
DirectSetup
This section provides information about the DirectSetup component of the DirectX®
Programmer’s Reference in the Platform Software Development Kit (SDK).
Information is divided into the following groups:

· About DirectSetup

· DirectSetup Overview

· DirectSetup Reference

About DirectSetup
DirectSetup is a simple application programming interface (API) that provides you
with a one-call installation for the DirectX components. This is more than merely a
convenience; DirectX is a complex product, and its installation is an involved task.
You should not attempt to manually install DirectX.

In addition, DirectSetup provides an automated way to install the appropriate
Microsoft® Windows® registry information for applications that use the
DirectPlayLobby object. This registry information is required for the
DirectPlayLobby object to enumerate and start the application.

DirectSetup includes the following API functions: DirectXRegisterApplication,
DirectXUnRegisterApplication, DirectXSetup, DirectXSetupSetCallback, and
DirectXSetupCallbackFunction. The functions DirectXRegisterApplication,
DirectXUnRegisterApplication, DirectXSetup, and DirectXSetupSetCallback are
provided by Microsoft. The function DirectXSetupCallbackFunction is an optional
function supplied by applications that use DirectSetup.

DirectSetup Overview
This section contains general information about the DirectSetup component. The
following topics are discussed:

· What’s New In DirectSetup For DirectX 5?

· Using the DirectXSetup Function

· The Default Setup Process With DirectXSetup

· Customizing Setup With the DirectSetup Callback Function

· Preparing a DirectX Application for Installation

· Enabling AutoPlay

in.doc – page 2

What’s New In DirectSetup For DirectX
5?

DirectSetup now supports a callback function that provides notification of various
types of events that occur during the setup of DirectX. This allows developers to
customize the setup interface. For details, see Customizing Setup With the
DirectSetup Callback Function.

Also new in this version of DirectSetup is the ability of DirectPlayLobby applications
to remove registration information. For details, see DirectXUnRegisterApplication.

Using the DirectXSetup Function
Applications and games that depend on DirectX use the DirectXSetup function to
install their system components into an existing Windows installation. It optionally
updates the display and audio drivers to support DirectX during the DirectX
installation process. This process is designed to happen smoothly, without adversely
affecting the user’s system. Older drivers are upgraded whenever possible to prevent
reduced performance or stability of all DirectX applications on a computer.

DirectXSetup is provided to each application from Dsetup.dll, DSetup16.dll, and
Dsetup32.dll. Therefore all three of these files are included with your product’s setup
program. You can find the declarations for DirectSetup in Dsetup.h.

Note
The DirectXSetup function overwrites system components from previous
versions of DirectX. For example, if you install DirectX 5 on a system that
already has DirectX 3 components, all DirectX 3 components will be
overwritten. Because all DirectX components comply with Component Object
Model (COM) backward compatibility rules, software written for DirectX 3 will
continue to function properly.

DirectX 5 requires the installation of all components. Previous versions of DirectX
allowed the installation of individual DirectX components. However, the amount of
disk space saved by this was minimal. Current DirectX components are tightly
integrated together for maximum performance. Hence, they all need to be installed for
any one of them to work.

The DirectX Programmer’s Reference of the Platform SDK contains the \Redist
directory. Setup programs that use the DirectXSetup function must distribute the
appropriate files from this directory as specified in the End User License Agreement
(EULA).

The Default Setup Process With
DirectXSetup

in.doc – page 3

The DirectXSetup function can tell when DirectX components, display drivers, and
audio drivers need to be upgraded. It can also distinguish whether or not these
components can be upgraded without adversely affecting the Windows operating
system. This is said to be a “safe” upgrade. It is important to note that the upgrade is
safe for the operating system, not necessarily for the applications running on the
computer. Some hardware-dependent applications can be negatively affected by an
upgrade that is safe for Windows.

By default, the DirectXSetup function performs only safe upgrades. If the upgrade of
a device driver may adversely affect the operation of Windows, the upgrade is not
performed.

During the setup process, DirectSetup creates a backup copy of the system
components and drivers that are replaced. These can typically be restored in the event
of an error.

When display or audio drivers are upgraded, the DirectXSetup function utilizes a
database created by Microsoft to manage the process. The database contains
information on existing drivers that are provided either by Microsoft, the
manufacturers of the hardware, or the vendors of the hardware. This database
describes the upgrade status of each driver, based on testing done at Microsoft and at
other sites.

Customizing Setup With the DirectSetup
Callback Function

DirectSetup for DirectX 5 allows developers to specify a setup callback function. In
the DirectSetup documentation, the callback function is referred to as
DirectXSetupCallbackFunction. However, the actual name of the callback function
is supplied by the application setup program.

