUID FAR *lpGUID
);

Parameters

lpGUID
Address of the globally unique identifier (GUID) used as the interface identifier.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_ALREADYINITIALIZED

DDERR_DIRECTDRAWALREADYCREATED

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NODIRECTDRAWHW

DDERR_NODIRECTDRAWSUPPORT

DDERR_OUTOFMEMORY

This method is provided for compliance with the Component Object Model (COM)
protocol. If the DirectDrawCreate function was used to create the DirectDraw
object, this method returns DDERR_ALREADYINITIALIZED. If
IDirectDraw2::Initialize is not called when using CoCreateInstance to create the
DirectDraw object, any method that is called afterward returns
DDERR_NOTINITIALIZED.

Remarks

For more information about using IDirectDraw2::Initialize with CoCreateInstance,
see Creating DirectDraw Objects by Using CoCreateInstance.

IDirectDraw2::RestoreDisplayMode
The IDirectDraw2::RestoreDisplayMode method resets the mode of the display
device hardware for the primary surface to what it was before the

in.doc – page 22

IDirectDraw2::SetDisplayMode method was called. Exclusive-level access is
required to use this method.

HRESULT RestoreDisplayMode();

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_LOCKEDSURFACES

DDERR_NOEXCLUSIVEMODE

See Also

IDirectDraw2::SetDisplayMode, IDirectDraw2::EnumDisplayModes,
IDirectDraw2::SetCooperativeLevel

IDirectDraw2::SetCooperativeLevel
The IDirectDraw2::SetCooperativeLevel method determines the top-level behavior
of the application.

HRESULT SetCooperativeLevel(
 HWND hWnd,
 DWORD dwFlags
);

Parameters

hWnd
Window handle used for the application. This parameter can be NULL when the
DDSCL_NORMAL flag is specified in the dwFlags parameter.

dwFlags
One or more of the following flags:

DDSCL_ALLOWMODEX

Allows the use of Mode X display modes. This flag must be used
with the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN
flags.

DDSCL_ALLOWREBOOT

Allows CTRL+ALT+DEL to function while in exclusive (full-screen)
mode.

in.doc – page 23

DDSCL_EXCLUSIVE

Requests the exclusive level. This flag must be used with the
DDSCL_FULLSCREEN flag.

DDSCL_FULLSCREEN

Indicates that the exclusive-mode owner will be responsible for the
entire primary surface. GDI can be ignored. This flag must be used
with the DDSCL_EXCLUSIVE flag.

DDSCL_NORMAL

Indicates that the application will function as a regular Windows
application. This flag cannot be used with the
DDSCL_ALLOWMODEX, DDSCL_EXCLUSIVE, or
DDSCL_FULLSCREEN flags.

DDSCL_NOWINDOWCHANGES

Indicates that DirectDraw is not allowed to minimize or restore the
application window on activation.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCLUSIVEMODEALREADYSET

DDERR_HWNDALREADYSET

DDERR_HWNDSUBCLASSED

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_OUTOFMEMORY

Remarks

An application must set either the DDSCL_EXCLUSIVE or DDSCL_NORMAL
flag.

The DDSCL_EXCLUSIVE flag must be set to call functions that can have drastic
performance consequences for other applications. For more information, see
Cooperative Levels.

Interaction between this method and the IDirectDraw2::SetDisplayMode method
differs from their IDirectDraw counterparts. For more information, see Cooperative
Levels and Display Modes with IDirectDraw2.

See Also

IDirectDraw2::SetDisplayMode, IDirectDraw2::Compact,
IDirectDraw2::EnumDisplayModes, Mode X and Mode 13 Display Modes.

in.doc – page 24

IDirectDraw2::SetDisplayMode
The IDirectDraw2::SetDisplayMode method sets the mode of the display-device
hardware.

HRESULT SetDisplayMode(
 DWORD dwWidth,
 DWORD dwHeight,
 DWORD dwBPP,
 DWORD dwRefreshRate,
 DWORD dwFlags
);

Parameters

dwWidth and dwHeight
Width and height of the new mode.

dwBPP
Bits per pixel (bpp) of the new mode.

dwRefreshRate
Refresh rate of the new mode. If this parameter is set to 0, the IDirectDraw
interface version of this method is used.

dwFlags
Flags describing additional options. Currently, the only valid flag is
DDSDM_STANDARDVGAMODE, which causes the method to set Mode 13
instead of Mode X 320x200x8 mode. If you are setting another resolution, bit
depth, or a Mode X mode, do not use this flag and set the parameter to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDMODE

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_LOCKEDSURFACES

DDERR_NOEXCLUSIVEMODE

DDERR_SURFACEBUSY

DDERR_UNSUPPORTED

DDERR_UNSUPPORTEDMODE

DDERR_WASSTILLDRAWING

in.doc – page 25

Remarks

If another application changes the display mode, the primary surface will be lost and
will return DDERR_SURFACELOST until it is recreated to match the new display
mode.

As part of the IDirectDraw interface, this method did not include the dwRefreshRate
and dwFlags parameters.

See Also

IDirectDraw2::RestoreDisplayMode, IDirectDraw2::GetDisplayMode,
IDirectDraw2::EnumDisplayModes, IDirectDraw2::SetCooperativeLevel,
Cooperative Levels and Display Modes with IDirectDraw2, Setting Display Modes

IDirectDraw2::WaitForVerticalBlank
The IDirectDraw2::WaitForVerticalBlank method helps the application
synchronize itself with the vertical-blank interval.

HRESULT WaitForVerticalBlank(
 DWORD dwFlags,
 HANDLE hEvent
);

Parameters

dwFlags
Determines how long to wait for the vertical blank.

DDWAITVB_BLOCKBEGIN

Returns when the vertical-blank interval begins.

DDWAITVB_BLOCKBEGINEVENT

Triggers an event when the vertical blank begins. This value is not
currently supported.

DDWAITVB_BLOCKEND

Returns when the vertical-blank interval ends and the display
begins.

hEvent
Handle of the event to be triggered when the vertical blank begins. This
parameter is not currently used.

Return Values

If the method succeeds, the return value is DD_OK.

in.doc – page 26

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

DDERR_WASSTILLDRAWING

See Also

IDirectDraw2::GetVerticalBlankStatus, IDirectDraw2::GetScanLine

IDirectDrawClipper
Applications use the methods of the IDirectDrawClipper interface to manage clip
lists. This section is a reference to the methods of this interface. For a conceptual
overview, see Clippers.

The methods of the IDirectDrawClipper interface can be organized into the
following groups:

Allocating memory Initialize

Clip list GetClipList

IsClipListChanged

SetClipList

SetHWnd

Handles GetHWnd

The IDirectDrawClipper interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

AddRef

QueryInterface

Release

You can use the LPDIRECTDRAWCLIPPER data type to declare a variable that
contains a pointer to an IDirectDrawClipper interface. The Ddraw.h header file
declares these data types with the following code:

typedef struct IDirectDrawClipper FAR *LPDIRECTDRAWCLIPPER;

in.doc – page 27

IDirectDrawClipper::GetClipList
The IDirectDrawClipper::GetClipList method retrieves a copy of the clip list
associated with a DirectDrawClipper object. A subset of the clip list can be selected
by passing a rectangle that clips the clip list.

HRESULT GetClipList(
 LPRECT lpRect,
 LPRGNDATA lpClipList,
 LPDWORD lpdwSize
);

Parameters

lpRect
Address of a rectangle that will be used to clip the clip list. This parameter can be
NULL to retrieve the entire clip list.

lpClipList
Address of an RGNDATA structure that will contain the resulting copy of the
clip list. If this parameter is NULL, the method fills the variable at lpdwSize to
the number of bytes necessary to hold the entire clip list.

lpdwSize
Size of the resulting clip list. When retrieving the clip list, this parameter is the
size of the buffer at lpClipList. When lpClipList is NULL, the variable at
lpdwSize receives the required size of the buffer, in bytes.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDCLIPLIST

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOCLIPLIST

DDERR_REGIONTOOSMALL

Remarks

The RGNDATA structure used with this method has the following syntax.

typedef struct _RGNDATA {

 RGNDATAHEADER rdh;

 char Buffer[1];

in.doc – page 28

} RGNDATA;

The rdh member of the RGNDATA structure is an RGNDATAHEADER structure
that has the following syntax.

typedef struct _RGNDATAHEADER {

 DWORD dwSize;

 DWORD iType;

 DWORD nCount;

 DWORD nRgnSize;

 RECT rcBound;

} RGNDATAHEADER;

For more information about these structures, see the documentation in the Platform
SDK.

See Also

IDirectDrawClipper::SetClipList

IDirectDrawClipper::GetHWnd
The IDirectDrawClipper::GetHWnd method retrieves the window handle
previously associated with this DirectDrawClipper object by the
IDirectDrawClipper::SetHWnd method.

HRESULT GetHWnd(
 HWND FAR *lphWnd
);

Parameters

lphWnd
Address of the window handle previously associated with this
DirectDrawClipper object by the IDirectDrawClipper::SetHWnd method.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

in.doc – page 29

See Also

IDirectDrawClipper::SetHWnd

IDirectDrawClipper::Initialize
The IDirectDrawClipper::Initialize method initializes a DirectDrawClipper object
that was created by using the CoCreateInstance COM function.

HRESULT Initialize(
 LPDIRECTDRAW lpDD,
 DWORD dwFlags
);

Parameters

lpDD
Address of the DirectDraw structure that represents the DirectDraw object. If this
parameter is set to NULL, an independent DirectDrawClipper object is created
(the equivalent of using the DirectDrawCreateClipper function).

dwFlags
This parameter is currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_ALREADYINITIALIZED

DDERR_INVALIDPARAMS

This method is provided for compliance with the Component Object Model (COM)
protocol. If DirectDrawCreateClipper or the IDirectDraw2::CreateClipper
method was used to create the DirectDrawClipper object, this method returns
DDERR_ALREADYINITIALIZED.

Remarks

For more information about using IDirectDrawClipper::Initialize with
CoCreateInstance, see Creating DirectDrawClipper Objects with CoCreateInstance.

See Also

IUnknown::AddRef, IUnknown::QueryInterface, IUnknown::Release,
IDirectDraw2::CreateClipper

in.doc – page 30

IDirectDrawClipper::IsClipListChanged
The IDirectDrawClipper::IsClipListChanged method monitors the status of the
clip list if a window handle is associated with a DirectDrawClipper object.

HRESULT IsClipListChanged(
 BOOL FAR *lpbChanged
);

Parameters

lpbChanged
Address of a variable that is set to TRUE if the clip list has changed.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

IDirectDrawClipper::SetClipList
The IDirectDrawClipper::SetClipList method sets or deletes the clip list used by
the IDirectDrawSurface3::Blt, IDirectDrawSurface3::BltBatch, and
IDirectDrawSurface3::UpdateOverlay methods on surfaces to which the parent
DirectDrawClipper object is attached.

HRESULT SetClipList(
 LPRGNDATA lpClipList,
 DWORD dwFlags
);

Parameters

lpClipList
Either an address to a valid RGNDATA structure or NULL. If there is an
existing clip list associated with the DirectDrawClipper object and this value is
NULL, the clip list will be deleted.

dwFlags
This parameter is currently not used and must be set to 0.

in.doc – page 31

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CLIPPERISUSINGHWND

DDERR_INVALIDCLIPLIST

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_OUTOFMEMORY

Remarks

The clip list cannot be set if a window handle is already associated with the
DirectDrawClipper object. Note that the IDirectDrawSurface3::BltFast method
cannot clip.

The RGNDATA structure used with this method has the following syntax.

typedef struct _RGNDATA {

 RGNDATAHEADER rdh;

 char Buffer[1];

} RGNDATA;

The rdh member of the RGNDATA structure is an RGNDATAHEADER structure
that has the following syntax.

typedef struct _RGNDATAHEADER {

 DWORD dwSize;

 DWORD iType;

 DWORD nCount;

 DWORD nRgnSize;

 RECT rcBound;

} RGNDATAHEADER;

For more information about these structures, see the documentation in the Platform
Software Development Kit.

See Also

IDirectDrawClipper::GetClipList, IDirectDrawSurface3::Blt,
IDirectDrawSurface3::BltFast, IDirectDrawSurface3::BltBatch,
IDirectDrawSurface3::UpdateOverlay

in.doc – page 32

IDirectDrawClipper::SetHWnd
The IDirectDrawClipper::SetHWnd method sets the window handle that will
obtain the clipping information.

HRESULT SetHWnd(
 DWORD dwFlags,
 HWND hWnd
);

Parameters

dwFlags
This parameter is currently not used and must be set to 0.

hWnd
Window handle that obtains the clipping information.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDCLIPLIST

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_OUTOFMEMORY

See Also

IDirectDrawClipper::GetHWnd

IDirectDrawColorControl
The IDirectDrawColorControl interface allows you to get and set color controls:

Color controls GetColorControls

SetColorControls

The IDirectDrawColorControl interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

AddRef

QueryInterface

in.doc – page 33

Release

You can use the LPDIRECTDRAWCOLORCONTROL data type to declare a
variable that contains a pointer to an IDirectDrawColorControl interface. The
Ddraw.h header file declares these data types with the following code:

typedef struct IDirectDrawColorControl FAR *LPDIRECTDRAWCOLORCONTROL;

IDirectDrawColorControl::GetColorContr
ols

The IDirectDrawColorControl::GetColorControls method returns the current
color control settings associated with the specified overlay or primary surface. The
dwFlags member of the DDCOLORCONTROL structure indicate which of the
color control options are supported.

HRESULT GetColorControls(
 LPDDCOLORCONTROL lpColorControl
);

Parameters

lpColorControl
Address of the DDCOLORCONTROL structure that will receive the current
control settings of the specified surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

IDirectDrawColorControl::SetColorContr
ols

The IDirectDrawColorControl::SetColorControls method sets the color control
settings associated with the specified overlay or primary surface.

HRESULT SetColorControls(
 LPDDCOLORCONTROL lpColorControl
);

in.doc – page 34

Parameters

lpColorControl
Address of the DDCOLORCONTROL structure containing the new values to
be applied to the specified surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

IDirectDrawPalette
Applications use the methods of the IDirectDrawPalette interface to create
DirectDrawPalette objects and work with system-level variables. This section is a
reference to the methods of this interface. For a conceptual overview, see Palettes.

The methods of the IDirectDrawPalette interface can be organized into the
following groups:

Allocating memory Initialize

Palette capabilities GetCaps

Palette entries GetEntries

SetEntries

The IDirectDrawPalette interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

AddRef

QueryInterface

Release

You can use the LPDIRECTDRAWPALETTE data type to declare a variable that
contains a pointer to an IDirectDrawPalette interface. The Ddraw.h header file
declares these data types with the following code:

typedef struct IDirectDrawPalette FAR *LPDIRECTDRAWPALETTE;

in.doc – page 35

IDirectDrawPalette::GetCaps
The IDirectDrawPalette::GetCaps method retrieves the capabilities of this palette
object.

HRESULT GetCaps(
 LPDWORD lpdwCaps
);

Parameters

lpdwCaps
Flag from the dwPalCaps member of the DDCAPS structure that defines palette
capabilities:

DDPCAPS_1BIT

DDPCAPS_2BIT

DDPCAPS_4BIT

DDPCAPS_8BIT

DDPCAPS_8BITENTRIES

DDPCAPS_ALLOW256

DDPCAPS_PRIMARYSURFACE

DDPCAPS_PRIMARYSURFACELEFT

DDPCAPS_VSYNC

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

IDirectDrawPalette::GetEntries
The IDirectDrawPalette::GetEntries method queries palette values from a
DirectDrawPalette object.

HRESULT GetEntries(
 DWORD dwFlags,
 DWORD dwBase,
 DWORD dwNumEntries,
 LPPALETTEENTRY lpEntries
);

in.doc – page 36

Parameters

dwFlags
This parameter is currently not used and must be set to 0.

dwBase
Start of the entries that should be retrieved sequentially.

dwNumEntries
Number of palette entries that can fit in the address specified in lpEntries. The
colors of each palette entry are returned in sequence, from the value of the
dwStartingEntry parameter through the value of the dwCount parameter minus 1.
(These parameters are set by IDirectDrawPalette::SetEntries.)

lpEntries
Address of the palette entries. The palette entries are 1 byte each if the
DDPCAPS_8BITENTRIES flag is set and 4 bytes otherwise. Each field is a
color description.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOTPALETTIZED

See Also

IDirectDrawPalette::SetEntries

IDirectDrawPalette::Initialize
The IDirectDrawPalette::Initialize method initializes the DirectDrawPalette object.

HRESULT Initialize(
 LPDIRECTDRAW lpDD,
 DWORD dwFlags,
 LPPALETTEENTRY lpDDColorTable
);

Parameters

lpDD
Address of the DirectDraw structure that represents the DirectDraw object.

dwFlags and lpDDColorTable
These parameters are currently not used and must be set to 0.

in.doc – page 37

Return Values

This method returns DDERR_ALREADYINITIALIZED.

This method is provided for compliance with the Component Object Model (COM)
protocol. Because the DirectDrawPalette object is initialized when it is created, this
method always returns DDERR_ALREADYINITIALIZED.

See Also

IUnknown::AddRef, IUnknown::QueryInterface, IUnknown::Release

IDirectDrawPalette::SetEntries
The IDirectDrawPalette::SetEntries method changes entries in a DirectDrawPalette
object immediately.

HRESULT SetEntries(
 DWORD dwFlags,
 DWORD dwStartingEntry,
 DWORD dwCount,
 LPPALETTEENTRY lpEntries
);

Parameters

dwFlags
This parameter is currently not used and must be set to 0.

dwStartingEntry
First entry to be set.

dwCount
Number of palette entries to be changed.

lpEntries
Address of the palette entries. The palette entries are 1 byte each if the
DDPCAPS_8BITENTRIES flag is set and 4 bytes otherwise. Each field is a
color description.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOPALETTEATTACHED

in.doc – page 38

DDERR_NOTPALETTIZED

DDERR_UNSUPPORTED

See Also

IDirectDrawPalette::GetEntries, IDirectDrawSurface3::SetPalette

IDirectDrawSurface3
Applications use the methods of the IDirectDrawSurface3 interface to create
DirectDrawSurface objects and work with system-level variables. This section is a
reference to the methods of this interface. For a conceptual overview, see Surfaces.

The methods of the IDirectDrawSurface3 interface can be organized into the
following groups:

Allocating memory Initialize

IsLost

Restore

Attaching surfaces AddAttachedSurface

DeleteAttachedSurface

EnumAttachedSurfaces

GetAttachedSurface

Blitting Blt

BltBatch

BltFast

GetBltStatus

Color GetColorKey

SetColorKey

Device contexts GetDC

ReleaseDC

Flipping Flip

GetFlipStatus

Locking surfaces Lock

in.doc – page 39

PageLock

PageUnlock

Unlock

Miscellaneous GetDDInterface

Overlays AddOverlayDirtyRect

EnumOverlayZOrders

GetOverlayPosition

SetOverlayPosition

UpdateOverlay

UpdateOverlayDisplay

UpdateOverlayZOrder

Surface capabilities GetCaps

Surface clipper GetClipper

SetClipper

Surface description GetPixelFormat

GetSurfaceDesc

SetSurfaceDesc

Surface palettes GetPalette

SetPalette

The IDirectDrawSurface3 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

AddRef

QueryInterface

Release

You can use the LPDIRECTDRAWSURFACE, LPDIRECTDRAWDURFACE2, or
LPDIRECTDRAWSURFACE3 data types to declare variables that point to an
IDirectDrawSurface, IDirectDrawSurface2, or IDirectDrawSurface3 interface.
The Ddraw.h header file declares these data types with the following code:

typedef struct IDirectDrawSurface FAR *LPDIRECTDRAWSURFACE;

typedef struct IDirectDrawSurface2 FAR *LPDIRECTDRAWSURFACE2;

in.doc – page 40

typedef struct IDirectDrawSurface3 FAR *LPDIRECTDRAWSURFACE3;

IDirectDrawSurface3::AddAttachedSurfa
ce

The IDirectDrawSurface3::AddAttachedSurface method attaches a surface to
another surface.

HRESULT AddAttachedSurface(
 LPDIRECTDRAWSURFACE3 lpDDSAttachedSurface
);

Parameters

lpDDSAttachedSurface
Address of the DirectDraw surface that is to be attached.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANNOTATTACHSURFACE

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_SURFACEALREADYATTACHED

DDERR_SURFACELOST

DDERR_WASSTILLDRAWING

Remarks

Possible attachments include z-buffers, alpha channels, and back buffers. Some
attachments automatically break other attachments. For example, the 3-D z-buffer can
be attached only to one back buffer at a time. Attachment is not bidirectional, and a
surface cannot be attached to itself. Emulated surfaces (in system memory) cannot be
attached to nonemulated surfaces. Unless one surface is a texture map, the two
attached surfaces must be the same size. A flipping surface cannot be attached to
another flipping surface of the same type; however, attaching two surfaces of
different types is allowed. For example, a flipping z-buffer can be attached to a
regular flipping surface. If a nonflipping surface is attached to another nonflipping
surface of the same type, the two surfaces will become a flipping chain. If a
nonflipping surface is attached to a flipping surface, it becomes part of the existing

in.doc – page 41

flipping chain. Additional surfaces can be added to this chain, and each call of the
IDirectDrawSurface3::Flip method will advance one step through the surfaces.

See Also

IDirectDrawSurface3::DeleteAttachedSurface,
IDirectDrawSurface3::EnumAttachedSurfaces

IDirectDrawSurface3::AddOverlayDirtyRe
ct

This method is not currently implemented.

HRESULT AddOverlayDirtyRect(
 LPRECT lpRect
);

Parameters

lpRect
Address of the RECT structure that needs to be updated.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDSURFACETYPE

DDERR_UNSUPPORTED

See Also

IDirectDrawSurface3::UpdateOverlayDisplay

IDirectDrawSurface3::Blt
The IDirectDrawSurface3::Blt method performs a bit block transfer. This method
(as well as the IDirectDrawSurface3 version) does not currently support z-buffering
or alpha blending (see alpha channel) during blit operations.

