Directinput

This section provides information about the Directinput® component of DirectX® The
information is divided into the following topics:

® About Directlnput

® Directlnput Architecture
® Directlnput Essentials

® Directlnput Tutorials

® Directlnput Reference

About Directinput

Microsoft® Directlnput® provides support for input devices including the mouse,
keyboard, and joystick, as well as for force-feedback (input/output) devices. Like
other DirectX® components, DirectInput is based on the Component Object Model
(COM).

This release of DirectInput is the first to provide COM-based services for the joystick
and other devices such as game pads, flight yokes, and virtual-reality headgear. These
new services supersede the Win32® Application Programming Interface (API)
functions centered on joyGetPosEx, which were previously documented as part of
DirectInput.

Also new are the services for the force-feedback devices that are starting to appear in
the game market.

Why Use Directinput?

Aside from providing new services for devices not supported by the Win32 API, such
as force feedback game devices, Directlnput gives faster access to input data by
communicating directly with the hardware drivers rather than relying on Windows®
messages.

The extended services and improved performance of DirectInput make it a valuable
tool for games, simulations, and other real-time interactive applications running under
Windows.

in.doc — page 2

Directinput Architecture

This section covers the basic structure of DirectInput and how it works with both the
Windows operating system and input hardware. It also introduces the way DirectInput
handles device access, input data, and force feedback effects.

® Architectural Overview of DirectInput
® The Directlnput Object

® The DirectlnputDevice Object

¢ Directlnput Device Object Instances

® The DirectlnputEffect Object

® Integration with Windows

Architectural Overview of Directinput

The basic architecture of Directlnput consists of the DirectInput object, which
supports a COM interface, and an object for each input device that provides data.
Each device in turn has "object instances," which are individual controls or switches
such as keys, buttons, or axes. Individual force feedback effects are also represented
by objects.

Note
The word "object" is used to describe an entity created by the DirectInput system
to support the methods of a COM interface, even when these methods are not
being called through an object-oriented programming language such as C++.
Somewhat confusingly, "object" may also mean one of the individual controls on
an input device.

In the interests of speed and responsiveness, DirectInput works directly with device
drivers, bypassing the Windows message system.

DirectInput enables an application to gain access to input devices even when the
application is in the background.

The Directinput Object

The DirectInput object in an application represents the DirectInput subsystem. It is
used to enumerate and manage input devices.

You create the Directlnput object by calling the DirectInputCreate function, which
returns a pointer to an IDirectInput COM interface. There are different versions of
this interface for the ANSI and Unicode character sets.

Having created the DirectInput object, you can use the methods of the interface to
enumerate individual devices available to the system and to create a
DirectInputDevice object for each device you wish to use in your application.

in.doc — page 3

The DirectinputDevice Object

Each DirectInputDevice object represents one input device such as a mouse,
keyboard, or joystick. (In this documentation, the term "joystick" includes other game
devices that behave similarly, such as steering wheels and game pads.)

You create a DirectInputDevice instance by calling the IDirectInput::CreateDevice
method, which returns a pointer to the IDirectInputDevice interface. The
IDirectInputDevice methods are used to get information about the device, set its
properties, and get data from it.

Note
A physical device that is really a combination of different types of input devices,
such as a keyboard with a trackball, may be represented by two or more
DirectIlnputDevice objects. A force feedback device is represented by a single
joystick object that handles both input and output.

Directinput Device Object Instances

An object instance, sometimes called simply an object, is one of the various switches
and other controls available on an input device. For example, object instances on a
joystick might include the x-axis and y-axis of the stick, several buttons, and a throttle
slider. Mouse objects might include two or three buttons, the x-axis and y-axis, and a
wheel. For a keyboard, each key is an object.

The application ascertains the number and type of objects available on a device
through the IDirectInputDevice::EnumObjects method. Individual device objects
are not encapsulated as code objects but are described in
DIDEVICEOBJECTINSTANCE structures.

The DirectinputEffect Object

A DirectInputEffect object represents a force feedback effect that you have defined. It
is used to manipulate the effect on the input/output device.

You create an DirectInputEffect object by calling the
IDirectInputDevice2::CreateEffect function, which returns a pointer to an
IDirectInputEffect COM interface.

Integration with Windows

Because DirectInput works directly with the device drivers, it either suppresses or
ignores mouse and keyboard messages. When using the mouse in exclusive mode,
DirectInput suppresses mouse messages; as a result, Windows is unable to show the
standard cursor.

in.doc — page 4

DirectInput also ignores mouse and keyboard settings made by the user in Control
Panel.

For the keyboard, character repeat settings are not used by DirectInput. When using
buffered data, DirectInput interprets each press and release as a single event, with no
repetition. When using immediate data, DirectInput is concerned only with the
present physical state of the keys, not with keyboard events as interpreted by
Windows.

For the mouse, DirectInput ignores Control Panel settings such as acceleration and
swapped buttons. Again, DirectInput works directly with the mouse driver, bypassing
the subsystem of Windows that interprets mouse data for windowed applications.

Note
Settings in the driver itself will be recognized by DirectInput. For example, if the
user has a three-button mouse and uses the driver utility software to make the
middle button a double-click shortcut, DirectInput will report a click of the
middle button as two clicks of the primary button.

For a joystick or other game device, DirectInput does use the calibrations set by the
user in Control Panel.

Directlnput Essentials

This section introduces the concepts and components of DirectInput, and provides
enough information for you to get started in implementing the DirectInput system in
your application.

The following topics are discussed:

® Directlnput Device Enumeration
® Directlnput Devices

® Directlnput Device Data

® Force Feedback

® Designing for Previous Versions of DirectInput

Directinput Device Enumeration

DirectInput is able to query the system for all available input devices, determine
whether they are connected, and return information about them. This process is called
enumeration.

If your application is using only the standard keyboard or mouse, or both, you don't
need to enumerate the available input devices. As explained under Creating the
DirectInput Device, you can simply use predefined global variables when calling the
IDirectInput::CreateDevice method.

in.doc — page 5

For all other input devices, and for systems with multiple keyboards or mice, you
need to call IDirectInput::EnumDevices in order to obtain at least the instance
GUIDs (globally unique identifiers) so that device objects can be created.

Here's a sample implementation of the IDirectInput::EnumDevices method

GUID KeyboardGUID = GUID_SysKeyboard;

/I LPDIRECTINPUT lIpdi; //This has been initialized with
/[DirectInputCreate and points to
/lthe Directinput object

Ipdi->EnumDevices(DIDEVTYPE_KEYBOARD,
DIEnumDevicesProc,
&KeyboardGUID,
DIEDFL_ATTACHEDONLY);

The first parameter determines what types of devices are to be enumerated. It is
NULL if you want to enumerate all devices regardless of type; otherwise it is one of
the DIDEVTYPE * values described in the reference for DIDEVICEINSTANCE.

The second parameter is a pointer to a callback function that will be called once for
each device enumerated. This function can be called by any name; the documentation
uses the placeholder name DIEnumDevicesProc.

The third parameter to the EnumDevices method is any 32-bit value that you want to
pass into the callback function. In the examples above, it's a pointer to a variable of
type GUID, passed in so that the callback can assign a keyboard instance GUID.

The fourth parameter is a flag to request enumeration of either all devices or only
those that are attached (DIEDFL_ALLDEVICES or DIEDFL_ATTACHEDONLY).

If your application is using more than one input device, the callback function is a
good place to initialize each device as it is enumerated. (For an example, see Tutorial
3: Using the Joystick.) The callback function is where you obtain the instance GUID
of the device. You can also perform other processing here, such as looking for
particular subtypes of devices.

Here is a sample callback function that checks for the presence of an enhanced
keyboard and stops the enumeration as soon as it finds one. It assigns the instance
GUID of the last keyboard found to the KeyboardGUID variable (passed in as pvRef’
by the EnumDevices call above), which can then be used in a call to
IDirectInput::CreateDevice.

BOOL hasEnhanced,;

BOOL CALLBACK DIEnumKbdProc(LPCDIDEVICEINSTANCE Ipddi,
LPVOID pvRef)
{
(GUID) pvRef = Ipddi->guidlnstance;
if (GET_DIDEVICE_SUBTYPE(Ipddi->dwDevType) ==
DIDEVTYPEKEYBOARD_PCENH)

in.doc — page 6

{
hasEnhanced = TRUE;

return DIENUM_STOP;

}
return DIENUM_CONTINUE;

} /I end of callback

The first parameter points to a structure containing information about the device. This
structure is created for you by DirectInput.

The second parameter points to data passed in from EnumDevices. In this case it is a
pointer to the variable KeyboardGUID. This variable was assigned a default value
earlier, but it will be given a new value each time a device is enumerated. It is not
actually important what instance GUID you use for a single keyboard, but the code
does illustrate a technique for retrieving an instance GUID from the callback.

The return value in this case indicates that enumeration is to stop if the sought-for
device has been found, or otherwise that it is to continue. Enumeration will
automatically stop as soon as all devices have been enumerated.

