
DirectDraw
This section provides information about the DirectDraw component. Information is 
divided into the following groups:

· About DirectDraw

· Why Use DirectDraw?

· Getting Started-Basic Graphics Concepts

· DirectDraw Architecture

· DirectDraw Essentials

· DirectDraw Tutorials

· DirectDraw Reference

About DirectDraw
DirectDraw® is a DirectX® SDK component that allows you to directly manipulate 
display memory, the hardware blitter, hardware overlay support, and flipping surface 
support. DirectDraw provides this functionality while maintaining compatibility with 
existing Microsoft® Windows®-based applications and device drivers.

DirectDraw is a software interface that provides direct access to display devices while 
maintaining compatibility with the Windows graphics device interface (GDI). It is not 
a high-level application programming interface (API) for graphics. DirectDraw 
provides a device-independent way for games and Windows subsystem software, 
such as 3-D graphics packages and digital video codecs, to gain access to the features 
of specific display devices.

DirectDraw works with a wide variety of display hardware, ranging from simple 
SVGA monitors to advanced hardware implementations that provide clipping, 
stretching, and non-RGB color format support. The interface is designed so that your 
applications can enumerate the capabilities of the underlying hardware and then use 
any supported hardware-accelerated features. Features that are not implemented in 
hardware are emulated by DirectX.

DirectDraw provides device-dependent access to display memory in a device-
independent way. Essentially, DirectDraw manages display memory. Your 
application need only recognize some basic device dependencies that are standard 
across hardware implementations, such as RGB and YUV color formats and the pitch 
between raster lines. You need not call specific procedures to use the blitter or 
manipulate palette registers. Using DirectDraw, you can manipulate display memory 
with ease, taking full advantage of the blitting and color decompression capabilities of 
different types of display hardware without becoming dependent on a particular piece 
of hardware.
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DirectDraw provides world-class game graphics on computers running Windows 95 
and Windows NT® version 4.0 or later.

Why Use DirectDraw?
The DirectDraw component brings many powerful features to you, the Windows 
graphics programmer:

· The Hardware Abstraction Layer (HAL) of DirectDraw provides a consistent 
interface through which to work directly with the display and video memory, 
getting maximum performance from the system hardware.

· DirectDraw assesses the video hardware's capabilities, making use of special 
hardware features whenever possible. For example, if your video card supports 
hardware blitting, DirectDraw delegates blits to the video card, greatly increasing 
performance. Additionally, DirectDraw provides a Hardware Emulation Layer 
(HEL) to support features when the hardware does not.

· DirectDraw exists over Windows 95, gaining the advantage of 32-bit memory 
addressing and a flat memory model that the operating system provides. 
DirectDraw presents video and system memory as large blocks of storage, not as 
small segments. If you've ever used segment:offset addressing, you will quickly 
begin to appreciate this "flat" memory model.

· DirectDraw makes it easy for you to implement page flipping with multiple back 
buffers in full-screen applications. For more information, see Page Flipping and 
Back Buffering.

· Support for clipping in windowed or full-screen applications.

· Support for 3-D z-buffers.

· Support for hardware-assisted overlays with z-ordering.

· Access to image-stretching hardware.

· Simultaneous access to standard and enhanced display-device memory areas.

· Other features include custom and dynamic palettes, exclusive hardware access, 
and resolution switching.

These features combine to make it possible for you to write applications that easily 
out-perform standard Windows GDI-based applications and even MS-DOS 
applications.
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Getting Started-Basic Graphics 
Concepts

This section provides an overview of graphics programming with DirectDraw. Each 
concept discussed here begins with a non-technical overview, followed by some 
specific information about how DirectDraw supports it.

To get the most from this overview, you don't need to be a graphics guru—in fact, if 
you are, you might want to skip this section entirely and move on to the more detailed 
information contained within the DirectDraw Essentials section. If you're familiar 
with Windows programming in C and C++, you won't have difficulty digesting this 
information. When you finish reading these topics, you will have a solid 
understanding of basic DirectDraw graphics programming concepts. The following 
topics are discussed:

· Device-Independent Bitmaps

· Drawing Surfaces

· Blitting Concepts

· Page Flipping and Back Buffering

· Introduction to Rectangles

· Sprite Concepts

Device-Independent Bitmaps
Windows, and therefore DirectX, uses the Device-Independent Bitmap (DIB) as its 
native graphics file format. Essentially, a DIB is a file that contains information 
describing an image's dimensions, the number of colors it uses, values describing 
those colors, and data that describes each pixel. Additionally, a DIB contains some 
lesser-used parameters, like information about file compression, significant colors (if 
all are not used), and physical dimensions of the image (in case it will end up in 
print). DIB files usually have the ".bmp" file extension, although they might 
occasionally have a ".dib" extension.

Because the DIB is so pervasive in Windows programming, the Platform SDK 
already contains many functions that you can use with DirectX. For example, the 
following application-defined function, taken from the ddutil.cpp file that comes with 
the DirectX APIs in the Platform SDK, combines Win32â and DirectX functions to 
load a DIB onto a DirectX surface.

extern "C" IDirectDrawSurface * DDLoadBitmap(IDirectDraw *pdd, 

    LPCSTR szBitmap, int dx, int dy) 

{ 

    HBITMAP             hbm; 

    BITMAP              bm; 

    DDSURFACEDESC       ddsd; 
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    IDirectDrawSurface *pdds; 

 

    // 

    //  This is the Win32 part. 

    //   Try to load the bitmap as a resource, if that fails, try it as a file. 

   // 

    hbm = (HBITMAP)LoadImage(GetModuleHandle(NULL), szBitmap, IMAGE_BITMAP, dx, dy, 

LR_CREATEDIBSECTION); 

 

    if (hbm == NULL) 

        hbm = (HBITMAP)LoadImage(NULL, szBitmap, IMAGE_BITMAP, dx, dy, 

LR_LOADFROMFILE|LR_CREATEDIBSECTION); 

 

    if (hbm == NULL) 

        return NULL; 

 

    // 

    // Get the size of the bitmap. 

    // 

    GetObject(hbm, sizeof(bm), &bm); 

 

    // 

    // Now, return to DirectX function calls. 

    // Create a DirectDrawSurface for this bitmap. 

    // 

    ZeroMemory(&ddsd, sizeof(ddsd)); 

    ddsd.dwSize = sizeof(ddsd); 

    ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT |DDSD_WIDTH; 

    ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN; 

    ddsd.dwWidth = bm.bmWidth; 

    ddsd.dwHeight = bm.bmHeight; 

 

    if (pdd->CreateSurface(&ddsd, &pdds, NULL) != DD_OK) 

        return NULL; 

 

    DDCopyBitmap(pdds, hbm, 0, 0, 0, 0); 

 

    DeleteObject(hbm); 

 

    return pdds; 

} 

 

For more detailed information about DIB files, see the Platform SDK.
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Drawing Surfaces
Drawing surfaces receive video data to eventually be displayed on screen as images 
(bitmaps, to be exact). In most Windows programs, you get access to the drawing 
surface using a Win32 function such as GetDC, which stands for get the device 
context (DC). After you have the device context, you can start painting the screen. 
However, Win32 graphics functions are provided by an entirely different part of the 
system, the graphics device interface (GDI). The GDI is a system component that 
provides an abstraction layer that enables standard Windows applications to draw to 
the screen.

The drawback of GDI is that it wasn’t designed for high-performance multimedia 
software, it was made to be used by business applications like word processors and 
spreadsheet applications. GDI provides access to a video buffer in system memory, 
not video memory, and doesn't take advantage of special features that some video 
cards provide. In short, GDI is great for most types of business software, but its 
performance is too slow for multimedia or game software.

On the other hand, DirectDraw can give you drawing surfaces that represent actual 
video memory. This means that when you use DirectDraw, you can write directly to 
the memory on the video card, making your graphics routines extremely fast. These 
surfaces are represented as contiguous blocks of memory, making it easy to perform 
addressing within them.

For more detailed information, see Surfaces.

Blitting Concepts
The term blit is shorthand for "bit block transfer," which is the process of transferring 
blocks of data from one place in memory to another. Graphics programmers use 
blitting to transfer graphics from one place in memory to another. Blits are often used 
to perform sprite animation, which is discussed later. For more information see, Sprite 
Concepts.

You can use the IDirectDrawSurface3::Blt and IDirectDrawSurface3::BltFast 
methods to perform blitting.

Page Flipping and Back Buffering
Page flipping is key in multimedia, animation, and game software. Software page 
flipping is analogous to the way cartoon artists animate their images. For example, the 
artist draws a figure on a sheet of paper, then sets it aside to work on the next frame. 
With each frame, the artist changes the figure slightly, so that when you flip between 
sheets rapidly the figure appears animated.

Page flipping in software is very similar to this process. Initially, you set up a series 
of DirectDraw surfaces that are designed to "flip" to the screen the way artist's paper 
flips to the next page. The first surface is referred to as the primary surface, and the 
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surfaces behind it are called back buffers . Your application writes to a back buffer, 
then flips the primary surface so that the back buffer appears on screen. While the 
system is displaying the image, your software is again writing to a back buffer. The 
process continues as long as you're animating, allowing you to animate images 
quickly and efficiently.

DirectDraw makes it easy for you to set up page flipping schemes, from a relatively 
simple double-buffered scheme (a primary surface with one back buffer) to more 
sophisticated schemes that add additional back buffers. For more information see 
DirectDraw Tutorials and Flipping Surfaces.

Introduction to Rectangles
Throughout DirectDraw and Windows programming, objects on the screen are 
referred to in terms of bounding rectangles. A bounding rectangle is described by two 
points, the top-left corner and bottom-right corner. Most applications use the RECT 
structure to carry information about a bounding rectangle to use when blitting to the 
screen or performing hit detection. The RECT structure has the following definition:

typedef struct tagRECT { 

    LONG    left;    // This is the top-left corner’s X-coordinate.

    LONG    top;     // The top-left corner’s Y-coordinate.

    LONG    right;   // The bottom-right corner’s X-coordinate.

    LONG    bottom;  // The bottom-right corner’s Y-coordinate.

} RECT, *PRECT, NEAR *NPRECT, FAR *LPRECT; 

 

In the preceding example, the left and top members are the X- and Y-coordinates of a 
bounding rectangle’s top-left corner. Similarly, the right and bottom members make 
up the coordinates of the bottom-right corner. The following diagram illustrates how 
you can visualize these values:



in.doc – page 7

Bounding Rectangle
(RECT)

Display Screen

(left, top)

(right, bottom)

Sprite Concepts
This section contains information about the basic concepts behind a common type of 
sprite animation. The following topics are discussed:

· What is a Sprite?

· Transparent Blitting and Color Keys

· Sprite and Patch Rectangles

· Bounds Checking and Hit Detection

What is a Sprite?
Many video games use sprites. In its most basic sense, a sprite is an image that moves 
around on the screen. The sprite is drawn onto a surface over the existing background, 
the composed scene is sent to the screen, then the sprite is redrawn in a new location, 
and the process repeats. Combine this with repairing the sprite's old location on the 
background and page flipping and you get the illusion that a sprite is moving around 
the screen.

Transparent Blitting and Color Keys
One challenge in sprite animation is accommodating nonrectangular sprites, which 
means almost all of them. Because blitting functions work with rectangles (for 
efficiency, consistency, and ease of use), your sprites must fit into rectangles as well, 
whether or not they actually look rectangular on the screen.
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Although the concept might be confusing at first, this is how it works: The sprite 
image itself is nonrectangular, but is contained in a rectangular space where every 
pixel that is not part of the sprite is treated as "transparent" when the blitter is moving 
the image to its destination. The artist creating the sprite chooses an arbitrary color 
that will be used as the transparency "color key." This is typically a single uncommon 
color that the artist doesn't use for anything but transparency, but it can also be a 
specified range of colors.

Using the IDirectDrawSurface3::SetColorKey method, you can set the color key 
for a surface. After the color key is set, subsequent IDirectDrawSurface3::BltFast 
method calls can take advantage of that color key, ignoring the pixels that match it. 
This type of color key is known as a source color key. Because the source color key 
prevents “transparent” pixels from being written to the destination, the original 
background pixels are preserved in these places, making it look like the sprite is non-
rectangular object and passing over the background.

Additionally, you can use a color key that affects the destination surface (a 
destination color key). A destination color key is a color on a surface that is used for 
pixels that can be overwritten by a sprite. In this case, for example, the artist might be 
working on a foreground image that sprites are supposed to pass behind, creating a 
layered effect. Again, the artist chooses an arbitrary color that isn't used elsewhere in 
the image, reserving it as a portion of the image where you are allowed to blit. When 
you blit a sprite to the destination surface with a destination color key specified, the 
sprite's pixels will only be blitted to pixels on the destination that are using the 
destination color key. Because the normal destination pixels are preserved, it looks 
like the sprite passes behind the image on the destination surface.

Sprite and Patch Rectangles
To complete the illusion of sprite movement, you need a way to erase the sprite's 
image from the background before you draw it at its new location. You could reload 
the entire background and redraw the sprite, but a great deal of performance would be 
lost. Instead, you can keep track of the rectangle that is the sprite's last location and 
redraw only that portion. This method is called "patching." To patch the sprite's old 
location, redraw the sprite's old location with a copy of the original background 
image, which you previously loaded on an off-screen surface. The process works 
well, because it doesn't waste a lot of processing time blitting an entire surface each 
cycle.

This process can be described in the following simple steps:

1. Set the patch rectangle to the last sprite location.

2. Patch the background at that location by blitting to the background image from 
the off-screen master copy.

3. Update the sprite's destination rectangle to reflect its new location.

4. Blit the sprite to its newly updated rectangle in the background image.

5. Repeat.
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Using straightforward C/C++ combined with the graphics power provided by 
DirectDraw, you can implement this process to make a simple sprite engine.

Bounds Checking and Hit Detection
Bounds checking and hit detection are two very common and important tasks 
associated with sprites. Bounds checking is a term used to describe the process of 
limiting a sprite's possible range of motion. For example, you might want to limit a 
given sprite to keep it from moving off the screen. To do so, you can check the values 
for the sprite's location, which you'll probably keep in a RECT structure, and prevent 
them from changing beyond the limits of the screen resolution. DirectDraw doesn’t 
provide bounds checking services, but you can easily implement a bounds checking 
scheme in C/C++ alone. Clipping, on the other hand, is supported by DirectDraw. For 
more information, see Clippers.

Hit detection, or collision detection, refers to the process of checking whether one or 
more sprites occupy the same place. Most hit detection schemes involve checking to 
see if the bounding rectangles for one or more sprites overlap. Because there are so 
many different types of hit detection schemes with an equally varied number of uses, 
DirectDraw doesn’t support them for you, thereby giving you the freedom to 
implement a hit detection scheme that meets your application’s needs.

DirectDraw Architecture
This section contains general information about the relationship between the 
DirectDraw component and the rest of DirectX, the operating system, and the system 
hardware. The following topics are discussed:

· Architectural Overview

· DirectDraw Object Types

· Hardware Abstraction Layer (HAL)

· Software Emulation

Architectural Overview
Multimedia software requires high-performance graphics. Through DirectDraw, 
Microsoft enables a much higher level of efficiency and speed in graphics-intensive 
applications for Windows than is possible with GDI, while maintaining device 
independence. DirectDraw provides tools to perform such key tasks as:

· Manipulating multiple display surfaces

· Accessing the video memory directly

· Page flipping

· Back buffering



in.doc – page 10

· Managing the palette

· Clipping

Additionally, DirectDraw enables you to query the display hardware's capabilities at 
run time, then provide the best performance possible given the host computer's 
hardware capabilities.

As with other DirectX components, DirectDraw uses the hardware to its greatest 
advantage whenever possible, and provides software emulation for most features 
when hardware support is unavailable. Device independence is possible through use 
of the hardware-abstraction layer, or HAL. For more information about the HAL, see 
Hardware Abstraction Layer (HAL).

The DirectDraw component provides services through COM-based interfaces. In the 
most recent iteration, these interfaces are IDirectDraw2, IDirectDrawSurface3, 
IDirectDrawPalette, IDirectDrawClipper, and IDirectDrawVideoPort. Note that, 
in addition to these interfaces, DirectDraw continues to support all previous versions. 
For more information about COM concepts that you should understand to create 
applications with the DirectX APIs in the Platform SDK, see DirectX and the 
Component Object Model .

The DirectDraw object represents the display adapter and exposes its methods 
through the IDirectDraw and IDirectDraw2 interfaces. In most cases you will use 
the DirectDrawCreate function to a DirectDraw object, but you can also create one 
with the CoCreateInstance COM function. For more information, see Creating 
DirectDraw Objects by Using CoCreateInstance.

After creating a DirectDraw object, you can create surfaces for it by calling the 
IDirectDraw2::CreateSurface method. Surfaces represent the memory on the 
display hardware, but can exist on either video memory or system memory. 
DirectDraw extends support for palettes, clipping (useful for windowed applications), 
and video ports through its other interfaces.

DirectDraw Object Types
You can think of DirectDraw as being composed of several objects that work 
together. This section briefly describes the objects you use when working with the 
DirectDraw component, organized by object type. For detailed information, see 
DirectDraw Essentials.

The DirectDraw component uses the following objects:

DirectDraw object
The DirectDraw object is the heart of all DirectDraw applications. It’s the first 
object you create, and you use it to make all other related objects. You create a 
DirectDraw object by calling the DirectDrawCreate function. DirectDraw 
objects expose their functionality through the IDirectDraw and IDirectDraw2 
interfaces. For more information, see The DirectDraw Object.

DirectDrawSurface object
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The DirectDrawSurface object (casually referred to as a “surface”) represents an 
area in memory that holds data to be displayed on the monitor as images or 
moved to other surfaces. You can create a surface by calling the 
IDirectDraw2::CreateSurface method of the DirectDraw object with which it 
will be associated. DirectDrawSurface objects expose their functionality through 
the IDirectDrawSurface, IDirectDrawSurface2, and IDirectDrawSurface3 
interfaces. For more information, see Surfaces.

DirectDrawPalette object
The DirectDrawPalette object (casually referred to as a “palette”) represents a 16- 
or 256-color indexed palette to be used with a surface. It contains a series of 
indexed RGB triplets that describe colors associated with values within a surface. 
You do not use palettes with surfaces that use a pixel format depth greater that 8 
bits. You can create a DirectDrawPalette object by calling the 
IDirectDraw2::CreatePalette method. DirectDrawPalette objects expose their 
functionality through the IDirectDrawPalette interface. For more information, 
see Palettes.

DirectDrawClipper object
The DirectDrawClipper object (casually referred to as a “clipper”) helps you 
prevent blitting to certain portions of a surface or beyond the bounds of a surface. 
You can create a clipper by calling the IDirectDraw2::CreateClipper method. 
DirectDrawClipper objects expose their functionality through the 
IDirectDrawClipper interface. For more information, see Clippers.

DirectDrawVideoPort object
The DirectDrawVideoPort object represents video-port hardware present in some 
systems. This hardware allows direct access to the frame buffer without 
accessing the CPU or using the PCI bus. You can create a DirectDrawVideoPort 
object by calling a QueryInterface method for the DirectDraw object, specifying 
the IID_IDDVideoPortContainer reference identifier. DirectDrawVideoPort 
objects expose their functionality through the IDDVideoPortContainer and 
IDirectDrawVideoPort interfaces. For more information, see Video Ports.

Hardware Abstraction Layer (HAL)
DirectDraw provides device independence through the hardware-abstraction layer 
(HAL). The HAL is a device-specific interface, provided by the device manufacturer, 
that DirectDraw uses to work directly with the display hardware. Applications never 
interact with the HAL. Rather, with the infrastructure that the HAL provides, 
DirectDraw exposes a consistent set of interfaces and methods that an application 
uses to display graphics. The device manufacturer implements the HAL in a 
combination of 16-bit and 32-bit code under Windows 95. Under Windows NT, the 
HAL is always implemented in 32-bit code. The HAL can be part of the display 
driver or a separate DLL that communicates with the display driver through a private 
interface that driver's creator defines.

The DirectDraw HAL is implemented by the chip manufacturer, board producer, or 
original equipment manufacturer (OEM). The HAL implements only device-
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dependent code and performs no emulation. If a function is not performed by the 
hardware, the HAL does not report it as a hardware capability. Additionally, the HAL 
does not validate parameters; DirectDraw does this before the HAL is invoked.

Software Emulation
When the hardware does not support a feature through the hardware abstraction layer 
(HAL), DirectDraw attempts to emulate it. This emulated functionality is provided 
through the hardware-emulation layer (HEL). The HEL presents its capabilities to 
DirectDraw just as the HAL would. And, as with the HAL, applications never work 
directly with the HEL. The result is transparent support for almost all major features, 
regardless of whether a given feature is supported by hardware or through the HEL.

Obviously, software emulation cannot equal the performance that hardware features 
provide. You can query for the features the hardware supports by using the 
IDirectDraw2::GetCaps method. By examining these capabilities during application 
initialization, you can adjust application parameters to provide optimum performance 
over varying levels of hardware performance.

In some cases, certain combinations of hardware supported features and emulation 
can result in slower performance than emulation alone. For example, if the display 
device driver supports DirectDraw but not stretch blitting, noticeable performance 
losses will occur when stretch blitting from video memory surfaces. This happens 
because video memory is often slower than system memory, forcing the CPU to wait 
when accessing video memory surfaces. If your application uses a feature that isn’t 
supported by the hardware, it is sometimes best to create surfaces in system memory, 
thereby avoiding performance losses created when the CPU accesses video memory.

For more information, see Hardware Abstraction Layer (HAL).

System Integration
The following diagram shows the relationships between DirectDraw, the graphics 
device interface (GDI), the hardware abstraction layer (HAL), hardware emulation 
layer (HEL) and the hardware.
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As the preceding diagram shows, a DirectDraw object exists alongside GDI, and both 
have direct access to the hardware through a device-dependent abstraction layer. 
Unlike GDI, DirectDraw makes use of special hardware features whenever possible. 
If the hardware does not support a feature, DirectDraw attempts to emulate it by using 
the HEL. DirectDraw can provide surface memory in the form of a device context, 
making it possible for you to use GDI functions to work with surface objects.

DirectDraw Essentials
This section contains general information about the DirectDraw® component of 
DirectX®. Information is organized into the following groups:

· Cooperative Levels

· Display Modes

· The DirectDraw Object

· Surfaces
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· Palettes

· Clippers

· Advanced DirectDraw Topics

Cooperative Levels
Cooperative levels describe how DirectDraw interacts with the display and how it 
reacts to events that might affect the display. Use the 
IDirectDraw2::SetCooperativeLevel method to set cooperative level of 
DirectDraw. For the most part, you use DirectDraw cooperative levels to determine 
whether your application runs as a full screen program with exclusive access to the 
display or as a windowed application. However, DirectDraw cooperative levels can 
also have the following effects:

· Enable DirectDraw to use Mode X resolutions. For more information, see Mode 
X and Mode 13 Display Modes.

· Prevent DirectDraw from releasing exclusive control of the display or rebooting 
if the user presses CTRL + ALT + DEL (exclusive mode only).

· Enable DirectDraw to minimize or maximize the application in response to 
activation events.

The normal cooperative level indicates that your DirectDraw application will operate 
as a windowed application. At this cooperative level you won't be able to change the 
primary surface's palette or perform page flipping. Additionally, you won’t be able to 
call some methods that drastically affect the display or video memory, such as 
IDirectDraw2::Compact.

At the full screen and exclusive cooperative level, you can use the hardware to its 
fullest. In this mode, you can set custom and dynamic palettes, change display 
resolutions, compact memory, and implement page flipping. The exclusive (full-
screen) mode does not prevent other applications from allocating surfaces, nor does it 
exclude them from using DirectDraw or GDI. However, it does prevent applications 
other than the one currently with exclusive access from changing the display mode or 
palette.

Because applications can use DirectDraw with multiple windows, 
IDirectDraw2::SetCooperativeLevel does not require a window handle to be 
specified if the application is requesting the DDSCL_NORMAL mode. By passing a 
NULL to the window handle, all of the windows can be used simultaneously in 
normal Windows mode.

IDirectDraw2::SetCooperativeLevel maintains a binding between a process and a 
window handle. If IDirectDraw2::SetCooperativeLevel is called once in a process, 
a binding is established between the process and the window. If it is called again in 
the same process with a different non-null window handle, it returns the 
DDERR_HWNDALREADYSET error value. Some applications may receive this 
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error value when DirectSound® specifies a different window handle than DirectDraw
—they should specify the same, top-level application window handle.

Display Modes
This section contains general information about DirectDraw display modes. The 
following topics are discussed:

· About Display Modes

· Determining Supported Display Modes

· Setting Display Modes

· Restoring Display Modes

· Mode X and Mode 13 Display Modes

· Support for High Resolutions and True-Color Bit Depths

About Display Modes
A display mode is a hardware setting that describes the dimensions and bit-depth of 
graphics that the display hardware sends to the monitor from the primary surface. 
Display modes are described by their defining characteristics: width, height, and bit-
depth. For instance, most display adapters can display graphics 640 pixels wide and 
480 pixels tall, where each pixel is 8 bits of data. In shorthand, this display mode 
could be called 640-by-480-by-8 (640x480x8). As the dimensions of a display mode 
get larger or as the bit-depth increases, more display memory is required.