HRESULT Blt(
 LPRECT lpDestRect,
 LPDIRECTDRAWSURFACE3 lpDDSrcSurface,

in.doc – page 42

 LPRECT lpSrcRect,
 DWORD dwFlags,
 LPDDBLTFX lpDDBltFx
);

Parameters

lpDestRect
Address of a RECT structure that defines the upper-left and lower-right points of
the rectangle on the destination surface to be blitted to. If this parameter is
NULL, the entire destination surface will be used.

lpDDSrcSurface
Address of the DirectDraw surface that is the source for the blit operation.

lpSrcRect
Address of a RECT structure that defines the upper-left and lower-right points of
the rectangle on the source surface to be blitted from. If this parameter is NULL,
the entire source surface will be used.

dwFlags
DDBLT_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel
surface attached to the destination surface as the alpha channel for this
blit.

DDBLT_ALPHADESTCONSTOVERRIDE

Uses the dwAlphaDestConst member of the DDBLTFX structure as
the alpha channel for the destination surface for this blit.

DDBLT_ALPHADESTNEG

Indicates that the destination surface becomes more transparent as the
alpha value increases (0 is opaque).

DDBLT_ALPHADESTSURFACEOVERRIDE

Uses the lpDDSAlphaDest member of the DDBLTFX structure as the
alpha channel for the destination for this blit.

DDBLT_ALPHAEDGEBLEND

Uses the dwAlphaEdgeBlend member of the DDBLTFX structure as
the alpha channel for the edges of the image that border the color key
colors.

DDBLT_ALPHASRC

Uses either the alpha information in pixel format or the alpha channel
surface attached to the source surface as the alpha channel for this blit.

DDBLT_ALPHASRCCONSTOVERRIDE

Uses the dwAlphaSrcConst member of the DDBLTFX structure as the
alpha channel for the source for this blit.

DDBLT_ALPHASRCNEG

in.doc – page 43

Indicates that the source surface becomes more transparent as the alpha
value increases (0 is opaque).

DDBLT_ALPHASRCSURFACEOVERRIDE

Uses the lpDDSAlphaSrc member of the DDBLTFX structure as the
alpha channel for the source for this blit.

DDBLT_ASYNC

Performs this blit asynchronously through the FIFO in the order
received. If no room is available in the FIFO hardware, the call fails.

DDBLT_COLORFILL

Uses the dwFillColor member of the DDBLTFX structure as the RGB
color that fills the destination rectangle on the destination surface.

DDBLT_DDFX

Uses the dwDDFX member of the DDBLTFX structure to specify the
effects to use for this blit.

DDBLT_DDROPS

Uses the dwDDROPS member of the DDBLTFX structure to specify
the raster operations (ROPS) that are not part of the Win32 API.

DDBLT_DEPTHFILL

Uses the dwFillDepth member of the DDBLTFX structure as the depth
value with which to fill the destination rectangle on the destination z-
buffer surface.

DDBLT_KEYDEST

Uses the color key associated with the destination surface.

DDBLT_KEYDESTOVERRIDE

Uses the dckDestColorkey member of the DDBLTFX structure as the
color key for the destination surface.

DDBLT_KEYSRC

Uses the color key associated with the source surface.

DDBLT_KEYSRCOVERRIDE

Uses the dckSrcColorkey member of the DDBLTFX structure as the
color key for the source surface.

DDBLT_ROP

Uses the dwROP member of the DDBLTFX structure for the ROP for
this blit. These ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE

Uses the dwRotationAngle member of the DDBLTFX structure as the
rotation angle (specified in 1/100th of a degree) for the surface.

DDBLT_WAIT

Postpones the DDERR_WASSTILLDRAWING return value if the
blitter is busy, and returns as soon as the blit can be set up or another

in.doc – page 44

error occurs.

DDBLT_ZBUFFER

Performs a z-buffered blit using the z-buffers attached to the source and
destination surfaces and the dwZBufferOpCode member of the
DDBLTFX structure as the z-buffer opcode.

DDBLT_ZBUFFERDESTCONSTOVERRIDE

Performs a z-buffered blit using the dwZDestConst and
dwZBufferOpCode members of the DDBLTFX structure as the z-
buffer and z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERDESTOVERRIDE

Performs a z-buffered blit using the lpDDSZBufferDest and
dwZBufferOpCode members of the DDBLTFX structure as the z-
buffer and z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERSRCCONSTOVERRIDE

Performs a z-buffered blit using the dwZSrcConst and
dwZBufferOpCode members of the DDBLTFX structure as the z-
buffer and z-buffer opcode, respectively, for the source.

DDBLT_ZBUFFERSRCOVERRIDE

Performs a z-buffered blit using the lpDDSZBufferSrc and
dwZBufferOpCode members of the DDBLTFX structure as the z-
buffer and z-buffer opcode, respectively, for the source.

lpDDBltFx
Address of the DDBLTFX structure.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDCLIPLIST

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDRECT

DDERR_NOALPHAHW

DDERR_NOBLTHW

DDERR_NOCLIPLIST

DDERR_NODDROPSHW

DDERR_NOMIRRORHW

DDERR_NORASTEROPHW

DDERR_NOROTATIONHW

in.doc – page 45

DDERR_NOSTRETCHHW

DDERR_NOZBUFFERHW

DDERR_SURFACEBUSY

DDERR_SURFACELOST

DDERR_UNSUPPORTED

Remarks

This method is capable of synchronous or asynchronous blits (the default behavior),
either display memory to display memory, display memory to system memory,
system memory to display memory, or system memory to system memory. The blits
can be performed by using source color keys, and destination color keys. Arbitrary
stretching or shrinking will be performed if the source and destination rectangles are
not the same size.

Typically, IDirectDrawSurface3::Blt returns immediately with an error if the blitter
is busy and the blit could not be set up. Specify the DDBLT_WAIT flag to request a
synchronous blit. When you include the DDBLT_WAIT flag, the method waits until
the blit can be set up or another error occurs before it returns.

Note that RECT structures are defined so that the right and bottom members are
exclusive—therefore, right – left equals the width of the rectangle, not one less than
the width.

IDirectDrawSurface3::BltBatch
The IDirectDrawSurface3::BltBatch method performs a sequence of
IDirectDrawSurface3::Blt operations from several sources to a single destination.
This method is currently only a stub; it has not yet been implemented.

HRESULT BltBatch(
 LPDDBLTBATCH lpDDBltBatch,
 DWORD dwCount,
 DWORD dwFlags
);

Parameters

lpDDBltBatch
Address of the first DDBLTBATCH structure that defines the parameters for the
blit operations.

dwCount
Number of blit operations to be performed.

dwFlags
This parameter is currently not used and must be set to 0.

in.doc – page 46

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDCLIPLIST

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDRECT

DDERR_NOALPHAHW

DDERR_NOBLTHW

DDERR_NOCLIPLIST

DDERR_NODDROPSHW

DDERR_NOMIRRORHW

DDERR_NORASTEROPHW

DDERR_NOROTATIONHW

DDERR_NOSTRETCHHW

DDERR_NOZBUFFERHW

DDERR_SURFACEBUSY

DDERR_SURFACELOST

DDERR_UNSUPPORTED

IDirectDrawSurface3::BltFast
The IDirectDrawSurface3::BltFast method performs a source copy blit or
transparent blit by using a source color key or destination color key.

HRESULT BltFast(
 DWORD dwX,
 DWORD dwY,
 LPDIRECTDRAWSURFACE3 lpDDSrcSurface,
 LPRECT lpSrcRect,
 DWORD dwTrans
);

Parameters

dwX and dwY
The x- and y-coordinates to blit to on the destination surface.

lpDDSrcSurface

in.doc – page 47

Address of the DirectDraw surface that is the source for the blit operation.

lpSrcRect
Address of a RECT structure that defines the upper-left and lower-right points of
the rectangle on the source surface to be blitted from.

dwTrans
Type of transfer.

DDBLTFAST_DESTCOLORKEY

Specifies a transparent blit that uses the destination's color key.

DDBLTFAST_NOCOLORKEY

 Specifies a normal copy blit with no transparency.

DDBLTFAST_SRCCOLORKEY

 Specifies a transparent blit that uses the source's color key.

DDBLTFAST_WAIT

 Postpones the DDERR_WASSTILLDRAWING message if the blitter is
busy, and returns as soon as the blit can be set up or another error
occurs.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_EXCEPTION

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDRECT

DDERR_NOBLTHW

DDERR_SURFACEBUSY

DDERR_SURFACELOST

DDERR_UNSUPPORTED

Remarks

This method always attempts an asynchronous blit if it is supported by the hardware.

This method works only on display memory surfaces and cannot clip when blitting. If
you use this method on a surface with an attached clipper, the call will fail and the
method will return DDERR_UNSUPPORTED.

The software implementation of IDirectDrawSurface3::BltFast is 10 percent faster
than the IDirectDrawSurface3::Blt method. However, there is no speed difference
between the two if display hardware is being used.

in.doc – page 48

Typically, IDirectDrawSurface3::BltFast returns immediately with an error if the
blitter is busy and the blit cannot be set up. You can use the DDBLTFAST_WAIT
flag, however, if you want this method to not return until either the blit can be set up
or another error occurs.

IDirectDrawSurface3::DeleteAttachedSur
face

The IDirectDrawSurface3::DeletAttachedSurface method detaches two attached
surfaces. The detached surface is not released.

HRESULT DeleteAttachedSurface(
 DWORD dwFlags,
 LPDIRECTDRAWSURFACE3 lpDDSAttachedSurface
);

Parameters

dwFlags
This parameter is currently not used and must be set to 0.

lpDDSAttachedSurface
Address of the DirectDraw surface to be detached. If this parameter is NULL, all
attached surfaces are detached.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANNOTDETACHSURFACE

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_SURFACELOST

DDERR_SURFACENOTATTACHED

Remarks

Implicit attachments, those formed by DirectDraw rather than the
IDirectDrawSurface3::AddAttachedSurface method, cannot be detached.
Detaching surfaces from a flipping chain can alter other surfaces in the chain. If a
front buffer is detached from a flipping chain, the next surface in the chain becomes
the front buffer, and the following surface becomes the back buffer. If a back buffer is
detached from a chain, the following surface becomes a back buffer. If a plain surface
is detached from a chain, the chain simply becomes shorter. If a flipping chain has

in.doc – page 49

only two surfaces and they are detached, the chain is destroyed and both surfaces
return to their previous designations.

See Also

IDirectDrawSurface3::Flip

IDirectDrawSurface3::EnumAttachedSurf
aces

The IDirectDrawSurface3::EnumAttachedSurfaces method enumerates all the
surfaces attached to a given surface.

HRESULT EnumAttachedSurfaces(
 LPVOID lpContext,
 LPDDENUMSURFACESCALLBACK lpEnumSurfacesCallback
);

Parameters

lpContext
Address of the application-defined structure that is passed to the enumeration
member every time it is called.

lpEnumSurfacesCallback
Address of the EnumSurfacesCallback function that will be called for each
surface that is attached to this surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_SURFACELOST

IDirectDrawSurface3::EnumOverlayZOrd
ers

The IDirectDrawSurface3::EnumOverlayZOrders method enumerates the overlay
surfaces on the specified destination. The overlays can be enumerated in front-to-back
or back-to-front order.

HRESULT EnumOverlayZOrders(

in.doc – page 50

 DWORD dwFlags,
 LPVOID lpContext,
 LPDDENUMSURFACESCALLBACK lpfnCallback
);

Parameters

dwFlags
One of the following flags:

DDENUMOVERLAYZ_BACKTOFRONT

Enumerates overlays back to front.

DDENUMOVERLAYZ_FRONTTOBACK

Enumerates overlays front to back.

lpContext
Address of the user-defined context that will be passed to the callback function
for each overlay surface.

lpfnCallback
Address of the EnumSurfacesCallback callback function that will be called for
each surface being overlaid on this surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

IDirectDrawSurface3::Flip
The IDirectDrawSurface3::Flip method makes the surface memory associated with
the DDSCAPS_BACKBUFFER surface become associated with the front-buffer
surface.

HRESULT Flip(
 LPDIRECTDRAWSURFACE3 lpDDSurfaceTargetOverride,
 DWORD dwFlags
);

Parameters

lpDDSurfaceTargetOverride

in.doc – page 51

Address of another surface in the flipping chain that will be flipped to. The
specified surface must be a member of the flipping chain. The default for this
parameter is NULL, in which case DirectDraw cycles through the buffers in the
order they are attached to each other.

dwFlags
Flags specifying flip options.

DDFLIP_EVEN

 For use only when displaying video in an overlay surface. The new
surface contains data from the even field of a video signal. This flag
cannot be used with the DDFLIP_ODD flag.

DDFLIP_ODD

 For use only when displaying video in an overlay surface. The new
surface contains data from the odd field of a video signal. This flag
cannot be used with the DDFLIP_EVEN flag.

DDFLIP_WAIT

Typically, if the flip cannot be set up because the state of the display
hardware is not appropriate, the DDERR_WASSTILLDRAWING
error returns immediately and no flip occurs. Setting this flag causes
the method to continue trying to flip if it receives the
DDERR_WASSTILLDRAWING error from the HAL. The method
does not return until the flipping operation has been successfully set
up, or if another error, such as DDERR_SURFACEBUSY, is
returned.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOFLIPHW

DDERR_NOTFLIPPABLE

DDERR_SURFACEBUSY

DDERR_SURFACELOST

DDERR_UNSUPPORTED

DDERR_WASSTILLDRAWING

in.doc – page 52

Remarks

This method can be called only for a surface that has the DDSCAPS_FLIP and
DDSCAPS_FRONTBUFFER capabilities. The display memory previously associated
with the front buffer is associated with the back buffer.

The lpDDSurfaceTargetOverride parameter is used in rare cases when the back buffer
is not the buffer that should become the front buffer. Typically this parameter is
NULL.

The IDirectDrawSurface3::Flip method will always be synchronized with the
vertical blank. If the surface has been assigned to a video port, this method updates
the visible overlay surface and the video port's target surface.

For more information, see Flipping Surfaces.

See Also

IDirectDrawSurface3::GetFlipStatus

IDirectDrawSurface3::GetAttachedSurfac
e

The IDirectDrawSurface3::GetAttachedSurface method obtains the attached
surface that has the specified capabilities.

HRESULT GetAttachedSurface(
 LPDDSCAPS lpDDSCaps,
 LPDIRECTDRAWSURFACE3 FAR *lplpDDAttachedSurface
);

Parameters

lpDDSCaps
Address of a DDSCAPS structure that contains the hardware capabilities of the
surface.

lplpDDAttachedSurface
Address of a variable that will contain a pointer to the retrieved surface's
IDirectDrawSurface3 interface. The retrieved surface is the one that matches
the description according to the lpDDSCaps parameter.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

in.doc – page 53

DDERR_INVALIDPARAMS

DDERR_NOTFOUND

DDERR_SURFACELOST

Remarks

Attachments are used to connect multiple DirectDrawSurface objects into complex
structures, like the ones needed to support 3-D page flipping with z-buffers. This
method fails if more than one surface is attached that matches the capabilities
requested. In this case, the application must use the
IDirectDrawSurface3::EnumAttachedSurfaces method to obtain the attached
surfaces.

IDirectDrawSurface3::GetBltStatus
The IDirectDrawSurface3::GetBltStatus method obtains the blitter status.

HRESULT GetBltStatus(
 DWORD dwFlags
);

Parameters

dwFlags
One of the following flags:

DDGBS_CANBLT

Inquires whether a blit involving this surface can occur
immediately, and returns DD_OK if the blit can be completed.

DDGBS_ISBLTDONE

Inquires whether the blit is done, and returns DD_OK if the last blit
on this surface has completed.

Return Values

If the method succeeds, that means a blitter is present, the return value is DD_OK.

If the method fails, the return value is DDERR_WASSTILLDRAWING if the blitter
is busy, DDERR_NOBLTHW if there is no blitter, or one of the following error
values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOBLTHW

DDERR_SURFACEBUSY

DDERR_SURFACELOST

in.doc – page 54

DDERR_UNSUPPORTED

DDERR_WASSTILLDRAWING

IDirectDrawSurface3::GetCaps
The IDirectDrawSurface3::GetCaps method retrieves the capabilities of the
surface. These capabilities are not necessarily related to the capabilities of the display
device.

HRESULT GetCaps(
 LPDDSCAPS lpDDSCaps
);

Parameters

lpDDSCaps
Address of a DDSCAPS structure that will be filled with the hardware
capabilities of the surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

IDirectDrawSurface3::GetClipper
The IDirectDrawSurface3::GetClipper method retrieves the DirectDrawClipper
object associated with this surface.

HRESULT GetClipper(
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper
);

Parameters

lplpDDClipper
Address of a pointer to the DirectDrawClipper object associated with the surface.

Return Values

If the method succeeds, the return value is DD_OK.

in.doc – page 55

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOCLIPPERATTACHED

See Also

IDirectDrawSurface3::SetClipper

IDirectDrawSurface3::GetColorKey
The IDirectDrawSurface3::GetColorKey method retrieves the color key value for
the DirectDrawSurface object.

HRESULT GetColorKey(
 DWORD dwFlags,
 LPDDCOLORKEY lpDDColorKey
);

Parameters

dwFlags
Determines which color key is requested.

DDCKEY_DESTBLT

Set if the structure specifies a color key or color space to be used as a
destination color key for blit operations.

DDCKEY_DESTOVERLAY

Set if the structure specifies a color key or color space to be used as a
destination color key for overlay operations.

DDCKEY_SRCBLT

Set if the structure specifies a color key or color space to be used as a
source color key for blit operations.

DDCKEY_SRCOVERLAY

Set if the structure specifies a color key or color space to be used as a
source color key for overlay operations.

lpDDColorKey
Address of the DDCOLORKEY structure that will be filled with the current
values for the specified color key of the DirectDrawSurface object.

Return Values

If the method succeeds, the return value is DD_OK.

in.doc – page 56

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOCOLORKEY

DDERR_NOCOLORKEYHW

DDERR_SURFACELOST

DDERR_UNSUPPORTED

See Also

IDirectDrawSurface3::SetColorKey

IDirectDrawSurface3::GetDC
The IDirectDrawSurface3::GetDC method creates a GDI-compatible handle of a
device context for the surface.

HRESULT GetDC(
 HDC FAR *lphDC
);

Parameters

lphDC
Address for the returned handle to a device context.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_DCALREADYCREATED

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDSURFACETYPE

DDERR_SURFACELOST

DDERR_UNSUPPORTED

DDERR_WASSTILLDRAWING

in.doc – page 57

Remarks

This method uses an internal version of the IDirectDrawSurface3::Lock method to
lock the surface. The surface remains locked until the
IDirectDrawSurface3::ReleaseDC method is called.

See Also

IDirectDrawSurface3::Lock

IDirectDrawSurface3::GetDDInterface
The IDirectDrawSurface3::GetDDInterface method retrieves an interface to the
DirectDraw object that was used to create the surface.

HRESULT GetDDInterface(
 LPVOID FAR *lplpDD
);

Parameters

lplpDD
Address of a pointer that will be filled with a valid DirectDraw pointer if the call
succeeds.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

Remarks

This method was not implemented in the IDirectDraw interface.

IDirectDrawSurface3::GetFlipStatus
The IDirectDrawSurface3::GetFlipStatus method indicates whether the surface has
finished its flipping process.

HRESULT GetFlipStatus(
 DWORD dwFlags
);

in.doc – page 58

Parameters

dwFlags
One of the following flags:

DDGFS_CANFLIP

Inquires whether this surface can be flipped immediately and
returns DD_OK if the flip can be completed.

DDGFS_ISFLIPDONE

Inquires whether the flip has finished and returns DD_OK if the
last flip on this surface has completed.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value is DDERR_WASSTILLDRAWING if the surface
has not finished its flipping process, or one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDSURFACETYPE

DDERR_SURFACEBUSY

DDERR_SURFACELOST

DDERR_UNSUPPORTED

See Also

IDirectDrawSurface3::Flip

IDirectDrawSurface3::GetOverlayPositio
n

Given a visible, active overlay surface (DDSCAPS_OVERLAY flag set), the
IDirectDrawSurface3::GetOverlayPosition method returns the display coordinates
of the surface.

HRESULT GetOverlayPosition(
 LPLONG lplX,
 LPLONG lplY
);

Parameters

lplX and lplY
Addresses of the x- and y-display coordinates.

in.doc – page 59

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDPOSITION

DDERR_NOOVERLAYDEST

DDERR_NOTAOVERLAYSURFACE

DDERR_OVERLAYNOTVISIBLE

DDERR_SURFACELOST

See Also

IDirectDrawSurface3::SetOverlayPosition,
IDirectDrawSurface3::UpdateOverlay

IDirectDrawSurface3::GetPalette
The IDirectDrawSurface3::GetPalette method retrieves the DirectDrawPalette
structure associated with this surface and increments the reference count of the
returned palette.

HRESULT GetPalette(
 LPDIRECTDRAWPALETTE FAR *lplpDDPalette
);

Parameters

lplpDDPalette
Address of a pointer to a DirectDrawPalette structure associated with this
surface. This parameter will be set to NULL if no DirectDrawPalette structure is
associated with this surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDOBJECT

in.doc – page 60

DDERR_INVALIDPARAMS

DDERR_NOEXCLUSIVEMODE

DDERR_NOPALETTEATTACHED

DDERR_SURFACELOST

DDERR_UNSUPPORTED

See Also

IDirectDrawSurface3::SetPalette

IDirectDrawSurface3::GetPixelFormat
The IDirectDrawSurface3::GetPixelFormat method retrieves the color and pixel
format of the surface.

HRESULT GetPixelFormat(
 LPDDPIXELFORMAT lpDDPixelFormat
);

Parameters

lpDDPixelFormat
Address of the DDPIXELFORMAT structure that will be filled with a detailed
description of the current pixel and color space format of the surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDSURFACETYPE

IDirectDrawSurface3::GetSurfaceDesc
The IDirectDrawSurface3::GetSurfaceDesc method retrieves a
DDSURFACEDESC structure that describes the surface in its current condition.

HRESULT GetSurfaceDesc(
 LPDDSURFACEDESC lpDDSurfaceDesc
);

in.doc – page 61

Parameters

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be filled with the current
description of this surface.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

See Also

DDSURFACEDESC

IDirectDrawSurface3::Initialize
The IDirectDrawSurface3::Initialize method initializes a DirectDrawSurface object.

HRESULT Initialize(
 LPDIRECTDRAW lpDD,
 LPDDSURFACEDESC lpDDSurfaceDesc
);

Parameters

lpDD
Address of the DirectDraw structure that represents the DirectDraw object.

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be filled with the relevant
details about the surface.

Return Values

The method returns DDERR_ALREADYINITIALIZED.