Directinput Devices

This section contains information about the code objects that represent devices such
as mice, keyboards, and joysticks. The following topics are covered:

® Device Setup

® Creating a DirectInput Device

® Device Capabilities

® Cooperative Levels

® Device Object Enumeration

® Device Data Formats

® Device Properties

® Acquiring Devices

For information on how to retrieve and interpret data from devices, see DirectInput
Device Data.

Device Setup

Your application must obtain a COM interface for each device from which it expects
input. It must also prepare each device for use, which requires, at the very least,
setting the data format and acquiring the device. You may also wish to carry out other
preparatory tasks such as getting information about the devices and changing their
properties.

in.doc — page 7

The following tasks are part of the setup process. Certain steps are always required,;
others may only be necessary if you need further information about devices or need to
change default values.

® Create the Directlnput device (required). See Creating a Directlnput Device.
® Get the device capabilities (optional).

® Enumerate the keys, buttons, and axes on the device (optional). See Device
Object Enumeration.

® Set the cooperative level (recommended).
® Set the data format (required).
® Set the device properties (optional).

® When ready to read data, acquire the device (required). See Acquiring Devices.

Creating a Directinput Device

The IDirectInput::CreateDevice method is used to obtain a pointer to the
IDirectInputDevice interface. Methods of this interface are then used to manipulate
the device and obtain data.

The following example, where Ipdi is a pointer to the IDirectInput interface, creates
a keyboard device:

LPDIRECTINPUTDEVICE IpdiKeyboard;
Ipdi->CreateDevice(GUID_SysKeyboard, &lpdiKeyboard, NULL);

The first parameter in IDirectInput::CreateDevice is an instance GUID that
identifies the instance of the device for which the interface is to be created.
DirectInput has two predefined GUIDs, GUID _SysMouse and GUID_SysKeyboard,
which represent the system mouse and keyboard, and you can pass these identifiers
into the CreateDevice function. The global variable GUID Joystick should not be
used as a parameter for CreateDevice, because it is a product GUID, not an instance
GUID.

Note
If the workstation has more than one mouse, input from all of them is combined
to form the system device. The same is true for multiple keyboards.

For devices other than the system mouse or keyboard, use the instance GUID for the
device returned by IDirectInput::EnumDevices. The instance GUID for a device
will always be the same. You can allow the user to select a device from a list of those
enumerated, then save the GUID to a configuration file and use it again in future
sessions.

If you want to use the IDirectInputDevice2 interface methods for force feedback
devices, you must obtain a pointer to that interface instead of IDirectInputDevice.
The following function is a wrapper for the CreateDevice method that attempts to

in.doc — page 8

obtain the IDirectInputDevice2 interface. Note the use of macros to call the Release
and CreateDevice methods according to either the C or C++ syntax.

HRESULT IDirectinput_CreateDevice2(LPDIRECTINPUT pdi,
REFGUID rguid,
LPDIRECTINPUTDEVICE2 *ppdev2,
LPUNKNOWN punkOuter)

LPDIRECTINPUTDEVICE *pdev;
HRESULT hres;

hres = IDirectinput_CreateDevice(pdi, rguid, &pdev, punkOuter);

if (SUCCEEDED(hres)) {
#ifdef __cplusplus

hres = pdev->QueryInterface(IID_IDirectinputDevice2,

(LPVOID *)ppdev2);

#else

hres = pdev->IpVtbl->Querylnterface(pdev,

&IID_IDirectinputDevice2,
(LPVOID *)ppdev2);

#endif

IDirectinputDevice_Release(pdev);

}else {

*ppdev2 = 0;

}

return hres;

Device Capabilities

Before you begin asking for input from a device, you may need to find out something
about its capabilities. Does the joystick have a point-of-view hat? Is the mouse
currently attached to the user's machine? Such questions are answered with a call to
the IDirectInputDevice::GetCapabilities method, which returns the data in a
DIDEVCAPS structure. As with other such structures in DirectX, you must initialize
the dwSize member before passing this structure to the function.

Note
To optimize speed or memory usage, you can use the smaller
DIDEVCAPS_DX3 structure instead.

Here's an example that checks whether the mouse is attached and whether it has a
third axis (presumably a wheel):

/I LPDIRECTINPUTDEVICE IpdiMouse; // initialized previously

in.doc — page 9

DIDEVCAPS DIMouseCaps;
HRESULT hr;
BOOLEAN HasWheel;

DIMouseCaps.dwsSize = sizeof(DIDEVCAPS);

hr = IpdiMouse->GetCapabilities(&DIMouseCaps);

HasWheel = ((DIMouseCaps.dwFlags & DIDC_ATTACHED)
&& (DIMouseCaps.dwAxes > 2));

Another way to check for a certain button or axis is to call
IDirectInputDevice::GetObjectInfo for that object. If the call returns
DIERR _OBJECTNOTFOUND, the object is not present. The following code
determines whether there is a z-axis even if it is not the third axis.

DIDEVICEOBJECTINSTANCE didoi;

didoi.dwSize = sizeof(DIDEVICEOBJECTINSTANCE);
hr = IpdiMouse->GetObjectInfo(&didoi,DIMOFS_Z, DIPH_BYOFFSET);
HasWheel = SUCCEEDED(hr);

Cooperative Levels

The cooperative level of a device determines how the input is shared with other
applications and with the Windows system. You set it by using the
IDirectInputDevice::SetCooperativeLevel method, as in this example:

IpdiDevice->SetCooperativeLevel(hwnd,
DISCL_NONEXCLUSIVE | DISCL_FOREGROUND)

The parameters are the handle of the top-level window associated with the device
(generally the application window) and one or more flags. The valid flag
combinations are shown in the following table:

Flags Notes

DISCL_NONEXCLUSIVE | The default setting
DISCL BACKGROUND

DISCL_NONEXCLUSIVE |
DISCL_FOREGROUND

DISCL_EXCLUSIVE | Not valid for keyboard
DISCL_FOREGROUND
DISCL _EXCLUSIVE | Not valid for keyboard or mouse

DISC_BACKGROUND

Note
Although Directlnput provides a default setting, you should still explicitly set the
cooperative level, because doing so is the only way to give DirectInput the

in.doc — page 10

window handle. Without this handle, DirectInput will not be able to react to
situations that involve window messages, such as joystick recalibration.

The cooperative level has two components: whether the device is being used in the
foreground or the background, and whether it is being used exclusively or
nonexclusively . Both these components require some explanation.

Foreground and Background

A foreground cooperative level means that the input device is available only when the
application is in the foreground or, in other words, has the input focus. If the
application moves to the background, the device is automatically unacquired, or made
unavailable.

A background cooperative level really means "foreground and background." A device
with a background cooperative level can be acquired and used by an application at
any time.

You will usually want to have foreground access only, since most applications are not
interested in input that takes place when another program is in the foreground.

While developing an application, it is useful to have a conditional define that sets the
background cooperative level during debugging. This will prevent your application
from losing access to the device every time it moves to the background as you switch
to a debugging window.

Exclusive and Nonexclusive

The fact that your application is using a device at the exclusive level does not mean
that other applications cannot get data from the device. However, it does mean that no
other application can also acquire the device exclusively.

Why does it matter? Take the example of a music player that accepts input from a
hand-held remote-control device, even when the application is running in the
background. Now suppose you run a similar application that plays movies, again in
response to signals from the remote control. What happens when the user presses
Play? Both programs start playing, which is probably not what the user wants. To
prevent this from happening, each application should have the DISCL _EXCLUSIVE
flag set, so that only one of them can be running at a time.

In order to use force feedback effects, an application must have exclusive access to
the device.

Windows itself requires exclusive access to the mouse and keyboard. The reason is
that mouse and keyboard events such as a click on an inactive window or ALT+TAB
could force an application to unacquire the device, with potentially harmful results
such as a loss of data from the input buffer.

When an application has exclusive access to the mouse, Windows is not allowed any
access at all. No mouse messages are generated. A further side effect is that the cursor
disappears.

in.doc — page 11

DirectInput does not allow any application to have exclusive access to the keyboard.
If it did, Windows would not have access to the keyboard and the user would not even
be able to use CTRL+ALT+DELETE to restart the system.

Device Object Enumeration

It may be necessary for your application to determine what buttons or axes are
available on a given device. To do this you enumerate the device objects in much the
same way you enumerate devices.

To some extent IDirectInputDevice::EnumObjects overlaps the functionality of
IDirectInputDevice::GetCapabilities. Either method may be used to determine how
many buttons or axes are available. However, EnumObjects is really intended for
cataloguing all the available objects rather than checking for a particular one. The
DIQuick application in the DirectX code samples in the Platform SDK References,
for example, uses EnumObjects to populate the list on the Objects page for the
selected device.

Like IDirectInput::EnumDevices, the EnumObjects function has a callback
function that gives you the chance to do other processing on each object — for
example, adding it to a list or creating a corresponding element on a user interface.

