
Introducing DirectX 5
DirectX® 5 provides strategies, technologies and tools that can help you build the
next generation of computer games and multimedia applications. This overview
covers general introductory information about the DirectX 5 Programmer's Reference
in the Platform Software Development Kit (SDK) documentation. Information is
divided into the following sections:

· DirectX Goals

· The DirectX Programmer's Reference

· DirectX and the Component Object Model

· What's New in the DirectX 5 Programmer's Reference?

· Conventions

DirectX Goals
The Microsoft® DirectX® Programmer's Reference provides a finely tuned set of
application programming interfaces (APIs) that provide you with the resources you
need to design high-performance, real-time applications. DirectX technology will
help build the next generation of computer games and multimedia applications.

Microsoft developed DirectX so that the performance of applications running in the
Microsoft Windows® operating system can rival or exceed the performance of
applications running in the MS-DOS® operating system or on game consoles. This
Programmer's Reference was developed to promote game development for Windows
by providing you with a robust, standardized, and well-documented operating
environment for which to write games.

DirectX provides you with two important benefits:

· Benefits of Developing DirectX Windows Applications

· Providing Guidelines for Hardware Development

Benefits of Developing DirectX Windows
Applications

When Microsoft created DirectX, one of its primary goals was to promote games
development for the Windows environment. Prior to DirectX, the majority of games
developed for the personal computer were MS-DOS–based. Developers of these
games had to conform to a number of hardware implementations for a variety of
cards. With DirectX, games developers get the benefits of device independence
without losing the benefits of direct access to the hardware. The primary goals of

in.doc – page 2

DirectX are to provide portable access to the features used with MS-DOS today, to
meet or improve on the performance of MS-DOS console-based applications, and to
remove the obstacles to hardware innovation on the personal computer.

Additionally, Microsoft developed DirectX to provide Windows-based applications
with high-performance, real-time access to available hardware on current and future
computer systems. DirectX provides a consistent interface between hardware and
applications, reducing the complexity of installation and configuration and using the
hardware to its best advantage. By using the interfaces provided by DirectX, software
developers can take advantage of hardware features without being concerned about
the implementation details of that hardware.

A high-performance Windows-based game will take advantage of the following
technologies:

· Accelerator cards designed specifically for improving performance

· Plug and Play and other Windows hardware and software

· Communications services built into Windows, including DirectPlay

Providing Guidelines for Hardware
Development

DirectX provides hardware development guidelines based on feedback from
developers of high-performance applications and independent hardware vendors
(IHVs). As a result, the DirectX Programmer's Reference components might provide
specifications for hardware-accelerator features that do not yet exist. In many cases,
the software emulates these features. In other cases, the software polls the hardware
regarding its capabilities and bypasses the feature if it is not supported.

The DirectX Programmer's
Reference

This section describes the DirectX Programmer's Reference components and some
DirectX implementation details. The following topics are discussed:

· DirectX Programmer's Reference Components

· Detecting DirectX Versions

· Using Macro Definitions

DirectX Programmer's Reference
Components

in.doc – page 3

The DirectX Programmer's Reference includes several components that address the
performance issues of programming Windows-based games and high-performance
applications. This section lists these components and provides a link for more
information on each component.

· DirectDraw® accelerates hardware and software animation techniques by
providing direct access to bitmaps in off-screen display memory, as well as
extremely fast access to the blitting and buffer-flipping capabilities of the
hardware. For more information, see About DirectDraw in the DirectDraw
documentation.

· DirectSound® enables hardware and software sound mixing and playback. For
more information, see About DirectSound in the DirectSound documentation.

· DirectPlay® makes connecting games over a modem link or network easy. For
more information, see About DirectPlay in the DirectPlay documentation.

· Direct3D® provides a high-level Retained-Mode interface that allows
applications to easily implement a complete 3-D graphical system, and a low-
level Immediate-Mode interface that lets applications take complete control over
the rendering pipeline. For more information about Immediate Mode, see About
Direct3D Immediate Mode. For more information about Retained Mode, see
About Retained Mode.

· DirectInput® provides input capabilities to your game that are scalable to future
Windows-based hardware-input APIs and drivers. Currently the joystick, mouse,
keyboard, and force feedback devices are supported. For more information, see
About DirectInput in the DirectInput documentation.

· DirectSetup provides a one-call installation procedure for DirectX. For more
information, see About DirectSetup in the DirectSetup documentation.

· AutoPlay is a Windows 95 feature that starts an installation program or game
automatically from a compact disc when you insert the disc in the CD-ROM
drive. For more information, see About AutoPlay in the AutoPlay
documentation.

