DirectSound

This section provides information about the DirectSound® component of DirectX®.
Information is found under the following main headings:

® About DirectSound

® Why Use DirectSound?

® DirectSound Architecture

® DirectSound Essentials

® DirectSound Reference

About DirectSound

The Microsoft® DirectSound® application programming interface (API) is the audio
component of the DirectX® Programmer’s Reference of the Platform Software
Development Kit (SDK). DirectSound provides low-latency mixing, hardware
acceleration, and direct access to the sound device. It provides this functionality while
maintaining compatibility with existing device drivers.

New in this release of DirectSound are capabilities for audio capture. Also new is
support for property sets, which enable application developers to take advantage of
extended services offered by sound cards and their associated drivers.

Why Use DirectSound?

The overriding design goal in DirectX is speed. Like other components of DirectX,
DirectSound allows you to use the hardware in the most efficient way possible while
insulating you from the specific details of that hardware with a device-independent
interface. Your applications will work well with the simplest audio hardware but will
also take advantage of the special features of cards and drivers that have been
enhanced for use with DirectSound.

Here are some other things that DirectSound makes easy:
® Querying hardware capabilities at run time to determine the best solution for any
given personal computer configuration

® Using property sets so that new hardware capabilities can be exploited even when
they are not directly supported by DirectSound

® Low-latency mixing of audio streams for rapid response
® Developing 3-D sound
® Capturing sound

in.doc — page 2

Despite the advantages of DirectSound, the standard waveform-audio functions in
Windows® continue to be a practical solution for certain tasks. For example, an
application can easily play a single sound or audio stream, such as introductory
music, by using the PlaySound or waveQut functions.

DirectSound Architecture

This section introduces the components of DirectSound and explains how
DirectSound works with the hardware and with other applications. The following
topics are discussed:

® Architectural Overview

® Playback Overview

® Capture Overview

® Property Sets Overview

® Hardware Abstraction and Emulation

® System Integration

Architectural Overview

DirectSound implements a new model for playing and capturing digital sound
samples and mixing sample sources. As with other object classes in the DirectX API,
DirectSound uses the hardware to its greatest advantage whenever possible, and it
emulates hardware features in software when the feature is not present in the
hardware.

DirectSound playback is built on the IDirectSound component object model (COM)
interface and on other interfaces for manipulating sound buffers and 3-D effects.
These interfaces are IDirectSoundBuffer, IDirectSound3DBuffer, and
IDirectSound3DListener

DirectSound capture is based on the IDirectSoundCapture and
IDirectSoundCaptureBuffer COM interfaces.

Another COM interface, IKsPropertySet, provides methods that allow applications
to take advantage of extended capabilities of sound cards.

Finally, the IDirectSoundNotify interface is used to signal events when playback or
capture has reached a certain point in the buffer.

For more information about COM concepts that you should understand to create
applications with the DirectX Programmer’s Reference, see The Component Object
Model.

Playback Overview

in.doc — page 3

The DirectSound buffer object represents a buffer containing sound data in pulse code
modulation (PCM) format. Buffer objects are used to start, stop, and pause sound
playback, as well as to set attributes such as frequency and format.

The primary sound buffer holds the audio that the listener will hear. Secondary sound
buffers each contain a single sound or stream of audio. DirectSound automatically
creates a primary buffer, but it is the application’s responsibility to create secondary
buffers. When sounds in secondary buffers are played, DirectSound mixes them in the
primary buffer and sends them to the output device. Only the available processing
time limits the number of buffers that DirectSound can mix.

DirectSound does not include functions for parsing a sound file. It is your
responsibility to stream data in the correct format into the secondary sound buffers.

Normally, buffers from only a single application are audible at any given moment,
because only one application at a time has access to a particular DirectSound device.

Depending on the card type, DirectSound buffers can exist in hardware as on-board
RAM, wave-table memory, a direct memory access (DMA) channel, or a virtual
buffer (for an I/O port based audio card). Where there is no hardware implementation
of a DirectSound buffer, it is emulated in system memory.

Multiple applications can create DirectSound objects for the same sound device.
When the input focus changes between applications, the audio output automatically
switches from one application's streams to another's. As a result, applications do not
have to repeatedly play and stop their buffers when the input focus changes.

Through the IDirectSoundNotify interface, DirectSound provides a mechanism to
notify the client when the play cursor reaches positions within a buffer that have been
specified by the client, or when playback has stopped.

Capture Overview

The DirectSoundCapture object is used to query the capabilities of sound capture
devices and to create buffers for capturing audio from an input source.

Audio capture functions already exist in Win32. The first release of
DirectSoundCapture in the DirectX 5 Programmer’s Reference does not provide
any performance improvement over the existing waveln functions. However, the
DirectSoundCapture API allows application developers to create titles using
consistent interfaces for both audio playback and capture. It also allows titles to be
developed today that will benefit from new, improved driver models and API
implementations in the future.

DirectSoundCapture allows capturing of compressed formats. In this first version,
the underlying waveln functions or the hardware provide support for compressed
formats. DirectSoundCapture does not call the audio compression manager (ACM)
functions itself.

in.doc — page 4

The DirectSoundCaptureBuffer object represents a buffer used for capturing data
from the input device. This buffer is circular; that is, when the input pointer reaches
the end of the buffer, it starts again at the beginning.

The methods of the DirectSoundCaptureBuffer object allow you to retrieve the
properties of the buffer, start and stop audio capture, and lock portions of the memory
so that you can safely retrieve data for saving to a file or for some other purpose.

As with playback, DirectSound allows you to request notification when captured data
reaches a specified position within the buffer, or when capture has stopped. This
service is provided through the IDirectSoundNotify interface.

Property Sets Overview

Through property sets, DirectSound is able to support extended services offered by
manufacturers of sound cards and their associated drivers.

Hardware vendors define new capabilities as properties and publish the specification
for these properties. You, the application developer, can then use the methods of the
IKsPropertySet interface to determine whether a particular set of properties is
available on the target hardware and to manipulate those properties, for instance by
turning special effects on and off.

Property sets allow for the unlimited extension of the capabilities of DirectSound.
You use a single method, IKsPropertySet::Set, to alter the state of the device in any
way specified by the manufacturer.

Hardware Abstraction and Emulation

DirectSound accesses the sound hardware through the DirectSound hardware-
abstraction layer (HAL), an interface that is implemented by the audio-device driver.

The DirectSound HAL provides the following functionality:

® Acquires and releases control of the audio hardware
® Describes the capabilities of the audio hardware
® Performs the specified operation when hardware is available

® Causes the operation request to report failure when hardware is unavailable

The device driver does not perform any software emulation; it simply reports the
capabilities of the hardware to DirectSound and passes requests from DirectSound to
the hardware. If the hardware cannot perform a requested operation, the device driver
reports failure of the request and DirectSound emulates the operation.

Your application can use DirectSound as long as the DirectX run-time files are
present on the user’s system. If the sound hardware does not have an installed
DirectSound driver, DirectSound uses its hardware-emulation layer (HEL), which
employs the Windows multimedia waveform-audio (waveln and waveQOut)

in.doc — page 5

functions. Most DirectSound features are still available through the HEL, but of
course hardware acceleration is not possible.

DirectSound automatically takes advantage of accelerated sound hardware, including
hardware mixing and hardware sound-buffer memory. Your application need not
query the hardware or program specifically to use hardware acceleration. However,
for you to make the best possible use of the available hardware resources, you can
query DirectSound at run time to receive a full description of the capabilities of the
sound device, and then use different routines optimized for the presence or absence of
a given feature. You can also specify which sound buffers should receive hardware
acceleration.

System Integration

The following illustration shows the relationships between DirectSound and other
system audio components.

{ YWindZ application :}

DirectSound

HAL
etmulation

w ;
MIDI, etc. YWave

Windows audio DD DirectSound HAL

mound hardware

DirectSound and the standard Windows waveform-audio functions provide
alternative paths to the waveform-audio portion of the sound hardware. A single
device provides access from one path at a time. If a waveform-audio driver has
allocated a device, an attempt to allocate that same device by using DirectSound will
fail. Similarly, if a DirectSound driver has allocated a device, an attempt to allocate
the device by using the waveform-audio driver will fail.

If two sound devices are installed in the system, your application can access each
device independently through either DirectSound or the waveform-audio functions.

in.doc — page 6

Note
Microsoft Video for Windows currently uses the waveform-audio functions to
play the audio track of an audio visual interleaved (.avi) file. Therefore, if your
application is using DirectSound and you play an .avi file, the audio track will
not be audible. Similarly, if you play an .avi file and attempt to create a
DirectSound object, the creation function will return an error.
For now, applications can release the DirectSound object by calling
IDirectSound::Release before playing an .avi file. Applications can then re-
create and reinitialize the DirectSound object and its DirectSoundBuffer objects
when the video finishes playing.

