Immediate-Mode Reference

This section contains reference information for the API elements provided by
Direct3D® Immediate Mode. Reference material is divided into the following
categories:

® Interfaces

e D3D_OVERLOADS

e (Callback Functions

® Macros

e Structures

* Enumerated Types

¢ Other Types

¢ Return Values

Interfaces

This section contains reference information for the COM interfaces provided by
Direct3D's Immediate Mode. The following interfaces are covered:

¢ IDirect3D2

® IDirect3DDevice

¢ IDirect3DDevice2

® [IDirect3DExecuteBuffer
® IDirect3DLight

® [IDirect3DMaterial2

® IDirect3DTexture2

¢ IDirect3DViewport2

IDirect3D2

Applications use the methods of the IDirect3D2 interface to create Direct3D objects
and set up the environment. This section is a reference to the methods of this
interface. For a conceptual overview, see IDirect3D2 interface.

The IDirect3D2 interface is obtained by calling the QuerylInterface method from a
DirectDraw object.

The major difference between IDirect3D2 and the IDirect3D interface is the addition
of the CreateDevice method.



in.doc — page 2

The methods of the IDirect3D2 interface can be organized into the following groups:

Creation CreateDevice
CreateLight
CreateMaterial
CreateViewport

Enumeration EnumDevices
FindDevice

The IDirect3D2 interface, like all COM interfaces, inherits the IUnknown interface
methods. The IUnknown interface supports the following three methods:

AddRef
QuerylInterface
Release

The LPDIRECT3D2 and LPDIRECT3D types are defined as pointers to the
IDirect3D2 and IDirect3D interfaces:

typedef struct IDirect3D *LPDIRECT3D;
typedef struct IDirect3D2 *LPDIRECT3D2;

IDirect3D2::CreateDevice

The IDirect3D2::CreateDevice method creates a Direct3D device to be used with
the DrawPrimitive methods.

HRESULT CreateDevice(
REFCLSID rclsid,
LPDIRECTDRAWSURFACE /pDDS,
LPDIRECT3DDEVICE2 * [pl[pD3DDevice2

)i

Parameters

relsid
Class identifier for the new device. This can be IID_IDirect3DHALDevice,
IID IDirect3DMMXDevice, IID IDirect3DRampDevice, or
IID IDirect3DRGBDevice.

IpDDS
Address of a DirectDraw surface that describes the new device.
IplpD3DDevice2

Address that points to the new IDirect3DDevice2 interface when the method
returns.



in.doc — page 3

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks

This method was introduced with the IDirect3D2 interface. In previous versions of
Direct3D, devices could be created only by calling the
IDirectDrawSurface::QuerylInterface method; devices created in this manner can
only be used with execute buffers.

When you call IDirect3D2::CreateDevice, you create a device object that is separate
from a DirectDraw surface object. This device uses a DirectDraw surface as a
rendering target.

IDirect3D2::CreateLight

The IDirect3D2::CreateLight method allocates a Direct3DLight object. This object
can then be associated with a viewport by using the IDirect3DViewport2::AddLight
method.

HRESULT CreateLight(
LPDIRECT3DLIGHT* IplpDirect3DLight,
IUnknown* pUnkQuter

);

Parameters

IplpDirect3DLight
Address that will be filled with a pointer to an IDirect3DLight interface if the
call succeeds.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, the IDirect3D2::CreateLight method returns an
error if this parameter is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR INVALIDOBJECT
DDERR INVALIDPARAMS



in.doc — page 4

Remarks

This method is unchanged from its implementation in the IDirect3D interface.

IDirect3D2::CreateMaterial

The IDirect3D2::CreateMaterial method allocates a Direct3DMaterial2 object.

HRESULT CreateMaterial(
LPDIRECT3DMATERIAL2* [pipDirect3DMaterial2,
IUnknown* pUnkOuter

);

Parameters

IplpDirect3DMaterial2
Address that will be filled with a pointer to an IDirect3DMaterial2 interface if
the call succeeds.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, the IDirect3D2::CreateMaterial method returns
an error if this parameter is anything but NULL.

Return Values

If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. For a list of possible return codes, see
Direct3D Immediate-Mode Return Values.

Remarks

In the IDirect3D interface, this method retrieved a pointer to an IDirect3DMaterial
interface, not an IDirect3DMaterial2 interface.

IDirect3D2::CreateViewport

The IDirect3D2::CreateViewport method creates a Direct3DViewport object. The
viewport is associated with a Direct3DDevice object by using the
IDirect3DDevice2::AddViewport method.

