
DirectDraw
This section provides information about the DirectDraw component. Information is
divided into the following groups:

· About DirectDraw

· Why Use DirectDraw?

· Getting Started-Basic Graphics Concepts

· DirectDraw Architecture

· DirectDraw Essentials

· DirectDraw Tutorials

· DirectDraw Reference

About DirectDraw
DirectDraw® is a DirectX® SDK component that allows you to directly manipulate
display memory, the hardware blitter, hardware overlay support, and flipping surface
support. DirectDraw provides this functionality while maintaining compatibility with
existing Microsoft® Windows®-based applications and device drivers.

DirectDraw is a software interface that provides direct access to display devices while
maintaining compatibility with the Windows graphics device interface (GDI). It is not
a high-level application programming interface (API) for graphics. DirectDraw
provides a device-independent way for games and Windows subsystem software,
such as 3-D graphics packages and digital video codecs, to gain access to the features
of specific display devices.

DirectDraw works with a wide variety of display hardware, ranging from simple
SVGA monitors to advanced hardware implementations that provide clipping,
stretching, and non-RGB color format support. The interface is designed so that your
applications can enumerate the capabilities of the underlying hardware and then use
any supported hardware-accelerated features. Features that are not implemented in
hardware are emulated by DirectX.

DirectDraw provides device-dependent access to display memory in a device-
independent way. Essentially, DirectDraw manages display memory. Your
application need only recognize some basic device dependencies that are standard
across hardware implementations, such as RGB and YUV color formats and the pitch
between raster lines. You need not call specific procedures to use the blitter or
manipulate palette registers. Using DirectDraw, you can manipulate display memory
with ease, taking full advantage of the blitting and color decompression capabilities of
different types of display hardware without becoming dependent on a particular piece
of hardware.

in.doc – page 2

DirectDraw provides world-class game graphics on computers running Windows 95
and Windows NT® version 4.0 or later.

Why Use DirectDraw?
The DirectDraw component brings many powerful features to you, the Windows
graphics programmer:

· The Hardware Abstraction Layer (HAL) of DirectDraw provides a consistent
interface through which to work directly with the display and video memory,
getting maximum performance from the system hardware.

· DirectDraw assesses the video hardware's capabilities, making use of special
hardware features whenever possible. For example, if your video card supports
hardware blitting, DirectDraw delegates blits to the video card, greatly increasing
performance. Additionally, DirectDraw provides a Hardware Emulation Layer
(HEL) to support features when the hardware does not.

· DirectDraw exists over Windows 95, gaining the advantage of 32-bit memory
addressing and a flat memory model that the operating system provides.
DirectDraw presents video and system memory as large blocks of storage, not as
small segments. If you've ever used segment:offset addressing, you will quickly
begin to appreciate this "flat" memory model.

· DirectDraw makes it easy for you to implement page flipping with multiple back
buffers in full-screen applications. For more information, see Page Flipping and
Back Buffering.

· Support for clipping in windowed or full-screen applications.

· Support for 3-D z-buffers.

· Support for hardware-assisted overlays with z-ordering.

· Access to image-stretching hardware.

· Simultaneous access to standard and enhanced display-device memory areas.

· Other features include custom and dynamic palettes, exclusive hardware access,
and resolution switching.

These features combine to make it possible for you to write applications that easily
out-perform standard Windows GDI-based applications and even MS-DOS
applications.

in.doc – page 3

Getting Started-Basic Graphics
Concepts

This section provides an overview of graphics programming with DirectDraw. Each
concept discussed here begins with a non-technical overview, followed by some
specific information about how DirectDraw supports it.

To get the most from this overview, you don't need to be a graphics guru—in fact, if
you are, you might want to skip this section entirely and move on to the more detailed
information contained within the DirectDraw Essentials section. If you're familiar
with Windows programming in C and C++, you won't have difficulty digesting this
information. When you finish reading these topics, you will have a solid
understanding of basic DirectDraw graphics programming concepts. The following
topics are discussed:

· Device-Independent Bitmaps

· Drawing Surfaces

· Blitting Concepts

· Page Flipping and Back Buffering

· Introduction to Rectangles

· Sprite Concepts

Device-Independent Bitmaps
Windows, and therefore DirectX, uses the Device-Independent Bitmap (DIB) as its
native graphics file format. Essentially, a DIB is a file that contains information
describing an image's dimensions, the number of colors it uses, values describing
those colors, and data that describes each pixel. Additionally, a DIB contains some
lesser-used parameters, like information about file compression, significant colors (if
all are not used), and physical dimensions of the image (in case it will end up in
print). DIB files usually have the ".bmp" file extension, although they might
occasionally have a ".dib" extension.

Because the DIB is so pervasive in Windows programming, the Platform SDK
already contains many functions that you can use with DirectX. For example, the
following application-defined function, taken from the ddutil.cpp file that comes with
the DirectX APIs in the Platform SDK, combines Win32â and DirectX functions to
load a DIB onto a DirectX surface.

extern "C" IDirectDrawSurface * DDLoadBitmap(IDirectDraw *pdd,

 LPCSTR szBitmap, int dx, int dy)

{

 HBITMAP hbm;

 BITMAP bm;

 DDSURFACEDESC ddsd;

in.doc – page 4

 IDirectDrawSurface *pdds;

 //

 // This is the Win32 part.

 // Try to load the bitmap as a resource, if that fails, try it as a file.

 //

 hbm = (HBITMAP)LoadImage(GetModuleHandle(NULL), szBitmap, IMAGE_BITMAP, dx, dy,

LR_CREATEDIBSECTION);

 if (hbm == NULL)

 hbm = (HBITMAP)LoadImage(NULL, szBitmap, IMAGE_BITMAP, dx, dy,

LR_LOADFROMFILE|LR_CREATEDIBSECTION);

 if (hbm == NULL)

 return NULL;

 //

 // Get the size of the bitmap.

 //

 GetObject(hbm, sizeof(bm), &bm);

 //

 // Now, return to DirectX function calls.

 // Create a DirectDrawSurface for this bitmap.

 //

 ZeroMemory(&ddsd, sizeof(ddsd));

 ddsd.dwSize = sizeof(ddsd);

 ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT |DDSD_WIDTH;

 ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;

 ddsd.dwWidth = bm.bmWidth;

 ddsd.dwHeight = bm.bmHeight;

 if (pdd->CreateSurface(&ddsd, &pdds, NULL) != DD_OK)

 return NULL;

 DDCopyBitmap(pdds, hbm, 0, 0, 0, 0);

 DeleteObject(hbm);

 return pdds;

}

For more detailed information about DIB files, see the Platform SDK.

in.doc – page 5

Drawing Surfaces
Drawing surfaces receive video data to eventually be displayed on screen as images
(bitmaps, to be exact). In most Windows programs, you get access to the drawing
surface using a Win32 function such as GetDC, which stands for get the device
context (DC). After you have the device context, you can start painting the screen.
However, Win32 graphics functions are provided by an entirely different part of the
system, the graphics device interface (GDI). The GDI is a system component that
provides an abstraction layer that enables standard Windows applications to draw to
the screen.

The drawback of GDI is that it wasn’t designed for high-performance multimedia
software, it was made to be used by business applications like word processors and
spreadsheet applications. GDI provides access to a video buffer in system memory,
not video memory, and doesn't take advantage of special features that some video
cards provide. In short, GDI is great for most types of business software, but its
performance is too slow for multimedia or game software.

On the other hand, DirectDraw can give you drawing surfaces that represent actual
video memory. This means that when you use DirectDraw, you can write directly to
the memory on the video card, making your graphics routines extremely fast. These
surfaces are represented as contiguous blocks of memory, making it easy to perform
addressing within them.

For more detailed information, see Surfaces.

Blitting Concepts
The term blit is shorthand for "bit block transfer," which is the process of transferring
blocks of data from one place in memory to another. Graphics programmers use
blitting to transfer graphics from one place in memory to another. Blits are often used
to perform sprite animation, which is discussed later. For more information see, Sprite
Concepts.

You can use the IDirectDrawSurface3::Blt and IDirectDrawSurface3::BltFast
methods to perform blitting.

Page Flipping and Back Buffering
Page flipping is key in multimedia, animation, and game software. Software page
flipping is analogous to the way cartoon artists animate their images. For example, the
artist draws a figure on a sheet of paper, then sets it aside to work on the next frame.
With each frame, the artist changes the figure slightly, so that when you flip between
sheets rapidly the figure appears animated.

Page flipping in software is very similar to this process. Initially, you set up a series
of DirectDraw surfaces that are designed to "flip" to the screen the way artist's paper
flips to the next page. The first surface is referred to as the primary surface, and the

in.doc – page 6

surfaces behind it are called back buffers . Your application writes to a back buffer,
then flips the primary surface so that the back buffer appears on screen. While the
system is displaying the image, your software is again writing to a back buffer. The
process continues as long as you're animating, allowing you to animate images
quickly and efficiently.

DirectDraw makes it easy for you to set up page flipping schemes, from a relatively
simple double-buffered scheme (a primary surface with one back buffer) to more
sophisticated schemes that add additional back buffers. For more information see
DirectDraw Tutorials and Flipping Surfaces.

Introduction to Rectangles
Throughout DirectDraw and Windows programming, objects on the screen are
referred to in terms of bounding rectangles. A bounding rectangle is described by two
points, the top-left corner and bottom-right corner. Most applications use the RECT
structure to carry information about a bounding rectangle to use when blitting to the
screen or performing hit detection. The RECT structure has the following definition:

typedef struct tagRECT {

 LONG left; // This is the top-left corner’s X-coordinate.

 LONG top; // The top-left corner’s Y-coordinate.

 LONG right; // The bottom-right corner’s X-coordinate.

 LONG bottom; // The bottom-right corner’s Y-coordinate.

} RECT, *PRECT, NEAR *NPRECT, FAR *LPRECT;

In the preceding example, the left and top members are the X- and Y-coordinates of a
bounding rectangle’s top-left corner. Similarly, the right and bottom members make
up the coordinates of the bottom-right corner. The following diagram illustrates how
you can visualize these values:

in.doc – page 7

Bounding Rectangle
(RECT)

Display Screen

(left, top)

(right, bottom)

Sprite Concepts
This section contains information about the basic concepts behind a common type of
sprite animation. The following topics are discussed:

· What is a Sprite?

· Transparent Blitting and Color Keys

· Sprite and Patch Rectangles

· Bounds Checking and Hit Detection

What is a Sprite?
Many video games use sprites. In its most basic sense, a sprite is an image that moves
around on the screen. The sprite is drawn onto a surface over the existing background,
the composed scene is sent to the screen, then the sprite is redrawn in a new location,
and the process repeats. Combine this with repairing the sprite's old location on the
background and page flipping and you get the illusion that a sprite is moving around
the screen.

Transparent Blitting and Color Keys
One challenge in sprite animation is accommodating nonrectangular sprites, which
means almost all of them. Because blitting functions work with rectangles (for
efficiency, consistency, and ease of use), your sprites must fit into rectangles as well,
whether or not they actually look rectangular on the screen.

in.doc – page 8

Although the concept might be confusing at first, this is how it works: The sprite
image itself is nonrectangular, but is contained in a rectangular space where every
pixel that is not part of the sprite is treated as "transparent" when the blitter is moving
the image to its destination. The artist creating the sprite chooses an arbitrary color
that will be used as the transparency "color key." This is typically a single uncommon
color that the artist doesn't use for anything but transparency, but it can also be a
specified range of colors.

Using the IDirectDrawSurface3::SetColorKey method, you can set the color key
for a surface. After the color key is set, subsequent IDirectDrawSurface3::BltFast
method calls can take advantage of that color key, ignoring the pixels that match it.
This type of color key is known as a source color key. Because the source color key
prevents “transparent” pixels from being written to the destination, the original
background pixels are preserved in these places, making it look like the sprite is non-
rectangular object and passing over the background.

Additionally, you can use a color key that affects the destination surface (a
destination color key). A destination color key is a color on a surface that is used for
pixels that can be overwritten by a sprite. In this case, for example, the artist might be
working on a foreground image that sprites are supposed to pass behind, creating a
layered effect. Again, the artist chooses an arbitrary color that isn't used elsewhere in
the image, reserving it as a portion of the image where you are allowed to blit. When
you blit a sprite to the destination surface with a destination color key specified, the
sprite's pixels will only be blitted to pixels on the destination that are using the
destination color key. Because the normal destination pixels are preserved, it looks
like the sprite passes behind the image on the destination surface.

Sprite and Patch Rectangles
To complete the illusion of sprite movement, you need a way to erase the sprite's
image from the background before you draw it at its new location. You could reload
the entire background and redraw the sprite, but a great deal of performance would be
lost. Instead, you can keep track of the rectangle that is the sprite's last location and
redraw only that portion. This method is called "patching." To patch the sprite's old
location, redraw the sprite's old location with a copy of the original background
image, which you previously loaded on an off-screen surface. The process works
well, because it doesn't waste a lot of processing time blitting an entire surface each
cycle.

This process can be described in the following simple steps:

1. Set the patch rectangle to the last sprite location.

2. Patch the background at that location by blitting to the background image from
the off-screen master copy.

3. Update the sprite's destination rectangle to reflect its new location.

4. Blit the sprite to its newly updated rectangle in the background image.

5. Repeat.

in.doc – page 9

Using straightforward C/C++ combined with the graphics power provided by
DirectDraw, you can implement this process to make a simple sprite engine.

Bounds Checking and Hit Detection
Bounds checking and hit detection are two very common and important tasks
associated with sprites. Bounds checking is a term used to describe the process of
limiting a sprite's possible range of motion. For example, you might want to limit a
given sprite to keep it from moving off the screen. To do so, you can check the values
for the sprite's location, which you'll probably keep in a RECT structure, and prevent
them from changing beyond the limits of the screen resolution. DirectDraw doesn’t
provide bounds checking services, but you can easily implement a bounds checking
scheme in C/C++ alone. Clipping, on the other hand, is supported by DirectDraw. For
more information, see Clippers.

Hit detection, or collision detection, refers to the process of checking whether one or
more sprites occupy the same place. Most hit detection schemes involve checking to
see if the bounding rectangles for one or more sprites overlap. Because there are so
many different types of hit detection schemes with an equally varied number of uses,
DirectDraw doesn’t support them for you, thereby giving you the freedom to
implement a hit detection scheme that meets your application’s needs.

DirectDraw Architecture
This section contains general information about the relationship between the
DirectDraw component and the rest of DirectX, the operating system, and the system
hardware. The following topics are discussed:

· Architectural Overview

· DirectDraw Object Types

· Hardware Abstraction Layer (HAL)

· Software Emulation

Architectural Overview
Multimedia software requires high-performance graphics. Through DirectDraw,
Microsoft enables a much higher level of efficiency and speed in graphics-intensive
applications for Windows than is possible with GDI, while maintaining device
independence. DirectDraw provides tools to perform such key tasks as:

· Manipulating multiple display surfaces

· Accessing the video memory directly

· Page flipping

· Back buffering

in.doc – page 10

· Managing the palette

· Clipping

Additionally, DirectDraw enables you to query the display hardware's capabilities at
run time, then provide the best performance possible given the host computer's
hardware capabilities.

As with other DirectX components, DirectDraw uses the hardware to its greatest
advantage whenever possible, and provides software emulation for most features
when hardware support is unavailable. Device independence is possible through use
of the hardware-abstraction layer, or HAL. For more information about the HAL, see
Hardware Abstraction Layer (HAL).

The DirectDraw component provides services through COM-based interfaces. In the
most recent iteration, these interfaces are IDirectDraw2, IDirectDrawSurface3,
IDirectDrawPalette, IDirectDrawClipper, and IDirectDrawVideoPort. Note that,
in addition to these interfaces, DirectDraw continues to support all previous versions.
For more information about COM concepts that you should understand to create
applications with the DirectX APIs in the Platform SDK, see DirectX and the
Component Object Model .

The DirectDraw object represents the display adapter and exposes its methods
through the IDirectDraw and IDirectDraw2 interfaces. In most cases you will use
the DirectDrawCreate function to a DirectDraw object, but you can also create one
with the CoCreateInstance COM function. For more information, see Creating
DirectDraw Objects by Using CoCreateInstance.

After creating a DirectDraw object, you can create surfaces for it by calling the
IDirectDraw2::CreateSurface method. Surfaces represent the memory on the
display hardware, but can exist on either video memory or system memory.
DirectDraw extends support for palettes, clipping (useful for windowed applications),
and video ports through its other interfaces.

DirectDraw Object Types
You can think of DirectDraw as being composed of several objects that work
together. This section briefly describes the objects you use when working with the
DirectDraw component, organized by object type. For detailed information, see
DirectDraw Essentials.

The DirectDraw component uses the following objects:

DirectDraw object
The DirectDraw object is the heart of all DirectDraw applications. It’s the first
object you create, and you use it to make all other related objects. You create a
DirectDraw object by calling the DirectDrawCreate function. DirectDraw
objects expose their functionality through the IDirectDraw and IDirectDraw2
interfaces. For more information, see The DirectDraw Object.

DirectDrawSurface object

in.doc – page 11

The DirectDrawSurface object (casually referred to as a “surface”) represents an
area in memory that holds data to be displayed on the monitor as images or
moved to other surfaces. You can create a surface by calling the
IDirectDraw2::CreateSurface method of the DirectDraw object with which it
will be associated. DirectDrawSurface objects expose their functionality through
the IDirectDrawSurface, IDirectDrawSurface2, and IDirectDrawSurface3
interfaces. For more information, see Surfaces.

DirectDrawPalette object
The DirectDrawPalette object (casually referred to as a “palette”) represents a 16-
or 256-color indexed palette to be used with a surface. It contains a series of
indexed RGB triplets that describe colors associated with values within a surface.
You do not use palettes with surfaces that use a pixel format depth greater that 8
bits. You can create a DirectDrawPalette object by calling the
IDirectDraw2::CreatePalette method. DirectDrawPalette objects expose their
functionality through the IDirectDrawPalette interface. For more information,
see Palettes.

DirectDrawClipper object
The DirectDrawClipper object (casually referred to as a “clipper”) helps you
prevent blitting to certain portions of a surface or beyond the bounds of a surface.
You can create a clipper by calling the IDirectDraw2::CreateClipper method.
DirectDrawClipper objects expose their functionality through the
IDirectDrawClipper interface. For more information, see Clippers.

DirectDrawVideoPort object
The DirectDrawVideoPort object represents video-port hardware present in some
systems. This hardware allows direct access to the frame buffer without
accessing the CPU or using the PCI bus. You can create a DirectDrawVideoPort
object by calling a QueryInterface method for the DirectDraw object, specifying
the IID_IDDVideoPortContainer reference identifier. DirectDrawVideoPort
objects expose their functionality through the IDDVideoPortContainer and
IDirectDrawVideoPort interfaces. For more information, see Video Ports.

Hardware Abstraction Layer (HAL)
DirectDraw provides device independence through the hardware-abstraction layer
(HAL). The HAL is a device-specific interface, provided by the device manufacturer,
that DirectDraw uses to work directly with the display hardware. Applications never
interact with the HAL. Rather, with the infrastructure that the HAL provides,
DirectDraw exposes a consistent set of interfaces and methods that an application
uses to display graphics. The device manufacturer implements the HAL in a
combination of 16-bit and 32-bit code under Windows 95. Under Windows NT, the
HAL is always implemented in 32-bit code. The HAL can be part of the display
driver or a separate DLL that communicates with the display driver through a private
interface that driver's creator defines.

The DirectDraw HAL is implemented by the chip manufacturer, board producer, or
original equipment manufacturer (OEM). The HAL implements only device-

in.doc – page 12

dependent code and performs no emulation. If a function is not performed by the
hardware, the HAL does not report it as a hardware capability. Additionally, the HAL
does not validate parameters; DirectDraw does this before the HAL is invoked.

Software Emulation
When the hardware does not support a feature through the hardware abstraction layer
(HAL), DirectDraw attempts to emulate it. This emulated functionality is provided
through the hardware-emulation layer (HEL). The HEL presents its capabilities to
DirectDraw just as the HAL would. And, as with the HAL, applications never work
directly with the HEL. The result is transparent support for almost all major features,
regardless of whether a given feature is supported by hardware or through the HEL.

Obviously, software emulation cannot equal the performance that hardware features
provide. You can query for the features the hardware supports by using the
IDirectDraw2::GetCaps method. By examining these capabilities during application
initialization, you can adjust application parameters to provide optimum performance
over varying levels of hardware performance.

In some cases, certain combinations of hardware supported features and emulation
can result in slower performance than emulation alone. For example, if the display
device driver supports DirectDraw but not stretch blitting, noticeable performance
losses will occur when stretch blitting from video memory surfaces. This happens
because video memory is often slower than system memory, forcing the CPU to wait
when accessing video memory surfaces. If your application uses a feature that isn’t
supported by the hardware, it is sometimes best to create surfaces in system memory,
thereby avoiding performance losses created when the CPU accesses video memory.

For more information, see Hardware Abstraction Layer (HAL).

System Integration
The following diagram shows the relationships between DirectDraw, the graphics
device interface (GDI), the hardware abstraction layer (HAL), hardware emulation
layer (HEL) and the hardware.

in.doc – page 13

Win32 Application

Graphics Device
Interface

(GDI)

DirectDraw

 Hardware
Emulation

Layer (HEL)

Display Device Interface
(DDI)

Hardware
Abstraction
Layer (HAL)

Hardware
(Video Card)

As the preceding diagram shows, a DirectDraw object exists alongside GDI, and both
have direct access to the hardware through a device-dependent abstraction layer.
Unlike GDI, DirectDraw makes use of special hardware features whenever possible.
If the hardware does not support a feature, DirectDraw attempts to emulate it by using
the HEL. DirectDraw can provide surface memory in the form of a device context,
making it possible for you to use GDI functions to work with surface objects.

DirectDraw Essentials
This section contains general information about the DirectDraw® component of
DirectX®. Information is organized into the following groups:

· Cooperative Levels

· Display Modes

· The DirectDraw Object

· Surfaces

in.doc – page 14

· Palettes

· Clippers

· Advanced DirectDraw Topics

Cooperative Levels
Cooperative levels describe how DirectDraw interacts with the display and how it
reacts to events that might affect the display. Use the
IDirectDraw2::SetCooperativeLevel method to set cooperative level of
DirectDraw. For the most part, you use DirectDraw cooperative levels to determine
whether your application runs as a full screen program with exclusive access to the
display or as a windowed application. However, DirectDraw cooperative levels can
also have the following effects:

· Enable DirectDraw to use Mode X resolutions. For more information, see Mode
X and Mode 13 Display Modes.

· Prevent DirectDraw from releasing exclusive control of the display or rebooting
if the user presses CTRL + ALT + DEL (exclusive mode only).

· Enable DirectDraw to minimize or maximize the application in response to
activation events.