Remarks

This method is provided for compliance with the Component Object Model (COM)
protocol. Because the DirectDrawSurface object is initialized when it is created, this
method always returns DDERR_ALREADYINITIALIZED.

in.doc – page 62

See Also

IUnknown::AddRef, IUnknown::QueryInterface, IUnknown::Release

IDirectDrawSurface3::IsLost
The IDirectDrawSurface3::IsLost method determines if the surface memory
associated with a DirectDrawSurface object has been freed.

HRESULT IsLost();

Return Values

If the method succeeds, the return value is DD_OK because the memory has not been
freed.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_SURFACELOST

You can use this method to reallocate surface memory. When a DirectDrawSurface
object loses its surface memory, most methods return DDERR_SURFACELOST and
perform no other action.

Remarks

Surfaces can lose their memory when the mode of the display card is changed, or
when an application receives exclusive access to the display card and frees all of the
surface memory currently allocated on the display card.

See Also

IDirectDrawSurface3::Restore

IDirectDrawSurface3::Lock
The IDirectDrawSurface3::Lock method obtains a pointer to the surface memory.

HRESULT Lock(
 LPRECT lpDestRect,
 LPDDSURFACEDESC lpDDSurfaceDesc,
 DWORD dwFlags,
 HANDLE hEvent
);

in.doc – page 63

Parameters

lpDestRect
Address of a RECT structure that identifies the region of surface that is being
locked. If NULL, the entire surface will be locked.

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that will be filled with the relevant
details about the surface.

dwFlags
DDLOCK_EVENT

This flag is not currently implemented.

DDLOCK_NOSYSLOCK

If possible, do not take the Win16Lock. This flag is ignored when
locking the primary surface.

DDLOCK_READONLY

Indicates that the surface being locked will only be read from.

DDLOCK_SURFACEMEMORYPTR

Indicates that a valid memory pointer to the top of the specified
rectangle should be returned. If no rectangle is specified, a pointer
to the top of the surface is returned. This is the default.

DDLOCK_WAIT

If a lock cannot be obtained because a blit operation is in progress,
the method retries until a lock is obtained or another error occurs,
such as DDERR_SURFACEBUSY.

DDLOCK_WRITEONLY

Indicates that the surface being locked will only be written to.

hEvent
This parameter is not used and must be set to NULL.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_OUTOFMEMORY

DDERR_SURFACEBUSY

DDERR_SURFACELOST

DDERR_WASSTILLDRAWING

in.doc – page 64

Remarks

For more information on using this method, see Accessing the Frame-Buffer Directly.

After retrieving a surface memory pointer, you can access the surface memory until a
corresponding IDirectDrawSurface3::Unlock method is called. When the surface is
unlocked, the pointer to the surface memory is invalid.

Do not call DirectDraw blit functions to blit from a locked region of a surface. If you
do, the blit returns either DDERR_SURFACEBUSY or
DDERR_LOCKEDSURFACES. Additionally, GDI blit functions will silently fail
when used on a locked video memory surface.

This method often causes DirectDraw to hold the Win16Lock until you call the
IDirectDrawSurface3::Unlock method. GUI debuggers cannot operate while the
Win16Lock is held.

See Also

IDirectDrawSurface3::Unlock, IDirectDrawSurface3::GetDC,
IDirectDrawSurface3::ReleaseDC

IDirectDrawSurface3::PageLock
The IDirectDrawSurface3::PageLock method prevents a system-memory surface
from being paged out while a blit operation using direct memory access (DMA)
transfers to or from system memory is in progress.

HRESULT PageLock(
 DWORD dwFlags
);

Parameters

dwFlags
This parameter is currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANTPAGELOCK

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_SURFACELOST

in.doc – page 65

Remarks

You must call this method to make use of DMA support. If you do not, the blit occurs
using software emulation. For more information, see Using DMA.

The performance of the operating system could be negatively affected if too much
memory is locked.

A lock count is maintained for each surface and is incremented each time
IDirectDrawSurface3::PageLock is called for that surface. The count is
decremented when IDirectDrawSurface3::PageUnlock is called. When the count
reaches 0, the memory is unlocked and can then be paged by the operating system.

This method works only on system-memory surfaces; it will not page lock a display-
memory surface or an emulated primary surface. If an application calls this method
on a display memory surface, the method will do nothing except return DD_OK.

This method was not implemented in the IDirectDraw interface.

See Also

IDirectDrawSurface3::PageUnlock

IDirectDrawSurface3::PageUnlock
The IDirectDrawSurface3::PageUnlock method unlocks a system-memory surface,
allowing it to be paged out.

HRESULT PageUnlock(
 DWORD dwFlags
);

Parameters

dwFlags
This parameter is currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_CANTPAGEUNLOCK

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOTPAGELOCKED

DDERR_SURFACELOST

in.doc – page 66

Remarks

A lock count is maintained for each surface and is incremented each time
IDirectDrawSurface3::PageLock is called for that surface. The count is
decremented when IDirectDrawSurface3::PageUnlock is called. When the count
reaches 0, the memory is unlocked and can then be paged by the operating system.

This method works only on system-memory surfaces; it will not page unlock a
display-memory surface or an emulated primary surface. If an application calls this
method on a display-memory surface, this method will do nothing except return
DD_OK.

This method was not implemented in the IDirectDraw interface.

See Also

IDirectDrawSurface3::PageLock

IDirectDrawSurface3::ReleaseDC
The IDirectDrawSurface3::ReleaseDC method releases the handle of a device
context previously obtained by using the IDirectDrawSurface3::GetDC method.

HRESULT ReleaseDC(
 HDC hDC
);

Parameters

hDC
Handle to a device context previously obtained by
IDirectDrawSurface3::GetDC.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_SURFACELOST

DDERR_UNSUPPORTED

in.doc – page 67

Remarks

This method also unlocks the surface previously locked when the
IDirectDrawSurface3::GetDC method was called.

See Also

IDirectDrawSurface3::GetDC

IDirectDrawSurface3::Restore
The IDirectDrawSurface3::Restore method restores a surface that has been lost.
This occurs when the surface memory associated with the DirectDrawSurface object
has been freed.

HRESULT Restore();

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_IMPLICITLYCREATED

DDERR_INCOMPATIBLEPRIMARY

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOEXCLUSIVEMODE

DDERR_OUTOFMEMORY

DDERR_UNSUPPORTED

DDERR_WRONGMODE

Remarks

This method restores the memory allocated for a surface, but not the contents of that
memory. The application is responsible for restoring the contents to reestablish any
lost images.

Surfaces can be lost because the mode of the display card was changed or because an
application received exclusive access to the display card and freed all of the surface
memory currently allocated on the card. When a DirectDrawSurface object loses its
surface memory, many methods will return DDERR_SURFACELOST and perform
no other function. The IDirectDrawSurface3::Restore method will reallocate
surface memory and reattach it to the DirectDrawSurface object.

A single call to this method will restore a DirectDrawSurface object's associated
implicit surfaces (back buffers, and so on). An attempt to restore an implicitly created

in.doc – page 68

surface will result in an error. IDirectDrawSurface3::Restore will not work across
explicit attachments created by using the
IDirectDrawSurface3::AddAttachedSurface method — each of these surfaces
must be restored individually.

See Also

IDirectDrawSurface3::IsLost, IDirectDrawSurface3::AddAttachedSurface

IDirectDrawSurface3::SetClipper
The IDirectDrawSurface3::SetClipper method attaches a DirectDrawClipper object
to a DirectDrawSurface object.

HRESULT SetClipper(
 LPDIRECTDRAWCLIPPER lpDDClipper
);

Parameters

lpDDClipper
Address of the DirectDrawClipper structure representing the DirectDrawClipper
object that will be attached to the DirectDrawSurface object. If this parameter is
NULL, the current DirectDrawClipper object will be detached.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDSURFACETYPE

DDERR_NOCLIPPERATTACHED

Remarks

This method is primarily used by surfaces that are being overlaid on or blitted to the
primary surface. However, it can be used on any surface. After a DirectDrawClipper
object has been attached and a clip list is associated with it, the DirectDrawClipper
object will be used for the IDirectDrawSurface3::Blt,
IDirectDrawSurface3::BltBatch, and IDirectDrawSurface3::UpdateOverlay
operations involving the parent DirectDrawSurface object. This method can also
detach a DirectDrawSurface object's current DirectDrawClipper object.

in.doc – page 69

If this method is called several times consecutively on the same surface for the same
DirectDrawClipper object, the reference count for the object is incremented only
once. Subsequent calls do not affect the object's reference count.

See Also

IDirectDrawSurface3::GetClipper

IDirectDrawSurface3::SetColorKey
The IDirectDrawSurface3::SetColorKey method sets the color key value for the
DirectDrawSurface object if the hardware supports color keys on a per surface basis.

HRESULT SetColorKey(
 DWORD dwFlags,
 LPDDCOLORKEY lpDDColorKey
);

Parameters

dwFlags
Determines which color key is requested.

DDCKEY_COLORSPACE

Set if the structure contains a color space. Not set if the structure
contains a single color key.

DDCKEY_DESTBLT

Set if the structure specifies a color key or color space to be used as
a destination color key for blit operations.

DDCKEY_DESTOVERLAY

Set if the structure specifies a color key or color space to be used as
a destination color key for overlay operations.

DDCKEY_SRCBLT

Set if the structure specifies a color key or color space to be used as
a source color key for blit operations.

DDCKEY_SRCOVERLAY

Set if the structure specifies a color key or color space to be used as
a source color key for overlay operations.

lpDDColorKey
Address of the DDCOLORKEY structure that contains the new color key values
for the DirectDrawSurface object.

in.doc – page 70

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDSURFACETYPE

DDERR_NOOVERLAYHW

DDERR_NOTAOVERLAYSURFACE

DDERR_SURFACELOST

DDERR_UNSUPPORTED

DDERR_WASSTILLDRAWING

Remarks

For transparent blits and overlays, you should set destination color on the destination
surface and source color on the source surface.

See Also

IDirectDrawSurface3::GetColorKey

IDirectDrawSurface3::SetOverlayPosition
The IDirectDrawSurface3::SetOverlayPosition method changes the display
coordinates of an overlay surface.

HRESULT SetOverlayPosition(
 LONG lX,
 LONG lY
);

Parameters

lX and lY
New x- and y-display coordinates.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

in.doc – page 71

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDPOSITION

DDERR_NOOVERLAYDEST

DDERR_NOTAOVERLAYSURFACE

DDERR_OVERLAYNOTVISIBLE

DDERR_SURFACELOST

DDERR_UNSUPPORTED

See Also

IDirectDrawSurface3::GetOverlayPosition,
IDirectDrawSurface3::UpdateOverlay

IDirectDrawSurface3::SetPalette
The IDirectDrawSurface3::SetPalette method attaches the specified
DirectDrawPalette object to a surface. The surface uses this palette for all subsequent
operations. The palette change takes place immediately, without regard to refresh
timing.

HRESULT SetPalette(
 LPDIRECTDRAWPALETTE lpDDPalette
);

Parameters

lpDDPalette
Address of the DirectDrawPalette structure that this surface should use for future
operations.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDPIXELFORMAT

DDERR_INVALIDSURFACETYPE

DDERR_NOEXCLUSIVEMODE

in.doc – page 72

DDERR_NOPALETTEATTACHED

DDERR_NOPALETTEHW

DDERR_NOT8BITCOLOR

DDERR_SURFACELOST

DDERR_UNSUPPORTED

Remarks

If this method is called several times consecutively on the same surface for the same
palette, the reference count for the palette is incremented only once. Subsequent calls
do not affect the palette's reference count.

See Also

IDirectDrawSurface3::GetPalette, IDirectDraw2::CreatePalette

IDirectDrawSurface3::SetSurfaceDesc
The IDirectDrawSurface3::SetSurfaceDesc method sets the characteristics of an
existing surface. This method is new with the IDirectDrawSurface3 interface.

HRESULT IDirectDrawSurface3::SetSurfaceDesc(
 LPDDSURFACEDESC lpddsd,
 DWORD dwFlags
);

Parameters

lpddsd
Address of a DDSURFACEDESC structure that contains the new surface
characteristics.

dwFlags
This parameter is currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDPARAMS

DDERR_INVALIDOBJECT

DDERR_SURFACELOST

DDERR_SURFACEBUSY

DDERR_INVALIDSURFACETYPE

in.doc – page 73

DDERR_INVALIDPIXELFORMAT

DDERR_INVALIDCAPS

DDERR_UNSUPPORTED

DDERR_GENERIC

Remarks

Currently, this method can only be used to set the surface data and pixel format used
by an explicit system memory surface. This is useful as it allows a surface to use data
from a previously allocated buffer without copying. The new surface memory is
allocated by the client application and, as such, the client application must also
deallocate it. For more information about how this method is used, see Updating
Surface Characteristics.

Using this method incorrectly will cause unpredictable behavior. The
DirectDrawSurface object will not deallocate surface memory that it didn’t allocate.
Therefore, when the surface memory is no longer needed, it is your responsibility to
deallocate it. However, when this method is called, DirectDraw frees the original
surface memory that it implicitly allocated when creating the surface.

IDirectDrawSurface3::Unlock
The IDirectDrawSurface3::Unlock method notifies DirectDraw that the direct
surface manipulations are complete.

HRESULT Unlock(
 LPVOID lpSurfaceData
);

Parameters

lpSurfaceData
Address of the surface to be unlocked, as retrieved by the
IDirectDrawSurface3::Lock method. This parameter can be NULL only if the
entire surface was locked by passing NULL in the lpDestRect parameter of the
corresponding call to the IDirectDrawSurface3::Lock method.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_GENERIC

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

in.doc – page 74

DDERR_INVALIDRECT

DDERR_NOTLOCKED

DDERR_SURFACELOST

Remarks

Because it is possible to call IDirectDrawSurface3::Lock multiple times for the
same surface with different destination rectangles, the pointer in lpSurfaceData links
the calls to the IDirectDrawSurface3::Lock and IDirectDrawSurface3::Unlock
methods.

See Also

IDirectDrawSurface3::Lock

IDirectDrawSurface3::UpdateOverlay
The IDirectDrawSurface3::UpdateOverlay method repositions or modifies the
visual attributes of an overlay surface. These surfaces must have the
DDSCAPS_OVERLAY value set.

HRESULT UpdateOverlay(
 LPRECT lpSrcRect,
 LPDIRECTDRAWSURFACE3 lpDDDestSurface,
 LPRECT lpDestRect,
 DWORD dwFlags,
 LPDDOVERLAYFX lpDDOverlayFx
);

Parameters

lpSrcRect
Address of a RECT structure that defines the x, y, width, and height of the
region on the source surface being used as the overlay. This parameter can be
NULL when hiding an overlay or to indicate that the entire overlay surface is to
be used and that the overlay surface conforms to any boundary and size
alignment restrictions imposed by the device driver.

lpDDDestSurface
Address of the DirectDraw surface that is being overlaid.

lpDestRect
Address of a RECT structure that defines the x, y, width, and height of the
region on the destination surface that the overlay should be moved to. This
parameter can be NULL when hiding the overlay.

dwFlags
DDOVER_ADDDIRTYRECT

in.doc – page 75

Adds a dirty rectangle to an emulated overlaid surface.

DDOVER_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel
surface attached to the destination surface as the alpha channel for
this overlay.

DDOVER_ALPHADESTCONSTOVERRIDE

Uses the dwAlphaDestConst member of the DDOVERLAYFX
structure as the destination alpha channel for this overlay.

DDOVER_ALPHADESTNEG

Indicates that the destination surface becomes more transparent as the
alpha value increases (0 is opaque).

DDOVER_ALPHADESTSURFACEOVERRIDE

Uses the lpDDSAlphaDest member of the DDOVERLAYFX
structure as the alpha channel destination for this overlay.

DDOVER_ALPHAEDGEBLEND

Uses the dwAlphaEdgeBlend member of the DDOVERLAYFX
structure as the alpha channel for the edges of the image that border
the color key colors.

DDOVER_ALPHASRC

Uses either the alpha information in pixel format or the alpha channel
surface attached to the source surface as the source alpha channel for
this overlay.

DDOVER_ALPHASRCCONSTOVERRIDE

Uses the dwAlphaSrcConst member of the DDOVERLAYFX
structure as the source alpha channel for this overlay.

DDOVER_ALPHASRCNEG

Indicates that the source surface becomes more transparent as the
alpha value increases (0 is opaque).

DDOVER_ALPHASRCSURFACEOVERRIDE

Uses the lpDDSAlphaSrc member of the DDOVERLAYFX
structure as the alpha channel source for this overlay.

DDOVER_AUTOFLIP

Automatically flip to the next surface in the flip chain each time a
video port VSYNC occurs.

DDOVER_BOB

Display each field individually of the interlaced video stream without
causing any artifacts.

DDOVER_DDFX

Uses the overlay FX flags in the lpDDOverlayFx parameter to define
special overlay effects.

DDOVER_HIDE

in.doc – page 76

Turns this overlay off.

DDOVER_KEYDEST

Uses the color key associated with the destination surface.

DDOVER_KEYDESTOVERRIDE

Uses the dckDestColorkey member of the DDOVERLAYFX
structure as the color key for the destination surface.

DDOVER_KEYSRC

Uses the color key associated with the source surface.

DDOVER_KEYSRCOVERRIDE

Uses the dckSrcColorkey member of the DDOVERLAYFX
structure as the color key for the source surface.

DDOVER_OVERRIDEBOBWEAVE

Indicates that bob/weave decisions should not be overridden by other
interfaces.

DDOVER_INTERLEAVED

Indicates that the surface memory is composed of interleaved fields.

DDOVER_SHOW

Turns this overlay on.

lpDDOverlayFx
Address of a DDOVERLAYFX structure that describes the effects to be used.
This parameter can be NULL if the DDOVER_DDFX flag is not specified.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_DEVICEDOESNTOWNSURFACE

DDERR_GENERIC

DDERR_HEIGHTALIGN

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDRECT

DDERR_INVALIDSURFACETYPE

DDERR_NOSTRETCHHW

DDERR_NOTAOVERLAYSURFACE

DDERR_OUTOFCAPS

DDERR_SURFACELOST

DDERR_UNSUPPORTED

in.doc – page 77

DDERR_XALIGN

IDirectDrawSurface3::UpdateOverlayDisp
lay

The IDirectDrawSurface3::UpdateOverlayDisplay method repaints the rectangles
in the dirty rectangle list of all active overlays. This clears the dirty rectangle list. This
method is for software emulation only—it does nothing if the hardware supports
overlays.

HRESULT UpdateOverlayDisplay(
 DWORD dwFlags
);

Parameters

dwFlags
Type of update to perform. One of the following flags:

DDOVER_REFRESHDIRTYRECTS

Updates the overlay display using the list of dirty rectangles
previously constructed for this destination. This clears the dirty
rectangle list.

DDOVER_REFRESHALL

Ignores the dirty rectangle list and updates the overlay display
completely. This clears the dirty rectangle list.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDSURFACETYPE

DDERR_UNSUPPORTED

Remarks

This method is not currently implemented.

See Also

IDirectDrawSurface3::AddOverlayDirtyRect

in.doc – page 78

IDirectDrawSurface3::UpdateOverlayZOr
der

The IDirectDrawSurface3::UpdateOverlayZOrder method sets the z-order of an
overlay.

HRESULT UpdateOverlayZOrder(
 DWORD dwFlags,
 LPDIRECTDRAWSURFACE3 lpDDSReference
);

Parameters

dwFlags
One of the following flags:

DDOVERZ_INSERTINBACKOF

Inserts this overlay in the overlay chain behind the reference
overlay.

DDOVERZ_INSERTINFRONTOF

Inserts this overlay in the overlay chain in front of the reference
overlay.

DDOVERZ_MOVEBACKWARD

Moves this overlay one position backward in the overlay chain.

DDOVERZ_MOVEFORWARD

Moves this overlay one position forward in the overlay chain.

DDOVERZ_SENDTOBACK

Moves this overlay to the back of the overlay chain.

DDOVERZ_SENDTOFRONT

Moves this overlay to the front of the overlay chain.

lpDDSReference
Address of the DirectDraw surface to be used as a relative position in the overlay
chain. This parameter is needed only for DDOVERZ_INSERTINBACKOF and
DDOVERZ_INSERTINFRONTOF.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_NOTAOVERLAYSURFACE

in.doc – page 79

See Also

IDirectDrawSurface3::EnumOverlayZOrders

IDirectDrawVideoPort
Applications use the methods of the IDirectDrawVideoPort interface to channel live
video data from a hardware video port to a DirectDraw surface. This section is a
reference to the methods of this interface. For a conceptual overview, see Video-
Ports.

The methods of the IDirectDrawVideoPort interface can be organized into the
following groups:

Color controls GetColorControls

SetColorControls

Fields and Signals GetFieldPolarity

GetVideoSignalStatus

Flipping Flip

SetTargetSurface

Formats GetInputFormats

GetOutputFormats

Timing and Synchronization GetVideoLine

WaitForSync

Video control StartVideo

StopVideo

UpdateVideo

Zoom factors GetBandwidthInfo

The IDirectDrawVideoPort interface, like all COM interfaces, inherits the
IUnknown interface methods. The IUnknown interface supports the following three
methods:

AddRef

in.doc – page 80

QueryInterface

Release

You can use the LPDIRECTDRAWVIDEOPORT data type to declare a variable that
contains a pointer to an IDirectDrawVideoPort interface. The Dvp.h header file
declares the LPDIRECTDRAWVIDEOPORT with the following code:

typedef struct IDirectDrawVideoPort FAR *LPDIRECTDRAWVIDEOPORT;

IDirectDrawVideoPort::Flip
The IDirectDrawVideoPort::Flip method instructs the DirectDrawVideoPort object
to write the next frame of video to a new surface.

HRESULT Flip(
 LPDIRECTDRAWSURFACE lpDDSurface,
 DWORD dwFlags
);

Parameters

lpDDSurface
Address of the DirectDrawSurface object that will receive the next frame of
video.

dwFlags
Flip options flags. This parameter can be one of the following values.

DDVPFLIP_VIDEO

The specified surface is to receive the normal video data.

DDVPFLIP_VBI

The specified surface is to receive only the data within the vertical
blanking interval.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

Remarks

This method can be used to prevent tearing. Calls to IDirectDrawVideoPort::Flip
are asynchronous—the actual flip operation will always be synchronized with the
vertical blank of the video signal.

in.doc – page 81

IDirectDrawVideoPort::GetBandwidthInfo
The IDirectDrawVideoPort::GetBandwidthInfo method retrieves the minimum
required overlay zoom factors and device limitations of a video port that uses the
provided output pixel format.