There are two types of display modes: palettized and non-palettized. For palettized 
display modes, each pixel is a value representing an index into an associated palette. 
The bit depth of the display mode determines the number of colors that can be in the 
palette. For instance, in an 8-bit palettized display mode, each pixel is a value from 0 
to 255. In such a display mode, the palette can contain 256 entries.

Non-palettized display modes, as their name states, do not use palettes. The bit depth 
of a non-palettized display mode indicates the total number of bits that are used to 
describe a pixel. 

The primary surface and any surfaces in the primary flipping chain match the display 
mode’s dimensions, bit depth and pixel format. For more information, see Pixel 
Formats.

Determining Supported Display Modes
Because display hardware varies, not all devices will support all display modes. To 
determine the display modes supported on a given system, call the 
IDirectDraw2::EnumDisplayModes method. By setting the appropriate values and 
flags, the IDirectDraw2::EnumDisplayModes method can list all supported display 
modes or confirm that a single display mode that you specify is supported. The 
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method’s first parameter, dwFlags, controls extra options for the method; in most 
cases, you will set dwFlags to 0 to ignore extra options. The second parameter, 
lpDDSurfaceDesc, is the address of a DDSURFACEDESC structure that describes a 
given display mode to be confirmed; you’ll usually set this parameter to NULL to 
request that all modes be listed. The third parameter, lpContext, is a pointer that you 
want DirectDraw to pass to your callback function; if you don’t need any extra data in 
the callback function, use NULL here. Last, you set the lpEnumModesCallback 
parameter to the address of the callback function that DirectDraw will call for each 
supported mode.

The callback function you supply when calling IDirectDraw2::EnumDisplayModes 
must match the prototype for the EnumModesCallback function. For each display 
mode that the hardware supports, DirectDraw calls your callback function passing 
two parameters. The first parameter is the address of a DDSURFACEDESC 
structure that describes one supported display mode, and the second parameter is the 
address of the application-defined data you specified when calling 
IDirectDraw2::EnumDisplayModes, if any.

Examine the values in the DDSURFACEDESC structure to determine the display 
mode it describes. The key structure members are the dwWidth, dwHeight, and 
ddpfPixelFormat members. The dwWidth and dwHeight members describe the 
display mode’s dimensions, and the ddpfPixelFormat member is a 
DDPIXELFORMAT structure that contains information about the mode’s bit depth.

The DDPIXELFORMAT structure carries information describing the mode’s bit 
depth and tells you whether or not the display mode uses a palette. If the dwFlags 
member contains the DDPF_PALETTEINDEXED1, DDPF_PALETTEINDEXED2, 
DDPF_PALETTEINDEXED4, or DDPF_PALETTEINDEXED8 flag, the display 
mode’s bit depth is 1, 2, 4 or 8 bits, and each pixel is an index into an associated 
palette. If dwFlags contains DDPF_RGB, then the display mode is non-palettized and 
its bit depth is provided in the dwRGBBitCount member of the 
DDPIXELFORMAT structure.

Setting Display Modes
You can set the display mode by using the IDirectDraw2::SetDisplayMode method. 
The SetDisplayMode method accepts four parameters that describe the dimensions, 
bit depth, and refresh rate of the mode to be set. The method uses a fifth parameter to 
indicate special options for the given mode; this is currently only used to differentiate 
between Mode 13 and the Mode X 320x200x8 display mode.

Although you can specify the desired display mode’s bit depth, you cannot specify 
the pixel format that the display hardware will use for that bit depth. To determine the 
RGB bit masks that the display hardware uses for the current bit depth, call 
IDirectDraw2::GetDisplayMode after setting the display mode. If the current 
display mode is not palettized, you can examine the mask values in the dwRBitMask, 
dwGBitMask, and dwBBitMask members to determine the correct red, green, and 
blue bits. For more information, see Pixel Format Masks.
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Modes can be changed by more than one application as long as they are all sharing a 
display card. You can change the bit depth of the display mode only if your 
application has exclusive access to the DirectDraw object. All DirectDrawSurface 
objects lose surface memory and become inoperative when the mode is changed. A 
surface's memory must be reallocated by using the IDirectDrawSurface3::Restore 
method.

The DirectDraw exclusive (full-screen) mode does not bar other applications from 
allocating DirectDrawSurface objects, nor does it exclude them from using 
DirectDraw or GDI functionality. However, it does prevent applications other than 
the one that obtained exclusive access from changing the display mode or palette.

Restoring Display Modes
You can explicitly restore the display hardware to its original mode by calling the 
IDirectDraw2::RestoreDisplayMode method. If the display mode was set by calling 
IDirectDraw2::SetDisplayMode (rather than IDirectDraw::SetDisplayMode) and 
your application takes the exclusive cooperative level, the original display mode is 
reset automatically when you set the application’s cooperative level back to normal. If 
you’re using the IDirectDraw interface, you must always explicitly restore the 
display mode.

Mode X and Mode 13 Display Modes
DirectDraw supports both Mode 13 and Mode X display modes. Mode 13 is the linear 
unflippable 320x200 8 bits per pixel palettized mode known widely by its 
hexadecimal BIOS mode number: 13. For more information, see Mode 13 Support. 
Mode X is a hybrid display mode derived from the standard VGA Mode 13. This 
mode allows the use of up to 256 kilobytes (KB) of display memory (rather than the 
64 KB allowed by Mode 13) by using the VGA display adapter's EGA multiple video 
plane system.

On Windows 95, DirectDraw provides two Mode X modes (3202008 and 
3202408) for all display cards. Some cards also support linear low-resolution 
modes. In linear low-resolution modes, the primary surface can be locked and directly 
accessed. This is not possible in Mode X modes.

Mode X modes are available only if an application uses the 
DDSCL_ALLOWMODEX, DDSCL_FULLSCREEN, and DDSCL_EXCLUSIVE 
flags when calling the IDirectDraw2::SetCooperativeLevel method. If 
DDSCL_ALLOWMODEX is not specified, the 
IDirectDraw2::EnumDisplayModes method will not enumerate Mode X modes, 
and the IDirectDraw2::SetDisplayMode method will fail if a Mode X mode is 
requested.

Windows 95 and Windows NT do not support Mode X modes; therefore, when your 
application is in a Mode X mode, you cannot use the IDirectDrawSurface3::Lock or 
IDirectDrawSurface3::Blt methods to lock or blit to the primary surface. You also 
cannot use either the IDirectDrawSurface3::GetDC method on the primary surface, 
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or GDI with a screen DC. Mode X modes are indicated by the DDSCAPS_MODEX 
flag in the DDSCAPS structure, which is part of the DDSURFACEDESC structure 
returned by the IDirectDrawSurface3::GetCaps and 
IDirectDraw2::EnumDisplayModes methods.

Mode X modes and some linear low-resolution modes are not supported on Windows 
NT.

Support for High Resolutions and True-Color 
Bit Depths

DirectDraw supports all of the screen resolutions and depths supported by the display 
device driver. DirectDraw allows an application to change the mode to any one 
supported by the computer's display driver, including all supported 24- and 32-bpp 
(true-color) modes.

DirectDraw also supports HEL blitting in true-color surfaces. If the display device 
driver supports blitting at these resolutions, the hardware blitter will be used for 
display-memory-to-display-memory blits. Otherwise, the HEL will be used to 
perform the blits.

Window 95 and Windows NT allow you to specify the type of monitor being used. 
DirectDraw checks a list of known display modes against the display restrictions of 
the installed monitor. If DirectDraw determines that the requested mode is not 
compatible with the monitor, the call to the IDirectDraw2::SetDisplayMode method 
fails. Only modes that are supported on the installed monitor will be enumerated 
when you call the IDirectDraw2::EnumDisplayModes method.

The DirectDraw Object
This section contains information about DirectDraw objects and how you can 
manipulate them through their IDirectDraw or IDirectDraw2 interfaces. The 
following topics are discussed:

· What Are DirectDraw Objects?

· What's New in IDirectDraw2?

· Cooperative Levels

· Display Modes

· Multiple DirectDraw Objects per Process

· Creating DirectDraw Objects by Using CoCreateInstance

What Are DirectDraw Objects?
The DirectDraw object is the heart of all DirectDraw applications and is an integral 
part of Direct3D® applications as well. It is the first object you create and, through it, 
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you create all other related objects. Typically, you create a DirectDraw object by 
calling the DirectDrawCreate function, which returns an IDirectDraw interface. If 
you want to work with a different iteration of the interface (such as IDirectDraw2) to 
take advantage of new features it provides, you can query for it. Note that you can 
create multiple DirectDraw objects, one for each display device installed in a system.

The DirectDraw object represents the display device and makes use of hardware 
acceleration if the display device for which it was created supports hardware 
acceleration. Each unique DirectDraw object can manipulate the display device and 
create surfaces, palettes, and clipper objects that are dependent on (or are, "connected 
to") the object that created them. For example, to create surfaces, you call the 
IDirectDraw2::CreateSurface method. Or, if you need a palette object to apply to a 
surface, call the IDirectDraw2::CreatePalette method. Additionally, the 
IDirectDraw2 interface exposes similar methods to create clipper objects.

You can create more than one instance of a DirectDraw object at a time. The simplest 
example of this is using two monitors on a Windows 95 system. Although Windows 
95 does not support dual monitors on its own, it is possible to write a DirectDraw 
HAL for each display device. The display device Windows 95 and GDI recognizes is 
the one that will be used when you create the instance of the default DirectDraw 
object. The display device that Windows 95 and GDI do not recognize can be 
addressed by another, independent DirectDraw object that must be created by using 
the second display device's globally unique identifier (GUID). This GUID can be 
obtained by using the DirectDrawEnumerate function.

The DirectDraw object manages all of the objects it creates. It controls the default 
palette (if the primary surface is in 8-bits-per-pixel mode), the default color key, and 
the hardware display mode. It tracks what resources have been allocated and what 
resources remain to be allocated.

What's New in IDirectDraw2?
This section details new features provided by the IDirectDraw2 interface and 
describes how it behaves differently than its predecessor, IDirectDraw. The 
following topics are discussed:

· New Features in IDirectDraw2

· Cooperative Levels and Display Modes with IDirectDraw2

· Getting an IDirectDraw2 Interface

New Features in IDirectDraw2

The IDirectDraw2 interface extends the IDirectDraw interface by adding the 
IDirectDraw2::GetAvailableVidMem method. This method enables you to query 
the display hardware for information about the status of its total available video 
memory and how much of that memory is available to be used by a surface of a given 
type.
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Cooperative Levels and Display Modes with IDirectDraw2

The interaction between the IDirectDraw2::SetCooperativeLevel and 
IDirectDraw2::SetDisplayMode methods differs from that of their IDirectDraw 
counterparts.

If your application uses the IDirectDraw interface to set the full-screen exclusive 
cooperative level and change the display mode, the display mode will not be 
automatically restored when you return to the normal cooperative level-you have to 
call the IDirectDraw::RestoreDisplayMode method. However, if you use the 
IDirectDraw2 interface, calling RestoreDisplayMode isn’t necessary. However, the 
IDirectDraw2::RestoreDisplayMode method is supported for applications that want 
to explicitly restore the original display mode.

Getting an IDirectDraw2 Interface

The Component Object Model on which DirectX is built specifies that an object can 
provide new functionality can be added through new interfaces, without affecting 
backward compatibility. To this end, the IDirectDraw2 interface supersedes the 
IDirectDraw interface. This new interface can be obtained by using the 
IDirectDraw::QueryInterface method, as shown in the following C++ example:

// Create an IDirectDraw2 interface. 

LPDIRECTDRAW  lpDD; 

LPDIRECTDRAW2 lpDD2; 

 

ddrval = DirectDrawCreate(NULL, &lpDD, NULL); 

if(ddrval != DD_OK) 

    return; 

 

ddrval = lpDD->SetCooperativeLevel(hwnd, 

    DDSCL_NORMAL); 

if(ddrval != DD_OK) 

    return; 

 

ddrval = lpDD->QueryInterface(IID_IDirectDraw2, 

    (LPVOID *)&lpDD2); 

if(ddrval != DD_OK) 

    return; 

 

The preceding example creates a DirectDraw object, then calls the 
IUnknown::QueryInterface method of the IDirectDraw interface it received to 
create an IDirectDraw2 interface.

After getting an IDirectDraw2 interface, you can begin calling its methods to take 
advantage of new features, performance improvements, and behavioral differences. 
Because some methods might change with the release of a new interface, mixing 
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methods from an interface and its replacement (between IDirectDraw and 
IDirectDraw2, for example) can cause unpredictable results.

Multiple DirectDraw Objects per Process
DirectDraw allows a process to call the DirectDrawCreate function as many times 
as necessary. A unique and independent interface to a unique and independent 
DirectDraw object is returned after each call. Each DirectDraw object can be used as 
desired; there are no dependencies between the objects. Each object behaves exactly 
as if it had been created by a unique process.

DirectDraw objects are independent of one another and the DirectDrawSurface, 
DirectDrawPalette, and DirectDrawClipper objects they create should not be used 
with other DirectDraw objects because they are automatically released when the 
parent DirectDraw object is destroyed. If they are used with another DirectDraw 
object, they might stop functioning if their parent object is destroyed, causing the 
remaining DirectDraw object to malfunction.

The exception is DirectDrawClipper objects created by using the 
DirectDrawCreateClipper function. These objects are independent of any particular 
DirectDraw object and can be used with one or more DirectDraw objects.

Creating DirectDraw Objects by Using 
CoCreateInstance

You can create a DirectDraw object by using the CoCreateInstance function and the 
IDirectDraw2::Initialize method rather than the DirectDrawCreate function. The 
following steps describe how to create the DirectDraw object:

1 Initialize COM at the start of your application by calling CoInitialize and 
specifying NULL.

if (FAILED(CoInitialize(NULL)))

    return FALSE;

2 Create the DirectDraw object by using CoCreateInstance and the 
IDirectDraw2::Initialize method.

ddrval = CoCreateInstance(&CLSID_DirectDraw,

    NULL, CLSCTX_ALL, &IID_IDirectDraw2, &lpdd);

if(!FAILED(ddrval))

    ddrval = IDirectDraw2_Initialize(lpdd, NULL);

In this call to CoCreateInstance, the first parameter, CLSID_DirectDraw, is the 
class identifier of the DirectDraw driver object class, the IID_IDirectDraw2 
parameter identifies the particular DirectDraw interface to be created, and the 
lpdd parameter points to the DirectDraw object that is retrieved. If the call is 
successful, this function returns an uninitialized object.
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3 Before you use the DirectDraw object, you must call IDirectDraw2::Initialize. 
This method takes the driver GUID parameter that the DirectDrawCreate 
function typically uses (NULL in this case). After the DirectDraw object is 
initialized, you can use and release it as if it had been created by using the 
DirectDrawCreate function. If you do not call the IDirectDraw2::Initialize 
method before using one of the methods associated with the DirectDraw object, a 
DDERR_NOTINITIALIZED error will occur.

Before you close the application, shut down COM by using the CoUninitialize 
function.

CoUnitialize(); 

 

Surfaces
This section contains information about DirectDrawSurface objects. The following 
topics are discussed:

· Basic Concepts

· Creating Surfaces

· Flipping Surfaces

· Losing Surfaces

· Releasing Surfaces

· Updating Surface Characteristics

· Accessing the Frame-Buffer Directly

· Using Non-local Video Memory Surfaces

· Converting Color and Format

· Overlay Surfaces

· Blitting to Multiple Windows

Basic Concepts
This section contains information about the basic concepts associated with 
DirectDrawSurface objects. The following topics are discussed:

· What Are Surfaces?

· Surface Interfaces

· Width and Pitch

· Color Keying

· Pixel Formats
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What Are Surfaces?

A surface, or DirectDrawSurface object, represents a linear area of display memory. 
A surface usually resides in the display memory of the display card, although surfaces 
can exist in system memory. Unless specifically instructed otherwise during the 
creation of the DirectDrawSurface object, DirectDraw object will put the 
DirectDrawSurface object wherever the best performance can be achieved given the 
requested capabilities. DirectDrawSurface objects can take advantage of specialized 
processors on display cards, not only to perform certain tasks faster, but to perform 
some tasks in parallel with the system CPU.

Using the IDirectDraw2::CreateSurface method, you can create a single surface 
object, complex surface-flipping chains, or three-dimensional surfaces. The 
CreateSurface method creates the requested surface or flipping chain and retrieves a 
pointer to the primary surface's IDirectDrawSurface interface through which the 
object exposes its functionality. If you want to work with a different iteration of the 
interface (such as IDirectDrawSurface3), you can query for it.

The IDirectDrawSurface3 interface enables you to indirectly access memory 
through blit methods, such as IDirectDrawSurface3::BltFast. The surface object can 
provide a device context to the display that you can use with GDI functions. 
Additionally, you can use IDirectDrawSurface3 methods to directly access display 
memory. For example, you can use the IDirectDrawSurface3::Lock method to lock 
the display memory and retrieve the address corresponding to that surface. Addresses 
of display memory might point to visible frame buffer memory (primary surface) or 
to nonvisible buffers (off-screen or overlay surfaces). Nonvisible buffers usually 
reside in display memory, but can be created in system memory if required by 
hardware limitations or if DirectDraw is performing software emulation. In addition, 
the IDirectDrawSurface3 interface extends other methods that you can use to set or 
retrieve palettes, or to work with specific types or surfaces, like flipping chains or 
overlays.

From this illustration, you can see that all surface are created by a DirectDraw object 
and are often used closely with palettes. Although each surface object can be assigned 
a palette, palettes aren't required for anything but primary surfaces that use pixel 
formats of 8-bits in depth or less.
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DirectDraw Component

Primary Surface
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Off Screen Surface
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Surface Interfaces

DirectDrawSurface objects expose their functionality through the 
IDirectDrawSurface, IDirectDrawSurface2, and IDirectDrawSurface3 interfaces. 
Each new interface version provides the same utility as its predecessors, with 
additional options available through new methods.

The IDirectDrawSurface interface is the oldest version of the interface and is 
provided by default when you create a surface by using the 
IDirectDraw2::CreateSurface method. To utilize the new functionality provided by 
another version of the interface, you must query for the new version by calling its 
QueryInterface method. The following example shows how you can do this:

LPDIRECTDRAWSURFACE  lpSurf; 

LPDIRECTDRAWSURFACE2 lpSurf2; 
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// Create surfaces. 

memset(&ddsd, 0, sizeof(ddsd)); 

ddsd.dwSize = sizeof(ddsd); 

ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT; 

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN | 

    DDSCAPS_SYSTEMMEMORY; 

ddsd.dwWidth = 10; 

ddsd.dwHeight = 10; 

 

ddrval = lpDD2->CreateSurface(&ddsd, &lpSurf, 

    NULL); 

if(ddrval != DD_OK) 

    return; 

 

ddrval = lpSurf->QueryInterface( 

    IID_IDirectDrawSurface2, (LPVOID *)&lpSurf2); 

if(ddrval != DD_OK) 

    return; 

 

ddrval = lpSurf2->PageLock(0); 

if(ddrval != DD_OK) 

    return; 

 

ddrval = lpSurf2->PageUnlock(0); 

if(ddrval != DD_OK) 

    return; 

 

The preceding example retrieves a DirectDrawSurface object’s 
IDirectDrawSurface2 interface by specifying the IID_IDirectDraw2 reference 
identifier when it calls the QueryInterface method. To retrieve an 
IDirectDrawSurface3 interface, use the IID_IDirectDrawSurface3 reference 
identifier instead.

Width and Pitch

If your application writes to display memory, bitmaps stored in memory do not 
necessarily occupy a contiguous block of memory. In this case, the width and pitch of 
a line in a bitmap can be different from each other. The width is the distance between 
two addresses in memory that represent the beginning of a line and the end of the line 
of a stored bitmap. This distance represents only the width of the bitmap in memory; 
it does not include any extra memory required to reach the beginning of the next line 
of the bitmap. The pitch is the distance between two addresses in memory that 
represent the beginning of a line and the beginning of the next line in a stored bitmap.

For rectangular memory, for example, the pitch of the display memory will include 
the width of the bitmap plus part of a cache. The following figure shows the 
difference between width and pitch in rectangular memory:
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In this figure, the front buffer and back buffer are both 6404808, and the cache is 
3844808. To reach the address of the next line to write to the buffer, you must add 
640 and 384 to get 1024, which is the beginning of the next line.

Therefore, when rendering directly into surface memory, always use the pitch 
returned by the IDirectDrawSurface3::Lock method (or the 
IDirectDrawSurface3::GetDC method). Do not assume a pitch based solely on the 
display mode. If your application works on some display adapters but looks garbled 
on others, this may be the cause of your problem.

Color Keying

DirectDraw supports source and destination color keying for blits and overlay 
surfaces. You can supply a color key or a color range for both of these types of color 
keying. For general information about color keying, see Transparent Blitting and 
Color Keys. You set a surface’s color key by calling the its 
IDirectDrawSurface3::SetColorKey method.

When blitting, source color keying specifies a color or color range that is not copied. 
Likewise, destination color keying specifies a color or color range that is replaced 
The source color key specifies what can and cannot be read from the surface. The 
destination color key specifies what can and cannot be written onto, or covered up, on 
the destination surface. If a destination surface has a color key, only the pixels that 
match the color key are changed, or covered up, on the destination surface.

In addition to blit-related color keys, overlay surfaces can use overlay color keys. For 
more information, see Overlay Color Keys.

Some hardware supports color ranges only for YUV pixel data. YUV data is usually 
video, and the transparent background may not be a single color due to quantitization 
errors during conversion. Content should be written to a single transparent color 
whenever possible, regardless of pixel format.

Color keys are specified using the pixel format of a surface. If a surface is in a 
palettized format, the color key is specified as an index or a range of indices. If the 
surface's pixel format is specified by a FOURCC code that describes a YUV format, 
the YUV color key is specified by the three low-order bytes in both the 
dwColorSpaceLowValue and dwColorSpaceHighValue members of the 
DDCOLORKEY structure. The lowest order byte contains the V data, the second 
lowest order byte contains the U data, and the highest order byte contains the Y data. 
The dwFlags parameter of the IDirectDrawSurface3::SetColorKey method 
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specifies whether the color key is to be used for overlay or blit operations, and 
whether it is a source or a destination key. Some examples of valid color keys follow:

8-bit palettized mode

// Palette entry 26 is the color key. 

dwColorSpaceLowValue = 26; 

dwColorSpaceHighValue = 26; 

 

24-bit true-color mode

// Color 255,128,128 is the color key. 

dwColorSpaceLowValue = RGBQUAD(255,128,128); 

dwColorSpaceHighValue = RGBQUAD(255,128,128); 

 

FourCC YUV mode

// Any YUV color where Y is between 100 and 110 

// and U or V is between 50 and 55 is transparent. 

dwColorSpaceLowValue = YUVQUAD(100,50,50); 

dwColorSpaceHighValue = YUVQUAD(110,55,55); 

 

Pixel Formats

Pixel formats dictate how data for each pixel in surface memory is to be interpreted. 
DirectDraw uses the DDPIXELFORMAT structure to describe various pixel 
formats. The DDPIXELFORMAT contains members to describe the following traits 
of a pixel format:

· Palettized or non-palettized pixel format

· If non-palettized, whether the pixel format is RGB or YUV

· Bit depth

· Bit masks for the pixel format’s components

You can retrieve information about an existing surface’s pixel format by calling the 
IDirectDrawSurface3::GetPixelFormat method.

Creating Surfaces
The DirectDrawSurface object represents a surface that usually resides in the display 
memory, but can exist in system memory if display memory is exhausted or if it is 
explicitly requested.

Use the IDirectDraw2::CreateSurface method to create one surface or to 
simultaneously create multiple surfaces (a complex surface). When calling 
CreateSurface, you specify the dimensions of the surface, whether it is a single 
surface or a complex surface, and the pixel format (if the surface won’t be using an 
indexed palette). All these characteristics are contained in a DDSURFACEDESC 



in.doc – page 28

structure, whose address you send with the call. If the hardware can’t support the 
requested capabilities or if it previously allocated those resources to another 
DirectDrawSurface object, the call will fail.

Creating single surfaces or multiple surfaces is a simple matter that requires only a 
few lines of code. There are four main scenarios for creating surfaces. Each scenario 
requires a little more preparation than the one before it, but none are difficult. The 
following four scenarios are discussed:

1. Creating the Primary Surface

2. Creating an Off-Screen Surface

3. Creating Complex Surfaces and Flipping Chains

4. Creating Wide Surfaces

By default, DirectDraw attempts to create a surface in local video memory. If there 
isn’t enough local video memory available to hold the surface, DirectDraw will try to 
use non-local video memory (on some AGP-equipped systems), and fall back on 
system memory if all other types of memory are unavailable. You can explicitly 
request that a surface be created in a certain type of memory by including the 
appropriate flags in the associated DDSCAPS structure when calling CreateSurface.