HRESULT CreateViewport(
LPDIRECT3DVIEWPORT2* |plpD3DViewport2,
IUnknown* pUnkOuter

)i



in.doc — page 5

Parameters

IplpD3DViewport
Address that will be filled with a pointer to an IDirect3DViewport2 interface if
the call succeeds.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation
features. Currently, however, the IDirect3D2::CreateViewport method returns
an error if this parameter is anything but NULL.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR INVALIDPARAMS

Remarks

In the IDirect3D interface, this method retrieves a pointer to an IDirect3DViewport
interface, not an IDirect3DViewport2 interface.

IDirect3D2::EnumDevices

The IDirect3D2::EnumDevices method enumerates all Direct3D device drivers
installed on the system.

HRESULT EnumbDevices(
LPD3DENUMDEVICESCALLBACK IpEnumDevicesCallback,
LPVOID IpUserArg

);

Parameters

IpEnumDevicesCallback
Address of the D3IDENUMDEVICESCALLBACK callback function that the
enumeration procedure will call every time a match is found.

IpUserArg
Address of application-defined data passed to the callback function.

Return Values

If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:



in.doc — page 6

DDERR INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks

MMX devices are enumerated only by IDirect3D2::EnumDevices, not by its
predecessor, IDirect3D::EnumDevices. If you use the QueryInterface method to
create an IDirect3D interface from IDirect3D2 before you enumerate the Direct3D
drivers, the enumeration will behave like IDirect3D::EnumDevices — no MMX
devices will be enumerated.

To use execute buffers with an MMX device, you must call the
IDirect3D2::CreateDevice method to create an MMX IDirect3DDevice2 interface
and then use the QueryInterface method to create an IDirect3DDevice interface
from IDirect3DDevice2.

IDirect3D2::FindDevice

The IDirect3D2::FindDevice method finds a device with specified characteristics
and retrieves a description of it.

HRESULT FindDevice(
LPD3DFINDDEVICESEARCH I[pD3DFDS,
LPD3DFINDDEVICERESULT IpD3DFDR

);

Parameters

IpD3DFDS
Address of the D3IDFINDDEVICESEARCH structure describing the device to
be located.

IpD3DFDR
Address of the D3DFINDDEVICERESULT structure describing the device if it
is found.

Return Values

If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error. For a list of possible return codes, see
Direct3D Immediate-Mode Return Values.

Remarks

This method is unchanged from its implementation in the IDirect3D interface.



in.doc — page 7

IDirect3D::Initialize

The IDirect3D2::Initialize method is not implemented.

HRESULT Initialize(
REFIID [pREFIID

)i

IDirect3DDevice

Applications use the methods of the IDirect3DDevice interface to retrieve and set the
capabilities of Direct3D devices. This section is a reference to the methods of these
interface. For a conceptual overview, see Devices.

The IDirect3DDevice interface supports applications that work with execute buffers.
It has been extended by the IDirect3DDevice2 interface, which supports the
DrawPrimitive methods.

The Direct3DDevice object is obtained by calling the QueryInterface method from a
DirectDrawSurface object that was created as a 3-D—capable surface.

The methods of the IDirect3DDevice interface can be organized into the following
groups. Note that in some cases IDirect3DDevice methods are documented in the
reference to the IDirect3DDevice2 interface.
Execute buffers CreateExecuteBuffer

Execute

Information EnumTextureFormats
GetCaps
GetDirect3D
GetPickRecords
GetStats

Matrices CreateMatrix
DeleteMatrix
GetMatrix
SetMatrix

Miscellaneous Initialize
Pick

SwapTextureHandles

Scenes BeginScene



in.doc — page 8

EndScene

Viewports AddViewport
DeleteViewport
NextViewport

The IDirect3DDevice interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

AddRef
QuerylInterface
Release

The LPDIRECT3DDEVICE type is defined as a pointer to the IDirect3DDevice
interface:

typedef struct IDirect3DDevice *LPDIRECT3DDEVICE;

IDirect3DDevice::CreateExecuteBuffer

The IDirect3DDevice::CreateExecuteBuffer method allocates an execute buffer for
a display list.

HRESULT CreateExecuteBuffer(
LPD3DEXECUTEBUFFERDESC /pDesc,
LPDIRECT3DEXECUTEBUFFER *IplpDirect3DExecuteBuffer,
IUnknown *pUnkOuter

)i

Parameters

IpDesc
Address of a DIDEXECUTEBUFFERDESC structure that describes the
Direct3DExecuteBuffer object to be created. The call will fail if a buffer of at
least the specified size cannot be created.

IplpDirect3DExecuteBuffer
Address of a pointer that will be filled with the address of the new
Direct3DExecuteBuffer object.

pUnkOuter
This parameter is provided for future compatibility with COM aggregation

features. Currently, however, this method returns an error if this parameter is
anything but NULL.