If it is provided, DirectXSetupCallbackFunction is called once for each DirectX
component and device driver that can be upgraded by the DirectXSetup function.
Note that the callback function is completely optional. It does not have to be
provided.

If a callback function is not provided by the setup program, DirectXSetup will
display status and error information by calling the MessageBox function. If a callback
is provided, the information that would be used by DirectXSetup to display the status
with MessageBox is passed as parameters to the DirectXSetupCallbackFunction
callback function. The callback function can use this information to display a status or
error message using MessageBox. It can also implement a custom user interface to
display the status or error message.

Uses of the DirectSetup Callback Function
DirectXSetupCallbackFunction can be used to:

in.doc – page 4

· Display a user interface that is customized for the application. A game, for
example, could display the progress of DirectX installation as a flying saucer
descending toward a planet. When setup is complete, the saucer could land and
an amusing alien could disembark carrying a sign reading, “Success!”

· Suppress the display of status and error messages. Designers of programs that
are for novice users may want to suppress error messages so that they can be
handled by the setup program. This requires a larger-than-normal development
effort for the setup program, but may be appropriate for the target audience.

· Automatically handle status and error conditions. Setup programs that suppress
error messages should handle them automatically. If the users are not given error
information, they should not be required to intervene when an error occurs.

· Allow the user greater control when status and error messages occur. It is often
appropriate to allow knowledgeable users greater control than normal over the
setup process. Caution should be taken, however, when using this approach.
Allowing users greater-than-normal control over the setup process increases the
chances that their system will be adversely affected during or after the setup.

· Override the default behavior of the DirectXSetup function. Although this is not
recommended, it can be done. The user is typically notified when a setup
program does this.

Providing a Callback Function to DirectSetup
If a setup program provides a callback function to DirectSetup, it does so by calling
the DirectXSetupSetCallback function before the DirectXSetup function. A pointer
to the callback function is passed as a parameter to the DirectXSetupSetCallback
function. See DirectXSetupSetCallback, and An Example Callback Function for
details.

Interpreting DirectSetup Flags in the Callback
Function

When the callback function DirectXSetupCallbackFunction is called by the
DirectXSetup function, it is passed a parameter that contains the reason that the
callback function was invoked. If the reason is
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE, the pInfo parameter points to a
structure containing flags that summarize the DirectXSetup function’s
recommendations on how the upgrade of DirectX components, display drivers, and
audio drivers should be performed. For a chart that summarizes the callback function
flags, see DirectXSetupCallbackFunction. The structure member containing the
flags is called UpgradeFlags .

The flags passed through the UpgradeFlags member of the structure that is pointed to
by the pInfo parameter of the callback function are present when the Reason
parameter of the callback function is

in.doc – page 5

DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE. They occur in the following
combinations:

Primary Upgrade Flags
These flags are mutually exclusive. One of them is always present in the
UpgradeFlags structure member.

DSETUP_BC_UPGRADE_FORCE

DSETUP_BC_UPGRADE_KEEP

DSETUP_BC_UPGRADE_SAFE

DSETUP_BC_UPGRADE_UNKNOWN

Secondary Upgrade Flags
Any or all of these flags may be present in the UpgradeFlags structure member.

DSETUP_BC_UPGRADE_CANTBACKUP

DSETUP_BC_UPGRADE_HASWARNINGS

Device Active Flag
This flag is present in the UpgradeFlags structure member if the device whose
driver is being upgraded is active. This flag may be present in combination with
any of the others.

DSETUP_BC_UPGRADE_DEVICE_ACTIVE

Device Class Flags
These flags are mutually exclusive. One of them is always present in the
UpgradeFlags structure member.

DSETUP_BC_UPGRADE_DISPLAY

DSETUP_BC_UPGRADE_MEDIA

Every time the Reason parameter has the value
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE, the UpgradeFlags member of
the structure pointed to by pInfo contains one Primary Upgrade Flag, zero or more
Secondary Upgrade Flags, zero or one Device Active Flag, and one Device Class
Flag.

If the UpgradeFlags member is set to DSETUP_CB_UPGRADE_KEEP, the DirectX
component or device driver can’t be upgraded. Performing an upgrade would cause
Windows to cease to function properly. The DirectXSetup function will not perform
an upgrade on the component or driver.