HRESULT GetBandwidthInfo(
 LPDDPIXELFORMAT lpddpfFormat,
 DWORD dwWidth,
 DWORD dwHeight,
 DWORD dwFlags,
 LPDDVIDEOPORTBANDWIDTH lpBandwidth
);

Parameters

lpddpfFormat
Address of a DDPIXELFORMAT structure that describes the output pixel
format for which bandwidth information will be retrieved.

dwWidth and dwHeight
Dimensions of an overlay or video data. These interpretation of these parameters
depends on the value specified in the dwFlags parameter.

dwFlags
Flags indicating how the method is to interpret the dwWidth and dwHeight
parameters. This parameter can be one of the following values.

DDVPB_OVERLAY

The dwWidth and dwHeight parameters indicate the size of the
source overlay surface. Use this flag when the video port is
dependent on the overlay source size.

DDVPB_TYPE

The dwWidth and dwHeight parameters are not set. The method
will retrieve the device’s dependency type in the dwCaps member
of the associated DDVIDEOPORTBANDWIDTH structure. Use
this flag when you call this method the first time.

DDVPB_VIDEOPORT

The dwWidth and dwHeight parameters indicate the prescale size
of the of the video data that the video port writes to the frame
buffer. Use this flag when the video port is dependent on the
overlay zoom factor.

lpBandwidth
Address of a DDVIDEOPORTBANDWIDTH structure that will be filled with
the retrieved bandwidth and device dependency information.

in.doc – page 82

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

Remarks

This method will usually be called twice. When you make the first call, specify the
DDVPB_TYPE flag in the dwFlags parameter to retrieve information about device’s
overlay dependency type. Subsequent calls using the DDVPB_VIDEOPORT or
DDVPB_OVERLAY flags must be interpreted considering the device’s dependency
type.

IDirectDrawVideoPort::GetColorControls
The IDirectDrawVideoPort::GetColorControls method returns the current color
control settings associated with the video port.

HRESULT GetColorControls(
 LPDDCOLORCONTROL lpColorControl
);

Parameters

lpColorControl
Address of a DDCOLORCONTROL structure that will be filled with the
current settings of the video port’s color control.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

Remarks

The dwFlags member of the DDCOLORCONTROL structure indicate which of the
color control options are supported.

in.doc – page 83

IDirectDrawVideoPort::GetInputFormats
The IDirectDrawVideoPort::GetInputFormat method retrieves the input formats
supported by the DirectDrawVideoPort object.

HRESULT GetInputFormats(
 LPDWORD lpNumFormats,
 LPDDPIXELFORMAT lpFormats,
 DWORD dwFlags
);

Parameters

lpNumFormats
Address of a variable containing the number of entries that the array at lpFromats
can hold. If this number is less than the total number of codes, the method fills
the array with as many codes as will fit, sets the value at lpNumFormats to
indicate the total number of codes, and returns DDERR_MOREDATA.

lpFormats
Address of an array of DDPIXELFORMAT structures that will be filled in with
the input formats supported by this DirectDrawVideoPort object. If this
parameter is NULL, the method sets lpNumFormats to the number of supported
formats and the returns DD_OK.

dwFlags
Flags specifying the part of the video signal for which formats will be
enumerated. This parameter can be one of the following values.

DDVPFORMAT_VIDEO

Returns formats for the video data.

DDVPFORMAT_VBI

Returns formats for the VBI data.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_MOREDATA

in.doc – page 84

Remarks

This method can also be used to return the number of formats supported. To do this,
set the lpFormats parameter to NULL. When the method returns, the variable at
lpNumFormats contains the total number of supported input formats.

IDirectDrawVideoPort::GetOutputFormat
s

The IDirectDrawVideoPort::GetOutputFormats method retrieves a list of output
formats that the DirectDrawVideoPort object supports for a specified input format.

HRESULT GetOutputFormats(
 LPDDPIXELFORMAT lpInputFormat,
 LPDWORD lpNumFormats,
 LPDDPIXELFORMAT lpFormats,
 DWORD dwFlags
);

Parameters

lpInputFormat
Address of a DDPIXELFORMAT structure that describes the input format for
which conversion information is requested.

lpNumFormats
Address of a variable containing the number of entries that the array at lpFromats
can hold. If this number is less than the total number of codes, the method fills
the array with as many codes as will fit, sets the value at lpNumFormats to
indicate the total number of codes, and returns DDERR_MOREDATA.

lpFormats
Address of an array of DDPIXELFORMAT structures that will be filled in with
the output formats supported by this DirectDrawVideoPort object. If this
parameter is NULL, the method sets lpNumFormats to the number of supported
formats and the returns DD_OK.

dwFlags
Flags specifying the part of the video signal for which formats will be
enumerated. This parameter can be one of the following values.

DDVPFORMAT_VIDEO

Returns formats for the video data.

DDVPFORMAT_VBI

Returns formats for the VBI data.

in.doc – page 85

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_MOREDATA

IDirectDrawVideoPort::GetFieldPolarity
The IDirectDrawVideoPort::GetFieldPolarity method retrieves the status of the
video field.

HRESULT GetVideoField(
 LPBOOL lpbVideoField
);

Parameters

lpbVideoField
Address of a variable that will be set to indicate the current field polarity. This
value is set to true if the current video field is the even field of an interlaced
video signal and false otherwise.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

DDERR_VIDEONOTACTIVE

IDirectDrawVideoPort::GetVideoLine
The IDirectDrawVideoPort::GetVideoLine method retrieves the current line of
video being written to the frame buffer.

HRESULT GetVideoLine(
 LPDWORD lpdwLine
);

in.doc – page 86

Parameters

lpdwLine
Address of a variable that will be filled with a value indicating the video line
currently being written to the frame buffer.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

DDERR_VERTICALBLANKINPROGRESS

DDERR_VIDEONOTACTIVE

Remarks

The value this method retrieves reflects the true video line being written, relative to
the field height, before any prescaling occurs.

IDirectDrawVideoPort::GetVideoSignalSt
atus

The IDirectDrawVideoPort::GetVideoSignalStatus method retrieves the status of
the video signal currently being presented to the video port.

HRESULT GetVideoSignalStatus(
 LPDWORD lpdwStatus
);

Parameters

lpdwStatus
Address of a variable that will contain a return code indicating the quality of the
video signal at the video port. The value will be set to one of the following codes.

DDVPSQ_NOSIGNAL

No video signal is present at the video port.

DDVPSQ_SIGNALOK

A valid video signal is present at the video port.

in.doc – page 87

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

IDirectDrawVideoPort::SetColorControls
The IDirectDrawVideoPort::SetColorControls method sets the color control
settings associated with the video port.

HRESULT SetColorControls(
 LPDDCOLORCONTROL lpColorControl
);

Parameters

lpColorControl
Address of a DDCOLORCONTROL structure containing the new color control
settings that will be applied to the video port.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

IDirectDrawVideoPort::SetTargetSurface
The IDirectDrawVideoPort::SetTargetSurface method sets the DirectDraw surface
object that will receive the stream of live video data and/or the vertical blank interval
data.

HRESULT SetTargetSurface(
 LPDIRECTDRAWSURFACE lpDDSurface,
 DWORD dwFlags
);

in.doc – page 88

Parameters

lpDDSurface
Address of the DirectDrawSurface object that will receive the video data.

dwFlags
Value specifying the type of target surface.

DDVPTARGET_VIDEO The specified surface should receive the
normal video data and vertical interval data
unless a separate surface was attached for this
purpose.

DDVPTARGET_VBI The specified surface should receive the data
within the vertical blanking interval.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

See Also

IDirectDrawVideoPort::StartVideo, IDirectDrawVideoPort::StopVideo,
IDirectDrawVideoPort::UpdateVideo

IDirectDrawVideoPort::StartVideo
The IDirectDrawVideoPort::StartVideo method enables the hardware video port
and starts the flow of video data into the currently specified surface.

HRESULT StartVideo(
 LPDDVIDEOPORTINFO lpVideoInfo
);

Parameters

lpVideoInfo
Address of a pointer to a DDVIDEOPORTINFO structure.

Return Values

If the method succeeds, the return value is DD_OK.

in.doc – page 89

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_SURFACELOST

See Also

IDirectDrawVideoPort::SetTargetSurface, IDirectDrawVideoPort::StopVideo,
IDirectDrawVideoPort::UpdateVideo

IDirectDrawVideoPort::StopVideo
The IDirectDrawVideoPort::StopVideo method stops the flow of video port data
into the frame buffer.

HRESULT StopVideo();

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value is DDERR_INVALIDOBJECT.

See Also

IDirectDrawVideoPort::SetTargetSurface, IIDirectDrawVideoPort::StartVideo,
IDirectDrawVideoPort::UpdateVideo

IDirectDrawVideoPort::UpdateVideo
The IDirectDrawVideoPort::UpdateVideo method updates parameters that govern
the flow of video data from the video-port to the DirectDrawSurface object.

HRESULT UpdateVideo(
 LPDDVIDEOPORTINFO lpVideoInfo
);

Parameters

lpVideoInfo
Address of a DDVIDEOPORTINFO structure that describes the video transfer
parameters.

Return Values

If the method succeeds, the return value is DD_OK.

in.doc – page 90

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

See Also

IDirectDrawVideoPort::SetTargetSurface, IDirectDrawVideoPort::StartVideo,
IDirectDrawVideoPort::StopVideo

IDirectDrawVideoPort::WaitForSync
The IDirectDrawVideoPort::WaitForSync method waits for VSYNC or until a
given scan line is being drawn.

HRESULT WaitForSync(
 DWORD dwFlags,
 DWORD dwLine,
 DWORD dwTimeout
);

Parameters

dwFlags
Flag specifying how the method will wait for the video VSYNC or the specified
line number.

DDVPWAIT_BEGINVBLANK Return at the start of the vertical blanking
interval.

DDVPWAIT_ENDVBLANK Return at the end of the vertical blanking
interval .

DDVPWAIT_LINE Return when the video counter either reaches
or passes the line specified by the dwLine
parameter.

dwLine
The video line determining when the method should return, relative to the field
height, before prescaling. This parameter is ignored if the dwFlags parameter is
set to DDVPWAIT_BEGINVBLANK or DDVPWAIT_ENDVBLANK.

dwTimeout
Amount of time, in milliseconds, that the method will wait for the next video
vertical blank before timing out. If this parameter is 0, the method waits 3 times
the value specified in the dwMicrosecondsPerField member of the
DDVIDEOPORTDESC.

in.doc – page 91

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following error values:

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_UNSUPPORTED

DDERR_VIDEONOTACTIVE

DDERR_WASSTILLDRAWING

Remarks

This method helps the caller synchronize with the video vertical blank interval or with
an arbitrary line of video data. The method blocks the calling thread until either the
video VSYNC occurs or when the video line counter matches the specified line
number.

Functions
This section contains information about the following DirectDraw global functions:

· DirectDrawCreate

· DirectDrawCreateClipper

· DirectDrawEnumerate

DirectDrawCreate
The DirectDrawCreate function creates an instance of a DirectDraw object.

HRESULT DirectDrawCreate(
 GUID FAR *lpGUID,
 LPDIRECTDRAW FAR *lplpDD,
 IUnknown FAR *pUnkOuter
);

Parameters

lpGUID
Address of the globally unique identifier (GUID) that represents the driver to be
created. This can be NULL to indicate the active display driver, or you can pass
one of the following flags to restrict the active display driver's behavior for
debugging purposes:

DDCREATE_EMULATIONONLY

in.doc – page 92

The DirectDraw object will use emulation for all features; it will not take
advantage of any hardware supported features.

DDCREATE_HARDWAREONLY

The DirectDraw object will never emulate features not supported by the
hardware. Attempts to call methods that require unsupported features will
fail, returning DDERR_UNSUPPORTED.

lplpDD
Address of a pointer that will be initialized with a valid DirectDraw pointer if the
call succeeds.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, DirectDrawCreate returns an error if this parameter is anything but
NULL.

Return Values

If the function succeeds, the return value is DD_OK.

If the function fails, the return value may be one of the following error values:

DDERR_DIRECTDRAWALREADYCREATED

DDERR_GENERIC

DDERR_INVALIDDIRECTDRAWGUID

DDERR_INVALIDPARAMS

DDERR_NODIRECTDRAWHW

DDERR_OUTOFMEMORY

Remarks

This function attempts to initialize a DirectDraw object, and it then sets a pointer to
the object if the call is successful.

On systems with multiple monitors, specifying NULL for lpGUID causes the
DirectDraw object to run in emulation mode when the normal cooperative level is set.
To make use of hardware acceleration on these systems, you must specify the
device’s GUID. For more information, see Working with Multiple Monitors.

DirectDrawCreateClipper
The DirectDrawCreateClipper function creates an instance of a DirectDrawClipper
object not associated with a DirectDraw object.

HRESULT DirectDrawCreateClipper(
 DWORD dwFlags,
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,

in.doc – page 93

 IUnknown FAR *pUnkOuter
);

Parameters

dwFlags
This parameter is currently not used and must be set to 0.

lplpDDClipper
Address of a pointer that will be filled with the address of the new
DirectDrawClipper object.

pUnkOuter
Allows for future compatibility with COM aggregation features. Presently,
however, DirectDrawCreateClipper returns an error if this parameter is
anything but NULL.

Return Values

If the function succeeds, the return value is DD_OK.

If the function fails, the return value may be one of the following error values:

DDERR_INVALIDPARAMS

DDERR_OUTOFMEMORY

Remarks

This function can be called before any DirectDraw objects are created. Because these
DirectDrawClipper objects are not owned by any DirectDraw object, they are not
automatically released when an application's objects are released. If the application
does not explicitly release the DirectDrawClipper objects, DirectDraw will release
them when the application terminates.

To create a DirectDrawClipper object owned by a specific DirectDraw object, use the
IDirectDraw2::CreateClipper method.

See Also

IDirectDraw2::CreateClipper

DirectDrawEnumerate
The DirectDrawEnumerate function enumerates the DirectDraw objects installed on
the system. The NULL GUID entry always identifies the primary display device
shared with GDI.

HRESULT DirectDrawEnumerate(
 LPDDENUMCALLBACK lpCallback,

in.doc – page 94

 LPVOID lpContext
);

Parameters

lpCallback
Address of a DDEnumCallback function that will be called with a description of
each DirectDraw-enabled HAL installed in the system.

lpContext
Address of an application-defined context that will be passed to the enumeration
callback function each time it is called.

Return Values

If the function succeeds, the return value is DD_OK.

If the function fails, the return value is DDERR_INVALIDPARAMS.

Remarks

On systems with multiple monitors, this method enumerates multiple display devices.
For more information, see Working with Multiple Monitors.

Callback Functions
This section contains information about the following callback functions used with
DirectDraw:

· DDEnumCallback

· EnumModesCallback

· EnumSurfacesCallback

· EnumVideoCallback

DDEnumCallback
The DDEnumCallback is an application-defined callback function for the
DirectDrawEnumerate function.

BOOL WINAPI DDEnumCallback(
 GUID FAR *lpGUID,
 LPSTR lpDriverDescription,
 LPSTR lpDriverName,
 LPVOID lpContext
);

in.doc – page 95

Parameters

lpGUID
Address of the unique identifier of the DirectDraw object.

lpDriverDescription
Address of a string containing the driver description.

lpDriverName
Address of a string containing the driver name.

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

Return Values

The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks

You can use the LPDDENUMCALLBACK data type to declare a variable that can
contain a pointer to this callback function.

EnumModesCallback
The EnumModesCallback is an application-defined callback function for the
IDirectDraw2::EnumDisplayModes method.

HRESULT WINAPI EnumModesCallback(
 LPDDSURFACEDESC lpDDSurfaceDesc,
 LPVOID lpContext
);

Parameters

lpDDSurfaceDesc
Address of the DDSURFACEDESC structure that provides the monitor
frequency and the mode that can be created. This data is read-only.

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

Return Values

The callback function returns DDENUMRET_OK to continue the enumeration.

in.doc – page 96

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks

You can use the LPDDENUMMODESCALLBACK data type to declare a variable
that can contain a pointer to this callback function.

EnumSurfacesCallback
The EnumSurfacesCallback is an application-defined callback function for the
IDirectDrawSurface3::EnumAttachedSurfaces and
IDirectDrawSurface3::EnumOverlayZOrders methods.

HRESULT WINAPI EnumSurfacesCallback(
 LPDIRECTDRAWSURFACE lpDDSurface,
 LPDDSURFACEDESC lpDDSurfaceDesc,
 LPVOID lpContext
);

Parameters

lpDDSurface
Address of the surface attached to this surface.

lpDDSurfaceDesc
Address of a DDSURFACEDESC structure that describes the attached surface.

lpContext
Address of an application-defined structure that will be passed to the callback
function each time the function is called.

Return Values

The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks

You can use the LPDDENUMSURFACESCALLBACK data type to declare a
variable that can contain a pointer to this callback function.

EnumVideoCallback
The EnumVideoCallback is an application-defined callback procedure for the
IDDVideoPortContainer::EnumVideoPorts method.

HRESULT WINAPI EnumVideoCallback(

in.doc – page 97

 LPDDVIDEOPORTCAPS lpDDVideoPortCaps,
 LPVOID lpContext
);

Parameters

lpDDVideoPortCaps
Pointer to the DDVIDEOPORTCAPS structure that contains the video port
information, including the ID and capabilities. This data is read-only.

lpContext
Pointer to a caller-defined structure that is passed to the member every time it is
called.

Return Values

The callback function returns DDENUMRET_OK to continue the enumeration.

The callback function returns DDENUMRET_CANCEL to stop it.

Remarks

Video-port related functions cannot be called from inside the EnumVideoCallback
function. Attempts to do so will fail, returning DDERR_CURRENTLYNOTAVAIL.

You can use the LPDDENUMVIDEOCALLBACK data type to declare a variable
that can contain a pointer to this callback function.

Structures
This section contains information about the following structures used with
DirectDraw:

· DDBLTBATCH

· DDBLTFX

· DDCAPS

· DDCOLORCONTROL

· DDCOLORKEY

· DDOVERLAYFX

· DDPIXELFORMAT

· DDSCAPS

· DDSURFACEDESC

· DDVIDEOPORTBANDWIDTH

· DDVIDEOPORTCAPS

· DDVIDEOPORTCONNECT

in.doc – page 98

· DDVIDEOPORTDESC

· DDVIDEOPORTINFO

· DDVIDEOPORTSTATUS

DDBLTBATCH
The DDBLTBATCH structure passes blit operations to the
IDirectDrawSurface3::BltBatch method.

typedef struct _DDBLTBATCH{

 LPRECT lprDest;

 LPDIRECTDRAWSURFACE lpDDSSrc;

 LPRECT lprSrc;

 DWORD dwFlags;

 LPDDBLTFX lpDDBltFx;

} DDBLTBATCH,FAR *LPDDBLTBATCH;

Members

lprDest
Address of a RECT structure that defines the destination for the blit.

lpDDSSrc
Address of a DirectDrawSurface object that will be the source of the blit.

lprSrc
Address of a RECT structure that defines the source rectangle of the blit.

dwFlags
Optional control flags.

DDBLT_ALPHADEST

Uses either the alpha information in pixel format or the alpha channel
surface attached to the destination surface as the alpha channel for this
blit.

DDBLT_ALPHADESTCONSTOVERRIDE

Uses the dwAlphaDestConst member of the DDBLTFX structure as the
alpha channel for the destination surface for this blit.

DDBLT_ALPHADESTNEG

Indicates that the destination surface becomes more transparent as the
alpha value increases (0 is opaque).

DDBLT_ALPHADESTSURFACEOVERRIDE

Uses the lpDDSAlphaDest member of the DDBLTFX structure as the
alpha channel for the destination surface for this blit.

DDBLT_ALPHAEDGEBLEND

Uses the dwAlphaEdgeBlend member of the DDBLTFX structure as

in.doc – page 99

the alpha channel for the edges of the image that border the color key
colors.

DDBLT_ALPHASRC

Uses either the alpha information in pixel format or the alpha channel
surface attached to the source surface as the alpha channel for this blit.

DDBLT_ALPHASRCCONSTOVERRIDE

Uses the dwAlphaSrcConst member of the DDBLTFX structure as the
source alpha channel for this blit.

DDBLT_ALPHASRCNEG

Indicates that the source surface becomes more transparent as the alpha
value increases (0 is opaque).

DDBLT_ALPHASRCSURFACEOVERRIDE

Uses the lpDDSAlphaSrc member of the DDBLTFX structure as the
alpha channel source for this blit.

DDBLT_ASYNC

Processes this blit asynchronously through the FIFO hardware in the
order received. If there is no room in the FIFO hardware, the call fails.

DDBLT_COLORFILL

Uses the dwFillColor member of the DDBLTFX structure as the RGB
color that fills the destination rectangle on the destination surface.

DDBLT_DDFX

Uses the dwDDFX member of the DDBLTFX structure to specify the
effects to be used for this blit.

DDBLT_DDROPS

Uses the dwDDROPS member of the DDBLTFX structure to specify the
raster operations (ROPs) that are not part of the Win32 API.

DDBLT_KEYDEST

Uses the color key associated with the destination surface.

DDBLT_KEYDESTOVERRIDE

Uses the dckDestColorkey member of the DDBLTFX structure as the
color key for the destination surface.

DDBLT_KEYSRC

Uses the color key associated with the source surface.

DDBLT_KEYSRCOVERRIDE

Uses the dckSrcColorkey member of the DDBLTFX structure as the
color key for the source surface.

DDBLT_ROP

Uses the dwROP member of the DDBLTFX structure for the ROP for
this blit. The ROPs are the same as those defined in the Win32 API.

DDBLT_ROTATIONANGLE

in.doc – page 100

Uses the dwRotationAngle member of the DDBLTFX structure as the
rotation angle (specified in 1/100th of a degree) for the surface.

DDBLT_ZBUFFER

Performs a z-buffered blit using the z-buffers attached to the source and
destination surfaces and the dwZBufferOpCode member of the
DDBLTFX structure as the z-buffer opcode.

DDBLT_ZBUFFERDESTCONSTOVERRIDE

Performs a z-buffered blit using the dwZDestConst and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERDESTOVERRIDE

Performs a z-buffered blit using the lpDDSZBufferDest and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the destination.

DDBLT_ZBUFFERSRCCONSTOVERRIDE

Performs a z-buffered blit using the dwZSrcConst and
dwZBufferOpCode members of the DDBLTFX structure as the z-buffer
and z-buffer opcode, respectively, for the source.