Return Values

If the method succeeds, the return value is D3D_OK.



in.doc — page 9

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks

The display list may be read by hardware DMA into VRAM for processing. All
display primitives in the buffer that have indices to vertices must also have those
vertices in the same buffer.

The D3ADEXECUTEBUFFERDESC structure describes the execute buffer to be
created. At a minimum, the application must specify the size required. If the
application specifies D3ADDEBCAPS VIDEOMEMORY in the dwCaps member,
Direct3D will attempt to keep the execute buffer in video memory.

The application can use the IDirect3DExecuteBuffer::Lock method to request that
the memory be moved. When this method returns, it will adjust the contents of the
D3DEXECUTEBUFFERDESC structure to indicate whether the data resides in
system or video memory.

IDirect3DDevice::CreateMatrix

The IDirect3DDevice::CreateMatrix method creates a matrix.

HRESULT CreateMatrix(
LPD3DMATRIXHANDLE /pD3DMatHandle

)i

Parameters

IpD3DMatHandle
Address of a variable that will contain a handle to the matrix that is created. The
call will fail if a buffer of at least the size of the matrix cannot be created.

Return Values

If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error, such as DDERR _INVALIDPARAMS.

See Also
IDirect3DDevice::DeleteMatrix, IDirect3DDevice::SetMatrix



in.doc — page 10

IDirect3DDevice::DeleteMatrix

The IDirect3DDevice::DeleteMatrix method deletes a matrix handle. This matrix
handle must have been created by using the IDirect3DDevice::CreateMatrix
method.

HRESULT DeleteMatrix(
D3DMATRIXHANDLE d3dMatHandle
);

Parameters

d3dMatHandle
Matrix handle to be deleted.

Return Values

If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error, such as DDERR _INVALIDPARAMS.

See Also

IDirect3DDevice::CreateMatrix, IDirect3DDevice::SetMatrix

IDirect3DDevice::Execute

The IDirect3DDevice::Execute method executes a buffer.

HRESULT Execute(
LPDIRECT3DEXECUTEBUFFER IpDirect3DExecuteBuffer,
LPDIRECT3DVIEWPORT IpDirect3DViewport,
DWORD dwFlags

)i

Parameters

IpDirect3DExecuteBuffer
Address of the execute buffer to be executed.

IpDirect3DViewport
Address of the Direct3DViewport object that describes the transformation
context into which the execute buffer will be rendered.

dwFlags
Flags specifying whether or not objects in the buffer should be clipped. This
parameter must be one of the following values:

D3DEXECUTE CLIPPED



in.doc — page 11

Clip any primitives in the buffer that are outside or partially outside the
viewport.

D3DEXECUTE UNCLIPPED
All primitives in the buffer are contained within the viewport.

Return Values

If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

See Also
D3DEXECUTEDATA, D3DINSTRUCTION, IDirect3DExecuteBuffer::Validate

IDirect3DDevice::GetMatrix

The IDirect3DDevice::GetMatrix method retrieves a matrix from a matrix handle.
This matrix handle must have been created by using the
IDirect3DDevice::CreateMatrix method.

HRESULT GetMatrix(
D3DMATRIXHANDLE D3DMatHandle,
LPD3DMATRIX [pD3DMatrix

);

Parameters

D3DMatHandle
Handle to the matrix to be retrieved.

IpD3DMatrix
Address of a D3ADMATRIX structure that contains the matrix when the method
returns.

Return Values

If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error, such as DDERR INVALIDPARAMS.

See Also

IDirect3DDevice::CreateMatrix, IDirect3DDevice::DeleteMatrix,
IDirect3DDevice::SetMatrix



in.doc — page 12

IDirect3DDevice::GetPickRecords

The IDirect3DDevice::GetPickRecords method retrieves the pick records for a
device.

HRESULT GetPickRecords(
LPDWORD /pCount,
LPD3DPICKRECORD IpD3DPickRec

)i

Parameters

IpCount
Address of a variable that contains the number of D3ADPICKRECORD
structures to retrieve.

IpD3DPickRec
Address that will contain an array of D3DPICKRECORD structures when the
method returns.

Return Values

If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error.

Remarks

An application typically calls this method twice. In the first call, the second parameter
is set to NULL, and the first parameter retrieves a count of all relevant
D3DPICKRECORD structures. The application then allocates sufficient memory for
those structures and calls the method again, specifying the newly allocated memory
for the second parameter.

IDirect3DDevice::Initialize

The IDirect3DDevice::Initialize method is not implemented.

HRESULT Initialize(
LPDIRECT3D /pd3d,
LPGUID /[pGUID,
LPD3DDEVICEDESC /pd3ddvdesc

)i



in.doc — page 13

IDirect3DDevice::Pick

The IDirect3DDevice::Pick method executes a buffer without performing any
rendering, but returns a z-ordered list of offsets to the primitives that intersect the
upper-left corner of the rectangle specified by /pRect.