Here's a callback function that simply extracts the name of each object so that it can
be added to a string list or array. This standard callback is documented under the
placeholder name DIEnumDeviceObjectsProc, but you can give it any name you
like. Remember, this function is called once for each object enumerated.

char szName[MAX_PATH];

BOOL CALLBACK DIEnumDeviceObjectsProc(
LPCDIDEVICEOBJECTINSTANCE Ipddoi,
LPVOID pvRef)
{
Istrcpy(szName, Ipddoi->tszName);
/I Now add szName to a list or array

return DIENUM_CONTINUE;
}

The first parameter points to a structure containing information about the object. This
structure is created for you by DirectInput.

The second parameter is an application-defined pointer to data, equivalent to the
second parameter to EnumODbjects. In the example, this parameter is not used.

The return value in this case indicates that enumeration is to continue as long as there
are still objects to be enumerated.

in.doc — page 12

Now here's the call to the EnumObjects method, which puts the callback function to
work.

IpdiMouse->EnumObjects(DIEnumDeviceObjectsProc,
NULL, DIDFT_ALL);

The first parameter is the address of the callback function.

The second parameter can be a pointer to any data you want to use or modify in the
callback. The example does not use this parameter and so passes NULL.

The third parameter is a flag to indicate which type or types of objects are to be
included in the enumeration. In the example, all objects are to be enumerated. To
restrict the enumeration, you can use one or more of the other DIDFT * flags listed in
the reference for IDirectInput::EnumDevices.

Note
Some of the DIDFT_* flags are combinations of others; for example,
DIDFT_AXIS is equivalent to DIDFT _ABSAXIS | DIDFT_RELAXIS.

Device Data Formats

Setting the data format for a device is an essential step before you can acquire and
begin using the device. The IDirectInputDevice::SetDataFormat method tells
DirectInput what device objects will be used and how the data will be arranged.

The examples in the reference for the DIDATAFORMAT structure and
DIOBJECTDATAFORMAT structure will give you an idea of how to set up
custom data formats for nonstandard devices. Fortunately, this step is not necessary
for the joystick, keyboard, and mouse. DirectInput provides four global variables,
c_dfDlJoystick, c_dfdiJoystick2, ¢c_dfDIKeyboard, and c_dfDIMouse, which can be
passed into SetDataFormat to create a standard data format for these devices.

Here is an example, where [pdiMouse is an initialized pointer to the mouse device
object:

IpdiMouse->SetDataFormat(&c_dfDIMouse);

Note
You cannot change the dwFlags member in the predefined DIDATAFORMAT
global variables (for example, in order to change the property of an axis), because
they are const variables. To change properties, use the
IDirectInputDevice::SetProperty method after setting the data format but
before acquiring the device.

in.doc — page 13

Device Properties

Properties of Directlnput devices include the size of the data buffer, the range and
granularity of values returned from an axis, whether axis data is relative or absolute,
and the dead zone and saturation values for a joystick axis, which affect the
relationship between the physical position of the stick and the reported data.
Specialized devices may have other properties as well.

With one exception — the gain property of a force feedback device — properties may
only be changed when the device is in an unacquired state.

Before calling the IDirectInputDevice::SetProperty or
IDirectInputDevice::GetProperty methods you need to set up a property structure,
which consists of a DIPROPHEADER structure and one or more elements for data.
There are potentially a great variety of properties for input devices, and SetProperty
must be able to work with all sorts of structures defining those properties. The
purpose of the DIPROPHEADER structure is to define the size of the property
structure and how the data is to be interpreted.

DirectInput includes two predefined property structures:

¢ DIPROPDWORD defines a structure containing a DIPROPHEADER and a
DWORD data member, for properties that require a single value, such as a buffer
size.

* DIPROPRANGE is for range properties, which require two values (maximum
and minimum). It consists of a DIPROPHEADER and two LONG data
members.

For SetProperty, the data members of the property structure are the values you want
to set. For GetProperty, the current value is returned in these members.

Before the call to GetProperty or SetProperty, the DIPROPHEADER structure
must be initialized with the following:

® The size of the property structure

® The size of the DIPROPHEADER structure itself

® An object identifier

® A "how" code indicating the way the object identifier should be interpreted

When getting or setting properties for a whole device, the object identifier dwObyj is
zero and the "how" code dwHow is DIPH_DEVICE. If you want to get or set
properties for a device object (for example, a particular axis), the combination of
dwObj and dwHow values identifies the object. For details, see the reference for the
DIPROPHEADER structure.

After setting up the property structure, you pass the address of its header into
GetProperty or SetProperty, along with an identifier for the property you want to
obtain or change.

in.doc — page 14

The following values are used to identify the property passed to SetProperty and
GetProperty. See the reference for IDirectInputDevice::GetProperty for more
information.

e DIPROP_BUFFERSIZE. See also Buffered and Immediate Data.

* DIPROP AXISMODE. See also Relative and Absolute Axis Coordinates.
¢ DIPROP CALIBRATIONMODE

e DIPROP GRANULARITY

e DIPROP FFGAIN

e DIPROP FFLOAD

e DIPROP AUTOCENTER

e DIPROP RANGE

e DIPROP DEADZONE

e DIPROP SATURATION

For more information about the last three properties, see also Interpreting Joystick
Axis Data.

The following example sets the buffer size for a device so that it will hold 10 data
items:

DIPROPDWORD dipdw;

HRESULT hres;

dipdw.diph.dwSize = sizeof(DIPROPDWORD);
dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipdw.diph.dwObj = 0;

dipdw.diph.dwHow = DIPH_DEVICE;

dipdw.dwData = 10;

hres = IpdiDevice->SetProperty(DIPROP_BUFFERSIZE, &dipdw.diph);

Acquiring Devices

Acquiring a DirectInput device means giving your application access to it. As long as
a device is acquired, DirectInput is making its data available to your application. If
the device is not acquired, you may manipulate its characteristics but not obtain any
data.

Acquisition is not permanent; your application may acquire and unacquire a device
many times.

In certain cases, depending on the cooperative level, a device may be unacquired
automatically whenever your application moves to the background. The mouse is
automatically unacquired when the user clicks on a menu, because at this point
Windows takes over the device.

in.doc — page 15

You need to unacquire a device before changing its properties. The only exception is
that you may change the gain for a force feedback device while it is in an acquired
state.

Why is the acquisition mechanism needed? There are two main reasons.

First, DirectInput has to be able to tell the application when the flow of data from the
device has been interrupted by the system. For instance, if the user has switched to
another application with ALT+TAB, and used the input device in that application, your
application needs to know that the input no longer belongs to it and that the state of
the buffers may have changed. Or consider an application with the
DISCL_FOREGROUND cooperative level. The user presses the SHIFT key, and
while continuing to press it switches to another application. Then the user releases the
key and switches back to the first application. As far as the first application is
concerned, the SHIFT key is still down. The acquisition mechanism, by telling the
application that input was lost, allows it to recover from these conditions.

Second, because your application can alter the properties of the device, without
safeguards DirectInput would have to check the properties each time you wanted to
get data with the IDirectInputDevice::GetDeviceState or
IDirectInputDevice::GetDeviceData methods. Obviously this would be very
inefficient. Even worse, potentially disastrous things could happen like a hardware
interrupt accessing a data buffer just as you were changing the buffer size. So
DirectInput requires your application to unacquire the device before changing
properties. When you reacquire it, DirectInput looks at the properties and decides on
the optimal way of transferring data from the device to the application. This is done
only once, thereby making GetDeviceState and GetDeviceData very fast.

Since the most common cause of losing a device is that your application moves to the
background, you may want to reacquire devices whenever your application is
activated. However, this mechanism is not going to cover all cases where a device is
unacquired, especially for devices other than the standard mouse or keyboard.
Because your application may unacquire a device unexpectedly, you need to have a
mechanism for checking the acquisition state before attempting to get data from the
device. The Scrawl sample application does this in the Secrawl_OnMouselnput
function, where a DIERR_INPUTLOST error triggers a message to reacquire the
mouse. (See also Tutorial 2: Using the Mouse.)

There's no harm in attempting to reacquire a device that is already acquired.
Redundant calls to IDirectInputDevice::Acquire are ignored, and the device can
always be unacquired with a single call to IDirectInputDevice::Unacquire.

Remember, Windows doesn't have access to the mouse when your application is
using it in exclusive mode. If you want to let Windows have the mouse, you must let
it go. There's an example in Scrawl, which responds to a click of the right button by
unacquiring the mouse, putting the Windows cursor in the same spot as its own,
popping up a context menu, and letting Windows handle the input until a menu choice
is made.

in.doc — page 16

Directinput Device Data

This section covers the basic concepts of getting data from DirectInput devices.

Buffered and Immediate Data
Time Stamps and Sequence Numbers

Polling and Events
® Relative and Absolute Axis Coordinates

Specific details about mouse, keyboard, and joystick data are given in the following
sections:

® Mouse Data
® Keyboard Data
® Joystick Data

Examples of retrieving data from input devices are found in the following tutorials:

® Tutorial 1: Using the Keyboard
® Tutorial 2: Using the Mouse
® Tutorial 3: Using the Joystick

Buffered and Immediate Data

DirectInput supplies two types of data: buffered and immediate. Buffered data is a
record of events that is stored until an application retrieves it. Immediate data is a
snapshot of the current state of a device.