DDBLT_ZBUFFERSRCOVERRIDE

A z-buffered blit using the lpDDSZBufferSrc and dwZBufferOpCode
members of the DDBLTFX structure as the z-buffer and z-buffer
opcode, respectively, for the source.

lpDDBltFx
Address of a DDBLTFX structure specifying additional blit effects.

DDBLTFX
The DDBLTFX structure passes raster operations, effects, and override information
to the IDirectDrawSurface3::Blt method. This structure is also part of the
DDBLTBATCH structure used with the IDirectDrawSurface3::BltBatch method.

typedef struct _DDBLTFX{

 DWORD dwSize;

 DWORD dwDDFX;

 DWORD dwROP;

 DWORD dwDDROP;

 DWORD dwRotationAngle;

 DWORD dwZBufferOpCode;

 DWORD dwZBufferLow;

 DWORD dwZBufferHigh;

 DWORD dwZBufferBaseDest;

 DWORD dwZDestConstBitDepth;

union

in.doc – page 101

{

 DWORD dwZDestConst;

 LPDIRECTDRAWSURFACE lpDDSZBufferDest;

};

 DWORD dwZSrcConstBitDepth;

union

{

 DWORD dwZSrcConst;

 LPDIRECTDRAWSURFACE lpDDSZBufferSrc;

};

 DWORD dwAlphaEdgeBlendBitDepth;

 DWORD dwAlphaEdgeBlend;

 DWORD dwReserved;

 DWORD dwAlphaDestConstBitDepth;

union

{

 DWORD dwAlphaDestConst;

 LPDIRECTDRAWSURFACE lpDDSAlphaDest;

};

 DWORD dwAlphaSrcConstBitDepth;

union

{

 DWORD dwAlphaSrcConst;

 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;

};

union

{

 DWORD dwFillColor;

 DWORD dwFillDepth;

 DWORD dwFillPixel;

 LPDIRECTDRAWSURFACE lpDDSPattern;

};

DDCOLORKEY ddckDestColorkey;

DDCOLORKEY ddckSrcColorkey;

} DDBLTFX,FAR* LPDDBLTFX;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the
structure is used.

dwDDFX
Type of FX operations.

DDBLTFX_ARITHSTRETCHY

in.doc – page 102

Uses arithmetic stretching along the y-axis for this blit.

DDBLTFX_MIRRORLEFTRIGHT

Turns the surface on its y-axis. This blit mirrors the surface from left to
right.

DDBLTFX_MIRRORUPDOWN

Turns the surface on its x-axis. This blit mirrors the surface from top to
bottom.

DDBLTFX_NOTEARING

Schedules this blit to avoid tearing.

DDBLTFX_ROTATE180

Rotates the surface 180 degrees clockwise during this blit.

DDBLTFX_ROTATE270

Rotates the surface 270 degrees clockwise during this blit.

DDBLTFX_ROTATE90

Rotates the surface 90 degrees clockwise during this blit.

DDBLTFX_ZBUFFERBASEDEST

Adds the dwZBufferBaseDest member to each of the source z-values
before comparing them with the destination z-values during this z-blit.

DDBLTFX_ZBUFFERRANGE

Uses the dwZBufferLow and dwZBufferHigh members as range values
to specify limits to the bits copied from a source surface during this z-
blit.

dwROP
Win32 raster operations. You can retrieve a list of supported raster operations by
calling the IDirectDraw2::GetCaps method.

dwDDROP
DirectDraw raster operations.

dwRotationAngle
Rotation angle for the blit.

dwZBufferOpCode
Z-buffer compares.

dwZBufferLow
Low limit of a z-buffer.

dwZBufferHigh
High limit of a z-buffer.

dwZBufferBaseDest
Destination base value of a z-buffer.

dwZDestConstBitDepth
Bit depth of the destination z-constant.

dwZDestConst

in.doc – page 103

Constant used as the z-buffer destination.

lpDDSZBufferDest
Surface used as the z-buffer destination.

dwZSrcConstBitDepth
Bit depth of the source z-constant.

dwZSrcConst
Constant used as the z-buffer source.

lpDDSZBufferSrc
Surface used as the z-buffer source.

dwAlphaEdgeBlendBitDepth
Bit depth of the constant for an alpha edge blend.

dwAlphaEdgeBlend
Alpha constant used for edge blending.

dwReserved
Reserved for future use.

dwAlphaDestConstBitDepth
Bit depth of the destination alpha constant.

dwAlphaDestConst
Constant used as the alpha channel destination.

lpDDSAlphaDest
Surface used as the alpha channel destination.

dwAlphaSrcConstBitDepth
Bit depth of the source alpha constant.

dwAlphaSrcConst
Constant used as the alpha channel source.

lpDDSAlphaSrc
Surface used as the alpha channel source.

dwFillColor
Color used to fill a surface when DDBLT_COLORFILL is specified. This value
must be a pixel appropriate to the pixel format of the destination surface. For a
palettized surface it would be a palette index, and for a 16-bit RGB surface it
would be a 16-bit pixel value.

dwFillDepth
Depth value for the z-buffer.

dwFillPixel
Pixel value for RGBA or RGBZ fills. Applications that use RGBZ fills should
use this member, not dwFillColor or dwFillDepth.

lpDDSPattern
Surface to use as a pattern. The pattern can be used in certain blit operations that
combine a source and a destination.

ddckDestColorkey
Destination color key override.

ddckSrcColorkey

in.doc – page 104

Source color key override.

DDCAPS
The DDCAPS structure represents the capabilities of the hardware exposed through
the DirectDraw object. This structure contains a DDSCAPS structure used in this
context to describe what kinds of DirectDrawSurface objects can be created. It may
not be possible to simultaneously create all of the surfaces described by these
capabilities. This structure is used with the IDirectDraw2::GetCaps method.

typedef struct _DDCAPS {

 DWORD dwSize;

 DWORD dwCaps; // driver-specific caps

 DWORD dwCaps2; // more driver-specific caps

 DWORD dwCKeyCaps; // color key caps

 DWORD dwFXCaps; // stretching and effects caps

 DWORD dwFXAlphaCaps; // alpha caps

 DWORD dwPalCaps; // palette caps

 DWORD dwSVCaps; // stereo vision caps

 DWORD dwAlphaBltConstBitDepths; // alpha bit-depth members

 DWORD dwAlphaBltPixelBitDepths; // .

 DWORD dwAlphaBltSurfaceBitDepths; // .

 DWORD dwAlphaOverlayConstBitDepths; // .

 DWORD dwAlphaOverlayPixelBitDepths; // .

 DWORD dwAlphaOverlaySurfaceBitDepths; // .

 DWORD dwZBufferBitDepths; // Z-buffer bit depth

 DWORD dwVidMemTotal; // total video memory

 DWORD dwVidMemFree; // total free video memory

 DWORD dwMaxVisibleOverlays; // maximum visible overlays

 DWORD dwCurrVisibleOverlays; // overlays currently visible

 DWORD dwNumFourCCCodes; // number of supported FOURCC codes

 DWORD dwAlignBoundarySrc; // overlay alignment restrictions

 DWORD dwAlignSizeSrc; // .

 DWORD dwAlignBoundaryDest; // .

 DWORD dwAlignSizeDest; // .

 DWORD dwAlignStrideAlign; // stride alignment

 DWORD dwRops[DD_ROP_SPACE]; // supported raster ops

 DDSCAPS ddsCaps; // general surface caps

 DWORD dwMinOverlayStretch; // overlay stretch factors

 DWORD dwMaxOverlayStretch; // .

 DWORD dwMinLiveVideoStretch; // obsolete

 DWORD dwMaxLiveVideoStretch; // .

 DWORD dwMinHwCodecStretch; // .

 DWORD dwMaxHwCodecStretch; // .

 DWORD dwReserved1; // reserved

 DWORD dwReserved2; // .

in.doc – page 105

 DWORD dwReserved3; // .

 DWORD dwSVBCaps; // system-to-video blit related caps

 DWORD dwSVBCKeyCaps; // .

 DWORD dwSVBFXCaps; // .

 DWORD dwSVBRops[DD_ROP_SPACE]; // .

 DWORD dwSVBCaps; // video-to-system blit related caps

 DWORD dwVSBCKeyCaps; // .

 DWORD dwVSBFXCaps; // .

 DWORD dwVSBRops[DD_ROP_SPACE]; // .

 DWORD dwSSBCaps; // system-to-system blit related caps

 DWORD dwSSBCKeyCaps; // .

 DWORD dwSSBCFXCaps; // .

 DWORD dwSSBRops[DD_ROP_SPACE]; // .

 DWORD dwMaxVideoPorts; // maximum number of live video ports

 DWORD dwCurrVideoPorts; // current number of live video ports

 DWORD dwSVBCaps2; // additional system-to-video blit caps

 DWORD dwNLVBCaps; // nonlocal-to-local video memory blit caps

 DWORD dwNLVBCaps2; // .

 DWORD dwNLVBCKeyCaps; // .

 DWORD dwNLVBFXCaps; // .

 DWORD dwNLVBRops[DD_ROP_SPACE];// .

 DWORD dwReserved4; // reserved

 DWORD dwReserved5; // .

 DWORD dwReserved6; // .

} DDCAPS,FAR* LPDDCAPS;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the
structure is used.

dwCaps
Driver-specific capabilities.

DDCAPS_3D

Indicates that the display hardware has 3-D acceleration.

DDCAPS_ALIGNBOUNDARYDEST

Indicates that DirectDraw will support only those overlay destination
rectangles with the x-axis aligned to the dwAlignBoundaryDest
boundaries of the surface.

DDCAPS_ALIGNBOUNDARYSRC

Indicates that DirectDraw will support only those source rectangles with
the x-axis aligned to the dwAlignBoundarySrc boundaries of the
surface.

DDCAPS_ALIGNSIZEDEST

in.doc – page 106

Indicates that DirectDraw will support only those overlay destination
rectangles whose x-axis sizes, in pixels, are dwAlignSizeDest multiples.

DDCAPS_ALIGNSIZESRC

Indicates that DirectDraw will support only those overlay source
rectangles whose x-axis sizes, in pixels, are dwAlignSizeSrc multiples.

DDCAPS_ALIGNSTRIDE

Indicates that DirectDraw will create display memory surfaces that have
a stride alignment equal to the dwAlignStrideAlign value.

DDCAPS_ALPHA

Indicates that the display hardware supports an alpha channel during blit
operations.

DDCAPS_BANKSWITCHED

Indicates that the display hardware is bank-switched and is potentially
very slow at random access to display memory.

DDCAPS_BLT

Indicates that display hardware is capable of blit operations.

DDCAPS_BLTCOLORFILL

Indicates that display hardware is capable of color filling with a blitter.

DDCAPS_BLTDEPTHFILL

Indicates that display hardware is capable of depth filling z-buffers with a
blitter.

DDCAPS_BLTFOURCC

Indicates that display hardware is capable of color-space conversions
during blit operations.

DDCAPS_BLTQUEUE

Indicates that display hardware is capable of asynchronous blit
operations.

DDCAPS_BLTSTRETCH

Indicates that display hardware is capable of stretching during blit
operations.

DDCAPS_CANBLTSYSMEM

Indicates that display hardware is capable of blitting to or from system
memory.

DDCAPS_CANCLIP

Indicates that display hardware is capable of clipping with blitting.

DDCAPS_CANCLIPSTRETCHED

Indicates that display hardware is capable of clipping while stretch
blitting.

DDCAPS_COLORKEY

Supports some form of color key in either overlay or blit operations.

in.doc – page 107

More specific color key capability information can be found in the
dwCKeyCaps member.

DDCAPS_COLORKEYHWASSIST

Indicates that the color key is partially hardware assisted. This means that
other resources (CPU and/or video memory) might be used. If this bit is
not set, full hardware support is in place.

DDCAPS_GDI

Indicates that display hardware is shared with GDI.

DDCAPS_NOHARDWARE

Indicates that there is no hardware support.

DDCAPS_OVERLAY

Indicates that display hardware supports overlays.

DDCAPS_OVERLAYCANTCLIP

Indicates that display hardware supports overlays but cannot clip them.

DDCAPS_OVERLAYFOURCC

Indicates that overlay hardware is capable of color-space conversions
during overlay operations.

DDCAPS_OVERLAYSTRETCH

Indicates that overlay hardware is capable of stretching. The
dwMinOverlayStretch and dwMaxOverlayStretch members contain
valid data.

DDCAPS_PALETTE

Indicates that DirectDraw is capable of creating and supporting
DirectDrawPalette objects for more surfaces than only the primary
surface.

DDCAPS_PALETTEVSYNC

Indicates that DirectDraw is capable of updating a palette synchronized
with the vertical refresh.

DDCAPS_READSCANLINE

Indicates that display hardware is capable of returning the current scan
line.

DDCAPS_STEREOVIEW

Indicates that display hardware has stereo vision capabilities.

DDCAPS_VBI

Indicates that display hardware is capable of generating a vertical-blank
interrupt.

DDCAPS_ZBLTS

Supports the use of z-buffers with blit operations.

DDCAPS_ZOVERLAYS

Supports the use of the IDirectDrawSurface3::UpdateOverlayZOrder

in.doc – page 108

method as a z-value for overlays to control their layering.

dwCaps2
More driver-specific capabilities.

DDCAPS2_AUTOFLIPOVERLAY

The overlay can be automatically flipped to the next surface in the flip
chain each time a video port VSYNC occurs, allowing the video port and
the overlay to double buffer the video without CPU overhead. This
option is only valid when the surface is receiving data from a video port.
If the video port data is non-interlaced or non-interleaved, it will flip on
every VSYNC. If the data is being interleaved in memory, it will flip on
every other VSYNC.

DDCAPS2_CANBOBINTERLEAVED

The overlay hardware can display each field individually of an interlaced
video stream while it is interleaved in memory without causing any
artifacts that might normally occur without special hardware support.
This option is only valid when the surface is receiving data from a video
port and is only valid when the video is zoomed at least 2X in the vertical
direction.

DDCAPS2_CANBOBNONINTERLEAVED

The overlay hardware can display each field individually of an interlaced
video stream while it is not interleaved in memory without causing any
artifacts that might normally occur without special hardware support.
This option is only valid when the surface is receiving data from a video
port and is only valid when the video is zoomed at least 2X in the vertical
direction.

DDCAPS2_CANDROPZ16BIT

Sixteen-bit RGBZ values can be converted into sixteen-bit RGB values.
(The system does not support eight-bit conversions.)

DDCAPS2_CANFLIPODDEVEN

The driver is capable of performing odd and even flip operations, as
specified by the DDFLIP_ODD and DDFLIP_EVEN flags used with the
IDirectDrawSurface3::Flip method.

DDCAPS2_CANSMOOTHINTERLEAVED

Overlay can display each field of interlaced data individually while it is
interleaved in memory without causing jittery artifacts.

DDCAPS2_CANSMOOTHNONINTERLEAVED

Overlay can display each field of interlaced data individually while it is
not interleaved in memory without causing jittery artifacts.

DDCAPS2_CERTIFIED

Indicates that display hardware is certified.

DDCAPS2_COLORCONTROLPRIMARY

The primary surface contains color controls (gamma, etc.)

in.doc – page 109

DDCAPS2_COLORCONTROLOVERLAY

The overlay surface contains color controls (brightness, sharpness, etc.)

DDCAPS2_NO2DDURING3DSCENE

Indicates that 2-D operations such as IDirectDrawSurface3::Blt and
IDirectDrawSurface3::Lock cannot be performed on any surfaces that
Direct3D® is using between calls to the IDirect3DDevice2::BeginScene
and IDirect3DDevice2::EndScene methods.

DDCAPS2_NONLOCALVIDMEM

Indicates that the display driver supports surfaces in non-local video
memory.

DDCAPS2_NONLOCALVIDMEMCAPS

Indicates that blit capabilities for non-local video memory surfaces differ
from local video memory surfaces. If this flag is present, the
DDCAPS2_NONLOCALVIDMEM flag will also be present.

DDCAPS2_NOPAGELOCKREQUIRED

DMA blit operations are supported on system memory surfaces that are
not page locked.

DDCAPS2_VIDEOPORT

Indicates that display hardware supports live video.

DDCAPS2_WIDESURFACES

Indicates that the display surfaces supports surfaces wider than the
primary surface.

dwCKeyCaps
Color-key capabilities.

DDCKEYCAPS_DESTBLT

Supports transparent blitting with a color key that identifies the
replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE

Supports transparent blitting with a color space that identifies the
replaceable bits of the destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV

Supports transparent blitting with a color space that identifies the
replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTBLTYUV

Supports transparent blitting with a color key that identifies the
replaceable bits of the destination surface for YUV colors.

DDCKEYCAPS_DESTOVERLAY

Supports overlaying with color keying of the replaceable bits of the
destination surface being overlaid for RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACE

in.doc – page 110

Supports a color space as the color key for the destination of RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV

Supports a color space as the color key for the destination of YUV colors.

DDCKEYCAPS_DESTOVERLAYONEACTIVE

Supports only one active destination color key value for visible overlay
surfaces .

DDCKEYCAPS_DESTOVERLAYYUV

Supports overlaying using color keying of the replaceable bits of the
destination surface being overlaid for YUV colors.

DDCKEYCAPS_NOCOSTOVERLAY

Indicates there are no bandwidth trade-offs for using the color key with
an overlay.

DDCKEYCAPS_SRCBLT

Supports transparent blitting using the color key for the source with this
surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACE

Supports transparent blitting using a color space for the source with this
surface for RGB colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV

Supports transparent blitting using a color space for the source with this
surface for YUV colors.

DDCKEYCAPS_SRCBLTYUV

Supports transparent blitting using the color key for the source with this
surface for YUV colors.

DDCKEYCAPS_SRCOVERLAY

Supports overlaying using the color key for the source with this overlay
surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE

Supports overlaying using a color space as the source color key for the
overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV

Supports overlaying using a color space as the source color key for the
overlay surface for YUV colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE

Supports only one active source color key value for visible overlay
surfaces.

DDCKEYCAPS_SRCOVERLAYYUV

Supports overlaying using the color key for the source with this overlay
surface for YUV colors.

dwFXCaps

in.doc – page 111

Driver-specific stretching and effects capabilities.

DDFXCAPS_BLTARITHSTRETCHY

Uses arithmetic operations, rather than pixel-doubling techniques, to
stretch and shrink surfaces during a blit operation. Occurs along the y-
axis (vertically).

DDFXCAPS_BLTARITHSTRETCHYN

Uses arithmetic operations, rather than pixel-doubling techniques, to
stretch and shrink surfaces during a blit operation. Occurs along the y-
axis (vertically), and works only for integer stretching (1, 2, and so
on).

DDFXCAPS_BLTMIRRORLEFTRIGHT

Supports mirroring left to right in a blit operation.

DDFXCAPS_BLTMIRRORUPDOWN

Supports mirroring top to bottom in a blit operation.

DDFXCAPS_BLTROTATION

Supports arbitrary rotation in a blit operation.

DDFXCAPS_BLTROTATION90

Supports 90-degree rotations in a blit operation.

DDFXCAPS_BLTSHRINKX

Supports arbitrary shrinking of a surface along the x-axis (horizontally).
This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKXN

Supports integer shrinking (1, 2, and so on) of a surface along the x-
axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKY

Supports arbitrary shrinking of a surface along the y-axis (vertically).
This flag is valid only for blit operations.

DDFXCAPS_BLTSHRINKYN

Supports integer shrinking (1, 2, and so on) of a surface along the y-
axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHX

Supports arbitrary stretching of a surface along the x-axis (horizontally).
This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHXN

Supports integer stretching (1, 2, and so on) of a surface along the x-
axis (horizontally). This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHY

Supports arbitrary stretching of a surface along the y-axis (vertically).
This flag is valid only for blit operations.

DDFXCAPS_BLTSTRETCHYN

in.doc – page 112

Supports integer stretching (1, 2, and so on) of a surface along the y-
axis (vertically). This flag is valid only for blit operations.

DDFXCAPS_OVERLAYARITHSTRETCHY

Uses arithmetic operations, rather than pixel-doubling techniques, to
stretch and shrink surfaces during an overlay operation. Occurs along the
y-axis (vertically).

DDFXCAPS_OVERLAYARITHSTRETCHYN

Uses arithmetic operations, rather than pixel-doubling techniques, to
stretch and shrink surfaces during an overlay operation. Occurs along the
y-axis (vertically), and works only for integer stretching (1, 2, and so
on).

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT

Supports mirroring of overlays around the vertical axis.

DDFXCAPS_OVERLAYMIRRORUPDOWN

Supports mirroring of overlays across the horizontal axis.

DDFXCAPS_OVERLAYSHRINKX

Supports arbitrary shrinking of a surface along the x-axis (horizontally).
This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag
indicates only the capabilities of a surface; it does not indicate that
shrinking is available.

DDFXCAPS_OVERLAYSHRINKXN

Supports integer shrinking (1, 2, and so on) of a surface along the x-
axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY
surfaces. This flag indicates only the capabilities of a surface; it does not
indicate that shrinking is available.

DDFXCAPS_OVERLAYSHRINKY

Supports arbitrary shrinking of a surface along the y-axis (vertically).
This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag
indicates only the capabilities of a surface; it does not indicate that
shrinking is available.

DDFXCAPS_OVERLAYSHRINKYN

Supports integer shrinking (1, 2, and so on) of a surface along the y-
axis (vertically). This flag is valid only for DDSCAPS_OVERLAY
surfaces. This flag indicates only the capabilities of a surface; it does not
indicate that shrinking is available.

DDFXCAPS_OVERLAYSTRETCHX

Supports arbitrary stretching of a surface along the x-axis (horizontally).
This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag
indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYSTRETCHXN

Supports integer stretching (1, 2, and so on) of a surface along the x-

in.doc – page 113

axis (horizontally). This flag is valid only for DDSCAPS_OVERLAY
surfaces. This flag indicates only the capabilities of a surface; it does not
indicate that stretching is available.

DDFXCAPS_OVERLAYSTRETCHY

Supports arbitrary stretching of a surface along the y-axis (vertically).
This flag is valid only for DDSCAPS_OVERLAY surfaces. This flag
indicates only the capabilities of a surface; it does not indicate that
stretching is available.

DDFXCAPS_OVERLAYSTRETCHYN

Supports integer stretching (1, 2, and so on) of a surface along the y-
axis (vertically). This flag is valid only for DDSCAPS_OVERLAY
surfaces. This flag indicates only the capabilities of a surface; it does not
indicate that stretching is available.

dwFXAlphaCaps
Driver-specific alpha capabilities.