This call fails if the Direct3DExecuteBuffer object is locked.

HRESULT Pick(
LPDIRECT3DEXECUTEBUFFER IpDirect3DExecuteBuffer,
LPDIRECT3DVIEWPORT IpDirect3DViewport,
DWORD dwFlags,
LPD3DRECT IpRect

)i

Parameters
IpDirect3DExecuteBuffer
Address of an execute buffer from which the z-ordered list is retrieved.

IpDirect3DViewport
Address of a viewport in the list of viewports associated with this
Direct3DDevice object.

dwFlags
No flags are currently defined for this method.

IpRect
Address of a D3DRECT structure specifying the device coordinates to be
picked. Currently, only primitives that intersect the x1, y1 coordinates of this
rectangle are returned. The x2, y2 coordinates are ignored.

Return Values
If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:

D3DERR_EXECUTE LOCKED
DDERR INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks
The coordinates are specified in device-pixel space.

All Direct3DExecuteBuffer objects must be attached to a Direct3DDevice object in
order for this method to succeed.



in.doc — page 14

See Also
IDirect3DDevice::GetPickRecords

IDirect3DDevice::SetMatrix

The IDirect3DDevice::SetMatrix method applies a matrix to a matrix handle. This
matrix handle must have been created by using the IDirect3DDevice::CreateMatrix
method.

HRESULT SetMatrix(
D3DMATRIXHANDLE d3dMatHandle,
LPD3DMATRIX [pD3DMatrix

)i

Parameters

d3dMatHandle
Matrix handle to be set.

IpD3DMatrix
Address of a D3ADMATRIX structure that describes the matrix to be set.

Return Values

If the method succeeds, the return value is D3D_OK.
If the method fails, the return value is an error, such as DDERR _INVALIDPARAMS.

Remarks

Transformations inside the execute buffer include a handle to a matrix. The
IDirect3DDevice::SetMatrix method enables an application to change this matrix
without having to lock and unlock the execute buffer.

See Also

IDirect3DDevice::CreateMatrix, IDirect3DDevice::GetMatrix,
IDirect3DDevice::DeleteMatrix

IDirect3DDevice2

The IDirect3DDevice2 interface helps applications work with the DrawPrimitive
methods; this is in contrast to the IDirect3DDevice interface, which applications use
to work with execute buffers. You can create a Direct3DDevice2 object by calling the
IDirect3D2::CreateDevice method.

For a conceptual overview, see Devices and The DrawPrimitive Methods.



in.doc — page 15

The methods of the IDirect3DDevice2 interface can be organized into the following

groups:

Information

Miscellaneous

Getting and Setting States

Rendering

Scenes

Viewports

EnumTextureFormats
GetCaps

GetDirect3D

GetStats

MultiplyTransform
SwapTextureHandles

GetClipStatus
GetCurrentViewport
GetLightState
GetRenderState
GetRenderTarget
GetTransform
SetClipStatus
SetCurrentViewport
SetLightState
SetRenderState
SetRenderTarget
SetTransform

Begin

BeginIndexed
DrawlIndexedPrimitive
DrawPrimitive

End

Index

Vertex

BeginScene
EndScene

AddViewport
DeleteViewport
NextViewport



in.doc — page 16

The IDirect3DDevice2 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

AddRef
Querylnterface
Release

The IDirect3DDevice2 interface is not intended to be used with execute buffers. If
you need to use some of the methods in the IDirect3DDevice interface that are not
supported in IDirect3DDevice2, you can call IDirect3DDevice2::QuerylInterface to
retrieve a pointer to an IDirect3DDevice interface. The following methods from the
IDirect3DDevice interface are not supported by IDirect3DDevice2:
IDirect3DDevice::CreateExecuteBuffer

IDirect3DDevice::CreateMatrix

IDirect3DDevice::DeleteMatrix

IDirect3DDevice::Execute

IDirect3DDevice::GetMatrix

IDirect3DDevice::GetPickRecords

IDirect3DDevice::Initialize

IDirect3DDevice::Pick

IDirect3DDevice::SetMatrix

The LPDIRECT3DDEVICE2 type is defined as a pointer to the IDirect3DDevice2
interface:

typedef struct IDirect3DDevice2 *LPDIRECT3DDEVICEZ2;

IDirect3DDevice2::AddViewport

The IDirect3DDevice2::AddViewport method adds the specified viewport to the list
of viewport objects associated with the device.

HRESULT AddViewport(
LPDIRECT3DVIEWPORT?2 IpDirect3DViewport2

)i

Parameters

IpDirect3DViewport2
Address of the IDirect3DViewport2 interface that should be associated with this
Direct3DDevice object.