Creating the Primary Surface

The primary surface is the surface currently visible on the monitor and is identified by 
the DDSCAPS_PRIMARYSURFACE flag. You can only have one primary surface 
for each DirectDraw object.

When you create a primary surface, the dimensions implicitly match the current 
display mode. Therefore, this is the one time you don’t need to declare surface 
dimensions. Frankly, if you do specify them, the call fails–even if they match the 
current display mode. 

The following example shows how to prepare the DDSURFACEDESC structure 
members relevant for creating the primary surface.

DDSURFACEDESC ddsd; 

ddsd.dwSize = sizeof(ddsd); 

 

// Tell DirectDraw which members are valid. 

ddsd.dwFlags = DDSD_CAPS; 

 

// Request a primary surface. 

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE; 

 

Creating an Off-Screen Surface

An off-screen surface is often used to cache bitmaps that will later be blitted to the 
primary surface or a back buffer. You must declare the dimensions of an off-screen 
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surface by including the DDSC_WIDTH and DDSD_HEIGHT flags and the 
corresponding values in the dwWidth and dwHeight members. Additionally, you 
must include the DDSCAPS_OFFSCREENPLAIN flag in the accompanying 
DDSCAPS structure.

By default, DirectDraw creates a surface in display memory unless it will not fit, in 
which case it creates the surface in system memory. You can explicitly choose 
display or system memory by including the DDSCAPS_SYSTEMMEMORY or 
DDSCAPS_VIDEOMEMORY flags in the dwCaps member of the DDSCAPS 
structure. The method fails, returning an error, if it can’t create the surface in the 
specified location.

The following example shows how to prepare for creating a simple off-screen surface.

DDSURFACEDESC ddsd; 

ddsd.dwSize = sizeof(ddsd); 

 

// Tell DirectDraw which members are valid. 

ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH; 

 

// Request a simple off-screen surface, sized 

// 100 by 100 pixels. 

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN; 

dwHeight = 100; 

dwWidth = 100; 

 

In previous versions of DirectX, the maximum width of off-screen surfaces was 
limited to the width of the primary surface. With DirectX 5, you can create surfaces 
as wide as you need, permitting that the display hardware can support them. Be 
careful when declaring wide off-screen surfaces; if the video card memory cannot 
hold a surface as wide as you request, the surface is created in system memory. If you 
explicitly choose video memory and the hardware can’t support it, the call fails.

Creating Complex Surfaces and Flipping Chains

You can also create complex surfaces. A complex surface is a set of surfaces created 
with a single call to the IDirectDraw2::CreateSurface method. If the 
DDSCAPS_COMPLEX flag is set when you call CreateSurface call, DirectDraw 
implicitly creates one or more surfaces in addition to the surface explicitly specified. 
You manage complex surfaces just like a single surfacea single call to the 
IDirectDraw::Release method releases all surfaces, and a single call to the 
IDirectDrawSurface3::Restore method restores them all. However, implicitly 
created surfaces cannot be detached. For more information, see 
IDirectDrawSurface3::DeleteAttachedSurface.

One of the most useful complex surfaces you can create is a flipping chain. Usually, a 
flipping chain is made of a primary surface and one or more back buffers. The 
DDSCAPS_FLIP flag indicates that a surface is part of a flipping chain. Creating a 
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flipping chain this way requires that you also include the DDSCAPS_COMPLEX 
flag.

The following example shows how to prepare for creating a primary surface flipping 
chain.

DDSURFACEDESC ddsd; 

ddsd.dwSize = sizeof(ddsd); 

 

// Tell DirectDraw which members are valid. 

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT; 

 

// Request a primary surface with a single 

// back buffer 

ddsd.ddsCaps.dwCaps = DDSCAPS_COMPLEX | DDSCAPS_FLIP | 

DDSCAPS_PRIMARYSURFACE; 

ddsd.dwBackBufferCount = 1; 

 

The previous example constructs a double-buffered flipping environmenta single 
call to the IDirectDrawSurface3::Flip method exchanges the surface memory of the 
primary surface and the back buffer. If you specify 2 for the value of the 
dwBackBufferCount member of the DDSURFACEDESC structure, two back 
buffers are created, and each call to Flip rotates the surfaces in a circular pattern, 
providing a triple-buffered flipping environment.

Creating Wide Surfaces

DirectDraw allows you to create off-screen surfaces in video memory that are wider 
that the primary surface. This is only possible when display device support for wide 
surfaces is present.

To check for wide surface support, call IDirectDraw2::GetCaps and look for the 
DDCAPS2_WIDESURFACES flag in the dwCaps2 member of the first DDCAPS 
structure you send with the call. If the flag is present, you can create video memory 
off-screen surfaces that are wider that the primary surface.

If you attempt to create a wide surface in video memory when the 
DDCAPS2_WIDESURFACES flag isn’t present, the attempt will fail and return 
DDERR_INVALIDPARAMS.

Wide surfaces are always supported for system memory surfaces, video port surfaces, 
and execute buffers. 

Flipping Surfaces
Any surface in DirectDraw can be constructed as a flipping surface. A flipping 
surface is any piece of memory that can be swapped between a front buffer and a back 
buffer. (this construct is commonly referred to as a flipping chain). Often, the front 
buffer is the primary surface, but it doesn’t have to be.



in.doc – page 31

Typically, when you use the IDirectDrawSurface3::Flip method to request a surface 
flip operation, the pointers to surface memory for the primary surface and back 
buffers are swapped. Flipping is performed by switching pointers that the display 
device uses for referencing memory, not by copying surface memory. (The exception 
to this is when DirectDraw is emulating the flip, in which case it simply copies the 
surfaces. DirectDraw emulates flip operations if a back buffer cannot fit into display 
memory or if the hardware doesn’t support DirectDraw.) When a flipping chain 
contains a primary surface and more than one back-buffer, the pointers are switched 
in a circular pattern, as shown in the following illustration:

Primary
Surface Back Buffer Third Buffer

ABefore
Flipping

After
Flipping

Once

After
Flipping
Twice

After
Third
Flip

B C

AB C

BC A

CA B

Other surfaces that are attached to a DirectDraw object, but not part of the flipping 
chain, are unaffected when the Flip method is called.

Remember, DirectDraw flips surfaces by swapping surface memory pointers within 
DirectDrawSurface objects, not by swapping the objects themselves. This means that, 
to blit to the back buffer in any type of flipping scheme, you always use the same 
DirectDrawSurface object-the one that was the back buffer when you created the 
flipping chain. Conversely, you always perform a flip operation by calling the front 
surface’s Flip method.
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When working with visible surfaces, such as a primary surface flipping chain or a 
visible overlay surface flipping chain, the Flip method is asynchronous unless you 
include the DDFLIP_WAIT flag. On these visible surfaces, the Flip method can 
return before the actual flip operation occurs in the hardware (because the hardware 
doesn’t flip until the next vertical refresh occurs). While the actual flip operation is 
pending, the back buffer behind the currently visible surface can’t be locked or blitted 
by calling the IDirectDrawSurface3::Lock, IDirectDrawSurface3::Blt, 
IDirectDrawSurface3::BltFast, or IDirectDrawSurface3::GetDC methods. If you 
attempt to call these methods while a flip operation is pending, they will fail and 
return DDERR_WASSTILLDRAWING. However, if you are using a triple buffered 
scheme, the rearmost buffer is still available.

Losing Surfaces
The surface memory associated with a DirectDrawSurface object may be freed, while 
the DirectDrawSurface objects representing these pieces of surface memory are not 
necessarily released. When a DirectDrawSurface object loses its surface memory, 
many methods return DDERR_SURFACELOST and perform no other action.

Surfaces can be lost because the display card mode was changed or because another 
application received exclusive access to the display card and freed all of the surface 
memory currently allocated on the card. The IDirectDrawSurface3::Restore method 
re-creates these lost surfaces and reconnects them to their DirectDrawSurface object. 
Restoring a surface doesn’t reload any bitmaps that may have existed in the surface 
prior to its loss. Therefore, if you lose a surface you must also completely reconstitute 
the graphics it once held.

For more information, see Setting Display Modes.

Releasing Surfaces
Like all COM interfaces, you must release surfaces by calling the Release method 
when you no longer need them.

Each surface you individually create must be explicitly released. However, if you 
implicitly created multiple surfaces with a single call to 
IDirectDraw2::CreateSurface or IDirectDraw::CreateSurface, such as a flipping 
chain, you need only release the front buffer. In this case, any pointers you might 
have to back buffer surfaces are implicitly released and can no longer be used.

Updating Surface Characteristics
You can update the characteristics of an existing surface by using the 
IDirectDrawSurface3::SetSurfaceDesc method. With this method, you can change 
the pixel format and location of a DirectDrawSurface object’s surface memory to 
system memory that your application has explicitly allocated. This is useful as it 
allows a surface to use data from a previously allocated buffer without copying. The 
new surface memory is allocated by the client application and, as such, the client 
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application must also deallocate it. For more information about how this method is 
used, see Updating Surface Characteristics. 

When calling the IDirectDrawSurface3::SetSurfaceDesc method, the lpddsd 
parameter must be the address of a DDSURFACEDESC structure that describes the 
new surface memory as well as a pointer to that memory. Within the structure, you 
can only set the dwFlags member to reflect valid members for the location of the 
surface memory, dimensions, pitch, and pixel format. Therefore, dwFlags can only 
contain combinations of the DDSD_WIDTH, DDSD_HEIGHT, DDSD_PITCH, 
DDSD_LPSURFACE, and DDSD_PIXELFORMAT flags, which you set to indicate 
valid structure members. 

Before you set the values in the structure, you must allocate memory to hold the 
surface. The size of the memory you allocate is important. Not only do you need to 
allocate enough memory to accommodate the surface’s width and height, but you 
need to have enough to make room for the surface pitch, which must be a QWORD (8 
byte) multiple. Remember, pitch is measured in bytes, not pixels.

When setting surface values in the structure, the lpSurface member is a pointer to the 
memory you allocated and the dwHeight and dwWidth members describe the 
surface dimensions in pixels. If you specify surface dimensions, you must fill the 
lPitch member to reflect the surface pitch as well. Pitch must be a DWORD multiple. 
Likewise, if you specify pitch, you must also specify a width value. Lastly, the 
ddpfPixelFormat member describes the pixel format for the surface. With the 
exception of the lpSurface member, if you don’t specify a value for these members, 
the method defaults to using the value from the current surface.

There are some restrictions you must be aware of when using 
IDirectDrawSurface3::SetSurfaceDesc, some of which are common sense. For 
example, the lpSurface member of the DDSURFACEDESC structure must be a 
valid pointer to a system memory (the method doesn’t support video memory pointers 
at this time). Also, the dwWidth and dwHeight members must be nonzero values. 
Lastly, you cannot reassign the primary surface or any surfaces within the primary’s 
flipping chain.

You can set the same memory for multiple DirectDrawSurface objects, but you must 
take care that the memory is not deallocated while it is assigned to any surface object. 

Using the SetSurfaceDesc method incorrectly will cause unpredictable behavior. The 
DirectDrawSurface object will not deallocate surface memory that it didn’t allocate. 
Therefore, when the surface memory is no longer needed, it is your responsibility to 
deallocate it. However, when SetSurfaceDesc is called, DirectDraw frees the original 
surface memory that it implicitly allocated when creating the surface.

Accessing the Frame-Buffer Directly
You can directly access surface memory in the frame-buffer or in system memory by 
using the IDirectDrawSurface3::Lock method. When you call this method, the 
lpDestRect parameter is a pointer to a RECT structure that describes the rectangle on 
the surface you want to access directly. To request that the entire surface be locked, 
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set lpDestRect to NULL. Also, you can specify a RECT that covers only a portion of 
the surface. Providing that no two rectangles overlap, two threads or processes can 
simultaneously lock multiple rectangles in a surface.

The Lock method fills a DDSURFACEDESC structure with all the information you 
need to properly access the surface memory. The structure includes information about 
the pitch (or stride) and the pixel format of the surface, if different from the pixel 
format of the primary surface. When you finish accessing the surface memory, call 
the IDirectDrawSurface3::Unlock method to unlock it.

While you have a surface locked, you can directly manipulate the contents. The 
following list describes some tips for avoiding common problems with directly 
rendering surface memory:

· Never assume a constant display pitch. Always examine the pitch information 
returned by the IDirectDrawSurface3::Lock method. This pitch can vary for a 
number of reasons, including the location of the surface memory, the type of 
display card, or even the version of the DirectDraw driver. For more information, 
see Width and Pitch.

· Make certain you blit to unlocked surfaces. DirectDraw blit methods will fail, 
returning DDERR_SURFACEBUSY or DDERR_LOCKEDSURFACES, if 
called on a locked surface. Similarly, GDI blit functions fail without returning 
error values if called on a locked surface that exists in display memory.

· Limit your application’s activity while a surface is locked. While a surface is 
locked, DirectDraw often holds the Win16Lock so that gaining access to surface 
memory can occur safely. The Win16Lock serializes access to GDI and USER, 
shutting down Windows for the duration between the 
IDirectDrawSurface3::Lock and IDirectDrawSurface3::Unlock calls. The 
IDirectDrawSurface3::GetDC method implicitly calls 
IDirectDrawSurface3::Lock, and the IDirectDrawSurface3::ReleaseDC 
implicitly calls IDirectDrawSurface3::Unlock.

· Copy aligned to display memory. Windows 95 uses a page fault handler, 
Vflatd.386, to implement a virtual flat-frame buffer for display cards with bank-
switched memory. The handler allows these display devices to present a linear 
frame buffer to DirectDraw. Copying unaligned to display memory can cause the 
system to suspend operations if the copy spans memory banks.

Locking the surface typically causes DirectDraw to take the Win16Lock. During the 
Win16Lock all other applications, including Windows, cease execution. Since the 
Win16Lock stops applications from executing, standard debuggers cannot be used 
while the lock is held. Kernel debuggers can be used during this period.

If a blit is in progress when you call IDirectDrawSurface3::Lock, the method will 
return immediately with an error, as a lock cannot be obtained. To prevent the error, 
use the DDLOCK_WAIT flag to cause the method to wait until a lock can be 
successfully obtained.
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Using Non-local Video Memory Surfaces
DirectDraw supports the Advanced Graphics Port (AGP) architecture for creating 
surfaces in non-local video memory. On AGP-equipped systems, DirectDraw will use 
non-local video memory if local video memory is exhausted or if non-local video 
memory is explicitly requested, depending on the type of AGP implentation that is in 
place.

Currently, there are two implementations of the AGP architecture, known as the 
“execute model” and the “DMA model.” In the execute model implementation, the 
display device supports the same features for non-local video memory surfaces and 
local video memory surfaces. As a result, when you retrieve hardware capabilities by 
calling the IDirectDraw2::GetCaps method, the blit-related flags in the 
dwNLVBCaps, dwNLVBCaps2, dwNLVBCKeyCaps, dwNLVBFXCaps, and 
dwNLVBRops members of the DDCAPS structure will be identical to those for local 
video memory. Under the execute model, if local video memory is exhausted, 
DirectDraw will automatically fall back on non-local video memory unless the caller 
specifically requests otherwise.

In the DMA model implementation, support for blitting and texturing from non-local 
video memory surfaces is limited. When the display device uses the DMA model, the 
DDCAPS2_NONLOCALVIDMEMCAPS flag will be set in the dwCaps2 member 
when you retrieve device capabilities. In the DMA model, the blit-related flags 
included in the dwNLVBCaps, dwNLVBCaps2, dwNLVBCKeyCaps, 
dwNLVBFXCaps, and dwNLVBRops members of the DDCAPS structure describe 
the features that are supported; these features will often be a smaller subset of those 
supported for local video memory surfaces. Under the DMA model, DirectDraw will 
never create a surface in non-local video memory unless the caller explicitly requests 
it.

DMA model implementations vary in support for texturing from non-local video 
memory surfaces. If the driver supports texturing from non-local video memory 
surfaces, the D3DDEVCAPS_TEXTURENONLOCALVIDMEM flag will be set 
when you retrieve the 3-D device’s capabilities by calling the 
IDirect3DDevice2::GetCaps method.

Converting Color and Format
Non-RGB surface formats are described by four-character codes (FOURCC codes). If 
an application calls the IDirectDrawSurface3::GetPixelFormat method to request 
the pixel format, and the surface is a non-RGB surface, the DDPF_FOURCC flag will 
be set and the dwFourCC member of the DDPIXELFORMAT structure will be 
valid. If the FOURCC code represents a YUV format, the DDPF_YUV flag will also 
be set and the dwYUVBitCount, dwYBits, dwUBits, dwVBits, and 
dwYUVAlphaBits members will be valid masks that can be used to extract 
information from the pixels.

If an RGB format is present, the DDPF_RGB flag will be set and the 
dwRGBBitCount, dwRBits, dwGBits, dwBBits, and dwRGBAlphaBits members 
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will be valid masks that can be used to extract information from the pixels. The 
DDPF_RGB flag can be set in conjunction with the DDPF_FOURCC flag if a 
nonstandard RGB format is being described.

During color and format conversion, two sets of FOURCC codes are exposed to the 
application. One set of FOURCC codes represents the capabilities of the blitting 
hardware; the other represents the capabilities of the overlay hardware.

For more information, see Four Character Codes (FOURCC).

Overlay Surfaces
This section contains information about DirectDraw overlay surface support. The 
following topics are discussed:

· Overlay Surface Overview

· Significant DDCAPS Members and Flags

· Source and Destination Rectangles

· Boundary and Size Alignment

· Minimum and Maximum Stretch Factors

· Overlay Color Keys

· Positioning Overlay Surfaces

· Creating Overlay Surfaces

· Overlay Z-Orders

· Flipping Overlay Surfaces

For information about implementing overlay surfaces, see Tutorial 6: Using Overlay 
Surfaces.

Overlay Surface Overview

Overlay surfaces, casually referred to as overlays, are surfaces with special hardware 
supported capabilities. Overlay surfaces are frequently used to display live video, 
recorded video, or still bitmaps over the primary surface without blitting to the 
primary surface or changing the primary surface’s contents in any way. Overlay 
surface support is provided entirely by the hardware; DirectDraw supports any 
capabilities as reported by the display device driver. DirectDraw does not emulate 
overlay surfaces.

An overlay surface is analogous to a clear piece of plastic that you draw on and place 
in front of the monitor. When the overlay is in front of the monitor, you can see both 
the overlay and the contents of the primary surface together, but when you remove it, 
the primary surface’s contents are unchanged. In fact, the mechanics of overlays work 
much like the clear plastic analogy. When you display an overlay surface, you’re 
telling the device driver where and how you want it to be visible. While the display 
device paints scan lines to the monitor, it checks the location of each pixel in the 
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primary surface to see if an overlay should be visible there instead. If so, the display 
device substitutes data from the overlay surface for the corresponding pixel, as shown 
in the following illustration:

Monitor

scanning
primary

scanning overlay

Primary Surface

Overlay
Surface

By using this method, the display adapter produces a composite of the primary 
surface and the overlay on the monitor, providing transparency and stretching effects, 
without modifying the contents of either surface. The composited surfaces are 
injected into the video stream and sent directly to the monitor. Because this on-the-fly 
processing and pixel substitution is handled at the hardware level, no noticeable 
performance loss occurs when displaying overlays. Additionally, this method makes 
it possible to seamlessly composite primary and overlay surfaces with different pixel 
formats.

You create overlay surfaces by calling the IDirectDraw2::CreateSurface method, 
specifying the DDSCAPS_OVERLAY flag in the associated DDSCAPS structure. 
Overlay surfaces can only be created in video memory, so you must also include the 
DDSCAPS_VIDEOMEMORY flag. As with other types of surfaces, by including the 
appropriate flags you can create either a single overlay or a flipping chain made up of 
multiple overlay surfaces. 
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Significant DDCAPS Members and Flags

You can retrieve information about the supported overlay features by calling the 
IDirectDraw2::GetCaps method. The method fills a DDCAPS structure with 
information describing all features.

When reporting hardware features, the device driver sets flags in the dwCaps 
structure member to indicate when a given type of restriction is enforced by the 
hardware. After retrieving the driver capabilities, examine the flags in the dwCaps 
member for information about which restrictions apply. The DDCAPS structure 
contains nine members that carry information describing hardware restrictions for 
overlay surfaces. The following table lists the overlay related members and their 
corresponding flags:

Member Flag

dwMaxVisibleOverlays This member is always valid

dwCurrVisibleOverlays This member is always valid

dwAlignBoundarySrc DDCAPS_ALIGNBOUNDARYSRC

dwAlignSizeSrc DDCAPS_ALIGNSIZESRC

dwAlignBoundaryDest DDCAPS_ALIGNBOUNDARYDEST

dwAlignSizeDest DDCAPS_ALIGNSIZEDEST

dwMinOverlayStretch DDCAPS_OVERLAYSTRETCH

dwMaxOverlayStretch DDCAPS_OVERLAYSTRETCH

The dwMaxVisibleOverlays and dwCurrVisibleOverlays members carry 
information about the maximum number of overlays the hardware can display, and 
how many of them are currently visible.

Additionally, the hardware reports rectangle position and size alignment restrictions 
in the dwAlignBoundarySrc, dwAlignSizeSrc, dwAlignBoundaryDest, 
dwAlignSizeDest, and dwAlignStrideAlign members. The values in these members 
dictate how you must size and position source and destination rectangles when 
displaying overlay surfaces. For more information, see Source and Destination 
Rectangles and Boundary and Size Alignment.

Also, the hardware reports information about stretch factors in the 
dwMinOverlayStretch and dwMaxOverlayStretch members. For more 
information, see Minimum and Maximum Stretch Factors.

Source and Destination Rectangles

To display an overlay surface, you call the overlay surface’s 
IDirectDrawSurface3::UpdateOverlay method, specifying the DDOVER_SHOW 
flag in the dwFlags parameter. The method requires you to specify a source and 
destination rectangle in the lpSrcRect and lpDestRect parameters. The source 
rectangle describes a rectangle on the overlay surface that will be visible on the 
primary surface. To request that the method use the entire surface, set the lpSrcRect 
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parameter to NULL. The destination rectangle describes a portion of the primary 
surface on which the overlay surface will be displayed.

Source and destination rectangles do not need to be the same size. You can often 
specify a destination rectangle smaller or larger than the source rectangle, and the 
hardware will shrink or stretch the overlay appropriately when it is displayed.

To successfully display an overlay surface, you might need to adjust the size and 
position of both rectangles. Whether this is necessary depends on the restrictions 
imposed by the device driver. For more information, see Boundary and Size 
Alignment and Minimum and Maximum Stretch Factors.

Boundary and Size Alignment

Due to various hardware limitations, some device drivers impose restrictions on the 
position and size of the source and destination rectangles used to display overlay 
surfaces. To find out which restrictions apply for a device, call the 
IDirectDraw2::GetCaps method and then examine the overlay-related flags in the 
dwCaps member of the DDCAPS structure. The following table shows the members 
and flags specific to boundary and size alignment restrictions:

Category Flag Member

Boundary (position) restrictions DDCAPS_ALIGNBOUNDARYSRC dwAlignBoundarySrc

DDCAPS_ALIGNBOUNDARYDEST dwAlignBoundaryDest

Size restrictions DDCAPS_ALIGNSIZESRC dwAlignSizeSrc

DDCAPS_ALIGNSIZEDEST dwAlignSizeDest

There are two types of restrictions, boundary restrictions and size restrictions. Both 
types of restrictions are expressed in terms of pixels (not bytes) and can apply to the 
source and destination rectangles. Also, these restrictions can vary depending on the 
pixel formats of the overlay and primary surface.

Boundary restrictions affect where you can position a source or destination rectangle. 
The values in the dwAlignBoundarySrc and dwAlignBoundaryDest members tell 
you how to align the top left corner of the corresponding rectangle. The x-coordinate 
of the top left corner of the rectangle (the left member of the RECT structure), must 
be a multiple of the reported value.

Size restrictions affect the valid widths for source and destination rectangles. The 
values in the dwAlignSizeSrc and dwAlignSizeDest members tell you how to align 
the width, in pixels, of the corresponding rectangle. Your rectangles must have a pixel 
width that is a multiple of the reported value. If you stretch the rectangle to comply 
with a minimum required stretch factor, be sure that the stretched rectangle is still size 
aligned. After stretching the rectangle, align its width by rounding up, not down, so 
you preserve the minimum stretch factor. For more information, see Minimum and 
Maximum Stretch Factors.
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Minimum and Maximum Stretch Factors

Due to hardware limitations, some devices restrict how wide a destination rectangle 
can be compared with the corresponding source rectangle. DirectDraw communicates 
these restrictions as stretch factors. A stretch factor is the ratio between the widths of 
the source and destination rectangles. If the driver provides information about stretch 
factors, it sets the DDCAPS_OVERLAYSTRETCH flag in the DDCAPS structure 
after you call the IDirectDraw2::GetCaps method. Note that stretch factors are 
reported multiplied by 1000, so a value of 1300 actually means 1.3 (and 750 would be 
0.75).