DDFXALPHACAPS_BLTALPHAEDGEBLEND

Supports alpha blending around the edge of a source color-keyed surface.
Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELS

Supports alpha information in pixel format. The bit depth of alpha
information in the pixel format can be 1, 2, 4, or 8. The alpha value
becomes more opaque as the alpha value increases. Regardless of the
depth of the alpha information, 0 is always the fully transparent value.
Used for blit operations.

DDFXALPHACAPS_BLTALPHAPIXELSNEG

Supports alpha information in pixel format. The bit depth of alpha
information in the pixel format can be 1, 2, 4, or 8. The alpha value
becomes more transparent as the alpha value increases. Regardless of the
depth of the alpha information, 0 is always the fully opaque value. This
flag can be used only if DDCAPS_ALPHA is set. Used for blit
operations.

DDFXALPHACAPS_BLTALPHASURFACES

Supports alpha-only surfaces. The bit depth of an alpha-only surface can
be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value
increases. Regardless of the depth of the alpha information, 0 is always
the fully transparent value. Used for blit operations.

DDFXALPHACAPS_BLTALPHASURFACESNEG

Indicates that the alpha channel becomes more transparent as the alpha
value increases. The depth of the alpha channel data can be 1, 2, 4, or 8.
Regardless of the depth of the alpha information, 0 is always the fully
opaque value. This flag can be set only if DDCAPS_ALPHA has been
set. Used for blit operations.

DDFXALPHACAPS_OVERLAYALPHAEDGEBLEND

in.doc – page 114

Supports alpha blending around the edge of a source color-keyed surface.
Used for overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELS

Supports alpha information in pixel format. The bit depth of alpha
information in pixel format can be 1, 2, 4, or 8. The alpha value becomes
more opaque as the alpha value increases. Regardless of the depth of the
alpha information, 0 is always the fully transparent value. Used for
overlays.

DDFXALPHACAPS_OVERLAYALPHAPIXELSNEG

Supports alpha information in pixel format. The bit depth of alpha
information in pixel format can be 1, 2, 4, or 8. The alpha value becomes
more transparent as the alpha value increases. Regardless of the depth of
the alpha information, 0 is always the fully opaque value. This flag can
be used only if DDCAPS_ALPHA has been set. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACES

Supports alpha-only surfaces. The bit depth of an alpha-only surface can
be 1, 2, 4, or 8. The alpha value becomes more opaque as the alpha value
increases. Regardless of the depth of the alpha information, 0 is always
the fully transparent value. Used for overlays.

DDFXALPHACAPS_OVERLAYALPHASURFACESNEG

Indicates that the alpha channel becomes more transparent as the alpha
value increases. The depth of the alpha channel data can be 1, 2, 4, or 8.
Regardless of the depth of the alpha information, 0 is always the fully
opaque value. This flag can be used only if DDCAPS_ALPHA has been
set. Used for overlays.

dwPalCaps
Palette capabilities.

DDPCAPS_1BIT

Indicates that the index is 1 bit. There are two entries in the color table.

DDPCAPS_2BIT

Indicates that the index is 2 bits. There are four entries in the color table.

DDPCAPS_4BIT

Indicates that the index is 4 bits. There are 16 entries in the color table.

DDPCAPS_8BIT

Indicates that the index is 8 bits. There are 256 entries in the color table.

DDPCAPS_8BITENTRIES

Specifies an index to an 8-bit color index. This field is valid only when
used with the DDPCAPS_1BIT, DDPCAPS_2BIT, or DDPCAPS_4BIT
capability and when the target surface is in 8 bits per pixel (bpp). Each
color entry is 1 byte long and is an index to an 8-bpp palette on the

in.doc – page 115

destination surface.

DDPCAPS_ALLOW256

Indicates that this palette can have all 256 entries defined.

DDPCAPS_PRIMARYSURFACE

Indicates that the palette is attached to the primary surface. Changing the
palette has an immediate effect on the display unless the
DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_PRIMARYSURFACELEFT

Indicates that the palette is attached to the primary surface on the left.
Changing the palette has an immediate effect on the display unless the
DDPCAPS_VSYNC capability is specified and supported.

DDPCAPS_VSYNC

Indicates that the palette can be modified synchronously with the
monitor's refresh rate.

dwSVCaps
Stereo vision capabilities.

DDSVCAPS_ENIGMA

Indicates that the stereo view is accomplished using Enigma encoding.

DDSVCAPS_FLICKER

Indicates that the stereo view is accomplished using high-frequency
flickering.

DDSVCAPS_REDBLUE

Indicates that the stereo view is accomplished when the viewer looks at
the image through red and blue filters placed over the left and right eyes.
All images must adapt their color spaces for this process.

DDSVCAPS_SPLIT

Indicates that the stereo view is accomplished with split-screen
technology.

dwAlphaBltConstBitDepths
DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

dwAlphaBltPixelBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwAlphaBltSurfaceBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwAlphaOverlayConstBitDepths
DDBD_2, DDBD_4, or DDBD_8. (Indicates 2-, 4-, or 8-bits per pixel.)

dwAlphaOverlayPixelBitDepths

in.doc – page 116

DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwAlphaOverlaySurfaceBitDepths
DDBD_1, DDBD_2, DDBD_4, or DDBD_8. (Indicates 1-, 2-, 4-, or 8-bits per
pixel.)

dwZBufferBitDepths
DDBD_8, DDBD_16, or DDBD_24. (Indicates 8-, 16-, 24-bits per pixel.) 32-bit
z-buffers are not supported.

dwVidMemTotal
Total amount of display memory.

dwVidMemFree
Amount of free display memory.

dwMaxVisibleOverlays
Maximum number of visible overlays.

dwCurrVisibleOverlays
Current number of visible overlays.

dwNumFourCCCodes
Number of FourCC codes.

dwAlignBoundarySrc
Source rectangle alignment for an overlay surface, in pixels.

dwAlignSizeSrc
Source rectangle size alignment for an overlay surface, in pixels. Overlay source
rectangles must have a pixel width that is a multiple of this value.

dwAlignBoundaryDest
Destination rectangle alignment for an overlay surface, in pixels.

dwAlignSizeDest
Destination rectangle size alignment for an overlay surface, in pixels. Overlay
destination rectangles must have a pixel width that is a multiple of this value.

dwAlignStrideAlign
Stride alignment.

dwRops[DD_ROP_SPACE]
Raster operations supported.

ddsCaps
DDSCAPS structure with general capabilities.

dwMinOverlayStretch and dwMaxOverlayStretch
Minimum and maximum overlay stretch factors multiplied by 1000. For
example, 1.3 = 1300.

dwMinLiveVideoStretch and dwMaxLiveVideoStretch
These members are obsolete; do not use.

dwMinHwCodecStretch and dwMaxHwCodecStretch
These members are obsolete; do not use.

dwReserved1, dwReserved2, and dwReserved3
Reserved for future use.

in.doc – page 117

dwSVBCaps
Driver-specific capabilities for system-memory-to-display-memory blits. Valid
flags are identical to the blit-related flags used with the dwCaps member.

dwSVBCKeyCaps
Driver color-key capabilities for system-memory-to-display-memory blits. Valid
flags are identical to the blit-related flags used with for the dwCKeyCaps
member.

dwSVBFXCaps
Driver FX capabilities for system-memory-to-display-memory blits. Valid flags
are identical to the blit-related flags used with the dwFXCaps member.

dwSVBRops[DD_ROP_SPACE]
Raster operations supported for system-memory-to-display-memory blits.

dwVSBCaps
Driver-specific capabilities for display-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with the dwCaps member.

dwVSBCKeyCaps
Driver color-key capabilities for display-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with for the dwCKeyCaps
member.

dwVSBFXCaps
Driver FX capabilities for display-memory-to-system-memory blits. Valid flags
are identical to the blit-related flags used with the dwFXCaps member.

dwVSBRops[DD_ROP_SPACE]
Raster operations supported for display-memory-to-system-memory blits.

dwSSBCaps
Driver-specific capabilities for system-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with the dwCaps member.

dwSSBCKeyCaps
Driver color-key capabilities for system-memory-to-system-memory blits. Valid
flags are identical to the blit-related flags used with for the dwCKeyCaps
member.

dwSSBCFXCaps
Driver FX capabilities for system-memory-to-system-memory blits. Valid flags
are identical to the blit-related flags used with the dwFXCaps member.

dwSSBRops[DD_ROP_SPACE]
Raster operations supported for system-memory-to-system-memory blits.

dwMaxVideoPorts
Maximum number of live video ports.

dwCurrVideoPorts
Current number of live video ports.

dwSVBCaps2
More driver-specific capabilities for system-memory-to-video-memory blits.
Valid flags are identical to the blit-related flags used with the dwCaps2 member.

dwNLVBCaps

in.doc – page 118

Driver-specific capabilities for nonlocal-to-local video memory blits. Valid flags
are identical to the blit-related flags used with the dwCaps member.

dwNLVBCaps2
More driver-specific capabilities for nonlocal-to-local video memory blits. Valid
flags are identical to the blit-related flags used with the dwCaps2 member.

dwNLVBCKeyCaps
Driver color-key capabilities for nonlocal-to-local video memory blits. Valid
flags are identical to the blit-related flags used with for the dwCKeyCaps
member.

dwNLVBFXCaps
Driver FX capabilities for nonlocal-to-local video memory blits. Valid flags are
identical to the blit-related flags used with the dwFXCaps member.

dwNLVBRops[DD_ROP_SPACE]
Raster operations supported for nonlocal-to-local video memory blits.

dwReserved4, dwReserved5, and dwReserved6
Reserved for future use.

DDCOLORCONTROL
The DDCOLORCONTROL structure defines the color controls associated with a
DirectDrawVideoPortObject, an overlay surface, or a primary surface.

typedef struct _DDCOLORCONTROL {

 DWORD dwSize;

 DWORD dwFlags;

 LONG lBrightness;

 LONG lContrast;

 LONG lHue;

 LONG lSaturation;

 LONG lSharpness;

 LONG lGamma;

 LONG lColorEnable;

 DWORD dwReserved1;

} DDCOLORCONTROL, FAR *LPDDCOLORCONTROL;

Members

dwSize
The the size of the structure, in bytes. This member must be initialized before
use.

dwFlags
Flags specifying which structure members contain valid data . When the structure
is returned by the IDirectDrawColorControl::GetColorControls method, it
also indicates which options are supported by the device.

in.doc – page 119

DDCOLOR_BRIGHTNESS The iBrightness member contains valid data.

DDCOLOR_CONTRAST The iContrast member contains valid data.

DDCOLOR_COLORENABLE The lColorEnable member contains valid
data.

DDCOLOR_GAMMA The iGamma member contains valid data.

DDCOLOR_HUE The iHue member contains valid data.

DDCOLOR_SATURATION The iSaturation member contains valid data.

DDCOLOR_SHARPNESS The iSharpness member contains valid data.

lBrightness
Luminance intensity (Black Level) in IRE units*100. Range is 0 to 10,000. The
default is 750 (7.5 IRE)

lContrast
Relative difference between higher and lower intensity luminance values in IRE
units*100. The valid range is 0 to 20,000. The default value is 10,000 (100 IRE).
Higher values of contrast cause darker luminance values to tend towards black,
and cause lighter luminance values to tend towards white. Lower values of
contrast cause all luminance values to move towards the middle luminance
values.

lHue
Phase relationship of the chrominance components. Hue is specified in degrees
and the valid range is -180 to 180. The default is 0.

lSaturation
Color intensity in IRE units*100. The valid range is 0 to 20,000. The default
value is 10,000 (100 IRE).

lSharpness
Sharpness in arbitrary units. The valid range is 0 to 10. The default value is 5.

lGamma
Controls the amount of gamma correction applied to the luminance values. The
valid range is 1 to 500 gamma units, with a default of 1.

lColorEnable
Flag indicating whether color is used. If this member is zero, color is not used; if
it is 1, then color is used. The default value is 1.

dwReserved1
This member is reserved.

DDCOLORKEY
The DDCOLORKEY structure describes a source color key, destination color key,
or color space. A color key is specified if the low and high range values are the same.
This structure is used with the IDirectDrawSurface3::GetColorKey and
IDirectDrawSurface3::SetColorKey methods.

typedef struct _DDCOLORKEY{

in.doc – page 120

 DWORD dwColorSpaceLowValue;

 DWORD dwColorSpaceHighValue;

} DDCOLORKEY,FAR* LPDDCOLORKEY;

Members

dwColorSpaceLowValue
Low value, inclusive, of the color range that is to be used as the color key.

dwColorSpaceHighValue
High value, inclusive, of the color range that is to be used as the color key.

DDOVERLAYFX
The DDOVERLAYFX structure passes override information to the
IDirectDrawSurface3::UpdateOverlay method.

typedef struct _DDOVERLAYFX{

 DWORD dwSize;

 DWORD dwAlphaEdgeBlendBitDepth;

 DWORD dwAlphaEdgeBlend;

 DWORD dwReserved;

 DWORD dwAlphaDestConstBitDepth;

union

{

 DWORD dwAlphaDestConst;

 LPDIRECTDRAWSURFACE lpDDSAlphaDest;

};

 DWORD dwAlphaSrcConstBitDepth;

union

{

 DWORD dwAlphaSrcConst;

 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;

};

 DDCOLORKEY dckDestColorkey;

 DDCOLORKEY dckSrcColorkey;

 DWORD dwDDFX;

 DWORD dwFlags;

} DDOVERLAYFX,FAR *LPDDOVERLAYFX;

Members

dwSize
Size of the structure, in bytes. This members must be initialized before the
structure is used.

in.doc – page 121

dwAlphaEdgeBlendBitDepth
Bit depth used to specify the constant for an alpha edge blend.

dwAlphaEdgeBlend
Constant to use as the alpha for an edge blend.

dwReserved
Reserved for future use.

dwAlphaDestConstBitDepth
Bit depth used to specify the alpha constant for a destination.

dwAlphaDestConst
Constant to use as the alpha channel for a destination.

lpDDSAlphaDest
Address of a surface to use as the alpha channel for a destination.

dwAlphaSrcConstBitDepth
Bit depth used to specify the alpha constant for a source.

dwAlphaSrcConst
Constant to use as the alpha channel for a source.

lpDDSAlphaSrc
Address of a surface to use as the alpha channel for a source.

dckDestColorkey
Destination color key override.

dckSrcColorkey
Source color key override.

dwDDFX
Overlay FX flags.

DDOVERFX_ARITHSTRETCHY

If stretching, use arithmetic stretching along the y-axis for this overlay.

DDOVERFX_MIRRORLEFTRIGHT

Mirror the overlay around the vertical axis.

DDOVERFX_MIRRORUPDOWN

Mirror the overlay around the horizontal axis.

dwFlags
This member is currently not used and must be set to 0.

DDPIXELFORMAT
The DDPIXELFORMAT structure describes the pixel format of a
DirectDrawSurface object for the IDirectDrawSurface3::GetPixelFormat method.

typedef struct _DDPIXELFORMAT{

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwFourCC;

in.doc – page 122

 union

 {

 DWORD dwRGBBitCount;

 DWORD dwYUVBitCount;

 DWORD dwZBufferBitDepth;

 DWORD dwAlphaBitDepth;

 };

 union

 {

 DWORD dwRBitMask;

 DWORD dwYBitMask;

 };

 union

 {

 DWORD dwGBitMask;

 DWORD dwUBitMask;

 };

 union

 {

 DWORD dwBBitMask;

 DWORD dwVBitMask;

 };

 union

 {

 DWORD dwRGBAlphaBitMask;

 DWORD dwYUVAlphaBitMask;

 DWORD dwRGBZBitMask;

 DWORD dwYUVZBitMask;

 };

} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the
structure is used.

dwFlags
Optional control flags.

DDPF_ALPHA

The pixel format describes an alpha-only surface.

DDPF_ALPHAPIXELS

The surface has alpha channel information in the pixel format.

DDPF_COMPRESSED

The surface will accept pixel data in the specified format and compress it

in.doc – page 123

during the write operation.

DDPF_FOURCC

The dwFourCC member is valid and contains a FOURCC code
describing a non-RGB pixel format..

DDPF_PALETTEINDEXED1

DDPF_PALETTEINDEXED2

DDPF_PALETTEINDEXED4

DDPF_PALETTEINDEXED8

The surface is 1-, 2-, 4-, or 8-bit color indexed.

DDPF_PALETTEINDEXEDTO8

The surface is 1-, 2-, or 4-bit color indexed to an 8-bit palette.

DDPF_RGB

The RGB data in the pixel format structure is valid.

DDPF_RGBTOYUV

The surface will accept RGB data and translate it during the write
operation to YUV data. The format of the data to be written will be
contained in the pixel format structure. The DDPF_RGB flag will be set.

DDPF_YUV

The YUV data in the pixel format structure is valid.

DDPF_ZBUFFER

The pixel format describes a z-buffer-only surface.

DDPF_ZPIXELS

The surface is in RGBZ format.

dwFourCC
FourCC code. For more information see, Four Character Codes (FOURCC).

dwRGBBitCount
RGB bits per pixel (4, 8, 16, 24, or 32).

dwYUVBitCount
YUV bits per pixel (4, 8, 16, 24, or 32)

dwZBufferBitDepth
Z-buffer bit depth (8, 16, or 24). 32-bit z-buffers are not supported.

dwAlphaBitDepth
Alpha channel bit depth (1, 2, 4, or 8).

dwRBitMask
Mask for red bits.

dwYBitMask
Mask for y bits.

dwGBitMask
Mask for green bits.

dwUBitMask

in.doc – page 124

Mask for U bits.

dwBBitMask
Mask for blue bits.

dwVBitMask
Mask for V bits.

dwRGBAlphaBitMask and dwYUVAlphaBitMask
Masks for alpha channel.

dwRGBZBitMask and dwYUVZBitMask
Masks for z channel.

DDSCAPS
The DDSCAPS structure defines the capabilities of a DirectDrawSurface object. This
structure is part of the DDCAPS structure that is used to describe the capabilities of
the DirectDraw object.

typedef struct _DDSCAPS{

 DWORD dwCaps;

} DDSCAPS,FAR* LPDDSCAPS;

Members

dwCaps
Capabilities of the surface. One or more of the following flags:

DDSCAPS_3D

Unsupported. Use the DDSCAPS_3DDEVICE instead.

DDSCAPS_3DDEVICE

Indicates that this surface can be used for 3-D rendering. Applications
can use this flag to ensure that a device that can only render to a certain
heap has off-screen surfaces allocated from the correct heap. If this flag
is set for a heap, the surface is not allocated from that heap.

DDSCAPS_ALLOCONLOAD

Indicates that memory for the surface is not allocated until the surface is
loaded by using the IDirect3DTexture::Load method.

DDSCAPS_ALPHA

Indicates that this surface contains alpha-only information.

DDSCAPS_BACKBUFFER

Indicates that this surface is the back buffer of a surface flipping
structure. Typically, this capability is set by the
IDirectDraw2::CreateSurface method when the DDSCAPS_FLIP flag
is used. Only the surface that immediately precedes the
DDSCAPS_FRONTBUFFER surface has this capability set. The other
surfaces are identified as back buffers by the presence of the

in.doc – page 125

DDSCAPS_FLIP flag, their attachment order, and the absence of the
DDSCAPS_FRONTBUFFER and DDSCAPS_BACKBUFFER
capabilities. If this capability is sent to the
IDirectDraw2::CreateSurface method, a stand-alone back buffer is
being created. After this method is called, this surface could be attached
to a front buffer, another back buffer, or both to form a flipping surface
structure. For more information, see
IDirectDrawSurface3::AddAttachedSurface. DirectDraw supports an
arbitrary number of surfaces in a flipping structure.

DDSCAPS_COMPLEX

Indicates that a complex surface is being described. A complex surface
results in the creation of more than one surface. The additional surfaces
are attached to the root surface. The complex structure can be destroyed
only by destroying the root.

DDSCAPS_FLIP

Indicates that this surface is a part of a surface flipping structure. When
this capability is passed to the IDirectDraw2::CreateSurface method, a
front buffer and one or more back buffers are created. DirectDraw sets
the DDSCAPS_FRONTBUFFER bit on the front-buffer surface and the
DDSCAPS_BACKBUFFER bit on the surface adjacent to the front-
buffer surface. The dwBackBufferCount member of the
DDSURFACEDESC structure must be set to at least 1 in order for the
method call to succeed. The DDSCAPS_COMPLEX capability must
always be set when creating multiple surfaces by using the
IDirectDraw2::CreateSurface method.

DDSCAPS_FRONTBUFFER

Indicates that this surface is the front buffer of a surface flipping
structure. This flag is typically set by the IDirectDraw2::CreateSurface
method when the DDSCAPS_FLIP capability is set. If this capability is
sent to the IDirectDraw2::CreateSurface method, a stand-alone front
buffer is created. This surface will not have the DDSCAPS_FLIP
capability. It can be attached to other back buffers to form a flipping
structure by using IDirectDrawSurface3::AddAttachedSurface.

DDSCAPS_HWCODEC

Indicates that this surface should be able to have a stream decompressed
to it by the hardware.

DDSCAPS_LIVEVIDEO

Indicates that this surface should be able to receive live video.

DDSCAPS_LOCALVIDMEM

Indicates that this surface exists in true, local video memory rather than
non-local video memory. If this flag is specified then
DDSCAPS_VIDEOMEMORY must be specified as well. This flag
cannot be used with the DDSCAPS_NONLOCALVIDMEM flag.

DDSCAPS_MIPMAP

in.doc – page 126

Indicates that this surface is one level of a mipmap. This surface will be
attached to other DDSCAPS_MIPMAP surfaces to form the mipmap.
This can be done explicitly by creating a number of surfaces and
attaching them by using the
IDirectDrawSurface3::AddAttachedSurface method, or implicitly by
the IDirectDraw2::CreateSurface method. If this capability is set,
DDSCAPS_TEXTURE must also be set.

DDSCAPS_MODEX

Indicates that this surface is a 320200 or 320240 Mode X surface.

DDSCAPS_NONLOCALVIDMEM

Indicates that this surface exists in nonlocal video memory rather than
true, local video memory. If this flag is specified, then
DDSCAPS_VIDEOMEMORY flag must be specified as well. This
cannot be used with the DDSCAPS_LOCALVIDMEM flag.

DDSCAPS_OFFSCREENPLAIN

Indicates that this surface is any off-screen surface that is not an overlay,
texture, z-buffer, front-buffer, back-buffer, or alpha surface. It is used to
identify plain surfaces.