DirectSound Essentials

This section gives a practical overview of how the various DirectSound interfaces are
used in order to play and capture sound. The following topics are discussed:

® DirectSound Devices

¢ DirectSound Buffers

® Introduction to 3-D Sound

® DirectSound 3-D Buffers

® DirectSound 3-D Listeners

¢ DirectSoundCapture

® DirectSound Property Sets

® Optimizing DirectSound Performance

Note
Most of the examples of method calls throughout this section are given in the C
form, which accesses methods by means of a pointer to a table of pointers to
functions, and requires a this pointer as the first parameter in any call. For
example, a C call to the IDirectSound::GetCaps method takes this form:
IpDirectSound->IpVtbl->GetCaps(IpDirectSound, &dscaps);

You can simplify C calls to any of the DirectSound methods by using the macros
defined in Dsound.h. For example:
IDirectSound_GetCaps(IpDirectSound, &dscaps);

The same method call in the C++ form, which treats COM interface methods just

like class methods, looks like this:
IpDirectSound->GetCaps(&dscaps);

DirectSound Devices

in.doc — page 7

The first step in implementing DirectSound in an application is to create a
DirectSound object, which creates an instance of the IDirectSound interface.

A DirectSound object describes the audio hardware on a system. The IDirectSound
interface enables your application to define and control the sound card, speaker, and
memory environment.

This section describes how your application can enumerate available sound devices,
create the DirectSound object for a device, and use the methods of the object to set
the cooperative level, retrieve the capabilities of the device, create sound buffers, set
the configuration of the system's speakers, and compact hardware memory.

® Enumeration of Sound Devices
® (Creating the DirectSound Object
® Cooperative Levels

® Device Capabilities

® Speaker Configuration

® Compacting Hardware Memory

Enumeration of Sound Devices

For an application that is simply going to play sounds through the user’s preferred
playback device, you need not enumerate the available devices. When you create the
DirectSound object with NULL as the device identifier, the interface will
automatically be associated with the default device if one is present. If no device
driver is present, the call to the DirectSoundCreate function will fail.

However, if you are looking for a particular kind of device or need to work with two
or more devices, you must get DirectSound to enumerate the devices available on the
system.

Enumeration serves three purposes:

® Reports what hardware is available
® Supplies a GUID for each device

® Allows you to initialize DirectSound for each device as it is enumerated

To enumerate devices you must first set up a callback function that will be called each
time DirectSound finds a device. You can do anything you want within this function,
and you can give it any name, but you must declare it in the same form as
DSEnumCallback, a prototype in this documentation. The callback function must
return TRUE if enumeration is to continue, or FALSE otherwise (for instance, after
finding a device with the capabilities you need).

If you are working with more than one device—for example, a capture and a playback
device—the callback function is a good place to create and initialize the DirectSound
object for each device.

in.doc — page 8

The following example, extracted from Dsenum.c in the Dsshow sample, enumerates
the available devices and adds information about each to a list in a combo box. Here
is the callback function in its entirety:

BOOL CALLBACK DSEnumProc(LPGUID IpGUID,
LPCTSTR IpszDesc,
LPCTSTR IpszDrvName,
LPVOID IpContext)
{
HWND hCombo = *(HWND *)IpContext;
LPGUID IpTemp = NULL;

if(IpGUID = NULL)

{
if(IpTemp = LocalAlloc(LPTR, sizeof(GUID))) == NULL)
return(TRUE);

memcpy(IpTemp, IpGUID, sizeof(GUID));

ComboBox_AddString(hCombo, IpszDesc);

ComboBox_SetltemData(hCombo,
ComboBox_FindString(hCombo, 0, IpszDesc),
IpTemp);

return(TRUE);

}

The enumeration is set in motion when the dialog containing the combo box is
initialized:
if (DirectSoundEnumerate((LPDSENUMCALLBACK)DSEnumProc, &hCombo)
I=DS_OK)
{
EndDialog(hDlg, TRUE);
return(TRUE);

}

Note that the address of the handle to the combo box is passed into
DirectSoundEnumerate, which in turn passes it to the callback function. This
parameter can be any 32-bit value that you want to have access to within the callback.

Creating the DirectSound Object

The simplest way to create the DirectSound object is with the DirectSoundCreate
function. The first parameter of this function specifies the GUID of the device to be
associated with the object. You can obtain this GUID by Enumeration of Sound
Devices, or you can simply pass NULL to create the object for the default device.

in.doc — page 9

LPDIRECTSOUND IpDirectSound;
HRESULT hr;
hr = DirectSoundCreate(NULL, &lpDirectSound, NULL));

The function returns an error if there is no sound device or if the sound device is
being used by the waveform-audio (non-DirectSound) functions. You should prepare
your applications for this call to fail so that they can either continue without sound or
prompt the user to close the application that is already using the sound device.

You can also create the DirectSound object by using the CoCreateIlnstance function,
as follows:

1 Initialize COM at the start of your application by calling Colnitialize and
specifying NULL.
if (FAILED(Colnitialize(NULL)))
return FALSE;

2 Create your DirectSound object by using CoCreatelnstance and the
IDirectSound::Initialize method, rather than the DirectSoundCreate function.

dsrval = CoCreatelnstance(&CLSID_DirectSound,
NULL,
CLSCTX_INPROC_SERVER,
&IID_IDirectSound,
&lpds);
if (SUCCEEDED(dsrval))
dsrval = IDirectSound_Initialize(lpds, NULL);

CLSID DirectSound is the class identifier of the DirectSound driver object class and
IID _IDirectSound is the DirectSound interface that you should use. The Ipds
parameter is the uninitialized object CoCreatelnstance returns.

Before you use a DirectSound object created with the CoCreatelnstance function,
you must call the IDirectSound::Initialize method. This method takes the driver
GUID parameter that DirectSoundCreate typically uses (NULL in this case). After
the DirectSound object is initialized, you can use and release the DirectSound object
as if it had been created by using the DirectSoundCreate function.

Before you close the application, shut down COM by calling the CoUninitialize
function, as follows:

CoUninitialize();

Cooperative Levels

Because Windows is a multitasking environment, more than one application may be
working with a device driver at any one time. Through the use of cooperative levels,
DirectX makes sure that each application does not gain access to the device in the

in.doc — page 10

wrong way or at the wrong time. Each DirectSound application has a cooperative
level that determines the extent to which it is allowed to access the device.

After creating a DirectSound object, you must set the cooperative level for the device
with the IDirectSound::SetCooperativeLevel method before you can play sounds.

The following example sets the cooperative level for the DirectSound device
initialized at Creating the DirectSound Object. The Awnd parameter is the handle to
the application window.

HRESULT hr = IpDirectSound->IpVtbl->SetCooperativeLevel(
IpDirectSound, hwnd, DSSCL_NORMAL);

DirectSound defines four cooperative levels for sound devices: normal, priority,
exclusive, and write-primary. Most applications will use the sound device at the
normal cooperative level, which allows for orderly switching between applications
that use the sound card.

Normal Cooperative Level

At the normal cooperative level, the application cannot set the format of the primary
sound buffer, write to the primary buffer, or compact the on-board memory of the
device. All applications at this cooperative level use a primary buffer format of 22
kHz, stereo sound, and 8-bit samples, so that the device can switch between
applications as smoothly as possible.

Priority Cooperative Level

When using a DirectSound device with the priority cooperative level, the application
has first rights to hardware resources, such as hardware mixing, and can set the
format of the primary sound buffer and compact the on-board memory of the device.

Exclusive Cooperative Level

At the exclusive cooperative level, the application has all the privileges of the priority
level. In addition, when the application is in the foreground, its buffers are the only
ones that are audible.

Write-primary Cooperative Level

The highest cooperative level is write-primary. When using a DirectSound device
with this cooperative level, your application has direct access to the primary sound
buffer. In this mode, the application must write directly to the primary buffer.
Secondary buffers cannot be played while this is going on.

An application must be set to the write-primary level in order to obtain direct write
access to the audio samples in the primary buffer. If the application is not set to this
level, then all calls to the IDirectSoundBuffer::Lock method for the primary buffer
will fail.

in.doc — page 11

When your application is set to the write-primary cooperative level and gains the
foreground, all secondary buffers for other applications are stopped and marked as
lost. When your application in turn moves to the background, its primary buffer is
marked as lost and must be restored when the application again moves to the
foreground. For more information, see Buffer Management.

You cannot set the write-primary cooperative level if a DirectSound driver is not
present on the user’s system. To determine whether this is the case, call the
IDirectSound::GetCaps method and check for the DSCAPS_EMULDRIVER flag in
the DSCAPS structure.

For more information, see Access to the Primary Buffer.

Device Capabilities

DirectSound allows your application to retrieve the hardware capabilities of the sound
device. Most applications will not need to do this, because DirectSound automatically
takes advantage of any available hardware acceleration. However, high-performance
applications can use the information to scale their sound requirements to the available
hardware. For example, an application might play more sounds if hardware mixing is
available than if it is not.

After calling the DirectSoundCreate function to create a DirectSound object, your
application can retrieve the capabilities of the sound device by calling the
IDirectSound::GetCaps method.