Return Values

If the method succeeds, the return value is D3D_OK.



in.doc — page 17

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks

In the IDirect3DDevice interface, this method requires a pointer to an
IDirect3DViewport interface, not an IDirect3DViewport2 interface.

IDirect3DDevice2::Begin

The IDirect3DDevice2::Begin method indicates the start of a sequence of rendered
primitives. This method defines the type of these primitives and the type of vertices
on which they are based. The only method you can legally call between calls to
IDirect3DDevice2::Begin and IDirect3DDevice2::End is
IDirect3DDevice2::Vertex.

HRESULT Begin(
D3DPRIMITIVETYPE d3dpt,
D3DVERTEXTYPE d3dvt,
DWORD dwFlags

)i

Parameters

d3dpt
One of the members of the D3DPRIMITIVETYPE enumerated type.

d3dvt
Indicates the type of vertices to be used in rendering this primitive. Only vertices
of this type will be accepted before the corresponding IDirect3DDevice2::End.

This must be one of the members of the D3IDVERTEXTYPE enumerated type,
as specified in a call to the IDirect3DDevice2::Vertex method.

dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP The application has already done the required

clipping, so the system should not necessarily clip
the primitives. (This flag is a hint; the system
may clip the primitive even when this flag is
specified, under some circumstances.)

D3DDP_DONOTUPDATEEXTENTS Disables the updating of the screen rectangle
affected by this rendering call. Using this flag can
potentially help performance, but the extents
returned by IDirect3DDevice2::GetClipStatus
will not have been updated to account for the data
rendered by this call.



in.doc — page 18

D3DDP_OUTOFORDER A hint to the system that the primitives can be
rendered out of order. Note that back-to-back
calls to DrawPrimitive methods using this flag
may cause triangles from the primitives to be
interleaved. The DrawPrimitive methods that use
this flag are Begin, BeginIndexed,
DrawIndexedPrimitive, and DrawPrimitive.

D3DDP_WAIT Causes the method to wait until the polygons
have been rendered before it returns, instead of
returning as soon as the polygons have been sent
to the card. (On scene-capture cards, the method
returns as soon as the card responds.)

This flag is typically used for debugging.
Applications should not attempt to use this flag to
ensure that a scene is up-to-date before
continuing.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks

This method fails if it is called after a call to the IDirect3DDevice2::Begin or
IDirect3DDevice2::BeginIndexed method that has no bracketing call to
IDirect3DDevice2::End method. Rendering calls that specify the wrong vertex type
or that perform state changes will cause rendering of this primitive to fail.

This method was first introduced in the IDirect3DDevice2 interface.

See Also

IDirect3DDevice2::BeginIndexed, IDirect3DDevice2::End,
IDirect3DDevice2::Vertex

IDirect3DDevice2::Beginindexed

The IDirect3DDevice2::BeginIndexed method defines the start of a primitive based
on indexing into an array of vertices. This method fails if it is called after a call to the
IDirect3DDevice2::Begin or IDirect3DDevice2::BeginIndexed method that has no
corresponding call to IDirect3DDevice2::End. The only method you can legally call
between calls to IDirect3DDevice2::BeginIndexed and IDirect3DDevice2::End is
IDirect3DDevice2::Index.

HRESULT Beginindexed(



in.doc — page 19

D3DPRIMITIVETYPE dptPrimitiveType,
D3DVERTEXTYPE dvtVertexType,
LPVOID IpvVertices,

DWORD dwNumVertices,

DWORD dwFlags

Parameters

dptPrimitiveType
Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type. Note that the
D3DPT_POINTLIST member of D3DPRIMITIVETYPE is not indexed.

dvtVertexType
Indicates the types of the vertices used. This must be one of the members of the
D3DVERTEXTYPE enumerated type.

IpvVertices
Pointer to the list of vertices to be used in the primitive sequence.

dwNumVertices
Number of vertices in the above array.
dwFlags
One or more of the following flags defining how the primitive is drawn:
D3DDP_DONOTCLIP The application has already done the required

clipping, so the system should not necessarily clip
the primitives. (This flag is a hint; the system may
clip the primitive even when this flag is specified,
under some circumstances.)

D3DDP_DONOTUPDATEEXTENTS Disables the updating of the screen rectangle
affected by this rendering call. Using this flag can
potentially help performance, but the extents
returned by IDirect3DDevice2::GetClipStatus
will not have been updated to account for the data
rendered by this call.

D3DDP_OUTOFORDER A hint to the system that the primitives can be
rendered out of order. Note that back-to-back calls
to DrawPrimitive methods using this flag may
cause triangles from the primitives to be
interleaved. The DrawPrimitive methods that use
this flag are Begin, BeginIndexed,
DrawlIndexedPrimitive, and DrawPrimitive.