DDSCAPS_OPTIMIZED

Not currently implemented.

DDSCAPS_OVERLAY

Indicates that this surface is an overlay. It may or may not be directly
visible depending on whether it is currently being overlaid onto the
primary surface. DDSCAPS_VISIBLE can be used to determine if it is
being overlaid at the moment.

DDSCAPS_OWNDC

Indicates that this surface will have a device context (DC) association for
a long period.

DDSCAPS_PALETTE

Indicates that this device driver allows unique DirectDrawPalette objects
to be created and attached to this surface.

DDSCAPS_PRIMARYSURFACE

Indicates the surface is the primary surface. It represents what is visible
to the user at the moment.

DDSCAPS_PRIMARYSURFACELEFT

Indicates that this surface is the primary surface for the left eye. It
represents what is visible to the user's left eye at the moment. When this
surface is created, the surface with the
DDSCAPS_PRIMARYSURFACE capability represents what is seen by
the user's right eye.

DDSCAPS_STANDARDVGAMODE

Indicates that this surface is a standard VGA mode surface, and not a

in.doc – page 127

Mode X surface. This flag cannot be used in combination with the
DDSCAPS_MODEX flag.

DDSCAPS_SYSTEMMEMORY

Indicates that this surface memory was allocated in system memory.

DDSCAPS_TEXTURE

Indicates that this surface can be used as a 3-D texture. It does not
indicate whether the surface is being used for that purpose.

DDSCAPS_VIDEOMEMORY

Indicates that this surface exists in display memory.

DDSCAPS_VIDEOPORT

Indicates that this surface can receive data from a video port.

DDSCAPS_VISIBLE

Indicates that changes made to this surface are immediately visible. It is
always set for the primary surface, as well as for overlays while they are
being overlaid and texture maps while they are being textured.

DDSCAPS_WRITEONLY

Indicates that only write access is permitted to the surface. Read access
from the surface may generate a general protection (GP) fault, but the
read results from this surface will not be meaningful.

DDSCAPS_ZBUFFER

Indicates that this surface is the z-buffer. The z-buffer contains
information that cannot be displayed. Instead, it contains bit-depth
information that is used to determine which pixels are visible and which
are obscured.

DDSURFACEDESC
The DDSURFACEDESC structure contains a description of the surface to be
created. This structure is passed to the IDirectDraw2::CreateSurface method. The
relevant members differ for each potential type of surface.

typedef struct _DDSURFACEDESC {

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwHeight;

 DWORD dwWidth;

 union

 {

 LONG lPitch;

 DWORD dwLinearSize;

 };

 DWORD dwBackBufferCount;

 union

in.doc – page 128

 {

 DWORD dwMipMapCount;

 DWORD dwZBufferBitDepth;

 DWORD dwRefreshRate;

 };

 DWORD dwAlphaBitDepth;

 DWORD dwReserved;

 LPVOID lpSurface;

 DDCOLORKEY ddckCKDestOverlay;

 DDCOLORKEY ddckCKDestBlt;

 DDCOLORKEY ddckCKSrcOverlay;

 DDCOLORKEY ddckCKSrcBlt;

 DDPIXELFORMAT ddpfPixelFormat;

 DDSCAPS ddsCaps;

} DDSURFACEDESC;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before the
structure is used.

dwFlags
Optional control flags. One or more of the following flags:

DDSD_ALL

Indicates that all input members are valid.

DDSD_ALPHABITDEPTH

Indicates that the dwAlphaBitDepth member is valid.

DDSD_BACKBUFFERCOUNT

Indicates that the dwBackBufferCount member is valid.

DDSD_CAPS

Indicates that the ddsCaps member is valid.

DDSD_CKDESTBLT

Indicates that the ddckCKDestBlt member is valid.

DDSD_CKDESTOVERLAY

Indicates that the ddckCKDestOverlay member is valid.

DDSD_CKSRCBLT

Indicates that the ddckCKSrcBlt member is valid.

DDSD_CKSRCOVERLAY

Indicates that the ddckCKSrcOverlay member is valid.

DDSD_HEIGHT

Indicates that the dwHeight member is valid.

in.doc – page 129

DDSD_LINEARSIZE

Not used.

DDSD_LPSURFACE

Indicates that the lpSurface member is valid.

DDSD_MIPMAPCOUNT

Indicates that the dwMipMapCount member is valid.

DDSD_PITCH

Indicates that the lPitch member is valid.

DDSD_PIXELFORMAT

Indicates that the ddpfPixelFormat member is valid.

DDSD_REFRESHRATE

Indicates that the dwRefreshRate member is valid.

DDSD_WIDTH

Indicates that the dwWidth member is valid.

DDSD_ZBUFFERBITDEPTH

Indicates that the dwZBufferBitDepth member is valid.

dwHeight and dwWidth
Dimensions of the surface to be created, in pixels.

lPitch
Distance, in bytes, to the start of next line. When used with the
IDirectDrawSurface3::GetSurfaceDesc method, this is a return value. When
used with the IDirectDrawSurface3::SetSurfaceDesc method, this is an input
value that must be a DWORD multiple.

dwLinearSize
Not currently used.

dwBackBufferCount
Number of back buffers.

dwMipMapCount
Number of mipmap levels.

dwZBufferBitDepth
Depth of z-buffer. 32-bit z-buffers are not supported.

dwRefreshRate
Refresh rate (used when the display mode is described). The value of 0 indicates
an adapter fault.

dwAlphaBitDepth
Depth of alpha buffer.

dwReserved
Reserved.

lpSurface

in.doc – page 130

Address of the associated surface memory. When calling
IDirectDrawSurface3::Lock, this member is a valid pointer to surface memory.
When calling IDirectDrawSurface3::SetSurfaceDesc, this member is a pointer
to system memory that the caller explicitly allocates for the DirectDrawSurface
object.

ddckCKDestOverlay
DDCOLORKEY structure that describes the destination color key to be used for
an overlay surface.

ddckCKDestBlt
DDCOLORKEY structure that describes the destination color key for blit
operations.

ddckCKSrcOverlay
DDCOLORKEY structure that describes the source color key to be used for an
overlay surface.

ddckCKSrcBlt
DDCOLORKEY structure that describes the source color key for blit
operations.

ddpfPixelFormat
DDPIXELFORMAT structure that describes the surface’s pixel format.

ddsCaps
DDSCAPS structure containing the surface's capabilities.

DDVIDEOPORTBANDWIDTH
The DDVIDEOPORTBANDWIDTH structure describes the bandwidth
characteristics of an overlay surface when used with a particular video port and pixel
format configuration. This structure is used with the
IDirectDrawVideoPort::GetBandwidthInfo method.

typedef struct _DDVIDEOPORTBANDWIDTH {

 DWORD dwSize; // Size of the DDVIDEOPORTBANDWIDTH structure

 DWORD dwCaps; // Caps flags

 DWORD dwOverlay; // Zoom factor at which overlay is supported

 DWORD dwColorkey; // Zoom factor at which overlay w/ colorkey is supported

 DWORD dwYInterpolate; // Zoom factor at which overlay w/ Y interpolation is supported

 DWORD dwYInterpAndColorkey; // Zoom factor at which overlay w/ Y interpolation and

colorkeying is supported

 DWORD dwReserved1; // Reserved for future use - set to zero

 DWORD dwReserved2; // Reserved for future use - set to zero

} DDVIDEOPORTBANDWIDTH,*LPDDVIDEOPORTBANDWIDTH;

Members

dwSize
Size of this structure, in bytes. This member must be initialized before use.

in.doc – page 131

dwCaps
Flag values specifying device dependency. This member can be one of the
following values.

DDVPBCAPS_DESTINATION This device’s capabilities are described in terms of the
overlay’s minimum stretch factor. Bandwidth
information provided for this device refers to the
destination overlay size.

DDVPBCAPS_SOURCE This device’s capabilities are described in terms of the
required source overlay size.

Bandwidth information provided for this device refers
to the source overlay size.

dwOverlay
Stretch factor or overlay source size at which an overlay is supported multiplied
by 1000. For example 1.3 = 1300, or .75 = 750.

dwColorkey
Stretch factor or overlay source size at which an overlay with color keying is
supported multiplied by 1000. For example 1.3 = 1300, or .75 = 750.

dwYInterpolate
Stretch factor or overlay source size at which an overlay with Y-axis
interpolation is supported multiplied by 1000. For example 1.3 = 1300, or .75 =
750.

dwYInterpolateAndColorkey
Stretch factor or overlay source size at which an overlay with Y-axis
interpolation and color keying is supported multiplied by 1000. For example 1.3
= 1300, or .75 = 750.

dwReserved1 and dwReserved2
Reserved; set to zero.

Remarks

When DDVPBCAPS_DESTINATION is specified, the stretch factors described in
the other members describe the minimum stretch factor required to display an overlay
with the dimensions given when calling the GetBandwidthInfo method. Stretch
factor values under 1000 mean that the video port is capable of shrinking an overlay
when displayed, and values over 1000 mean that the overlay must be stretched larger
than their source to be displayed.

When DDVPBCAPS_SOURCE is specified, the stretch factors described in the other
members describe how much you must shrink the overlay source in order for it to be
displayed. In this case, the best possible value is 1000, meaning that no shrinking is
required. Smaller values tell you that the source rectangle you specified when calling
GetBandwidthInfo were too large and must be smaller. For example, if the stretch
factor is 750 and you specified 320 pixels for the dwWidth parameter, then you will
not be able to display the overlay at that size. To successfully display the overlay, you
must use a source rectangle 240 pixels wide to successfully display the overlay.

in.doc – page 132

DDVIDEOPORTCAPS
The DDVIDEOPORTCAPS structure describes the capabilities and alignment
restrictions of a video port. This structure is used with the
IDDVideoPortContainer::EnumVideoPorts method.

typedef struct _DDVIDEOPORTCAPS {

 DWORD dwSize; // Size of the DDVIDEOPORTCAPS structure

 DWORD dwFlags; // Indicates which fields contain data

 DWORD dwMaxWidth; // Max width of the video port field

 DWORD dwMaxVBIWidth; // Max width of the VBI data

 DWORD dwMaxHeight; // Max height of the video port field

 DWORD dwVideoPortID; // Video port ID (0 - (dwMaxVideoPorts -1))

 DWORD dwCaps; // Video port capabilities

 DWORD dwFX; // More video port capabilities

 DWORD dwNumAutoFlipSurfaces; // Number of autoflippable surfaces

 DWORD dwAlignVideoPortBoundary; // Byte restriction of placement within the surface

 DWORD dwAlignVideoPortPrescaleWidth; // Byte restriction of width after prescaling

 DWORD dwAlignVideoPortCropBoundary; // Byte restriction of left cropping

 DWORD dwAlignVideoPortCropWidth; // Byte restriction of cropping width

 DWORD dwPreshrinkXStep; // Width can be shrunk in steps of 1/x

 DWORD dwPreshrinkYStep; // Height can be shrunk in steps of 1/x

 DWORD dwNumVBIAutoFlipSurfaces; // Number of VBI autoflippable surfaces

 DWORD dwReserved1; // Reserved for future use

 DWORD dwReserved2; // Reserved for future use

} DDVIDEOPORTCAPS, *LPDDVIDEOPORTCAPS;

Members

dwSize
Size of the structure, in bytes. This must be initialized before use.

dwFlags
Flag values indicating the fields that contain valid data. The following flags are
defined.

DDVD_WIDTH The dwMaxWidth member is valid.

DDVPD_HEIGHT The dwMaxHeight member is valid.

DDVPD_ID The dwVideoPortID member is valid.

DDVPD_CAPS The dwCaps member is valid.

DDVPD_FX The dwFX member is valid.

DDVPD_AUTOFLIP The dwNumAutoFlipSurfaces member is valid.

DDVPD_ALIGN The dwAlignVideoPortBoundary,
dwAlignVideoPortPrescaleWidth,dwAlignVideoPortC
ropBoundary, and dwAlignVideoPortCropWidth are
valid.

in.doc – page 133

dwMaxWidth
Maximum width of the video port field.

dwMaxVBIWidth
Maximum width of the VBI data.

dwMaxHeight
Maximum height of the video port field.

dwVideoPortID
Zero based index identifying the video port.

dwCaps
Video port capabilities.

DDVPCAPS_AUTOFLIP Flip can be performed automatically to avoid tearing when
a VREF occurs. If the data is being interleaved in memory,
it will flip on every other VREF.

DDVPCAPS_INTERLACED Supports interlaced video.

DDVPCAPS_NONINTERLACED Supports non-interlaced video.

DDVPCAPS_READBACKFIELD Supports the IDirectDrawVideoPort::GetFieldPolarity
method.

DDVPCAPS_READBACKLINE Supports the IDirectDrawVideoPort::GetVideoLine
method.

DDVPCAPS_SHAREABLE Supports two genlocked video streams that share the video
port, where one stream uses the even fields and the other
uses the odd fields. Separate parameters (including
address, scaling, cropping, etc.) are maintained for both
fields.

DDVPCAPS_SKIPEVENFIELDS Even fields of video can be automatically discarded.

DDVPCAPS_SKIPODDFIELDS Odd fields of video can be automatically discarded.

DDVPCAPS_SYNCMASTER Can drive the graphics sync (refresh rate) based on the
video port sync.

DDVPCAPS_SYSTEMMEMORY Capable of writing to surfaces created in system memory.

DDVPCAPS_VBISURFACE Data within the VBI can be written to a different surface.

DDVPCAPS_COLORCONTROL Can perform color control operations on incoming data
before writing to the frame buffer.

DDVPCAPS_OVERSAMPLEDVBI Can accept VBI data in a different format or width than the
regular video data.

dwFX
Additional video port capabilities.

DDVPFX_CROPTOPDATA Limited cropping is available to crop VBI data.

DDVPFX_CROPX Incoming data can be cropped in the x direction before it is
written to the surface.

DDVPFX_CROPY Incoming data can be cropped in the y direction before it is

in.doc – page 134

written to the surface.

DDVPFX_INTERLEAVE Supports interleaving interlaced fields in memory.

DDVPFX_MIRRORLEFTRIGHT Supports mirroring left to right as the video data is written
into the frame buffer.

DDVPFX_MIRRORUPDOWN Supports mirroring top to bottom as the video data is
written into the frame buffer.

DDVPFX_PRESHRINKX Data can be arbitrarily shrunk in the x direction before it is
written to the surface.

DDVPFX_PRESHRINKY Data can be arbitrarily shrunk in the y direction before it is
written to the surface.

DDVPFX_PRESHRINKXB Data can be binary shrunk (1/2, 1/4, 1/8, etc.) in the x
direction before it is written to the surface.

DDVPFX_PRESHRINKYB Data can be binary shrunk (1/2, 1/4, 1/8, etc.) in the y
direction before it is written to the surface.

DDVPCAPS_PRESHRINKXS Data can be shrunk in the x direction by increments of 1/x,
where x is specified in the dwShrinkXStep member.

DDVPCAPS_PRESHRINKYS Data can be shrunk in the y direction by increments of 1/y,
where y is specified in the dwShrinkYStep

DDVPFX_PRESTRETCHX Data can be arbitrarily stretched in the x direction before it
is written to the surface.

DDVPFX_PRESTRETCHY Data can be arbitrarily stretched in the y direction before it
is written to the surface.

DDVPFX_PRESTRETCHXN Data can be integer stretched in the x direction before it is
written to the surface. (1x, 2x, 3x, etc.)

DDVPFX_PRESTRETCHYN Data can be integer stretched in the y direction before it is
written to the surface. (1x, 2x, 3x, etc.)

DDVPFX_VBICONVERT Data within the VBI can be converted independently of the
remaining video data.

DDVPFX_VBINOSCALE Scaling can be disabled for data within the VBI.

DDVPFX_IGNOREVBIXCROP The video port can ignore the left and right cropping
coordinates when cropping oversampled VBI data.

dwNumAutoFlipSurfaces
Number of autoflippable surfaces supported by the video port.

dwAlignVideoPortBoundary
Byte restriction of placement within the surface.

dwAlignVideoPortPrescaleWidth
Byte restriction of width after prescaling.

dwAlignVideoPortCropBoundary
Byte restriction of left cropping.

dwAlignVideoPortCropWidth
Byte restriction of cropping width.

in.doc – page 135

dwPreshrinkXStep
Width can be shrunk in the x direction in steps of 1/dwPreshrinkXStep.

dwPreshrinkYStep
Height can be shrunk in the y direction in steps of 1/dwPreshrinkYStep.

dwNumVBIAutoFlipSurfaces
Number of autoflipping surfaces capable of receiving data transmitted during the
vertical blanking interval (VBI) independent from the remainder of the video
stream. When constructing the autoflip chain, the number of VBI surfaces must
equal the number of surfaces receiving the remainder of the video data.

dwReserved1 and dwReserved2
Reserved; set to zero.

DDVIDEOPORTCONNECT
The DDVIDEOPORTCONNECT structure describes a video port connection. This
structure is used with the IDDVideoPortContainer::GetVideoPortConnectInfo
method.

typedef struct _DDVIDEOPORTCONNECT{

 DWORD dwSize; // Size of the DDVIDEOPORTCONNECT structure

 DWORD dwPortWidth; // Width of the video port

 GUID guidTypeID; // Description of video port connection

 DWORD dwFlags; // Connection flags

 DWORD dwReserved1; // Reserved, set to zero.

} DDVIDEOPORTCONNECT,*LPDDVIDEOPORTCONNECT;

Members

dwSize
Size of the structure, in bytes. This member must be initialized before use.

dwPortWidth
Width of the video port. This value represents the number of physical pins on the
video port, not the width of a surface in memory. This member must always be
set, even when the value in the guidTypeID member assumes a certain size.

guidTypeID
A GUID that describes the sync characteristics of the video port. The following
port types are predefined:

DDVPTYPE_E_HREFH_VREFH External syncs where HREF is active high and VREF is active
high.

DDVPTYPE_E_HREFH_VREFL External syncs where HREF is active high and VREF is active
low.

DDVPTYPE_E_HREFL_VREFH External syncs where HREF is active low and VREF is active
high.

DDVPTYPE_E_HREFL_VREFL External syncs where HREF is active low and VREF is active

in.doc – page 136

low.

DDVPTYPE_CCIR656 Sync information is embedded in the data stream according to the
CCIR656 spec.

DDVPTYPE_BROOKTREE Sync information is embedded in the data stream using the
Brooktree definition.

DDVPTYPE_PHILIPS Sync information is embedded in the data stream using the
Philips definition.

dwFlags
Flags describing the capabilities of the video-port connection. This member can
be set by DirectDraw when connection information is being retrieved or by the
client when connection information is being set. This member can be a
combination of the following flags.

DDVPCONNECT_DOUBLECLOCK Indicates that the video port either supports double-
clocking data or should double-clock data. This flag is
only valid with an external sync.

DDVPCONNECT_VACT Indicates that the video port either supports using an
external VACT signal or should use the external VACT
signal. This flag is only valid with an external sync.

DDVPCONNECT_INVERTPOLARITY Indicates that the video port is capable of inverting the
field polarities or is to invert field polarities.

When a video port inverts field polarities, it treats even
fields as odd fields and vice versa.

DDVPCONNECT_DISCARDSVREFDATA The video port discards any data written during the
VREF period, causing it to not be written to the frame
buffer. This flag is read-only.

DDVPCONNECT_HALFLINE The video port will write half lines into the frame buffer,
sometimes causing the data to be displayed incorrectly.
This flag is read-only.

DDVPCONNECT_INTERLACED Indicates that the signal is interlaced. This flag is only
used by the client when creating a video port object.

DDVPCONNECT_SHAREEVEN The physical video port is shareable, and that this video
port object will use the even fields. This flag is only
used by the client when creating the video port object.

DDVPCONNECT_SHAREODD The physical video port is shareable, and that this video
port object will use the odd fields. This flag is only used
by the client when creating the video port object.

dwReserved1
Reserved; set to zero.

Remarks

This structure is used independently and as a member of the DDVIDEOPORTDESC
structure.

in.doc – page 137

DDVIDEOPORTDESC
The DDVIDEOPORTDESC structure describes a video-port object to be created.
This structure is used with the IDDVideoPortContainer::CreateVideoPort method.

typedef struct _DDVIDEOPORTDESC {

 DWORD dwSize; // Size of the DDVIDEOPORTDESC structure.

 DWORD dwFieldWidth; // Width of the video port field.

 DWORD dwVBIWidth; // Width of the VBI data.

 DWORD dwFieldHeight; // Height of the video port field.

 DWORD dwMicrosecondsPerField; // Microseconds per video field.

 DWORD dwMaxPixelsPerSecond; // Maximum pixel rate per second.

 DWORD dwVideoPortID; // Video port ID (0 - (dwMaxVideoPorts -1)).

 DWORD dwReserved1; // Reserved for future use - set to zero.

 DDVIDEOPORTCONNECT VideoPortType; // Description of video port connection.

 DWORD dwReserved2; // Reserved for future use - set to zero.

 DWORD dwReserved3; // Reserved for future use - set to zero.

 } DDVIDEOPORTDESC, *LPDDVIDEOPORTDESC;

Members

dwSize
Size of this structure, in bytes. This member must be initialized before use.

dwFieldWidth
Width of incoming video stream, in pixels.

dwVBIWidth
Width of the VBI data in the incoming video stream, in pixels.

dwFieldHeight
Field height for fields in the incoming video stream, in scan lines.

dwMicrosecondsPerField
Time interval, in microseconds, between live video VREF periods. This number
should be rounded up to the nearest microsecond.

dwVideoPortID
The zero-based ID of the physical video port to be used.

dwReserved1
Reserved; set to zero.

VideoPortType
A DDVIDEOPORTCONNECT structure describing the connection
characteristics of the video port.

dwReserved2 and dwReserved3
Reserved; set to zero.

in.doc – page 138

DDVIDEOPORTINFO
The DDVIDEOPORTINFO structure describes the transfer of video data to a surface.
This structure is used with the IDirectDrawVideoPort::StartVideo method.

typedef struct _DDVIDEOPORTINFO{

 DWORD dwSize; // Size of the structure.

 DWORD dwOriginX; // Placement of the video data within the surface.

 DWORD dwOriginY; // Placement of the video data within the surface.

 DWORD dwVPFlags; // Video port options.

 RECT rCrop; // Cropping rectangle (optional).

 DWORD dwPrescaleWidth; // Pre-scaling/zooming in the X direction (optional).

 DWORD dwPrescaleHeight; // Pre-scaling/zooming in the Y direction (optional).