The following example retrieves the capabilities of the device that was initialized in
Creating the DirectSound Object.

DSCAPS dscaps;

dscaps.dwSize = sizeof(DSCAPS);
HRESULT hr = IpDirectSound->IpVtbl->GetCaps(IpDirectSound,
&dscaps);

The DSCAPS structure receives information about the performance and resources of
the sound device, including the maximum resources of each type and the resources
that are currently available. Note that the dwSize member of this structure must be
initialized before the method is called.

It is unwise to make assumptions about the behavior of the sound device; if you do,
your application might work on some sound devices but not on others. Furthermore,
future devices might behave differently.

If your application scales to hardware capabilities, you should call the
IDirectSound::GetCaps method between every buffer allocation to determine if
there are enough resources to create the next buffer.

Speaker Configuration

in.doc — page 12

The IDirectSound interface contains two methods that allow your application to
investigate and set the configuration of the system's speakers. These methods are
IDirectSound::GetSpeakerConfig and IDirectSound::SetSpeakerConfig.

Compacting Hardware Memory

Your application can use the IDirectSound::Compact method to move any on-board
sound memory into a contiguous block to make the largest portion of free memory
available.

DirectSound Buffers

This section covers the creation and management of DirectSoundBuffer objects,
which are the fundamental mechanism for playing sounds. The following topics are
discussed:

¢ Buffer Basics
¢ Static and Streaming Sound Buffers
® Creating Secondary Buffers
¢ Buffer Control Options
® Access to the Primary Buffer
® Playing Sounds
® Playback Controls
® Current Play and Write Positions
® Play Buffer Notification
® Mixing Sounds
® Custom Mixers
® Buffer Management
® Compressed Wave Formats
Most of the information in this section applies to 3-D sound buffers as well. For

information specific to the IDirectSound3DBuffer interface, see DirectSound 3-D
Buffers.

For information about capture buffers, see DirectSoundCapture.

Buffer Basics

When you initialize DirectSound in your application, it automatically creates and
manages a primary sound buffer for mixing sounds and sending them to the output
device.

in.doc — page 13

Your application must create at least one secondary sound buffer for storing and
playing individual sounds. For more information on how to do this, see Creating
Secondary Buffers.

A secondary buffer can exist throughout the life of an application or it may be
destroyed when no longer needed. It may contain a single sound that is to be played
repeatedly, such as a sound effect in a game, or it may be filled with new data from
time to time. The application can play a sound stored in a secondary buffer as a single
event or as a looping sound that plays continuously.

Secondary buffers can also be used to stream data, in cases where a sound file
contains more data than can conveniently be stored in memory.

For more information on the different kinds of secondary buffers, see Static and
Streaming Sound Buffers.

You can create two or more secondary buffers in the same physical memory by using
the IDirectSound::DuplicateSoundBuffer method, provided the original buffer is
not on the sound hardware.

You can mix sounds from different secondary buffers simply by playing them at the
same time. Data from secondary buffers is mixed by DirectSound in the primary
buffer. Any number of secondary buffers can be played at one time, up to the limits of
processing power.

The DirectSound mixer can provide as little as 20 milliseconds of latency, so there is
no perceptible delay before play begins. Under these conditions, if your application
plays a buffer and immediately begins a screen animation, the audio and video appear
to start at the same time. However, if DirectSound must emulate hardware features in
software, the mixer cannot achieve low latency and a longer delay (typically 100-150
milliseconds) occurs before the sound is reproduced.

Normally you do not have to concern yourself at all with the primary buffer;
DirectSound manages it behind the scenes. However, if your application is to perform
its own mixing, DirectSound will let you write directly to the primary buffer. If you
do this, you cannot also use secondary buffers. For more information, see Access to
the Primary Buffer.

Static and Streaming Sound Buffers

When you create a secondary sound buffer, you specify whether it is a static sound
buffer or a streaming sound buffer. A static buffer contains a complete sound in
memory. A streaming buffer holds only a portion of a sound, such as 3 seconds of
data from a 15-second bit of voice dialog. When using a streaming sound buffer, your
application must periodically write new data to the buffer.

If a sound device has on-board sound memory, DirectSound attempts to place static
buffers in the hardware memory. These buffers can then take advantage of hardware
mixing, and the processing system incurs little or no overhead to mix these sounds.
This is particularly useful for sounds your application plays repeatedly, because the
sound data must be downloaded only once to the hardware memory.

in.doc — page 14

Streaming buffers are generally located in main system memory to allow efficient
writing to the buffer, although you can use hardware mixing on peripheral component
interconnect (PCI) machines or other fast buses.

DirectSound distinguishes between static and streaming buffers in order to optimize
performance, but it does not restrict how you can use the buffer. If a streaming buffer
is big enough, there is nothing to prevent you from writing an entire sound to it in one
chunk. In fact, if you do not intend to use the sound more than once, it can be more
efficient to use a streaming buffer because by doing so you eliminate the step of
downloading the data to hardware memory.

Your application may attempt to explicitly locate buffers in hardware or software. If
you attempt to create a hardware buffer and there is insufficient memory or mixing
capacity, the buffer creation request fails. Many existing sound cards do not have any
on-board memory or mixing capacity, so no hardware buffers can be created on these
devices.

For more information, see Creating Secondary Buffers.

Creating Secondary Buffers

To create a sound buffer, your application fills a DSBUFFERDESC structure and
then calls the IDirectSound::CreateSoundBuffer method. This method creates a
DirectSoundBuffer object and returns a pointer to an IDirectSoundBuffer interface.
Your application uses this interface to manipulate and play the buffer.

The following example illustrates how to create a basic secondary sound buffer:

BOOL AppCreateBasicBuffer(
LPDIRECTSOUND IpDirectSound,
LPDIRECTSOUNDBUFFER *IplpDsb)

PCMWAVEFORMAT pcmwf;

DSBUFFERDESC dsbdesc;

HRESULT hr;

/I Set up wave format structure.

memset(&pcmwf, 0, sizeof(PCMWAVEFORMAT));

pcmwf.wf.wFormatTag = WAVE_FORMAT_PCM,;

pcmwf.wf.nChannels = 2;

pcmwf.wf.nSamplesPerSec = 22050;

pcmwf.wf.nBlockAlign = 4;

pcmwf.wf.nAvgBytesPerSec =
pcmwf.wf.nSamplesPerSec * pcmwf.wf.nBlockAlign;

pcmwf.wBitsPerSample = 16;

/I Set up DSBUFFERDESC structure.

memset(&dsbdesc, 0, sizeof(DSBUFFERDESC)); // Zero it out.

dsbdesc.dwSize = sizeof(DSBUFFERDESC);

/I Need default controls (pan, volume, frequency).

dsbdesc.dwFlags = DSBCAPS_CTRLDEFAULT;

in.doc — page 15

/I 3-second buffer.
dsbdesc.dwBufferBytes = 3 * pcmwf.wf.nAvgBytesPerSec;
dsbdesc.lpwfxFormat = (LPWAVEFORMATEX)&pcmwf;
/I Create buffer.
hr = IpDirectSound->IpVtbl->CreateSoundBuffer(IpDirectSound,
&dsbdesc, IplpDsb, NULL);
if(DS_OK == hr) {
/I Succeeded. Valid interface is in *IplpDsb.
return TRUE;
}else {
/I Failed.
*IplpDsb = NULL;
return FALSE;
}
}

Your application should create buffers for the most important sounds first, and then
create buffers for other sounds in descending order of importance. DirectSound
allocates hardware resources to the first buffer that can take advantage of them.

If your application must explicitly locate buffers in hardware or software, you can
specify either the DSBCAPS LOCHARDWARE or DSBCAPS LOCSOFTWARE
flag in the DSBUFFERDESC structure. If the DSBCAPS LOCHARDWARE flag is
specified and there is insufficient hardware memory or mixing capacity, the buffer
creation request fails.

You can ascertain the location of an existing buffer by using the
IDirectSoundBuffer::GetCaps method and checking the dwFlags member of the
DSBCAPS structure for either the DSBCAPS LOCHARDWARE or
DSBCAPS_LOCSOFTWARE flags. One or the other is always specified.

When you create a sound buffer, you can indicate that a buffer is static by specifying
the DSBCAPS STATIC flag. If you do not specify this flag, the buffer is a streaming
buffer. For more information, see Static and Streaming Sound Buffers.

DirectSoundBuffer objects are owned by the DirectSound object that created them.
When the DirectSound object is released, all buffers created by that object also will
be released and should not be referenced.

Buffer Control Options

When creating a sound buffer, your application must specify the control options
needed for that buffer. This is done with the dwFlags member of the
DSBUFFERDESC structure, which can contain one or more DSBCAPS CTRL*
flags. DirectSound uses these options when it allocates hardware resources to sound
buffers. For example, a device might support hardware buffers but provide no pan
control on those buffers. In this case, DirectSound would use hardware acceleration
only if the DSBCAPS CTRLPAN flag was not specified.

in.doc — page 16

To obtain the best performance on all sound cards, your application should specify
only control options it will use.