D3DDP_WAIT Causes the method to wait until the polygons have
been rendered before it returns, instead of
returning as soon as the polygons have been sent to
the card. (On scene-capture cards, the method



in.doc — page 20

returns as soon as the card responds.)

This flag is typically used for debugging.
Applications should not attempt to use this flag to
ensure that a scene is up-to-date before continuing.

Return Values

If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:

D3DERR_INVALIDRAMPTEXTURE Ramp mode is being used and the
texture handle in the current material
does not match the current texture
handle that is set as a render state.

DDERR INVALIDPARAMS One of the arguments is invalid.

Remarks

This method was first introduced in the IDirect3DDevice2 interface.

See Also
IDirect3DDevice2::Begin, IDirect3DDevice2::End, IDirect3DDevice2::Index

IDirect3DDevice2::BeginScene

The IDirect3DDevice2::BeginScene method begins a scene.

Applications must call the IDirect3DDevice2::BeginScene method before
performing any rendering, and must call IDirect3DDevice2::EndScene when
rendering is complete.

This method is unchanged from its implementation in the IDirect3DDevice interface.
HRESULT BeginScene();
Parameters

None.

Return Values

If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error.

See Also
IDirect3DDevice2::EndScene



in.doc — page 21

IDirect3DDevice2::DeleteViewport

The IDirect3DDevice2::DeleteViewport method removes the specified viewport
from the list of viewport objects associated with the device.

HRESULT DeleteViewport(
LPDIRECT3DVIEWPORT?2 IpDirect3DViewport2
);

Parameters

IpDirect3DViewport2
Address of the Direct3DViewport2 object that should be disassociated with this
Direct3DDevice2 object.

Return Values

If the method succeeds, the return value is D3D_OK.
If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks

In the IDirect3DDevice interface, this method requires a pointer to an
IDirect3DViewport interface, not an IDirect3DViewport2 interface.

IDirect3DDevice2::DrawindexedPrimitive

The IDirect3DDevice2::DrawlndexedPrimitive method renders the specified
geometric primitive based on indexing into an array of vertices.

HRESULT DrawlIndexedPrimitive(
D3DPRIMITIVETYPE d3dptPrimitiveType,
D3DVERTEXTYPE d3dvtVertexType,
LPVOID IpvVertices,

DWORD dwVertexCount,
LPWORD dwindices,
DWORD dw/ndexCount,
DWORD dwFlags

)i

Parameters

d3dptPrimitiveType



in.doc — page 22

Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type.

Note that the D3DPT_POINTLIST member of D3DPRIMITIVETYPE is not
indexed.

d3dvtVertexType
Indicates the types of the vertices used. This must be one of the members of the
D3DVERTEXTYPE enumerated type.

IpvVertices
Pointer to the list of vertices to be used in the primitive sequence.

dwVertexCount
Defines the number of vertices in the list.

Notice that this parameter is used differently from the dwVertexCount parameter
in the IDirect3DDevice2::DrawPrimitive method. In that method, the
dwVertexCount parameter gives the number of vertices to draw, but here it gives
the total number of vertices in the array pointed to by the /pvVertices parameter.
When you call IDirect3DDevice2::DrawlndexedPrimitive, you specify the
number of vertices to draw in the dwindexCount parameter.

dwlndices
Pointer to a list of WORDs that are to be used to index into the specified vertex
list when creating the geometry to render.

dwindexCount
Specifies the number of indices provided for creating the geometry.

dwFlags
One or more of the following flags defining how the primitive is drawn:

D3DDP_DONOTCLIP The application has already done the required
clipping, so the system should not necessarily
clip the primitives. (This flag is a hint; the
system may clip the primitive even when this
flag is specified, under some circumstances.)

D3DDP_DONOTUPDATEEXTENTS Disables the updating of the screen rectangle
affected by this rendering call. Using this flag
can potentially help performance, but the extents
returned by IDirect3DDevice2::GetClipStatus
will not have been updated to account for the
data rendered by this call.

D3DDP_OUTOFORDER A hint to the system that the primitives can be
rendered out of order. Note that back-to-back
calls to DrawPrimitive methods using this flag
may cause triangles from the primitives to be
interleaved. The DrawPrimitive methods that
use this flag are Begin, BeginIndexed,
DrawIndexedPrimitive, and DrawPrimitive.

D3DDP_WAIT Causes the method to wait until the polygons
have been rendered before it returns, instead of



in.doc — page 23

returning as soon as the polygons have been sent
to the card. (On scene-capture cards, the method
returns as soon as the card responds.)

This flag is typically used for debugging.
Applications should not attempt to use this flag
to ensure that a scene is up-to-date before
continuing.