You might use immediate data in an application that is concerned only with the
current state of a device: for example, a flight combat simulation that responds to the
current position of the joystick and a pressed "fire" button. Buffered data might be the
better choice where events are more important than states: for example, in an
application that responds to movement of the mouse and button clicks.

You get immediate data with the IDirectInputDevice::GetDeviceState method. As
the name implies, this method simply returns the current state of the device: for
example, whether each button is up or down. The method provides no data about
what has happened with the device since the last call, apart from implicit information
you can derive by comparing the current state with the last one. If the user manages to
press and release a button between two calls to GetDeviceState, your application
won't know anything about it. On the other hand, if the user is holding a button down,
GetDeviceState will continue reporting "button down" until the user releases it.

This way of reporting the device state is different from the way Windows reports
events with one-time messages like WM_LBUTTONDOWN; it is more akin to the
results from the Win32 GetKeyboardState function. If you are polling a device with
GetDeviceState, you are responsible for determining what constitutes a button click,

in.doc — page 17

a double-click, a single keystroke, and so on, and for ensuring that your application
doesn't keep responding to a button-down or key-down state when it's not appropriate
to do so.

With buffered data, events are stored until you're ready to deal with them. Every time
a button or key is pressed or an axis is moved, information about the event is placed
in a DIDEVICEOBJECTDATA structure in the buffer. If the buffer overflows, new
data is lost. Your application reads the buffer with a call to
IDirectInputDevice::GetDeviceData. You can read any number of items at a time.

Reading an item normally deletes it from the buffer, but you also have the choice of
peeking without deleting. Peeking could be used, for example, in an application that
treats a double-click differently from a single click. Before responding to the first
click, the application would peek at the buffer to see if another button-down event
took place within a certain time interval after the first.

In order to get buffered data you must first set the buffer size with the
IDirectInputDevice::SetProperty method. (See the example under Device
Properties.) You set the buffer size before acquiring the device for the first time. For
reasons of efficiency, the default size of the buffer is zero. You will not be able to
obtain buffered data unless you change this value.

Note
The size of the buffer is measured in items of data for that type of device, not in
bytes or words.

You should check the value of the pdwinOut parameter after a call to the
GetDeviceData method. The number of items actually retrieved from the buffer is
returned in this variable.

The DIQuick application supplied with the DirectX code samples in the Platform
SDK Reference lets you see both immediate and buffered data from a device. After
you create the device in the application window, set its properties on the Mode page.
Now, on the Data page, you see immediate data on the left and buffered data on the
right.

Note
For devices that do not generate interrupts, such as analog joysticks, DirectInput
does not obtain any data until you call the IDirectInputDevice2::Poll method.
For more information, see Polling and Events.

For examples of retrieving buffered data, see IDirectInputDevice::GetDeviceData.
See also:

® Time Stamps and Sequence Numbers

® Mouse Data

¢ Keyboard Data

® Joystick Data

in.doc — page 18

Time Stamps and Sequence Numbers

When DirectInput input data is buffered (see Buffered and Immediate Data), each
DIDEVICEOBJECTDATA structure contains not only information about the type
of event and the device object associated with it, but also a time stamp and a sequence
number.

The dwTimeStamp member contains the system time in milliseconds at the time the
event took place. This is equivalent to the value that would have been returned by the
Win32 GetTickCount function.

The dwSequence member contains a sequence number assigned by Directlnput. The
DirectInput system keeps a single sequence counter, which is incremented by each
non-simultaneous buffered event from any device. You can use this number to
compare events from different devices and see which came first. The
DISEQUENCE_COMPARE macro takes wraparound into account.

Simultaneous events are assigned the same sequence number. If a mouse or joystick
is moved diagonally, for example, the changes in the x-axis and the y-axis have the
same sequence number.

Note
Events are always placed in the buffer in chronological order, so you don't need
to check the sequence numbers just to sort the events from a single device.

Polling and Events

There are two ways to find out whether input data is available: by polling and by
event notification.

Polling a device means regularly getting the current state of the device objects with
IDirectInputDevice::GetDeviceState or retrieving the contents of the buffer with
IDirectInputDevice::GetDeviceData. Polling is typically used by real-time games
that are never idle but are constantly updating and rendering the game world.

Event notification is suitable for applications like the Scrawl sample that wait for
input before doing anything. To use event notification, you set up a thread
synchronization object with the Win32 CreateEvent function and then associate this
event with the device by passing its handle to the
IDirectInputDevice::SetEventNotification method. The event is then signaled by
DirectInput whenever the state of the device changes. Your application can receive
notification of the event with a Win32 function such as WaitForSingleObject, and
then respond by checking the input buffer to find out what the event was. For sample
code, see the Scrawl sample and the reference for
IDirectInputDevice::SetEventNotification.

Some joysticks and other game devices, or particular objects on them, do not generate
hardware interrupts and will not return any data or signal any events until you call the
IDirectInputDevice2::Poll method. To find out whether this is necessary, first set the
data format for the device, then call the IDirectInputDevice::GetCapabilities

in.doc — page 19

method and check for the DIDC_ POLLEDDATAFORMAT flag in the DIDEVCAPS
structure.

Do not confuse the DIDC_POLLEDDATAFORMAT flag with the
DIDC_POLLEDDEVICE flag. The latter will be set if any object on the device
requires polling. You can then find out whether this is the case for a particular object
by calling the IDirectInputDevice::GetObjectInfo method and checking for the
DIDOI POLLED flag in the DIDEVICEOBJECTINSTANCE structure.

The DIDC_POLLEDDEVICE flag describes the worst case for the device, not the
actual situation. For example, HID keyboards will be marked as
DIDC_POLLEDDEVICE because the LEDs that indicate status, such as CAPS LOCK,
require polling. However, the standard keyboard data format does not read the LEDs,
so DIDC_POLLEDDATAFORMAT will not be set. Polling the device under these
conditions is pointless, because the device objects that require polling (the LEDs) are
inaccessible from the data format anyway.

It doesn't hurt to call the IDirectInputDevice2::Poll method for any input device. If
the call is unnecessary, it will have no effect and will be very fast.

Relative and Absolute Axis Coordinates

Axis coordinates may be returned as relative values; that is, the amount by which they
have changed since the last call to the IDirectInputDevice::GetDeviceState method
or, in the case of buffered input, since the last item was put in the buffer.

Absolute axis coordinates are a running total of all the relative coordinates returned
by the system since the device was acquired; in other words, they show the position
of the axis in relation to a fixed point.

By default, mouse axes are reported as relative coordinates and joystick axes as
absolute coordinates. You can use the IDirectInputDevice::SetProperty method to
change the default behavior of any axis or all the axes of a device.

Mouse Data

To set up the mouse device for data retrieval, first call the
IDirectInputDevice::SetDataFormat method with the ¢_dfDIMouse global variable
as the parameter.

For maximum performance in a full-screen application, set the cooperative level to
DISCL _EXCLUSIVE | DISCL_FOREGROUND. Note that the exclusive setting will
cause the Windows cursor to disappear. Remember too that the
DISCL_FOREGROUND setting will cause the application to lose access to the
mouse when you switch to a debugging window. Changing to
DISCL_BACKGROUND will allow you to debug the application more easily, at a
cost in performance.

The following sections give more information about getting and interpreting
immediate and buffered mouse data.

in.doc — page 20

See also:

® Device Data Formats

® Cooperative Levels

Immediate Mouse Data

To retrieve the current state of the mouse, call IDirectInputDevice::GetDeviceState
with a pointer to a DIMOUSESTATE structure. The mouse state returned in the
structure includes axis data and the state of each of the buttons.

The first three members of the DIMOUSESTATE structure hold the axis
coordinates. (See Interpreting Mouse Axis Data.)

The rgbButtons member is an array of bytes, one for each of four buttons. Generally
the first element in the array is the left button, the second is the right button, the third
is the middle button, and the fourth is any other button. The high bit is set if the
button is down and clear if the button is up or not present.

See also Buffered and Immediate Data.

Buffered Mouse Data

To retrieve buffered data from the mouse, you must first set the buffer size (see
Device Properties). The default size of the buffer is zero, so this step is essential. You
then declare an array of DIDEVICEOBJECTDATA structures with the same
number of elements as the buffer size.

After acquiring the device, you can examine and flush the buffer anytime by using the
IDirectInputDevice::GetDeviceDatamethod. (See Buffered and Immediate Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state
for a single object on the mouse. For instance, a typical mouse contains four objects
or input sources: x-axis, y-axis, button 0 and button 1. If the user presses button 0 and
moves the mouse diagonally, the array passed to
IDirectInputDevice::GetDeviceData will have three elements filled in: an element
for button 0 being pressed, an element for the change in the x-axis, and an element for
the change in the y-axis.