The normal cooperative level indicates that your DirectDraw application will operate
as a windowed application. At this cooperative level you won't be able to change the
primary surface's palette or perform page flipping. Additionally, you won’t be able to
call some methods that drastically affect the display or video memory, such as
IDirectDraw2::Compact.

At the full screen and exclusive cooperative level, you can use the hardware to its
fullest. In this mode, you can set custom and dynamic palettes, change display
resolutions, compact memory, and implement page flipping. The exclusive (full-
screen) mode does not prevent other applications from allocating surfaces, nor does it
exclude them from using DirectDraw or GDI. However, it does prevent applications
other than the one currently with exclusive access from changing the display mode or
palette.

Because applications can use DirectDraw with multiple windows,
IDirectDraw2::SetCooperativeLevel does not require a window handle to be
specified if the application is requesting the DDSCL_NORMAL mode. By passing a
NULL to the window handle, all of the windows can be used simultaneously in
normal Windows mode.

IDirectDraw2::SetCooperativeLevel maintains a binding between a process and a
window handle. If IDirectDraw2::SetCooperativeLevel is called once in a process,
a binding is established between the process and the window. If it is called again in
the same process with a different non-null window handle, it returns the
DDERR_HWNDALREADYSET error value. Some applications may receive this

in.doc – page 15

error value when DirectSound® specifies a different window handle than DirectDraw
—they should specify the same, top-level application window handle.

Display Modes
This section contains general information about DirectDraw display modes. The
following topics are discussed:

· About Display Modes

· Determining Supported Display Modes

· Setting Display Modes

· Restoring Display Modes

· Mode X and Mode 13 Display Modes

· Support for High Resolutions and True-Color Bit Depths

About Display Modes
A display mode is a hardware setting that describes the dimensions and bit-depth of
graphics that the display hardware sends to the monitor from the primary surface.
Display modes are described by their defining characteristics: width, height, and bit-
depth. For instance, most display adapters can display graphics 640 pixels wide and
480 pixels tall, where each pixel is 8 bits of data. In shorthand, this display mode
could be called 640-by-480-by-8 (640x480x8). As the dimensions of a display mode
get larger or as the bit-depth increases, more display memory is required.

There are two types of display modes: palettized and non-palettized. For palettized
display modes, each pixel is a value representing an index into an associated palette.
The bit depth of the display mode determines the number of colors that can be in the
palette. For instance, in an 8-bit palettized display mode, each pixel is a value from 0
to 255. In such a display mode, the palette can contain 256 entries.

Non-palettized display modes, as their name states, do not use palettes. The bit depth
of a non-palettized display mode indicates the total number of bits that are used to
describe a pixel.

The primary surface and any surfaces in the primary flipping chain match the display
mode’s dimensions, bit depth and pixel format. For more information, see Pixel
Formats.

Determining Supported Display Modes
Because display hardware varies, not all devices will support all display modes. To
determine the display modes supported on a given system, call the
IDirectDraw2::EnumDisplayModes method. By setting the appropriate values and
flags, the IDirectDraw2::EnumDisplayModes method can list all supported display
modes or confirm that a single display mode that you specify is supported. The

in.doc – page 16

method’s first parameter, dwFlags, controls extra options for the method; in most
cases, you will set dwFlags to 0 to ignore extra options. The second parameter,
lpDDSurfaceDesc, is the address of a DDSURFACEDESC structure that describes a
given display mode to be confirmed; you’ll usually set this parameter to NULL to
request that all modes be listed. The third parameter, lpContext, is a pointer that you
want DirectDraw to pass to your callback function; if you don’t need any extra data in
the callback function, use NULL here. Last, you set the lpEnumModesCallback
parameter to the address of the callback function that DirectDraw will call for each
supported mode.

The callback function you supply when calling IDirectDraw2::EnumDisplayModes
must match the prototype for the EnumModesCallback function. For each display
mode that the hardware supports, DirectDraw calls your callback function passing
two parameters. The first parameter is the address of a DDSURFACEDESC
structure that describes one supported display mode, and the second parameter is the
address of the application-defined data you specified when calling
IDirectDraw2::EnumDisplayModes, if any.

Examine the values in the DDSURFACEDESC structure to determine the display
mode it describes. The key structure members are the dwWidth, dwHeight, and
ddpfPixelFormat members. The dwWidth and dwHeight members describe the
display mode’s dimensions, and the ddpfPixelFormat member is a
DDPIXELFORMAT structure that contains information about the mode’s bit depth.

The DDPIXELFORMAT structure carries information describing the mode’s bit
depth and tells you whether or not the display mode uses a palette. If the dwFlags
member contains the DDPF_PALETTEINDEXED1, DDPF_PALETTEINDEXED2,
DDPF_PALETTEINDEXED4, or DDPF_PALETTEINDEXED8 flag, the display
mode’s bit depth is 1, 2, 4 or 8 bits, and each pixel is an index into an associated
palette. If dwFlags contains DDPF_RGB, then the display mode is non-palettized and
its bit depth is provided in the dwRGBBitCount member of the
DDPIXELFORMAT structure.

Setting Display Modes
You can set the display mode by using the IDirectDraw2::SetDisplayMode method.
The SetDisplayMode method accepts four parameters that describe the dimensions,
bit depth, and refresh rate of the mode to be set. The method uses a fifth parameter to
indicate special options for the given mode; this is currently only used to differentiate
between Mode 13 and the Mode X 320x200x8 display mode.

Although you can specify the desired display mode’s bit depth, you cannot specify
the pixel format that the display hardware will use for that bit depth. To determine the
RGB bit masks that the display hardware uses for the current bit depth, call
IDirectDraw2::GetDisplayMode after setting the display mode. If the current
display mode is not palettized, you can examine the mask values in the dwRBitMask,
dwGBitMask, and dwBBitMask members to determine the correct red, green, and
blue bits. For more information, see Pixel Format Masks.

in.doc – page 17

Modes can be changed by more than one application as long as they are all sharing a
display card. You can change the bit depth of the display mode only if your
application has exclusive access to the DirectDraw object. All DirectDrawSurface
objects lose surface memory and become inoperative when the mode is changed. A
surface's memory must be reallocated by using the IDirectDrawSurface3::Restore
method.

The DirectDraw exclusive (full-screen) mode does not bar other applications from
allocating DirectDrawSurface objects, nor does it exclude them from using
DirectDraw or GDI functionality. However, it does prevent applications other than
the one that obtained exclusive access from changing the display mode or palette.

Restoring Display Modes
You can explicitly restore the display hardware to its original mode by calling the
IDirectDraw2::RestoreDisplayMode method. If the display mode was set by calling
IDirectDraw2::SetDisplayMode (rather than IDirectDraw::SetDisplayMode) and
your application takes the exclusive cooperative level, the original display mode is
reset automatically when you set the application’s cooperative level back to normal. If
you’re using the IDirectDraw interface, you must always explicitly restore the
display mode.

Mode X and Mode 13 Display Modes
DirectDraw supports both Mode 13 and Mode X display modes. Mode 13 is the linear
unflippable 320x200 8 bits per pixel palettized mode known widely by its
hexadecimal BIOS mode number: 13. For more information, see Mode 13 Support.
Mode X is a hybrid display mode derived from the standard VGA Mode 13. This
mode allows the use of up to 256 kilobytes (KB) of display memory (rather than the
64 KB allowed by Mode 13) by using the VGA display adapter's EGA multiple video
plane system.

On Windows 95, DirectDraw provides two Mode X modes (3202008 and
3202408) for all display cards. Some cards also support linear low-resolution
modes. In linear low-resolution modes, the primary surface can be locked and directly
accessed. This is not possible in Mode X modes.

Mode X modes are available only if an application uses the
DDSCL_ALLOWMODEX, DDSCL_FULLSCREEN, and DDSCL_EXCLUSIVE
flags when calling the IDirectDraw2::SetCooperativeLevel method. If
DDSCL_ALLOWMODEX is not specified, the
IDirectDraw2::EnumDisplayModes method will not enumerate Mode X modes,
and the IDirectDraw2::SetDisplayMode method will fail if a Mode X mode is
requested.

Windows 95 and Windows NT do not support Mode X modes; therefore, when your
application is in a Mode X mode, you cannot use the IDirectDrawSurface3::Lock or
IDirectDrawSurface3::Blt methods to lock or blit to the primary surface. You also
cannot use either the IDirectDrawSurface3::GetDC method on the primary surface,

in.doc – page 18

or GDI with a screen DC. Mode X modes are indicated by the DDSCAPS_MODEX
flag in the DDSCAPS structure, which is part of the DDSURFACEDESC structure
returned by the IDirectDrawSurface3::GetCaps and
IDirectDraw2::EnumDisplayModes methods.

Mode X modes and some linear low-resolution modes are not supported on Windows
NT.

Support for High Resolutions and True-Color
Bit Depths

DirectDraw supports all of the screen resolutions and depths supported by the display
device driver. DirectDraw allows an application to change the mode to any one
supported by the computer's display driver, including all supported 24- and 32-bpp
(true-color) modes.

DirectDraw also supports HEL blitting in true-color surfaces. If the display device
driver supports blitting at these resolutions, the hardware blitter will be used for
display-memory-to-display-memory blits. Otherwise, the HEL will be used to
perform the blits.

Window 95 and Windows NT allow you to specify the type of monitor being used.
DirectDraw checks a list of known display modes against the display restrictions of
the installed monitor. If DirectDraw determines that the requested mode is not
compatible with the monitor, the call to the IDirectDraw2::SetDisplayMode method
fails. Only modes that are supported on the installed monitor will be enumerated
when you call the IDirectDraw2::EnumDisplayModes method.

The DirectDraw Object
This section contains information about DirectDraw objects and how you can
manipulate them through their IDirectDraw or IDirectDraw2 interfaces. The
following topics are discussed:

· What Are DirectDraw Objects?

· What's New in IDirectDraw2?

· Cooperative Levels

· Display Modes

· Multiple DirectDraw Objects per Process

· Creating DirectDraw Objects by Using CoCreateInstance

What Are DirectDraw Objects?
The DirectDraw object is the heart of all DirectDraw applications and is an integral
part of Direct3D® applications as well. It is the first object you create and, through it,

in.doc – page 19

you create all other related objects. Typically, you create a DirectDraw object by
calling the DirectDrawCreate function, which returns an IDirectDraw interface. If
you want to work with a different iteration of the interface (such as IDirectDraw2) to
take advantage of new features it provides, you can query for it. Note that you can
create multiple DirectDraw objects, one for each display device installed in a system.

The DirectDraw object represents the display device and makes use of hardware
acceleration if the display device for which it was created supports hardware
acceleration. Each unique DirectDraw object can manipulate the display device and
create surfaces, palettes, and clipper objects that are dependent on (or are, "connected
to") the object that created them. For example, to create surfaces, you call the
IDirectDraw2::CreateSurface method. Or, if you need a palette object to apply to a
surface, call the IDirectDraw2::CreatePalette method. Additionally, the
IDirectDraw2 interface exposes similar methods to create clipper objects.

You can create more than one instance of a DirectDraw object at a time. The simplest
example of this is using two monitors on a Windows 95 system. Although Windows
95 does not support dual monitors on its own, it is possible to write a DirectDraw
HAL for each display device. The display device Windows 95 and GDI recognizes is
the one that will be used when you create the instance of the default DirectDraw
object. The display device that Windows 95 and GDI do not recognize can be
addressed by another, independent DirectDraw object that must be created by using
the second display device's globally unique identifier (GUID). This GUID can be
obtained by using the DirectDrawEnumerate function.

The DirectDraw object manages all of the objects it creates. It controls the default
palette (if the primary surface is in 8-bits-per-pixel mode), the default color key, and
the hardware display mode. It tracks what resources have been allocated and what
resources remain to be allocated.

What's New in IDirectDraw2?
This section details new features provided by the IDirectDraw2 interface and
describes how it behaves differently than its predecessor, IDirectDraw. The
following topics are discussed:

· New Features in IDirectDraw2

· Cooperative Levels and Display Modes with IDirectDraw2

· Getting an IDirectDraw2 Interface

New Features in IDirectDraw2

The IDirectDraw2 interface extends the IDirectDraw interface by adding the
IDirectDraw2::GetAvailableVidMem method. This method enables you to query
the display hardware for information about the status of its total available video
memory and how much of that memory is available to be used by a surface of a given
type.

in.doc – page 20

Cooperative Levels and Display Modes with IDirectDraw2

The interaction between the IDirectDraw2::SetCooperativeLevel and
IDirectDraw2::SetDisplayMode methods differs from that of their IDirectDraw
counterparts.

If your application uses the IDirectDraw interface to set the full-screen exclusive
cooperative level and change the display mode, the display mode will not be
automatically restored when you return to the normal cooperative level-you have to
call the IDirectDraw::RestoreDisplayMode method. However, if you use the
IDirectDraw2 interface, calling RestoreDisplayMode isn’t necessary. However, the
IDirectDraw2::RestoreDisplayMode method is supported for applications that want
to explicitly restore the original display mode.

Getting an IDirectDraw2 Interface

The Component Object Model on which DirectX is built specifies that an object can
provide new functionality can be added through new interfaces, without affecting
backward compatibility. To this end, the IDirectDraw2 interface supersedes the
IDirectDraw interface. This new interface can be obtained by using the
IDirectDraw::QueryInterface method, as shown in the following C++ example:

// Create an IDirectDraw2 interface.

LPDIRECTDRAW lpDD;

LPDIRECTDRAW2 lpDD2;

ddrval = DirectDrawCreate(NULL, &lpDD, NULL);

if(ddrval != DD_OK)

 return;

ddrval = lpDD->SetCooperativeLevel(hwnd,

 DDSCL_NORMAL);

if(ddrval != DD_OK)

 return;

ddrval = lpDD->QueryInterface(IID_IDirectDraw2,

 (LPVOID *)&lpDD2);

if(ddrval != DD_OK)

 return;

The preceding example creates a DirectDraw object, then calls the
IUnknown::QueryInterface method of the IDirectDraw interface it received to
create an IDirectDraw2 interface.

After getting an IDirectDraw2 interface, you can begin calling its methods to take
advantage of new features, performance improvements, and behavioral differences.
Because some methods might change with the release of a new interface, mixing

in.doc – page 21

methods from an interface and its replacement (between IDirectDraw and
IDirectDraw2, for example) can cause unpredictable results.

Multiple DirectDraw Objects per Process
DirectDraw allows a process to call the DirectDrawCreate function as many times
as necessary. A unique and independent interface to a unique and independent
DirectDraw object is returned after each call. Each DirectDraw object can be used as
desired; there are no dependencies between the objects. Each object behaves exactly
as if it had been created by a unique process.

DirectDraw objects are independent of one another and the DirectDrawSurface,
DirectDrawPalette, and DirectDrawClipper objects they create should not be used
with other DirectDraw objects because they are automatically released when the
parent DirectDraw object is destroyed. If they are used with another DirectDraw
object, they might stop functioning if their parent object is destroyed, causing the
remaining DirectDraw object to malfunction.

The exception is DirectDrawClipper objects created by using the
DirectDrawCreateClipper function. These objects are independent of any particular
DirectDraw object and can be used with one or more DirectDraw objects.

Creating DirectDraw Objects by Using
CoCreateInstance

You can create a DirectDraw object by using the CoCreateInstance function and the
IDirectDraw2::Initialize method rather than the DirectDrawCreate function. The
following steps describe how to create the DirectDraw object:

1 Initialize COM at the start of your application by calling CoInitialize and
specifying NULL.

if (FAILED(CoInitialize(NULL)))

 return FALSE;

2 Create the DirectDraw object by using CoCreateInstance and the
IDirectDraw2::Initialize method.

ddrval = CoCreateInstance(&CLSID_DirectDraw,

 NULL, CLSCTX_ALL, &IID_IDirectDraw2, &lpdd);

if(!FAILED(ddrval))

 ddrval = IDirectDraw2_Initialize(lpdd, NULL);

In this call to CoCreateInstance, the first parameter, CLSID_DirectDraw, is the
class identifier of the DirectDraw driver object class, the IID_IDirectDraw2
parameter identifies the particular DirectDraw interface to be created, and the
lpdd parameter points to the DirectDraw object that is retrieved. If the call is
successful, this function returns an uninitialized object.

in.doc – page 22

3 Before you use the DirectDraw object, you must call IDirectDraw2::Initialize.
This method takes the driver GUID parameter that the DirectDrawCreate
function typically uses (NULL in this case). After the DirectDraw object is
initialized, you can use and release it as if it had been created by using the
DirectDrawCreate function. If you do not call the IDirectDraw2::Initialize
method before using one of the methods associated with the DirectDraw object, a
DDERR_NOTINITIALIZED error will occur.

Before you close the application, shut down COM by using the CoUninitialize
function.

CoUnitialize();

Surfaces
This section contains information about DirectDrawSurface objects. The following
topics are discussed:

· Basic Concepts

· Creating Surfaces

· Flipping Surfaces

· Losing Surfaces

· Releasing Surfaces

· Updating Surface Characteristics

· Accessing the Frame-Buffer Directly

· Using Non-local Video Memory Surfaces

· Converting Color and Format

· Overlay Surfaces

· Blitting to Multiple Windows

Basic Concepts
This section contains information about the basic concepts associated with
DirectDrawSurface objects. The following topics are discussed:

· What Are Surfaces?

· Surface Interfaces

· Width and Pitch

· Color Keying

· Pixel Formats

in.doc – page 23

What Are Surfaces?

A surface, or DirectDrawSurface object, represents a linear area of display memory.
A surface usually resides in the display memory of the display card, although surfaces
can exist in system memory. Unless specifically instructed otherwise during the
creation of the DirectDrawSurface object, DirectDraw object will put the
DirectDrawSurface object wherever the best performance can be achieved given the
requested capabilities. DirectDrawSurface objects can take advantage of specialized
processors on display cards, not only to perform certain tasks faster, but to perform
some tasks in parallel with the system CPU.

Using the IDirectDraw2::CreateSurface method, you can create a single surface
object, complex surface-flipping chains, or three-dimensional surfaces. The
CreateSurface method creates the requested surface or flipping chain and retrieves a
pointer to the primary surface's IDirectDrawSurface interface through which the
object exposes its functionality. If you want to work with a different iteration of the
interface (such as IDirectDrawSurface3), you can query for it.

The IDirectDrawSurface3 interface enables you to indirectly access memory
through blit methods, such as IDirectDrawSurface3::BltFast. The surface object can
provide a device context to the display that you can use with GDI functions.
Additionally, you can use IDirectDrawSurface3 methods to directly access display
memory. For example, you can use the IDirectDrawSurface3::Lock method to lock
the display memory and retrieve the address corresponding to that surface. Addresses
of display memory might point to visible frame buffer memory (primary surface) or
to nonvisible buffers (off-screen or overlay surfaces). Nonvisible buffers usually
reside in display memory, but can be created in system memory if required by
hardware limitations or if DirectDraw is performing software emulation. In addition,
the IDirectDrawSurface3 interface extends other methods that you can use to set or
retrieve palettes, or to work with specific types or surfaces, like flipping chains or
overlays.

From this illustration, you can see that all surface are created by a DirectDraw object
and are often used closely with palettes. Although each surface object can be assigned
a palette, palettes aren't required for anything but primary surfaces that use pixel
formats of 8-bits in depth or less.

in.doc – page 24

DirectDraw Component

Primary Surface

Back Buffer Surface

Off Screen Surface

Palette

Palette

Palette

Surface Interfaces

DirectDrawSurface objects expose their functionality through the
IDirectDrawSurface, IDirectDrawSurface2, and IDirectDrawSurface3 interfaces.
Each new interface version provides the same utility as its predecessors, with
additional options available through new methods.

The IDirectDrawSurface interface is the oldest version of the interface and is
provided by default when you create a surface by using the
IDirectDraw2::CreateSurface method. To utilize the new functionality provided by
another version of the interface, you must query for the new version by calling its
QueryInterface method. The following example shows how you can do this:

LPDIRECTDRAWSURFACE lpSurf;

LPDIRECTDRAWSURFACE2 lpSurf2;

in.doc – page 25

// Create surfaces.

memset(&ddsd, 0, sizeof(ddsd));

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT;

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN |

 DDSCAPS_SYSTEMMEMORY;

ddsd.dwWidth = 10;

ddsd.dwHeight = 10;

ddrval = lpDD2->CreateSurface(&ddsd, &lpSurf,

 NULL);

if(ddrval != DD_OK)

 return;

ddrval = lpSurf->QueryInterface(

 IID_IDirectDrawSurface2, (LPVOID *)&lpSurf2);

if(ddrval != DD_OK)

 return;

ddrval = lpSurf2->PageLock(0);

if(ddrval != DD_OK)

 return;

ddrval = lpSurf2->PageUnlock(0);

if(ddrval != DD_OK)

 return;

The preceding example retrieves a DirectDrawSurface object’s
IDirectDrawSurface2 interface by specifying the IID_IDirectDraw2 reference
identifier when it calls the QueryInterface method. To retrieve an
IDirectDrawSurface3 interface, use the IID_IDirectDrawSurface3 reference
identifier instead.

Width and Pitch

If your application writes to display memory, bitmaps stored in memory do not
necessarily occupy a contiguous block of memory. In this case, the width and pitch of
a line in a bitmap can be different from each other. The width is the distance between
two addresses in memory that represent the beginning of a line and the end of the line
of a stored bitmap. This distance represents only the width of the bitmap in memory;
it does not include any extra memory required to reach the beginning of the next line
of the bitmap. The pitch is the distance between two addresses in memory that
represent the beginning of a line and the beginning of the next line in a stored bitmap.

For rectangular memory, for example, the pitch of the display memory will include
the width of the bitmap plus part of a cache. The following figure shows the
difference between width and pitch in rectangular memory:

in.doc – page 26

In this figure, the front buffer and back buffer are both 6404808, and the cache is
3844808. To reach the address of the next line to write to the buffer, you must add
640 and 384 to get 1024, which is the beginning of the next line.

Therefore, when rendering directly into surface memory, always use the pitch
returned by the IDirectDrawSurface3::Lock method (or the
IDirectDrawSurface3::GetDC method). Do not assume a pitch based solely on the
display mode. If your application works on some display adapters but looks garbled
on others, this may be the cause of your problem.

Color Keying

DirectDraw supports source and destination color keying for blits and overlay
surfaces. You can supply a color key or a color range for both of these types of color
keying. For general information about color keying, see Transparent Blitting and
Color Keys. You set a surface’s color key by calling the its
IDirectDrawSurface3::SetColorKey method.

When blitting, source color keying specifies a color or color range that is not copied.
Likewise, destination color keying specifies a color or color range that is replaced
The source color key specifies what can and cannot be read from the surface. The
destination color key specifies what can and cannot be written onto, or covered up, on
the destination surface. If a destination surface has a color key, only the pixels that
match the color key are changed, or covered up, on the destination surface.