Return Values

If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:

D3DERR _INVALIDRAMPTEXTURE Ramp mode is being used and the texture handle
in the current material does not match the
current texture handle that is set as a render
state.

DDERR_INVALIDPARAMS One of the arguments is invalid.

Remarks

In current versions of DirectX, IDirect3DDevice2::DrawIndexedPrimitive can
sometimes generate an update rectangle that is larger than it strictly needs to be. If a
large number of vertices need to be processed, this can have a negative impact on the
performance of your application. If you are using D3ADTLVERTEX vertices and the
system is processing more vertices than you need, you should use the
D3DDP_DONOTCLIP and D3DDP_DONOTUPDATEEXTENTS flags to solve the
problem.

This method was introduced with the IDirect3DDevice2 interface.

See Also

IDirect3DDevice2::DrawPrimitive

IDirect3DDevice2::DrawPrimitive

The IDirect3DDevice2::DrawPrimitive method renders the specified array of
vertices as a sequence of geometric primitives of the specified type.

HRESULT DrawPrimitive(
D3DPRIMITIVETYPE dptPrimitiveType,
D3DVERTEXTYPE dvtVertexType,
LPVOID IpvVertices,

DWORD dwVertexCount,
DWORD dwFlags



in.doc — page 24

Parameters

dptPrimitiveType

Type of primitive to be rendered by this command. This must be one of the
members of the D3DPRIMITIVETYPE enumerated type.

dvtVertexType

Indicates the types of the vertices used. This must be one of the members of the

D3DVERTEXTYPE enumerated type.

IpvVertices

Pointer to the array of vertices to be used in the primitive sequence.

dwVertexCount

Defines the number of vertices in the array.

dwFlags

One or more of the following flags defining how the primitive is drawn:

D3DDP_DONOTCLIP

D3DDP_DONOTUPDATEEXTENTS

D3DDP_OUTOFORDER

D3DDP_WAIT

The application has already done the required
clipping, so the system should not necessarily
clip the primitives. (This flag is a hint; the
system may clip the primitive even when this
flag is specified, under some circumstances.)

Disables the updating of the screen rectangle
affected by this rendering call. Using this flag
can potentially help performance, but the extents
returned by IDirect3DDevice2::GetClipStatus
will not have been updated to account for the
data rendered by this call.

A hint to the system that the primitives can be
rendered out of order. Note that back-to-back
calls to DrawPrimitive methods using this flag
may cause triangles from the primitives to be
interleaved. The DrawPrimitive methods that
use this flag are Begin, BeginIndexed,
DrawlIndexedPrimitive, and DrawPrimitive.

Causes the method to wait until the polygons
have been rendered before it returns, instead of
returning as soon as the polygons have been sent
to the card. (On scene-capture cards, the method
returns as soon as the card responds.)

This flag is typically used for debugging.
Applications should not attempt to use this flag
to ensure that a scene is up-to-date before
continuing.



in.doc — page 25

Return Values

If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:

D3DERR _INVALIDRAMPTEXTURE Ramp mode is being used and the
texture handle in the current material
does not match the current texture
handle that is set as a render state.

DDERR_INVALIDPARAMS One of the arguments is invalid.

Remarks

This method was introduced with the IDirect3DDevice2 interface.

See Also

IDirect3DDevice2::DrawlndexedPrimitive

IDirect3DDevice2::End

The IDirect3DDevice2::End method signals the completion of a primitive sequence.
This method fails if no corresponding call to the IDirect3DDevice2::Begin method
was made.

HRESULT End(
DWORD dwFlags

);

Parameters

dwFlags
Reserved. A flag word that should be set to 0.

Return Values

If the method succeeds, the return value is DD_OK.
If the method fails, the return value may be one of the following values:

D3DERR INVALIDRAMPTEXTURE Ramp mode is being used and the
texture handle in the current material
does not match the current texture
handle that is set as a render state.

DDERR_INVALIDPARAMS One of the arguments is invalid.



in.doc — page 26

Remarks

This method fails if the vertex count is incorrect for the primitive type. It fails without
drawing if it is called before a sufficient number of vertices is specified. If the number
of Vertex or index calls made is not evenly divisible by 3 (in the case of triangles), or

2 (in the case of lineList), the remainder will be ignored.

This method was introduced with the IDirect3DDevice2 interface.

See Also
IDirect3DDevice2::Begin

IDirect3DDevice2::EndScene

The IDirect3DDevice2::EndScene method ends a scene that was begun by calling
the IDirect3DDevice2::BeginScene method.

HRESULT EndScene();
Parameters

None.

Return Values

If the method succeeds, the return value is D3D_OK.

If the method fails, the return value is an error.