Devices that do not impose limits on stretching or shrinking an overlay destination 
rectangle often report a minimum and maximum stretch factor of 0.

The minimum stretch factor tells you how much wider or narrower than the source 
rectangle the destination rectangle needs to be. If the minimum stretch factor is 
greater than 1000, then you must increase the destination rectangle’s width by that 
ratio. For instance, if the driver reports 1300, you must make sure that the destination 
rectangle’s width is at least 1.3 times the width of the source rectangle. Similarly, a 
minimum stretch factor less than 1000 indicates that the destination rectangle can be 
smaller than the source rectangle by that ratio.

The maximum stretch factor tells the maximum amount you can stretch the width of 
the destination rectangle. For example, if the maximum stretch factor is 2000, you can 
specify destination rectangles that are up to, but not wider than, twice the width of the 
source rectangle. If the maximum stretch factor is less than 1000, then you must 
shrink the width of the destination rectangle by that ratio to be able to display the 
overlay.

After stretching, the destination rectangle must conform to any size alignment 
restrictions the device might require. Therefore, it’s a good idea to stretch the 
destination rectangle before adjusting it to be size aligned. For more information, see 
Boundary and Size Alignment.

Hardware does not require that you adjust the height of destination rectangles. You 
can increase a destination rectangle’s height to preserve aspect ratio without negative 
effects.

Overlay Color Keys

Like other types of surfaces, overlay surfaces use source and destination color keys 
for controlling transparent blit operations between surfaces. Because overlay surfaces 
are not displayed by blitting, there needs to be a different way to control how an 
overlay surface is displayed over the primary surface when you call the 
IDirectDrawSurface3::UpdateOverlay method. This need is filled by overlay color 
keys. Overlay color keys, like their blit-related counterparts, have a source version 
and a destination version that you set by calling the 
IDirectDrawSurface3::SetColorKey method. You use the 
DDCKEY_SRCOVERLAY or DDCKEY_DESTOVERLAY flags to set a source or 
destination overlay color key. Overlay surfaces can employ blit and overlay color 
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keys together to control blit operations and overlay display operations appropriately; 
the two types of color keys do not conflict with one another.

The IDirectDrawSurface3::UpdateOverlay method uses the source overlay color 
key to determine which pixels in the overlay surface should be considered 
transparent, allowing the contents of the primary surface to show through. Likewise, 
the method uses the destination overlay color key to determine the parts of the 
primary surface that will be covered up by the overlay surface when it is displayed. 
The resulting visual effect is the same as that created by blit-related color keys. For 
more information, see Transparent Blitting and Color Keys and Color Keying.

Positioning Overlay Surfaces

After initially displaying an overlay by calling the 
IDirectDrawSurface3::UpdateOverlay method, you can update the destination 
rectangle’s by calling the IDirectDrawSurface3::SetOverlayPosition method.

Make sure that the positions you specify comply with any boundary alignment 
restrictions enforced by the hardware. For more information, see Boundary and Size 
Alignment. Also remember that IDirectDraw2::SetOverlayPosition doesn’t perform 
clipping for you; using coordinates that would potentially make the overlay run off 
the edge of the target surface will cause the method to fail, returning 
DDERR_INVALIDPOSITION.

Creating Overlay Surfaces

Like all surfaces, you create an overlay surface by calling the 
IDirectDraw2::CreateSurface method. To create an overlay, include the 
DDSCAPS_OVERLAY flag in the associated DDSCAPS structure. 

Overlay support varies widely across display devices. As a result, you cannot be sure 
that a given pixel format will be supported by most drivers and must therefore be 
prepared to work with a variety of pixel formats. You can request information about 
the non-RGB formats that a driver supports by calling the 
IDirectDraw2::GetFourCCCodes method.

When you attempt to create an overlay surface, it is advantageous to try creating a 
surface with the most desirable pixel format, falling back on other pixel formats if a 
given pixel format isn’t supported.

You can create overlay surface flipping chains. For more information, see Creating 
Complex Surfaces and Flipping Chains.

Overlay Z-Orders

Overlay surfaces are assumed to be on top of all other screen components, but when 
you display multiple overlay surfaces, you need some way to visually organize them. 
DirectDraw supports overlay z-ordering to manage the order in which overlays clip 
each other. Z-order values represent conceptual distances from the primary surface 
toward the viewer. They range from 0, which is just on top of the primary surface, to 
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4 billion, which is as close to the viewer as possible, and no two overlays can share 
the same z-order. You set z-order values by calling the 
IDirectDrawSurface3::UpdateOverlayZOrder method.

Destination color keys are affected only by the bits on the primary surface, not by 
overlays occluded by other overlays. Source color keys work on an overlay whether 
or not a z-order was specified for the overlay. 

Overlays without a specified z-order are assumed to have a z-order of 0. Overlays that 
do not have a specified z-order behave in unpredictable ways when overlaying the 
same area on the primary surface.

A DirectDraw object does not track the z-orders of overlays displayed by other 
applications.

Flipping Overlay Surfaces

Like other types of surfaces, you can create overlay flipping chains. After creating a 
flipping chain of overlays, call the IDirectDrawSurface3::Flip method to flip 
between them. For more information, see Flipping Surfaces.

Software decoders displaying video with overlay surfaces can use the DDFLIP_ODD 
and DDFLIP_EVEN flags when calling the Flip method to use features that reduce 
motion artifacts. If the driver supports odd-even flipping, the 
DDCAPS2_CANFLIPODDEVEN flag will be set in the DDCAPS structure after 
retrieving driver capabilities. If DDCAPS2_CANFLIPODDEVEN is set, you can 
include the DDOVER_BOB flag when calling the 
IDirectDrawSurface3::UpdateOverlay method to inform the driver that you want it 
to use the “Bob” algorithm to minimize motion artifacts. Later, when you call Flip 
with the DDFLIP_ODD or DDFLIP_EVEN flag, the driver will automatically adjust 
the overlay source rectangle to compensate for jittering artifacts.

If the driver doesn’t set the DDCAPS2_CANFLIPODDEVEN flag when you retrieve 
hardware capabilities, UpdateOverlay will fail if you specify the DDOVER_BOB 
flag.

For more information about the Bob algorithm, see Solutions to Common Video 
Artifacts.

Blitting to Multiple Windows
You can use a DirectDraw object and a DirectDrawClipper object to blit to multiple 
windows created by an application running at the normal cooperative level. For more 
information, see Using a Clipper with Multiple Windows.

Creating multiple DirectDraw objects that blit to each others’ primary surface is not 
recommended.
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Palettes
This section contains information about DirectDrawPalette objects. The following 
topics are discussed:

· What Are Palettes?

· Palette Types

· Setting Palettes on Nonprimary Surfaces

· Sharing Palettes

· Palette Animation

What are Palettes?
Palettized surfaces need palettes to be meaningfully displayed. A palettized surface, 
also known as a color-indexed surface, is simply a collection of numbers where each 
number represents a pixel. The value of the number is an index into a color table that 
tells DirectDraw what color to use when displaying that pixel. DirectDrawPalette 
objects, casually referred to as palettes, provide you with an easy way to manage a 
color table. Surfaces that use a 16-bit or greater pixel format do not use palettes.

A DirectDrawPalette object represents an indexed color table that has 2, 4, 16 or 256 
entries to be used with a color indexed surface. Each entry in the palette is an RGB 
triplet that describes the color to be used when displaying pixels within the surface. 
The color table can contain 16- or 24-bit RGB triplets representing the colors to be 
used. For 16-color palettes, the table can also contain indexes to another 256-color 
palette. Palettes are supported for textures, off-screen surfaces, and overlay surfaces, 
none of which is required to have the same palette as the primary surface. 

You can create a palette by calling the IDirectDraw2::CreatePalette method. This 
method retrieves a pointer to the palette object's IDirectDrawPalette interface. You 
can use the methods of this interface to manipulate palette entries, retrieve 
information about the object's capabilities, or initialize the object (if you used the 
CoCreateInstance COM function to create it).

You apply a palette to a surface by calling the surface's 
IDirectDrawSurface3::SetPalette method. A single palette can be applied to 
multiple surfaces. 

DirectDrawPalette objects reserve entry 0 and entry 255 for 8-bit palettes, unless you 
specify the DDPCAPS_ALLOW256 flag to request that these entries be made 
available to you.

You can retrieve palette entries by using the IDirectDrawPalette::GetEntries 
method, and you can change entries by using the IDirectDrawPalette::SetEntries 
method.
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The Ddutil.cpp source file included with this SDK contains some handy application-
defined functions for working with palettes. For more information, see the 
DDLoadPalette functions in that source file.

Palette Types
DirectDraw supports 1-bit (2 entry), 2-bit (4 entry), 4-bit (16 entry), and 8-bit (256 
entry) palettes. A palette can only be attached to a surface that has a matching pixel 
format. For example, a 2-entry palette created with the DDPCAPS_1BIT flag can be 
attached only to a 1-bit surface created with the DDPF_PALETTEINDEXED1 flag.

Additionally, you can create palettes that don’t contain a color table at all, known as 
index palettes. Instead of a color table, an index palette contains index values that 
represent locations another palette’s color table. 

To create an indexed palette, specify the DDPCAPS_8BITENTRIES flag when 
calling the IDirectDraw2::CreatePalette method. For example, to create a 4-bit 
indexed palette, specify both the DDPCAPS_4BIT and DDPCAPS_8BITENTRIES 
flags. When you create an indexed palette, you pass a pointer to an array of bytes 
rather than a pointer to an array of PALETTEENTRY structures. You must cast the 
pointer to the array of bytes to an LPPALETTEENTRY type when you use the 
IDirectDraw2::CreatePalette method.

Note that DirectDraw does not dereference index palette entries during blit 
operations.

Setting Palettes on Nonprimary Surfaces
Palettes can be attached to any palettized surface (primary, back buffer, off-screen 
plain, or texture map). Only those palettes attached to primary surfaces will have any 
effect on the system palette. It is important to note that DirectDraw blits never 
perform color conversion; any palettes attached to the source or destination surface of 
a blit are ignored.

Nonprimary surface palettes are intended for use by Direct3D applications.

Sharing Palettes
Palettes can be shared among multiple surfaces. The same palette can be set on the 
front buffer and the back buffer of a flipping chain or shared among multiple texture 
surfaces. When an application attaches a palette to a surface by using the 
IDirectDrawSurface3::SetPalette method, the surface increments the reference 
count of that palette. When the reference count of the surface reaches 0, the surface 
will decrement the reference count of the attached palette. In addition, if a palette is 
detached from a surface by using IDirectDrawSurface3::SetPalette with a NULL 
palette interface pointer, the reference count of the surface's palette will be 
decremented.
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Note
If IDirectDrawSurface3::SetPalette is called several times consecutively on the 
same surface with the same palette, the reference count for the palette is 
incremented only once. Subsequent calls do not affect the palette's reference 
count.

Palette Animation
Palette animation refers to the process of modifying a surface’s palette to change how 
the surface itself looks when displayed. By repeatedly changing the palette, the 
surface appears to change without actually modifying the contents of the surface. To 
this end, palette animation gives you a way to modify the appearance of a surface 
without changing its contents and with very little overhead.

There are two methods for providing straightforward palette animation:

· Modifying palette entries within a single palette

· Switching between multiple palettes

Using the first method, you change individual palette entries that correspond to the 
colors you want to animate, then reset the entries with a single call to the 
IDirectDrawPalette::SetEntries method.

The second method requires two or more DirectDrawPalette objects. When using this 
method, you perform the animation by attaching one palette object after another to the 
surface object by calling the IDirectDrawSurface3::SetPalette method.

Neither method is hardware intensive, so feel free to use whichever technique you see 
fit for your application.

For specific information and an example of how to implement palette animation, see 
Tutorial 5: Dynamically Modifying Palettes.

Clippers
This section contains information about DirectDrawClipper objects. The following 
topics are discussed:

· What Are Clipper Objects?

· Clip Lists

· Sharing DirectDrawClipper Objects

· Independent DirectDrawClipper Objects

· Creating DirectDrawClipper Objects with CoCreateInstance

· Using a Clipper with the System Cursor

· Using a Clipper with Multiple Windows
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What Are Clipper Objects?
Clippers, or DirectDrawClipper objects, allow you to blit to selected parts of a 
surface. A clipper object holds one or more clip lists. A clip list is one bounding 
rectangle or a list of several bounding rectangles that describe an area or areas of a 
surface to which you are allowed to blit. These areas are described with RECT 
structures, in screen coordinates.

Clip lists are a very valuable tool. One common use for them is in preventing your 
application from blitting beyond the edges of the screen. For example, imagine that 
you want to display a sprite as it enters the screen from an edge. You don't want to 
make the sprite "pop" onto the screen; you want it to appear as though it is smoothly 
moving into view. Without a clipper object, you would need to include logic that 
restricts blit operations to protect surface memory that is logically off the edge of the 
screen. Failing to do this results in memory access violations.

The following illustration shows this type of clipping.
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You can use clipper objects to designate certain areas within a destination surface as 
writable. DirectDraw clips blit operations in these areas, protecting the pixels outside 
the specified clipping rectangle.

The following illustration shows this clipping style.
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Clip Lists
DirectDraw manages clip lists by using the DirectDrawClipper object. A clip list is a 
series of rectangles that describes the visible areas of the surface. A 
DirectDrawClipper object can be attached to any surface. A window handle can also 
be attached to a DirectDrawClipper object, in which case DirectDraw updates the 
DirectDrawClipper clip list with the clip list from the window as it changes.

Although the clip list is visible from the DirectDraw HAL, DirectDraw calls the HAL 
only for blitting with rectangles that meet the clip list requirements. For instance, if 
the upper-right rectangle of a surface was clipped and the application directed 
DirectDraw to blit the surface onto the primary surface, DirectDraw would have the 
HAL do two blits, the first being the upper-left corner of the surface, and the second 
being the bottom half of the surface.

Through the IDirectDrawClipper::SetClipList method, you can passing an entire 
clip list to the driver (if the driver supports this) rather than calling the driver multiple 
times, once for each rectangle in the clip list. Additionally, you can set the clipper to a 
single window by calling the IDirectDrawClipper::SetHWnd method, specifying 
the target window’s handle. If you set a clipper using a window handle, you cannot 
set additional rectangles.

Clipping for overlay surfaces is supported only if the overlay hardware can support 
clipping and if destination color keying is not active.
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Sharing DirectDrawClipper Objects
DirectDrawClipper objects can be shared between multiple surfaces. For example, the 
same DirectDrawClipper object can be set on both the front buffer and the back 
buffer of a flipping chain. When an application attaches a DirectDrawClipper object 
to a surface by using the IDirectDrawSurface3::SetClipper method, the surface 
increments the reference count of that object. When the reference count of the surface 
reaches 0, the surface will decrement the reference count of the attached 
DirectDrawClipper object. In addition, if a DirectDrawClipper object is detached 
from a surface by calling IDirectDrawSurface3::SetClipper with a NULL clipper 
interface pointer, the reference count of the surface's DirectDrawClipper object will 
be decremented.

Note
If IDirectDrawSurface3::SetClipper is called several times consecutively on 
the same surface for the same DirectDrawClipper object, the reference count for 
the object is incremented only once. Subsequent calls do not affect the object's 
reference count.

Independent DirectDrawClipper Objects
You can create DirectDrawClipper objects that are not directly owned by any 
particular DirectDraw object. These DirectDrawClipper objects can be shared across 
multiple DirectDraw objects. Driver-independent DirectDrawClipper objects are 
created by using the new DirectDrawCreateClipper DirectDraw function. An 
application can call this function before any DirectDraw objects are created.

Because DirectDraw objects do not own these DirectDrawClipper objects, they are 
not automatically released when your application's objects are released. If the 
application does not explicitly release these DirectDrawClipper objects, DirectDraw 
will release them when the application closes.

You can still create DirectDrawClipper objects by using the 
IDirectDraw2::CreateClipper method. These DirectDrawClipper objects are 
automatically released when the DirectDraw object from which they were created is 
released.

Creating DirectDrawClipper Objects with 
CoCreateInstance

DirectDrawClipper objects have full class-factory support for COM compliance. In 
addition to using the standard DirectDrawCreateClipper function and 
IDirectDraw2::CreateClipper method, you can also create a DirectDrawClipper 
object either by using the CoGetClassObject function to obtain a class factory and 
then calling the CoCreateInstance function, or by calling CoCreateInstance 
directly. The following example shows how to create a DirectDrawClipper object by 
using CoCreateInstance and the IDirectDrawClipper::Initialize method.
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ddrval = CoCreateInstance(&CLSID_DirectDrawClipper, 

    NULL, CLSCTX_ALL, &IID_IDirectDrawClipper, &lpClipper); 

if (!FAILED(ddrval)) 

    ddrval = IDirectDrawClipper_Initialize(lpClipper, 

        lpDD, 0UL); 

 

In this call to CoCreateInstance, the first parameter, CLSID_DirectDrawClipper, is 
the class identifier of the DirectDrawClipper object class, the 
IID_IDirectDrawClipper parameter identifies the currently supported interface, and 
the lpClipper parameter points to the DirectDrawClipper object that is retrieved.

An application must use the IDirectDrawClipper::Initialize method to initialize 
DirectDrawClipper objects that were created by the class-factory mechanism before it 
can use the object. The value 0UL is the dwFlags parameter, which in this case has a 
value of 0 because no flags are currently supported. In the example shown here, lpDD 
is the DirectDraw object that owns the DirectDrawClipper object. However, you 
could supply a NULL value instead, which would create an independent 
DirectDrawClipper object. (This is equivalent to creating a DirectDrawClipper object 
by using the DirectDrawCreateClipper function.)

Before you close the application, shut down COM by using the CoUninitialize 
function.

Using a Clipper with the System Cursor
DirectDraw applications often need to provide a way for users to navigate using the 
mouse. For full screen exclusive mode applications that use page-flipping, the only 
option is to implement a mouse cursor manually with a sprite, moving the sprite based 
on data retrieved from the device by DirectInput® or by responding to Windows 
mouse messages. However, any application that doesn’t use page-flipping can still 
use the system’s mouse cursor support.

When you use the system mouse cursor, you will sometimes fall victim to graphic 
artifacts that occur when you blit to parts of the primary surface. These artifacts 
appear as portions of the mouse cursor seemingly left behind by the system.

A DirectDrawClipper object can prevent these artifacts from appearing by preventing 
the mouse cursor image from “being in the way” during a blit operation. It’s a 
relatively simple matter to implement, as well. To do so, create a DirectDrawClipper 
object by calling the IDirectDraw2::CreateClipper method. Then, assign your 
application’s window handle to the clipper with the IDirectDrawClipper::SetHWnd 
method. Once a clipper is attached, any subsequent blits you perform on the primary 
surface with the IDirectDrawSurface3::Blt method will not exhibit the artifact.

Note that the IDirectDrawSurface3::BltFast method, and its counterparts in the 
IDirectDrawSurface and IDirectDrawSurface3 interfaces, will not work on 
surfaces with attached clippers.
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Using a Clipper with Multiple Windows
You can use a DirectDrawClipper object to blit to multiple windows created by an 
application running at the normal cooperative level.

To do this, create a single DirectDraw object with a primary surface. Then, create a 
DirectDrawClipper object and assign it to your primary surface by calling the 
IDirectDrawSurface3::SetClipper method. To blit only the client area of a window, 
set the clipper to that window’s client area by calling the 
IDirectDrawClipper::SetHWnd method before blitting to the primary surface. 
Whenever you need to blit to another window’s client area, call the 
IDirectDrawClipper::SetHWnd method again with the new target window handle.

Creating multiple DirectDraw objects that blit to each others’ primary surface is not 
recommended. The technique described above provides an efficient and reliable way 
to blit to multiple client areas with a single DirectDraw object.

Advanced DirectDraw Topics
This section supplements the DirectDraw overview, providing information about 
advanced DirectDraw issues. The following topics are discussed:

· Mode 13 Support

· Taking Advantage of DMA Support

· Using DirectDraw Palettes in Windowed Mode

· Working with Multiple Monitors

· Video-Ports

· Getting the Flip and Blit Status

· Blitting with Color Fill

· Determining the Capabilities of the Display Hardware

· Storing Bitmaps in Display Memory

· Triple Buffering

· DirectDraw Applications and Window Styles

· Matching True RGB Colors to the Frame Buffer’s Color Space

Mode 13 Support
This section contains information about DirectDraw mode 13 graphics mode support. 
The following topics are discussed:

· About Mode 13

· Setting Mode 13

· Mode 13 and Surface Capabilities
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· Using Mode 13

About Mode 13

DirectDraw supports access to the linear unflippable 320x200 8 bits per pixel 
palettized mode known widely by the name Mode 13, its hexadecimal BIOS mode 
number. DirectDraw treats this mode like a Mode X mode, but with some important 
differences imposed by the physical nature of Mode 13. 

Setting Mode 13

Mode 13 has similar enumeration and mode-setting behavior as Mode X. DirectDraw 
will only enumerate Mode 13 if the DDSCL_ALLOWMODEX flag was passed to the 
IDirectDraw2::SetCooperativeLevel method.

You enumerate the Mode 13 display mode like all other modes, but you make a 
surface capabilities check before calling IDirectDraw2::EnumDisplayModes. To do 
this, call IDirectDraw2::GetCaps and check for the 
DDSCAPS_STANDARDVGAMODE flag in the DDSCAPS structure after the 
method returns. If this flag is not present, then Mode 13 is not supported, and 
attempts to enumerate with the DDEDM_STANDARDVGAMODES flag will fail, 
returning DDERR_INVALIDPARAMS.

The EnumDisplayModes method now supports a new enumeration flag, 
DDEDM_STANDARDVGAMODES, which causes DirectDraw to enumerate Mode 
13 in addition to the 320x200x8 Mode X mode. There is also a new 
IDirectDraw2::SetDisplayMode flag, DDSDM_STANDARDVGAMODE, which 
you must pass in order to distinguish Mode 13 from 320x200x8 Mode X.

Note that some video cards offer linear accelerated 320x200x8 modes. On such cards 
DirectDraw will not enumerate Mode 13, enumerating the linear mode instead. In this 
case, if you attempt to set Mode 13 by passing the 
DDSDM_STANDARDVGAMODE flag to SetDisplayMode, the method will 
succeed, but the linear mode will be used. This is analogous to the way that linear low 
resolution modes override Mode X modes.

Mode 13 and Surface Capabilities

When DirectDraw calls an application’s EnumModesCallback callback function, the 
ddsCaps member of the associated DDSURFACEDESC structure contains flags that 
reflect the mode being enumerated. You can expect DDSCAPS_MODEX for a Mode 
X mode or DDSCAPS_STANDARDVGAMODE for Mode 13. These flags are 
mutually exclusive. If neither of these bits is set, then the mode is a linear accelerated 
mode. This behavior also applies to the flags retrieved by the 
IDirectDraw2::GetDisplayMode method.
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Using Mode 13

Because Mode 13 is a linear mode, DirectDraw can give an application direct access 
to the frame buffer. Unlike Mode X modes, you can call the 
IDirectDrawSurface3::Lock, IDirectDrawSurface3::Blt, and 
IDirectDrawSurface3::BltFast methods directly to access the primary surface.

When using Mode 13, DirectDraw supports an emulated IDirectDrawSurface3::Flip 
that is implemented as a straight copy of the contents of a back buffer to the primary 
surface. You can emulate this yourself by copying a smaller subrectangle of the back 
buffer to the primary using Blt or BltFast.

There is one caveat concerning Lock and Mode 13. Although DirectDraw allows 
direct linear access to the Mode 13 VGA frame buffer, do not assume that the buffer 
is always located at address 0xA0000, since DirectDraw can return an aliased virtual-
memory pointer to the frame buffer which will not be 0xA0000. Similarly, do not 
assume that the pitch of a Mode 13 surface is 320, because display cards that support 
an accelerated 320x200x8 mode will very likely use a different pitch.

Taking Advantage of DMA Support
This section contains information about how you can take advantage of device 
support for Direct Memory Access (DMA) to increase performance in completing 
certain tasks. The following topics are discussed:

· About DMA Device Support

· Testing For DMA Support

· Typical Scenarios for DMA

· Using DMA

About DMA Device Support

Some display devices can perform blit operations (or other operations) on system 
memory surfaces. These operations are commonly referred to as Direct Memory 
Access (DMA) operations. You can exploit DMA support to accelerate certain 
combinations of operations. For example, on such a device, you could perform a blit 
from system memory to video memory while using the processor to prepare the next 
frame. In order to use such facilities, you must assume certain responsibilities. This 
section details these tasks.