A value of DSETUP_CB_UPGRADE_FORCE in the UpgradeFlags structure
member means that the component or driver must be upgraded for Windows to
function properly. The DirectXSetup function will upgrade the driver or component.
It is possible that the upgrade may adversely affect some programs on the system.
When the DirectXSetup function detects this condition, the UpgradeFlags member
will be set to DSETUP_CB_UPGRADE_FORCE |
DSETUP_CB_UPGRADE_HAS_WARNINGS, where the symbol | represents a
bitwise OR operation. When this occurs, the DirectXSetup function will perform the
upgrade, but issue a warning to the user.

in.doc – page 6

Components and drivers are considered safe for upgrade if they will not adversely
affect the operation of Windows when they are installed. In this case, the
UpgradeFlags member will be set to DSETUP_CB_UPGRADE_SAFE. It is possible
that the upgrade can be safe for Windows, but still cause problems for programs
installed on the system. When DirectXSetup detects this condition, the
UpgradeFlags member will contain the value DSETUP_CB_UPGRADE_SAFE |
DSETUP_CB_UPGRADE_HAS_WARNINGS. If this occurs, the default action for
the DirectXSetup function is to not perform the upgrade.

If no callback is provided, the DirectXSetup function calls the Win32® API function
MessageBox to get input from the user if needed. Typically, however, the
DirectXSetup function will perform the default action without notifying the user.
The function DirectXSetupCallbackFunction is supposed to return the same values
that MessageBox would return if it were used.

The MessageBox function displays a message and some buttons for user response.
When it is called, flags are passed to it that indicate what buttons should be present
and which is the default button. These same flags are passed to the function
DirectXSetupCallbackFunction in the MsgType parameter. These flags are the same
flags that can be passed to the MessageBox function through its uType parameter.

The callback function should return what MessageBox would return if it were used.
For instance, a callback function can be called with the flags in the MsgType
parameter set to MB_YESNO | MB_DEFBUTTON1, where the | symbol is a bitwise
OR operation. If MessageBox were called with these flags, it would present the user
with a dialog box containing the Yes and No buttons. The default button is the Yes
button. The callback should do something that is functionally equivalent to that. In
this example, the return value of MessageBox would be the ID of the button that the
user selected, either IDYES or IDNO. The return value of the callback function
should be whichever one of these two the user selects.

A more complete discussion of the flags and the appropriate return values is
contained in the Platform SDK documentation for the MessageBox function.

The following code is a function that can be used by DirectSetup callback functions.
It illustrates the process of determining the ID of the default button for any allowable
set of input flags.

INT DefaultButton(DWORD MsgType)

{

 INT iDefaultButton=0;

 switch (MsgType & 0x0F0F)

 {

 case MB_OK | MB_DEFBUTTON1:

 case MB_OKCANCEL | MB_DEFBUTTON1:

 iDefaultButton = IDOK;

 break;

 case MB_OKCANCEL | MB_DEFBUTTON2:

in.doc – page 7

 case MB_RETRYCANCEL | MB_DEFBUTTON2:

 case MB_YESNOCANCEL | MB_DEFBUTTON3:

 iDefaultButton = IDCANCEL;

 break;

 case MB_ABORTRETRYIGNORE | MB_DEFBUTTON1:

 iDefaultButton = IDABORT;

 break;

 case MB_RETRYCANCEL | MB_DEFBUTTON1:

 case MB_ABORTRETRYIGNORE | MB_DEFBUTTON2:

 iDefaultButton = IDRETRY;

 break;

 case MB_ABORTRETRYIGNORE | MB_DEFBUTTON3:

 iDefaultButton = IDIGNORE;

 break;

 case MB_YESNO | MB_DEFBUTTON1:

 case MB_YESNOCANCEL | MB_DEFBUTTON1:

 iDefaultButton = IDYES;

 break;

 case MB_YESNO | MB_DEFBUTTON2:

 case MB_YESNOCANCEL | MB_DEFBUTTON2:

 iDefaultButton = IDNO;

 break;

 }

 return iDefaultButton;

}

In this example, the function uses bitwise OR operations to determine what kind of
dialog box the MessageBox function would display, and which button is the default.
A callback function can use a similar method to determine what value it should
return.

Overriding DirectSetup Flags in the Callback
Function

The function DirectXSetupCallbackFunction can override some of the default
behaviors of the DirectXSetup function through its return value. As an example, the
default behavior for DirectXSetup is to not install a component if the UpgradeType
member of the pInfo parameter of the function DirectXSetupCallbackFunction is
set to DSETUP_CB_UPGRADE_SAFE |
DSETUP_CB_UPGRADE_HAS_WARNINGS (where the | symbol indicates a

in.doc – page 8

bitwise OR operation). In this case, the MsgType parameter of the callback function is
set to MB_YESNO | MB_DEFBUTTON2. If the callback function accepts the
default, it will return IDNO. If it wants to override the default, the callback function
should return IDYES. If it does override the default, the user will be notified by the
DirectXSetup function.

An Example Callback Function
A simple setup program could contain a callback function along the lines of the
following:

DWORD MySetupCallback(

 DWORD Reason,

 DWORD MsgType,

 char *szMessage,

 char *szName,

 DSETUP_CB_UPGRADEINFO *pUpgradeInfo)

{

 if (MsgType==0) // ignore status messages

 return ID_OK;

 return MessageBox(MyhWnd, szMessage,

 "My Application Name”, MsgType);

}

This example ignores all status messages, but displays error messages by calling the
MessageBox function.