The AutoPlay feature is part of the Microsoft Win32® API in the Platform SDK and
is not unique to DirectX.

Among the most important parts of the documentation for the DirectX Programmer's
Reference is the sample code. Studying code from working samples is one of the best
ways to understand DirectX. Sample applications are located in the Sdk\Samples
folder of the Platform SDK or in the DirectX code samples under the Platform SDK
References section.

Detecting DirectX Versions
You can determine which version of DirectX is installed on a system by querying for
various DirectX object interfaces. The GetDXVersion sample function from the
GetDXVersion.cpp file in the \SDK\Samples\Misc directory performs this task for

in.doc – page 4

you. The function creates a few key DirectX objects — a DirectDraw object, a
DirectDrawSurface object, and a DirectInput object — then queries for interfaces that
were introduced in previous releases of DirectX. The function determines which
version of DirectX is installed on a system and the installed operating system by
using a simple process of elimination.

If you have previous versions of the DirectX SDK on your system, make sure you do
not have those files in your include path or library (.LIB) path. Inadvertently linking
with DirectX 3 libraries after compiling with DirectX 5 header files will cause your
application to behave unpredictably.

Using Macro Definitions
Many of the header files for the DirectX interfaces include macro definitions for each
method. These macros are included to simplify the use of the methods in your
programming.

The following example uses the IDirectDraw2_CreateSurface macro to call the
IDirectDraw2::CreateSurface method. The first parameter is a reference to the
DirectDraw object that has been created and invokes the method:

ret = IDirectDraw2_CreateSurface (lpDD, &ddsd, &lpDDS,

 NULL);

To obtain a current list of the methods supported by macro definitions, see the
appropriate header file for the DirectX component you want to use.

DirectX and the Component Object
Model

This section describes the Component Object Model (COM) and how it implements
the DirectX objects and interfaces. The following topics are discussed:

· The Component Object Model

· IUnknown Interface

· DirectX COM Interfaces

· C++ and the COM Interface

· Retrieving Newer Interfaces

· Accessing COM Objects by Using C

· Interface Method Names and Syntax

The Component Object Model

in.doc – page 5

Most APIs in the DirectX Programmer's Reference are composed of objects and
interfaces based on the COM. The COM is a foundation for an object-based system
that focuses on reuse of interfaces, and it is the model at the heart of COM
programming. It is also an interface specification from which any number of
interfaces can be built. It is an object model at the operating-system level.

Many DirectX APIs are created as instances of COM objects. You can consider an
object to be a black box that represents the hardware and requires communication
with applications through an interface. The commands sent to and from the object
through the COM interface are called methods. For example, the
IDirectDraw2::GetDisplayMode method is sent through the IDirectDraw2
interface to get the current display mode of the display adapter from the DirectDraw
object.

Objects can bind to other objects at run time, and they can use the implementation of
interfaces provided by the other object. If you know an object is an COM object, and
if you know which interfaces that object supports, your application (or another object)
can determine which services the first object can perform. One of the methods all
COM objects inherit, the QueryInterface method, lets you determine which
interfaces an object supports and creates pointers to these interfaces. For more
information about this method, see the IUnknown Interface.

IUnknown Interface
All COM interfaces are derived from an interface called IUnknown. This interface
provides DirectX with control of the object's lifetime and the ability to navigate
multiple interfaces. IUnknown has three methods:

· AddRef, which increments the object's reference count by 1 when an interface or
another application binds itself to the object.

· QueryInterface, which queries the object about the features it supports by
requesting pointers to a specific interface.

· Release, which decrements the object's reference count by 1. When the count
reaches 0, the object is deallocated.

The AddRef and Release methods maintain an object's reference count. For example,
if you create a DirectDrawSurface object, the object's reference count is set to 1.
Every time a function returns a pointer to an interface for that object, the function
then must call AddRef through that pointer to increment the reference count. You
must match each AddRef call with a call to Release. Before the pointer can be
destroyed, you must call Release through that pointer. After an object's reference
count reaches 0, the object is destroyed and all interfaces to it become invalid.

The QueryInterface method determines whether an object supports a specific
interface. If an object supports an interface, QueryInterface returns a pointer to that
interface. You then can use the methods contained in that interface to communicate
with the object. If QueryInterface successfully returns a pointer to an interface, it
implicitly calls AddRef to increment the reference count, so your application must

in.doc – page 6

call Release to decrement the reference count before destroying the pointer to the
interface.

IUnknown::AddRef
The IUnknown::AddRef method increases the reference count of the object by 1.

ULONG AddRef();

Parameters

None.