Testing For DMA Support

Before using DMA operations, you must test the device for DMA support and, if it 
does support DMA, how much support it provides. Begin by retrieving the driver 
capabilities by calling the IDirectDraw2::GetCaps method, then look for the 
DDCAPS_CANBLTSYSMEM flag in the dwCaps member of the associated 
DDCAPS structure. If the flag is set, the device supports DMA. 
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If you know that DMA is generally supported, you also need to find out how well the 
driver supports it. You do so by looking at some other structure members that provide 
information about system-to-video, video-to-system, and system-to-system blit 
operations. These capabilities are provided in 12 DDCAPS structure members that 
are named according to blit and capability type. The following table shows these new 
members.

System-to-video Video-to-system System-to-system

   dwSVBCaps    dwVSBCaps    dwSSBCaps 

   dwSVBCKeyCaps    dwVSBCKeyCaps    dwSSBCKeyCaps 

   dwSVBFXCaps    dwVSBFXCaps    dwSSBFXCaps 

   dwSVBRops    dwVSBRops    dwSSBRops 

For example, the system-to-video blit capability flags are provided in the 
dwSVBCaps, dwSVBCKeyCaps, dwSVBFXCaps and dwSVBRops members. 
Similarly, video-to-system blit capabilities are in the members whose names begin 
with “dwVSB,” and system-to system capabilities are in the “dwSSB” members. 
Examine the flags present in these members to determine the level of hardware 
support for that blit category.

The flags in these members are parallel with the blit-related flags included in the 
dwCaps, dwCKeyCaps, and dwFXCaps members, with respect to that member’s 
blit type. For example, the dwSVBCaps member contains general blit capabilities as 
specified by the same flags you might find in the dwCaps member. Likewise, the 
raster operation values in the dwSVBRops, dwVSBRops, and dwSSBRops members 
provide information about the raster operations supported for a given type of blit 
operation.

One of the key features to look for in these members is support for asynchronous 
DMA blit operations. If the driver supports asynchronous DMA blits between 
surfaces, the DDCAPS_BLTQUEUE flag will be set in the dwSVBCaps, 
dwVSBCaps, or dwSSBCaps member. (Generally, you’ll see the best support for 
system-memory-to-video-memory surfaces.) If the flag isn’t present, the driver isn’t 
reporting support for asynchronous DMA blit operations.

Typical Scenarios For DMA

System memory to video memory SRCCOPY transfers are the most common type of 
hardware-supported blit operation. Consequently, the most typical use for such an 
operation is to move textures from a large collection of system memory surfaces to a 
surface in video memory in preparation for subsequent operations. System-to-video 
DMA transfers are about as fast as processor-controlled transfers (for example, HEL 
blits), but are of great utility since they can operate in parallel with the host processor.

Using DMA

Hardware transfers use physical memory addresses, not the virtual addresses which 
are home to applications. Some device drivers require that you provide the surface’s 
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physical memory address. This mechanism is implemented by the 
IDirectDrawSurface3::PageLock method. If the device driver does not require page 
locking, the DDCAPS2_NOPAGELOCKREQUIRED flag will be set when you 
retrieve the hardware capabilities by calling the IDirectDraw2::GetCaps method.

Page locking a surface prevents the system from committing a surface’s physical 
memory to other uses, and guarantees that the surface’s physical address will remain 
constant until a corresponding IDirectDrawSurface3::PageUnlock call is made. If 
the device driver requires page locking, DirectDraw will only allow DMA operations 
on system memory surfaces that the application has page locked. If you do not call 
IDirectDrawSurface3::PageLock in such a situation, DirectDraw will perform the 
transfers by using software emulation. Note that locking a large amount of system 
memory will make Windows run poorly. Therefore, it is highly recommended that 
only full-screen exclusive mode applications use IDirectDrawSurface3::PageLock 
for large amounts of system memory, and that such applications take care to unlock 
these surfaces when the application is minimized. Of course, when the application is 
restored, you should page lock the system memory surface again.

Responsibility for managing page locking is entirely in the hands of the application 
developer. DirectDraw will never page lock or page unlock a surface. Additionally, it 
is up to you to determine how much memory you can safely page lock without 
adversely affecting system performance.

Using DirectDraw Palettes in Windowed Mode
IDirectDrawPalette interface methods write directly to the hardware when the 
display is in exclusive (full-screen) mode. However, when the display is in 
nonexclusive (windowed) mode, the IDirectDrawPalette interface methods call the 
GDIs palette handling functions to work cooperatively with other windowed 
applications.

The discussion in the following topics assumes that the desktop is in an 8-bit 
palettized mode and that you have created a primary surface and a typical window. 

· Types of Palette Entries in Windowed Mode

· Creating a Palette in Windowed Mode

· Setting Palette Entries in Windowed Mode

Types of Palette Entries in Windowed Mode

Unlike full-screen exclusive mode applications, windowed applications must share 
the desktop palette with other applications. This imposes several restrictions on which 
palette entries you can safely modify and how you can modify them. The 
PALETTEENTRY structure you use when working with DirectDrawPalette objects 
and GDI contains a peFlags member to carry information that describes how the 
system should interpret the PALETTEENTRY structure.

The peFlags member describes three types of palette entries, discussed in this topic:
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· Windows static entries

· Animated entries

· Nonanimated entries

Windows static entries.

In normal mode, Windows reserves palette entries 0 through 9 and 246 through 255 
for system colors that it uses to display menu bars, menu text, window borders, and so 
on. In order to maintain a consistent look for your application and avoid damaging the 
appearance of other applications, you need to protect these entries in the palette you 
set to the primary surface. Often, developers retrieve the system palette entries by 
calling the GetSystemPaletteEntries Win32® function, then explicitly set the 
identical entries in a custom palette to match before assigning it to the primary 
surface. Duplicating the system palette entries in a custom palette will work initially, 
but it becomes invalid if the user changes the desktop color scheme.

To avoid having your palette look bad when the user changes color schemes, you can 
protect the appropriate entries by providing a reference into the system palette instead 
specifying a color value. This way, no matter what color the system is using for a 
given entry, your palette will always match and you won’t need to do any updating. 
The PC_EXPLICIT flag, used in the peFlags member, makes it possible for you to 
directly refer to a system palette entry. When you use this flag, the system no longer 
assumes that the other structure members include color information. Rather, when 
you use PC_EXPLICIT, you set the value in the peRed member to the desired system 
palette index and set the other colors to zero.

For instance, if you want to ensure that the proper entries in your palette always 
match the system’s color scheme, you could use the following code:

// Set the first and last 10 entries to match the system palette.

PALETTEENTRY pe[256];

ZeroMemory(pe, sizeof(pe));

for(int i=0;i<10;i++){

    pe[i].peFlags  = pe[i+246].peFlags = PC_EXPLICIT;

    pe[i].peRed = i;

    pe[i+246].peRed = i+246;

} 

 

You can force Windows to use only the first and last palette entry (0 and 255) by 
calling the SetSystemPaletteUse Win32 function. In this case, you should set only 
entries 0 and 255 of your PALETTEENTRY structure to PC_EXPLICIT.

Animated entries

You specify palette entries that you will be animating by using the PC_RESERVED 
flag in the corresponding PALETTEENTRY structure. Windows will not allow any 
other application to map its logical palette entry to that physical entry, thereby 
preventing other applications from cycling their colors when your application 
animates the palette.
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Nonanimated entries

You specify normal, nonanimated palette entries by using the PC_NOCOLLAPSE 
flag in the corresponding PALETTEENTRY structure. The PC_NOCOLLAPSE flag 
informs Windows not to substitute some other already-allocated physical palette entry 
for that entry.

Creating a Palette in Windowed Mode

The following example illustrates how to create a DirectDraw palette in nonexclusive 
(windowed) mode. In order for your palette to work correctly, it is vital that you set 
up every one of the 256 entries in the PALETTEENTRY structure that you submit 
to the IDirectDraw2::CreatePalette method.

LPDIRECTDRAW        lpDD; // Assumed to be initialized previously 

PALETTEENTRY        pPaletteEntry[256]; 

int                 index; 

HRESULT             ddrval; 

LPDIRECTDRAWPALETTE lpDDPal; 

 

// First set up the Windows static entries. 

for (index = 0; index < 10 ; index++) 

{ 

    // The first 10 static entries: 

    pPaletteEntry[index].peFlags = PC_EXPLICIT; 

    pPaletteEntry[index].peRed = index; 

    pPaletteEntry[index].peGreen = 0; 

    pPaletteEntry[index].peBlue = 0; 

 

    // The last 10 static entries: 

    pPaletteEntry[index+246].peFlags = PC_EXPLICIT; 

    pPaletteEntry[index+246].peRed = index+246; 

    pPaletteEntry[index+246].peGreen = 0; 

    pPaletteEntry[index+246].peBlue = 0; 

} 

 

// Now set up private entries. In this example, the first 16 

// available entries are animated. 

for (index = 10; index < 26; index ++) 

{ 

    pPaletteEntry[index].peFlags = PC_NOCOLLAPSE|PC_RESERVED; 

    pPaletteEntry[index].peRed = 255; 

    pPaletteEntry[index].peGreen = 64; 

    pPaletteEntry[index].peBlue = 32; 

} 

 

// Now set up the rest, the nonanimated entries. 
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for (; index < 246; index ++) // Index is set up by previous for loop 

{ 

    pPaletteEntry[index].peFlags = PC_NOCOLLAPSE; 

    pPaletteEntry[index].peRed = 25; 

    pPaletteEntry[index].peGreen = 6; 

    pPaletteEntry[index].peBlue = 63; 

} 

 

// All 256 entries are filled. Create the palette. 

ddrval = lpDD->CreatePalette(DDPCAPS_8BIT, pPaletteEntry, 

    &lpDDPal,NULL); 

 

Setting Palette Entries in Windowed Mode

The rules that apply to the PALETTEENTRY structure used with the 
IDirectDraw2::CreatePalette method also apply to the 
IDirectDrawPalette::SetEntries method. Typically, you maintain your own array of 
PALETTEENTRY structures, so you do not need to rebuild it. When necessary, you 
can modify the array, and then call IDirectDrawPalette::SetEntries when it is time 
to update the palette.

In most circumstances, you should not attempt to set any of the Windows static 
entries when in nonexclusive (windowed) mode or you will get unpredictable results. 
The only exception is when you reset the 256 entries.

For palette animation, you typically change only a small subset of entries in your 
PALETTEENTRY array. You submit only those entries to 
IDirectDrawPalette::SetEntries. If you are resetting such a small subset, you must 
reset only those entries marked with the PC_NOCOLLAPSE and PC_RESERVED 
flags. Attempting to animate other entries can have unpredictable results.

The following example illustrates palette animation in nonexclusive mode:

LPDIRECTDRAW        lpDD;        // Already initialized 

PALETTEENTRY pPaletteEntry[256]; // Already initialized 

LPDIRECTDRAWPALETTE lpDDPal;     // Already initialized 

int                 index; 

HRESULT             ddrval; 

PALETTEENTRY        temp; 

 

// Animate some entries. Cycle the first 16 available entries. 

// They were already animated. 

temp = pPaletteEntry[10]; 

for (index = 10; index < 25; index ++) 

{ 

    pPaletteEntry[index] = pPaletteEntry[index+1]; 

} 

pPaletteEntry[25] = temp; 
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// Set the values. Do not pass a pointer to the entire palette entry 

// structure, but only to the changed entries. 

ddrval = lpDDPal->SetEntries( 

    0,                      // Flags must be zero 

    10,                     // First entry 

    16,                     // Number of entries 

    & (pPaletteEntry[10])); // Where to get the data 

 

Working with Multiple Monitors
Future releases of Windows 95, code named Memphis, and Windows NT support 
multiple display devices and monitors on a single system. The multiple monitor 
architecture (casually referred to as “MultiMon”) enables the operating system to use 
the display area from two or more display devices and monitors to create a single 
logical desktop. For example, in a MultiMon system with two monitors, the user 
could display applications on either monitor, or even drag windows from one monitor 
to another. DirectDraw supports this architecture, but there are a few nuances to be 
aware of, depending on the cooperative level your application uses. 

A DirectDraw application should enumerate the devices, choose a device (or perhaps 
allow the user to choose the device to use), then create a DirectDraw object for that 
the device by using its hardware globally unique identifier (GUID). This technique 
will ensure the best performance on both MultiMon and single monitor systems and at 
all cooperative levels. 

The currently active display device is referred to as the “default device,” or the “null 
device.” The latter name comes from the fact that the currently active display device 
is enumerated with NULL as its GUID. Many existing applications create a 
DirectDraw object for the null device, assuming that the device will be hardware 
accelerated. However, on multiple monitor systems, the null device isn’t always 
hardware accelerated; it depends on what cooperative level is set at the time. 

In full-screen exclusive mode, the null device is hardware accelerated, but unaware of 
any other installed devices. This means that full-screen, exclusive mode applications 
will run as fast on a MultiMon system as any other system, but will not be able to use 
built-in support for spanning graphics operations across display devices. Full-screen, 
exclusive mode applications that need to use multiple devices can create a 
DirectDraw object for each device they want to use. Note that to create a DirectDraw 
object for a specific device, you must supply that device’s GUID (as it is enumerated 
when you call DirectDrawEnumerate).

When the normal cooperative level is set, the null device has no hardware 
acceleration; the null device is, effectively, an emulated logical device that combines 
the resources of two physical devices. Therefore, the null device has no hardware 
acceleration at all when the normal cooperative level is set. On the other hand, when 
the normal cooperative level is set, the null device is capable of automatically 
spanning graphics operations across monitors. As a result, negative coordinates for 
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blit operations are valid when the logical location of secondary monitor is to the left 
of the primary monitor.

If your application requires hardware acceleration when the normal cooperative level 
is set, it must create a single DirectDraw object using a specific device’s GUID. Note 
that when you don’t use the null device, you don’t get automatic device spanning. 
That is, blit operations that cross an edge of the primary surface will be clipped (if 
you are using a clipper) or will fail, returning DDERR_INVALIDRECT.

As a rule on any system, you should set the cooperative level immediately after 
creating a DirectDraw object, before retrieving the object’s capabilities or querying 
for other interfaces. Additionally, avoid setting the cooperative level multiple times 
on a MultiMon system. If you need to switch from full-screen to normal mode, it is 
best to create a new DirectDraw object.

Video Ports
DirectDraw video-port extensions are a low-level programming interface, not 
intended for mainstream multimedia programmers. The target customer is the video-
streaming software industry, which creates products like DirectShow™. Developers 
who want to include video playback in their software can make use of video-port 
extensions. However, for most software, a high-level programming interface like the 
one provided by DirectShow is recommended for greater ease of use.

This section contains information about DirectDrawVideoPort objects. The following 
topics are discussed:

· What is a Video-Port Object?

· Video-Port Technology Overview

· About DirectDraw Video-Port Extensions

· Video Frames and Fields

· HREF, VREF, and Connections

· Vertical Blanking Interval Data

· Auto-Flipping

· Solutions to Common Video Artifacts

· Solving Problems Caused by Half-Lines

· Exploiting Hardware Features

What is a Video-Port Object?

A DirectDrawVideoPort object represents the video-port hardware found on some 
display adapters. Generally, a video-port object controls how the video-port hardware 
applies a video signal it receives from a video decoder directly to the frame buffer.

More than one channel of video can be controlled by creating as many 
DirectDrawVideoPort objects as is required. Because each channel can be separately 
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enumerated and configured, the video hardware for each channel does not need to be 
identical.

For more information, see Video-Port Technology Overview.

Video-Port Technology Overview

A video port is hardware on a display device that enables direct access to a surface 
within the frame buffer, bypassing the CPU and PCI bus. Direct frame buffer access 
makes it possible to efficiently play live or recorded video without creating noticeable 
load on the CPU. Once in a surface, an image can be displayed on the screen as an 
overlay, used as a Direct3D texture, or accessed by the CPU for capture or other 
processing. The following paragraphs provide general information about the 
components that make up the technology and how they work.

Data Flow

In a machine equipped with a video port, data in a video stream can flow directly 
from a video source through a video decoder and the video port to the frame buffer. 
These components often exist together on a display adapter, but can be on separate 
hardware components that are physically connected to one another. An example of 
this data flow is provided in the following illustration.

Video Input
(Physical video input,
MPEG codec, or other

device)

Video
Decoder

Video-Port
Equipped
VGA Chip

Frame Buffer

Offscreen
overlay
surface

Monitor

Video
Playback

Image

Video source

In the scope of video-port technology, a video source is strictly a hardware video 
input device, such as a Zoom Video port, MPEG codec, or other hardware source. 
These sources broadcast signals in a variety of formats, including NTSC, PAL, and 
SECAM through a physical connection to a video decoder.

Video Decoder

A video decoder is also a hardware component. The video decoder’s job is to 
decipher the information provided by the video source and send it to the video port in 
an agreed upon connection format. The decoder possesses a physical connection to 
the video port, and exposes its services through a stream class minidriver. The 
decoder is responsible for sending video data and clock and sync information to the 
video port.

Video port
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Like the other components in the data flow path, the video port is a piece of hardware. 
The video port exists on the display adapter’s VGA chip and has direct access to the 
frame buffer. It receives information sent from the decoder, processes it, and places it 
in the frame buffer to be displayed. During processing, the video port can manipulate 
image data to provide scaling, shrinking, color control, or cropping services.

Frame Buffer

The frame buffer accepts video data as provided by the video port. Once received, 
applications can programmatically manipulate the image data, blit it to other 
locations, or show it on the display using an overlay (the most common function).

About DirectDraw Video-Port Extensions

DirectDraw has been extended to include the DirectDrawVideoPort object, which 
takes advantage of video-port technology and provides its services through the 
IDDVideoPortContainer and IDirectDrawVideoPort interfaces.

DirectDrawVideoPort objects do not control the video decoder, because it provides 
services of its own, nor does DirectDraw control the video source; it is beyond the 
scope of the video port. Rather, a DirectDrawVideoPort object represents the video 
port itself. It monitors the incoming signal and passes image data to the frame buffer, 
using parameters set though its interface methods to modify the image, perform 
flipping, or carry out other services.

The IDDVideoPortContainer interface, which you can retrieve by calling the 
IDirectDraw2::QueryInterface method, provides methods to query the hardware for 
its capabilities and create video-port objects. You create a video-port object by calling 
the IDDVideoPortContainer::CreateVideoPort method. Video-port objects expose 
their functionality through the IDirectDrawVideoPort interface, enabling you to 
manipulate the video-port hardware itself. Using these interfaces, you can examine 
the video-port’s capabilities, assign an overlay surface to receive image data, start and 
stop video playback, and set hardware parameters to manipulate image data for 
cropping, color control, scaling, or shrinking effects.

DirectDraw video-port extensions provide for multiple video ports on the same 
machine by allowing you to create multiple DirectDrawVideoPort objects. There is 
no requirement that multiple video ports on a machine be identical—each port is 
separately enumerated and configured separately, regardless of any hardware 
differences that might exist.

In keeping with the general philosophy of DirectX, this technology gives 
programmers low-level access to hardware features while insulating them from 
specific hardware implementation details. It is not a high-level API.

Video Frames and Fields

Video can be interlaced or non-interlaced. When a video signal is interlaced, each 
video frame is made of two fields of image data. Each field is a collection of every 
other scan line in an image, starting with the first or second scan line. The first field, 
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referred to as the odd field (or field 1), contains the data for the first scan line and 
skips every other scan line to the end of the image. Similarly, the even field (or field 
2), carries every other scan line starting with the second. The “even-ness” or “odd-
ness” of a field is referred to as its field polarity. 

When video is not interlaced, each field contains all of a frame's scan lines. Typically, 
video signals are sent at a rate of 30 frames per second; in the case of interleaved 
video, this means the rate is 60 fields per second.

The fields that make up a frame do not always reflect the same moment in time. For 
example, if the frames are separated by 1/30 of a second then the two fields of a 
frame may be separated by 1/60 of a second. Because a television displays each field 
individually, no two fields are simultaneously visible, and the difference between 
fields adds to the illusion of movement.

HREF, VREF, and Connections

When a monitor or other display device is displaying an image, it typically scans 
down the screen, creating an image from left to right, top to bottom. (Sometimes, the 
device makes two passes down the screen to create a single image; this type of 
display is called an interlaced display.) The video stream contains signals that instruct 
the display device when a new line or new screen is to be drawn.

The terms HREF and VREF, also known as hsync and vsync, are the signals within 
the video stream that tell a display device what to do and when to do it. The HREF 
signals that a new line is to be drawn and the VREF signals a new screen.

For instance, imagine you’re working with a video signal intended for the world’s 
smallest monitor. The monitor only has 4 scan lines. (This is not at all realistic, of 
course, but it’s simple.) On an oscilloscope, the HREF and VREF signals would look 
somewhat like the following illustration:

VREF

HREF

In the preceding illustration, both HREF and VREF signals are “active high,” 
meaning that they are considered active when in a heightened state (when the waves 
go up). There is no standard for these signals. In some cases, places where the waves 
go down (“low” states) might signal an active HREF or VREF, or sometimes one will 
be active high and the other active low. Although the preceding illustration is only an 
imaginary example, note that there are lots of HREF signals for each VREF. This is 
because for each new screen, there are several scan lines. Of course, in a real video 
signal for a real broadcast, you would see hundreds of HREFs for a single VREF.

HREF signals, VREF signals, and video data are carried across physical data lines 
from the decoder to the video port. In many cases, a number of lines are reserved for 
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video data, and others are dedicated to carrying HREF and VREF signals. However, 
there is no standard for how these data lines are used.

A connection is a protocol that a video port or decoder uses to define how it uses 
these data lines. Video ports and video decoders will support a variety of connections. 
DirectDraw video-port extensions use globally-unique identifiers (GUIDs) to identify 
each type of connection. You can query for the connections that the video port 
supports by calling the IDDVideoPortContainer::GetVideoPortConnectInfo 
method. You create a DirectDrawVideoPort object that supports a given connection 
by calling the IDDVideoPortContainer::CreateVideoPort method.

Keep in mind that the video decoder is outside the scope of DirectDraw video-port 
extensions, and exposes its supported connections through an interface of its own. By 
enumerating the connections that the video-port supports and comparing the results 
with the connections supported by the decoder, you can negotiate a common 
connection (or “language”) that both components understand.

Vertical Blanking Interval Data

In broadcast video, a small period of time elapses between video frames, during 
which a display device refreshes its display for the next frame. This period of time is 
called the Vertical Blanking Interval (VBI). Instead of sitting idle during the VBI, 
broadcast video encodes data in the first twenty-one scan lines of a video frame and 
sends these lines during the VBI. This data is often used for closed captioning or 
time-stamping, but can be used for other purposes.

DirectDraw video-port extensions enable you to divert data contained with the VBI to 
a surface, bypass scaling of VBI data, and automatically flip between VBI surfaces in 
a flipping chain. Once data is in a surface, you can directly access the surface’s 
memory as needed.

For more information, see Auto-flipping.

Auto-flipping

To avoid tearing images when refreshing the screen between frames, 
DirectDrawVideoPort objects can automatically flip their target overlay surfaces in 
response to VREF signals. To use this service, the target surface you set to the video-
port object with the IDirectDrawVideoPort::SetTargetSurface method must be the 
first surface in a flipping chain of overlay surfaces. Then, to begin playing the video 
sequence, call the IDirectDrawVideoPort::StartVideo method, specifying the 
DDVP_AUTOFLIP flag in the dwVPFlags member of the associated 
DDVIDEOPORTINFO structure. The video-port object will flip to the next surface 
in the flipping chain for each VREF signal is receives. If the video port is interleaving 
fields, it will flip once for every two VREF signals it receives.

If you are using auto-flipping and want to direct VBI data to separate auto-flipped 
surfaces, you must have the same number of VBI surfaces as you do standard video 
surfaces.
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Solutions to Common Video Artifacts

Several problems are inherent in displaying broadcast video on display devices other 
than televisions. This section briefly discusses some common problems, then 
describes how DirectDraw video-port extensions tries to solve them.

NTSC Interlaced Display and Interleaved Memory

An NTSC signal broadcasts video at an approximate rate of 30 frames, or 60 fields, 
per second. Like a frame, a field in an NTSC signal is independent of the other field 
in a frame and can contain different image data. For more information on this 
behavior, see Video Frames and Fields.

The problems caused by the independence of fields within a frame become apparent 
when two fields are interleaved for display. In video with a lot of movement, the two 
fields of a single frame will contain images that don’t match each other, resulting in 
motion artifacts.

One way that developers have tried to work around this behavior is by discarding one 
of the fields. This solution causes a loss in image quality by roughly one-half, but 
provides acceptable results for some purposes. Another method frequently used is to 
display fields individually, stretching each vertically by a factor of two when it is 
displayed. This provides better image quality, but because fields are offset by one 
pixel in the Y direction, the result is an animation that “jitters” up and down as it 
plays.