 LPDDPIXELFORMAT lpddpfInputFormat; // Video format written to the video port.

 LPDDPIXELFORMAT lpddpfVBIInputFormat; // Input format of the VBI data.

 LPDDPIXELFORMAT lpddpfVBIOutputFormat; // Output format of the data.

 DWORD dwVBIHeight; // Lines of data within the vertical blanking interval.

 DWORD dwReserved1; // Reserved for future use - set to zero.

 DWORD dwReserved2; // Reserved for future use - set to zero.

} DDVIDEOPORTINFO,*LPDDVIDEOPORTINFO;

Members

dwSize
Size of this structure, in bytes. This member must be initialized before use.

dwOriginX and dwOriginY
X and y coordinates for the origin of the video data in the surface.

dwVPFlags
Video port options.

DDVP_AUTOFLIP Perform automatic flipping. For more information, see
Auto-flipping.

DDVP_CONVERT Perform conversion using the information in the
ddpfOutputFormat member.

DDVP_CROP Perform cropping using the rectangle specified by the
rCrop member.

DDVP_INTERLEAVE Interlaced fields should be interleaved in memory.

DDVP_MIRRORLEFTRIGHT Mirror image data from left to right as it is written into the
frame buffer.

DDVP_MIRRORUPDOWN Mirror image data from top to bottom as it is written into
the frame buffer.

DDVP_PRESCALE Perform pre-scaling or pre-zooming based on the values in
the dwPrescaleHeight and dwPrescaleWidth members.

DDVP_SKIPEVENFIELDS Ignore input of even fields.

DDVP_SKIPODDFIELDS Ignore input of odd fields.

in.doc – page 139

DDVP_SYNCMASTER Indicates that the video port VREF should drive the
graphics VREF, locking the refresh rate to the video port.

DDVP_VBICONVERT The ddpfVBIOutputFormat member contains data that
should be used to convert VBI data.

DDVP_VBINOSCALE VBI data should not be scaled.

DDVPCONNECT_OVERRIDEBOBWEAVE Override automatic display method chosen by the driver,
using only the display method set by the caller when
creating the overlay surface.

DDVPFX_IGNOREVBIXCROP Indicates that the video port should ignore left and right
cropping coordinates when cropping oversampled VBI
data.

rCrop
Cropping rectangle. This member is optional.

dwPrescaleWidth
Pre-scaling or zooming in the x direction. This member is optional.

dwPrescaleHeight
Pre-scaling or zooming in the y direction. This member is optional.

ddpfInputFormat
A DDPIXELFORMAT structure describing the pixel format to be written to the
video port. This will often be identical to the surface’s pixel format, but can
differ if the video port is to perform conversion.

ddpfVBIInputFormat and ddpfVBIOutputFormat
DDPIXELFORMAT structures describing the input and output pixel formats of
the data within the vertical blanking interval.

dwVBIHeight
The amount of data within the vertical blanking interval, in scan lines.

dwReserved1 and dwReserved2
Reserved; set to zero.

DDVIDEOPORTSTATUS
The DDVIDEOPORTSTATUS structure describes the status of a video-port object.
This structure is used with the IDDVideoPortContainer::QueryVideoPortStatus
method.

typedef struct _DDVIDEOPORTSTATUS {

 DWORD dwSize; // size of the structure

 BOOL bInUse; // TRUE if video port is currently being used

 DWORD dwFlags; // not used

 DWORD dwReserved1; // reserved for future use

 DDVIDEOPORTCONNECT VideoPortType; // information about the connection

 DWORD dwReserved2; // reserved for future use

 DWORD dwReserved3; // reserved for future use

in.doc – page 140

} DDVIDEOPORTSTATUS, *LPDDVIDEOPORTSTATUS;

Members

dwSize
Size of this structure, in bytes. This member must be initialized before use.

bInUse
Value indicating the current status of the video port. This member is TRUE if the
video port is currently being used, and FALSE otherwise.

dwFlags
Not currently used.

dwReserved1
Reserved; set to zero.

VideoPortType
A DDVIDEOPORTCONNECT structure that receives information about the
video-port connection.

dwReserved2 and dwReserved3
Reserved; set to zero.

Return Values
Errors are represented by negative values and cannot be combined. This table lists the
values that can be returned by all methods of the IDirectDraw2,
IDirectDrawSurface3, IDirectDrawPalette, IDirectDrawClipper and
IDirectDrawVideoPort interfaces. For a list of the error codes that each method can
return, see the method description.

DD_OK

The request completed successfully.

DDERR_ALREADYINITIALIZED

The object has already been initialized.

DDERR_BLTFASTCANTCLIP

A DirectDrawClipper object is attached to a source surface that has passed
into a call to the IDirectDrawSurface3::BltFast method.

DDERR_CANNOTATTACHSURFACE

A surface cannot be attached to another requested surface.

DDERR_CANNOTDETACHSURFACE

A surface cannot be detached from another requested surface.

DDERR_CANTCREATEDC

Windows cannot create any more device contexts (DCs).

DDERR_CANTDUPLICATE

Primary and 3-D surfaces, or surfaces that are implicitly created, cannot be

in.doc – page 141

duplicated.

DDERR_CANTLOCKSURFACE

Access to this surface is refused because an attempt was made to lock the
primary surface without DCI support.

DDERR_CANTPAGELOCK

An attempt to page lock a surface failed. Page lock will not work on a
display-memory surface or an emulated primary surface.

DDERR_CANTPAGEUNLOCK

An attempt to page unlock a surface failed. Page unlock will not work on a
display-memory surface or an emulated primary surface.

DDERR_CLIPPERISUSINGHWND

An attempt was made to set a clip list for a DirectDrawClipper object that is
already monitoring a window handle.

DDERR_COLORKEYNOTSET

No source color key is specified for this operation.

DDERR_CURRENTLYNOTAVAIL

No support is currently available.

DDERR_DCALREADYCREATED

A device context (DC) has already been returned for this surface. Only one
DC can be retrieved for each surface.

DDERR_DEVICEDOESNTOWNSURFACE

Surfaces created by one direct draw device cannot be used directly by
another direct draw device.

DDERR_DIRECTDRAWALREADYCREATED

A DirectDraw object representing this driver has already been created for
this process.

DDERR_EXCEPTION

An exception was encountered while performing the requested operation.

DDERR_EXCLUSIVEMODEALREADYSET

An attempt was made to set the cooperative level when it was already set to
exclusive.

DDERR_GENERIC

There is an undefined error condition.

DDERR_HEIGHTALIGN

The height of the provided rectangle is not a multiple of the required
alignment.

DDERR_HWNDALREADYSET

The DirectDraw cooperative level window handle has already been set. It
cannot be reset while the process has surfaces or palettes created.

DDERR_HWNDSUBCLASSED

in.doc – page 142

DirectDraw is prevented from restoring state because the DirectDraw
cooperative level window handle has been subclassed.

DDERR_IMPLICITLYCREATED

The surface cannot be restored because it is an implicitly created surface.

DDERR_INCOMPATIBLEPRIMARY

The primary surface creation request does not match with the existing
primary surface.

DDERR_INVALIDCAPS

One or more of the capability bits passed to the callback function are
incorrect.

DDERR_INVALIDCLIPLIST

DirectDraw does not support the provided clip list.

DDERR_INVALIDDIRECTDRAWGUID

The globally unique identifier (GUID) passed to the DirectDrawCreate
function is not a valid DirectDraw driver identifier.

DDERR_INVALIDMODE

DirectDraw does not support the requested mode.

DDERR_INVALIDOBJECT

DirectDraw received a pointer that was an invalid DirectDraw object.

DDERR_INVALIDPARAMS

One or more of the parameters passed to the method are incorrect.

DDERR_INVALIDPIXELFORMAT

The pixel format was invalid as specified.

DDERR_INVALIDPOSITION

The position of the overlay on the destination is no longer legal.

DDERR_INVALIDRECT

The provided rectangle was invalid.

DDERR_INVALIDSURFACETYPE

The requested operation could not be performed because the surface was of
the wrong type.

DDERR_LOCKEDSURFACES

One or more surfaces are locked, causing the failure of the requested
operation.

DDERR_MOREDATA

There is more data available than the specified buffer size can hold.

DDERR_NO3D

No 3-D hardware or emulation is present.

DDERR_NOALPHAHW

No alpha acceleration hardware is present or available, causing the failure of

in.doc – page 143

the requested operation.

DDERR_NOBLTHW

No blitter hardware is present.

DDERR_NOCLIPLIST

No clip list is available.

DDERR_NOCLIPPERATTACHED

No DirectDrawClipper object is attached to the surface object.

DDERR_NOCOLORCONVHW

The operation cannot be carried out because no color-conversion hardware is
present or available.

DDERR_NOCOLORKEY

The surface does not currently have a color key.

DDERR_NOCOLORKEYHW

The operation cannot be carried out because there is no hardware support for
the destination color key.

DDERR_NOCOOPERATIVELEVELSET

A create function is called without the
IDirectDraw2::SetCooperativeLevel method being called.

DDERR_NODC

No DC has ever been created for this surface.

DDERR_NODDROPSHW

No DirectDraw raster operation (ROP) hardware is available.

DDERR_NODIRECTDRAWHW

Hardware-only DirectDraw object creation is not possible; the driver does
not support any hardware.

DDERR_NODIRECTDRAWSUPPORT

DirectDraw support is not possible with the current display driver.

DDERR_NOEMULATION

Software emulation is not available.

DDERR_NOEXCLUSIVEMODE

The operation requires the application to have exclusive mode, but the
application does not have exclusive mode.

DDERR_NOFLIPHW

Flipping visible surfaces is not supported.

DDERR_NOGDI

No GDI is present.

DDERR_NOHWND

Clipper notification requires a window handle, or no window handle has
been previously set as the cooperative level window handle.

in.doc – page 144

DDERR_NOMIPMAPHW

The operation cannot be carried out because no mipmap texture mapping
hardware is present or available.

DDERR_NOMIRRORHW

The operation cannot be carried out because no mirroring hardware is
present or available.

DDERR_NONONLOCALVIDMEM

An attempt was made to allocate non-local video memory from a device that
does not support non-local video memory.

DDERR_NOOPTIMIZEHW

The device does not support optimized surfaces.

DDERR_NOOVERLAYDEST

The IDirectDrawSurface3::GetOverlayPosition method is called on an
overlay that the IDirectDrawSurface3::UpdateOverlay method has not
been called on to establish a destination.

DDERR_NOOVERLAYHW

The operation cannot be carried out because no overlay hardware is present
or available.

DDERR_NOPALETTEATTACHED

No palette object is attached to this surface.

DDERR_NOPALETTEHW

There is no hardware support for 16- or 256-color palettes.

DDERR_NORASTEROPHW

The operation cannot be carried out because no appropriate raster operation
hardware is present or available.

DDERR_NOROTATIONHW

The operation cannot be carried out because no rotation hardware is present
or available.

DDERR_NOSTRETCHHW

The operation cannot be carried out because there is no hardware support for
stretching.

DDERR_NOT4BITCOLOR

The DirectDrawSurface object is not using a 4-bit color palette and the
requested operation requires a 4-bit color palette.

DDERR_NOT4BITCOLORINDEX

The DirectDrawSurface object is not using a 4-bit color index palette and the
requested operation requires a 4-bit color index palette.

DDERR_NOT8BITCOLOR

The DirectDrawSurface object is not using an 8-bit color palette and the
requested operation requires an 8-bit color palette.

in.doc – page 145

DDERR_NOTAOVERLAYSURFACE

An overlay component is called for a non-overlay surface.

DDERR_NOTEXTUREHW

The operation cannot be carried out because no texture-mapping hardware is
present or available.

DDERR_NOTFLIPPABLE

An attempt has been made to flip a surface that cannot be flipped.

DDERR_NOTFOUND

The requested item was not found.

DDERR_NOTINITIALIZED

An attempt was made to call an interface method of a DirectDraw object
created by CoCreateInstance before the object was initialized.

DDERR_NOTLOADED

The surface is an optimized surface, but it has not yet been allocated any
memory.

DDERR_NOTLOCKED

An attempt is made to unlock a surface that was not locked.

DDERR_NOTPAGELOCKED

An attempt is made to page unlock a surface with no outstanding page locks.

DDERR_NOTPALETTIZED

The surface being used is not a palette-based surface.

DDERR_NOVSYNCHW

The operation cannot be carried out because there is no hardware support for
vertical blank synchronized operations.

DDERR_NOZBUFFERHW

The operation to create a z-buffer in display memory or to perform a blit
using a z-buffer cannot be carried out because there is no hardware support
for z-buffers.

DDERR_NOZOVERLAYHW

The overlay surfaces cannot be z-layered based on the z-order because the
hardware does not support z-ordering of overlays.

DDERR_OUTOFCAPS

The hardware needed for the requested operation has already been allocated.

DDERR_OUTOFMEMORY

DirectDraw does not have enough memory to perform the operation.

DDERR_OUTOFVIDEOMEMORY

DirectDraw does not have enough display memory to perform the operation.

DDERR_OVERLAYCANTCLIP

The hardware does not support clipped overlays.

in.doc – page 146

DDERR_OVERLAYCOLORKEYONLYONEACTIVE

An attempt was made to have more than one color key active on an overlay.

DDERR_OVERLAYNOTVISIBLE

The IDirectDrawSurface3::GetOverlayPosition method is called on a
hidden overlay.

DDERR_PALETTEBUSY

Access to this palette is refused because the palette is locked by another
thread.

DDERR_PRIMARYSURFACEALREADYEXISTS

This process has already created a primary surface.

DDERR_REGIONTOOSMALL

The region passed to the IDirectDrawClipper::GetClipList method is too
small.

DDERR_SURFACEALREADYATTACHED

An attempt was made to attach a surface to another surface to which it is
already attached.

DDERR_SURFACEALREADYDEPENDENT

An attempt was made to make a surface a dependency of another surface to
which it is already dependent.

DDERR_SURFACEBUSY

Access to the surface is refused because the surface is locked by another
thread.

DDERR_SURFACEISOBSCURED

Access to the surface is refused because the surface is obscured.

DDERR_SURFACELOST

Access to the surface is refused because the surface memory is gone. The
DirectDrawSurface object representing this surface should have the
IDirectDrawSurface3::Restore method called on it.

DDERR_SURFACENOTATTACHED

The requested surface is not attached.

DDERR_TOOBIGHEIGHT

The height requested by DirectDraw is too large.

DDERR_TOOBIGSIZE

The size requested by DirectDraw is too large. However, the individual
height and width are OK.

DDERR_TOOBIGWIDTH

The width requested by DirectDraw is too large.

DDERR_UNSUPPORTED

The operation is not supported.

DDERR_UNSUPPORTEDFORMAT

in.doc – page 147

The FourCC format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMASK

The bitmask in the pixel format requested is not supported by DirectDraw.

DDERR_UNSUPPORTEDMODE

The display is currently in an unsupported mode.

DDERR_VERTICALBLANKINPROGRESS

A vertical blank is in progress.

DDERR_VIDEONOTACTIVE

The video port is not active.

DDERR_WASSTILLDRAWING

The previous blit operation that is transferring information to or from this
surface is incomplete.

DDERR_WRONGMODE

This surface cannot be restored because it was created in a different mode.

DDERR_XALIGN

The provided rectangle was not horizontally aligned on a required boundary.

Pixel Format Masks
This section contains information about the pixel formats supported by the hardware-
emulation layer (HEL). The following topics are discussed:

· Texture Map Formats

· Off-Screen Surface Formats

Texture Map Formats
A wide range of texture pixel formats are supported by the HEL. The following table
shows these formats. The Masks column contains the red, green, blue, and alpha
masks for each set of pixel format flags and bit depths.

Pixel format flags Bit depth Masks

DDPF_RGB | 1 R: 0x00000000

DDPF_PALETTEINDEXED1 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 1 R: 0x00000000

in.doc – page 148

DDPF_PALETTEINDEXED1 | G: 0x00000000

DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 2 R: 0x00000000

DDPF_PALETTEINDEXED2 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 2 R: 0x00000000

DDPF_PALETTEINDEXED2 | G: 0x00000000

DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 4 R: 0x00000000

DDPF_PALETTEINDEXED4 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 4 R: 0x00000000

DDPF_PALETTEINDEXED4 | G: 0x00000000

DDPF_PALETTEINDEXEDTO8 B: 0x00000000

A: 0x00000000

DDPF_RGB | 8 R: 0x00000000

DDPF_PALETTEINDEXED8 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB 8 R: 0x000000E0

G: 0x0000001C

in.doc – page 149

B: 0x00000003

A: 0x00000000

DDPF_RGB | 16 R: 0x00000F00

DDPF_ALPHAPIXELS G: 0x000000F0

B: 0x0000000F

A: 0x0000F000

DDPF_RGB 16 R: 0x0000F800

G: 0x000007E0

B: 0x0000001F

A: 0x00000000

DDPF_RGB 16 R: 0x0000001F

G: 0x000007E0

B: 0x0000F800

A: 0x00000000

DDPF_RGB 16 R: 0x00007C00

G: 0x000003E0

B: 0x0000001F

A: 0x00000000

DDPF_RGB | 16 R: 0x00007C00

DDPF_ALPHAPIXELS G: 0x000003E0

B: 0x0000001F

A: 0x00008000

DDPF_RGB 24 R: 0x00FF0000

G: 0x0000FF00

B: 0x000000FF

in.doc – page 150

A: 0x00000000

DDPF_RGB 24 R: 0x000000FF

G: 0x0000FF00

B: 0x00FF0000

A: 0x00000000

DDPF_RGB 32 R: 0x00FF0000

G: 0x0000FF00

B: 0x000000FF

A: 0x00000000

DDPF_RGB 32 R: 0x000000FF

G: 0x0000FF00

B: 0x00FF0000

A: 0x00000000

DDPF_RGB | 32 R: 0x00FF0000

DDPF_ALPHAPIXELS G: 0x0000FF00

B: 0x000000FF

A: 0xFF000000

DDPF_RGB | 32 R: 0x000000FF

DDPF_ALPHAPIXELS G: 0x0000FF00

B: 0x00FF0000

A: 0xFF000000

The HEL can create these formats in system memory. The DirectDraw device driver
for a 3-D–accelerated display card may create textures of other formats in display
memory. Such a driver exports the DDSCAPS_TEXTURE flag to indicate that it can
create textures.

in.doc – page 151

Off-Screen Surface Formats
The following table shows the pixel formats for off-screen plain surfaces supported
by the DirectX® 5 HEL. The Masks column contains the red, green, blue, and alpha
masks for each set of pixel format flags and bit depths.

Pixel format flags Bit depth Masks

DDPF_RGB | 1 R: 0x00000000

DDPF_PALETTEINDEXED1 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 2 R: 0x00000000

DDPF_PALETTEINDEXED2 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 4 R: 0x00000000

DDPF_PALETTEINDEXED4 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB | 8 R: 0x00000000

DDPF_PALETTEINDEXED8 G: 0x00000000

B: 0x00000000

A: 0x00000000

DDPF_RGB 16 R: 0x0000F800

G: 0x000007E0

B: 0x0000001F

A: 0x00000000

DDPF_RGB 16 R: 0x00007C00

in.doc – page 152

G: 0x000003E0

B: 0x0000001F

A: 0x00000000

DDPF_RGB 24 R: 0x00FF0000

G: 0x0000FF00

B: 0x000000FF

A: 0x00000000

DDPF_RGB 24 R: 0x000000FF

G: 0x0000FF00

B: 0x00FF0000

A: 0x00000000

DDPF_RGB 32 R: 0x00FF0000

G: 0x0000FF00

B: 0x000000FF

A: 0x00000000

DDPF_RGB 32 R: 0x000000FF

G: 0x0000FF00

B: 0x00FF0000

A: 0x00000000

In addition to supporting a wider range of off-screen surface formats, the HEL also
supports surfaces intended for use by Direct3D, or other 3-D renderers.

Four Character Codes (FOURCC)
DirectDraw utilizes a special set of codes that are four characters in length. These
codes, called four character codes or FOURCCs, are stored in file headers of files
containing multimedia data such as bitmap images, sound, or video. FOURCCs
describe the software technology that was used to produce multimedia data. By
implication, they also describe the format of the data itself.

in.doc – page 153

DirectDraw applications use FOURCCs for image color and format conversion. If an
application calls the IDirectDrawSurface3::GetPixelFormat method to request the
pixel format of a surface whose format is not RGB, the dwFourCC member of the
DDPIXELFORMAT structure identifies the FOURCC when the method returns. For
more information, see Converting Color and Format.

In addition, the biCompression member of the BITMAPINFOHEADER structure
can be set to a FOURCC to indicate the codec used to compress or decompress an
image.

FOURCCs are registered with Microsoft by the vendors of the respective multimedia
software technologies. Some common FOURCCs appear in the list below.

FOURCC Company Technology Name

AUR2 AuraVision Corporation AuraVision Aura 2: YUV 422

AURA AuraVision Corporation AuraVision Aura 1: YUV 411

CHAM Winnov, Inc. MM_WINNOV_CAVIARA_CHAMPAGNE

CVID Supermac Cinepak by Supermac

CYUV Creative Labs, Inc Creative Labs YUV

FVF1 Iterated Systems, Inc. Fractal Video Frame

IF09 Intel Corporation Intel Intermediate YUV9

IV31 Intel Corporation Indeo 3.1

JPEG Microsoft Corporation Still Image JPEG DIB

MJPG Microsoft Corporation Motion JPEG Dib Format

MRLE Microsoft Corporation Run Length Encoding

MSVC Microsoft Corporation Video 1

PHMO IBM Corporation Photomotion

RT21 Intel Corporation Indeo 2.1

ULTI IBM Corporation Ultimotion

V422 Vitec Multimedia 24 bit YUV 4:2:2

V655 Vitec Multimedia 16 bit YUV 4:2:2

VDCT Vitec Multimedia Video Maker Pro DIB

VIDS Vitec Multimedia YUV 4:2:2 CCIR 601 for V422

YU92 Intel Corporation YUV

YUV8 Winnov, Inc. MM_WINNOV_CAVIAR_YUV8

YUV9 Intel Corporation YUV9

YUYV Canopus, Co., Ltd. BI_YUYV, Canopus

ZPEG Metheus Video Zipper

	DirectDraw Reference
	Interfaces
	Functions
	Callback Functions
	Structures
	Return Values
	Pixel Format Masks
	Texture Map Formats
	Off-Screen Surface Formats

	Four Character Codes (FOURCC)