In addition to blit-related color keys, overlay surfaces can use overlay color keys. For
more information, see Overlay Color Keys.

Some hardware supports color ranges only for YUV pixel data. YUV data is usually
video, and the transparent background may not be a single color due to quantitization
errors during conversion. Content should be written to a single transparent color
whenever possible, regardless of pixel format.

Color keys are specified using the pixel format of a surface. If a surface is in a
palettized format, the color key is specified as an index or a range of indices. If the
surface's pixel format is specified by a FOURCC code that describes a YUV format,
the YUV color key is specified by the three low-order bytes in both the
dwColorSpaceLowValue and dwColorSpaceHighValue members of the
DDCOLORKEY structure. The lowest order byte contains the V data, the second
lowest order byte contains the U data, and the highest order byte contains the Y data.
The dwFlags parameter of the IDirectDrawSurface3::SetColorKey method

in.doc – page 27

specifies whether the color key is to be used for overlay or blit operations, and
whether it is a source or a destination key. Some examples of valid color keys follow:

8-bit palettized mode

// Palette entry 26 is the color key.

dwColorSpaceLowValue = 26;

dwColorSpaceHighValue = 26;

24-bit true-color mode

// Color 255,128,128 is the color key.

dwColorSpaceLowValue = RGBQUAD(255,128,128);

dwColorSpaceHighValue = RGBQUAD(255,128,128);

FourCC YUV mode

// Any YUV color where Y is between 100 and 110

// and U or V is between 50 and 55 is transparent.

dwColorSpaceLowValue = YUVQUAD(100,50,50);

dwColorSpaceHighValue = YUVQUAD(110,55,55);

Pixel Formats

Pixel formats dictate how data for each pixel in surface memory is to be interpreted.
DirectDraw uses the DDPIXELFORMAT structure to describe various pixel
formats. The DDPIXELFORMAT contains members to describe the following traits
of a pixel format:

· Palettized or non-palettized pixel format

· If non-palettized, whether the pixel format is RGB or YUV

· Bit depth

· Bit masks for the pixel format’s components

You can retrieve information about an existing surface’s pixel format by calling the
IDirectDrawSurface3::GetPixelFormat method.

Creating Surfaces
The DirectDrawSurface object represents a surface that usually resides in the display
memory, but can exist in system memory if display memory is exhausted or if it is
explicitly requested.

Use the IDirectDraw2::CreateSurface method to create one surface or to
simultaneously create multiple surfaces (a complex surface). When calling
CreateSurface, you specify the dimensions of the surface, whether it is a single
surface or a complex surface, and the pixel format (if the surface won’t be using an
indexed palette). All these characteristics are contained in a DDSURFACEDESC

in.doc – page 28

structure, whose address you send with the call. If the hardware can’t support the
requested capabilities or if it previously allocated those resources to another
DirectDrawSurface object, the call will fail.

Creating single surfaces or multiple surfaces is a simple matter that requires only a
few lines of code. There are four main scenarios for creating surfaces. Each scenario
requires a little more preparation than the one before it, but none are difficult. The
following four scenarios are discussed:

1. Creating the Primary Surface

2. Creating an Off-Screen Surface

3. Creating Complex Surfaces and Flipping Chains

4. Creating Wide Surfaces

By default, DirectDraw attempts to create a surface in local video memory. If there
isn’t enough local video memory available to hold the surface, DirectDraw will try to
use non-local video memory (on some AGP-equipped systems), and fall back on
system memory if all other types of memory are unavailable. You can explicitly
request that a surface be created in a certain type of memory by including the
appropriate flags in the associated DDSCAPS structure when calling CreateSurface.

Creating the Primary Surface

The primary surface is the surface currently visible on the monitor and is identified by
the DDSCAPS_PRIMARYSURFACE flag. You can only have one primary surface
for each DirectDraw object.

When you create a primary surface, the dimensions implicitly match the current
display mode. Therefore, this is the one time you don’t need to declare surface
dimensions. Frankly, if you do specify them, the call fails–even if they match the
current display mode.

The following example shows how to prepare the DDSURFACEDESC structure
members relevant for creating the primary surface.

DDSURFACEDESC ddsd;

ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.

ddsd.dwFlags = DDSD_CAPS;

// Request a primary surface.

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

Creating an Off-Screen Surface

An off-screen surface is often used to cache bitmaps that will later be blitted to the
primary surface or a back buffer. You must declare the dimensions of an off-screen

in.doc – page 29

surface by including the DDSC_WIDTH and DDSD_HEIGHT flags and the
corresponding values in the dwWidth and dwHeight members. Additionally, you
must include the DDSCAPS_OFFSCREENPLAIN flag in the accompanying
DDSCAPS structure.

By default, DirectDraw creates a surface in display memory unless it will not fit, in
which case it creates the surface in system memory. You can explicitly choose
display or system memory by including the DDSCAPS_SYSTEMMEMORY or
DDSCAPS_VIDEOMEMORY flags in the dwCaps member of the DDSCAPS
structure. The method fails, returning an error, if it can’t create the surface in the
specified location.

The following example shows how to prepare for creating a simple off-screen surface.

DDSURFACEDESC ddsd;

ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.

ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

// Request a simple off-screen surface, sized

// 100 by 100 pixels.

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;

dwHeight = 100;

dwWidth = 100;

In previous versions of DirectX, the maximum width of off-screen surfaces was
limited to the width of the primary surface. With DirectX 5, you can create surfaces
as wide as you need, permitting that the display hardware can support them. Be
careful when declaring wide off-screen surfaces; if the video card memory cannot
hold a surface as wide as you request, the surface is created in system memory. If you
explicitly choose video memory and the hardware can’t support it, the call fails.

Creating Complex Surfaces and Flipping Chains

You can also create complex surfaces. A complex surface is a set of surfaces created
with a single call to the IDirectDraw2::CreateSurface method. If the
DDSCAPS_COMPLEX flag is set when you call CreateSurface call, DirectDraw
implicitly creates one or more surfaces in addition to the surface explicitly specified.
You manage complex surfaces just like a single surfacea single call to the
IDirectDraw::Release method releases all surfaces, and a single call to the
IDirectDrawSurface3::Restore method restores them all. However, implicitly
created surfaces cannot be detached. For more information, see
IDirectDrawSurface3::DeleteAttachedSurface.

One of the most useful complex surfaces you can create is a flipping chain. Usually, a
flipping chain is made of a primary surface and one or more back buffers. The
DDSCAPS_FLIP flag indicates that a surface is part of a flipping chain. Creating a

in.doc – page 30

flipping chain this way requires that you also include the DDSCAPS_COMPLEX
flag.

The following example shows how to prepare for creating a primary surface flipping
chain.

DDSURFACEDESC ddsd;

ddsd.dwSize = sizeof(ddsd);

// Tell DirectDraw which members are valid.

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

// Request a primary surface with a single

// back buffer

ddsd.ddsCaps.dwCaps = DDSCAPS_COMPLEX | DDSCAPS_FLIP |

DDSCAPS_PRIMARYSURFACE;

ddsd.dwBackBufferCount = 1;

The previous example constructs a double-buffered flipping environmenta single
call to the IDirectDrawSurface3::Flip method exchanges the surface memory of the
primary surface and the back buffer. If you specify 2 for the value of the
dwBackBufferCount member of the DDSURFACEDESC structure, two back
buffers are created, and each call to Flip rotates the surfaces in a circular pattern,
providing a triple-buffered flipping environment.

Creating Wide Surfaces

DirectDraw allows you to create off-screen surfaces in video memory that are wider
that the primary surface. This is only possible when display device support for wide
surfaces is present.

To check for wide surface support, call IDirectDraw2::GetCaps and look for the
DDCAPS2_WIDESURFACES flag in the dwCaps2 member of the first DDCAPS
structure you send with the call. If the flag is present, you can create video memory
off-screen surfaces that are wider that the primary surface.

If you attempt to create a wide surface in video memory when the
DDCAPS2_WIDESURFACES flag isn’t present, the attempt will fail and return
DDERR_INVALIDPARAMS.

Wide surfaces are always supported for system memory surfaces, video port surfaces,
and execute buffers.

Flipping Surfaces
Any surface in DirectDraw can be constructed as a flipping surface. A flipping
surface is any piece of memory that can be swapped between a front buffer and a back
buffer. (this construct is commonly referred to as a flipping chain). Often, the front
buffer is the primary surface, but it doesn’t have to be.

in.doc – page 31

Typically, when you use the IDirectDrawSurface3::Flip method to request a surface
flip operation, the pointers to surface memory for the primary surface and back
buffers are swapped. Flipping is performed by switching pointers that the display
device uses for referencing memory, not by copying surface memory. (The exception
to this is when DirectDraw is emulating the flip, in which case it simply copies the
surfaces. DirectDraw emulates flip operations if a back buffer cannot fit into display
memory or if the hardware doesn’t support DirectDraw.) When a flipping chain
contains a primary surface and more than one back-buffer, the pointers are switched
in a circular pattern, as shown in the following illustration:

Primary
Surface Back Buffer Third Buffer

ABefore
Flipping

After
Flipping

Once

After
Flipping
Twice

After
Third
Flip

B C

AB C

BC A

CA B

Other surfaces that are attached to a DirectDraw object, but not part of the flipping
chain, are unaffected when the Flip method is called.

Remember, DirectDraw flips surfaces by swapping surface memory pointers within
DirectDrawSurface objects, not by swapping the objects themselves. This means that,
to blit to the back buffer in any type of flipping scheme, you always use the same
DirectDrawSurface object-the one that was the back buffer when you created the
flipping chain. Conversely, you always perform a flip operation by calling the front
surface’s Flip method.

in.doc – page 32

When working with visible surfaces, such as a primary surface flipping chain or a
visible overlay surface flipping chain, the Flip method is asynchronous unless you
include the DDFLIP_WAIT flag. On these visible surfaces, the Flip method can
return before the actual flip operation occurs in the hardware (because the hardware
doesn’t flip until the next vertical refresh occurs). While the actual flip operation is
pending, the back buffer behind the currently visible surface can’t be locked or blitted
by calling the IDirectDrawSurface3::Lock, IDirectDrawSurface3::Blt,
IDirectDrawSurface3::BltFast, or IDirectDrawSurface3::GetDC methods. If you
attempt to call these methods while a flip operation is pending, they will fail and
return DDERR_WASSTILLDRAWING. However, if you are using a triple buffered
scheme, the rearmost buffer is still available.

Losing Surfaces
The surface memory associated with a DirectDrawSurface object may be freed, while
the DirectDrawSurface objects representing these pieces of surface memory are not
necessarily released. When a DirectDrawSurface object loses its surface memory,
many methods return DDERR_SURFACELOST and perform no other action.

Surfaces can be lost because the display card mode was changed or because another
application received exclusive access to the display card and freed all of the surface
memory currently allocated on the card. The IDirectDrawSurface3::Restore method
re-creates these lost surfaces and reconnects them to their DirectDrawSurface object.
Restoring a surface doesn’t reload any bitmaps that may have existed in the surface
prior to its loss. Therefore, if you lose a surface you must also completely reconstitute
the graphics it once held.

For more information, see Setting Display Modes.

Releasing Surfaces
Like all COM interfaces, you must release surfaces by calling the Release method
when you no longer need them.

Each surface you individually create must be explicitly released. However, if you
implicitly created multiple surfaces with a single call to
IDirectDraw2::CreateSurface or IDirectDraw::CreateSurface, such as a flipping
chain, you need only release the front buffer. In this case, any pointers you might
have to back buffer surfaces are implicitly released and can no longer be used.

Updating Surface Characteristics
You can update the characteristics of an existing surface by using the
IDirectDrawSurface3::SetSurfaceDesc method. With this method, you can change
the pixel format and location of a DirectDrawSurface object’s surface memory to
system memory that your application has explicitly allocated. This is useful as it
allows a surface to use data from a previously allocated buffer without copying. The
new surface memory is allocated by the client application and, as such, the client

in.doc – page 33

application must also deallocate it. For more information about how this method is
used, see Updating Surface Characteristics.

When calling the IDirectDrawSurface3::SetSurfaceDesc method, the lpddsd
parameter must be the address of a DDSURFACEDESC structure that describes the
new surface memory as well as a pointer to that memory. Within the structure, you
can only set the dwFlags member to reflect valid members for the location of the
surface memory, dimensions, pitch, and pixel format. Therefore, dwFlags can only
contain combinations of the DDSD_WIDTH, DDSD_HEIGHT, DDSD_PITCH,
DDSD_LPSURFACE, and DDSD_PIXELFORMAT flags, which you set to indicate
valid structure members.

Before you set the values in the structure, you must allocate memory to hold the
surface. The size of the memory you allocate is important. Not only do you need to
allocate enough memory to accommodate the surface’s width and height, but you
need to have enough to make room for the surface pitch, which must be a QWORD (8
byte) multiple. Remember, pitch is measured in bytes, not pixels.

When setting surface values in the structure, the lpSurface member is a pointer to the
memory you allocated and the dwHeight and dwWidth members describe the
surface dimensions in pixels. If you specify surface dimensions, you must fill the
lPitch member to reflect the surface pitch as well. Pitch must be a DWORD multiple.
Likewise, if you specify pitch, you must also specify a width value. Lastly, the
ddpfPixelFormat member describes the pixel format for the surface. With the
exception of the lpSurface member, if you don’t specify a value for these members,
the method defaults to using the value from the current surface.

There are some restrictions you must be aware of when using
IDirectDrawSurface3::SetSurfaceDesc, some of which are common sense. For
example, the lpSurface member of the DDSURFACEDESC structure must be a
valid pointer to a system memory (the method doesn’t support video memory pointers
at this time). Also, the dwWidth and dwHeight members must be nonzero values.
Lastly, you cannot reassign the primary surface or any surfaces within the primary’s
flipping chain.

You can set the same memory for multiple DirectDrawSurface objects, but you must
take care that the memory is not deallocated while it is assigned to any surface object.

Using the SetSurfaceDesc method incorrectly will cause unpredictable behavior. The
DirectDrawSurface object will not deallocate surface memory that it didn’t allocate.
Therefore, when the surface memory is no longer needed, it is your responsibility to
deallocate it. However, when SetSurfaceDesc is called, DirectDraw frees the original
surface memory that it implicitly allocated when creating the surface.

Accessing the Frame-Buffer Directly
You can directly access surface memory in the frame-buffer or in system memory by
using the IDirectDrawSurface3::Lock method. When you call this method, the
lpDestRect parameter is a pointer to a RECT structure that describes the rectangle on
the surface you want to access directly. To request that the entire surface be locked,

in.doc – page 34

set lpDestRect to NULL. Also, you can specify a RECT that covers only a portion of
the surface. Providing that no two rectangles overlap, two threads or processes can
simultaneously lock multiple rectangles in a surface.

The Lock method fills a DDSURFACEDESC structure with all the information you
need to properly access the surface memory. The structure includes information about
the pitch (or stride) and the pixel format of the surface, if different from the pixel
format of the primary surface. When you finish accessing the surface memory, call
the IDirectDrawSurface3::Unlock method to unlock it.

While you have a surface locked, you can directly manipulate the contents. The
following list describes some tips for avoiding common problems with directly
rendering surface memory:

· Never assume a constant display pitch. Always examine the pitch information
returned by the IDirectDrawSurface3::Lock method. This pitch can vary for a
number of reasons, including the location of the surface memory, the type of
display card, or even the version of the DirectDraw driver. For more information,
see Width and Pitch.

· Make certain you blit to unlocked surfaces. DirectDraw blit methods will fail,
returning DDERR_SURFACEBUSY or DDERR_LOCKEDSURFACES, if
called on a locked surface. Similarly, GDI blit functions fail without returning
error values if called on a locked surface that exists in display memory.

· Limit your application’s activity while a surface is locked. While a surface is
locked, DirectDraw often holds the Win16Lock so that gaining access to surface
memory can occur safely. The Win16Lock serializes access to GDI and USER,
shutting down Windows for the duration between the
IDirectDrawSurface3::Lock and IDirectDrawSurface3::Unlock calls. The
IDirectDrawSurface3::GetDC method implicitly calls
IDirectDrawSurface3::Lock, and the IDirectDrawSurface3::ReleaseDC
implicitly calls IDirectDrawSurface3::Unlock.

· Copy aligned to display memory. Windows 95 uses a page fault handler,
Vflatd.386, to implement a virtual flat-frame buffer for display cards with bank-
switched memory. The handler allows these display devices to present a linear
frame buffer to DirectDraw. Copying unaligned to display memory can cause the
system to suspend operations if the copy spans memory banks.

Locking the surface typically causes DirectDraw to take the Win16Lock. During the
Win16Lock all other applications, including Windows, cease execution. Since the
Win16Lock stops applications from executing, standard debuggers cannot be used
while the lock is held. Kernel debuggers can be used during this period.

If a blit is in progress when you call IDirectDrawSurface3::Lock, the method will
return immediately with an error, as a lock cannot be obtained. To prevent the error,
use the DDLOCK_WAIT flag to cause the method to wait until a lock can be
successfully obtained.

in.doc – page 35

Using Non-local Video Memory Surfaces
DirectDraw supports the Advanced Graphics Port (AGP) architecture for creating
surfaces in non-local video memory. On AGP-equipped systems, DirectDraw will use
non-local video memory if local video memory is exhausted or if non-local video
memory is explicitly requested, depending on the type of AGP implentation that is in
place.

Currently, there are two implementations of the AGP architecture, known as the
“execute model” and the “DMA model.” In the execute model implementation, the
display device supports the same features for non-local video memory surfaces and
local video memory surfaces. As a result, when you retrieve hardware capabilities by
calling the IDirectDraw2::GetCaps method, the blit-related flags in the
dwNLVBCaps, dwNLVBCaps2, dwNLVBCKeyCaps, dwNLVBFXCaps, and
dwNLVBRops members of the DDCAPS structure will be identical to those for local
video memory. Under the execute model, if local video memory is exhausted,
DirectDraw will automatically fall back on non-local video memory unless the caller
specifically requests otherwise.

In the DMA model implementation, support for blitting and texturing from non-local
video memory surfaces is limited. When the display device uses the DMA model, the
DDCAPS2_NONLOCALVIDMEMCAPS flag will be set in the dwCaps2 member
when you retrieve device capabilities. In the DMA model, the blit-related flags
included in the dwNLVBCaps, dwNLVBCaps2, dwNLVBCKeyCaps,
dwNLVBFXCaps, and dwNLVBRops members of the DDCAPS structure describe
the features that are supported; these features will often be a smaller subset of those
supported for local video memory surfaces. Under the DMA model, DirectDraw will
never create a surface in non-local video memory unless the caller explicitly requests
it.

DMA model implementations vary in support for texturing from non-local video
memory surfaces. If the driver supports texturing from non-local video memory
surfaces, the D3DDEVCAPS_TEXTURENONLOCALVIDMEM flag will be set
when you retrieve the 3-D device’s capabilities by calling the
IDirect3DDevice2::GetCaps method.

Converting Color and Format
Non-RGB surface formats are described by four-character codes (FOURCC codes). If
an application calls the IDirectDrawSurface3::GetPixelFormat method to request
the pixel format, and the surface is a non-RGB surface, the DDPF_FOURCC flag will
be set and the dwFourCC member of the DDPIXELFORMAT structure will be
valid. If the FOURCC code represents a YUV format, the DDPF_YUV flag will also
be set and the dwYUVBitCount, dwYBits, dwUBits, dwVBits, and
dwYUVAlphaBits members will be valid masks that can be used to extract
information from the pixels.

If an RGB format is present, the DDPF_RGB flag will be set and the
dwRGBBitCount, dwRBits, dwGBits, dwBBits, and dwRGBAlphaBits members

in.doc – page 36

will be valid masks that can be used to extract information from the pixels. The
DDPF_RGB flag can be set in conjunction with the DDPF_FOURCC flag if a
nonstandard RGB format is being described.

During color and format conversion, two sets of FOURCC codes are exposed to the
application. One set of FOURCC codes represents the capabilities of the blitting
hardware; the other represents the capabilities of the overlay hardware.

For more information, see Four Character Codes (FOURCC).

Overlay Surfaces
This section contains information about DirectDraw overlay surface support. The
following topics are discussed:

· Overlay Surface Overview

· Significant DDCAPS Members and Flags

· Source and Destination Rectangles

· Boundary and Size Alignment

· Minimum and Maximum Stretch Factors

· Overlay Color Keys

· Positioning Overlay Surfaces

· Creating Overlay Surfaces

· Overlay Z-Orders

· Flipping Overlay Surfaces

For information about implementing overlay surfaces, see Tutorial 6: Using Overlay
Surfaces.

Overlay Surface Overview

Overlay surfaces, casually referred to as overlays, are surfaces with special hardware
supported capabilities. Overlay surfaces are frequently used to display live video,
recorded video, or still bitmaps over the primary surface without blitting to the
primary surface or changing the primary surface’s contents in any way. Overlay
surface support is provided entirely by the hardware; DirectDraw supports any
capabilities as reported by the display device driver. DirectDraw does not emulate
overlay surfaces.

An overlay surface is analogous to a clear piece of plastic that you draw on and place
in front of the monitor. When the overlay is in front of the monitor, you can see both
the overlay and the contents of the primary surface together, but when you remove it,
the primary surface’s contents are unchanged. In fact, the mechanics of overlays work
much like the clear plastic analogy. When you display an overlay surface, you’re
telling the device driver where and how you want it to be visible. While the display
device paints scan lines to the monitor, it checks the location of each pixel in the

in.doc – page 37

primary surface to see if an overlay should be visible there instead. If so, the display
device substitutes data from the overlay surface for the corresponding pixel, as shown
in the following illustration:

Monitor

scanning
primary

scanning overlay

Primary Surface

Overlay
Surface

By using this method, the display adapter produces a composite of the primary
surface and the overlay on the monitor, providing transparency and stretching effects,
without modifying the contents of either surface. The composited surfaces are
injected into the video stream and sent directly to the monitor. Because this on-the-fly
processing and pixel substitution is handled at the hardware level, no noticeable
performance loss occurs when displaying overlays. Additionally, this method makes
it possible to seamlessly composite primary and overlay surfaces with different pixel
formats.

You create overlay surfaces by calling the IDirectDraw2::CreateSurface method,
specifying the DDSCAPS_OVERLAY flag in the associated DDSCAPS structure.
Overlay surfaces can only be created in video memory, so you must also include the
DDSCAPS_VIDEOMEMORY flag. As with other types of surfaces, by including the
appropriate flags you can create either a single overlay or a flipping chain made up of
multiple overlay surfaces.

in.doc – page 38

Significant DDCAPS Members and Flags

You can retrieve information about the supported overlay features by calling the
IDirectDraw2::GetCaps method. The method fills a DDCAPS structure with
information describing all features.