Return Values

Returns the new reference count.

Remarks

When the object is created, its reference count is set to 1. Every time an application
obtains an interface to the object or calls the AddRef method, the object's reference
count is increased by 1. Use the Release method to decrease the object's reference
count by 1.

This method is part of the IUnknown interface inherited by the object.

IUnknown::QueryInterface
The IUnknown::QueryInterface method determines if the object supports a
particular COM interface. If it does, the system increases the object's reference count,
and the application can use that interface immediately.

HRESULT QueryInterface(
 REFIID riid,
 LPVOID* obp
);

Parameters

riid
Reference identifier of the interface being requested.

obp
Address of a pointer that will be filled with the interface pointer if the query
succeeds.

Return Values

If the method succeeds, the return value is S_OK.

in.doc – page 7

If the method fails, the return value is E_NOINTERFACE or one of the following
interface-specific error values. Interface-specific error values are listed by component.

DirectDraw

DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_OUTOFMEMORY (IDirectDrawSurface2 and IDirectDrawSurface3 only)

DirectSound

DSERR_GENERIC (IDirectSound and IDirectSoundBuffer only)

DSERR_INVALIDPARAM

DirectPlay

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

For Direct3D Retained-Mode and Immediate-Mode interfaces, the QueryInterface
method returns one of the values in Direct3D Retained-Mode Return Values and
Direct3D Immediate-Mode Return Values.

If the application does not need to use the interface retrieved by a call to this method,
it must call the Release method for that interface to free it. The QueryInterface
method allows Microsoft and third parties to extend objects without interfering with
each other's existing or future functionality.

This method is part of the IUnknown interface inherited by the object.

IUnknown::Release
The IUnknown::Release method decreases the reference count of the object by 1.

ULONG Release();

Parameters

None.

Return Values

Returns the new reference count.

Remarks

The object deallocates itself when its reference count reaches 0. Use the AddRef
method to increase the object's reference count by 1.

This method is part of the IUnknown interface inherited by the object.

DirectX COM Interfaces

in.doc – page 8

The interfaces in the DirectX Programmer's Reference have been created at a very
basic level of the COM programming hierarchy. Each interface to an object that
represents a device, such as IDirectDraw2, IDirectSound, and IDirectPlay, derives
directly from the IUnknown COM interface. Creation of these basic objects is
handled by specialized functions in the dynamic-link library (DLL) for each object,
rather than by the CoCreateInstance function typically used to create COM objects.

Typically, the DirectX object model provides one main object for each device. Other
support service objects are derived from this main object. For example, the
DirectDraw object represents the display adapter. You can use it to create
DirectDrawSurface objects that represent the display memory and DirectDrawPalette
objects that represent hardware palettes. Similarly, the DirectSound object represents
the audio card and creates DirectSoundBuffer objects that represent the sound sources
on that card.

Besides the ability to generate subordinate objects, the main device object determines
the capabilities of the hardware device it represents, such as the screen size and
number of colors, or whether the audio card has wave-table synthesis.

C++ and the COM Interface
To C++ programmers, a COM interface is like an abstract base class. That is, it
defines a set of signatures and semantics but not the implementation, and no state data
is associated with the interface. In a C++ abstract base class, all methods are defined
as pure virtual, which means they have no code associated with them.

Pure virtual C++ functions and COM interfaces both use a device called a vtable. A
vtable contains the addresses of all functions that implement the given interface. If
you want a program or object to use these functions, you can use the QueryInterface
method to verify that the interface exists on an object and to obtain a pointer to that
interface. After sending QueryInterface, your application or object actually receives
from the object a pointer to the vtable, through which this method can call the
interface methods implemented by the object. This mechanism isolates from one
another any private data the object uses and the calling client process.

Another similarity between COM objects and C++ objects is that a method's first
argument is the name of the interface or class, called the this argument in C++.
Because COM objects and C++ objects are completely binary compatible, the
compiler treats COM interfaces like C++ abstract classes and assumes the same
syntax. This results in less complex code. For example, the this argument in C++ is
treated as an understood parameter and not coded, and the indirection through the
vtable is handled implicitly in C++.

Retrieving Newer Interfaces
The component object model dictates that objects update their functionality not by
changing the methods within existing interfaces, but by extending new interfaces that

in.doc – page 9

encompass new features. In keeping existing interfaces static, an object built on COM
can freely extend its services while maintaining compatibility with older applications.