You can determine which object an element in the array refers to by checking the
dwOfs member of the DIDEVICEOBJECTDATA structure against the following
values:

e DIMOFS BUTTONO to DIMOFS BUTTON3

e DIMOFS X

e DIMOFS Y

e DIMOEFS Z

Each of these values is derived from the offset of the data for the object in a
DIMOUSESTATE structure. For example, DIMOFS BUTTONO is equivalent to the

in.doc — page 21

offset of rgbButtons[0] in the DIMOUSESTATE structure. With the macros you
can use simple comparisons to determine which device object is associated with an
item in the buffer. For example:

DIDEVICEOBJECTDATA *Ipdidod;
int n;

/* MouseBuffer is an array of DIDEVICEOBJECTDATA structures
that has been set by a call to GetDeviceData.
n is incremented in a loop that examines all filled elements
in the array. */
Ipdidod = &MouseBuffer[n];
if (((int) Ipdidod->dwOfs == DIMOFS_BUTTONO)
&& (Ipdidod->dwData & 0x80))
{

; 1/ do something in response to left button press

}

The data for the change of state of the device object is located in the dwData member
of the DIDEVICEOBJECTDATA structure. For axes, the coordinate value is
returned in this member. For button objects, only the low byte of dwData is
significant; the high bit of this byte is set if the button was pressed and clear if the
button was released. In other words, the button was pressed if (dwData & 0x80) is
non-zero.

For more information on the other members of the DIDEVICEOBJECTDATA
structure, see Time Stamps and Sequence Numbers.

Interpreting Mouse Axis Data

The data returned for the x-axis and y-axis of a mouse indicates the movement of the
mouse itself, not the cursor. The units of measurement, sometimes called mickeys, are
based on the actual values returned by the mouse hardware. Because DirectInput
communicates directly with the mouse driver, the values for mouse speed and
acceleration set by the user in Control Panel do not affect this data.

Axis data returned from the mouse can be either relative or absolute. (See Relative
and Absolute Axis Coordinates.) Because a mouse is a relative device — unlike a
joystick, it does not have a home position — relative data is returned by default.

The axis mode, which specifies whether relative or absolute data should be returned,
is a property that can be changed before the device is acquired. (See Device
Properties.) To set the axis mode to absolute, call IDirectInputDevice::SetProperty
with the DIPROP_AXISMODE value in the rguid parameter and with
DIPROPAXISMODE ABS in the dwData member of the DIPROPDWORD
structure.

in.doc — page 22

When the axis mode for the mouse is set to relative, the axis coordinate represents the
number of mickeys that the device has been moved along the axis since the last value
was returned. A negative value indicates that the mouse was moved to the left for the
x-axis, or away from the user for the y-axis, or that the z-axis (the wheel) was rotated
back. Positive values indicate movement in the opposite direction.

When the axis mode is set to absolute, the coordinates are simply a running total of all
relative motions received by Directlnput. The axis coordinates are not initialized to
any particular value when the device is acquired, so your application should treat
absolute values as relative to an unknown origin. You can record the current absolute
position whenever the device is acquired and save it as the "virtual origin." This
virtual origin can then be subtracted from subsequent absolute coordinates retrieved
from the device to compute the relative distance the mouse has moved from the point
of acquisition.

The data returned for the axis coordinates is also affected by the granularity property
of the device. For the x-axis and y-axis of the mouse, granularity is normally 1,
meaning that the minimum change in value is 1. For the wheel axis it may be larger.

Checking for Lost Mouse Input

Because Windows may force your application to unacquire the mouse when you have
set the cooperative level to DISCL_ FOREGROUND and the focus switches to
another application or even to the menu in your own application, you should check
for the DIERR _INPUTLOST return value from the
IDirectInputDevice::GetDeviceData or IDirectInputDevice::GetDeviceState
methods, and attempt to reacquire the mouse if necessary. (See Acquiring Devices.)

Note
You should not attempt to reacquire the mouse on getting a
DIERR NOTACQUIRED error. If you do, you are likely to get caught in an
infinite loop: acquisition will fail, you will get another DIERR_ NOTACQUIRED
error, and so on.

Keyboard Data

As far as DirectInput is concerned, the keyboard is not a text input device but a game
pad with many buttons. When your application requires text input, don't use
DirectInput methods; it is far easier to retrieve the data from the normal Windows
messages, where you can take advantage of services such as character repeat and
translation of physical keys to virtual keys. This is particularly important for
languages other than English, which may require special translation of key presses.

To set up the keyboard device for data retrieval, you must first call the
IDirectInputDevice::SetDataFormat method with the ¢ _dfDIKeyboard global
variable as the parameter. (See Device Data Formats.)

The following sections give more information about obtaining and interpreting
keyboard data.

in.doc — page 23

Immediate Keyboard Data

To retrieve the current state of the keyboard, call the
IDirectInputDevice::GetDeviceState method with a pointer to an array of 256 bytes
that will hold the returned data.

The GetDeviceState method behaves in the same way as the Win32
GetKeyboardState function, returning a snapshot of the current state of the
keyboard. Each key is represented by a byte in the array of 256 bytes whose address
was passed as the /pvData parameter. If the high bit of the byte is set, the key is
down. The array is most conveniently indexed with the DirectInput Keyboard Device
Constants. (See also Interpreting Keyboard Data.)

Here is an example that does something in response to the ESC key being down:

/Il LPDIRECTINPUTDEVICE IpdiKeyboard; // previously initialized
// and acquired

BYTE diKeys[256];
if (IpdiKeyboard->GetDeviceState(256, diKeys) == DI_OK)
{

if (diKeys[DIK_ESCAPE] & 0x80) DoSomething();

}

Buffered Keyboard Data

To retrieve buffered data from the keyboard, you must first set the buffer size (see
Device Properties). This step is essential, because the default size of the buffer is
zero. You then declare an array of DIDEVICEOBJECTDATA structures with the
same number of elements as the buffer size.

After acquiring the keyboard device, you can examine and flush the buffer anytime
by using the IDirectInputDevice::GetDeviceData method. (See Buffered and
Immediate Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state
for a single key; that is, a press or release. Because Directlnput gets the data directly
from the keyboard, any settings for character repeat in Control Panel are ignored. This
means that a keystroke is only counted once, no matter how long the key is held
down.

You can determine which key an element in the array refers to by checking the
dwOfs member of the DIDEVICEOBJECTDATA structure against the DirectInput
Keyboard Device Constants. (See also Interpreting Keyboard Data.)

The data for the change of state of the key is located in the dwData member of the
DIDEVICEOBJECTDATA structure. Only the low byte of dwData is significant;
the high bit of this byte is set if the key was pressed and clear if it was released. In
other words, the key was pressed if (dwData & 0x80) is non-zero.

in.doc — page 24

Interpreting Keyboard Data

This section covers the identification of keys for which data is reported by the
IDirectInputDevice:GetDeviceState and IDirectInputDevice:GetDeviceData
methods. For more information on interpreting the data from GetDeviceData, see
Time Stamps and Sequence Numbers.

In one important respect, DirectInput differs from other ways of reading the keyboard
in Windows. Keyboard data refers not to virtual keys but to the actual physical keys;
that is, the scan codes. DIK_ENTER, for example, refers to the ENTER key on the
main keyboard but not to the one on the numerical keypad. (For a list of the DIK *
values, see Keyboard Device Constants.)

Directlnput defines a constant for each key on the enhanced keyboard as well as the
additional keys found on international keyboards. Because NEC keyboards support
different scan codes than the PC enhanced keyboards, DirectInput translates NEC key
scan codes into PC enhanced scan codes where possible.

Not all PC enhanced keyboards have the Windows keys (DIK_LWIN, DIK_RWIN,
and DIK_APPS). There is no way to determine whether the keys are physically
available.

There is no key code for the PAUSE key. The PC enhanced keyboard does not generate
a separate scan code for this key; rather, it synthesizes a "pause" from the
DIK LCONTROL and DIK_ NUMLOCK codes.

Laptops and other small computers often do not implement a full set of keys. Instead,
some keys (typically numeric keypad keys) are multiplexed with other keys, selected
by an auxiliary mode key, which does not generate a separate scan code.

If the keyboard subtype indicates a PC XT or PC AT keyboard, then the following
keys are not available: DIK _F11, DIK F12, and all the extended keys (DIK_* values
greater than 0x7F). Furthermore, the PC XT keyboard lacks DIK SYSRQ.

Japanese keyboards, particularly the NEC PC-98 keyboards, contain a substantially
different set of keys than U.S. keyboards. For more information, see Directlnput and
Japanese Keyboards.

Checking for Lost Keyboard Input

Because Windows may force your application to unacquire the keyboard when you
have set the cooperative level to DISCL_ FOREGROUND and the focus switches to
another application, you should check for the DIERR _INPUTLOST return value from
the IDirectInputDevice::GetDeviceData or IDirectInputDevice::GetDeviceState
methods, and attempt to reacquire the keyboard if necessary. (See Acquiring
Devices.)