When reporting hardware features, the device driver sets flags in the dwCaps
structure member to indicate when a given type of restriction is enforced by the
hardware. After retrieving the driver capabilities, examine the flags in the dwCaps
member for information about which restrictions apply. The DDCAPS structure
contains nine members that carry information describing hardware restrictions for
overlay surfaces. The following table lists the overlay related members and their
corresponding flags:

Member Flag

dwMaxVisibleOverlays This member is always valid

dwCurrVisibleOverlays This member is always valid

dwAlignBoundarySrc DDCAPS_ALIGNBOUNDARYSRC

dwAlignSizeSrc DDCAPS_ALIGNSIZESRC

dwAlignBoundaryDest DDCAPS_ALIGNBOUNDARYDEST

dwAlignSizeDest DDCAPS_ALIGNSIZEDEST

dwMinOverlayStretch DDCAPS_OVERLAYSTRETCH

dwMaxOverlayStretch DDCAPS_OVERLAYSTRETCH

The dwMaxVisibleOverlays and dwCurrVisibleOverlays members carry
information about the maximum number of overlays the hardware can display, and
how many of them are currently visible.

Additionally, the hardware reports rectangle position and size alignment restrictions
in the dwAlignBoundarySrc, dwAlignSizeSrc, dwAlignBoundaryDest,
dwAlignSizeDest, and dwAlignStrideAlign members. The values in these members
dictate how you must size and position source and destination rectangles when
displaying overlay surfaces. For more information, see Source and Destination
Rectangles and Boundary and Size Alignment.

Also, the hardware reports information about stretch factors in the
dwMinOverlayStretch and dwMaxOverlayStretch members. For more
information, see Minimum and Maximum Stretch Factors.

Source and Destination Rectangles

To display an overlay surface, you call the overlay surface’s
IDirectDrawSurface3::UpdateOverlay method, specifying the DDOVER_SHOW
flag in the dwFlags parameter. The method requires you to specify a source and
destination rectangle in the lpSrcRect and lpDestRect parameters. The source
rectangle describes a rectangle on the overlay surface that will be visible on the
primary surface. To request that the method use the entire surface, set the lpSrcRect

in.doc – page 39

parameter to NULL. The destination rectangle describes a portion of the primary
surface on which the overlay surface will be displayed.

Source and destination rectangles do not need to be the same size. You can often
specify a destination rectangle smaller or larger than the source rectangle, and the
hardware will shrink or stretch the overlay appropriately when it is displayed.

To successfully display an overlay surface, you might need to adjust the size and
position of both rectangles. Whether this is necessary depends on the restrictions
imposed by the device driver. For more information, see Boundary and Size
Alignment and Minimum and Maximum Stretch Factors.

Boundary and Size Alignment

Due to various hardware limitations, some device drivers impose restrictions on the
position and size of the source and destination rectangles used to display overlay
surfaces. To find out which restrictions apply for a device, call the
IDirectDraw2::GetCaps method and then examine the overlay-related flags in the
dwCaps member of the DDCAPS structure. The following table shows the members
and flags specific to boundary and size alignment restrictions:

Category Flag Member

Boundary (position) restrictions DDCAPS_ALIGNBOUNDARYSRC dwAlignBoundarySrc

DDCAPS_ALIGNBOUNDARYDEST dwAlignBoundaryDest

Size restrictions DDCAPS_ALIGNSIZESRC dwAlignSizeSrc

DDCAPS_ALIGNSIZEDEST dwAlignSizeDest

There are two types of restrictions, boundary restrictions and size restrictions. Both
types of restrictions are expressed in terms of pixels (not bytes) and can apply to the
source and destination rectangles. Also, these restrictions can vary depending on the
pixel formats of the overlay and primary surface.

Boundary restrictions affect where you can position a source or destination rectangle.
The values in the dwAlignBoundarySrc and dwAlignBoundaryDest members tell
you how to align the top left corner of the corresponding rectangle. The x-coordinate
of the top left corner of the rectangle (the left member of the RECT structure), must
be a multiple of the reported value.

Size restrictions affect the valid widths for source and destination rectangles. The
values in the dwAlignSizeSrc and dwAlignSizeDest members tell you how to align
the width, in pixels, of the corresponding rectangle. Your rectangles must have a pixel
width that is a multiple of the reported value. If you stretch the rectangle to comply
with a minimum required stretch factor, be sure that the stretched rectangle is still size
aligned. After stretching the rectangle, align its width by rounding up, not down, so
you preserve the minimum stretch factor. For more information, see Minimum and
Maximum Stretch Factors.

in.doc – page 40

Minimum and Maximum Stretch Factors

Due to hardware limitations, some devices restrict how wide a destination rectangle
can be compared with the corresponding source rectangle. DirectDraw communicates
these restrictions as stretch factors. A stretch factor is the ratio between the widths of
the source and destination rectangles. If the driver provides information about stretch
factors, it sets the DDCAPS_OVERLAYSTRETCH flag in the DDCAPS structure
after you call the IDirectDraw2::GetCaps method. Note that stretch factors are
reported multiplied by 1000, so a value of 1300 actually means 1.3 (and 750 would be
0.75).

Devices that do not impose limits on stretching or shrinking an overlay destination
rectangle often report a minimum and maximum stretch factor of 0.

The minimum stretch factor tells you how much wider or narrower than the source
rectangle the destination rectangle needs to be. If the minimum stretch factor is
greater than 1000, then you must increase the destination rectangle’s width by that
ratio. For instance, if the driver reports 1300, you must make sure that the destination
rectangle’s width is at least 1.3 times the width of the source rectangle. Similarly, a
minimum stretch factor less than 1000 indicates that the destination rectangle can be
smaller than the source rectangle by that ratio.

The maximum stretch factor tells the maximum amount you can stretch the width of
the destination rectangle. For example, if the maximum stretch factor is 2000, you can
specify destination rectangles that are up to, but not wider than, twice the width of the
source rectangle. If the maximum stretch factor is less than 1000, then you must
shrink the width of the destination rectangle by that ratio to be able to display the
overlay.

After stretching, the destination rectangle must conform to any size alignment
restrictions the device might require. Therefore, it’s a good idea to stretch the
destination rectangle before adjusting it to be size aligned. For more information, see
Boundary and Size Alignment.

Hardware does not require that you adjust the height of destination rectangles. You
can increase a destination rectangle’s height to preserve aspect ratio without negative
effects.

Overlay Color Keys

Like other types of surfaces, overlay surfaces use source and destination color keys
for controlling transparent blit operations between surfaces. Because overlay surfaces
are not displayed by blitting, there needs to be a different way to control how an
overlay surface is displayed over the primary surface when you call the
IDirectDrawSurface3::UpdateOverlay method. This need is filled by overlay color
keys. Overlay color keys, like their blit-related counterparts, have a source version
and a destination version that you set by calling the
IDirectDrawSurface3::SetColorKey method. You use the
DDCKEY_SRCOVERLAY or DDCKEY_DESTOVERLAY flags to set a source or
destination overlay color key. Overlay surfaces can employ blit and overlay color

in.doc – page 41

keys together to control blit operations and overlay display operations appropriately;
the two types of color keys do not conflict with one another.

The IDirectDrawSurface3::UpdateOverlay method uses the source overlay color
key to determine which pixels in the overlay surface should be considered
transparent, allowing the contents of the primary surface to show through. Likewise,
the method uses the destination overlay color key to determine the parts of the
primary surface that will be covered up by the overlay surface when it is displayed.
The resulting visual effect is the same as that created by blit-related color keys. For
more information, see Transparent Blitting and Color Keys and Color Keying.

Positioning Overlay Surfaces

After initially displaying an overlay by calling the
IDirectDrawSurface3::UpdateOverlay method, you can update the destination
rectangle’s by calling the IDirectDrawSurface3::SetOverlayPosition method.

Make sure that the positions you specify comply with any boundary alignment
restrictions enforced by the hardware. For more information, see Boundary and Size
Alignment. Also remember that IDirectDraw2::SetOverlayPosition doesn’t perform
clipping for you; using coordinates that would potentially make the overlay run off
the edge of the target surface will cause the method to fail, returning
DDERR_INVALIDPOSITION.

Creating Overlay Surfaces

Like all surfaces, you create an overlay surface by calling the
IDirectDraw2::CreateSurface method. To create an overlay, include the
DDSCAPS_OVERLAY flag in the associated DDSCAPS structure.

Overlay support varies widely across display devices. As a result, you cannot be sure
that a given pixel format will be supported by most drivers and must therefore be
prepared to work with a variety of pixel formats. You can request information about
the non-RGB formats that a driver supports by calling the
IDirectDraw2::GetFourCCCodes method.

When you attempt to create an overlay surface, it is advantageous to try creating a
surface with the most desirable pixel format, falling back on other pixel formats if a
given pixel format isn’t supported.

You can create overlay surface flipping chains. For more information, see Creating
Complex Surfaces and Flipping Chains.

Overlay Z-Orders

Overlay surfaces are assumed to be on top of all other screen components, but when
you display multiple overlay surfaces, you need some way to visually organize them.
DirectDraw supports overlay z-ordering to manage the order in which overlays clip
each other. Z-order values represent conceptual distances from the primary surface
toward the viewer. They range from 0, which is just on top of the primary surface, to

in.doc – page 42

4 billion, which is as close to the viewer as possible, and no two overlays can share
the same z-order. You set z-order values by calling the
IDirectDrawSurface3::UpdateOverlayZOrder method.

Destination color keys are affected only by the bits on the primary surface, not by
overlays occluded by other overlays. Source color keys work on an overlay whether
or not a z-order was specified for the overlay.

Overlays without a specified z-order are assumed to have a z-order of 0. Overlays that
do not have a specified z-order behave in unpredictable ways when overlaying the
same area on the primary surface.

A DirectDraw object does not track the z-orders of overlays displayed by other
applications.

Flipping Overlay Surfaces

Like other types of surfaces, you can create overlay flipping chains. After creating a
flipping chain of overlays, call the IDirectDrawSurface3::Flip method to flip
between them. For more information, see Flipping Surfaces.

Software decoders displaying video with overlay surfaces can use the DDFLIP_ODD
and DDFLIP_EVEN flags when calling the Flip method to use features that reduce
motion artifacts. If the driver supports odd-even flipping, the
DDCAPS2_CANFLIPODDEVEN flag will be set in the DDCAPS structure after
retrieving driver capabilities. If DDCAPS2_CANFLIPODDEVEN is set, you can
include the DDOVER_BOB flag when calling the
IDirectDrawSurface3::UpdateOverlay method to inform the driver that you want it
to use the “Bob” algorithm to minimize motion artifacts. Later, when you call Flip
with the DDFLIP_ODD or DDFLIP_EVEN flag, the driver will automatically adjust
the overlay source rectangle to compensate for jittering artifacts.

If the driver doesn’t set the DDCAPS2_CANFLIPODDEVEN flag when you retrieve
hardware capabilities, UpdateOverlay will fail if you specify the DDOVER_BOB
flag.

For more information about the Bob algorithm, see Solutions to Common Video
Artifacts.

Blitting to Multiple Windows
You can use a DirectDraw object and a DirectDrawClipper object to blit to multiple
windows created by an application running at the normal cooperative level. For more
information, see Using a Clipper with Multiple Windows.

Creating multiple DirectDraw objects that blit to each others’ primary surface is not
recommended.

in.doc – page 43

Palettes
This section contains information about DirectDrawPalette objects. The following
topics are discussed:

· What Are Palettes?

· Palette Types

· Setting Palettes on Nonprimary Surfaces

· Sharing Palettes

· Palette Animation

What are Palettes?
Palettized surfaces need palettes to be meaningfully displayed. A palettized surface,
also known as a color-indexed surface, is simply a collection of numbers where each
number represents a pixel. The value of the number is an index into a color table that
tells DirectDraw what color to use when displaying that pixel. DirectDrawPalette
objects, casually referred to as palettes, provide you with an easy way to manage a
color table. Surfaces that use a 16-bit or greater pixel format do not use palettes.

A DirectDrawPalette object represents an indexed color table that has 2, 4, 16 or 256
entries to be used with a color indexed surface. Each entry in the palette is an RGB
triplet that describes the color to be used when displaying pixels within the surface.
The color table can contain 16- or 24-bit RGB triplets representing the colors to be
used. For 16-color palettes, the table can also contain indexes to another 256-color
palette. Palettes are supported for textures, off-screen surfaces, and overlay surfaces,
none of which is required to have the same palette as the primary surface.

You can create a palette by calling the IDirectDraw2::CreatePalette method. This
method retrieves a pointer to the palette object's IDirectDrawPalette interface. You
can use the methods of this interface to manipulate palette entries, retrieve
information about the object's capabilities, or initialize the object (if you used the
CoCreateInstance COM function to create it).

You apply a palette to a surface by calling the surface's
IDirectDrawSurface3::SetPalette method. A single palette can be applied to
multiple surfaces.

DirectDrawPalette objects reserve entry 0 and entry 255 for 8-bit palettes, unless you
specify the DDPCAPS_ALLOW256 flag to request that these entries be made
available to you.

You can retrieve palette entries by using the IDirectDrawPalette::GetEntries
method, and you can change entries by using the IDirectDrawPalette::SetEntries
method.

in.doc – page 44

The Ddutil.cpp source file included with this SDK contains some handy application-
defined functions for working with palettes. For more information, see the
DDLoadPalette functions in that source file.

Palette Types
DirectDraw supports 1-bit (2 entry), 2-bit (4 entry), 4-bit (16 entry), and 8-bit (256
entry) palettes. A palette can only be attached to a surface that has a matching pixel
format. For example, a 2-entry palette created with the DDPCAPS_1BIT flag can be
attached only to a 1-bit surface created with the DDPF_PALETTEINDEXED1 flag.

Additionally, you can create palettes that don’t contain a color table at all, known as
index palettes. Instead of a color table, an index palette contains index values that
represent locations another palette’s color table.

To create an indexed palette, specify the DDPCAPS_8BITENTRIES flag when
calling the IDirectDraw2::CreatePalette method. For example, to create a 4-bit
indexed palette, specify both the DDPCAPS_4BIT and DDPCAPS_8BITENTRIES
flags. When you create an indexed palette, you pass a pointer to an array of bytes
rather than a pointer to an array of PALETTEENTRY structures. You must cast the
pointer to the array of bytes to an LPPALETTEENTRY type when you use the
IDirectDraw2::CreatePalette method.

Note that DirectDraw does not dereference index palette entries during blit
operations.

Setting Palettes on Nonprimary Surfaces
Palettes can be attached to any palettized surface (primary, back buffer, off-screen
plain, or texture map). Only those palettes attached to primary surfaces will have any
effect on the system palette. It is important to note that DirectDraw blits never
perform color conversion; any palettes attached to the source or destination surface of
a blit are ignored.

Nonprimary surface palettes are intended for use by Direct3D applications.

Sharing Palettes
Palettes can be shared among multiple surfaces. The same palette can be set on the
front buffer and the back buffer of a flipping chain or shared among multiple texture
surfaces. When an application attaches a palette to a surface by using the
IDirectDrawSurface3::SetPalette method, the surface increments the reference
count of that palette. When the reference count of the surface reaches 0, the surface
will decrement the reference count of the attached palette. In addition, if a palette is
detached from a surface by using IDirectDrawSurface3::SetPalette with a NULL
palette interface pointer, the reference count of the surface's palette will be
decremented.

in.doc – page 45

Note
If IDirectDrawSurface3::SetPalette is called several times consecutively on the
same surface with the same palette, the reference count for the palette is
incremented only once. Subsequent calls do not affect the palette's reference
count.

Palette Animation
Palette animation refers to the process of modifying a surface’s palette to change how
the surface itself looks when displayed. By repeatedly changing the palette, the
surface appears to change without actually modifying the contents of the surface. To
this end, palette animation gives you a way to modify the appearance of a surface
without changing its contents and with very little overhead.

There are two methods for providing straightforward palette animation:

· Modifying palette entries within a single palette

· Switching between multiple palettes

Using the first method, you change individual palette entries that correspond to the
colors you want to animate, then reset the entries with a single call to the
IDirectDrawPalette::SetEntries method.

The second method requires two or more DirectDrawPalette objects. When using this
method, you perform the animation by attaching one palette object after another to the
surface object by calling the IDirectDrawSurface3::SetPalette method.

Neither method is hardware intensive, so feel free to use whichever technique you see
fit for your application.

For specific information and an example of how to implement palette animation, see
Tutorial 5: Dynamically Modifying Palettes.

Clippers
This section contains information about DirectDrawClipper objects. The following
topics are discussed:

· What Are Clipper Objects?

· Clip Lists

· Sharing DirectDrawClipper Objects

· Independent DirectDrawClipper Objects

· Creating DirectDrawClipper Objects with CoCreateInstance

· Using a Clipper with the System Cursor

· Using a Clipper with Multiple Windows

in.doc – page 46

What Are Clipper Objects?
Clippers, or DirectDrawClipper objects, allow you to blit to selected parts of a
surface. A clipper object holds one or more clip lists. A clip list is one bounding
rectangle or a list of several bounding rectangles that describe an area or areas of a
surface to which you are allowed to blit. These areas are described with RECT
structures, in screen coordinates.

Clip lists are a very valuable tool. One common use for them is in preventing your
application from blitting beyond the edges of the screen. For example, imagine that
you want to display a sprite as it enters the screen from an edge. You don't want to
make the sprite "pop" onto the screen; you want it to appear as though it is smoothly
moving into view. Without a clipper object, you would need to include logic that
restricts blit operations to protect surface memory that is logically off the edge of the
screen. Failing to do this results in memory access violations.

The following illustration shows this type of clipping.

Destination
Surface

640 pixels

48
0

pi
xe

ls

Visible
portion

Clipped
Portion

Sprite Graphic

You can use clipper objects to designate certain areas within a destination surface as
writable. DirectDraw clips blit operations in these areas, protecting the pixels outside
the specified clipping rectangle.

The following illustration shows this clipping style.

in.doc – page 47

640 pixels

48
0

pi
xe

ls

Valid Blit Area

Protected
Surface
Memory

Clip Lists
DirectDraw manages clip lists by using the DirectDrawClipper object. A clip list is a
series of rectangles that describes the visible areas of the surface. A
DirectDrawClipper object can be attached to any surface. A window handle can also
be attached to a DirectDrawClipper object, in which case DirectDraw updates the
DirectDrawClipper clip list with the clip list from the window as it changes.

Although the clip list is visible from the DirectDraw HAL, DirectDraw calls the HAL
only for blitting with rectangles that meet the clip list requirements. For instance, if
the upper-right rectangle of a surface was clipped and the application directed
DirectDraw to blit the surface onto the primary surface, DirectDraw would have the
HAL do two blits, the first being the upper-left corner of the surface, and the second
being the bottom half of the surface.

Through the IDirectDrawClipper::SetClipList method, you can passing an entire
clip list to the driver (if the driver supports this) rather than calling the driver multiple
times, once for each rectangle in the clip list. Additionally, you can set the clipper to a
single window by calling the IDirectDrawClipper::SetHWnd method, specifying
the target window’s handle. If you set a clipper using a window handle, you cannot
set additional rectangles.

Clipping for overlay surfaces is supported only if the overlay hardware can support
clipping and if destination color keying is not active.

in.doc – page 48

Sharing DirectDrawClipper Objects
DirectDrawClipper objects can be shared between multiple surfaces. For example, the
same DirectDrawClipper object can be set on both the front buffer and the back
buffer of a flipping chain. When an application attaches a DirectDrawClipper object
to a surface by using the IDirectDrawSurface3::SetClipper method, the surface
increments the reference count of that object. When the reference count of the surface
reaches 0, the surface will decrement the reference count of the attached
DirectDrawClipper object. In addition, if a DirectDrawClipper object is detached
from a surface by calling IDirectDrawSurface3::SetClipper with a NULL clipper
interface pointer, the reference count of the surface's DirectDrawClipper object will
be decremented.

Note
If IDirectDrawSurface3::SetClipper is called several times consecutively on
the same surface for the same DirectDrawClipper object, the reference count for
the object is incremented only once. Subsequent calls do not affect the object's
reference count.

Independent DirectDrawClipper Objects
You can create DirectDrawClipper objects that are not directly owned by any
particular DirectDraw object. These DirectDrawClipper objects can be shared across
multiple DirectDraw objects. Driver-independent DirectDrawClipper objects are
created by using the new DirectDrawCreateClipper DirectDraw function. An
application can call this function before any DirectDraw objects are created.

Because DirectDraw objects do not own these DirectDrawClipper objects, they are
not automatically released when your application's objects are released. If the
application does not explicitly release these DirectDrawClipper objects, DirectDraw
will release them when the application closes.

You can still create DirectDrawClipper objects by using the
IDirectDraw2::CreateClipper method. These DirectDrawClipper objects are
automatically released when the DirectDraw object from which they were created is
released.

Creating DirectDrawClipper Objects with
CoCreateInstance

DirectDrawClipper objects have full class-factory support for COM compliance. In
addition to using the standard DirectDrawCreateClipper function and
IDirectDraw2::CreateClipper method, you can also create a DirectDrawClipper
object either by using the CoGetClassObject function to obtain a class factory and
then calling the CoCreateInstance function, or by calling CoCreateInstance
directly. The following example shows how to create a DirectDrawClipper object by
using CoCreateInstance and the IDirectDrawClipper::Initialize method.

in.doc – page 49

ddrval = CoCreateInstance(&CLSID_DirectDrawClipper,

 NULL, CLSCTX_ALL, &IID_IDirectDrawClipper, &lpClipper);

if (!FAILED(ddrval))

 ddrval = IDirectDrawClipper_Initialize(lpClipper,

 lpDD, 0UL);

In this call to CoCreateInstance, the first parameter, CLSID_DirectDrawClipper, is
the class identifier of the DirectDrawClipper object class, the
IID_IDirectDrawClipper parameter identifies the currently supported interface, and
the lpClipper parameter points to the DirectDrawClipper object that is retrieved.

An application must use the IDirectDrawClipper::Initialize method to initialize
DirectDrawClipper objects that were created by the class-factory mechanism before it
can use the object. The value 0UL is the dwFlags parameter, which in this case has a
value of 0 because no flags are currently supported. In the example shown here, lpDD
is the DirectDraw object that owns the DirectDrawClipper object. However, you
could supply a NULL value instead, which would create an independent
DirectDrawClipper object. (This is equivalent to creating a DirectDrawClipper object
by using the DirectDrawCreateClipper function.)

Before you close the application, shut down COM by using the CoUninitialize
function.

Using a Clipper with the System Cursor
DirectDraw applications often need to provide a way for users to navigate using the
mouse. For full screen exclusive mode applications that use page-flipping, the only
option is to implement a mouse cursor manually with a sprite, moving the sprite based
on data retrieved from the device by DirectInput® or by responding to Windows
mouse messages. However, any application that doesn’t use page-flipping can still
use the system’s mouse cursor support.