Remarks

When this method succeeds, the scene will have been rendered and the device surface
will hold the contents of the rendering.

This method is unchanged from its implementation in the IDirect3DDevice interface.

See Also
IDirect3DDevice2::BeginScene

IDirect3DDevice2::EnumTextureFormats

The IDirect3DDevice2::EnumTextureFormats method queries the current driver
for a list of supported texture formats.

HRESULT EnumTextureFormats(
LPD3DENUMTEXTUREFORMATSCALLBACK Ipd3dEnumTextureProc,
LPVOID IpArg

);



in.doc — page 27

Parameters

Ipd3dEnumTextureProc
Address of the D3ADENUMTEXTUREFORMATSCALLBACK callback
function that the enumeration procedure will call for each texture format.

IpArg
Address of application-defined data passed to the callback function.

Return Values
If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS

Remarks

This method is unchanged from its implementation in the IDirect3DDevice interface.

IDirect3DDevice2::GetCaps

The IDirect3DDevice2::GetCaps method retrieves the capabilities of the
Direct3DDevice2 object.

HRESULT GetCaps(
LPD3DDEVICEDESC /[pD3DHWDevDesc,
LPD3DDEVICEDESC I[pD3DHELDevDesc

);

Parameters

IpD3DHWDevDesc
Address of the D3ADDEVICEDESC structure that will contain the hardware
features of the device.

IpD3DHELDevDesc
Address of the D3ADDEVICEDESC structure that will contain the software
emulation being provided.

Return Values

If the method succeeds, the return value is D3D_OK.

If the method fails, the return value may be one of the following values:



in.doc — page 28

DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
Remarks

This method does not retrieve the capabilities of the display device. To retrieve this
information, use the IDirectDraw2::GetCaps method.

This method is unchanged from its implementation in the IDirect3DDevice interface.

IDirect3DDevice2::GetClipStatus

The IDirect3DDevice2::GetClipStatus method gets the current clip status.

HRESULT GetClipStatus(
LPD3DCLIPSTATUS IpD3DClipStatus

)i

Parameters

IpD3DClipStatus
Address of a D3DCLIPSTATUS structure that describes the current clip status.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.
Remarks

This method was introduced with the IDirect3DDevice2 interface.

See Also
IDirect3DDevice2::SetClipStatus

IDirect3DDevice2::GetCurrentViewport

The IDirect3DDevice2::GetCurrentViewport method retrieves the current
viewport.

HRESULT GetCurrentViewport(
LPDIRECT3DVIEWPORT?2 *|plpd3dViewport2

)i



in.doc — page 29

Parameters

Iplpd3dViewport2
Address that contains a pointer to the current viewport when the method returns.
A reference is taken to the viewport object.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value may be one of the following values:

DDERR _INVALIDPARAMS One of the arguments is invalid.

D3DERR NOCURRENTVIEWPORT No current viewport has been set by a
call to the
IDirect3DDevice2::SetCurrentView
port method.

Remarks

This method increases the reference count of the viewport interface retrieved in the
Iplpd3dViewport2 parameter. The application must release this interface when it is no
longer needed.

This method was introduced with the IDirect3DDevice2 interface.

See Also

IDirect3DDevice2::SetCurrentViewport

IDirect3DDevice2::GetDirect3D

The IDirect3DDevice2::GetDirect3D method retrieves the current IDirect3D2
interface.

HRESULT GetDirect3D(
LPDIRECT3D2 */pjpD3D2

);

Parameters

IplpD3D2
Address that will contain the interface when the method returns.

Return Values

If the method succeeds, the return value is D3D_OK.



in.doc — page 30

If the method fails, the return value is an error. For a list of possible return codes, see
Direct3D Immediate-Mode Return Values.
Remarks

In the IDirect3DDevice interface, this method retrieves the current IDirect3D
interface instead of an IDirect3D2 interface.

IDirect3DDevice2::GetLightState

The IDirect3DDevice2::GetLightState method gets a single Direct3D Device
lighting-related state value.

HRESULT GetLightState(
D3DLIGHTSTATETYPE dwLightStateType,
LPDWORD IpdwLightState

)i

Parameters

dwLightStateType
Device state variable that is being queried. This parameter can be any of the
members of the D3DLIGHTSTATETYPE enumerated type.

IpdwLightState
Address of a variable that will contain the Direct3D Device light state when the
method returns.

Return Values

If the method succeeds, the return value is DD_OK.

If the method fails, the return value is an error. The method returns
DDERR_INVALIDPARAMS if one of the arguments is invalid.

Remarks

This method was introduced with the IDirect3DDevice2 interface.

See Also
IDirect3DDevice2::SetLightState

IDirect3DDevice2::GetRenderState

The IDirect3DDevice2::GetRende