Note
You should not attempt to reacquire the keyboard on getting a
DIERR NOTACQUIRED error. If you do, you are likely to get caught in an

in.doc — page 25

infinite loop: acquisition will fail, you will get another DIERR NOTACQUIRED
error, and so on.

Joystick Data

The following sections cover getting and interpreting data from a joystick or other
similar input device such as a game pad or flight yoke.

To set up the joystick device for data retrieval, first call the
IDirectInputDevice::SetDataFormat method with the ¢_dfDIJoystick or
¢ _dfDlJoystick2 global variable as the parameter. (See Device Data Formats.)

Because some device drivers do not notify DirectInput of changes in state until
explicitly asked to do so, you should always call the IDirectInputDevice2::Poll
method before attempting to retrieve data from the joystick. For more information,
see Polling and Events.

Immediate Joystick Data

To retrieve the current state of the joystick, call the
IDirectInputDevice::GetDeviceState method with a pointer to a DIJOYSTATE or
DIJOYSTATE2 structure, depending on whether the data format was set with
c_dfDlJoystick or c_dfDIJoystick2. (See Device Data Formats.) The joystick state
returned in the structure includes the coordinates of the axes, the state of the buttons,
and the state of the point-of-view controllers.

The first seven members of the DIJOYSTATE structure hold the axis coordinates.
The last of these, rglSlider, is an array of two values. (See Interpreting Joystick Axis
Data.)

The rgdwPOV member contains the position of up to four point-of-view controllers
in hundredths of degrees clockwise from north (or forward). The center position is
reported as -1. For controllers that have only five positions, dwPOV will be one of
the following values:

-1

0

90 * DI DEGREES

180 * DI DEGREES

270 * DI_DEGREES.

Note
Some drivers report a value of 65,535 instead of -1 for the neutral position. You
should check for a centered POV indicator as follows:
BOOL POVCentered = (LOWORD(dwPOV) == OxFFFF);

The rgbButtons member is an array of bytes, one for each of 32 or 128 buttons,
depending on the data format. For each button, the high bit is set if the button is down
and clear if the button is up or not present.

in.doc — page 26

The DIJOYSTATE?2 structure has additional members for information about the
velocity, acceleration, force, and torque of the axes.

See also Buffered and Immediate Data.

Buffered Joystick Data

To retrieve buffered data from the joystick, you must first set the buffer size (see
Device Properties) and declare an array of DIDEVICEOBJECTDATA structures.
The number of elements required in this array is the same as the buffer size. After
acquiring the device, you can examine and flush the buffer anytime with the
IDirectInputDevice:GetDeviceData method. (See Buffered and Immediate Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state
for a single object on the joystick. For instance, a simple joystick contains four
objects or input sources: x-axis, y-axis, button 0 and button 1. If the user presses
button 0 and moves the stick diagonally, the array passed to
IDirectInputDevice::GetDeviceData will have three elements filled in: an element
for button 0 being pressed, an element for the change in the x-axis, and an element for
the change in the y-axis.

You can determine which object an element in the array refers to by checking the
dwOfs member of the DIDEVICEOBJECTDATA structure against the following
values:

e DIJOFS X

e DIJOFS Y

* DIJOFS Z

e DIJOFS Rx

e DIJOFS Ry

e DIJOFS Rz

* DIJOFS BUTTONO to DIJOFS BUTTON31 or DIJOFS_ BUTTON(7)

¢ DIJOFS POV(n)

* DIJOFS SLIDER(n)

Each of these values is equivalent to the offset of the data for the object in a
DIJOYSTATE structure. For example, DIJOFS_ BUTTONO is equivalent to the
offset of rgbButtons[0] in the DIJOYSTATE structure. You can use simple
comparisons to determine which device object is associated with an item in the
buffer. For example:

DIDEVICEOBJECTDATA *Ipdidod;
int n;

* JoyBuffer is an array of DIDEVICEOBJECTDATA structures

in.doc — page 27

that has been set by a call to GetDeviceData.
n is incremented in a loop that examines all filled elements
in the array. */
Ipdidod = &JoyBuffer[n];
if (((int) Ipdidod->dwOfs == DIJOFS_BUTTONO)
&& (Ipdidod->dwData & 0x80))
{

; 1/ do something in response to press of primary button

}

The data for the change of state of the device object is located in the dwData member
of the DIDEVICEOBJECTDATA structure. For axes, the coordinate value is
returned in this member. For button objects, only the low byte of dwData is
significant; the high bit of this byte is set if the button is pressed and clear if the
button is released.

For the other members, see Time Stamps and Sequence Numbers.

Interpreting Joystick Axis Data

Axis values for the joystick are like those for the mouse: the value returned for the x-
axis is greater as the stick moves to the right, and the value for the y-axis increases as
the stick moves toward the user.

Data is in arbitrary units determined by the range property of the axis. For example, if
the range for the stick's x-axis is 0 to 10,000, a unit is one ten-thousandth of the stick's
left-right travel, and the center position is 5,000. For some axes the granularity
property may be greater than 1, in which case values will be rounded off; for
example, if the granularity is 10 then values will be reported as 0, 10, 20, and so on.

Axis data is also affected by the dead zone, a region around the center position in
which motion is ignored. The dead zone provides tolerance for a slight deviation from
the true center position for either or both axes of the stick. An axis value within the
range of the dead zone is reported as true center.

The saturation property of an axis is a zone of tolerance at the minimum and
maximum of the range. An axis value within this zone is reported as the minimum or
maximum value. The purpose of the saturation property is to allow for slight
differences between, for example, the minimum x-axis value reported at the top left
and bottom left positions of the stick.

The following diagram shows the effect of the dead zone and the saturation zones.
The vertical axis represents the returned axis values, where min and max are the lower
and upper limits of the reported range and ctr is the reported center. The horizontal
axis shows the physical position of the stick, where pmin and pmax are the extremes
of the physical range, pctr is neutral position of the axis, dmin and dmax are the limits
of the dead zone, and smin and smax are the boundaries of the lower and upper
saturation zones. The lower saturation zone lies between pmin and smin; the upper
saturation zone lies between smax and pmax; and the dead zone lies between dmin
and dmax.

in.doc — page 28

max —

ctr —

Returned

min —

pmin smin dmin dmax smax pmax
pctr

Physical position

For more information on joystick properties, see the following:

¢ IDirectInputDevice::GetProperty
¢ IDirectInputDevice::SetProperty
e DIPROPRANGE

Axis coordinates from the joystick can be either relative or absolute. (See Relative
and Absolute Axis Coordinates.) Because a joystick is an absolute device—unlike a
mouse, it cannot travel infinitely far along any axis—absolute data is returned by
default.

The axis mode, which specifies whether relative or absolute data should be returned,
is a property that can be changed before the device is acquired. (See Device
Properties.) To set the axis mode to relative, call the
IDirectInputDevice::SetProperty method with the DIPROP_AXISMODE value in
the rguid parameter and with DIPROPAXISMODE REL in the dwData member of
the DIPROPDWORD structure.

When the axis mode for the joystick is set to relative, the axis coordinate represents
the number of units of movement along the axis since the last value was returned.

Checking for Lost Joystick Input

If you are using the joystick in foreground mode (see Cooperative Levels) you may
lose the device when the focus shifts to another application.

You can check for the DIERR_INPUTLOST return value from the
IDirectInputDevice::GetDeviceData or IDirectInputDevice::GetDeviceState
methods, and attempt to reacquire the joystick if necessary. (See Acquiring Devices.)

Note
You should not attempt to reacquire the joystick on getting a
DIERR_NOTACQUIRED error. If you do, you are likely to get caught in an
infinite loop: acquisition will fail, you will get another DIERR_ NOTACQUIRED
error, and so on.

in.doc — page 29

Because access to the joystick is not going to be lost except when your application
moves to the background — unlike the mouse and keyboard, the joystick is never
used by the Windows system — an alternative to the above method is to reacquire the
device in response to a WM_ACTIVATE message.

Force Feedback

Force feedback is the generation of push or resistance in an input/output device, for
example by motors mounted in the base of a joystick. DirectInput allows you to
generate force feedback effects for devices that have compatible drivers.

The following sections introduce the elements of force feedback:

® Basic Concepts of Force Feedback

¢ Effect Enumeration

® Information About a Supported Effect
® (Creating an Effect

® Effect Direction

® Examples of Setting Effect Direction
® Envelopes and Offsets

® Effect Playback

¢ Downloading and Unloading Effects
® Changing an Effect

®* Gain

® Force Feedback State

® Effect Object Enumeration

¢ Constant Forces

¢ Ramp Forces

® Periodic Effects

® Conditions

® Custom Forces

® Device-Specific Effects

To enumerate, create, and manipulate effects, you must first obtain a pointer to the

IDirectInputDevice2 interface for the force feedback device. For an example of how
to do this, see Creating the DirectInput Device.

Basic Concepts of Force Feedback

A particular instance of force feedback is called an effect, and the push or resistance is
called the force. Most effects fall into one of the following categories:

in.doc — page 30

® (Constant force. A steady force in a single direction.
® Ramp force. A force that steadily increases or decreases in magnitude.
® Periodic effect. A force that pulsates according to a defined wave pattern.