When you use the system mouse cursor, you will sometimes fall victim to graphic
artifacts that occur when you blit to parts of the primary surface. These artifacts
appear as portions of the mouse cursor seemingly left behind by the system.

A DirectDrawClipper object can prevent these artifacts from appearing by preventing
the mouse cursor image from “being in the way” during a blit operation. It’s a
relatively simple matter to implement, as well. To do so, create a DirectDrawClipper
object by calling the IDirectDraw2::CreateClipper method. Then, assign your
application’s window handle to the clipper with the IDirectDrawClipper::SetHWnd
method. Once a clipper is attached, any subsequent blits you perform on the primary
surface with the IDirectDrawSurface3::Blt method will not exhibit the artifact.

Note that the IDirectDrawSurface3::BltFast method, and its counterparts in the
IDirectDrawSurface and IDirectDrawSurface3 interfaces, will not work on
surfaces with attached clippers.

in.doc – page 50

Using a Clipper with Multiple Windows
You can use a DirectDrawClipper object to blit to multiple windows created by an
application running at the normal cooperative level.

To do this, create a single DirectDraw object with a primary surface. Then, create a
DirectDrawClipper object and assign it to your primary surface by calling the
IDirectDrawSurface3::SetClipper method. To blit only the client area of a window,
set the clipper to that window’s client area by calling the
IDirectDrawClipper::SetHWnd method before blitting to the primary surface.
Whenever you need to blit to another window’s client area, call the
IDirectDrawClipper::SetHWnd method again with the new target window handle.

Creating multiple DirectDraw objects that blit to each others’ primary surface is not
recommended. The technique described above provides an efficient and reliable way
to blit to multiple client areas with a single DirectDraw object.

Advanced DirectDraw Topics
This section supplements the DirectDraw overview, providing information about
advanced DirectDraw issues. The following topics are discussed:

· Mode 13 Support

· Taking Advantage of DMA Support

· Using DirectDraw Palettes in Windowed Mode

· Working with Multiple Monitors

· Video-Ports

· Getting the Flip and Blit Status

· Blitting with Color Fill

· Determining the Capabilities of the Display Hardware

· Storing Bitmaps in Display Memory

· Triple Buffering

· DirectDraw Applications and Window Styles

· Matching True RGB Colors to the Frame Buffer’s Color Space

Mode 13 Support
This section contains information about DirectDraw mode 13 graphics mode support.
The following topics are discussed:

· About Mode 13

· Setting Mode 13

· Mode 13 and Surface Capabilities

in.doc – page 51

· Using Mode 13

About Mode 13

DirectDraw supports access to the linear unflippable 320x200 8 bits per pixel
palettized mode known widely by the name Mode 13, its hexadecimal BIOS mode
number. DirectDraw treats this mode like a Mode X mode, but with some important
differences imposed by the physical nature of Mode 13.

Setting Mode 13

Mode 13 has similar enumeration and mode-setting behavior as Mode X. DirectDraw
will only enumerate Mode 13 if the DDSCL_ALLOWMODEX flag was passed to the
IDirectDraw2::SetCooperativeLevel method.

You enumerate the Mode 13 display mode like all other modes, but you make a
surface capabilities check before calling IDirectDraw2::EnumDisplayModes. To do
this, call IDirectDraw2::GetCaps and check for the
DDSCAPS_STANDARDVGAMODE flag in the DDSCAPS structure after the
method returns. If this flag is not present, then Mode 13 is not supported, and
attempts to enumerate with the DDEDM_STANDARDVGAMODES flag will fail,
returning DDERR_INVALIDPARAMS.

The EnumDisplayModes method now supports a new enumeration flag,
DDEDM_STANDARDVGAMODES, which causes DirectDraw to enumerate Mode
13 in addition to the 320x200x8 Mode X mode. There is also a new
IDirectDraw2::SetDisplayMode flag, DDSDM_STANDARDVGAMODE, which
you must pass in order to distinguish Mode 13 from 320x200x8 Mode X.

Note that some video cards offer linear accelerated 320x200x8 modes. On such cards
DirectDraw will not enumerate Mode 13, enumerating the linear mode instead. In this
case, if you attempt to set Mode 13 by passing the
DDSDM_STANDARDVGAMODE flag to SetDisplayMode, the method will
succeed, but the linear mode will be used. This is analogous to the way that linear low
resolution modes override Mode X modes.

Mode 13 and Surface Capabilities

When DirectDraw calls an application’s EnumModesCallback callback function, the
ddsCaps member of the associated DDSURFACEDESC structure contains flags that
reflect the mode being enumerated. You can expect DDSCAPS_MODEX for a Mode
X mode or DDSCAPS_STANDARDVGAMODE for Mode 13. These flags are
mutually exclusive. If neither of these bits is set, then the mode is a linear accelerated
mode. This behavior also applies to the flags retrieved by the
IDirectDraw2::GetDisplayMode method.

in.doc – page 52

Using Mode 13

Because Mode 13 is a linear mode, DirectDraw can give an application direct access
to the frame buffer. Unlike Mode X modes, you can call the
IDirectDrawSurface3::Lock, IDirectDrawSurface3::Blt, and
IDirectDrawSurface3::BltFast methods directly to access the primary surface.

When using Mode 13, DirectDraw supports an emulated IDirectDrawSurface3::Flip
that is implemented as a straight copy of the contents of a back buffer to the primary
surface. You can emulate this yourself by copying a smaller subrectangle of the back
buffer to the primary using Blt or BltFast.

There is one caveat concerning Lock and Mode 13. Although DirectDraw allows
direct linear access to the Mode 13 VGA frame buffer, do not assume that the buffer
is always located at address 0xA0000, since DirectDraw can return an aliased virtual-
memory pointer to the frame buffer which will not be 0xA0000. Similarly, do not
assume that the pitch of a Mode 13 surface is 320, because display cards that support
an accelerated 320x200x8 mode will very likely use a different pitch.

Taking Advantage of DMA Support
This section contains information about how you can take advantage of device
support for Direct Memory Access (DMA) to increase performance in completing
certain tasks. The following topics are discussed:

· About DMA Device Support

· Testing For DMA Support

· Typical Scenarios for DMA

· Using DMA

About DMA Device Support

Some display devices can perform blit operations (or other operations) on system
memory surfaces. These operations are commonly referred to as Direct Memory
Access (DMA) operations. You can exploit DMA support to accelerate certain
combinations of operations. For example, on such a device, you could perform a blit
from system memory to video memory while using the processor to prepare the next
frame. In order to use such facilities, you must assume certain responsibilities. This
section details these tasks.

Testing For DMA Support

Before using DMA operations, you must test the device for DMA support and, if it
does support DMA, how much support it provides. Begin by retrieving the driver
capabilities by calling the IDirectDraw2::GetCaps method, then look for the
DDCAPS_CANBLTSYSMEM flag in the dwCaps member of the associated
DDCAPS structure. If the flag is set, the device supports DMA.

in.doc – page 53

If you know that DMA is generally supported, you also need to find out how well the
driver supports it. You do so by looking at some other structure members that provide
information about system-to-video, video-to-system, and system-to-system blit
operations. These capabilities are provided in 12 DDCAPS structure members that
are named according to blit and capability type. The following table shows these new
members.

System-to-video Video-to-system System-to-system

 dwSVBCaps dwVSBCaps dwSSBCaps

 dwSVBCKeyCaps dwVSBCKeyCaps dwSSBCKeyCaps

 dwSVBFXCaps dwVSBFXCaps dwSSBFXCaps

 dwSVBRops dwVSBRops dwSSBRops

For example, the system-to-video blit capability flags are provided in the
dwSVBCaps, dwSVBCKeyCaps, dwSVBFXCaps and dwSVBRops members.
Similarly, video-to-system blit capabilities are in the members whose names begin
with “dwVSB,” and system-to system capabilities are in the “dwSSB” members.
Examine the flags present in these members to determine the level of hardware
support for that blit category.

The flags in these members are parallel with the blit-related flags included in the
dwCaps, dwCKeyCaps, and dwFXCaps members, with respect to that member’s
blit type. For example, the dwSVBCaps member contains general blit capabilities as
specified by the same flags you might find in the dwCaps member. Likewise, the
raster operation values in the dwSVBRops, dwVSBRops, and dwSSBRops members
provide information about the raster operations supported for a given type of blit
operation.

One of the key features to look for in these members is support for asynchronous
DMA blit operations. If the driver supports asynchronous DMA blits between
surfaces, the DDCAPS_BLTQUEUE flag will be set in the dwSVBCaps,
dwVSBCaps, or dwSSBCaps member. (Generally, you’ll see the best support for
system-memory-to-video-memory surfaces.) If the flag isn’t present, the driver isn’t
reporting support for asynchronous DMA blit operations.

Typical Scenarios For DMA

System memory to video memory SRCCOPY transfers are the most common type of
hardware-supported blit operation. Consequently, the most typical use for such an
operation is to move textures from a large collection of system memory surfaces to a
surface in video memory in preparation for subsequent operations. System-to-video
DMA transfers are about as fast as processor-controlled transfers (for example, HEL
blits), but are of great utility since they can operate in parallel with the host processor.

Using DMA

Hardware transfers use physical memory addresses, not the virtual addresses which
are home to applications. Some device drivers require that you provide the surface’s

in.doc – page 54

physical memory address. This mechanism is implemented by the
IDirectDrawSurface3::PageLock method. If the device driver does not require page
locking, the DDCAPS2_NOPAGELOCKREQUIRED flag will be set when you
retrieve the hardware capabilities by calling the IDirectDraw2::GetCaps method.

Page locking a surface prevents the system from committing a surface’s physical
memory to other uses, and guarantees that the surface’s physical address will remain
constant until a corresponding IDirectDrawSurface3::PageUnlock call is made. If
the device driver requires page locking, DirectDraw will only allow DMA operations
on system memory surfaces that the application has page locked. If you do not call
IDirectDrawSurface3::PageLock in such a situation, DirectDraw will perform the
transfers by using software emulation. Note that locking a large amount of system
memory will make Windows run poorly. Therefore, it is highly recommended that
only full-screen exclusive mode applications use IDirectDrawSurface3::PageLock
for large amounts of system memory, and that such applications take care to unlock
these surfaces when the application is minimized. Of course, when the application is
restored, you should page lock the system memory surface again.

Responsibility for managing page locking is entirely in the hands of the application
developer. DirectDraw will never page lock or page unlock a surface. Additionally, it
is up to you to determine how much memory you can safely page lock without
adversely affecting system performance.

Using DirectDraw Palettes in Windowed Mode
IDirectDrawPalette interface methods write directly to the hardware when the
display is in exclusive (full-screen) mode. However, when the display is in
nonexclusive (windowed) mode, the IDirectDrawPalette interface methods call the
GDIs palette handling functions to work cooperatively with other windowed
applications.

The discussion in the following topics assumes that the desktop is in an 8-bit
palettized mode and that you have created a primary surface and a typical window.

· Types of Palette Entries in Windowed Mode

· Creating a Palette in Windowed Mode

· Setting Palette Entries in Windowed Mode

Types of Palette Entries in Windowed Mode

Unlike full-screen exclusive mode applications, windowed applications must share
the desktop palette with other applications. This imposes several restrictions on which
palette entries you can safely modify and how you can modify them. The
PALETTEENTRY structure you use when working with DirectDrawPalette objects
and GDI contains a peFlags member to carry information that describes how the
system should interpret the PALETTEENTRY structure.

The peFlags member describes three types of palette entries, discussed in this topic:

in.doc – page 55

· Windows static entries

· Animated entries

· Nonanimated entries

Windows static entries.

In normal mode, Windows reserves palette entries 0 through 9 and 246 through 255
for system colors that it uses to display menu bars, menu text, window borders, and so
on. In order to maintain a consistent look for your application and avoid damaging the
appearance of other applications, you need to protect these entries in the palette you
set to the primary surface. Often, developers retrieve the system palette entries by
calling the GetSystemPaletteEntries Win32® function, then explicitly set the
identical entries in a custom palette to match before assigning it to the primary
surface. Duplicating the system palette entries in a custom palette will work initially,
but it becomes invalid if the user changes the desktop color scheme.

To avoid having your palette look bad when the user changes color schemes, you can
protect the appropriate entries by providing a reference into the system palette instead
specifying a color value. This way, no matter what color the system is using for a
given entry, your palette will always match and you won’t need to do any updating.
The PC_EXPLICIT flag, used in the peFlags member, makes it possible for you to
directly refer to a system palette entry. When you use this flag, the system no longer
assumes that the other structure members include color information. Rather, when
you use PC_EXPLICIT, you set the value in the peRed member to the desired system
palette index and set the other colors to zero.

For instance, if you want to ensure that the proper entries in your palette always
match the system’s color scheme, you could use the following code:

// Set the first and last 10 entries to match the system palette.

PALETTEENTRY pe[256];

ZeroMemory(pe, sizeof(pe));

for(int i=0;i<10;i++){

 pe[i].peFlags = pe[i+246].peFlags = PC_EXPLICIT;

 pe[i].peRed = i;

 pe[i+246].peRed = i+246;

}

You can force Windows to use only the first and last palette entry (0 and 255) by
calling the SetSystemPaletteUse Win32 function. In this case, you should set only
entries 0 and 255 of your PALETTEENTRY structure to PC_EXPLICIT.

Animated entries

You specify palette entries that you will be animating by using the PC_RESERVED
flag in the corresponding PALETTEENTRY structure. Windows will not allow any
other application to map its logical palette entry to that physical entry, thereby
preventing other applications from cycling their colors when your application
animates the palette.

in.doc – page 56

Nonanimated entries

You specify normal, nonanimated palette entries by using the PC_NOCOLLAPSE
flag in the corresponding PALETTEENTRY structure. The PC_NOCOLLAPSE flag
informs Windows not to substitute some other already-allocated physical palette entry
for that entry.

Creating a Palette in Windowed Mode

The following example illustrates how to create a DirectDraw palette in nonexclusive
(windowed) mode. In order for your palette to work correctly, it is vital that you set
up every one of the 256 entries in the PALETTEENTRY structure that you submit
to the IDirectDraw2::CreatePalette method.

LPDIRECTDRAW lpDD; // Assumed to be initialized previously

PALETTEENTRY pPaletteEntry[256];

int index;

HRESULT ddrval;

LPDIRECTDRAWPALETTE lpDDPal;

// First set up the Windows static entries.

for (index = 0; index < 10 ; index++)

{

 // The first 10 static entries:

 pPaletteEntry[index].peFlags = PC_EXPLICIT;

 pPaletteEntry[index].peRed = index;

 pPaletteEntry[index].peGreen = 0;

 pPaletteEntry[index].peBlue = 0;

 // The last 10 static entries:

 pPaletteEntry[index+246].peFlags = PC_EXPLICIT;

 pPaletteEntry[index+246].peRed = index+246;

 pPaletteEntry[index+246].peGreen = 0;

 pPaletteEntry[index+246].peBlue = 0;

}

// Now set up private entries. In this example, the first 16

// available entries are animated.

for (index = 10; index < 26; index ++)

{

 pPaletteEntry[index].peFlags = PC_NOCOLLAPSE|PC_RESERVED;

 pPaletteEntry[index].peRed = 255;

 pPaletteEntry[index].peGreen = 64;

 pPaletteEntry[index].peBlue = 32;

}

// Now set up the rest, the nonanimated entries.

in.doc – page 57

for (; index < 246; index ++) // Index is set up by previous for loop

{

 pPaletteEntry[index].peFlags = PC_NOCOLLAPSE;

 pPaletteEntry[index].peRed = 25;

 pPaletteEntry[index].peGreen = 6;

 pPaletteEntry[index].peBlue = 63;

}

// All 256 entries are filled. Create the palette.

ddrval = lpDD->CreatePalette(DDPCAPS_8BIT, pPaletteEntry,

 &lpDDPal,NULL);

Setting Palette Entries in Windowed Mode

The rules that apply to the PALETTEENTRY structure used with the
IDirectDraw2::CreatePalette method also apply to the
IDirectDrawPalette::SetEntries method. Typically, you maintain your own array of
PALETTEENTRY structures, so you do not need to rebuild it. When necessary, you
can modify the array, and then call IDirectDrawPalette::SetEntries when it is time
to update the palette.

In most circumstances, you should not attempt to set any of the Windows static
entries when in nonexclusive (windowed) mode or you will get unpredictable results.
The only exception is when you reset the 256 entries.

For palette animation, you typically change only a small subset of entries in your
PALETTEENTRY array. You submit only those entries to
IDirectDrawPalette::SetEntries. If you are resetting such a small subset, you must
reset only those entries marked with the PC_NOCOLLAPSE and PC_RESERVED
flags. Attempting to animate other entries can have unpredictable results.

The following example illustrates palette animation in nonexclusive mode:

LPDIRECTDRAW lpDD; // Already initialized

PALETTEENTRY pPaletteEntry[256]; // Already initialized

LPDIRECTDRAWPALETTE lpDDPal; // Already initialized

int index;

HRESULT ddrval;

PALETTEENTRY temp;

// Animate some entries. Cycle the first 16 available entries.

// They were already animated.

temp = pPaletteEntry[10];

for (index = 10; index < 25; index ++)

{

 pPaletteEntry[index] = pPaletteEntry[index+1];

}

pPaletteEntry[25] = temp;

in.doc – page 58

// Set the values. Do not pass a pointer to the entire palette entry

// structure, but only to the changed entries.

ddrval = lpDDPal->SetEntries(

 0, // Flags must be zero

 10, // First entry

 16, // Number of entries

 & (pPaletteEntry[10])); // Where to get the data

Working with Multiple Monitors
Future releases of Windows 95, code named Memphis, and Windows NT support
multiple display devices and monitors on a single system. The multiple monitor
architecture (casually referred to as “MultiMon”) enables the operating system to use
the display area from two or more display devices and monitors to create a single
logical desktop. For example, in a MultiMon system with two monitors, the user
could display applications on either monitor, or even drag windows from one monitor
to another. DirectDraw supports this architecture, but there are a few nuances to be
aware of, depending on the cooperative level your application uses.

A DirectDraw application should enumerate the devices, choose a device (or perhaps
allow the user to choose the device to use), then create a DirectDraw object for that
the device by using its hardware globally unique identifier (GUID). This technique
will ensure the best performance on both MultiMon and single monitor systems and at
all cooperative levels.

The currently active display device is referred to as the “default device,” or the “null
device.” The latter name comes from the fact that the currently active display device
is enumerated with NULL as its GUID. Many existing applications create a
DirectDraw object for the null device, assuming that the device will be hardware
accelerated. However, on multiple monitor systems, the null device isn’t always
hardware accelerated; it depends on what cooperative level is set at the time.

In full-screen exclusive mode, the null device is hardware accelerated, but unaware of
any other installed devices. This means that full-screen, exclusive mode applications
will run as fast on a MultiMon system as any other system, but will not be able to use
built-in support for spanning graphics operations across display devices. Full-screen,
exclusive mode applications that need to use multiple devices can create a
DirectDraw object for each device they want to use. Note that to create a DirectDraw
object for a specific device, you must supply that device’s GUID (as it is enumerated
when you call DirectDrawEnumerate).

When the normal cooperative level is set, the null device has no hardware
acceleration; the null device is, effectively, an emulated logical device that combines
the resources of two physical devices. Therefore, the null device has no hardware
acceleration at all when the normal cooperative level is set. On the other hand, when
the normal cooperative level is set, the null device is capable of automatically
spanning graphics operations across monitors. As a result, negative coordinates for

in.doc – page 59

blit operations are valid when the logical location of secondary monitor is to the left
of the primary monitor.

If your application requires hardware acceleration when the normal cooperative level
is set, it must create a single DirectDraw object using a specific device’s GUID. Note
that when you don’t use the null device, you don’t get automatic device spanning.
That is, blit operations that cross an edge of the primary surface will be clipped (if
you are using a clipper) or will fail, returning DDERR_INVALIDRECT.

As a rule on any system, you should set the cooperative level immediately after
creating a DirectDraw object, before retrieving the object’s capabilities or querying
for other interfaces. Additionally, avoid setting the cooperative level multiple times
on a MultiMon system. If you need to switch from full-screen to normal mode, it is
best to create a new DirectDraw object.

Video Ports
DirectDraw video-port extensions are a low-level programming interface, not
intended for mainstream multimedia programmers. The target customer is the video-
streaming software industry, which creates products like DirectShow™. Developers
who want to include video playback in their software can make use of video-port
extensions. However, for most software, a high-level programming interface like the
one provided by DirectShow is recommended for greater ease of use.

This section contains information about DirectDrawVideoPort objects. The following
topics are discussed:

· What is a Video-Port Object?

· Video-Port Technology Overview

· About DirectDraw Video-Port Extensions

· Video Frames and Fields

· HREF, VREF, and Connections

· Vertical Blanking Interval Data

· Auto-Flipping

· Solutions to Common Video Artifacts

· Solving Problems Caused by Half-Lines

· Exploiting Hardware Features

What is a Video-Port Object?

A DirectDrawVideoPort object represents the video-port hardware found on some
display adapters. Generally, a video-port object controls how the video-port hardware
applies a video signal it receives from a video decoder directly to the frame buffer.

More than one channel of video can be controlled by creating as many
DirectDrawVideoPort objects as is required. Because each channel can be separately

in.doc – page 60

enumerated and configured, the video hardware for each channel does not need to be
identical.

For more information, see Video-Port Technology Overview.

Video-Port Technology Overview

A video port is hardware on a display device that enables direct access to a surface
within the frame buffer, bypassing the CPU and PCI bus. Direct frame buffer access
makes it possible to efficiently play live or recorded video without creating noticeable
load on the CPU. Once in a surface, an image can be displayed on the screen as an
overlay, used as a Direct3D texture, or accessed by the CPU for capture or other
processing. The following paragraphs provide general information about the
components that make up the technology and how they work.

Data Flow

In a machine equipped with a video port, data in a video stream can flow directly
from a video source through a video decoder and the video port to the frame buffer.
These components often exist together on a display adapter, but can be on separate
hardware components that are physically connected to one another. An example of
this data flow is provided in the following illustration.

Video Input
(Physical video input,
MPEG codec, or other

device)

Video
Decoder

Video-Port
Equipped
VGA Chip

Frame Buffer

Offscreen
overlay
surface

Monitor

Video
Playback

Image

Video source

In the scope of video-port technology, a video source is strictly a hardware video
input device, such as a Zoom Video port, MPEG codec, or other hardware source.
These sources broadcast signals in a variety of formats, including NTSC, PAL, and
SECAM through a physical connection to a video decoder.