The address of the callback function in the example above would be passed to
DirectSetup prior to calling the DirectXSetup function. The following code gives an
example of how this is done.

// Set the callback function.

DirectXSetupSetCallback(MySetupCallback);

// Start the setup of DirectX components and drivers.

if (SUCCESS(DirectXSetup(hWndParent, NULL,

 DSETUP_DIRECTX))

 {

 // The installation succeeded.

 }

 else

 {

 /* Installation failed. Handle the error in MySetupCallback.

 Do any additional cleanup needed right here. */

 }

in.doc – page 9

Preparing a DirectX Application for
Installation

At some point during the development of your application, you will need to create a
setup program that installs your application and the DirectX files on a user's system.
This program will determine the amount of disk space required to install your
application and copy the appropriate DirectX files to the user's computer. You also
need to create a directory on your distribution medium in which you will place all the
application's files and any additional DirectX components. The following topics
describe these steps:

· Creating the Setup Program

· Testing the Setup Program

Creating the Setup Program
The DirectX Programmer’s Reference in the Platform SDK includes an example
setup program that you can use as a model for your application’s setup program. The
setup program is called Dinstall, and it is located in the \Dxsdk\Sdk\Samples\Setup
directory. It installs a sample DirectX application called Rockem. It also demonstrates
one way to configure the DirectXSetup function.

Û To adapt the Dinstall.c program to your needs
1. In an editor, open Dinstall.c.

2. Search for the text "copy_list".

3. Edit the list of files in this structure to contain the names of the files you want
copied to the user’s computer during installation.

4. If necessary, modify Dinstall.c so that it installs files in subdirectories on the
user’s hard disk. Currently, Dinstall installs files only in the default directory.

5. Search for two locations in Dinstall.c that contain the text "IDS_DISK_MSG".

6. Add some code that checks whether there is enough free hard disk space to install
your application on the user's computer. Dinstall does not currently check this.

The lpszRootPath parameter of DirectXSetup specifies the path to the Dsetup*.dll
files (Dsetup.dll, Dsetup16.dll, and Dsetup32.dll) and the Directx directory on your
distribution media. These dynamic-link libraries and this directory should be located
in the same directory as the Dinstall executable after it is compiled, unless there is an
overwhelming reason to do otherwise. If all these files and directories are located in
the same directory, the value of the lpszRootPath parameter should be set to NULL.
This ensures that if the path changes when the files are placed on a compact disc or
floppy disks from the root of the application, the DirectXSetup function still works
properly.

For example, suppose Dinstall.exe, Dsetup*.dll, and the Directx directory are located
in an application directory called D:\Funstuff during the testing phase. Then, when

in.doc – page 10

you burn the files on a compact disc, suppose you put them in the root. If the
lpszRootPath parameter is set to "\FUNSTUFF", the setup program (Dinstall.exe) will
not function from the compact disc. However, if the lpszRootPath parameter is set to
NULL, the setup program will function in both cases, because the path to Dsetup*.dll,
and the Directx directory are still in the current directory.

If you decide to place the Dsetup*.dll files and the Directx directory somewhere other
than in the directory that contains Dinstall.exe, you must pass the appropriate
parameters to DirectXSetup and load Dsetup.dll correctly. The lpszRootPath
parameter of DirectXSetup should contain the full path to Dsetup.dll. In addition,
you need to use the LoadLibrary and GetProcAddress Win32 functions in your
setup program to locate Dsetup.dll.

The content of the Setup dialog box is determined by data supplied in the Dinstall.rc
resource file.

Û To display your application's name and graphics
1. In an editor, open Dinstall.rc.

2. Search for all occurrences of "Rockem" and change them to the name of your
application.

3. The graphics that are displayed in the Setup and Reboot dialog boxes are called
Signon.bmp and Reboot.bmp in the resource file. Either rename your bitmap files
these names, or change the names in the resource file to match the names of your
bitmaps.

4. The icon for the Dinstall executable is called Setup.ico in the resource file, and it
is specified by SETUP_ICON. Either set the name of your icon file to Setup.ico,
or change the name in the resource file to match the name of your icon file.

5. If appropriate for your application, change the default directory in which your
application is installed. To do this, search for "IDS_DEFAULT_GAME_DIR" (it
is located in two places in the resource file) and change the path of the default
directory.

After you have modified the Dinstall.c and Dinstall.rc files to fit your application's
needs, compile them into the Dinstall.exe executable file. You can rename this
executable file to anything you want (Setup.exe, for example).