DirectDraw video-port extensions can employ two, more advanced,  techniques for 
improving image quality, known as “Bob” and “Weave.” Both are supported by the 
DirectDraw overlay surfaces that are used with video-port extensions.

The first algorithm, “Bob,” is very similar to the method of displaying each field in a 
frame individually. However, for each field, the overlay’s source rectangle is adjusted 
to accommodate for any jittering effects. Effectively, the source rectangle bounces up 
and down in time with the fields, negating the jittering onscreen. The following 
illustration depicts this process.

Overlay Rectangle
Overlay Rectangle

Odd Field Even Field
Scan line 1

Scan line n

The “Weave” algorithm provides the best image quality for material that originates 
from film by exploiting a common technique used in the video industry for converting 
motion pictures to television. Unlike Bob, a video-port object does not Weave by 
itself; you must combine the default overlay behavior of displaying both fields 
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simultaneously with kernel mode video transport (to be provided a future release of 
Windows 95, code named Memphis, and Windows NT) to implement the algorithm. 

Here is a synopsis of the algorithm, provided for completeness. Motion pictures 
capture video at a rate of 24 frames per second. When converting a motion picture for 
television, technicians use a technique called “3:2 pulldown” to convert the frame rate 
to the 30 frames per second required for television broadcasts. This technique 
involves inserting a redundant field for every four true fields in the video stream to 
come up with the required number of fields.

When you “weave,” you are reversing this process. You detect when 3:2 pulldown is 
being used, removing any redundant fields to restore the original motion-picture 
frames. The fields that make up the restored frames can then be interleaved in 
memory without risk of motion artifacts. Occasionally, the pattern of redundant 
frames will change due to edits within the original film or reel breaks. You must 
monitor when these changes occur and update the behavior to adjust for the new 
pattern.

By default, an overlay surface displays both fields simultaneously. This works well if 
you’re implementing the Weave algorithm, but prevents the video port from using the 
Bob algorithm. You can programmatically change how the overlay treats video data 
by calling the IDirectDrawSurface3::UpdateOverlay method. The flags you 
include in the dwFlags parameter determine the overlay’s behavior: if you include the 
DDOVER_BOB flag, the video port will use the Bobbing algorithm; if you don’t, it 
displays both fields. Note that by simply displaying both fields simultaneously, the 
resulting video will show motion artifacts.

Solving Problems Caused by Half-Lines

Some video decoders output a half line of meaningless data at the beginning of the 
even field. If this extra line is written to the frame buffer, the resulting image will 
appear garbled. In some cases, the video-port hardware is capable of sensing and 
discarding this data before writing it to the frame buffer. 

You can determine if a video port is capable of discarding this data when retrieving 
connection information with the 
IDDVideoPortContainer::GetVideoPortConnectInfo method. If the video port 
cannot discard half-lines, the DDVPCONNECT_HALFLINE flag will be specified in 
the dwFlags member of the associated DDVIDEOPORTCONNECT structure for 
each supported connection.

If the video port is unable to discard half-lines, you have two options: you can discard 
one of the fields, or you can work around the hardware’s limitations by making some 
adjustments in how you create the video-port object, and display images with the 
target overlay surface

Here’s how to work around the problem. When creating the video-port object by 
calling the IDDVideoPortContainer::CreateVideoPort method, include the 
DDVPCONNECT_INVERTPOLARITY flag in the dwFlags member of the 
associated DDVIDEOPORTCONNECT structure. This causes the video port to 



in.doc – page 66

invert the polarity of the fields in the video stream, treating even fields like odd fields 
and vice versa. Once reversed, the half-line preceding even fields will be written to 
the frame buffer as the first scan line of each frame. To remove the unwanted data, 
adjust the source rectangle of the overlay surface used to display the image down one 
pixel by calling the IDirectDrawVideoPort::StartVideo method with the necessary 
coordinates. Note that this technique requires that you allocate one extra line in the 
surface containing the even field.

Exploiting Hardware Features

Video-port hardware often supports special features for adjusting color, shrinking or 
zooming images, handling VBI data, or skipping fields. The HAL provides 
information about these features by using flags in the DDVIDEOPORTCAPS 
structure. You retrieve the capabilities of a machine’s video-port hardware by calling 
the IDDVideoPortContainer::EnumVideoPorts method.

To exploit these features for playback, you use the 
IDirectDrawVideoPort::StartVideo method, which uses a DDVIDEOPORTINFO 
structure to request that hardware features be used to modify image data before 
placing it in the frame buffer or for display. By setting values and flags in this 
structure, you can specify the source rectangle used with the overlay surface, indicate 
cropping regions, request hardware scaling, and set pixel formats.

DirectDrawVideoPort objects do not emulate video-port hardware services.

Getting the Flip and Blit Status
When the IDirectDrawSurface3::Flip method is called, the primary surface and 
back buffer are exchanged. However, the exchange may not occur immediately. For 
example, if a previous flip has not finished, or if it did not succeed, this method 
returns DDERR_WASSTILLDRAWING. In the samples included with this SDK, 
the IDirectDrawSurface3::Flip call continues to loop until it returns DD_OK. Also, 
a IDirectDrawSurface3::Flip call does not complete immediately. It schedules a flip 
for the next time a vertical blank occurs on the system.

An application that waits until the DDERR_WASSTILLDRAWING value is not 
returned is very inefficient. Instead, you could create a function in your application 
that calls the IDirectDrawSurface3::GetFlipStatus method on the back buffer to 
determine if the previous flip has finished.

If the previous flip has not finished and the call returns 
DDERR_WASSTILLDRAWING, your application can use the time to perform 
another task before it checks the status again. Otherwise, you can perform the next 
flip. The following example demonstrates this concept:

while(lpDDSBack->GetFlipStatus(DDGFS_ISFLIPDONE) == 

    DDERR_WASSTILLDRAWING); 

 

    // Waiting for the previous flip to finish. The application can 
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    // perform another task here. 

 

ddrval = lpDDSPrimary->Flip(NULL, 0); 

 

You can use the IDirectDrawSurface3::GetBltStatus method in much the same way 
to determine whether a blit has finished. Because 
IDirectDrawSurface3::GetFlipStatus and IDirectDrawSurface3::GetBltStatus 
return immediately, you can use them periodically in your application with little loss 
in speed.

Blitting with Color Fill
You can use the IDirectDrawSurface3::Blt method to perform a color fill of the 
most common color you want to be displayed. For example, if the most common 
color your application displays is blue, you can use IDirectDrawSurface3::Blt with 
the DDBLT_COLORFILL flag to first fill the surface with the color blue. Then you 
can write everything else on top of it. This allows you to fill in the most common 
color very quickly, and you then only have to write a minimum number of colors to 
the surface.

The following example demonstrates one way to perform a color fill:

DDBLTFX ddbltfx; 

 

ddbltfx.dwSize = sizeof(ddbltfx); 

ddbltfx.dwFillColor = 0; 

ddrval = lpDDSPrimary->Blt( 

    NULL,        // Destination 

    NULL, NULL,  // Source rectangle 

    DDBLT_COLORFILL, &ddbltfx); 

 

switch(ddrval) 

{ 

    case DDERR_WASSTILLDRAWING: 

        . 

        . 

        . 

    case DDERR_SURFACELOST: 

        . 

        . 

        . 

    case DD_OK: 

        . 

        . 

        . 

    default: 

} 
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Determining the Capabilities of the Display 
Hardware

DirectDraw uses software emulation to perform the DirectDraw functions not 
supported by the user's hardware. To accelerate performance of your DirectDraw 
applications, you should determine the capabilities of the user's display hardware after 
you have created a DirectDraw object, then structure your program to take advantage 
of these capabilities when possible.

You can determine these capabilities by using the IDirectDraw2::GetCaps method. 
Not all hardware features are supported in emulation. If you want to use a feature 
only supported by some hardware, you must also be prepared to supply some 
alternative for systems with hardware that lacks that feature.

Storing Bitmaps in Display Memory
Blitting from display memory to display memory is usually much more efficient than 
blitting from system memory to display memory. As a result, you should store as 
many of the sprites your application uses as possible in display memory.

Most display adapter hardware contains enough extra memory to store more than only 
the primary surface and the back buffer. You can use the dwVidMemTotal and 
dwVidMemFree members of the DDCAPS structure (if you used the 
IDirectDraw2::GetCaps method to get the capabilities of the user's display 
hardware) to determine the amount of available memory for storing bitmaps in the 
display adapter's memory. If you want to see how this works, use the DirectX Viewer 
sample application included with the DirectX APIs in the Platform SDK. Under 
DirectDraw Devices, open the Primary Display Driver folder, and then open the 
General folder. The amount of total display memory (minus the primary surface) and 
the amount of free memory is displayed. Each time a surface is added to the 
DirectDraw object, the amount of free memory decreases by the amount of memory 
used by the added surface.

Triple Buffering
In some cases, that is, when the display adapter has enough memory, it may be 
possible to speed up the process of displaying your application by using triple 
buffering. Triple buffering uses one primary surface and two back buffers. The 
following example shows how to initialize a triple-buffering scheme:

// The lpDDSPrimary, lpDDSMiddle, and lpDDSBack are globally

// declared, uninitialized LPDIRECTDRAWSURFACE variables.

DDSURFACEDESC ddsd;

ZeroMemory (&ddsd, sizeof(ddsd));
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// Create the primary surface with two back buffers. 

ddsd.dwSize = sizeof(ddsd); 

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT; 

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE | 

    DDSCAPS_FLIP | DDSCAPS_COMPLEX; 

ddsd.dwBackBufferCount = 2; 

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL); 

// If we successfully created the flipping chain, 

// retrieve pointers to the surfaces we need for 

// flipping and blitting.

if(ddrval == DD_OK) 

{ 

    // Get the surface directly attached to the primary (the back buffer). 

    ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER; 

    ddrval = lpDDSPrimary->GetAttachedSurface(&ddsd.ddsCaps, 

        &lpDDSMiddle); 

    if(ddrval != DD_OK) ;

        // Display an error message here. 

} 

 

You do not need to keep track of all surfaces in a triple buffered flipping chain. The 
only surfaces you must keep pointers to are the primary surface and the back-buffer 
surface. You need a pointer to the primary surface in order to flip the surfaces in the 
flipping chain, and you need a pointer to the back buffer for blitting. For more 
information, see Flipping Surfaces.

Triple buffering allows your application to continue blitting to the back buffer even if 
a flip has not completed and the back buffer's blit has already finished. Performing a 
flip is not a synchronous event; one flip can take longer than another. Therefore, if 
your application uses only one back buffer, it may spend some time idling while 
waiting for the IDirectDrawSurface3::Flip method to return with DD_OK.

DirectDraw Applications and Window Styles
If your application uses DirectDraw in windowed mode, you can create windows with 
any window style. However, full screen, exclusive mode applications cannot be 
created with the WS_EX_TOOLWINDOW style without risk of unpredictable 
behavior. The WS_EX_TOOLWINDOW style prevents a window from being the top 
most window, which is required for a DirectDraw full screen, exclusive mode 
application.

Full screen exclusive mode applications should use the WS_EX_TOPMOST 
extended window style and the WS_VISIBLE window style to display properly. 
These styles keep the application at the front of the window z-order and prevent GDI 
from drawing on the primary surface.
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The following example shows one way to safely prepare a window to be used in a 
full-screen, exclusive mode application.

////////////////////////////////////////////////////////

// Register the window class, display the window, and init

// all DirectX and graphic objects.

////////////////////////////////////////////////////////

BOOL WINAPI InitApp(INT nWinMode)

{

    WNDCLASSEX wcex;

    wcex.cbSize           =    sizeof(WNDCLASSEX);

    wcex.hInstance        =    g_hinst;

    wcex.lpszClassName    =    g_szWinName;

    wcex.lpfnWndProc      =    WndProc;

    wcex.style            =    CS_VREDRAW|CS_HREDRAW|CS_DBLCLKS;

    wcex.hIcon            =    LoadIcon (NULL, IDI_APPLICATION);

    wcex.hIconSm          =    LoadIcon (NULL, IDI_WINLOGO);

    wcex.hCursor          =    LoadCursor (NULL, IDC_ARROW);

    wcex.lpszMenuName     =    MAKEINTRESOURCE(IDR_APPMENU);

    wcex.cbClsExtra       =    0 ;

    wcex.cbWndExtra       =    0 ;

    wcex.hbrBackground    =    GetStockObject (NULL_BRUSH);

    RegisterClassEx(&wcex);

    g_hwndMain = CreateWindowEx(

                        WS_EX_TOPMOST,

                        g_szWinName,

                        g_szWinCaption,

                        WS_VISIBLE|WS_POPUP,

                        0,0,CX_SCREEN,CY_SCREEN,

                        NULL,

                        NULL,

                        g_hinst,

                        NULL);

    if(!g_hwndMain)

        return(FALSE);

    SetFocus(g_hwndMain);

    ShowWindow(g_hwndMain, nWinMode);

    UpdateWindow(g_hwndMain);

    return TRUE;

} 
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Matching True RGB Colors to the Frame 
Buffer’s Color Space

Applications often need to find out how a true RGB color (RGB 888) will be mapped 
into a the frame buffer’s color space when the display device is not in RGB 888 
mode. For example, imagine you’re working on an application that will run in 16 and 
24 bit RGB display modes. You know that when the art was created, a color was 
reserved for use as a transparent blitting color key; for the sake of argument, it is a 24 
bit color such as RGB(128,64,255). Because your application will also run in a 16 bit 
RGB mode, you need a way to find out how this 24 bit color key maps into the color 
space that the frame buffer uses when it’s running in a 16 bit RGB mode.

Although DirectDraw does not perform color matching services for you, there are 
ways to calculate how your color key will be mapped in the frame buffer. These 
methods can be pretty complicated. For most purposes, you can use the GDI built-in 
color matching services, combined with the DirectDraw direct frame buffer access, to 
determine how a color value maps into a different color space. In fact, the Ddutil.cpp 
source file included in the DirectX examples of the Platform SDK includes a sample 
function called DDColorMatch that performs this task. The DDColorMatch sample 
function performs the following main tasks:

1. Retrieves the color value of a pixel in a surface at 0,0.

2. Calls the Win32 SetPixel function, using a COLORREF structure that describes 
your 24-bit RGB color.

3. Uses DirectDraw to lock the surface, getting a pointer to the frame buffer 
memory.

4. Retrieves the actual color value from the frame buffer (set by GDI in Step 2) and 
unlocks the surface

5. Resets the pixel at 0,0 to its original color using SetPixel.

The process used by the DDColorMatch sample function is not fast; it isn’t intended 
to be. However, it provides a reliable way to determine how a color will be mapped 
across different RGB color spaces. For more information, see the source code for 
DDColorMatch in the Ddutil.cpp source file.

DirectDraw Tutorials
This section contains a series of tutorials, each of which provides step-by-step 
instructions for implementing a simple DirectDraw application. These tutorials use 
many of the DirectDraw sample files that are provided with this SDK. These samples 
demonstrate how to set up DirectDraw, and how to use the DirectDraw methods to 
perform common tasks:

· Tutorial 1: The Basics of DirectDraw
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· Tutorial 2: Loading Bitmaps on the Back Buffer

· Tutorial 3: Blitting from an Off-Screen Surface

· Tutorial 4: Color Keys and Bitmap Animation

· Tutorial 5: Dynamically Modifying Palettes

· Tutorial 6: Using Overlay Surfaces

Some samples in these tutorials use the older IDirectDraw and IDirectDrawSurface 
interfaces. If you want to update these examples so they use the DirectX 5 interfaces 
query for the new versions of the interfaces before using them. In addition, you must 
change the appropriate parameters of any methods that have been updated for new 
versions of the interfaces.

Note
The sample files in these tutorials are written in C++. If you are using a C 
compiler, you must make the appropriate changes to the files for them to 
successfully compile. At the very least, you need to add the vtable and this 
pointers to the interface methods.

Tutorial 1: The Basics of DirectDraw
To use DirectDraw, you first create an instance of the DirectDraw object, which 
represents the display adapter on the computer. You then use the interface methods to 
manipulate the object. In addition, you need to create one or more instances of a 
DirectDrawSurface object to be able to display your application on a graphics surface.

To demonstrate this, the DDEX1 sample included with this SDK performs the 
following steps:

· Step 1: Creating a DirectDraw Object

· Step 2: Determining the Application's Behavior

· Step 3: Changing the Display Mode

· Step 4: Creating Flipping Surfaces

· Step 5: Rendering to the Surfaces

· Step 6: Writing to the Surface

· Step 7: Flipping the Surfaces

· Step 8: Deallocating the DirectDraw Objects

Note:
To use GUIDs successfully in your applications, you must either define 
INITGUID prior to all other include and define statements, or you must link to 
the DXGUID.LIB library. You should define INITGUID in only one of your 
source modules.
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Step 1: Creating a DirectDraw Object
To create an instance of a DirectDraw object, your application should use the 
DirectDrawCreate function as shown in the doInit function of the DDEX1 program. 
DirectDrawCreate contains three parameters. The first parameter takes a globally 
unique identifier (GUID) that represents the display device. The GUID, in most cases, 
is set to NULL, which means DirectDraw uses the default display driver for the 
system. The second parameter contains the address of a pointer that identifies the 
location of the DirectDraw object if it is created. The third parameter is always set to 
NULL and is included for future expansion.

The following example shows how to create the DirectDraw object and how to 
determine if the creation was successful or not:

ddrval = DirectDrawCreate(NULL, &lpDD, NULL); 

if(ddrval == DD_OK) 

{ 

    // lpDD is a valid DirectDraw object. 

} 

else 

{ 

    // The DirectDraw object could not be created. 

} 

 

Step 2: Determining the Application's 
Behavior

Before you can change the resolution of your display, you must at a minimum specify 
the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags in the dwFlags 
parameter of the IDirectDraw2::SetCooperativeLevel method. This gives your 
application complete control over the display device, and no other application will be 
able to share it. In addition, the DDSCL_FULLSCREEN flag sets the application in 
exclusive (full-screen) mode. Your application covers the entire desktop, and only 
your application can write to the screen. The desktop is still available, however. (To 
see the desktop in an application running in exclusive mode, start DDEX1 and press 
ALT + TAB.)

The following example demonstrates the use of the 
IDirectDraw2::SetCooperativeLevel method:

HRESULT      ddrval; 

LPDIRECTDRAW lpDD;     // Already created by DirectDrawCreate 

 

ddrval = lpDD->SetCooperativeLevel(hwnd, DDSCL_EXCLUSIVE | 

    DDSCL_FULLSCREEN); 

if(ddrval == DD_OK) 

{ 
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    // Exclusive mode was successful. 

} 

else 

{ 

    // Exclusive mode was not successful. 

    // The application can still run, however. 

} 

 

If IDirectDraw2::SetCooperativeLevel does not return DD_OK, you can still run 
your application. The application will not be in exclusive mode, however, and it 
might not be capable of the performance your application requires. In this case, you 
might want to display a message that allows the user to decide whether or not to 
continue.

One requirement for using IDirectDraw2::SetCooperativeLevel is that you must 
pass a handle of a window (HWND) to allow Windows to determine if your 
application terminates abnormally. For example, if a general protection (GP) fault 
occurs and GDI is flipped to the back buffer, the user will not be able to return to the 
Windows screen. To prevent this from occurring, DirectDraw provides a process 
running in the background that traps messages that are sent to that window. 
DirectDraw uses these messages to determine when the application terminates. This 
feature imposes some restrictions, however. You have to specify the window handle 
that is retrieving messages for your application—that is, if you create another 
window, you must ensure that you specify the window that is active. Otherwise, you 
might experience problems, including unpredictable behavior from GDI, or no 
response when you press ALT+TAB.

Step 3: Changing the Display Mode
After you have set the application's behavior, you can use the 
IDirectDraw2::SetDisplayMode method to change the resolution of the display. The 
following example shows how to set the display mode to 6404808 bpp:

HRESULT      ddrval; 

LPDIRECTDRAW lpDD;  // Already created 

 

ddrval = lpDD->SetDisplayMode(640, 480, 8); 

if(ddrval == DD_OK) 

{ 

    // The display mode changed successfully. 

} 

else 

{ 

    // The display mode cannot be changed. 

    // The mode is either not supported or 

    // another application has exclusive mode. 

} 
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When you set the display mode, you should ensure that if the user's hardware cannot 
support higher resolutions, your application reverts to a standard mode that is 
supported by a majority of display adapters. For example, your application could be 
designed to run on all systems that support 6404808 as a standard backup 
resolution.

Note:
IDirectDraw2::SetDisplayMode returns a DDERR_INVALIDMODE error 
value if the display adapter could not be set to the desired resolution. Therefore, 
you should use the IDirectDraw2::EnumDisplayModes method to determine 
the capabilities of the user's display adapter before trying to set the display mode.

Step 4: Creating Flipping Surfaces
After you have set the display mode, you must create the surfaces on which to place 
your application. Because the DDEX1 example is using the 
IDirectDraw2::SetCooperativeLevel method to set the mode to exclusive (full-
screen) mode, you can create surfaces that flip between the surfaces. If you were 
using IDirectDraw2::SetCooperativeLevel to set the mode to DDSCL_NORMAL, 
you could create only surfaces that blit between the surfaces. Creating flipping 
surfaces requires the following steps, also discussed in this topic:

· Defining the surface requirements

· Creating the surfaces

Defining the Surface Requirements

The first step in creating flipping surfaces is to define the surface requirements in a 
DDSURFACEDESC structure. The following example shows the structure 
definitions and flags needed to create a flipping surface.

// Create the primary surface with one back buffer. 

ddsd.dwSize = sizeof(ddsd); 

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT; 

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE | 

    DDSCAPS_FLIP | DDSCAPS_COMPLEX; 

 

ddsd.dwBackBufferCount = 1; 

 

In this example, the dwSize member is set to the size of the DDSURFACEDESC 
structure. This is to prevent any DirectDraw method call you use from returning with 
an invalid member error. (The dwSize member was provided for future expansion of 
the DDSURFACEDESC structure.)

The dwFlags member determines which members in the DDSURFACEDESC 
structure will be filled with valid information. For the DDEX1 example, dwFlags is 
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set to specify that you want to use the DDSCAPS structure (DDSD_CAPS) and that 
you want to create a back buffer (DDSD_BACKBUFFERCOUNT).

The dwCaps member in the example indicates the flags that will be used in the 
DDSCAPS structure. In this case, it specifies a primary surface 
(DDSCAPS_PRIMARYSURFACE), a flipping surface (DDSCAPS_FLIP), and a 
complex surface (DDSCAPS_COMPLEX).

Finally, the example specifies one back buffer. The back buffer is where the 
backgrounds and sprites will actually be written. The back buffer is then flipped to the 
primary surface. In the DDEX1 example, the number of back buffers is set to 1. You 
can, however, create as many back buffers as the amount of display memory allows. 
For more information on creating more than one back buffer, see Triple Buffering.

Surface memory can be either display memory or system memory. DirectDraw uses 
system memory if the application runs out of display memory (for example, if you 
specify more than one back buffer on a display adapter with only 1 MB of RAM). 
You can also specify whether to use only system memory or only display memory by 
setting the dwCaps member in the DDSCAPS structure to 
DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY. (If you specify 
DDSCAPS_VIDEOMEMORY, but not enough memory is available to create the 
surface, IDirectDraw2::CreateSurface returns with a 
DDERR_OUTOFVIDEOMEMORY error.)

Creating the Surfaces

After the DDSURFACEDESC structure is filled, you can use it and lpDD, the 
pointer to the DirectDraw object that was created by the DirectDrawCreate function, 
to call the IDirectDraw2::CreateSurface method, as shown in the following 
example:

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL); 

if(ddrval == DD_OK) 

{ 

    // lpDDSPrimary points to the new surface. 

} 

else 

{ 

    // The surface was not created. 

    return FALSE; 

} 

 

The lpDDSPrimary parameter will point to the primary surface returned by 
IDirectDraw2::CreateSurface if the call succeeds.

After the pointer to the primary surface is available, you can use the 
IDirectDrawSurface3::GetAttachedSurface method to retrieve a pointer to the 
back buffer, as shown in the following example:

ddscaps.dwCaps = DDSCAPS_BACKBUFFER; 
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ddrval = lpDDSPrimary->GetAttachedSurface(&ddcaps, &lpDDSBack); 

if(ddrval == DD_OK) 

{ 

    // lpDDSBack points to the back buffer. 

} 

else 

{ 

    return FALSE; 

} 

 

By supplying the address of the surface's primary surface and by setting the 
capabilities value with the DDSCAPS_BACKBUFFER flag, the lpDDSBack 
parameter will point to the back buffer if the 
IDirectDrawSurface3::GetAttachedSurface call succeeds.