Video Decoder

A video decoder is also a hardware component. The video decoder’s job is to
decipher the information provided by the video source and send it to the video port in
an agreed upon connection format. The decoder possesses a physical connection to
the video port, and exposes its services through a stream class minidriver. The
decoder is responsible for sending video data and clock and sync information to the
video port.

Video port

in.doc – page 61

Like the other components in the data flow path, the video port is a piece of hardware.
The video port exists on the display adapter’s VGA chip and has direct access to the
frame buffer. It receives information sent from the decoder, processes it, and places it
in the frame buffer to be displayed. During processing, the video port can manipulate
image data to provide scaling, shrinking, color control, or cropping services.

Frame Buffer

The frame buffer accepts video data as provided by the video port. Once received,
applications can programmatically manipulate the image data, blit it to other
locations, or show it on the display using an overlay (the most common function).

About DirectDraw Video-Port Extensions

DirectDraw has been extended to include the DirectDrawVideoPort object, which
takes advantage of video-port technology and provides its services through the
IDDVideoPortContainer and IDirectDrawVideoPort interfaces.

DirectDrawVideoPort objects do not control the video decoder, because it provides
services of its own, nor does DirectDraw control the video source; it is beyond the
scope of the video port. Rather, a DirectDrawVideoPort object represents the video
port itself. It monitors the incoming signal and passes image data to the frame buffer,
using parameters set though its interface methods to modify the image, perform
flipping, or carry out other services.

The IDDVideoPortContainer interface, which you can retrieve by calling the
IDirectDraw2::QueryInterface method, provides methods to query the hardware for
its capabilities and create video-port objects. You create a video-port object by calling
the IDDVideoPortContainer::CreateVideoPort method. Video-port objects expose
their functionality through the IDirectDrawVideoPort interface, enabling you to
manipulate the video-port hardware itself. Using these interfaces, you can examine
the video-port’s capabilities, assign an overlay surface to receive image data, start and
stop video playback, and set hardware parameters to manipulate image data for
cropping, color control, scaling, or shrinking effects.

DirectDraw video-port extensions provide for multiple video ports on the same
machine by allowing you to create multiple DirectDrawVideoPort objects. There is
no requirement that multiple video ports on a machine be identical—each port is
separately enumerated and configured separately, regardless of any hardware
differences that might exist.

In keeping with the general philosophy of DirectX, this technology gives
programmers low-level access to hardware features while insulating them from
specific hardware implementation details. It is not a high-level API.

Video Frames and Fields

Video can be interlaced or non-interlaced. When a video signal is interlaced, each
video frame is made of two fields of image data. Each field is a collection of every
other scan line in an image, starting with the first or second scan line. The first field,

in.doc – page 62

referred to as the odd field (or field 1), contains the data for the first scan line and
skips every other scan line to the end of the image. Similarly, the even field (or field
2), carries every other scan line starting with the second. The “even-ness” or “odd-
ness” of a field is referred to as its field polarity.

When video is not interlaced, each field contains all of a frame's scan lines. Typically,
video signals are sent at a rate of 30 frames per second; in the case of interleaved
video, this means the rate is 60 fields per second.

The fields that make up a frame do not always reflect the same moment in time. For
example, if the frames are separated by 1/30 of a second then the two fields of a
frame may be separated by 1/60 of a second. Because a television displays each field
individually, no two fields are simultaneously visible, and the difference between
fields adds to the illusion of movement.

HREF, VREF, and Connections

When a monitor or other display device is displaying an image, it typically scans
down the screen, creating an image from left to right, top to bottom. (Sometimes, the
device makes two passes down the screen to create a single image; this type of
display is called an interlaced display.) The video stream contains signals that instruct
the display device when a new line or new screen is to be drawn.

The terms HREF and VREF, also known as hsync and vsync, are the signals within
the video stream that tell a display device what to do and when to do it. The HREF
signals that a new line is to be drawn and the VREF signals a new screen.

For instance, imagine you’re working with a video signal intended for the world’s
smallest monitor. The monitor only has 4 scan lines. (This is not at all realistic, of
course, but it’s simple.) On an oscilloscope, the HREF and VREF signals would look
somewhat like the following illustration:

VREF

HREF

In the preceding illustration, both HREF and VREF signals are “active high,”
meaning that they are considered active when in a heightened state (when the waves
go up). There is no standard for these signals. In some cases, places where the waves
go down (“low” states) might signal an active HREF or VREF, or sometimes one will
be active high and the other active low. Although the preceding illustration is only an
imaginary example, note that there are lots of HREF signals for each VREF. This is
because for each new screen, there are several scan lines. Of course, in a real video
signal for a real broadcast, you would see hundreds of HREFs for a single VREF.

HREF signals, VREF signals, and video data are carried across physical data lines
from the decoder to the video port. In many cases, a number of lines are reserved for

in.doc – page 63

video data, and others are dedicated to carrying HREF and VREF signals. However,
there is no standard for how these data lines are used.

A connection is a protocol that a video port or decoder uses to define how it uses
these data lines. Video ports and video decoders will support a variety of connections.
DirectDraw video-port extensions use globally-unique identifiers (GUIDs) to identify
each type of connection. You can query for the connections that the video port
supports by calling the IDDVideoPortContainer::GetVideoPortConnectInfo
method. You create a DirectDrawVideoPort object that supports a given connection
by calling the IDDVideoPortContainer::CreateVideoPort method.

Keep in mind that the video decoder is outside the scope of DirectDraw video-port
extensions, and exposes its supported connections through an interface of its own. By
enumerating the connections that the video-port supports and comparing the results
with the connections supported by the decoder, you can negotiate a common
connection (or “language”) that both components understand.

Vertical Blanking Interval Data

In broadcast video, a small period of time elapses between video frames, during
which a display device refreshes its display for the next frame. This period of time is
called the Vertical Blanking Interval (VBI). Instead of sitting idle during the VBI,
broadcast video encodes data in the first twenty-one scan lines of a video frame and
sends these lines during the VBI. This data is often used for closed captioning or
time-stamping, but can be used for other purposes.

DirectDraw video-port extensions enable you to divert data contained with the VBI to
a surface, bypass scaling of VBI data, and automatically flip between VBI surfaces in
a flipping chain. Once data is in a surface, you can directly access the surface’s
memory as needed.

For more information, see Auto-flipping.

Auto-flipping

To avoid tearing images when refreshing the screen between frames,
DirectDrawVideoPort objects can automatically flip their target overlay surfaces in
response to VREF signals. To use this service, the target surface you set to the video-
port object with the IDirectDrawVideoPort::SetTargetSurface method must be the
first surface in a flipping chain of overlay surfaces. Then, to begin playing the video
sequence, call the IDirectDrawVideoPort::StartVideo method, specifying the
DDVP_AUTOFLIP flag in the dwVPFlags member of the associated
DDVIDEOPORTINFO structure. The video-port object will flip to the next surface
in the flipping chain for each VREF signal is receives. If the video port is interleaving
fields, it will flip once for every two VREF signals it receives.

If you are using auto-flipping and want to direct VBI data to separate auto-flipped
surfaces, you must have the same number of VBI surfaces as you do standard video
surfaces.

in.doc – page 64

Solutions to Common Video Artifacts

Several problems are inherent in displaying broadcast video on display devices other
than televisions. This section briefly discusses some common problems, then
describes how DirectDraw video-port extensions tries to solve them.

NTSC Interlaced Display and Interleaved Memory

An NTSC signal broadcasts video at an approximate rate of 30 frames, or 60 fields,
per second. Like a frame, a field in an NTSC signal is independent of the other field
in a frame and can contain different image data. For more information on this
behavior, see Video Frames and Fields.

The problems caused by the independence of fields within a frame become apparent
when two fields are interleaved for display. In video with a lot of movement, the two
fields of a single frame will contain images that don’t match each other, resulting in
motion artifacts.

One way that developers have tried to work around this behavior is by discarding one
of the fields. This solution causes a loss in image quality by roughly one-half, but
provides acceptable results for some purposes. Another method frequently used is to
display fields individually, stretching each vertically by a factor of two when it is
displayed. This provides better image quality, but because fields are offset by one
pixel in the Y direction, the result is an animation that “jitters” up and down as it
plays.

DirectDraw video-port extensions can employ two, more advanced, techniques for
improving image quality, known as “Bob” and “Weave.” Both are supported by the
DirectDraw overlay surfaces that are used with video-port extensions.

The first algorithm, “Bob,” is very similar to the method of displaying each field in a
frame individually. However, for each field, the overlay’s source rectangle is adjusted
to accommodate for any jittering effects. Effectively, the source rectangle bounces up
and down in time with the fields, negating the jittering onscreen. The following
illustration depicts this process.

Overlay Rectangle
Overlay Rectangle

Odd Field Even Field
Scan line 1

Scan line n

The “Weave” algorithm provides the best image quality for material that originates
from film by exploiting a common technique used in the video industry for converting
motion pictures to television. Unlike Bob, a video-port object does not Weave by
itself; you must combine the default overlay behavior of displaying both fields

in.doc – page 65

simultaneously with kernel mode video transport (to be provided a future release of
Windows 95, code named Memphis, and Windows NT) to implement the algorithm.

Here is a synopsis of the algorithm, provided for completeness. Motion pictures
capture video at a rate of 24 frames per second. When converting a motion picture for
television, technicians use a technique called “3:2 pulldown” to convert the frame rate
to the 30 frames per second required for television broadcasts. This technique
involves inserting a redundant field for every four true fields in the video stream to
come up with the required number of fields.

When you “weave,” you are reversing this process. You detect when 3:2 pulldown is
being used, removing any redundant fields to restore the original motion-picture
frames. The fields that make up the restored frames can then be interleaved in
memory without risk of motion artifacts. Occasionally, the pattern of redundant
frames will change due to edits within the original film or reel breaks. You must
monitor when these changes occur and update the behavior to adjust for the new
pattern.

By default, an overlay surface displays both fields simultaneously. This works well if
you’re implementing the Weave algorithm, but prevents the video port from using the
Bob algorithm. You can programmatically change how the overlay treats video data
by calling the IDirectDrawSurface3::UpdateOverlay method. The flags you
include in the dwFlags parameter determine the overlay’s behavior: if you include the
DDOVER_BOB flag, the video port will use the Bobbing algorithm; if you don’t, it
displays both fields. Note that by simply displaying both fields simultaneously, the
resulting video will show motion artifacts.

Solving Problems Caused by Half-Lines

Some video decoders output a half line of meaningless data at the beginning of the
even field. If this extra line is written to the frame buffer, the resulting image will
appear garbled. In some cases, the video-port hardware is capable of sensing and
discarding this data before writing it to the frame buffer.

You can determine if a video port is capable of discarding this data when retrieving
connection information with the
IDDVideoPortContainer::GetVideoPortConnectInfo method. If the video port
cannot discard half-lines, the DDVPCONNECT_HALFLINE flag will be specified in
the dwFlags member of the associated DDVIDEOPORTCONNECT structure for
each supported connection.

If the video port is unable to discard half-lines, you have two options: you can discard
one of the fields, or you can work around the hardware’s limitations by making some
adjustments in how you create the video-port object, and display images with the
target overlay surface

Here’s how to work around the problem. When creating the video-port object by
calling the IDDVideoPortContainer::CreateVideoPort method, include the
DDVPCONNECT_INVERTPOLARITY flag in the dwFlags member of the
associated DDVIDEOPORTCONNECT structure. This causes the video port to

in.doc – page 66

invert the polarity of the fields in the video stream, treating even fields like odd fields
and vice versa. Once reversed, the half-line preceding even fields will be written to
the frame buffer as the first scan line of each frame. To remove the unwanted data,
adjust the source rectangle of the overlay surface used to display the image down one
pixel by calling the IDirectDrawVideoPort::StartVideo method with the necessary
coordinates. Note that this technique requires that you allocate one extra line in the
surface containing the even field.

Exploiting Hardware Features

Video-port hardware often supports special features for adjusting color, shrinking or
zooming images, handling VBI data, or skipping fields. The HAL provides
information about these features by using flags in the DDVIDEOPORTCAPS
structure. You retrieve the capabilities of a machine’s video-port hardware by calling
the IDDVideoPortContainer::EnumVideoPorts method.

To exploit these features for playback, you use the
IDirectDrawVideoPort::StartVideo method, which uses a DDVIDEOPORTINFO
structure to request that hardware features be used to modify image data before
placing it in the frame buffer or for display. By setting values and flags in this
structure, you can specify the source rectangle used with the overlay surface, indicate
cropping regions, request hardware scaling, and set pixel formats.

DirectDrawVideoPort objects do not emulate video-port hardware services.

Getting the Flip and Blit Status
When the IDirectDrawSurface3::Flip method is called, the primary surface and
back buffer are exchanged. However, the exchange may not occur immediately. For
example, if a previous flip has not finished, or if it did not succeed, this method
returns DDERR_WASSTILLDRAWING. In the samples included with this SDK,
the IDirectDrawSurface3::Flip call continues to loop until it returns DD_OK. Also,
a IDirectDrawSurface3::Flip call does not complete immediately. It schedules a flip
for the next time a vertical blank occurs on the system.

An application that waits until the DDERR_WASSTILLDRAWING value is not
returned is very inefficient. Instead, you could create a function in your application
that calls the IDirectDrawSurface3::GetFlipStatus method on the back buffer to
determine if the previous flip has finished.

If the previous flip has not finished and the call returns
DDERR_WASSTILLDRAWING, your application can use the time to perform
another task before it checks the status again. Otherwise, you can perform the next
flip. The following example demonstrates this concept:

while(lpDDSBack->GetFlipStatus(DDGFS_ISFLIPDONE) ==

 DDERR_WASSTILLDRAWING);

 // Waiting for the previous flip to finish. The application can

in.doc – page 67

 // perform another task here.

ddrval = lpDDSPrimary->Flip(NULL, 0);

You can use the IDirectDrawSurface3::GetBltStatus method in much the same way
to determine whether a blit has finished. Because
IDirectDrawSurface3::GetFlipStatus and IDirectDrawSurface3::GetBltStatus
return immediately, you can use them periodically in your application with little loss
in speed.

Blitting with Color Fill
You can use the IDirectDrawSurface3::Blt method to perform a color fill of the
most common color you want to be displayed. For example, if the most common
color your application displays is blue, you can use IDirectDrawSurface3::Blt with
the DDBLT_COLORFILL flag to first fill the surface with the color blue. Then you
can write everything else on top of it. This allows you to fill in the most common
color very quickly, and you then only have to write a minimum number of colors to
the surface.

The following example demonstrates one way to perform a color fill:

DDBLTFX ddbltfx;

ddbltfx.dwSize = sizeof(ddbltfx);

ddbltfx.dwFillColor = 0;

ddrval = lpDDSPrimary->Blt(

 NULL, // Destination

 NULL, NULL, // Source rectangle

 DDBLT_COLORFILL, &ddbltfx);

switch(ddrval)

{

 case DDERR_WASSTILLDRAWING:

 .

 .

 .

 case DDERR_SURFACELOST:

 .

 .

 .

 case DD_OK:

 .

 .

 .

 default:

}

in.doc – page 68

Determining the Capabilities of the Display
Hardware

DirectDraw uses software emulation to perform the DirectDraw functions not
supported by the user's hardware. To accelerate performance of your DirectDraw
applications, you should determine the capabilities of the user's display hardware after
you have created a DirectDraw object, then structure your program to take advantage
of these capabilities when possible.

You can determine these capabilities by using the IDirectDraw2::GetCaps method.
Not all hardware features are supported in emulation. If you want to use a feature
only supported by some hardware, you must also be prepared to supply some
alternative for systems with hardware that lacks that feature.

Storing Bitmaps in Display Memory
Blitting from display memory to display memory is usually much more efficient than
blitting from system memory to display memory. As a result, you should store as
many of the sprites your application uses as possible in display memory.

Most display adapter hardware contains enough extra memory to store more than only
the primary surface and the back buffer. You can use the dwVidMemTotal and
dwVidMemFree members of the DDCAPS structure (if you used the
IDirectDraw2::GetCaps method to get the capabilities of the user's display
hardware) to determine the amount of available memory for storing bitmaps in the
display adapter's memory. If you want to see how this works, use the DirectX Viewer
sample application included with the DirectX APIs in the Platform SDK. Under
DirectDraw Devices, open the Primary Display Driver folder, and then open the
General folder. The amount of total display memory (minus the primary surface) and
the amount of free memory is displayed. Each time a surface is added to the
DirectDraw object, the amount of free memory decreases by the amount of memory
used by the added surface.

Triple Buffering
In some cases, that is, when the display adapter has enough memory, it may be
possible to speed up the process of displaying your application by using triple
buffering. Triple buffering uses one primary surface and two back buffers. The
following example shows how to initialize a triple-buffering scheme:

// The lpDDSPrimary, lpDDSMiddle, and lpDDSBack are globally

// declared, uninitialized LPDIRECTDRAWSURFACE variables.

DDSURFACEDESC ddsd;

ZeroMemory (&ddsd, sizeof(ddsd));

in.doc – page 69

// Create the primary surface with two back buffers.

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |

 DDSCAPS_FLIP | DDSCAPS_COMPLEX;

ddsd.dwBackBufferCount = 2;

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);

// If we successfully created the flipping chain,

// retrieve pointers to the surfaces we need for

// flipping and blitting.

if(ddrval == DD_OK)

{

 // Get the surface directly attached to the primary (the back buffer).

 ddsd.ddsCaps.dwCaps = DDSCAPS_BACKBUFFER;

 ddrval = lpDDSPrimary->GetAttachedSurface(&ddsd.ddsCaps,

 &lpDDSMiddle);

 if(ddrval != DD_OK) ;

 // Display an error message here.

}

You do not need to keep track of all surfaces in a triple buffered flipping chain. The
only surfaces you must keep pointers to are the primary surface and the back-buffer
surface. You need a pointer to the primary surface in order to flip the surfaces in the
flipping chain, and you need a pointer to the back buffer for blitting. For more
information, see Flipping Surfaces.

Triple buffering allows your application to continue blitting to the back buffer even if
a flip has not completed and the back buffer's blit has already finished. Performing a
flip is not a synchronous event; one flip can take longer than another. Therefore, if
your application uses only one back buffer, it may spend some time idling while
waiting for the IDirectDrawSurface3::Flip method to return with DD_OK.

DirectDraw Applications and Window Styles
If your application uses DirectDraw in windowed mode, you can create windows with
any window style. However, full screen, exclusive mode applications cannot be
created with the WS_EX_TOOLWINDOW style without risk of unpredictable
behavior. The WS_EX_TOOLWINDOW style prevents a window from being the top
most window, which is required for a DirectDraw full screen, exclusive mode
application.

Full screen exclusive mode applications should use the WS_EX_TOPMOST
extended window style and the WS_VISIBLE window style to display properly.
These styles keep the application at the front of the window z-order and prevent GDI
from drawing on the primary surface.

in.doc – page 70

The following example shows one way to safely prepare a window to be used in a
full-screen, exclusive mode application.

//

// Register the window class, display the window, and init

// all DirectX and graphic objects.

//

BOOL WINAPI InitApp(INT nWinMode)

{

 WNDCLASSEX wcex;

 wcex.cbSize = sizeof(WNDCLASSEX);

 wcex.hInstance = g_hinst;

 wcex.lpszClassName = g_szWinName;

 wcex.lpfnWndProc = WndProc;

 wcex.style = CS_VREDRAW|CS_HREDRAW|CS_DBLCLKS;

 wcex.hIcon = LoadIcon (NULL, IDI_APPLICATION);

 wcex.hIconSm = LoadIcon (NULL, IDI_WINLOGO);

 wcex.hCursor = LoadCursor (NULL, IDC_ARROW);

 wcex.lpszMenuName = MAKEINTRESOURCE(IDR_APPMENU);

 wcex.cbClsExtra = 0 ;

 wcex.cbWndExtra = 0 ;

 wcex.hbrBackground = GetStockObject (NULL_BRUSH);

 RegisterClassEx(&wcex);

 g_hwndMain = CreateWindowEx(

 WS_EX_TOPMOST,

 g_szWinName,

 g_szWinCaption,

 WS_VISIBLE|WS_POPUP,

 0,0,CX_SCREEN,CY_SCREEN,

 NULL,

 NULL,

 g_hinst,

 NULL);

 if(!g_hwndMain)

 return(FALSE);

 SetFocus(g_hwndMain);

 ShowWindow(g_hwndMain, nWinMode);

 UpdateWindow(g_hwndMain);

 return TRUE;

}

in.doc – page 71

Matching True RGB Colors to the Frame
Buffer’s Color Space

Applications often need to find out how a true RGB color (RGB 888) will be mapped
into a the frame buffer’s color space when the display device is not in RGB 888
mode. For example, imagine you’re working on an application that will run in 16 and
24 bit RGB display modes. You know that when the art was created, a color was
reserved for use as a transparent blitting color key; for the sake of argument, it is a 24
bit color such as RGB(128,64,255). Because your application will also run in a 16 bit
RGB mode, you need a way to find out how this 24 bit color key maps into the color
space that the frame buffer uses when it’s running in a 16 bit RGB mode.

Although DirectDraw does not perform color matching services for you, there are
ways to calculate how your color key will be mapped in the frame buffer. These
methods can be pretty complicated. For most purposes, you can use the GDI built-in
color matching services, combined with the DirectDraw direct frame buffer access, to
determine how a color value maps into a different color space. In fact, the Ddutil.cpp
source file included in the DirectX examples of the Platform SDK includes a sample
function called DDColorMatch that performs this task. The DDColorMatch sample
function performs the following main tasks:

1. Retrieves the color value of a pixel in a surface at 0,0.

2. Calls the Win32 SetPixel function, using a COLORREF structure that describes
your 24-bit RGB color.

3. Uses DirectDraw to lock the surface, getting a pointer to the frame buffer
memory.

4. Retrieves the actual color value from the frame buffer (set by GDI in Step 2) and
unlocks the surface

5. Resets the pixel at 0,0 to its original color using SetPixel.

The process used by the DDColorMatch sample function is not fast; it isn’t intended
to be. However, it provides a reliable way to determine how a color will be mapped
across different RGB color spaces. For more information, see the source code for
DDColorMatch in the Ddutil.cpp source file.

DirectDraw Tutorials
This section contains a series of tutorials, each of which provides step-by-step
instructions for implementing a simple DirectDraw application. These tutorials use
many of the DirectDraw sample files that are provided with this SDK. These samples
demonstrate how to set up DirectDraw, and how to use the DirectDraw methods to
perform common tasks:

· Tutorial 1: The Basics of DirectDraw

in.doc – page 72

· Tutorial 2: Loading Bitmaps on the Back Buffer

· Tutorial 3: Blitting from an Off-Screen Surface

· Tutorial 4: Color Keys and Bitmap Animation

· Tutorial 5: Dynamically Modifying Palettes

· Tutorial 6: Using Overlay Surfaces

Some samples in these tutorials use the older IDirectDraw and IDirectDrawSurface
interfaces. If you want to update these examples so they use the DirectX 5 interfaces
query for the new versions of the interfaces before using them. In addition, you must
change the appropriate parameters of any methods that have been updated for new
versions of the interfaces.