Testing the Setup Program
Before you commit your application to a compact disc or floppy disks, you should
test your setup program. Do this by creating an application directory that contains all
of your application’s files, the setup program, and the DirectX files and drivers.

Û To set up the application directory
1 Create a directory that includes all your application's files. Be sure to create any

subdirectories that are needed. Place the appropriate application files in the
subdirectories.

2 Copy the setup program you wrote to the root of your application directory.

in.doc – page 11

3 At the MS-DOS prompt, use the xcopy command to copy the Redist directory on
the DirectX compact disc to the root of your application directory. For example,
if your application's root directory is D:\Fungame, and the E: drive is your CD-
ROM drive, type the following:

xcopy /s e:\redist*.* d:\fungame

Note
The root of your application directory should include the entire contents of the

Redist directory distributed on the DirectX Programmer’s Reference on the
Platform SDK. This is essential to ensure that the DirectXSetup function and
the Dxsetup.exe file work properly.

Enabling AutoPlay
If you are building an AutoPlay compact disc title, copy the Autorun.inf file in the
root directory of the DirectX Programmer’s Reference in the Platform SDK compact
disc to the root of your application directory. This text file contains the following
information:

[autorun]

OPEN=SETUP.EXE

If your application's setup program is called Setup.exe, you will not have to make any
changes to this file; otherwise, edit this file to contain the name of your setup
program. For more information, see Autorun.inf.

DirectSetup Reference
This section contains reference information for the API elements that DirectSetup
provides. Reference material is divided into the following categories:

· Functions

· Structures

· Return Values

Functions
This section contains information on the following global functions used with
DirectSetup:

· DirectXRegisterApplication

· DirectXSetup

· DirectXSetupGetVersion

· DirectXSetupSetCallback

in.doc – page 12

· DirectXSetupCallbackFunction

· DirectXUnRegisterApplication

DirectXRegisterApplication
The DirectXRegisterApplication function registers an application as one designed to
work with DirectPlayLobby.

int WINAPI DirectXRegisterApplication(
 HWND hWnd,
 LPDIRECTXREGISTERAPP lpDXRegApp
);

Parameters

hWnd
Handle to the parent window. If this parameter is set to NULL, the desktop is the
parent window.

lpDXRegApp
Address of the DIRECTXREGISTERAPP structure that contains the registry
entries that are required for the application to function properly with
DirectPlayLobby.

Return Values

If this function is successful, it returns TRUE.

If it is not successful, it returns FALSE. Use the GetLastError Win32 function to get
extended error information.

Remarks

The DirectXRegisterApplication function inserts the registry entries needed for an
application to operate with DirectPlayLobby. If these registry entries are added with
DirectXRegisterApplication, they should be removed with
DirectXUnRegisterApplication when the application is uninstalled.

Many commercial install programs will remove registry entries automatically when a
program in uninstalled. However, such a program will only do so if it added the
registry entries itself. If the DirectPlayLobby registry entries are added by
DirectXRegisterApplication, commercial install programs will not delete the
registry entries when the application is uninstalled. Therefore, DirectPlayLobby
registry entries that are created by DirectXRegisterApplication should be deleted by
DirectXUnRegisterApplication.

in.doc – page 13

Registry entries needed for DirectPlayLobby access can be created without the use of
the DirectXRegisterApplication function. This, however, is not generally
recommended. See Registering Lobby-able Applications in the DirectPlay®
documentation.

See Also

DirectXUnRegisterApplication

DirectXSetup
The DirectXSetup function installs one or more DirectX components.

int WINAPI DirectXSetup(
 HWND hWnd,
 LPSTR lpszRootPath,
 DWORD dwFlags
);

Parameters

hWnd
Handle to the parent window for the setup dialog boxes.

lpszRootPath
Pointer to a string that contains the root path of the DirectX component files.
This string must specify a full path to the directory that contains the files
Dsetup.dll, Dsetup16.dll, and Dsetup.dll32. This directory is typically Redist. If
you are certain the current directory contains Dsetup.dll and the Directx
directory, this parameter can be NULL.

dwFlags
One or more flags indicating which DirectX components should be installed. A
full installation (DSETUP_DIRECTX) is recommended.

DSETUP_D3D Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DDRAW Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DDRAWDRV Installs display drivers provided by
Microsoft.

DSETUP_DINPUT Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DIRECTX Installs DirectX runtime components as
well as DirectX-compatible display and
audio drivers.

DSETUP_DIRECTXSETUP Obsolete. DirectX 3 programs that use this

in.doc – page 14

flag will install all DirectX components.

DSETUP_DPLAY Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DPLAYSP Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DSOUND Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DSOUNDDRV Installs audio drivers provided by
Microsoft.

DSETUP_DXCORE Installs DirectX runtime components.
Does not install DirectX-compatible
display and audio drivers.

DSETUP_TESTINSTALL Performs a test installation. Does not
actually install new components.