If your application calls a method that a buffer lacks, that method fails. For example,
if you attempt to change the volume by using the IDirectSoundBuffer::SetVolume
method, the method succeeds if the DSBCAPS CTRLVOLUME flag was specified
when the buffer was created. Otherwise the method fails and returns the
DSERR_CONTROLUNAVALIL error code. Providing controls for the buffers helps
to ensure that all applications run correctly on all existing or future sound devices.

Access to the Primary Buffer

For applications that require specialized mixing or other effects not supported by
secondary buffers, DirectSound allows direct access to the primary buffer.

When you obtain write access to a primary sound buffer, other DirectSound features
become unavailable. Secondary buffers are not mixed and, consequently, hardware-
accelerated mixing is unavailable.

Most applications should use secondary buffers instead of directly accessing the
primary buffer. Applications can write to a secondary buffer easily because the larger
buffer size provides more time to write the next block of data, thereby minimizing the
risk of gaps in the audio. Even if an application has simple audio requirements, such
as using one stream of audio data that does not require mixing, it will achieve better
performance by using a secondary buffer to play its audio data.

You cannot specify the size of the primary buffer, and you must accept the returned
size after the buffer is created. A primary buffer is typically very small, so if your
application writes directly to this kind of buffer, it must write blocks of data at short
intervals to prevent the previously written data from being replayed.

You create an accessible primary buffer by specifying the

DSBCAPS PRIMARYBUFFER flag in the DSBUFFERDESC structure passed to
the IDirectSound::CreateSoundBuffer method. If you want to write to the buffer,
the cooperative level must be DSSCL_ WRITEPRIMARY.

Primary sound buffers must be played with looping. Ensure that the
DSBPLAY LOOPING flag is set.

The following example shows how to obtain write access to the primary buffer:

BOOL AppCreateWritePrimaryBuffer(
LPDIRECTSOUND IpDirectSound,
LPDIRECTSOUNDBUFFER *IplpDsb,
LPDWORD IpdwBufferSize,

HWND hwnd)

DSBUFFERDESC dshdesc;
DSBCAPS dshcaps;
HRESULT hr;

/I Set up wave format structure.

in.doc — page 17

memset(&pcmwf, 0, sizeof(PCMWAVEFORMAT));
pcmwf.wf.wFormatTag = WAVE_FORMAT_PCM,;
pcmwf.wf.nChannels = 2;
pcmwf.wf.nSamplesPerSec = 22050;
pcmwf.wif.nBlockAlign = 4;
pcmwf.wf.nAvgBytesPerSec =

pcmwf.wf.nSamplesPerSec * pcmwf.wf.nBlockAlign;
pcmwf.wBitsPerSample = 16;
/I Set up DSBUFFERDESC structure.
memset(&IplpDsb, 0, sizeof(DSBUFFERDESC)); // Zero it out.
dsbdesc.dwSize = sizeof(DSBUFFERDESC);
dsbdesc.dwFlags = DSBCAPS_PRIMARYBUFFER;
/I Buffer size is determined by sound hardware.
dsbdesc.dwBufferBytes = 0;
dsbdesc.lpwfxFormat = NULL; // Must be NULL for primary buffers.

/I Obtain write-primary cooperative level.
hr = IpDirectSound->IpVtbl->SetCooperativeLevel(IpDirectSound,
hwnd, DSSCL_WRITEPRIMARY);
if (DS_OK ==hr) {
/I Succeeded. Try to create buffer.
hr = IpDirectSound->IpVtbl->CreateSoundBuffer(IpDirectSound,
&dsbdesc, IplpDsb, NULL);
if (DS_OK == hr) {
/I Succeeded. Set primary buffer to desired format.
hr = (*IplpDsb)->IpVtbl->SetFormat(*IplpDsb, &pcmwf);
if (DS_OK == hr) {
/1 1f you want to know the buffer size, call GetCaps.
dsbcaps.dwSize = sizeof(DSBCAPS);
(*IplpDsb)->IpVtbl->GetCaps(*IplpDsb, &dsbcaps);
*lpdwBufferSize = dsbcaps.dwBufferBytes;
return TRUE;

}

/I SetCooperativeLevel failed.

/I CreateSoundBuffer, or SetFormat.
*IplpDsb = NULL;

*|pdwBufferSize = 0;

return FALSE;

You cannot obtain write access to a primary buffer unless it exists in hardware. To
determine whether this is the case, call the IDirectSoundBuffer::GetCaps method
and check for the DSBCAPS LOCHARDWARE flag in the dwFlags member of the

in.doc — page 18

DSBCAPS structure that is returned. If you attempt to lock a primary buffer that is
emulated in software, the call will fail.

You may also create a primary buffer object without write access, by specifying a
cooperative level other than DSSCL_WRITEPRIMARY. One reason for doing this
would be to call the IDirectSoundBuffer::Play method for the primary buffer, in
order to eliminate problems associated with frequent short periods of silence. For
more information, see Playing the Primary Buffer Continuously.

See also Custom Mixers.

Playing Sounds

Playing a sound consists of the following steps:

1. Lock a portion of the secondary buffer (IDirectSoundBuffer::Lock). This
method returns a pointer to the address where writing will begin, based on the
offset from the beginning of the buffer that you pass in.

2. Write the audio data to the buffer.
3. Unlock the buffer (IDirectSoundBuffer::Unlock).

4. Send the sound to the primary buffer and from there to the output device
(IDirectSoundBuffer::Play).

Because streaming sound buffers usually play continually and are conceptually
circular, DirectSound returns two write pointers when locking a sound buffer. For
example, if you tried to lock 300 bytes beginning at the midpoint of a 400-byte buffer,
the Lock method would return one pointer to the last 200 bytes of the buffer, and a
second pointer to the first 100 bytes. The second pointer is NULL if the locked
portion of the buffer does not wrap around.

Normally the buffer stops playing automatically when the end is reached. However, if
the DSBPLAY LOOPING flag was set in the dwFlags parameter to the Play method,
the buffer will play repeatedly until the application calls the
IDirectSoundBuffer::Stop method, at which point the play cursor is moved to the
beginning of the buffer.

For streaming sound buffers, your application is responsible for ensuring that the next
block of data is written to the buffer before the current play position loops back to the
beginning. (For more on the play position, see Current Play and Write Positions.) You
can do this by setting notification positions so that an event is signaled whenever the
current play position reaches a certain point. Applications should write at least 1
second ahead of the current play position to minimize the possibility of gaps in the
audio output during playback.

The following C example writes data to a sound buffer, starting at the offset into the
buffer passed in dwOffset:

BOOL AppWriteDataToBuffer(
LPDIRECTSOUNDBUFFER IpDsb, // the DirectSound buffer
DWORD dwOffset, /I our own write cursor

in.doc — page 19

LPBYTE IpbSoundData, /I start of our data
DWORD dwSoundBytes) /I size of block to copy

LPVOID IpvPtrl,;

DWORD dwBytes1,;

LPVOID IpvPtr2;

DWORD dwBytes?2;

HRESULT hr;

/I Obtain memory address of write block. This will be in two parts

/I if the block wraps around.

hr = IpDsb->IpVtbl->Lock(IpDsb, dwOffset, dwSoundBytes, &lpvPtrl,
&dwBytes1, &lIpvPtr2, &dwBytes?2, 0);

/I 'f DSERR_BUFFERLOST is returned, restore and retry lock.
if(DSERR_BUFFERLOST == hr) {
IpDsb->IpVtbl->Restore(IpDsb);
hr = IpDsb->IpVtbl->Lock(IpDsb, dwOffset, dwSoundBytes,
&IpvPtrl, &dwAudiol, &lpvPtr2, &dwAudio2, 0);
}
if(DS_OK == hr) {
I/l Write to pointers.
CopyMemory(IpvPtrl, IpbSoundData, dwBytesl);
if(NULL != IpvPtr2) {
CopyMemory(IpvPtr2, IpbSoundData+dwBytes1, dwBytes?2);
}
/I Release the data back to DirectSound.
hr = IpDsb->IpVtbl->Unlock(IpDsb, IpvPtrl, dwBytes1, IpvPtr2,
dwBytes?2);
if(DS_OK == hr) {
/I Success.
return TRUE;

}

/I Lock, Unlock, or Restore failed.
return FALSE;

Playback Controls

To retrieve and set the volume at which a buffer is played, your application can use
the IDirectSoundBuffer::GetVolume and IDirectSoundBuffer::SetVolume
methods. Setting the volume on the primary sound buffer changes the waveform-
audio volume of the sound card.

in.doc — page 20

Similarly, by calling the IDirectSoundBuffer::GetFrequency and
IDirectSoundBuffer::SetFrequency methods, you can retrieve and set the frequency
at which audio samples play. You cannot change the frequency of the primary buffer.

To retrieve and set the pan, you can call the IDirectSoundBuffer::GetPan and
IDirectSoundBuffer::SetPan methods. You cannot change the pan of the primary
buffer.