DirectX components following this philosophy. For example, the DirectDraw
component supports three versions of the IDirectDrawSurface interface:
IDirectDrawSurface, IDirectDrawSurface2, and IDirectDrawSurface3. Each
version of the interface supports the methods provided by its ancestor, adding new
methods to support new features. If your application doesn't need to use these new
features, it doesn't need to retrieve newer interfaces. However, to take advantage of
features provided by a new interface, you must call the object's
IUnknown::QueryInterface method, specifying the globally unique identifier
(GUID) of the interface you want to retrieve. Interface GUIDs are declared in the
corresponding header file.

The following example shows how to query for a new interface:

 LPDIRECTDRAW lpDD1;

 LPDIRECTDRAW2 lpDD2;

 ddrval = DirectDrawCreate(NULL, &lpDD1, NULL);

 if(FAILED(ddrval))

 goto ERROROUT;

 // Query for the IDirectDraw2 interface

 ddrval = lpDD1->QueryInterface(IID_IDirectDraw2, (void **)&lpDD2);

 if(FAILED(ddrval))

 goto ERROROUT;

 // Now that we have an IDirectDraw2, release the original interface.

 lpDD1->Release();

In some rare cases, a new interface will not support some methods provided in a
previous interface version. The IDirect3DDevice2 interface is an example of this
type of interface. If your application requires features provided by an earlier version
of an interface, you can query for the earlier version in the same way as shown in the
preceding example, using the GUID of the older interface to retrieve it.

Accessing COM Objects by Using C
Any COM interface method can be called from a C program. There are two things to
remember when calling an interface method from C:

· The first parameter of the method always refers to the object that has been
created and that invokes the method (the this argument).

· Each method in the interface is referenced through a pointer to the object's vtable.

in.doc – page 10

The following example creates a surface associated with a DirectDraw object by
calling the IDirectDraw2::CreateSurface method with the C programming
language:

ret = lpDD->lpVtbl->CreateSurface (lpDD, &ddsd, &lpDDS,

 NULL);

The lpDD parameter references the DirectDraw object associated with the new
surface. Incidentally, this method fills a surface-description structure (&ddsd) and
returns a pointer to the new surface (&lpDDS).

To call the IDirectDraw2::CreateSurface method, first dereference the DirectDraw
object's vtable, and then dereference the method from the vtable. The first parameter
supplied in the method is a reference to the DirectDraw object that has been created
and which invokes the method.

To illustrate the difference between calling a COM object method in C and C++, the
same method in C++ is shown below (C++ implicitly dereferences the lpVtbl
parameter and passes the this pointer):

ret = lpDD->CreateSurface(&ddsd, &lpDDS, NULL)

Interface Method Names and Syntax
All COM interface methods described in this document are shown using C++ class
names. This naming convention is used for consistency and to differentiate between
methods used for different DirectX objects that use the same name, such as
QueryInterface, AddRef, and Release. This does not imply that you can use these
methods only with C++.

In addition, the syntax provided for the methods uses C++ conventions for
consistency. It does not include the this pointer to the interface. When programming
in C, the pointer to the interface must be included in each method. The following
example shows the C++ syntax for the IDirectDraw2::GetCaps method:

HRESULT GetCaps(
 LPDDCAPS lpDDDriverCaps,
 LPDDCAPS lpDDHELCaps
);

The same example using C syntax looks like this:

HRESULT GetCaps(
 LPDIRECTDRAW lpDD,
 LPDDCAPS lpDDDriverCaps,
 LPDDCAPS lpDDHELCaps
);

in.doc – page 11

The lpDD parameter is a pointer to the DirectDraw structure that represents the
DirectDraw object.

What's New in the DirectX 5
Programmer's Reference?

The DirectX 5 Programmer's Reference provides more services—and more avenues
for innovation—than did the DirectX 3 documentation. (Note that there is no
"DirectX 4"—the numbering jumps from version 3 to version 5.) Although this
Programmer's Reference contains additional functions and services, all the
applications you wrote with previous DirectX APIs will compile and run successfully
without changes.

The purpose of this section is to help those of you who are familiar with DirectX 3
quickly identify several important areas of this Programmer's Reference that are
significantly different. These differences are listed by component.

DirectDraw

DirectDraw has been extended with new video-port capabilities that allow
applications to control the flow of data from a hardware video-port device to a
DirectDraw surface in display memory. For an overview of the video-port
extensions, see Video Ports.

Additionally, the DirectDraw HEL now exploits performance improvements made
possible by the Pentium MMX processor. DirectDraw tests for the presence of an
MMX processor the first time you create a surface in any process. On non-
Pentium machines, this test can cause a benign first-chance exception ("Illegal
Instruction") to be reported by the debugger. The exception will not affect your
application's performance or stability.