Return Values

If this function is successful, it returns SUCCESS.

If it is not successful, it returns an error code. For a list of possible return codes, see
Return Values .

Remarks

Before you use the DirectXSetup function in your setup program, you should ensure
that there is at least 15 MB of available disk space on the user's system. This is the
maximum space required for DirectX to set up the appropriate files. If the user's
system already contains the DirectX files, this space is not needed.

See Also

Using the DirectXSetup Function.

DirectXSetupGetVersion
The DirectXSetupGetVersion function retrieves the version number of the DirectX
components that are currently installed.

INT WINAPI DirectXSetupGetVersion(
 DWORD *pdwVersion // receives the version number
 DWORD *pdwRevision // receives the revision number
);

Parameters

pdwVersion

in.doc – page 15

Pointer to a DWORD. The DirectXSetupGetVersion function will fill the
DWORD with the version number. If this parameter is NULL, it is ignored.

pdwRevision
Pointer to a DWORD. The DirectXSetupGetVersion function will fill the
DWORD with the revision number. If this parameter is NULL, it is ignored.

Return Values

If this function is successful, it returns non-zero.

If it is not successful, it returns zero.

Remarks

The DirectXSetupGetVersion function can be used to retrieve the version and
revision numbers before or after the DirectXSetup function is called. If it is called
before the DirectXSetup function is invoked, it gives the version and revision
numbers of the DirectX components that are currently installed. If it is called after the
DirectXSetup function is called, but before the computer has been rebooted, it will
give the version and revision numbers of the DirectX components that will take effect
after the computer is restarted.

The version number in the pdwVersion parameter is composed of the major version
number and the minor version number. The major version number will be in the 16
most significant bits of the DWORD when this function returns. The minor version
number will be in the 16 least significant bits of the DWORD when this function
returns. The version numbers can be interpreted as follows:

DirectX Version Value Pointed At By pdwVersion

DirectX 1 0x00040001

DirectX 2 0x00040002

DirectX 3 0x00040003

DirectX 4 0x00040004

DirectX 5 0x00040005

The version number in the pdwRevision parameter is composed of the release number
and the build number. The release number will be in the 16 most significant bits of
the DWORD when this function returns. The build number will be in the 16 least
significant bits of the DWORD when this function returns.

The following sample code fragment demonstrates how the information returned by
DirectXSetupGetVersion can be extracted and used.

DWORD dwVersion;

DWORD dwRevision;

if (DirectXSetupGetVersion(&dwVersion, &dwRevision))

{

 printf("DirectX version is %d.%d.%d.%d\n",

in.doc – page 16

 HIWORD(dwVersion), LOWORD(dwVersion),

 HIWORD(dwRevision), LOWORD(dwRevision));

}

Version and revision numbers can concatenated into a 64 bit quantity for comparison.
The version number should be in the 32 most significant bits and the revision number
should be in the 32 least significant bits.

See Also

DirectXSetup

DirectXSetupSetCallback
The DirectXSetupSetCallback sets a pointer to a callback function that is
periodically called by DirectXSetup. The callback function can be used for setup
progress notification and to implement a custom user interface for an application’s
setup program. For information on the callback function, see
DirectXSetupCallbackFunction. If a setup program does not provide a callback
function, the DirectXSetupSetCallback function should not be invoked.

INT WINAPI DirectXSetupSetCallback(
 DSETUP_CALLBACK Callback // pointer to the callback function
);

Parameters

Callback
Pointer to a callback function.

Return Values

Currently returns zero.

Remarks

To set a callback function, DirectXSetupSetCallback must be called before the
DirectXSetup function is called.

The name of the callback function passed to DirectXSetupSetCallback is supplied
by the setup program. However, it must match the prototype given in
DirectXSetupCallbackFunction

See Also

DirectXSetupCallbackFunction, DirectXSetup

DirectXSetupCallbackFunction

in.doc – page 17

DirectXSetupCallbackFunction is a placeholder name for a callback function
supplied by the setup program. The callback function reports the status of the current
installation process. It also can provide information for use by the MessageBox
function.

DWORD DirectXSetupCallbackFunction(
 DWORD Reason, // reason for the callback
 DWORD MsgType, // same as MessageBox
 char *szMessage, // message string
 char *szName // depends on Reason
 void *pInfo // upgrade information
);

Parameters

Reason
Reason for the callback. It can be one of the following values.

DSETUP_CB_MSG_BEGIN_INSTALL

DirectXSetup is about to begin installing DirectX components and
device drivers.

DSETUP_CB_MSG_BEGIN_INSTALL_DRIVERS

DirectXSetup is about to begin installing device drivers.

DSETUP_CB_MSG_BEGIN_INSTALL_RUNTIME

DirectXSetup is about to begin installing DirectX components.