Current Play and Write Positions

DirectSound maintains two pointers into the buffer: the current play position (or play
cursor) and the current write position (or write cursor). These positions are byte
offsets into the buffer, not absolute memory addresses.

The IDirectSoundBuffer::Play method always starts playing at the buffer's current
play position. When a buffer is created, the play position is set to zero. As a sound is
played, the play position moves and always points to the next byte of data to be
output. When the buffer is stopped, the play position remains where it is.

The current write position is the point after which it is safe to write data into the
buffer. The block between the current play position and the current write position is
already committed to be played, and cannot be changed safely.

Visualize the buffer as a clock face, with data written to it in a clockwise direction.
The play position and the write position are like two hands sweeping around the face
at the same speed, the write position always keeping a little ahead of the play
position. If the play position points to the 1 and the write position points to the 2, it is
only safe to write data after the 2. Data between the 1 and the 2 may already have
been queued for playback by DirectSound and should not be touched.

Note
The write position moves with the play position, not with data written to the
buffer. If you’re streaming data, you are responsible for maintaining your own
pointer into the buffer to indicate where the next block of data should be written.
Also note that the dwWriteCursor parameter to the IDirectSoundBuffer::Lock
method is not the current write position; it is the offset within the buffer where
you actually intend to begin writing data. (If you do want to begin writing at the
current write position, you specify DSBLOCK FROMWRITECURSOR in the
dwFlags parameter. In this case the dwWriteCursor parameter is ignored.)

An application can retrieve the current play and write positions by calling the
IDirectSoundBuffer::GetCurrentPosition method. The
IDirectSoundBuffer::SetCurrentPosition method lets you set the current play
position, but the current write position cannot be changed.

Play Buffer Notification

Particularly when streaming audio, you may want your application to be notified
when the play cursor reaches a certain point in the buffer, or when playback is

in.doc — page 21

stopped. With the IDirectSoundNotify::SetNotificationPositions method you can
set any number of points within the buffer where events are to be signaled. You
cannot do this while the buffer is playing.

First you have to obtain a pointer to the IDirectSoundNotify interface. You can do
this with the buffer object’s QuerylInterface method, as in the following C++
example:

// LPDIRECTSOUNDBUFFER IpDsbSecondary;
/I The buffer has been initialized already.
LPDIRECTSOUNDNOTIFY IpDsNotify; // pointer to the interface

HRESULT hr = IpDsbSecondary->Queryinterface(lID_IDirectSoundNotify,

&IpDsNotify);
if (SUCCEEDED(hr))
{
/I Go ahead and use IpDsNotify->SetNotificationPositions.
}
Note

The IDirectSoundNotify interface is associated with the object that obtained the
pointer, in this case the secondary buffer. The methods of the new interface will
automatically apply to that buffer.

Now create an event object with the Win32 CreateEvent function. You put the
handle to this event in the hEventNotify member of a DSBPOSITIONNOTIFY
structure, and in the dwOffset member of that structure you specify the offset within
the buffer where you want the event to be signaled. Then you pass the address of the
structure—or of an array of structures, if you want to set more than one notification
position—to the IDirectSoundNotify::SetNotificationPositions method.

The following example sets a single notification position. The event will be signaled
when playback stops, either because it was not looping and the end of the buffer has
been reached, or because the application called the IDirectSoundBuffer::Stop
method.

DSBPOSITIONNOTIFY PositionNotify;
PositionNotify.Offset = DSBPN_OFFSETSTOP;
PositionNotify.hEventNotify = hMyEvent;

/l hMyEvent is the handle returned by CreateEvent()

IpDsNotify->SetNotificationPositions(1, &PositionNotify);

Mixing Sounds

It is easy to mix multiple streams with DirectSound. You simply create secondary
sound buffers, receiving an IDirectSoundBuffer interface for each sound. You then

in.doc — page 22

play the buffers simultaneously. DirectSound takes care of the mixing in the primary
sound buffer and plays the result.

The DirectSound mixer can obtain the best results from hardware acceleration if your
application correctly specifies the DSBCAPS _STATIC flag for static buffers. This
flag should be specified for any static buffers that will be reused. DirectSound
downloads these buffers to the sound hardware memory, where available, and
consequently does not incur any processing overhead in mixing these buffers. The
most important static sound buffers should be created first to give them first priority
for hardware acceleration.

The DirectSound mixer produces the best sound quality if all your application's
sounds use the same wave format and the hardware output format is matched to the
format of the sounds. If this is done, the mixer need not perform any format
conversion.

Your application can change the hardware output format by creating a primary sound
buffer and calling the IDirectSoundBuffer::SetFormat method. Note that this
primary buffer is for control purposes only; creating it is not the same as obtaining
write access to the primary buffer as described under Access to the Primary Buffer,
and you do not need the DSSCL_WRITEPRIMARY cooperative level. However, you
do need a cooperative level of DSSCL_PRIORITY or higher in order to call the
SetFormat method. DirectSound will restore the hardware format to the format
specified in the last call every time the application gains the input focus.

Custom Mixers

Most applications will use the DirectSound mixer; it should be sufficient for almost
all mixing needs and it automatically takes advantage of any available hardware
acceleration. However, if an application requires some other functionality that
DirectSound does not provide, it can obtain write access to the primary sound buffer
and mix streams directly into it.

To implement a custom mixer, the application must first obtain the
DSSCL_WRITEPRIMARY cooperative level and then create a primary sound buffer.
(See Access to the Primary Buffer.) It can then lock the buffer, write data to it, unlock
it, and play it just like any other buffer. (See Playing Sounds.) Note however that the
DSBPLAY LOOPING flag must be specified or the IDirectSoundBuffer::Play call
will fail.

The following example illustrates how an application might implement a custom
mixer. The AppMixIntoPrimaryBuffer function would have to be called at regular
intervals, frequently enough to prevent the sound device from repeating blocks of
data. The CustomMixer function is an application-defined function that mixes
several streams together, as specified in the application-defined AppStreamInfo
structure, and writes the result to the specified pointer.

BOOL AppMixIntoPrimaryBuffer(
LPAPPSTREAMINFO IpAppStreaminfo,
LPDIRECTSOUNDBUFFER IpDsbPrimary,

in.doc — page 23

DWORD dwDataBytes,
DWORD dwOldPos,
LPDWORD IpdwNewPos)

LPVOID IpvPtrl,;
DWORD dwBytes1,;
LPVOID IpvPtr2;
DWORD dwBytes?2;
HRESULT hr;
/I Obtain write pointer.
hr = IpDsbPrimary->IpVtbl->Lock(IpDsbPrimary,
dwOldPos, dwDataBytes,
&IpvPtrl, &dwBytes1,
&IpvPtr2, &dwBytes2, 0);
/I''f DSERR_BUFFERLOST is returned, restore and retry lock.
if(DSERR_BUFFERLOST == hr) {
IpDsbPrimary->IpVtbl->Restore(IpDsbPrimary);
hr = IpDsbPrimary->IpVtbl->Lock(IlpDsbPrimary,
dwOldPos, dwDataBytes,
&IpvPtrl, &dwBytes1,
&lpvPtr2, &dwBytes2, 0);
}
if (DS_OK == hr) {
/I Mix data into the returned pointers.
CustomMixer(IpAppStreaminfo, IpvPtrl, dwBytes1);
*lpdwNewPos = dwOIldPos + dwBytes1;
if (NULL != IpvPtr2) {
CustomMixer(IpAppStreamlinfo, IpvPtr2, dwBytes2);
*lpdwNewPos = dwBytes2; // Because it wrapped around.
}
/I Release the data back to DirectSound.
hr = IpDsbPrimary->IpVtbl->Unlock(IpDsbPrimary,
IpvPtrl, dwBytes1,
IpvPtr2, dwBytes2);
if (DS_OK == hr) {
/I Success.
return TRUE;

}
/I Lock or Unlock failed.

return FALSE;

Buffer Management

in.doc — page 24

The IDirectSoundBuffer::GetCaps method retrieves the capabilities of the
DirectSoundBuffer object.

Your application can use the IDirectSoundBuffer::GetStatus method to determine if
the current sound buffer is playing or if it has stopped.

You can use the IDirectSoundBuffer::GetFormat method to retrieve information
about the format of the sound data in the buffer. You also can use the
IDirectSoundBuffer::GetFormat and IDirectSoundBuffer::SetFormat methods to
retrieve and set the format of the sound data in the primary sound buffer.

Note
After a secondary sound buffer is created, its format is fixed. If you need a
secondary buffer that uses another format, you must create a new sound buffer
with this format.

Memory for a sound buffer can be lost in certain situations. In particular, this can
occur when buffers are located in the hardware sound memory. In the worst case, the
sound card itself might be removed from the system while in use; this situation can
occur with PCMCIA sound cards.