DirectDraw now supports off-screen surfaces wider than the primary surface. You
can create surfaces as wide as you need, permitting that the display hardware can
support it.

For more information, see Creating Wide Surfaces.

DirectDraw now supports the Advanced Graphics Port (AGP) architecture. On
AGP-equipped systems, you can create surfaces in non-local video memory. The
DDSCAPS structure now supports flags to differentiate between standard (local)
video memory and AGP (non-local) video memory. The DDCAPS structure now
contains members that carry information about blit operations using non-local
video memory surfaces. For more information, see Using Non-local Video
Memory Surfaces.

DirectSound

DirectSound includes a new interface, IKsPropertySet, that enables it to support
extended services offered by sound cards and their associated drivers. For more
information, see DirectSound Property Sets.

Also new is DirectSoundCapture, a COM-based wrapper for the Win32 waveIn

in.doc – page 12

functions that will be extended in the future to work directly with the drivers.

DirectPlay

DirectPlay includes a new interface, IDirectPlay3, that is exactly the same as
IDirectPlay2 with new methods. Similarly, IDirectPlayLobby2 is an extended
version of IDirectPlayLobby.

New functionality in DirectPlay includes the ability for applications to suppress
service provider dialogs by creating connection shortcuts, asynchronous
EnumSessions to keep an up-to-date list of available sessions, implementation of
the SetSessionDesc method, better support for password protected sessions,
support for secure server connections and the ability to create multiple DirectPlay
objects and to create them directly using CoCreateInstance.

For more information about these new features, see What's New in DirectPlay?

Direct3D

Direct3D Immediate Mode now supports drawing primitives without having to
work directly with execute buffers. For more information, see The DrawPrimitive
Methods. A set of extensions and helper functions has been implemented for C++
programmers; for more information, see D3D_OVERLOADS.

Direct3D Retained Mode now support interpolators that enable you to blend
colors, move objects smoothly between positions, morph meshes, and perform
many other transformations. Retained Mode also supports progressive meshes that
allow you to begin with a coarse mesh and increasingly refine it; this can help you
take the level of detail into account and can help with progressive downloads from
remote locations. For more information, see the IDirect3DRMInterpolator
Interface and the IDirect3DRMProgressiveMesh Interface

The Direct3D documentation has been updated for DirectX 5. The overview of
Immediate Mode is more comprehensive, there is an Immediate-Mode tutorial,
and there is a description of the .X file format.

DirectInput

DirectInput now provides COM interfaces for joysticks (a term that includes other
input devices such as game pads and flight yokes) and for force feedback devices
as well as for the mouse and keyboard.

The DirectInput documentation has been expanded to include reference material
for the new functionality as well as new overviews and tutorials.

DirectSetup

DirectSetup now includes greater user interface customization capabilities. This is
provided through a callback function that is passed to DirectSetup before it begins
installing DirectX components and drivers. The callback function communicates
the current installation status to your application's setup program. You can use this
information to display the status through a user interface that is customized for
your program.

In addition, DirectSetup now provides a way for multiplayer games that use
DirectPlayLobby to remove their registration information from the registry.

AutoPlay

in.doc – page 13

No changes for DirectX 5.

Conventions
The following conventions define syntax:

Convention Meaning

Italic text Denotes a placeholder or variable. You must provide the
actual value. For example, the statement SetCursorPos(X,
Y) requires you to substitute values for the X and Y
parameters.

Bold text Denotes a function, structure, macro, interface, method,
data type, or other keyword in the programming interface,
C, or C++.

[] Encloses optional parameters.

| Separates an either/or choice.

... Specifies that the preceding item may be repeated.

.

.

.

Represents an omitted portion of a sample application.

In addition, the following typographic conventions are used to help you understand
this material:

Convention Meaning
SMALL CAPITALS Indicates the names of keys, key sequences, and key

combinations—for example, ALT+SPACEBAR.

FULL CAPITALS Indicates most type and structure names, which also are
bold, and constants.

monospace Sets off code examples and shows syntax spacing.

	DirectX Goals
	Benefits of Developing DirectX Windows Applications
	Providing Guidelines for Hardware Development

	The DirectX Programmer's Reference
	DirectX Programmer's Reference Components
	Detecting DirectX Versions
	Using Macro Definitions

	DirectX and the Component Object Model
	The Component Object Model
	IUnknown Interface
	DirectX COM Interfaces
	C++ and the COM Interface
	Retrieving Newer Interfaces
	Accessing COM Objects by Using C
	Interface Method Names and Syntax

	What's New in the DirectX 5 Programmer's Reference?
	Conventions