Step 5: Rendering to the Surfaces
After the primary surface and a back buffer have been created, the DDEX1 example 
renders some text on the primary surface and back buffer surface by using standard 
Windows GDI functions, as shown in the following example:

if (lpDDSPrimary->GetDC(&hdc) == DD_OK) 

{ 

    SetBkColor(hdc, RGB(0, 0, 255)); 

    SetTextColor(hdc, RGB(255, 255, 0)); 

    TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg)); 

    lpDDSPrimary->ReleaseDC(hdc); 

} 

 

if (lpDDSBack->GetDC(&hdc) == DD_OK) 

{ 

    SetBkColor(hdc, RGB(0, 0, 255)); 

    SetTextColor(hdc, RGB(255, 255, 0)); 

    TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg)); 

    lpDDSBack->ReleaseDC(hdc); 

} 

 

The example uses the IDirectDrawSurface3::GetDC method to retrieve the handle 
of the device context, and it internally locks the surface. If you are not going to use 
Windows functions that require a handle of a device context, you could use the 
IDirectDrawSurface3::Lock and IDirectDrawSurface3::Unlock methods to lock 
and unlock the back buffer.

Locking the surface memory (whether the whole surface or part of a surface) ensures 
that your application and the system blitter cannot obtain access to the surface 
memory at the same time. This prevents errors from occurring while your application 
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is writing to surface memory. In addition, your application cannot page flip until the 
surface memory is unlocked.

After the surface is locked, the example uses standard Windows GDI functions: 
SetBkColor  to set the background color, SetTextColor to select the color of the text 
to be placed on the background, and TextOut to print the text and background color 
on the surfaces.

After the text has been written to the buffer, the example uses the 
IDirectDrawSurface3::ReleaseDC method to unlock the surface and release the 
handle. Whenever your application finishes writing to the back buffer, you must call 
either IDirectDrawSurface3::ReleaseDC or IDirectDrawSurface3::Unlock, 
depending on your application. Your application cannot flip the surface until the 
surface is unlocked.

Typically, you write to a back buffer, which you then flip to the primary surface to be 
displayed. In the case of DDEX1, there is a significant delay before the first flip, so 
DDEX1 writes to the primary buffer in the initialization function to prevent a delay 
before displaying the surface. As you will see in a subsequent step of this tutorial, the 
DDEX1 example writes only to the back buffer during WM_TIMER. An 
initialization function or title page may be the only place where you might want to 
write to the primary surface.

Note
After the surface is unlocked by using IDirectDrawSurface3::Unlock, the 
pointer to the surface memory is invalid. You must use 
IDirectDrawSurface3::Lock again to obtain a valid pointer to the surface 
memory.

Step 6: Writing to the Surface
The first half of the WM_TIMER message in DDEX1 is devoted to writing to the 
back buffer, as shown in the following example:

case WM_TIMER: 

    // Flip surfaces. 

    if(bActive) 

    { 

        if (lpDDSBack->GetDC(&hdc) == DD_OK) 

        { 

            SetBkColor(hdc, RGB(0, 0, 255)); 

            SetTextColor(hdc, RGB(255, 255, 0)); 

            if(phase) 

            { 

                TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg)); 

                phase = 0; 

            } 

            else 
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            { 

                TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg)); 

                phase = 1; 

            } 

            lpDDSBack->ReleaseDC(hdc); 

        } 

 

The line of code that calls the IDirectDrawSurface3::GetDC method locks the back 
buffer in preparation for writing. The SetBkColor and SetTextColor functions set 
the colors of the background and text.

Next, the phase variable determines whether the primary buffer message or the back 
buffer message should be written. If phase equals 1, the primary surface message is 
written, and phase is set to 0. If phase equals 0, the back buffer message is written, 
and phase is set to 1. Note, however, that in both cases the messages are written to the 
back buffer.

After the message is written to the back buffer, the back buffer is unlocked by using 
the IDirectDrawSurface3::ReleaseDC method.

Step 7: Flipping the Surfaces
After the surface memory is unlocked, you can use the IDirectDrawSurface3::Flip 
method to flip the back buffer to the primary surface, as shown in the following 
example:

while(1) 

{ 

    HRESULT ddrval; 

    ddrval = lpDDSPrimary->Flip(NULL, 0); 

    if(ddrval == DD_OK) 

    { 

        break; 

    } 

    if(ddrval == DDERR_SURFACELOST) 

    { 

        ddrval = lpDDSPrimary->Restore(); 

        if(ddrval != DD_OK) 

        { 

            break; 

        } 

    } 

    if(ddrval != DDERR_WASSTILLDRAWING) 

    { 

        break; 

    } 

} 
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In the example, lpDDSPrimary designates the primary surface and its associated 
back buffer. When IDirectDrawSurface3::Flip is called, the front and back surfaces 
are exchanged (only the pointers to the surfaces are changed; no data is actually 
moved). If the flip is successful and returns DD_OK, the application breaks from the 
while loop.

If the flip returns with a DDERR_SURFACELOST value, an attempt is made to 
restore the surface by using the IDirectDrawSurface3::Restore method. If the 
restore is successful, the application loops back to the IDirectDrawSurface3::Flip 
call and tries again. If the restore is unsuccessful, the application breaks from the 
while loop, and returns with an error.

Note
When you call IDirectDrawSurface3::Flip, the flip does not complete 
immediately. Rather, a flip is scheduled for the next time a vertical blank occurs 
on the system. If, for example, the previous flip has not occurred, 
IDirectDrawSurface3::Flip returns DDERR_WASSTILLDRAWING. In the 
example, the IDirectDrawSurface3::Flip call continues to loop until it returns 
DD_OK.

Step 8: Deallocating the DirectDraw Objects
When you press the F12 key, the DDEX1 application processes the WM_DESTROY 
message before exiting the application. This message calls the finiObjects function, 
which contains all of the IUnknown::Release calls, as shown below:

static void finiObjects(void) 

{ 

    if(lpDD != NULL) 

    { 

        if(lpDDSPrimary != NULL) 

        { 

            lpDDSPrimary->Release(); 

            lpDDSPrimary = NULL; 

        } 

        lpDD->Release(); 

        lpDD = NULL; 

    } 

} // finiObjects 

 

The application checks if the pointers to the DirectDraw object (lpDD) and the 
DirectDrawSurface object (lpDDSPrimary) are not equal to NULL. Then DDEX1 
calls the IDirectDrawSurface3::Release method to decrease the reference count of 
the DirectDrawSurface object by 1. Because this brings the reference count to 0, the 
DirectDrawSurface object is deallocated. The DirectDrawSurface pointer is then 
destroyed by setting its value to NULL. Next, the application calls 
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IDirectDraw2::Release to decrease the reference count of the DirectDraw object to 
0, deallocating the DirectDraw object. This pointer is then also destroyed by setting 
its value to NULL.

Tutorial 2: Loading Bitmaps on the Back 
Buffer

The sample discussed in this tutorial (DDEX2) expands on the DDEX1 sample that 
was discussed in Tutorial 1. DDEX2 includes functionality to load a bitmap file on 
the back buffer. This new functionality is demonstrated in the following steps:

· Step 1: Creating the Palette

· Step 2: Setting the Palette

· Step 3: Loading a Bitmap on the Back Buffer

· Step 4: Flipping the Surfaces

As in DDEX1, doInit is the initialization function for the DDEX2 application. 
Although the code for the DirectDraw initialization does not look quite the same in 
DDEX2 as it did in DDEX1, it is essentially the same, except for the following 
section:

lpDDPal = DDLoadPalette(lpDD, szBackground); 

 

if (lpDDPal == NULL) 

    goto error; 

 

ddrval = lpDDSPrimary->SetPalette(lpDDPal); 

 

if(ddrval != DD_OK) 

    goto error; 

 

// Load a bitmap into the back buffer. 

ddrval = DDReLoadBitmap(lpDDSBack, szBackground); 

 

if(ddrval != DD_OK) 

    goto error; 

 

Step 1: Creating the Palette
The DDEX2 sample first loads the palette into a structure by using the following 
code:

lpDDPal = DDLoadPalette(lpDD, szBackground); 

 

if (lpDDPal == NULL) 
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    goto error; 

 

DDLoadPalette is part of the common DirectDraw functions found in the Ddutil.cpp 
file located in the \Dxsdk\Sdk\Samples\Misc directory. Most of the DirectDraw 
sample files in this SDK use this file. Essentially, it contains the functions for loading 
bitmaps and palettes from either files or resources. To avoid having to repeat code in 
the example files, these functions were placed in a file that could be reused. Make 
sure you include Ddutil.cpp in the list of files to be compiled with the rest of the 
DDEX samples.

For DDEX2, the DDLoadPalette function creates a DirectDrawPalette object from 
the Back.bmp file. The DDLoadPalette function determines if a file or resource for 
creating a palette exists. If one does not, it creates a default palette. For DDEX2, it 
extracts the palette information from the bitmap file and stores it in a structure 
pointed to by ape.

DDEX2 then creates the DirectDrawPalette object, as shown in the following 
example:

pdd->CreatePalette(DDPCAPS_8BIT, ape, &ddpal, NULL); 

return ddpal; 

 

When the IDirectDraw2::CreatePalette method returns, the ddpal parameter points 
to the DirectDrawPalette object, which is then returned from the DDLoadPalette call.

The ape parameter is a pointer to a structure that can contain either 2, 4, 16, or 256 
entries, organized linearly. The number of entries depends on the dwFlags parameter 
in the IDirectDraw2::CreatePalette method. In this case, the dwFlags parameter is 
set to DDPCAPS_8BIT, which indicates that there are 256 entries in this structure. 
Each entry contains 4 bytes (a red channel, a green channel, a blue channel, and a 
flags byte).

Step 2: Setting the Palette
After you create the palette, you pass the pointer to the DirectDrawPalette object 
(ddpal) to the primary surface by calling the IDirectDrawSurface3::SetPalette 
method, as shown in the following example:

ddrval = lpDDSPrimary->SetPalette(lpDDPal); 

 

if(ddrval != DD_OK) 

    // SetPalette failed. 

 

After you have called IDirectDrawSurface3::SetPalette, the DirectDrawPalette 
object is associated with the DirectDrawSurface object. Any time you need to change 
the palette, you simply create a new palette and set the palette again. (Although this 
tutorial uses these steps, there are other ways of changing the palette, as will be 
shown in later examples.)
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Step 3: Loading a Bitmap on the Back Buffer
After the DirectDrawPalette object is associated with the DirectDrawSurface object, 
DDEX2 loads the Back.bmp bitmap on the back buffer by using the following code:

// Load a bitmap into the back buffer. 

ddrval = DDReLoadBitmap(lpDDSBack, szBackground); 

 

if(ddrval != DD_OK) 

    // Load failed. 

 

DDReLoadBitmap is another function found in Ddutil.cpp. It loads a bitmap from a 
file or resource into an already existing DirectDraw surface. (You could also use 
DDLoadBitmap to create a surface and load the bitmap into that surface. For more 
information, see Tutorial 5: Dynamically Modifying Palettes.) For DDEX2, it loads 
the Back.bmp file pointed to by szBackground onto the back buffer pointed to by 
lpDDSBack. The DDReLoadBitmap function calls the DDCopyBitmap function to 
copy the file onto the back buffer and stretch it to the proper size.

The DDCopyBitmap function copies the bitmap into memory, and it uses the 
GetObject function to retrieve the size of the bitmap. It then uses the following code 
to retrieve the size of the back buffer onto which it will place the bitmap:

// Get the size of the surface. 

ddsd.dwSize = sizeof(ddsd); 

ddsd.dwFlags = DDSD_HEIGHT | DDSD_WIDTH; 

pdds->GetSurfaceDesc(&ddsd); 

 

The ddsd value is a pointer to the DDSURFACEDESC structure. This structure 
stores the current description of the DirectDraw surface. In this case, the 
DDSURFACEDESC members describe the height and width of the surface, which 
are indicated by DDSD_HEIGHT and DDSD_WIDTH. The call to the 
IDirectDrawSurface3::GetSurfaceDesc method then loads the structure with the 
proper values. For DDEX2, the values will be 480 for the height and 640 for the 
width.

The DDCopyBitmap function locks the surface and copies the bitmap to the back 
buffer, stretching or compressing it as applicable by using the StretchBlt function, as 
shown below:

if ((hr = pdds->GetDC(&hdc)) == DD_OK) 

{ 

    StretchBlt(hdc, 0, 0, ddsd.dwWidth, ddsd.dwHeight, hdcImage, x, y, 

        dx, dy, SRCCOPY); 

    pdds->ReleaseDC(hdc); 

} 

 



in.doc – page 84

Step 4: Flipping the Surfaces
Flipping surfaces in the DDEX2 sample is essentially the same process as that in the 
DDEX1 tutorial (see Tutorial 1: The Basics of DirectDraw) except that if the surface 
is lost (DDERR_SURFACELOST), the bitmap must be reloaded on the back buffer 
by using the DDReLoadBitmap function after the surface is restored.

Tutorial 3: Blitting from an Off-Screen 
Surface

The sample in Tutorial 2 (DDEX2) takes a bitmap and puts it in the back buffer, and 
then it flips between the back buffer and the primary buffer. This is not a very 
realistic approach to displaying bitmaps. The sample in this tutorial (DDEX3) 
expands on the capabilities of DDEX2 by including two off-screen buffers in which 
the two bitmaps—one for the even screen and one for the odd screen—are stored. It 
uses the IDirectDrawSurface3::BltFast method to copy the contents of an off-
screen surface to the back buffer, and then it flips the buffers and copies the next off-
screen surface to the back buffer.

The new functionality demonstrated in DDEX3 is shown in the following steps:

· Step 1: Creating the Off-Screen Surfaces

· Step 2: Loading the Bitmaps to the Off-Screen Surfaces

· Step 3: Blitting the Off-Screen Surfaces to the Back Buffer

Step 1: Creating the Off-Screen Surfaces
The following code is added to the doInit function in DDEX3 to create the two off-
screen buffers:

// Create an offscreen bitmap. 

ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH; 

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN; 

ddsd.dwHeight = 480; 

ddsd.dwWidth = 640; 

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSOne, NULL); 

if(ddrval != DD_OK) 

{ 

    return initFail(hwnd); 

} 

 

// Create another offscreen bitmap. 

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSTwo, NULL); 

if(ddrval != DD_OK) 

{ 
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    return initFail(hwnd); 

} 

 

The dwFlags member specifies that the application will use the DDSCAPS structure, 
and it will set the height and width of the buffer. The surface will be an off-screen 
plain buffer, as indicated by the DDSCAPS_OFFSCREEN flag set in the DDSCAPS 
structure. The height and the width are set as 480 and 640, respectively, in the 
DDSURFACEDESC structure. The surface is then created by using the 
IDirectDraw2::CreateSurface method.

Because both of the off-screen plain buffers are the same size, the only requirement 
for creating the second buffer is to call IDirectDraw2::CreateSurface again with a 
different pointer name.

You can also specifically request that the off-screen buffer be placed in system 
memory or display memory by setting either the DDSCAPS_SYSTEMMEMORY or 
DDSCAPS_VIDEOMEMORY capability in the DDSCAPS structure. By saving the 
bitmaps in display memory, you can increase the speed of the transfers between the 
off-screen surfaces and the back buffer. This will become more important when using 
bitmap animation. However, if you specify DDSCAPS_VIDEOMEMORY for the 
off-screen buffer and not enough display memory is available to hold the entire 
bitmap, a DDERR_OUTOFVIDEOMEMORY error value will be returned when you 
attempt to create the surface.

Step 2: Loading the Bitmaps to the Off-Screen 
Surfaces

After the two off-screen surfaces are created, DDEX3 uses the InitSurfaces function 
to load the bitmaps from the Frntback.bmp file onto the surfaces. The InitSurfaces 
function uses the DDCopyBitmap function located in Ddutil.cpp to load both of the 
bitmaps, as shown in the following example:

// Load the bitmap resource. 

hbm = (HBITMAP)LoadImage(GetModuleHandle(NULL), szBitmap, 

    IMAGE_BITMAP, 0, 0, LR_CREATEDIBSECTION); 

 

if (hbm == NULL) 

    return FALSE; 

 

DDCopyBitmap(lpDDSOne, hbm, 0, 0,   640, 480); 

DDCopyBitmap(lpDDSTwo, hbm, 0, 480, 640, 480); 

DeleteObject(hbm); 

 

return TRUE; 

 

If you look at the Frntback.bmp file in Microsoft Paint or another drawing 
application, you can see that the bitmap consists of two screens, one on top of the 
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other. The DDCopyBitmap function breaks the bitmap in two at the point where the 
screens meet. In addition, it loads the first bitmap into the first off-screen surface 
(lpDDSOne) and the second bitmap into the second off-screen surface (lpDDSTwo).

Step 3: Blitting the Off-Screen Surfaces to the 
Back Buffer

The WM_TIMER message contains the code for writing to surfaces and flipping 
surfaces. In the case of DDEX3, it contains the following code to select the proper 
off-screen surface and to blit it to the back buffer:

rcRect.left = 0; 

rcRect.top = 0; 

rcRect.right = 640; 

rcRect.bottom = 480; 

if(phase) 

{ 

    pdds = lpDDSTwo; 

    phase = 0; 

} 

else 

{ 

    pdds = lpDDSOne; 

    phase = 1; 

} 

while(1) 

{ 

    ddrval = lpDDSBack->BltFast(0, 0, pdds, &rcRect, FALSE); 

    if(ddrval == DD_OK) 

    { 

        break; 

    } 

 

The phase variable determines which off-screen surface will be blitted to the back 
buffer. The IDirectDrawSurface3::BltFast method is then called to blit the selected 
off-screen surface onto the back buffer, starting at position (0, 0), the upper-left 
corner. The rcRect parameter points to the RECT structure that defines the upper-left 
and lower-right corners of the off-screen surface that will be blitted from. The last 
parameter is set to FALSE (or 0), indicating that no specific transfer flags are used.

Depending on the requirements of your application, you could use either the 
IDirectDrawSurface3::Blt method or the IDirectDrawSurface::BltFast method to 
blit from the off-screen buffer. If you are performing a blit from an off-screen plain 
buffer that is in display memory, you should use IDirectDrawSurface3::BltFast. 
Although you will not gain speed on systems that use hardware blitter on their display 
adapters, the blit will take about 10 percent less time on systems that use hardware 
emulation to perform the blit. Because of this, you should use 
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IDirectDrawSurface3::BltFast for all display operations that blit from display 
memory to display memory. If you are blitting from system memory or require 
special hardware flags, however, you have to use IDirectDrawSurface3::Blt.

After the off-screen surface is loaded in the back buffer, the back buffer and the 
primary surface are flipped in much the same way as shown in the previous tutorials.

Tutorial 4: Color Keys and Bitmap 
Animation

The sample in Tutorial 3 (DDEX3) shows one simple method of placing bitmaps into 
an off-screen buffer before they are blitted to the back buffer. The sample in this 
tutorial (DDEX4) uses the techniques described in the previous tutorials to load a 
background and a series of sprites into an off-screen surface. Then it uses the 
IDirectDrawSurface3::BltFast method to copy portions of the off-screen surface to 
the back buffer, thereby generating a simple bitmap animation.

The bitmap file that DDEX4 uses, All.bmp, contains the background and 60 iterations 
of a rotating red donut with a black background. The DDEX4 sample contains new 
functions that set the color key for the rotating donut sprites. Then, the sample copies 
the appropriate sprite to the back buffer from the off-screen surface.

The new functionality demonstrated in DDEX4 is shown in the following steps:

· Step 1: Setting the Color Key

· Step 2: Creating a Simple Animation

Step 1: Setting the Color Key
In addition to the other functions found in the doInit function of some of the other 
DirectDraw samples, the DDEX4 sample contains the code to set the color key for the 
sprites. Color keys are used for setting a color value that will be used for 
transparency. When the system contains a hardware blitter, all the pixels of a 
rectangle are blitted except the value that was set as the color key, thereby creating 
nonrectangular sprites on a surface. The code for setting the color key in DDEX4 is 
shown below:

// Set the color key for this bitmap (black). 

DDSetColorKey(lpDDSOne, RGB(0,0,0)); 

 

return TRUE; 

 

You can select the color key by setting the RGB values for the color you want in the 
call to the DDSetColorKey function. The RGB value for black is (0, 0, 0). The 
DDSetColorKey function calls the DDColorMatch function. (Both functions are in 
Ddutil.cpp.) The DDColorMatch function stores the current color value of the pixel 
at location (0, 0) on the bitmap located in the lpDDSOne surface. Then it takes the 
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RGB values you supplied and sets the pixel at location (0, 0) to that color. Finally, it 
masks the value of the color with the number of bits per pixel that are available. After 
that is done, the original color is put back in location (0, 0), and the call returns to 
DDSetColorKey with the actual color key value. After it is returned, the color key 
value is placed in the dwColorSpaceLowValue member of the DDCOLORKEY 
structure. It is also copied to the dwColorSpaceHighValue member. The call to 
IDirectDrawSurface3::SetColorKey then sets the color key.

You may have noticed the reference to CLR_INVALID in DDSetColorKey and 
DDColorMatch. If you pass CLR_INVALID as the color key in the 
DDSetColorKey call in DDEX4, the pixel in the upper-left corner (0, 0) of the 
bitmap will be used as the color key. As the DDEX4 bitmap is delivered, that does 
not mean much because the color of the pixel at (0, 0) is a shade of gray. If, however, 
you would like to see how to use the pixel at (0, 0) as the color key for the DDEX4 
sample, open the All.bmp bitmap file in a drawing application and then change the 
single pixel at (0, 0) to black. Be sure to save the change (it's hard to see). Then 
change the DDEX4 line that calls DDSetColorKey to the following:

DDSetColorKey(lpDDSOne, CLR_INVALID); 

 

Recompile the DDEX4 sample, and ensure that the resource definition file is also 
recompiled so that the new bitmap is included. (To do this, you can simply add and 
then delete a space in the Ddex4.rc file.) The DDEX4 sample will then use the pixel 
at (0, 0), which is now set to black, as the color key.

Step 2: Creating a Simple Animation
The DDEX4 sample uses the updateFrame function to create a simple animation 
using the red donuts included in the All.bmp file. The animation consists of three red 
donuts positioned in a triangle and rotating at various speeds. This sample compares 
the Win32 GetTickCount function with the number of milliseconds since the last call 
to GetTickCount to determine whether to redraw any of the sprites. It subsequently 
uses the IDirectDrawSurface3::BltFast method first to blit the background from the 
off-screen surface (lpDDSOne) to the back buffer, and then to blit the sprites to the 
back buffer using the color key that you set earlier to determine which pixels are 
transparent. After the sprites are blitted to the back buffer, DDEX4 calls the 
IDirectDrawSurface3::Flip method to flip the back buffer and the primary surface.

Note that when you use IDirectDrawSurface3::BltFast to blit the background from 
the off-screen surface, the dwTrans parameter that specifies the type of transfer is set 
to DDBLTFAST_NOCOLORKEY. This indicates that a normal blit will occur with 
no transparency bits. Later, when the red donuts are blitted to the back buffer, the 
dwTrans parameter is set to DDBLTFAST_SRCCOLORKEY. This indicates that a 
blit will occur with the color key for transparency as it is defined, in this case, in the 
lpDDSOne buffer.

In this sample, the entire background is redrawn each time through the updateFrame 
function. One way of optimizing this sample would be to redraw only that portion of 
the background that changes while rotating the red donuts. Because the location and 
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size of the rectangles that make up the donut sprites never change, you should be able 
to easily modify the DDEX4 sample with this optimization.

Tutorial 5: Dynamically Modifying 
Palettes

The sample described in this tutorial (DDEX5) is a modification of the sample 
described in Tutorial 4 (DDEX4) example. DDEX5 demonstrates how to dynamically 
change the palette entries while an application is running. The new functionality 
demonstrated in DDEX5 is shown in the following steps:

· Step 1: Loading the Palette Entries

· Step 2: Rotating the Palettes

Step 1: Loading the Palette Entries
The following code in DDEX5 loads the palette entries with the values in the lower 
half of the All.bmp file (the part of the bitmap that contains the red donuts):

// First, set all colors as unused. 

for(i=0; i<256; i++) 

{ 

    torusColors[i] = 0; 

} 

 

// Lock the surface and scan the lower part (the torus area), 

// and keep track of all the indexes found. 

ddsd.dwSize = sizeof(ddsd); 

while (lpDDSOne->Lock(NULL, &ddsd, 0, NULL) == DDERR_WASSTILLDRAWING) 

    ; 

 

// Search through the torus frames and mark used colors. 

for(y=480; y<480+384; y++) 

{ 

    for(x=0; x<640; x++) 

    { 

        torusColors[((BYTE *)ddsd.lpSurface)[y*ddsd.lPitch+x]] = 1; 

    } 

} 

 

lpDDSOne->Unlock(NULL); 

 

The torusColors array is used as an indicator of the color index of the palette used in 
the lower half of the All.bmp file. Before it is used, all of the values in the 
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torusColors array are reset to 0. The off-screen buffer is then locked in preparation 
for determining if a color index value is used.