Loss can also occur when an application with the write-primary cooperative level
moves to the foreground. If this flag is set, DirectSound makes all other sound buffers
lost so that the foreground application can write directly to the primary buffer. The
DSERR BUFFERLOST error code is returned when the IDirectSoundBuffer::Lock
or IDirectSoundBuffer::Play method is called for any other buffer. When the
application lowers its cooperative level from write-primary, or moves to the
background, other applications can attempt to reallocate the buffer memory by calling
the IDirectSoundBuffer::Restore method. If successful, this method restores the
buffer memory and all other settings for the buffer, such as volume and pan settings.
However, a restored buffer does not contain valid sound data. The owning application
must rewrite the data to the restored buffer.

Compressed Wave Formats

DirectSound does not currently support compressed wave formats. Applications
should use the audio compression manager (ACM) functions, provided with the
Win32 APIs in the Platform SDK, to convert compressed audio to pulse-code
modulation (PCM) data before writing the data to a sound buffer. In fact, by locking a
pointer to the sound-buffer memory and passing this pointer to the ACM, the data can
be decoded directly to the sound buffer for maximum efficiency.

Introduction to 3-D Sound

DirectSound enables an application to change the apparent position and movement of
a sound source. A sound source can be a point from which sounds radiate in all
directions or a cone outside which sounds are attenuated. Applications can also
modify sounds using Doppler shift.

in.doc — page 25

Although these effects are audible using standard loudspeakers, they are more
obvious and compelling when the user wears headphones.

This overview introduces the basic concepts of 3-D sound as implemented by
DirectSound. The following topics are discussed:

® Perception of Sound Positions

® Listeners

® Sound Cones

® Distance Measurements

® Doppler Shift

® Integration with Direct3D

® Mono and Stereo Sources

Specific information on how to use 3-D sound in an application is found in the
following sections:

® DirectSound 3-D Buffers

® DirectSound 3-D Listeners

Perception of Sound Positions

In the real world, the perception of a sound's position in space is influenced by a
number of factors, including the following:

® JVolume. The farther an object is from the listener, the quieter it sounds. This
phenomenon is known as rolloff.

® Arrival offset. A sound emitted by a source to the listener's right will arrive at the
right ear slightly before it arrives at the left ear. (The duration of this offset is
approximately a millisecond.)

® Muffling. The orientation of the ears ensures that sounds coming from behind the
listener are slightly muffled compared with sounds coming from in front. In
addition, if a sound is coming from the right, the sounds reaching the left ear will
be muffled by the mass of the listener's head as well as by the orientation of the
left ear.

Although these are not the only cues people use to discern the position of sound, they
are the main ones, and they are the factors that have been implemented in the
positioning system of DirectSound. When hardware that supports 3-D sound becomes
generally available, other positioning cues might be incorporated into the system,
including the difference in how high- and low-frequency sounds are muffled by the
mass of the listener's head and the reflections of sound off the shoulders and earlobes.

One of the most important sound-positioning cues is the apparent visual position of
the sound source. If a projectile appears as a dot in the distance and grows to the size

in.doc — page 26

of an intercontinental missile before it roars past the viewer's head, the listener does
not need subtle acoustical cues in order to perceive that the sound has gone past.

Listeners

Listeners experience an identical sonic effect when an object moves in a 90-degree
arc around them or if they move their heads 90 degrees relative to the object.
Programmatically, however, it is often much simpler to change the position or
orientation of the listener than to change the position of every other object in a scene.
DirectSound makes this possible through the IDirectSound3DListener interface.

Listener orientation is defined by the relationship between two vectors that share an
origin: the top and front vectors. The top vector originates from the center of the
listener's head and points straight up through the top of the head. The front vector also
originates from the center of the listener's head, but it points at a right angle to the top
vector, forward through the listener's face. The following illustration shows the
directions of these vectors:

Sound Cones

A sound with a position but no orientation is a point source; the farther the listener is
from the sound, in any direction, the quieter the sound. A sound with a position and
an orientation is a sound cone.

In DirectSound, sound cones include an inside cone and an outside cone. Within the
inside cone, the volume is at the maximum level for that sound source. (Because
DirectSound does not support amplification, the maximum volume level is zero; all
other volume levels are negative values that represent an attenuation of the maximum
volume.) Outside the outside cone, the volume is the specified outside volume added
to the inside volume. If an application sets the outside volume to
DSBVOLUME MIN, for example, the sound source will be inaudible outside the
outside cone. Between the outside and inside cones, the volume changes gradually
from one level to the other.

in.doc — page 27

The concept of sound cones is shown in the following illustration:

Sound
SOUrCE

. Inside volume
Distance

Transitional vaolume

— Yolume = inside vaolume +
specified autside volume

\\— Qutside cone

Inside cone

Technically, every sound buffer represented by the IDirectSound3DBuffer interface
is a sound cone, but often these sound cones behave like omnidirectional sound
sources. For example, the default value for the volume outside the sound cone is zero;
unless the application changes this value, the volume will be the same inside and
outside the cone, and sound will not have any apparent orientation. You could also
make the sound-cone angles as wide as you want, effectively making the sound cone
a sphere.

Designing sound cones properly can add dramatic effects to your application. For
example, you could position the sound source in the center of a room, setting its
orientation toward a door. Then set the angle of the outside cone so that it extends to
the width of the doorway and set the outside cone volume to inaudible. The user,
when passing the open door, will suddenly hear the voice emanating from the room.

Distance Measurements

The 3-D effects of DirectSound use meters as the default unit of distance
measurements. If your application does not use meters, it need not convert between
units of measure to maintain compatibility with the component. Instead, the
application can set a distance factor, which is a floating-point value representing
meters per application-specified distance unit. For example, if your application uses
feet as its unit of measure, it could specify a distance factor of .30480006096, which
is the number of meters in a foot.

The default distance measurements for the 3-D sound effects mimic the natural world.
Many application designers choose to change these values, however, to make the
effects more dramatic. Exaggerated Doppler effects or exaggerated sound attenuation
with distance can make an application more exciting.

in.doc — page 28

As a listener approaches a sound source, the sound gets louder. Past a certain point,
however, it is not reasonable for the volume to continue to increase; either the
maximum (zero) has been reached, or the nature of the sound source imposes a
logical limit. This is the minimum distance for the sound source. Similarly, the
maximum distance for a sound source is the distance beyond which the sound does
not get any quieter.

The minimum distance is especially useful when an application must compensate for
the difference in absolute volume levels of different sounds. Although a jet engine is
much louder than a bee, for example, for practical reasons these sounds must be
recorded at similar absolute volumes (16-bit audio doesn't have enough room to
accommodate such different volume levels). An application might use a minimum
distance of 100 meters for the jet engine and 2 centimeters for the bee. With these
settings, the jet engine would be at half volume when the listener was 200 meters
away, but the bee would be at half volume when the listener was 4 centimeters away.
This concept is shown in the following illustration:

Meters 200 400 =quli] 200 1000

Bee's
NI m
distance
20

[T

Adrplane's—
NI m
distance
100M

il el

Yolume

Bee's \ q Airplane's

maximum [*g maxirmum
distance distance
100 1000mM

Doppler Shift

DirectSound automatically creates Doppler shift effects for any buffer or listener that
has a velocity. Effects are cumulative: if the listener and the sound source are both
moving, the system automatically calculates the relationship between their velocities
and adjusts the Doppler effect accordingly.

The velocity of a sound source or listener does not necessarily reflect the speed at
which it is moving through space. Setting an object’s velocity does not move it, nor
does moving the object affect the velocity. Velocity is simply a vector used to

in.doc — page 29

calculate the Doppler shift. In order to have realistic Doppler shift effects in your
application, you must calculate the velocity of any object that is moving and set the
appropriate value for that sound source or listener. You are free to exaggerate or
minimize this value in order to create special effects.

You can also globally increase or decrease Doppler shift effects by setting the
Doppler factor for the listener.

Integration with Direct3D

The IDirectSound3DBuffer and IDirectSound3DListener interfaces are designed to
work together with Direct3D®. The positioning information used by Direct3D to
arrange objects in a virtual environment can also be used to arrange sound sources.
The D3DVECTOR and D3DVALUE types that are familiar to Direct3D
programmers are also used in the IDirectSound3DBuffer and
IDirectSound3DListener interfaces. The same left-handed coordinate system used
by Direct3D is employed by DirectSound. (For information about coordinate systems,
see 3-D Coordinate Systems, in the Direct3D overview material.)

You can use the system callback mechanism of Direct3D to simplify the
implementation of 3-D sound in your application. For example, you could use the
D3IDRMFRAMEMOVECALLBACK function to monitor the movement of a frame
in an application and change the sonic environment only when a certain condition has
been reached.

Mono and Stereo Sources

Stereo sound sources are not particularly useful in the 3-D sound environments of
DirectSound, because DirectSound creates its own stereo output from a monaural

input. If an application uses stereo sound buffers, the left and right values for each
sample are averaged before the 3-D processing is applied.

Applications should supply monaural sound sources when using the 3-D capabilities
of DirectSound. Although the system can convert a stereo source into mono, there is
no reason to supply stereo, and the conversion step wastes time.