® Condition. A force that occurs only in response to input by the user. Two
examples are a friction effect that generates resistance to movement of the
joystick, and a spring effect that tends to move the stick back to a certain position
after it has been moved from that position.

The strength of the force is called its magnitude. Magnitude is measured in units
ranging from zero (no force) to 10,000 (maximum force for the device, defined in
Dinput.h as DI FFNOMINALMAX). A negative value indicates force in the opposite
direction. Magnitudes are linear: a force of 10,000 is twice as great as one of 5,000.

Ramp forces have a beginning and ending magnitude. For a periodic effect, the basic
magnitude is the force at the peak of the wave.

The direction of a force is the direction from which it comes; just as a north wind
comes from the north, a positive force on an given axis pushes from the positive
toward the negative.

Effects also have duration, measured in microseconds. Periodic effects have a period,
or the duration of one cycle, also measured in microseconds. The phase of a periodic
effect is the point along the wave where playback begins.

The following diagram represents a sawtooth periodic effect with a magnitude of
5,000, or half the maximum force for the device. The horizontal axis represents the
duration of the effect, and the vertical axis represents the magnitude. Points above the
center line represent positive force in the direction defined for the effect, and points
below the center line represent negative force, or force in the opposite direction.

Duration

A A

10,000

-10,000

A force may be further shaped by an envelope. An envelope defines an attack value
and a fade value, which modify the beginning and ending magnitude of the effect.
Attack and fade also have duration, which determines how long the magnitude takes
to reach or fall away from the sustain value, the magnitude in the middle portion of
the effect.

in.doc — page 31

The following diagram represents an envelope. The attack level is set to 8,000 and the
fade level to 1,000. The sustain level will be defined by the basic magnitude of the
force to which the envelope is being applied; in the example it is 5,000. Note that in
this case the attack is greater than the sustain, giving the effect an initial strong kick.
Both the attack and the fade level can be either greater or lesser than the sustain level.

Attack Time Fade Time

10,000
Sustain Level
Attack Level I
0 Fade Level
?
-10,000

The next diagram shows the result of the envelope being applied to the periodic effect
in the first diagram. Note that the envelope is mirrored on the negative side of the
magnitude. An attack value of 8,000 means that the initial magnitude of the force in
either direction will be 80 percent of the maximum possible.

Ry
VY

10,000

-10,000

Periodic effects and conditions can also be modified by the addition of an offset,
which defines the amount by which the waveform is shifted up or down from the base
level. The practical effect of applying a positive offset to the sawtooth example would
be to strengthen the positive force and weaken the negative one—in other words, the
force would peak more strongly in one direction than in the other.

Finally, the overall magnitude of an effect can be scaled by gain, which is analogous
to a volume control in audio. A single gain value can be applied to all effects for a
device; you might want to do this to compensate for stronger or weaker forces on
different hardware, or to accommodate the user's preferences.

in.doc — page 32

Effect Enumeration

The IDirectInputDevice2::EnumEffects method returns information about the
support offered by the device for various kinds of effects.

It is important to distinguish between supported effects and created effects, or effect
objects. A supported effect might be a constant force that can be shaped by an
envelope. However, this effect has no properties such as magnitude, direction,
duration, attack, or fade. You set these properties when you create an effect object in
your application. A supported effect may be represented by many effect objects, each
with different parameters—for example, several constant forces each with different
duration, magnitude, and direction.

For information on enumerating created effects, see Effect Object Enumeration.
Like other DirectInput enumerations, the IDirectInputDevice2::EnumEffects
method requires a callback function; this is documented with the placeholder name
DIEnumEffectsProc, but you can use a different name if you wish. This function is
called for each effect enumerated. Within the function you can obtain the GUID for
each effect, get information about the extent of hardware support, and create one or
more effect objects whose methods you can use to manipulate the effect.

Here is a skeletal C++ example of the callback function, and the call to the
IDirectInputDevice2::EnumEffects method that sets the enumeration in motion.
Note that the pvRef parameter of the callback can be any 32-bit value; in this case it is
a pointer to the device interface, used for getting information about effects supported
by the device and for creating effect objects.

HRESULT hr;
// LPDIRECTINPUTDEVICE Ipdid2; // already initialized

BOOL CALLBACK DIEnumEffectsProc(LPCDIEFFECTINFO pdei,
LPVOID pvRef)

LPDIRECTINPUTDEVICEZ2 Ipdid = pvRef; // pointer to calling device

LPDIRECTINPUTEFFECT IpdiEffect; // pointer to created effect

DIEFFECT diEffect; /I params for created effect

DICONSTANTFORCE diConstantForce; // type-specific parameters
/l for diEffect

if (DIEF_GETTYPE(pdei->dwEffType) == DIEFFT_CONSTANTFORCE)
{
/* Here you can extract information about support for the
effect type (from pdei), and tailor your effects
accordingly. For example, the device might not support
envelopes for this type of effect. */

in.doc — page 33

/I Create one or more constant force effects.

I/l For each you have to initialize a DICONSTANTFORCE
/l and a DIEFFECT structure.

/I See detailed example at Creating an Effect

hr = pdid->CreateEffect(pdei->guid,
&diEffect,
&lpdiEffect,
NULL);

}

/I And so on for other types of effect

return DIENUM_CONTINUE;
} /I end of callback

/I Set the callback into motion
hr = Ipdid2->EnumEffects(&EnumEffectsProc,
Ipdid2, DIEFT_ALL);

For more information on how to initialize an effect, see Creating an Effect.

Information About a Supported Effect

The IDirectInputDevice2::GetEffectInfo method can be used to retrieve
information about the device's support for an effect. It retrieves the same information
that is returned in the DIEFFECTINFO structure during enumeration. For more
information, see Effect Enumeration.

The following C++ example fetches information about an enumerated effect whose
GUID is stored in the EffectGuid variable:

DIEFFECTINFO diEffectinfo;
diEffectinfo.dwSize = sizeof(DIEFFECTINFO);
Ipdid2->GetEffectInfo(&diEffectinfo, EffectGuid);

in.doc — page 34

Creating an Effect

You create an effect object by using the IDirectInputDevice2::CreateEffect
method, as in the following C++ example, where pdev2 points to an instance of the
interface. This example creates a very simple effect that will pull the joystick away
from the user at full force for half a second.

HRESULT hr;
LPDIRECTINPUTEFFECT IpdiEffect; // receives pointer to created effect
DIEFFECT diEffect; /I parameters for created effect

DWORD dwAxes[2] = { DIJOFS_X, DIJOFS_Y };
LONG IDirection[2] = { 18000, 0 };

DICONSTANTFORCE diConstantForce;
diConstantForce.IMagnitude = DI_FFNOMINALMAX; // full force

diEffect.dwSize = sizeof(DIEFFECT);

diEffect.dwFlags = DIEFF_POLAR | DIEFF_OBJECTOFFSETS;
diEffect.dwDuration = 0.5 * DI_SECONDS;
diEffect.dwSamplePeriod = 0; /I = default
diEffect.dwGain = DI_FFNOMINALMAX; /I no scaling
diEffect.dwTriggerButton = DIEB_NOTRIGGER; // not a button response
diEffect.dwTriggerRepeatinterval = 0; // not applicable
diEffect.cAxes = 2;

diEffect.rgdwAxes = &dwAxes;

diEffect.rglDirection = &IDirection;

diEffect.IpEnvelope = NULL;

diEffect.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);
diEffect.lpvTypeSpecificParams = &diConstantForce;

hr = pdev2->CreateEffect(GUID_ConstantForce,
&diEffect,
&lpdiEffect,
NULL);

In the method call, the first parameter identifies the supported effect with which the
created effect is to be associated. The example uses one of the predefined GUIDs
found in Dinput.h. Note that if you use a predefined GUID, the call will fail if the
device doesn't support the effect.

The second parameter sets the parameters as specified in the DIEFFECT structure.
The third parameter receives a pointer to the effect object if the call is successful.

The DIEFF_POLAR flag specifies the type of coordinates used for the direction of
the force. (See Effect Direction.) It is combined with DIEFF_OBJECTOFFSETS,

in.doc — page 35

which indicates that any buttons or axes used in other members will be identified by
their offsets within the DIDATAFORMAT structure for the device. The alternative
is to use the DIEFF_OBJECTIDS flag, signifying that buttons and axes will be
identified by the dwType member of the DIDEVICEOBJECTINSTANCE structure
returned for the object when it was enumerated with the
IDirectInputDevice::EnumObjects method.

For more information on the members of the DIEFFECT structure, see Effect
Direction.

Effect Direction

Directions can be defined for one or more axes. As with the mouse and joystick, the
x-axis increases from left to right, and the y-axis increases from far to near. For three-
dimensional devices, the z-axis increases from up to down.

The direction of an effect is the direction from which it comes. An effect with a
direction along the negative y-axis tends to push the stick along the positive y-axis
(toward the user). It is somewhat easier to visualize the axis values of a direction if
you imagine the user exerting a counteracting force on the device. If the user must
push the stick toward the left in order to counteract an effect, the effect has a "left"
direction; that is, it lies on the negative x-axis.