DSETUP_CB_MSG_BEGIN_RESTORE_DRIVERS

DirectXSetup is about to begin restoring previous drivers.

DSETUP_CB_MSG_CANTINSTALL_BETA

A pre-release beta version of Windows 95 was detected. The DirectX
component or device driver can’t be installed.

DSETUP_CB_MSG_CANTINSTALL_NOTWIN32

The operating system detected is not Windows 95 or Windows NT®.
DirectX is not compatible with Windows 3.x.

DSETUP_CB_MSG_CANTINSTALL_NT

The DirectX component or device driver can’t be installed on versions of
Windows NT prior to version 4.0.

DSETUP_CB_MSG_CANTINSTALL_UNKNOWNOS

The operating system is unknown. The DirectX component or device
driver can’t be installed.

DSETUP_CB_MSG_CANTINSTALL_WRONGLANGUAGE

The DirectX component or device driver is not localized to the language
being used by Windows.

DSETUP_CB_MSG_CANTINSTALL_WRONGPLATFORM

in.doc – page 18

The DirectX component or device driver is for another type of computer.

DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE

Driver is being considered for upgrade. Verification from user is
recommended.

DSETUP_CB_MSG_INTERNAL_ERROR

An internal error has occurred. Setup of the DirectX component or device
driver has failed.

DSETUP_CB_MSG_NOMESSAGE

No message to be displayed. The callback function should return.

DSETUP_CB_MSG_NOTPREINSTALLEDONNT

The DirectX component or device driver can’t be installed on the version
of Windows NT in use.

DSETUP_CB_MSG_PREINSTALL_NT

DirectX is already installed on the version of Windows NT in use.

DSETUP_CB_MSG_SETUP_INIT_FAILED

Setup of the DirectX component or device driver has failed.

MsgType
Contains flags that control the display of a message box. These flags can be
passed to the MessageBox function. An exception is when MsgType is equal to
zero. In that case, the setup program can display status information but should
not wait for input from the user.

szMessage
A localized character string containing error or status messages that can be
displayed in a message box created with the MessageBox function.

szName
The value of szName is NULL unless the Reason parameter is
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE. In that case, szName
contains the name of driver to be upgraded.

pInfo
Pointer to a structure containing upgrade information. When Reason is
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE, the setup program is in
the process of upgrading a driver and asking the user whether the upgrade should
take place. This structure contains information about the upgrade in its
UpgradeType member, which can have the following values.

DSETUP_CB_UPGRADE_CANTBACKUP

The old system components can’t be backed up. Upgrade can be
performed, but the components or drivers can’t be restored later.

DSETUP_CB_UPGRADE_DEVICE_ACTIVE

The device is currently in use.

DSETUP_CB_UPGRADE_DEVICE_DISPLAY

The device driver being upgraded is for a display device.

in.doc – page 19

DSETUP_CB_UPGRADE_DEVICE_MEDIA

The device driver being upgraded is for a media device.

DSETUP_CB_UPGRADE_FORCE

Windows may not function correctly if the component is not upgraded.
The upgrade will be performed.

DSETUP_CB_UPGRADE_HASWARNINGS

DirectXSetup can upgrade the driver for this device, but doing so may
affect one or more programs on the system. szMessage contains the
names of which programs may be affected. Upgrade not recommended.

DSETUP_CB_UPGRADE_KEEP

The system may fail if this device driver is upgraded. Upgrade not
allowed.

DSETUP_CB_UPGRADE_SAFE

DirectXSetup can safely upgrade this device driver. Upgrade
recommended. A safe upgrade will not adversely affect the operation of
Windows. Some hardware-dependent programs may be adversely
affected.

DSETUP_CB_UPGRADE_UNKNOWN

DirectXSetup does not recognize the existing driver for this device. This
value will occur frequently. Upgrading may adversely affect the use of
the device. It is strongly recommended that the upgrade not be
performed.

DSETUP_CB_UPGRADE_UNNECESSARY

The existing device driver is newer than the driver being installed. An
upgrade is not recommended.

Return Values

The return value should be the same as the MessageBox function, with one exception.
If this function returns zero, the DirectXSetup function will act as if no callback
function was present. That is, it will perform the default action for upgrade of the
DirectX component or driver.

Remarks

The name of the DirectXSetupCallbackFunction is supplied by the setup program.
The DirectXSetupSetCallback function is used to pass the address of the callback
function to DirectSetup.

If MsgType is equal to zero, the setup program may display status information, but it
should not wait for user input. This is useful for displaying ongoing status
information.