DirectSound 3-D Buffers

A 3-D sound buffer is created and managed like any other sound buffer, and all the
methods of the IDirectSoundBuffer interface are available. However, in order to set
3-D parameters you need to obtain the IDirectSound3DBuffer interface for the
buffer. This interface is supported only by sound buffers successfully created with the
DSBCAPS_CTRL3D flag.

This section describes how your applications can manage buffers with the
IDirectSound3DBuffer interface methods. The following topics are discussed:

® Obtaining the IDirectSound3DBuffer Interface

in.doc — page 30

¢ Batch Parameters for IDirectSound3DBuffer
® Minimum and Maximum Distances

® QOperation Mode

® Buffer Position and Velocity

® (Cone Parameters

Obtaining the IDirectSound3DBuffer Interface

To obtain a pointer to an IDirectSound3DBuffer interface, you must first create a
secondary 3-D sound buffer. Do this by using the
IDirectSound::CreateSoundBuffer method, specifying the DSBCAPS CTRL3D
flag in the dwFlags member of the DSBUFFERDESC structure parameter. Then, use
the IDirectSoundBuffer::QueryInterface method on the resulting buffer to obtain a
pointer to an IDirectSound3DBuffer interface for that buffer.

The following example calls the QuerylInterface method with the C++ syntax:

/I LPDIRECTSOUNDBUFFER IpDsbSecondary;
/I The buffer has been created with DSBCAPS_CTRL3D.
LPDIRECTSOUND3DBUFFER IpDs3dBuffer;

HRESULT hr = IpDsbSecondary->QuerylInterface(lID_IDirectSound3DBuffer,
&IpDs3dBuffer);
if (SUCCEEDED(hr))
{

/I Set 3-D parameters of this sound.

Note
Pan control conflicts with 3-D processing. If both DSBCAPS CTRL3D and
DSBCAPS CTRLPAN are specified when the buffer is created, DirectSound
returns an error.

Batch Parameters for IDirectSound3DBuffer

Applications can retrieve or set a 3-D sound buffer's parameters individually or in
batches. To set individual values, your application can use the applicable
IDirectSound3DBuffer interface method. However, applications often must set or
retrieve all the values at once. You can do this with the
IDirectSound3DBuffer::GetAllParameters and
IDirectSound3DBuffer::SetAllParameters methods.

in.doc — page 31

Minimum and Maximum Distances

Applications can specify the distances at which 3-D sounds stop getting louder or
quieter. For an overview of these values, see Distance Measurements.

The default minimum distance, defined in Dsound.h as

DS3D DEFAULTMINDISTANCE, is currently 1 distance unit (normally 1 meter).
The default maximum distance, defined as DS3D DEFAULTMAXDISTANCE, is
effectively infinite.

An application sets and retrieves the minimum distance value by using the
IDirectSound3DBuffer::SetMinDistance and
IDirectSound3DBuffer::GetMinDistance methods. Similarly, it can set and retrieve
the maximum distance value by using the IDirectSound3DBuffer::SetMaxDistance
and IDirectSound3DBuffer::GetMaxDistance methods.

By default, distance values are expressed in meters. See Distance Factor.

Operation Mode

Sound buffers have three processing modes: normal, head-relative, and disabled.
Normal processing is the default mode. In the head-relative mode, sound parameters
(position, velocity, and orientation) are relative to the listener's parameters; in this
mode, the absolute parameters of the sound are updated automatically as the listener's
parameters change. In the disabled mode, 3-D sound processing is disabled and the
sound seems to originate from the center of the listener's head.

An application sets the mode for a 3-D sound buffer by using the
IDirectSound3DBuffer::SetMode method. This method sets the operation mode
based on the flag the application sets for the first parameter, dwMode.

Buffer Position and Velocity

An application can set and retrieve a sound source’s position in 3-D space by using
the IDirectSound3DBuffer::SetPosition and IDirectSound3DBuffer::GetPosition
methods.

To set or retrieve the velocity value that DirectSound uses to calculate Doppler-shift
effects for a listener, you use the IDirectSound3DBuffer::SetVelocity and
IDirectSound3DBuffer::GetVelocity methods. A buffer's position is not affected by
its velocity. Velocity is measured in distance units per second — by default, meters per
second.

See also:

® Doppler Shift
® Distance Measurements

Cone Parameters

in.doc — page 32

An application sets or retrieves the angles that define sound cones by using the
IDirectSound3DBuffer::SetConeAngles and
IDirectSound3DBuffer::GetConeAngles methods. To set or retrieve the orientation
of sound cones, an application can use the
IDirectSound3DBuffer::SetConeOrientation and
IDirectSound3DBuffer::GetConeOrientation methods.

By default, cone angles are 360 degrees, meaning the object projects sound at the
same volume in all directions. A smaller value means that the object projects sound at
a lower volume outside the defined angle. The outside cone angle must always be
equal to or greater than the inside cone angle.

The outside cone volume represents the additional volume attenuation of the sound
when the listener is outside the buffer's sound cone. This factor is expressed in
hundredths of decibels. By default the outside volume is zero, meaning the sound
cone will have no perceptible effect.

An application sets and retrieves the outside cone volume by using the
IDirectSound3DBuffer::SetConeOutsideVolume and
IDirectSound3DBuffer::GetConeOutsideVolume methods. Keep in mind that an
audible outside cone volume is still subject to attenuation, due to distance from the
sound source.

When the listener is within the sound cone, the normal buffer volume (returned by the
IDirectSoundBuffer::GetVolume method) is used.

For a conceptual overview, see Sound Cones.

DirectSound 3-D Listeners

A 3-D listener represents the person who hears sounds generated by sound buffer
objects in 3-D space. The IDirectSound3DListener interface controls the listener's
position and apparent velocity in 3-D space. It also controls the environment
parameters that affect the behavior of the DirectSound component, such as the
amount of Doppler shifting and volume attenuation applied to sound sources far from
the listener.

This section describes how your application can obtain a pointer to an
IDirectSound3DListener interface and manage listener parameters by using
interface methods. The following topics are discussed:

® Obtaining the IDirectSound3DListener Interface

® Batch Parameters for IDirectSound3DListener

® Deferred Settings

® Distance Factor

® Doppler Factor

® Listener Position and Velocity

e [istener Orientation

in.doc — page 33

e Rolloff Factor

Obtaining the IDirectSound3DListener
Interface

To obtain a pointer to an IDirectSound3DListener interface, you must first create a
primary 3-D sound buffer. Do this by using the IDirectSound::CreateSoundBuffer
method, specifying the DSBCAPS CTRL3D and DSBCAPS PRIMARYBUFFER
flags in the dwFlags member of the accompanying DSBUFFERDESC structure.
Then, use the IDirectSoundBuffer::Querylnterface method on the resulting buffer
to obtain a pointer to an IDirectSound3DListener interface for that buffer, as shown
in the following example with C++ syntax:

/I LPDIRECTSOUNDBUFFER IpDsbPrimary;
/I The buffer has been created with DSBCAPS_CTRL3D.
LPDIRECTSOUND3DLISTENER IpDs3dListener;

HRESULT hr = IpDsbPrimary->Queryinterface(lID_IDirectSound3DListener,
&IpDs3dListener);

if (SUCCEEDED(hr))
{

/I Perform 3-D operations.

Batch Parameters for IDirectSound3DListener

Applications can retrieve or set a 3-D listener object's parameters individually or in
batches. To set individual values, your application can use the applicable
IDirectSound3DListener interface method. However, applications often must set or
retrieve all the values that describe the listener at once. An application can perform
these batch parameter manipulations in a single call by using the
IDirectSound3DListener::GetAllParameters and
IDirectSound3DListener::SetAllParameters methods.

Deferred Settings

Changes to 3-D sound buffer and listener settings such as position, velocity, and
Doppler factor will cause the DirectSound mixer to remix its mix-ahead buffer, at the
expense of CPU cycles. To minimize the performance impact of changing 3-D
settings, use the DS3D DEFERRED flag in the dwApply parameter of any of the
IDirectSound3DListener or IDirectSound3DBuffer methods that change 3-D

in.doc — page 34

settings. Then call the IDirectSound3DListener::CommitDeferredSettings method
to execute all of the deferred commands with a single remix of the mix-ahead buffer.

Note
Any deferred settings are overwritten if your application calls the same setting
method with the DS3D_IMMEDIATE flag before it calls
IDirectSound3DListener::CommitDeferredSettings. For example, if you set
the listener velocity to (1,2,3) with the deferred flag and then set the listener
velocity to (4,5,6) with the immediate flag, the velocity will be (4,5,6). Then, if
your application calls the IDirectSound3DListener::CommitDeferredSettings
method, the velocity will still be (4,5,6).

Distance Factor

DirectSound uses meters as the default unit of distance measurements. If your
application does not use meters, it can set a distance factor. For an overview, see
Distance Measurements.