Direction can be expressed in polar, spherical, or Cartesian coordinates.

Polar coordinates are expressed as a single angle, in hundredths of degrees clockwise
from whatever zero-point, or true north, has been established for the effect. Normally
this is the negative y-axis; that is, away from the user. Thus an effect with a polar
coordinate of 9,000 normally has a direction of east, or to the user's right, and the user
must exert force to the right in order to counteract it.

Spherical coordinates are also in hundredths of degrees but may contain two or more
angles; for each angle, the direction is rotated in the positive direction of the next
axis. For a three-dimensional device, the first angle would normally be rotated from
the positive x-axis toward the positive y-axis (clockwise from east); the second angle
would be rotated toward the positive z-axis (down). Thus a force with a direction of
(0, 0) would be to the user's right and parallel to the tabletop. A direction of 27,000
for the first angel and 4,500 for the second would be directly away from the user (270
degrees clockwise from east) and angling toward the floor (45 degrees downward
from the tabletop); to counteract a force with this direction, the user would have to
push forward and down.

Cartesian coordinates are similar to 3-D vectors. If you draw a straight line on graph
paper with an origin of (0, 0) at the center of the page, the direction of the line can be
defined by the coordinates of any intersection it crosses, regardless of the distance

from the origin. A direction of (1, -2) and a direction of (5, -10) are exactly the same.

Note
The coordinates used in creating force feedback effects define only direction, not
magnitude or distance.

in.doc — page 36

When an effect is created or modified, the cAxes, rgdwAxes, and rglDirection
members of the DIEFFECT structure are used to specify the direction of the force.

The cAxes member simply specifies the number of elements in the arrays pointed to
by the next two members.

The array pointed to by rgdwAxes identifies the axes. If the

DIEFF OBIJECTOFFSETS flag has been set, the axes are identified by the offsets
within the data format structure. These offsets are most readily identified by using the
DIJOFS_* defines. (For a list of these values, see Joystick Device Constants.)

Finally, the rglDirection member specifies the direction of the force.

Note
The cAxes and rgdwAxes members cannot be modified once they have been set.
An effect always has the same axis list.

Regardless of whether you are using Cartesian, polar, or spherical coordinates, you
must provide exactly as many elements in rglDirection as there are axes in the array
pointed to by rgdwAxes.

In the polar coordinate system, "north" (zero degrees) lies along the vector (0, -1),
where the elements of the vector correspond to the elements in the axis list pointed to
by rgdwAxes. Normally those axes are x and y, so north is directly along the negative
y-axis; that is, away from the user. The last element of [Direction must be zero.

In the example under Creating an Effect, the direction of a two-dimensional force is
defined in polar coordinates. The force has a south direction — it comes from the
direction of the user, so that the user has to pull the stick to counteract it. The
direction is 180 degrees clockwise from north, and can be assigned as follows:

LONG IDirection[2] = { 18000, 0 };

For greater clarity, the assignment could also be expressed this way:

LONG IDirection[2] = { 180 * DI_DEGREES, 0 };

For spherical coordinates, presuming that you are working with a three-axis device,
the same direction is assigned as follows:

LONG IDirection[3] = { 90 * DI_DEGREES, 0, 0}

The reference for the DIEFFECT structure tells us that the first angle is measured in
hundredths of degrees from the (1, 0) direction, rotated in the direction of (0, 1); the
second angle is measured in hundredths of degrees towards (0, 0, 1). The elements of
the vector notation again correspond to elements in the array pointed to by the
rgdwAxes member. Suppose the elements of this array represent the x, y, and z axes,
in that order. The point of origin is at x = 1 and y = 0; that is, to the user's right. The
direction of rotation is toward the positive y-axis (0, 1); that is, toward the user, or
clockwise. The force in the example is 90 degrees clockwise from the right; that is,

in.doc — page 37

south. Because the second element of [Direction is 0, there is no rotation on the third
axis.

How do you accomplish the same thing with Cartesian coordinates? Presuming you
have used the DIEFF_CARTESIAN flag in the dwFlags member, you would specify
the direction like this:

LONG IDirection[2] ={0,1};
Here again the elements of the array correspond to the axes listed in the array pointed

to by rgdwAxes. The example sets the x-axis to zero and the y-axis to 1; that is, the
direction lies directly along the positive y-axis, or to the south.

The theory of effect directions can be difficult to grasp, but the practice is fairly
straightforward. For sample code, see Examples of Setting Effect Direction.

Examples of Setting Effect Direction

Single-Axis Effects

Setting up the direction for a single-axis effect is extremely simple, because there is
really nothing to specify. You put the DIEFF_CARTESIAN flag in the dwFlags
member of the DIEFFECT structure and set rglDirection to point to a single LONG
containing the value 0.

The following example sets up the direction and axis parameters for an x-axis effect:

DIEFFECT eff;
LONG IZero=0; /I No direction
DWORD dwAXxis = DIJOFS_X; /I x-axis effect

ZeroMemory(&eff, sizeof(DIEFFECT));

eff.cAxes = 1, /I One axis
eff.dwFlags =
DIEFF_CARTESIAN | DIEFF_OBJECTOFFSETS,; // Flags
eff.rgIDirection = &lZero; /I Direction
eff.rgdwAxes = &dwAXis; /I Axis for effect

Two-Axis Effects with Polar Coordinates

Setting up the direction for a polar two-axis effect is only a little more complicated.
You set the DIEFF_POLAR flag in dwFlags and set rglDirection to point to an array
of two LONGs. The first element in this array is the direction you want the effect to
come from. The second element in the array must be zero.

The following example sets up the direction and axis parameters for a two-axis effect
coming from the east:

DIEFFECT eff;

in.doc — page 38

LONG rglIDirection = { 90 * DI_DEGREES, 0 }; // 90 degrees from
/I north, i.e. east
DWORD rgdwAxes[2] = { DIJOFS_X, DIJOFS_Y }; // x- and y-axis

ZeroMemory(&eff, sizeof(DIEFFECT));

eff.cAxes = 2; /I Two axes
eff.dwFlags =

DIEFF_POLAR | DIEFF_OBJECTOFFSETS; Il Flags
eff.rgIDirection = rgIDirection; /I Direction
eff.rgdwAxes = rgdwAxes; /I Axis for effect

Two-Axis Effects with Cartesian Coordinates

Setting up the direction for a Cartesian two-axis effect is a bit trickier, but not by
much. You set the DIEFF_CARTESIAN flag in dwFlags and again set rglDirection
to point to an array of two LONGs. This time the first element in the array is the x-
coordinate of the direction vector, and the second is the y-coordinate.

The following example sets up the direction and axis parameters for a two-axis effect
coming from the east:

DIEFFECT eff;
LONG rglIDirection={1,0}; /I Positive x = east
DWORD rgdwAxes[2] = { DIJOFS_X, DIJOFS_Y }; // x- and y-axis

ZeroMemory(&eff, sizeof(DIEFFECT));

eff.cAxes = 2; /I Two axes
eff.dwFlags =
DIEFF_CARTESIAN | DIEFF_OBJECTOFFSETS; /I Flags
eff.rgIDirection = rgIDirection; /I Direction
eff.rgdwAxes = rgdwAxes; /I Axis for effect

Envelopes and Offsets

You can modify the basic magnitude of some effects by applying an envelope and an
offset. For an overview, see Basic Concepts of Force Feedback

To apply an envelope when creating or modifying an effect, initialize a
DIENVELOPE structure and put a pointer to it in the I]pEnvelope member of the
DIEFFECT structure.

The device driver determines which effects support envelopes. Typically you can
apply an envelope to a constant force, a ramp force, or a periodic effect, but not to a
condition. To determine whether a particular effect supports an envelope, you call the
IDirectInputDevice2::GetEffectInfo method and check for the DIEP_ ENVELOPE
flag in the dwStaticParams member of the DIEFFECTINFO structure.

in.doc — page 39

To apply an offset, set the 10ffset member of the DIPERIODIC or DICONDITION
structure pointed to by the IpvTypeSpecificParams member of the DIEFFECT
structure. For periodic effects, the absolute value of the offset plus the magnitude of
the effect must not exceed DI FFNOMINALMAX.

You cannot apply an offset to a constant force or ramp force. In these cases the same
effect can be achieved by altering the magnitude.

Effect Playback

There are two principal ways to start playback of an effect: manually by a call to the
IDirectInputEffect::Start method, and automatically in response to a button press.
Playback also starts when you change an effect by calling the
IDirectInputEffect::SetParameters method with the DIEP START flag.

Passing INFINITE in the dwlterations parameter has the effect of playing the effect
repeatedly, with the envelope being applied each time. If you want to repeat an effect
without repeating the envelope — for example, to begin with a strong kick, then settle
down to a steady throb — set dwlterations to 1 and set the dwDuration member of
the DIEFFECT structure to INFINITE. (Thi