The torusColors array is set to start at row 480 and column 0 of the bitmap. The 
color index value in the array is determined by the byte of data at the location in 
memory where the bitmap surface is located. This location is determined by the 
lpSurface member of the DDSURFACEDESC structure, which is pointing to the 
memory location corresponding to row 480 and column 0 of the bitmap 
(y  lPitch + x). The location of the specific color index value is then set to 1. The y 
value (row) is multiplied by the lPitch value (found in the DDSURFACEDESC 
structure) to get the actual location of the pixel in linear memory.

The color index values that are set in torusColors will be used later to determine 
which colors in the palette are rotated. Because there are no common colors between 
the background and the red donuts, only those colors associated with the red donuts 
are rotated. If you want to check whether this is true or not, just remove the 
"*ddsd.lPitch" from the array and see what happens when you recompile and run the 
program. (Without multiplying ylPitch, the red donuts are never reached and only 
the colors found in the background are indexed and later rotated.) For more 
information about width and pitch, see Width and Pitch.

Step 2: Rotating the Palettes
The updateFrame function in DDEX5 works in much the same way as it did in 
Tutorial 4 (DDEX4). It first blits the background into the back buffer, and then it blits 
the three donuts in the foreground. However, before it flips the surfaces, 
updateFrame changes the palette of the primary surface from the palette index that 
was created in the doInit function, as shown in the following code:

// Change the palette. 

if(lpDDPal->GetEntries(0, 0, 256, pe) != DD_OK) 

{ 

    return; 

} 

 

for(i=1; i<256; i++) 

{ 

    if(!torusColors[i]) 

    { 

       continue; 

    } 

    pe[i].peRed = (pe[i].peRed+2) % 256; 

    pe[i].peGreen = (pe[i].peGreen+1) % 256; 

    pe[i].peBlue = (pe[i].peBlue+3) % 256; 

} 

 

if(lpDDPal->SetEntries(0, 0, 256, pe) != DD_OK) 

{ 
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    return; 

} 

 

The IDirectDrawPalette::GetEntries method in the first line queries palette values 
from a DirectDrawPalette object. Because the palette entry values pointed to by pe 
should be valid, the method will return DD_OK and continue. The loop that follows 
checks torusColors to determine if the color index was set to 1 during its 
initialization. If so, the red, green, and blue values in the palette entry pointed to by pe 
are rotated.

After all of the marked palette entries are rotated, the 
IDirectDrawPalette::SetEntries method is called to change the entries in the 
DirectDrawPalette object. This change takes place immediately if you are working 
with a palette set to the primary surface.

With this done, the surfaces are subsequently flipped.

Tutorial 6: Using Overlay Surfaces
This tutorial shows you, step by step, how to use DirectDraw and hardware supported 
overlay surfaces in your applications. The tutorial is written around the Mosquito 
sample application included with the DirectX SDK samples. The Mosquito sample is 
a simple application that uses a flipping chain of overlay surfaces to display an 
animated bitmap on the desktop without blitting to the primary surface. The sample 
adjusts the characteristics of the overlay surface as needed to accommodate for 
hardware limitations.

The Mosquito sample application performs the following steps (complex tasks are 
divided into smaller sub-steps):

· Step 1: Creating a Primary Surface

· Step 2: Testing for Hardware Overlay Support

· Step 3: Creating an Overlay Surface

· Step 4: Displaying the Overlay Surface

· Step 5: Updating the Overlay Display Position

· Step 6: Hiding the Overlay Surface

Step 1: Creating a Primary Surface
To prepare for using overlay surfaces, you must first initialize DirectDraw and create 
a primary surface over which the overlay surface will be displayed. Mosquito creates 
a primary surface with the following code:

    // Zero-out the structure and set the dwSize member.

    ZeroMemory(&ddsd, sizeof(ddsd));

    ddsd.dwSize = sizeof(ddsd);
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    // Set flags and create a primary surface.

    ddsd.dwFlags = DDSD_CAPS;

    ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

    ddrval = g_lpdd->CreateSurface(&ddsd, &g_lpddsPrimary, NULL );

 

The preceding example begins by initializing the DDSURFACEDESC structure it 
will use. It then sets the flags appropriate to create a primary surface and creates it by 
calling the IDirectDraw2::CreateSurface method. For the call, the first parameter is 
a pointer to a DDSURFACEDESC structure that describes the surface to be created. 
The second parameter is a pointer to a variable that will receive an 
IDirectDrawSurface interface pointer if the call succeeds. The last parameter is set 
to NULL to indicate that no COM aggregation is taking place.

Step 2: Testing for Hardware Overlay Support
After initializing DirectDraw, you need to verify that the device supports overlay 
surfaces. Because DirectDraw doesn’t emulate overlays, if the hardware device driver 
doesn’t support them, you can’t continue. You can test for overlay support by 
retrieving the device driver capabilities with the IDirectDraw2::GetCaps method. 
After the call, look for the presence of the DDCAPS_OVERLAY flag in the dwFlags 
member of the associated DDCAPS structure. If the flag is present, then the display 
hardware supports overlays; if not, you can’t use overlay surfaces with that device.

The following example, taken from the Mosquito sample application, shows how to 
test for hardware overlay support.

BOOL AreOverlaysSupported()

{

    DDCAPS  capsDrv;

    HRESULT ddrval;

    // Get driver capabilities to determine Overlay support.

    ZeroMemory(&capsDrv, sizeof(capsDrv));

    capsDrv.dwSize = sizeof(capsDrv);

    ddrval = g_lpdd->GetCaps(&capsDrv, NULL);

    if (FAILED(ddrval))

        return FALSE;

    // Does the driver support overlays in the current mode? 

    // (Currently the DirectDraw emulation layer does not support overlays.

    // Overlay related APIs will fail without hardware support). 

    if (!(capsDrv.dwCaps & DDCAPS_OVERLAY))

        return FALSE;

    return TRUE;
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} 

The preceding example calls the IDirectDraw2::GetCaps method to retrieve device 
driver capabilities. The first parameter for the call is the address of a DDCAPS that 
will be filled with information describing the device driver’s capabilities. Because the 
application doesn’t need information about emulation capabilities, the second 
parameter is set to NULL.

After retrieving the driver capabilities, the example checks the dwCaps member for 
the presence of the DDCAPS_OVERLAY flag using a logical AND operation. If the 
flag isn’t present, the example returns FALSE to indicate failure. Otherwise, the 
example returns TRUE to indicate that the device driver supports overlay surfaces.

In your code, this might be a good time for you to check the dwMaxVisibleOverlays 
and dwCurrentVisibleOverlays members in the DDCAPS structure to ensure that no 
other overlay surfaces are in use by other applications.

Step 3: Creating an Overlay Surface
Now that you know that the driver supports overlay surfaces, you can try to create 
one. Because there is no standard dictating how devices must support overlay 
surfaces, you can’t count on being able to create overlays of any particular size or 
pixel format. Additionally, you can’t expect to succeed in creating an overlay surface 
on the first try. Therefore, be prepared to attempt creation multiple times starting with 
the most desirable characteristics, falling back on less desirable (but possibly less 
hardware intensive) configurations until one works.

(You can call the IDirectDraw2::GetFourCCCodes method to retrieve a list of 
FOURCC codes that describe non-RGB pixel formats that the driver will likely 
support for overlay surfaces. However, in you want to try using RGB overlay 
surfaces, it is recommended that you attempt to creating surfaces in various common 
RGB formats, falling back on another format if you fail.)

The Mosquito sample follows a “best case to worst case” philosophy when creating 
an overlay surface. Mosquito first tries to create a triple-buffered page flipping 
complex overlay surface. If the creation attempt fails, the sample tries the 
configuration with other common pixel formats. The following code fragment shows 
how this can be done:

    ZeroMemory(&ddsdOverlay, sizeof(ddsdOverlay));

    ddsdOverlay.dwSize = sizeof(ddsdOverlay);

    ddsdOverlay.dwFlags= DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | 

                         DDSD_BACKBUFFERCOUNT| DDSD_PIXELFORMAT;

    ddsdOverlay.ddsCaps.dwCaps = DDSCAPS_OVERLAY | DDSCAPS_FLIP |

                                 DDSCAPS_COMPLEX | DDSCAPS_VIDEOMEMORY;

    ddsdOverlay.dwWidth  =320;

    ddsdOverlay.dwHeight =240;

    ddsdOverlay.dwBackBufferCount=2;
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    // Try to create an overlay surface using one of the pixel formats in our

    // global list.

    i=0;

    do{

   ddsdOverlay.ddpfPixelFormat=g_ddpfOverlayFormats[i];

       // Try to create the overlay surface

       ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);

    } while( FAILED(ddrval) && (++i < NUM_OVERLAY_FORMATS) );

 

The preceding example sets the flags and values within a DDSURFACEDESC 
structure to reflect a triple-buffered page flipping complex overlay surface. Then, the 
sample performs a loop during which it attempts to create the requested surface in a 
variety of common pixel formats, in order of most desirable to least desirable pixel 
formats. If the attempt succeeds, the loop ends. If all the attempts fail, it’s likely that 
the display hardware doesn’t have enough memory to support a triple-buffered 
scheme or that it doesn’t support flipping overlay surfaces. In this case, the sample 
falls back on a less desirable configuration using a single non-flipping overlay 
surface, as shown in the following example:

    // If we failed to create a triple buffered complex overlay surface, try

    // again with a single non-flippable buffer.

    if(FAILED(ddrval))

    {

        ddsdOverlay.dwBackBufferCount=0;

        ddsdOverlay.ddsCaps.dwCaps=DDSCAPS_OVERLAY | DDSCAPS_VIDEOMEMORY;

        ddsdOverlay.dwFlags= DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|

DDSD_PIXELFORMAT;

        // Try to create the overlay surface

        ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);

        i=0;

        do{

            ddsdOverlay.ddpfPixelFormat=g_ddpfOverlayFormats[i];

            ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);

        } while( FAILED(ddrval) && (++i < NUM_OVERLAY_FORMATS) );

        // We couldn't create an overlay surface.  Exit, returning failure.

        if (FAILED(ddrval))

            return FALSE;

    }

 

The code above resets the flags and values in the DDSURFACEDESC structure to 
reflect a single non-flipping overlay surface. Again, the example loops through pixel 
formats attempting to create the surfaces, stopping the loop if an attempt succeeded. If 
the attempts still didn’t work, the sample returns FALSE to indicate failure.
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After you’ve successfully created your overlay surface or surfaces, you can load 
bitmaps onto them in preparation for display.

Step 4: Displaying the Overlay Surface
After creating your overlay surface, you can display it. Often, display hardware 
imposes alignment restrictions on the position and pixel width of the rectangles you 
use to display the overlay. Additionally, you will often need to account for a 
minimum required stretch factor by adjusting the width of the destination rectangle in 
order to successfully display the overlay surface. The Mosquito sample performs the 
following tasks to prepare and display the overlay surface:

· Step 4.1: Determining the Minimum Display Requirements

· Step 4.2: Setting Up the Source and Destination Rectangles

· Step 4.3: Displaying the Overlay Surface

Step 4.1: Determining the Minimum Display Requirements

Most display hardware imposes restrictions on displaying overlay surfaces. You must 
carefully meet these restrictions in order to successfully display an overlay surface. 
You can retrieve information about these restrictions by calling the 
IDirectDraw2::GetCaps method. The DDCAPS structure that the method fills 
contains information about overlay capabilities and their usage restrictions. Hardware 
restrictions vary, so always look at the flags included in the dwFlags member to 
determine which restrictions apply to you.

The Mosquito sample starts by retrieving the hardware capabilities, then takes action 
based upon the minimum stretch factor, as shown in the following code fragment:

    // Get driver capabilities

    ddrval = g_lpdd->GetCaps(&capsDrv, NULL);

    if (FAILED(ddrval))

        return FALSE;

    // Check the minimum stretch and set the local variable accordingly.

    if(capsDrv.dwCaps & DDCAPS_OVERLAYSTRETCH)

        uStretchFactor1000 = (capsDrv.dwMinOverlayStretch>1000) ? 

capsDrv.dwMinOverlayStretch : 1000;

    else

        uStretchFactor1000 = 1000;

 

The code above calls IDirectDraw2::GetCaps to retrieve only the hardware 
capabilities. For this call, the first parameter is a pointer the DDCAPS structure that 
will be filled with the capability information for the device driver, and the second 
parameter is NULL to indicate that emulation information is not to be retrieved.

The example retains the minimum stretch factor in a temporary variable for use later. 
(Keep in mind that stretch factors are reported multiplied by 1000, so 1300 really 
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means 1.3.) If the driver reports a value greater than 1000, it means that the driver 
requires that all destination rectangles must be stretched along the X-axis by a ratio of 
the reported value. For example, if the driver reports a stretch factor 1.3 and the 
source rectangle is 320 pixels wide, the destination rectangle must be at least 416 
pixels wide. If the driver reports a stretch factor less than 1000, it means that the 
driver can display overlays smaller than the source rectangle, but can also stretch the 
overlay if desired.

Next, the sample examines values describing the driver’s size alignment restrictions, 
as shown in the following example:

    // Grab any alignment restrictions and set the local variables acordingly.

    uSrcSizeAlign = (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC)?

capsDrv.dwAlignSizeSrc:0;

    uDestSizeAlign= (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC)?

capsDrv.dwAlignSizeDest:0;

 

The sample uses more temporary variables to hold the reported size alignment 
restrictions taken from the dwAlignSizeSrc and dwAlignSizeDest members. These 
values provide information about pixel width alignment restrictions and are needed 
when setting the dimensions of the source and destination rectangles to reflect these 
restrictions later. Source and destination rectangles must have a pixel width that is a 
multiple of the values in these members.

Last, the sample examines the value that describes the destination rectangle boundary 
alignment:

    // Set the "destination position alignment" global so we won't have to

    // keep calling GetCaps() every time we move the overlay surface.

    if (capsDrv.dwCaps & DDCAPS_ALIGNBOUNDARYDEST)

        g_dwOverlayXPositionAlignment = capsDrv.dwAlignBoundaryDest;

    else 

        g_dwOverlayXPositionAlignment = 0;

 

The preceding code uses a global variable to hold the value for the destination 
rectangle’s boundary alignment, as taken from the dwAlignBoundaryDest member. 
This value will be used when the program repositions the overlay later. (For details, 
see Step 5: Updating the Overlay Display Position) You must set the x-coordinate of 
the destination rectangle’s top left corner to be aligned with this value, in pixels. That 
is, if the value specified is 4, you can only specify destination rectangles whose top-
left corner has an  x-coordinate at pixels 0, 4, 8, 12, and so on. The Mosquito 
application initially displays the overlay at 0,0, so alignment compliance is assumed 
and the sample doesn’t need to retrieve the restriction information until after 
displaying the overlay the first time. Your implementation might vary, so you will 
probably need to check this information and adjust the destination rectangle before 
displaying the overlay.
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Step 4.2: Setting Up the Source and Destination 
Rectangles

After retrieving the driver’s overlay restrictions you should set the values for your 
source and destination rectangles accordingly, assuring that you will be able to 
successfully display the overlay. The following sample from the Mosquito sample 
application starts by setting the characteristics of the source rectangle:

    // Set initial values in the source RECT.

    rs.left=0; rs.top=0; 

    rs.right = 320;

    rs.bottom = 240;

    // Apply size alignment restrictions, if necessary.

    if (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC && uSrcSizeAlign)

        rs.right -= rs.right % uSrcSizeAlign; 

 

The preceding code sets initial values for the surface to include the dimensions of the 
entire surface. If the device driver requires size alignment for the source rectangle, the 
example adjusts the source rectangle to conform. The example adjusts the width of 
the source rectangle to be narrower than the original size because the width cannot be 
expanded without completely recreating the surface. However, your code could just 
as easily start with a smaller rectangle and widen the rectangle to meet driver 
restrictions.

After the dimensions of the source rectangle are set and conform with hardware 
restrictions, you need to set and adjust the dimensions of the destination rectangle. 
This process requires a little more work because the rectangle might need to be 
stretched first, then adjusted to meet size alignment restrictions. The following code 
performs the task of accounting for the minimum stretch factor:

    // Set up the destination RECT, starting with the source RECT values.

    // We use the source RECT dimensions instead of the surface dimensions in

    // case they differ.

    rd.left=0; rd.top=0; 

    rd.right  = (rs.right*uStretchFactor1000+999)/1000; // (Adding 999 avoids integer 

truncation problems.)

    // (This isn't required by DDraw, but we'll stretch the

    //  height, too, to maintain aspect ratio).

    rd.bottom = rs.bottom*uStretchFactor1000/1000; 

 

The preceding code sets the top left corner of the destination rectangle to the top left 
corner of the screen, then sets the width to account for the minimum stretch factor. 
While adjusting for the stretch factor, note that the example adds 999 to the product 
of the width and stretch factor. This is done to prevent integer truncation that could 
result in a rectangle that isn’t as wide as the minimum stretch factor requires. For 
more information, see Minimum and Maximum Stretch Factors. Also, after the 



in.doc – page 98

example stretches the width, it stretches the height. Stretching the height isn’t 
required, but was done to preserve the bitmap’s aspect ratio and avoid a distorted 
appearance.

After stretching the destination rectangle, the example continues by adjusting it to 
conform to size alignment restrictions as follows:

    // Adjust the destination RECT's width to comply with any imposed

    // alignment restrictions.

    if (capsDrv.dwCaps & DDCAPS_ALIGNSIZEDEST && uDestSizeAlign)

        rd.right = (int)((rd.right+uDestSizeAlign-1)/uDestSizeAlign)*uDestSizeAlign;

 

The example checks the capabilities flags to see if the driver imposes destination size 
alignment restrictions. If so, the destination rectangle’s width is increased by enough 
pixels to meet alignment restrictions. Note that the rectangle is adjusted by expanding 
the width, not by decreasing it. This is done because decreasing the width could cause 
the destination rectangle to be smaller than is required by the minimum stretch factor, 
consequently causing attempts to display the overlay surface to fail.

Step 4.3: Displaying the Overlay Surface

After you’ve set up the source and destination rectangles, you can display the overlay 
for the first time. If you’ve prepared correctly, this will be simple. The Mosquito 
sample uses the following code to initially display the overlay:

    // Set the flags we'll send to UpdateOverlay

    dwUpdateFlags = DDOVER_SHOW | DDOVER_DDFX;

    // Does the overlay hardware support source color keying?

    // If so, we can hide the black background around the image.

    // This probably won't work with YUV formats

    if (capsDrv.dwCKeyCaps & DDCKEYCAPS_SRCOVERLAY)

        dwUpdateFlags |= DDOVER_KEYSRCOVERRIDE;

    // Create an overlay FX structure so we can specify a source color key.

    // This information is ignored if the DDOVER_SRCKEYOVERRIDE flag isn't set.

    ZeroMemory(&ovfx, sizeof(ovfx));

    ovfx.dwSize = sizeof(ovfx);

    ovfx.dckSrcColorkey.dwColorSpaceLowValue=0; // Specify black as the color key

    ovfx.dckSrcColorkey.dwColorSpaceHighValue=0;

    // Call UpdateOverlay() to displays the overlay on the screen.

    ddrval = g_lpddsOverlay->UpdateOverlay(&rs, g_lpddsPrimary, &rd, dwUpdateFlags, &ovfx);

    if(FAILED(ddrval))

        return FALSE;
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The preceding example starts by setting the DDOVER_SHOW and 
DDOVER_DDFX flags in the dwUpdateFlags temporary variable, indicating that the 
overlay is to be displayed for the first time, and that the hardware should use the 
effects information included in an associated DDOVERLAYFX structure to do so. 
Next, the example checks a previously existing DDCAPS structure to determine if 
overlay source color keying is supported. If it is, the 
DDOVER_KEYSRCOVERRIDE is included in the dwUpdateFlags variable to take 
advantage of source color keying and the example sets color key values accordingly.

After preparation is complete, the example calls the 
IDirectDrawSurface3::UpdateOverlay method to display the overlay. For the call, 
the first and third parameters are the addresses of the adjusted source and destination 
rectangles. The second parameter is the address of the primary surface over which the 
overlay will be displayed. The fourth parameter consists of the flags placed in the 
previously prepared dwUpdateFlags variable, and the fifth parameter is the address of 
DDOVERLAYFX structure whose members were set to match those flags.

If the hardware only supports one overlay surface and that surface is in use, the 
UpdateOverlay method fails, returning DDERR_OUTOFCAPS. Additionally, if 
UpdateOverlay fails, you might try increasing the width of the destination rectangle 
to accommodate for the possibility that the hardware incorrectly reported a minimum 
stretch factor that was too small. However, this rarely occurs and Mosquito simply 
fails if UpdateOverlay doesn’t succeed.

Step 5: Updating the Overlay Display Position
After displaying the overlay surface, you might not need to do anything else. 
However, some software might need to reposition the overlay surface. The Mosquito 
sample uses the IDirectDrawSurface3::SetOverlayPosition method to reposition 
the overlay, as shown in the following example.

    // Set X- and Y-coordinates

    .

    .

    .

    // We need to check for any alignment restrictions on the X position

    // and align it if necessary.

    if (g_dwOverlayXPositionAlignment)

        dwXAligned = g_nOverlayXPos - g_nOverlayXPos % g_dwOverlayXPositionAlignment;

    else

        dwXAligned = g_nOverlayXPos;

    // Set the overlay to its new position.

    ddrval = g_lpddsOverlay->SetOverlayPosition(dwXAligned, g_nOverlayYPos);

    if (ddrval == DDERR_SURFACELOST)

    {

        if (!RestoreAllSurfaces()) 

            return;
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    }

 

The preceding example starts by aligning the rectangle to meet any destination 
rectangle boundary alignment restrictions that might exist. The global variable that it 
checks, g_dwOverlayXPositionAlignment, was set earlier to equal the value reported 
in the dwAlignBoundaryDest member of the DDCAPS structure when the 
application previously called the IDirectDraw2::GetCaps method. (For details, see 
Step 4.1: Determining the Minimum Display Requirements). If destination alignment 
restrictions exist, the example adjusts the new x-coordinate to be pixel-aligned 
accordingly. Failing to meet this requirement will cause the overlay surface not to be 
displayed.

After making any requisite adjustments to the new x-coordinate, the example calls 
IDirectDrawSurface3::SetOverlayPosition method to reposition the overlay. For 
the call, the first parameter is the aligned x-coordinate, and the second parameter is 
the new y-coordinate. These values represent the new location of the overlay’s top-
left corner. Width and height information are not accepted, nor are they needed 
because DirectDraw already knows the dimensions of the surface from the 
IDirectDrawSurface3::UpdateOverlay method made to initially display the 
overlay. If the call fails because one or more surfaces were lost, the example calls an 
application-defined function to restore them and reload their bitmaps.

Note:
Take care not to use coordinates too close to the bottom or right edge of the 
target surface. The IDirectDraw2::SetOverlayPosition method does not 
perform clipping for you; using coordinates that would potentially make the 
overlay run off the edge of the target surface will cause the method to fail, 
returning DDERR_INVALIDPOSITION.

Step 6: Hiding the Overlay Surface
When you do not need the overlay surface anymore, or if you simply want to remove 
it from view, you can hide the surface by calling the 
IDirectDrawSurface3::UpdateOverlay method with appropriate flags. Mosquito 
hides the overlay in preparation for closing the application using the following code:

void DestroyOverlay()

{

    if (g_lpddsOverlay){

        // Use UpdateOverlay() with the DDOVER_HIDE flag to remove an overlay 

        // from the display.

        g_lpddsOverlay->UpdateOverlay(NULL, g_lpddsPrimary, NULL, DDOVER_HIDE, NULL);

        g_lpddsOverlay->Release();

        g_lpddsOverlay=NULL;

    }

}
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When the preceding example calls IDirectDrawSurface3::UpdateOverlay, it 
specifies NULL for the source and destination rectangles, because they are irrelevant 
when hiding the overlay. Similarly, the example uses NULL in the fourth parameter 
because overlay effects aren’t being used. The second parameter is a pointer to the 
target surface. Lastly, the example uses the DDOVER_HIDE flag in the fourth 
parameter to indicate that the overlay will be removed from view.

After the example hides the overlay, the example releases its IDirectDrawSurface3 
interface and invalidates its global variable by setting it to NULL. For the purposes of 
the Mosquito sample application, the overlay surface is no longer needed. If you still 
need the overlay surface for later, you could simply hide the overlay without releasing 
it, then redisplay it whenever you require.

Other DirectDraw Samples
To learn more about how DirectDraw can be used in applications, you should check 
out some of the other following samples included with the DirectX SDK:

· Stretch

Demonstrates how to create a nonexclusive (windowed) mode animation in a 
window that is capable of clipped blitting and stretched-clipped blitting.

· Donut

Demonstrates testing multiple exclusive-mode applications interacting with 
nonexclusive-mode applications.

· Wormhole

Demonstrates palette animation.

· Dxview

Demonstrates how to retrieve the capabilities of the display hardware.

Other samples you can examine for their DirectDraw code include Duel, Iklowns, 
Foxbear, Palette, and Flip2d.
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