After you have set the distance factor for a listener, use your application’s own
distance units in calls to any methods that apply to that listener. Suppose, for
example, that the basic unit of measurement in your application is the foot. You call
the IDirectSound3DListener::SetDistanceFactor method, specifying 0.3048 as the
flDistanceFactor parameter. (This value is the number of meters in a foot.) From then
on, you continue using feet in parameters to method calls, and they are automatically
converted to meters.

You can retrieve the current distance factor set for a listener with the
IDirectSound3DListener::GetDistanceFactor method. The default value is

DS3D DEFAULTDISTANCEFACTOR, defined as 1.0, meaning that a distance unit
corresponds to 1 meter. At the default value, a position vector of (3.0,7.2,-20.9)
means that the object is 3.0 m to the right of, 7.2 m above, and 20.9 m behind the
origin. If the distance factor is changed to 2.0, the same position vector means that the
object is 6.0 m to the right of, 14.4 m above, and 41.8 m behind the origin.

Doppler Factor

DirectSound applies Doppler-shift effects to sounds, based on the relative velocity of
the listener and the sound buffer. (For an overview, see Doppler Shift.) The Doppler
shift can be ignored, exaggerated, or given the same effect as in the real world,
depending on a variable called the Doppler factor.

The Doppler factor can range from DS3D MINDOPPLERFACTOR to

DS3D MAXDOPPLERFACTOR, currently defined in Dsound.h as 0.0 and 10.0
respectively. A value of 0 means no Doppler shift is applied to a sound. Every other
value represents a multiple of the real-world Doppler shift. In other words, a value of
1 (or DS3D DEFAULTDOPPLERFACTOR) means the Doppler shift that would be
experienced in the real world is applied to the sound; a value of 2 means two times
the real-world Doppler shift; and so on.

in.doc — page 35

The Doppler factor can be set and retrieved with the
IDirectSound3DListener::SetDopplerFactor and
IDirectSound3DListener::GetDopplerFactor methods.

Listener Position and Velocity

An application can set and retrieve a listener's position in 3-D space by using the
IDirectSound3DListener::SetPosition and IDirectSound3DListener::GetPosition
methods.

To set or retrieve the velocity value that DirectSound uses to calculate Doppler-shift
effects for a listener, use the IDirectSound3DListener::SetVelocity and
IDirectSound3DListener::GetVelocity methods. A listener's position is not affected
by its velocity.

Listener Orientation

The listener's orientation plays a strong role in 3-D effects processing. DirectSound
approximates sound cues to provide the illusion that a sound is generated at a
particular point in space. For more information about these cues, see Perception of
Sound Positions.

An application can set and retrieve the listener's orientation by using the
IDirectSound3DListener::SetOrientation and
IDirectSound3DListener::GetOrientation methods. By default, the front vector is
(0,0,1.0), and the top vector is (0,1.0,0).

For an illustration of the front and top vectors, see Listeners.

Rolloff Factor

Rolloff is the amount of attenuation that is applied to sounds, based on the listener's
distance from the sound source. DirectSound can ignore rolloff, exaggerate it, or give
it the same effect as in the real world, depending on a variable called the rolloff
factor.

The rolloff factor can range from DS3D MINROLLOFFFACTOR to

DS3D MAXROLLOFFFACTOR, currently defined in Dsound.h as 0.0 and 10.0
respectively. A value of DS3D MINROLLOFFFACTOR means no rolloff is applied
to a sound. Every other value represents a multiple of the real-world rolloff. In other
words, a value of 1 (DS3D_DEFAULTROLLOFFFACTOR) means the rolloff that
would be experienced in the real world is applied to the sound; a value of 2 means
two times the real-world rolloff, and so on.

You set and retrieve the rolloff factor by using the
IDirectSound3DListener::SetRolloffFactor and
IDirectSound3DListener::GetRolloffFactor methods.

in.doc — page 36

DirectSoundCapture

DirectSoundCapture provides an interface for capturing digital audio data from an
input source. To use it you must create an instance of the IDirectSoundCapture
interface, then use its methods to create a single capture buffer. (The present version
of DirectSound does not permit capturing and mixing from multiple devices at the
same time.) The actual capturing is done with the methods of the buffer object.

This section covers the following topics:

® (Creating the DirectSoundCapture Object
® Capture Device Capabilities

® (Creating a Capture Buffer

¢ Capture Buffer Information

® Capture Buffer Notification

® Capturing Sounds

Creating the DirectSoundCapture Object

You create the DirectSoundCapture object by calling the
DirectSoundCaptureCreate function, which returns a pointer to an
IDirectSoundCapture COM interface.

You can also use the CoCreatelnstance function to create the object. The procedure
is similar to that for the DirectSound object; see Creating the DirectSound Object. If
you use CoCreatelnstance, then the object is created for the default capture device
selected by the user on the multimedia control panel.

If you want DirectSound and DirectSoundCapture objects to coexist, then you should
create and initialize the DirectSound object before creating and initializing the
DirectSoundCapture object. Some audio devices aren't configured for full duplex
audio by default. If you have problems with creating and initializing both a
DirectSound object and a DirectSoundCapture object, you should check your audio
device to ensure that two DMA channels are enabled.

Capture Device Capabilities

To retrieve the capabilities of a capture device, call the
IDirectSoundCapture::GetCaps method. The argument to this method is a
DSCCAPS structure. As with other such structures, you have to initialize the dwSize
member before passing it as an argument.

On return, the structure contains the number of channels the device supports as well
as a combination of values for supported formats, equivalent to the values in the
WAVEINCAPS structure used in the Win32 waveform audio functions. These are
reproduced here for convenience.

Value Meaning

in.doc — page 37

WAVE_FORMAT_1MO08
WAVE_FORMAT_1M16
WAVE_FORMAT_1S08
WAVE_FORMAT _1S16
WAVE_FORMAT_2MO08
WAVE_FORMAT 2M16
WAVE_FORMAT_2S08
WAVE_FORMAT 2516
WAVE_FORMAT_4M08
WAVE_FORMAT_4M16
WAVE_FORMAT 4S08
WAVE_FORMAT 4S16

11.025 kHz, mono, 8-bit
11.025 kHz, mono, 16-bit
11.025 kHz, stereo, 8-bit
11.025 kHz, stereo, 16-bit
22.05 kHz, mono, 8-bit
22.05 kHz, mono, 16-bit
22.05 kHz, stereo, 8-bit
22.05 kHz, stereo, 16-bit
44.1 kHz, mono, 8-bit
44.1 kHz, mono, 16-bit
44.1 kHz, stereo, 8-bit
44.1 kHz, stereo, 16-bit

Creating a Capture Buffer

Create a capture buffer by calling the IDirectSoundCapture::CreateCaptureBuffer
method of the DirectSoundCapture object.

One of the parameters to the method is a DSCBUFFERDESC structure that
describes the characteristics of the desired buffer. The last member of this structure is
a WAVEFORMATEX structure, which must be initialized with the details of the
desired wave format. See the reference for WAVEFORMATEX in the Win32 API
section of the Platform SDK for information on the members of that structure.

The following example sets up a capture buffer that will hold about 1 second of data:

DSCBUFFERDESC dschd;
LPDIRECTSOUNDCAPTUREBUFFER pDSCB,;
WAVEFORMATEX wix =

{
/l wFormatTag, nChannels, nSamplesPerSec, mAvgBytesPerSec,
/I nBlockAlign, wBitsPerSample, chSize
{WAVE_FORMAT_PCM, 2, 44100, 176400, 4, 16, 0},
j#
dschd.dwSize = sizeof(DSCBUFFERDESC);
dschd.dwFlags = 0;
/l We're going to capture one second’s worth of audio
dschd.dwBufferBytes = wfx.nAvgBytesPerSec;
dscbd.dwReserved = 0;
dschd.lpwfxFormat = &wfx;

pDSCB = NULL;

/I pDSC is the pointer to the DirectSoundCapture object

in.doc — page 38

HRESULT hr = pDSC->CreateCaptureBuffer(&dschd,
&pDSCB, NULL);

Capture Buffer Information

Use the IDirectSoundCaptureBuffer::GetCaps method to retrieve the size of a
capture buffer. Be sure to initialize the dwSize member of the DSCBCAPS structure
before passing it as a parameter.

You can also retrieve information about the format of the data in the buffer, as set
when the buffer was created. Call the IDirectSoundCaptureBuffer::GetFormat
method, which returns the format information in a WAVEFORMATEX structure.
See the reference for WAVEFORMATEX in the Win32 API section of the Platform
SDK for information on the members of that structure.

Note that your application can allow for extra format information in the
WAVEFORMATEX structure by first calling the GetFormat method with NULL
as the I[pwfxFormat parameter. In this case the DWORD pointed to by the
IpdwSizeWritten parameter will receive the size of the structure needed to receive
complete format information.

To find out what a capture buffer is currently doing, call the
IDirectSoundCaptureBuffer::GetStatus method. This method fills a DWORD
variable with a combination of flags that indicate whether the buffer is busy
capturing, and if so, whether it is looping; that is, whether the

DSCBSTART LOOPING flag was set in the last call to
IDirectSoundCaptureBuffer::Start.

Finally, the IDirectSo