See Also

in.doc – page 20

MessageBox, DirectXSetupSetCallback, Customizing Setup With the DirectSetup
Callback Function

DirectXUnRegisterApplication
The DirectXUnRegisterApplication function deletes the registration of an
application designed to work with DirectPlayLobby.

int WINAPI DirectXUnRegisterApplication(
 HWND hWnd,
 LPGUID lpGUID
);

Parameters

hWnd
Handle to the parent window. Set this to NULL if the desktop is the parent
window.

lpGUID
Pointer to a GUID that represents the DirectPlay application to be unregistered.

Return Values

If the function succeeds, the return value is TRUE meaning that the registration is
successfully deleted.

If the function fails, the return value is FALSE.

Remarks

The DirectXUnRegisterApplication function removes registry the entries needed for
an application to work with DirectPlayLobby. An uninstall program should only use
DirectXUnRegisterApplication if it used DirectXRegisterApplication when the
application was installed.

See Also

DirectXRegisterApplication

Structures
This section contains information about the following structures used with
DirectSetup:

· DIRECTXREGISTERAPP

· DSETUP_CB_UPGRADEINFO

in.doc – page 21

DIRECTXREGISTERAPP
The DIRECTXREGISTERAPP structure contains the registry entries needed for
applications designed to work with DirectPlayLobby.

typedef struct _DIRECTXREGISTERAPP {

 DWORD dwSize;

 DWORD dwFlags;

 LPSTR lpszApplicationName;

 LPGUID lpGUID;

 LPSTR lpszFilename;

 LPSTR lpszCommandLine;

 LPSTR lpszPath;

 LPSTR lpszCurrentDirectory;

} DIRECTXREGISTERAPP, *PDIRECTXREGISTERAPP, *LPDIRECTXREGISTERAPP;

Members

dwSize
Size of the structure. Must be initialized to the size of the
DIRECTXREGISTERAPP structure.

dwFlags
Reserved for future use.

lpszApplicationName
Name of the application.

lpGUID
Globally unique identifier (GUID) of the application.

lpszFilename
Name of the executable file to be called.

lpszCommandLine
Command-line arguments for the executable file.

lpszPath
Path of the executable file.

lpszCurrentDirectory
Current directory. This is typically the same as lpszPath.

DSETUP_CB_UPGRADEINFO
The DSETUP_CB_UPGRADEINFO structure is passed as a parameter to the
DirectXSetupCallbackFunction. It only contains valid information when the Reason
parameter is DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE. Callback
functions can use it to get status information on the upgrade that is about to be done.

typedef struct _DSETUP_CB_UPGRADEINFO

{

in.doc – page 22

 DWORD UpgradeFlags;

} DSETUP_CB_UPGRADEINFO;

Members

UpgradeFlags
A flag indicating the status of the upgrade. See the pInfo parameter of the
DirectXSetupCallbackFunction function for details.

See Also

DirectXSetupCallbackFunction

Return Values
The DirectXSetup function can return the values listed blow. It can also return a
standard COM error.

DSETUPERR_SUCCESS

Setup was successful and no restart is required.

DSETUPERR_SUCCESS_RESTART

Setup was successful and a restart is required.

DSETUPERR_BADSOURCESIZE

A file's size could not be verified or was incorrect.

DSETUPERR_BADSOURCETIME

A file's date and time could not be verified or were incorrect.

DSETUPERR_BADWINDOWSVERSION

DirectX does not support the Windows version on the system.

DSETUPERR_CANTFINDDIR

The setup program could not find the working directory.

DSETUPERR_CANTFINDINF

A required .inf file could not be found.

DSETUPERR_INTERNAL

An internal error occurred.

DSETUPERR_NOCOPY

A file's version could not be verified or was incorrect.

DSETUPERR_NOTPREINSTALLEDONNT

The version of Windows NT on the system does not contain the current
version of DirectX. An older version of DirectX may be present, or DirectX
may be absent altogether.

in.doc – page 23

DSETUPERR_OUTOFDISKSPACE

The setup program ran out of disk space during installation.

DSETUPERR_SOURCEFILENOTFOUND

One of the required source files could not be found.

DSETUPERR_UNKNOWNOS

The operating system on your system is not currently supported.

DSETUPERR_USERHITCANCEL

The Cancel button was pressed before the application was fully installed.

	About DirectSetup
	DirectSetup Overview
	What’s New In DirectSetup For DirectX 5?
	Using the DirectXSetup Function
	The Default Setup Process With DirectXSetup
	Customizing Setup With the DirectSetup Callback Function
	Uses of the DirectSetup Callback Function
	Providing a Callback Function to DirectSetup
	Interpreting DirectSetup Flags in the Callback Function
	Overriding DirectSetup Flags in the Callback Function
	An Example Callback Function

	Preparing a DirectX Application for Installation
	Creating the Setup Program
	Testing the Setup Program

	Enabling AutoPlay

	DirectSetup Reference
	Functions
	Structures
	Return Values