Note
The sample files in these tutorials are written in C++. If you are using a C
compiler, you must make the appropriate changes to the files for them to
successfully compile. At the very least, you need to add the vtable and this
pointers to the interface methods.

Tutorial 1: The Basics of DirectDraw
To use DirectDraw, you first create an instance of the DirectDraw object, which
represents the display adapter on the computer. You then use the interface methods to
manipulate the object. In addition, you need to create one or more instances of a
DirectDrawSurface object to be able to display your application on a graphics surface.

To demonstrate this, the DDEX1 sample included with this SDK performs the
following steps:

· Step 1: Creating a DirectDraw Object

· Step 2: Determining the Application's Behavior

· Step 3: Changing the Display Mode

· Step 4: Creating Flipping Surfaces

· Step 5: Rendering to the Surfaces

· Step 6: Writing to the Surface

· Step 7: Flipping the Surfaces

· Step 8: Deallocating the DirectDraw Objects

Note:
To use GUIDs successfully in your applications, you must either define
INITGUID prior to all other include and define statements, or you must link to
the DXGUID.LIB library. You should define INITGUID in only one of your
source modules.

in.doc – page 73

Step 1: Creating a DirectDraw Object
To create an instance of a DirectDraw object, your application should use the
DirectDrawCreate function as shown in the doInit function of the DDEX1 program.
DirectDrawCreate contains three parameters. The first parameter takes a globally
unique identifier (GUID) that represents the display device. The GUID, in most cases,
is set to NULL, which means DirectDraw uses the default display driver for the
system. The second parameter contains the address of a pointer that identifies the
location of the DirectDraw object if it is created. The third parameter is always set to
NULL and is included for future expansion.

The following example shows how to create the DirectDraw object and how to
determine if the creation was successful or not:

ddrval = DirectDrawCreate(NULL, &lpDD, NULL);

if(ddrval == DD_OK)

{

 // lpDD is a valid DirectDraw object.

}

else

{

 // The DirectDraw object could not be created.

}

Step 2: Determining the Application's
Behavior

Before you can change the resolution of your display, you must at a minimum specify
the DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN flags in the dwFlags
parameter of the IDirectDraw2::SetCooperativeLevel method. This gives your
application complete control over the display device, and no other application will be
able to share it. In addition, the DDSCL_FULLSCREEN flag sets the application in
exclusive (full-screen) mode. Your application covers the entire desktop, and only
your application can write to the screen. The desktop is still available, however. (To
see the desktop in an application running in exclusive mode, start DDEX1 and press
ALT + TAB.)

The following example demonstrates the use of the
IDirectDraw2::SetCooperativeLevel method:

HRESULT ddrval;

LPDIRECTDRAW lpDD; // Already created by DirectDrawCreate

ddrval = lpDD->SetCooperativeLevel(hwnd, DDSCL_EXCLUSIVE |

 DDSCL_FULLSCREEN);

if(ddrval == DD_OK)

{

in.doc – page 74

 // Exclusive mode was successful.

}

else

{

 // Exclusive mode was not successful.

 // The application can still run, however.

}

If IDirectDraw2::SetCooperativeLevel does not return DD_OK, you can still run
your application. The application will not be in exclusive mode, however, and it
might not be capable of the performance your application requires. In this case, you
might want to display a message that allows the user to decide whether or not to
continue.

One requirement for using IDirectDraw2::SetCooperativeLevel is that you must
pass a handle of a window (HWND) to allow Windows to determine if your
application terminates abnormally. For example, if a general protection (GP) fault
occurs and GDI is flipped to the back buffer, the user will not be able to return to the
Windows screen. To prevent this from occurring, DirectDraw provides a process
running in the background that traps messages that are sent to that window.
DirectDraw uses these messages to determine when the application terminates. This
feature imposes some restrictions, however. You have to specify the window handle
that is retrieving messages for your application—that is, if you create another
window, you must ensure that you specify the window that is active. Otherwise, you
might experience problems, including unpredictable behavior from GDI, or no
response when you press ALT+TAB.

Step 3: Changing the Display Mode
After you have set the application's behavior, you can use the
IDirectDraw2::SetDisplayMode method to change the resolution of the display. The
following example shows how to set the display mode to 6404808 bpp:

HRESULT ddrval;

LPDIRECTDRAW lpDD; // Already created

ddrval = lpDD->SetDisplayMode(640, 480, 8);

if(ddrval == DD_OK)

{

 // The display mode changed successfully.

}

else

{

 // The display mode cannot be changed.

 // The mode is either not supported or

 // another application has exclusive mode.

}

in.doc – page 75

When you set the display mode, you should ensure that if the user's hardware cannot
support higher resolutions, your application reverts to a standard mode that is
supported by a majority of display adapters. For example, your application could be
designed to run on all systems that support 6404808 as a standard backup
resolution.

Note:
IDirectDraw2::SetDisplayMode returns a DDERR_INVALIDMODE error
value if the display adapter could not be set to the desired resolution. Therefore,
you should use the IDirectDraw2::EnumDisplayModes method to determine
the capabilities of the user's display adapter before trying to set the display mode.

Step 4: Creating Flipping Surfaces
After you have set the display mode, you must create the surfaces on which to place
your application. Because the DDEX1 example is using the
IDirectDraw2::SetCooperativeLevel method to set the mode to exclusive (full-
screen) mode, you can create surfaces that flip between the surfaces. If you were
using IDirectDraw2::SetCooperativeLevel to set the mode to DDSCL_NORMAL,
you could create only surfaces that blit between the surfaces. Creating flipping
surfaces requires the following steps, also discussed in this topic:

· Defining the surface requirements

· Creating the surfaces

Defining the Surface Requirements

The first step in creating flipping surfaces is to define the surface requirements in a
DDSURFACEDESC structure. The following example shows the structure
definitions and flags needed to create a flipping surface.

// Create the primary surface with one back buffer.

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |

 DDSCAPS_FLIP | DDSCAPS_COMPLEX;

ddsd.dwBackBufferCount = 1;

In this example, the dwSize member is set to the size of the DDSURFACEDESC
structure. This is to prevent any DirectDraw method call you use from returning with
an invalid member error. (The dwSize member was provided for future expansion of
the DDSURFACEDESC structure.)

The dwFlags member determines which members in the DDSURFACEDESC
structure will be filled with valid information. For the DDEX1 example, dwFlags is

in.doc – page 76

set to specify that you want to use the DDSCAPS structure (DDSD_CAPS) and that
you want to create a back buffer (DDSD_BACKBUFFERCOUNT).

The dwCaps member in the example indicates the flags that will be used in the
DDSCAPS structure. In this case, it specifies a primary surface
(DDSCAPS_PRIMARYSURFACE), a flipping surface (DDSCAPS_FLIP), and a
complex surface (DDSCAPS_COMPLEX).

Finally, the example specifies one back buffer. The back buffer is where the
backgrounds and sprites will actually be written. The back buffer is then flipped to the
primary surface. In the DDEX1 example, the number of back buffers is set to 1. You
can, however, create as many back buffers as the amount of display memory allows.
For more information on creating more than one back buffer, see Triple Buffering.

Surface memory can be either display memory or system memory. DirectDraw uses
system memory if the application runs out of display memory (for example, if you
specify more than one back buffer on a display adapter with only 1 MB of RAM).
You can also specify whether to use only system memory or only display memory by
setting the dwCaps member in the DDSCAPS structure to
DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY. (If you specify
DDSCAPS_VIDEOMEMORY, but not enough memory is available to create the
surface, IDirectDraw2::CreateSurface returns with a
DDERR_OUTOFVIDEOMEMORY error.)

Creating the Surfaces

After the DDSURFACEDESC structure is filled, you can use it and lpDD, the
pointer to the DirectDraw object that was created by the DirectDrawCreate function,
to call the IDirectDraw2::CreateSurface method, as shown in the following
example:

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSPrimary, NULL);

if(ddrval == DD_OK)

{

 // lpDDSPrimary points to the new surface.

}

else

{

 // The surface was not created.

 return FALSE;

}

The lpDDSPrimary parameter will point to the primary surface returned by
IDirectDraw2::CreateSurface if the call succeeds.

After the pointer to the primary surface is available, you can use the
IDirectDrawSurface3::GetAttachedSurface method to retrieve a pointer to the
back buffer, as shown in the following example:

ddscaps.dwCaps = DDSCAPS_BACKBUFFER;

in.doc – page 77

ddrval = lpDDSPrimary->GetAttachedSurface(&ddcaps, &lpDDSBack);

if(ddrval == DD_OK)

{

 // lpDDSBack points to the back buffer.

}

else

{

 return FALSE;

}

By supplying the address of the surface's primary surface and by setting the
capabilities value with the DDSCAPS_BACKBUFFER flag, the lpDDSBack
parameter will point to the back buffer if the
IDirectDrawSurface3::GetAttachedSurface call succeeds.

Step 5: Rendering to the Surfaces
After the primary surface and a back buffer have been created, the DDEX1 example
renders some text on the primary surface and back buffer surface by using standard
Windows GDI functions, as shown in the following example:

if (lpDDSPrimary->GetDC(&hdc) == DD_OK)

{

 SetBkColor(hdc, RGB(0, 0, 255));

 SetTextColor(hdc, RGB(255, 255, 0));

 TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg));

 lpDDSPrimary->ReleaseDC(hdc);

}

if (lpDDSBack->GetDC(&hdc) == DD_OK)

{

 SetBkColor(hdc, RGB(0, 0, 255));

 SetTextColor(hdc, RGB(255, 255, 0));

 TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg));

 lpDDSBack->ReleaseDC(hdc);

}

The example uses the IDirectDrawSurface3::GetDC method to retrieve the handle
of the device context, and it internally locks the surface. If you are not going to use
Windows functions that require a handle of a device context, you could use the
IDirectDrawSurface3::Lock and IDirectDrawSurface3::Unlock methods to lock
and unlock the back buffer.

Locking the surface memory (whether the whole surface or part of a surface) ensures
that your application and the system blitter cannot obtain access to the surface
memory at the same time. This prevents errors from occurring while your application

in.doc – page 78

is writing to surface memory. In addition, your application cannot page flip until the
surface memory is unlocked.

After the surface is locked, the example uses standard Windows GDI functions:
SetBkColor to set the background color, SetTextColor to select the color of the text
to be placed on the background, and TextOut to print the text and background color
on the surfaces.

After the text has been written to the buffer, the example uses the
IDirectDrawSurface3::ReleaseDC method to unlock the surface and release the
handle. Whenever your application finishes writing to the back buffer, you must call
either IDirectDrawSurface3::ReleaseDC or IDirectDrawSurface3::Unlock,
depending on your application. Your application cannot flip the surface until the
surface is unlocked.

Typically, you write to a back buffer, which you then flip to the primary surface to be
displayed. In the case of DDEX1, there is a significant delay before the first flip, so
DDEX1 writes to the primary buffer in the initialization function to prevent a delay
before displaying the surface. As you will see in a subsequent step of this tutorial, the
DDEX1 example writes only to the back buffer during WM_TIMER. An
initialization function or title page may be the only place where you might want to
write to the primary surface.

Note
After the surface is unlocked by using IDirectDrawSurface3::Unlock, the
pointer to the surface memory is invalid. You must use
IDirectDrawSurface3::Lock again to obtain a valid pointer to the surface
memory.

Step 6: Writing to the Surface
The first half of the WM_TIMER message in DDEX1 is devoted to writing to the
back buffer, as shown in the following example:

case WM_TIMER:

 // Flip surfaces.

 if(bActive)

 {

 if (lpDDSBack->GetDC(&hdc) == DD_OK)

 {

 SetBkColor(hdc, RGB(0, 0, 255));

 SetTextColor(hdc, RGB(255, 255, 0));

 if(phase)

 {

 TextOut(hdc, 0, 0, szFrontMsg, lstrlen(szFrontMsg));

 phase = 0;

 }

 else

in.doc – page 79

 {

 TextOut(hdc, 0, 0, szBackMsg, lstrlen(szBackMsg));

 phase = 1;

 }

 lpDDSBack->ReleaseDC(hdc);

 }

The line of code that calls the IDirectDrawSurface3::GetDC method locks the back
buffer in preparation for writing. The SetBkColor and SetTextColor functions set
the colors of the background and text.

Next, the phase variable determines whether the primary buffer message or the back
buffer message should be written. If phase equals 1, the primary surface message is
written, and phase is set to 0. If phase equals 0, the back buffer message is written,
and phase is set to 1. Note, however, that in both cases the messages are written to the
back buffer.

After the message is written to the back buffer, the back buffer is unlocked by using
the IDirectDrawSurface3::ReleaseDC method.

Step 7: Flipping the Surfaces
After the surface memory is unlocked, you can use the IDirectDrawSurface3::Flip
method to flip the back buffer to the primary surface, as shown in the following
example:

while(1)

{

 HRESULT ddrval;

 ddrval = lpDDSPrimary->Flip(NULL, 0);

 if(ddrval == DD_OK)

 {

 break;

 }

 if(ddrval == DDERR_SURFACELOST)

 {

 ddrval = lpDDSPrimary->Restore();

 if(ddrval != DD_OK)

 {

 break;

 }

 }

 if(ddrval != DDERR_WASSTILLDRAWING)

 {

 break;

 }

}

in.doc – page 80

In the example, lpDDSPrimary designates the primary surface and its associated
back buffer. When IDirectDrawSurface3::Flip is called, the front and back surfaces
are exchanged (only the pointers to the surfaces are changed; no data is actually
moved). If the flip is successful and returns DD_OK, the application breaks from the
while loop.

If the flip returns with a DDERR_SURFACELOST value, an attempt is made to
restore the surface by using the IDirectDrawSurface3::Restore method. If the
restore is successful, the application loops back to the IDirectDrawSurface3::Flip
call and tries again. If the restore is unsuccessful, the application breaks from the
while loop, and returns with an error.

Note
When you call IDirectDrawSurface3::Flip, the flip does not complete
immediately. Rather, a flip is scheduled for the next time a vertical blank occurs
on the system. If, for example, the previous flip has not occurred,
IDirectDrawSurface3::Flip returns DDERR_WASSTILLDRAWING. In the
example, the IDirectDrawSurface3::Flip call continues to loop until it returns
DD_OK.

Step 8: Deallocating the DirectDraw Objects
When you press the F12 key, the DDEX1 application processes the WM_DESTROY
message before exiting the application. This message calls the finiObjects function,
which contains all of the IUnknown::Release calls, as shown below:

static void finiObjects(void)

{

 if(lpDD != NULL)

 {

 if(lpDDSPrimary != NULL)

 {

 lpDDSPrimary->Release();

 lpDDSPrimary = NULL;

 }

 lpDD->Release();

 lpDD = NULL;

 }

} // finiObjects

The application checks if the pointers to the DirectDraw object (lpDD) and the
DirectDrawSurface object (lpDDSPrimary) are not equal to NULL. Then DDEX1
calls the IDirectDrawSurface3::Release method to decrease the reference count of
the DirectDrawSurface object by 1. Because this brings the reference count to 0, the
DirectDrawSurface object is deallocated. The DirectDrawSurface pointer is then
destroyed by setting its value to NULL. Next, the application calls

in.doc – page 81

IDirectDraw2::Release to decrease the reference count of the DirectDraw object to
0, deallocating the DirectDraw object. This pointer is then also destroyed by setting
its value to NULL.

Tutorial 2: Loading Bitmaps on the Back
Buffer

The sample discussed in this tutorial (DDEX2) expands on the DDEX1 sample that
was discussed in Tutorial 1. DDEX2 includes functionality to load a bitmap file on
the back buffer. This new functionality is demonstrated in the following steps:

· Step 1: Creating the Palette

· Step 2: Setting the Palette

· Step 3: Loading a Bitmap on the Back Buffer

· Step 4: Flipping the Surfaces

As in DDEX1, doInit is the initialization function for the DDEX2 application.
Although the code for the DirectDraw initialization does not look quite the same in
DDEX2 as it did in DDEX1, it is essentially the same, except for the following
section:

lpDDPal = DDLoadPalette(lpDD, szBackground);

if (lpDDPal == NULL)

 goto error;

ddrval = lpDDSPrimary->SetPalette(lpDDPal);

if(ddrval != DD_OK)

 goto error;

// Load a bitmap into the back buffer.

ddrval = DDReLoadBitmap(lpDDSBack, szBackground);

if(ddrval != DD_OK)

 goto error;

Step 1: Creating the Palette
The DDEX2 sample first loads the palette into a structure by using the following
code:

lpDDPal = DDLoadPalette(lpDD, szBackground);

if (lpDDPal == NULL)

in.doc – page 82

 goto error;

DDLoadPalette is part of the common DirectDraw functions found in the Ddutil.cpp
file located in the \Dxsdk\Sdk\Samples\Misc directory. Most of the DirectDraw
sample files in this SDK use this file. Essentially, it contains the functions for loading
bitmaps and palettes from either files or resources. To avoid having to repeat code in
the example files, these functions were placed in a file that could be reused. Make
sure you include Ddutil.cpp in the list of files to be compiled with the rest of the
DDEX samples.

For DDEX2, the DDLoadPalette function creates a DirectDrawPalette object from
the Back.bmp file. The DDLoadPalette function determines if a file or resource for
creating a palette exists. If one does not, it creates a default palette. For DDEX2, it
extracts the palette information from the bitmap file and stores it in a structure
pointed to by ape.

DDEX2 then creates the DirectDrawPalette object, as shown in the following
example:

pdd->CreatePalette(DDPCAPS_8BIT, ape, &ddpal, NULL);

return ddpal;

When the IDirectDraw2::CreatePalette method returns, the ddpal parameter points
to the DirectDrawPalette object, which is then returned from the DDLoadPalette call.

The ape parameter is a pointer to a structure that can contain either 2, 4, 16, or 256
entries, organized linearly. The number of entries depends on the dwFlags parameter
in the IDirectDraw2::CreatePalette method. In this case, the dwFlags parameter is
set to DDPCAPS_8BIT, which indicates that there are 256 entries in this structure.
Each entry contains 4 bytes (a red channel, a green channel, a blue channel, and a
flags byte).

Step 2: Setting the Palette
After you create the palette, you pass the pointer to the DirectDrawPalette object
(ddpal) to the primary surface by calling the IDirectDrawSurface3::SetPalette
method, as shown in the following example:

ddrval = lpDDSPrimary->SetPalette(lpDDPal);

if(ddrval != DD_OK)

 // SetPalette failed.

After you have called IDirectDrawSurface3::SetPalette, the DirectDrawPalette
object is associated with the DirectDrawSurface object. Any time you need to change
the palette, you simply create a new palette and set the palette again. (Although this
tutorial uses these steps, there are other ways of changing the palette, as will be
shown in later examples.)

in.doc – page 83

Step 3: Loading a Bitmap on the Back Buffer
After the DirectDrawPalette object is associated with the DirectDrawSurface object,
DDEX2 loads the Back.bmp bitmap on the back buffer by using the following code:

// Load a bitmap into the back buffer.

ddrval = DDReLoadBitmap(lpDDSBack, szBackground);

if(ddrval != DD_OK)

 // Load failed.

DDReLoadBitmap is another function found in Ddutil.cpp. It loads a bitmap from a
file or resource into an already existing DirectDraw surface. (You could also use
DDLoadBitmap to create a surface and load the bitmap into that surface. For more
information, see Tutorial 5: Dynamically Modifying Palettes.) For DDEX2, it loads
the Back.bmp file pointed to by szBackground onto the back buffer pointed to by
lpDDSBack. The DDReLoadBitmap function calls the DDCopyBitmap function to
copy the file onto the back buffer and stretch it to the proper size.

The DDCopyBitmap function copies the bitmap into memory, and it uses the
GetObject function to retrieve the size of the bitmap. It then uses the following code
to retrieve the size of the back buffer onto which it will place the bitmap:

// Get the size of the surface.

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_HEIGHT | DDSD_WIDTH;

pdds->GetSurfaceDesc(&ddsd);

The ddsd value is a pointer to the DDSURFACEDESC structure. This structure
stores the current description of the DirectDraw surface. In this case, the
DDSURFACEDESC members describe the height and width of the surface, which
are indicated by DDSD_HEIGHT and DDSD_WIDTH. The call to the
IDirectDrawSurface3::GetSurfaceDesc method then loads the structure with the
proper values. For DDEX2, the values will be 480 for the height and 640 for the
width.

The DDCopyBitmap function locks the surface and copies the bitmap to the back
buffer, stretching or compressing it as applicable by using the StretchBlt function, as
shown below:

if ((hr = pdds->GetDC(&hdc)) == DD_OK)

{

 StretchBlt(hdc, 0, 0, ddsd.dwWidth, ddsd.dwHeight, hdcImage, x, y,

 dx, dy, SRCCOPY);

 pdds->ReleaseDC(hdc);

}

in.doc – page 84

Step 4: Flipping the Surfaces
Flipping surfaces in the DDEX2 sample is essentially the same process as that in the
DDEX1 tutorial (see Tutorial 1: The Basics of DirectDraw) except that if the surface
is lost (DDERR_SURFACELOST), the bitmap must be reloaded on the back buffer
by using the DDReLoadBitmap function after the surface is restored.

Tutorial 3: Blitting from an Off-Screen
Surface

The sample in Tutorial 2 (DDEX2) takes a bitmap and puts it in the back buffer, and
then it flips between the back buffer and the primary buffer. This is not a very
realistic approach to displaying bitmaps. The sample in this tutorial (DDEX3)
expands on the capabilities of DDEX2 by including two off-screen buffers in which
the two bitmaps—one for the even screen and one for the odd screen—are stored. It
uses the IDirectDrawSurface3::BltFast method to copy the contents of an off-
screen surface to the back buffer, and then it flips the buffers and copies the next off-
screen surface to the back buffer.

The new functionality demonstrated in DDEX3 is shown in the following steps:

· Step 1: Creating the Off-Screen Surfaces

· Step 2: Loading the Bitmaps to the Off-Screen Surfaces

· Step 3: Blitting the Off-Screen Surfaces to the Back Buffer

Step 1: Creating the Off-Screen Surfaces
The following code is added to the doInit function in DDEX3 to create the two off-
screen buffers:

// Create an offscreen bitmap.

ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;

ddsd.dwHeight = 480;

ddsd.dwWidth = 640;

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSOne, NULL);

if(ddrval != DD_OK)

{

 return initFail(hwnd);

}

// Create another offscreen bitmap.

ddrval = lpDD->CreateSurface(&ddsd, &lpDDSTwo, NULL);

if(ddrval != DD_OK)

{

in.doc – page 85

 return initFail(hwnd);

}

The dwFlags member specifies that the application will use the DDSCAPS structure,
and it will set the height and width of the buffer. The surface will be an off-screen
plain buffer, as indicated by the DDSCAPS_OFFSCREEN flag set in the DDSCAPS
structure. The height and the width are set as 480 and 640, respectively, in the
DDSURFACEDESC structure. The surface is then created by using the
IDirectDraw2::CreateSurface method.

Because both of the off-screen plain buffers are the same size, the only requirement
for creating the second buffer is to call IDirectDraw2::CreateSurface again with a
different pointer name.

You can also specifically request that the off-screen buffer be placed in system
memory or display memory by setting either the DDSCAPS_SYSTEMMEMORY or
DDSCAPS_VIDEOMEMORY capability in the DDSCAPS structure. By saving the
bitmaps in display memory, you can increase the speed of the transfers between the
off-screen surfaces and the back buffer. This will become more important when using
bitmap animation. However, if you specify DDSCAPS_VIDEOMEMORY for the
off-screen buffer and not enough display memory is available to hold the entire
bitmap, a DDERR_OUTOFVIDEOMEMORY error value will be returned when you
attempt to create the surface.

Step 2: Loading the Bitmaps to the Off-Screen
Surfaces

After the two off-screen surfaces are created, DDEX3 uses the InitSurfaces function
to load the bitmaps from the Frntback.bmp file onto the surfaces. The InitSurfaces
function uses the DDCopyBitmap function located in Ddutil.cpp to load both of the
bitmaps, as shown in the following example:

// Load the bitmap resource.

hbm = (HBITMAP)LoadImage(GetModuleHandle(NULL), szBitmap,

 IMAGE_BITMAP, 0, 0, LR_CREATEDIBSECTION);

if (hbm == NULL)

 return FALSE;

DDCopyBitmap(lpDDSOne, hbm, 0, 0, 640, 480);

DDCopyBitmap(lpDDSTwo, hbm, 0, 480, 640, 480);

DeleteObject(hbm);

return TRUE;

If you look at the Frntback.bmp file in Microsoft Paint or another drawing
application, you can see that the bitmap consists of two screens, one on top of the

in.doc – page 86

other. The DDCopyBitmap function breaks the bitmap in two at the point where the
screens meet. In addition, it loads the first bitmap into the first off-screen surface
(lpDDSOne) and the second bitmap into the second off-screen surface (lpDDSTwo).

Step 3: Blitting the Off-Screen Surfaces to the
Back Buffer

The WM_TIMER message contains the code for writing to surfaces and flipping
surfaces. In the case of DDEX3, it contains the following code to select the proper
off-screen surface and to blit it to the back buffer:

rcRect.left = 0;

rcRect.top = 0;

rcRect.right = 640;

rcRect.bottom = 480;

if(phase)

{

 pdds = lpDDSTwo;

 phase = 0;

}

else

{

 pdds = lpDDSOne;

 phase = 1;

}

while(1)

{

 ddrval = lpDDSBack->BltFast(0, 0, pdds, &rcRect, FALSE);

 if(ddrval == DD_OK)

 {

 break;

 }

The phase variable determines which off-screen surface will be blitted to the back
buffer. The IDirectDrawSurface3::BltFast method is then called to blit the selected
off-screen surface onto the back buffer, starting at position (0, 0), the upper-left
corner. The rcRect parameter points to the RECT structure that defines the upper-left
and lower-right corners of the off-screen surface that will be blitted from. The last
parameter is set to FALSE (or 0), indicating that no specific transfer flags are used.

Depending on the requirements of your application, you could use either the
IDirectDrawSurface3::Blt method or the IDirectDrawSurface::BltFast method to
blit from the off-screen buffer. If you are performing a blit from an off-screen plain
buffer that is in display memory, you should use IDirectDrawSurface3::BltFast.
Although you will not gain speed on systems that use hardware blitter on their display
adapters, the blit will take about 10 percent less time on systems that use hardware
emulation to perform the blit. Because of this, you should use

in.doc – page 87

IDirectDrawSurface3::BltFast for all display operations that blit from display
memory to display memory. If you are blitting from system memory or require
special hardware flags, however, you have to use IDirectDrawSurface3::Blt.

After the off-screen surface is loaded in the back buffer, the back buffer and the
primary surface are flipped in much the same way as shown in the previous tutorials.

Tutorial 4: Color Keys and Bitmap
Animation

The sample in Tutorial 3 (DDEX3) shows one simple method of placing bitmaps into
an off-screen buffer before they are blitted to the back buffer. The sample in this
tutorial (DDEX4) uses the techniques described in the previous tutorials to load a
background and a series of sprites into an off-screen surface. Then it uses the
IDirectDrawSurface3::BltFast method to copy portions of the off-screen surface to
the back buffer, thereby generating a simple bitmap animation.

The bitmap file that DDEX4 uses, All.bmp, contains the background and 60 iterations
of a rotating red donut with a black background. The DDEX4 sample contains new
functions that set the color key for the rotating donut sprites. Then, the sample copies
the appropriate sprite to the back buffer from the off-screen surface.

The new functionality demonstrated in DDEX4 is shown in the following steps:

· Step 1: Setting the Color Key

· Step 2: Creating a Simple Animation

Step 1: Setting the Color Key
In addition to the other functions found in the doInit function of some of the other
DirectDraw samples, the DDEX4 sample contains the code to set the color key for the
sprites. Color keys are used for setting a color value that will be used for
transparency. When the system contains a hardware blitter, all the pixels of a
rectangle are blitted except the value that was set as the color key, thereby creating
nonrectangular sprites on a surface. The code for setting the color key in DDEX4 is
shown below:

// Set the color key for this bitmap (black).

DDSetColorKey(lpDDSOne, RGB(0,0,0));

return TRUE;

You can select the color key by setting the RGB values for the color you want in the
call to the DDSetColorKey function. The RGB value for black is (0, 0, 0). The
DDSetColorKey function calls the DDColorMatch function. (Both functions are in
Ddutil.cpp.) The DDColorMatch function stores the current color value of the pixel
at location (0, 0) on the bitmap located in the lpDDSOne surface. Then it takes the

in.doc – page 88

RGB values you supplied and sets the pixel at location (0, 0) to that color. Finally, it
masks the value of the color with the number of bits per pixel that are available. After
that is done, the original color is put back in location (0, 0), and the call returns to
DDSetColorKey with the actual color key value. After it is returned, the color key
value is placed in the dwColorSpaceLowValue member of the DDCOLORKEY
structure. It is also copied to the dwColorSpaceHighValue member. The call to
IDirectDrawSurface3::SetColorKey then sets the color key.

You may have noticed the reference to CLR_INVALID in DDSetColorKey and
DDColorMatch. If you pass CLR_INVALID as the color key in the
DDSetColorKey call in DDEX4, the pixel in the upper-left corner (0, 0) of the
bitmap will be used as the color key. As the DDEX4 bitmap is delivered, that does
not mean much because the color of the pixel at (0, 0) is a shade of gray. If, however,
you would like to see how to use the pixel at (0, 0) as the color key for the DDEX4
sample, open the All.bmp bitmap file in a drawing application and then change the
single pixel at (0, 0) to black. Be sure to save the change (it's hard to see). Then
change the DDEX4 line that calls DDSetColorKey to the following:

DDSetColorKey(lpDDSOne, CLR_INVALID);

Recompile the DDEX4 sample, and ensure that the resource definition file is also
recompiled so that the new bitmap is included. (To do this, you can simply add and
then delete a space in the Ddex4.rc file.) The DDEX4 sample will then use the pixel
at (0, 0), which is now set to black, as the color key.

Step 2: Creating a Simple Animation
The DDEX4 sample uses the updateFrame function to create a simple animation
using the red donuts included in the All.bmp file. The animation consists of three red
donuts positioned in a triangle and rotating at various speeds. This sample compares
the Win32 GetTickCount function with the number of milliseconds since the last call
to GetTickCount to determine whether to redraw any of the sprites. It subsequently
uses the IDirectDrawSurface3::BltFast method first to blit the background from the
off-screen surface (lpDDSOne) to the back buffer, and then to blit the sprites to the
back buffer using the color key that you set earlier to determine which pixels are
transparent. After the sprites are blitted to the back buffer, DDEX4 calls the
IDirectDrawSurface3::Flip method to flip the back buffer and the primary surface.

Note that when you use IDirectDrawSurface3::BltFast to blit the background from
the off-screen surface, the dwTrans parameter that specifies the type of transfer is set
to DDBLTFAST_NOCOLORKEY. This indicates that a normal blit will occur with
no transparency bits. Later, when the red donuts are blitted to the back buffer, the
dwTrans parameter is set to DDBLTFAST_SRCCOLORKEY. This indicates that a
blit will occur with the color key for transparency as it is defined, in this case, in the
lpDDSOne buffer.

In this sample, the entire background is redrawn each time through the updateFrame
function. One way of optimizing this sample would be to redraw only that portion of
the background that changes while rotating the red donuts. Because the location and

in.doc – page 89

size of the rectangles that make up the donut sprites never change, you should be able
to easily modify the DDEX4 sample with this optimization.

Tutorial 5: Dynamically Modifying
Palettes

The sample described in this tutorial (DDEX5) is a modification of the sample
described in Tutorial 4 (DDEX4) example. DDEX5 demonstrates how to dynamically
change the palette entries while an application is running. The new functionality
demonstrated in DDEX5 is shown in the following steps:

· Step 1: Loading the Palette Entries

· Step 2: Rotating the Palettes

Step 1: Loading the Palette Entries
The following code in DDEX5 loads the palette entries with the values in the lower
half of the All.bmp file (the part of the bitmap that contains the red donuts):

// First, set all colors as unused.

for(i=0; i<256; i++)

{

 torusColors[i] = 0;

}

// Lock the surface and scan the lower part (the torus area),

// and keep track of all the indexes found.

ddsd.dwSize = sizeof(ddsd);

while (lpDDSOne->Lock(NULL, &ddsd, 0, NULL) == DDERR_WASSTILLDRAWING)

 ;

// Search through the torus frames and mark used colors.

for(y=480; y<480+384; y++)

{

 for(x=0; x<640; x++)

 {

 torusColors[((BYTE *)ddsd.lpSurface)[y*ddsd.lPitch+x]] = 1;

 }

}

lpDDSOne->Unlock(NULL);

The torusColors array is used as an indicator of the color index of the palette used in
the lower half of the All.bmp file. Before it is used, all of the values in the

in.doc – page 90

torusColors array are reset to 0. The off-screen buffer is then locked in preparation
for determining if a color index value is used.

The torusColors array is set to start at row 480 and column 0 of the bitmap. The
color index value in the array is determined by the byte of data at the location in
memory where the bitmap surface is located. This location is determined by the
lpSurface member of the DDSURFACEDESC structure, which is pointing to the
memory location corresponding to row 480 and column 0 of the bitmap
(y  lPitch + x). The location of the specific color index value is then set to 1. The y
value (row) is multiplied by the lPitch value (found in the DDSURFACEDESC
structure) to get the actual location of the pixel in linear memory.

The color index values that are set in torusColors will be used later to determine
which colors in the palette are rotated. Because there are no common colors between
the background and the red donuts, only those colors associated with the red donuts
are rotated. If you want to check whether this is true or not, just remove the
"*ddsd.lPitch" from the array and see what happens when you recompile and run the
program. (Without multiplying ylPitch, the red donuts are never reached and only
the colors found in the background are indexed and later rotated.) For more
information about width and pitch, see Width and Pitch.

Step 2: Rotating the Palettes
The updateFrame function in DDEX5 works in much the same way as it did in
Tutorial 4 (DDEX4). It first blits the background into the back buffer, and then it blits
the three donuts in the foreground. However, before it flips the surfaces,
updateFrame changes the palette of the primary surface from the palette index that
was created in the doInit function, as shown in the following code:

// Change the palette.

if(lpDDPal->GetEntries(0, 0, 256, pe) != DD_OK)

{

 return;

}

for(i=1; i<256; i++)

{

 if(!torusColors[i])

 {

 continue;

 }

 pe[i].peRed = (pe[i].peRed+2) % 256;

 pe[i].peGreen = (pe[i].peGreen+1) % 256;

 pe[i].peBlue = (pe[i].peBlue+3) % 256;

}

if(lpDDPal->SetEntries(0, 0, 256, pe) != DD_OK)

{

in.doc – page 91

 return;

}

The IDirectDrawPalette::GetEntries method in the first line queries palette values
from a DirectDrawPalette object. Because the palette entry values pointed to by pe
should be valid, the method will return DD_OK and continue. The loop that follows
checks torusColors to determine if the color index was set to 1 during its
initialization. If so, the red, green, and blue values in the palette entry pointed to by pe
are rotated.

After all of the marked palette entries are rotated, the
IDirectDrawPalette::SetEntries method is called to change the entries in the
DirectDrawPalette object. This change takes place immediately if you are working
with a palette set to the primary surface.

With this done, the surfaces are subsequently flipped.

Tutorial 6: Using Overlay Surfaces
This tutorial shows you, step by step, how to use DirectDraw and hardware supported
overlay surfaces in your applications. The tutorial is written around the Mosquito
sample application included with the DirectX SDK samples. The Mosquito sample is
a simple application that uses a flipping chain of overlay surfaces to display an
animated bitmap on the desktop without blitting to the primary surface. The sample
adjusts the characteristics of the overlay surface as needed to accommodate for
hardware limitations.

The Mosquito sample application performs the following steps (complex tasks are
divided into smaller sub-steps):

· Step 1: Creating a Primary Surface

· Step 2: Testing for Hardware Overlay Support

· Step 3: Creating an Overlay Surface

· Step 4: Displaying the Overlay Surface

· Step 5: Updating the Overlay Display Position

· Step 6: Hiding the Overlay Surface

Step 1: Creating a Primary Surface
To prepare for using overlay surfaces, you must first initialize DirectDraw and create
a primary surface over which the overlay surface will be displayed. Mosquito creates
a primary surface with the following code:

 // Zero-out the structure and set the dwSize member.

 ZeroMemory(&ddsd, sizeof(ddsd));

 ddsd.dwSize = sizeof(ddsd);

in.doc – page 92

 // Set flags and create a primary surface.

 ddsd.dwFlags = DDSD_CAPS;

 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

 ddrval = g_lpdd->CreateSurface(&ddsd, &g_lpddsPrimary, NULL);

The preceding example begins by initializing the DDSURFACEDESC structure it
will use. It then sets the flags appropriate to create a primary surface and creates it by
calling the IDirectDraw2::CreateSurface method. For the call, the first parameter is
a pointer to a DDSURFACEDESC structure that describes the surface to be created.
The second parameter is a pointer to a variable that will receive an
IDirectDrawSurface interface pointer if the call succeeds. The last parameter is set
to NULL to indicate that no COM aggregation is taking place.

Step 2: Testing for Hardware Overlay Support
After initializing DirectDraw, you need to verify that the device supports overlay
surfaces. Because DirectDraw doesn’t emulate overlays, if the hardware device driver
doesn’t support them, you can’t continue. You can test for overlay support by
retrieving the device driver capabilities with the IDirectDraw2::GetCaps method.
After the call, look for the presence of the DDCAPS_OVERLAY flag in the dwFlags
member of the associated DDCAPS structure. If the flag is present, then the display
hardware supports overlays; if not, you can’t use overlay surfaces with that device.

The following example, taken from the Mosquito sample application, shows how to
test for hardware overlay support.

BOOL AreOverlaysSupported()

{

 DDCAPS capsDrv;

 HRESULT ddrval;

 // Get driver capabilities to determine Overlay support.

 ZeroMemory(&capsDrv, sizeof(capsDrv));

 capsDrv.dwSize = sizeof(capsDrv);

 ddrval = g_lpdd->GetCaps(&capsDrv, NULL);

 if (FAILED(ddrval))

 return FALSE;

 // Does the driver support overlays in the current mode?

 // (Currently the DirectDraw emulation layer does not support overlays.

 // Overlay related APIs will fail without hardware support).

 if (!(capsDrv.dwCaps & DDCAPS_OVERLAY))

 return FALSE;

 return TRUE;

in.doc – page 93

}

The preceding example calls the IDirectDraw2::GetCaps method to retrieve device
driver capabilities. The first parameter for the call is the address of a DDCAPS that
will be filled with information describing the device driver’s capabilities. Because the
application doesn’t need information about emulation capabilities, the second
parameter is set to NULL.

After retrieving the driver capabilities, the example checks the dwCaps member for
the presence of the DDCAPS_OVERLAY flag using a logical AND operation. If the
flag isn’t present, the example returns FALSE to indicate failure. Otherwise, the
example returns TRUE to indicate that the device driver supports overlay surfaces.

In your code, this might be a good time for you to check the dwMaxVisibleOverlays
and dwCurrentVisibleOverlays members in the DDCAPS structure to ensure that no
other overlay surfaces are in use by other applications.

Step 3: Creating an Overlay Surface
Now that you know that the driver supports overlay surfaces, you can try to create
one. Because there is no standard dictating how devices must support overlay
surfaces, you can’t count on being able to create overlays of any particular size or
pixel format. Additionally, you can’t expect to succeed in creating an overlay surface
on the first try. Therefore, be prepared to attempt creation multiple times starting with
the most desirable characteristics, falling back on less desirable (but possibly less
hardware intensive) configurations until one works.

(You can call the IDirectDraw2::GetFourCCCodes method to retrieve a list of
FOURCC codes that describe non-RGB pixel formats that the driver will likely
support for overlay surfaces. However, in you want to try using RGB overlay
surfaces, it is recommended that you attempt to creating surfaces in various common
RGB formats, falling back on another format if you fail.)

The Mosquito sample follows a “best case to worst case” philosophy when creating
an overlay surface. Mosquito first tries to create a triple-buffered page flipping
complex overlay surface. If the creation attempt fails, the sample tries the
configuration with other common pixel formats. The following code fragment shows
how this can be done:

 ZeroMemory(&ddsdOverlay, sizeof(ddsdOverlay));

 ddsdOverlay.dwSize = sizeof(ddsdOverlay);

 ddsdOverlay.dwFlags= DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH |

 DDSD_BACKBUFFERCOUNT| DDSD_PIXELFORMAT;

 ddsdOverlay.ddsCaps.dwCaps = DDSCAPS_OVERLAY | DDSCAPS_FLIP |

 DDSCAPS_COMPLEX | DDSCAPS_VIDEOMEMORY;

 ddsdOverlay.dwWidth =320;

 ddsdOverlay.dwHeight =240;

 ddsdOverlay.dwBackBufferCount=2;

in.doc – page 94

 // Try to create an overlay surface using one of the pixel formats in our

 // global list.

 i=0;

 do{

 ddsdOverlay.ddpfPixelFormat=g_ddpfOverlayFormats[i];

 // Try to create the overlay surface

 ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);

 } while(FAILED(ddrval) && (++i < NUM_OVERLAY_FORMATS));

The preceding example sets the flags and values within a DDSURFACEDESC
structure to reflect a triple-buffered page flipping complex overlay surface. Then, the
sample performs a loop during which it attempts to create the requested surface in a
variety of common pixel formats, in order of most desirable to least desirable pixel
formats. If the attempt succeeds, the loop ends. If all the attempts fail, it’s likely that
the display hardware doesn’t have enough memory to support a triple-buffered
scheme or that it doesn’t support flipping overlay surfaces. In this case, the sample
falls back on a less desirable configuration using a single non-flipping overlay
surface, as shown in the following example:

 // If we failed to create a triple buffered complex overlay surface, try

 // again with a single non-flippable buffer.

 if(FAILED(ddrval))

 {

 ddsdOverlay.dwBackBufferCount=0;

 ddsdOverlay.ddsCaps.dwCaps=DDSCAPS_OVERLAY | DDSCAPS_VIDEOMEMORY;

 ddsdOverlay.dwFlags= DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|

DDSD_PIXELFORMAT;

 // Try to create the overlay surface

 ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);

 i=0;

 do{

 ddsdOverlay.ddpfPixelFormat=g_ddpfOverlayFormats[i];

 ddrval = g_lpdd->CreateSurface(&ddsdOverlay, &g_lpddsOverlay, NULL);

 } while(FAILED(ddrval) && (++i < NUM_OVERLAY_FORMATS));

 // We couldn't create an overlay surface. Exit, returning failure.

 if (FAILED(ddrval))

 return FALSE;

 }

The code above resets the flags and values in the DDSURFACEDESC structure to
reflect a single non-flipping overlay surface. Again, the example loops through pixel
formats attempting to create the surfaces, stopping the loop if an attempt succeeded. If
the attempts still didn’t work, the sample returns FALSE to indicate failure.

in.doc – page 95

After you’ve successfully created your overlay surface or surfaces, you can load
bitmaps onto them in preparation for display.

Step 4: Displaying the Overlay Surface
After creating your overlay surface, you can display it. Often, display hardware
imposes alignment restrictions on the position and pixel width of the rectangles you
use to display the overlay. Additionally, you will often need to account for a
minimum required stretch factor by adjusting the width of the destination rectangle in
order to successfully display the overlay surface. The Mosquito sample performs the
following tasks to prepare and display the overlay surface:

· Step 4.1: Determining the Minimum Display Requirements

· Step 4.2: Setting Up the Source and Destination Rectangles

· Step 4.3: Displaying the Overlay Surface

Step 4.1: Determining the Minimum Display Requirements

Most display hardware imposes restrictions on displaying overlay surfaces. You must
carefully meet these restrictions in order to successfully display an overlay surface.
You can retrieve information about these restrictions by calling the
IDirectDraw2::GetCaps method. The DDCAPS structure that the method fills
contains information about overlay capabilities and their usage restrictions. Hardware
restrictions vary, so always look at the flags included in the dwFlags member to
determine which restrictions apply to you.

The Mosquito sample starts by retrieving the hardware capabilities, then takes action
based upon the minimum stretch factor, as shown in the following code fragment:

 // Get driver capabilities

 ddrval = g_lpdd->GetCaps(&capsDrv, NULL);

 if (FAILED(ddrval))

 return FALSE;

 // Check the minimum stretch and set the local variable accordingly.

 if(capsDrv.dwCaps & DDCAPS_OVERLAYSTRETCH)

 uStretchFactor1000 = (capsDrv.dwMinOverlayStretch>1000) ?

capsDrv.dwMinOverlayStretch : 1000;

 else

 uStretchFactor1000 = 1000;

The code above calls IDirectDraw2::GetCaps to retrieve only the hardware
capabilities. For this call, the first parameter is a pointer the DDCAPS structure that
will be filled with the capability information for the device driver, and the second
parameter is NULL to indicate that emulation information is not to be retrieved.

The example retains the minimum stretch factor in a temporary variable for use later.
(Keep in mind that stretch factors are reported multiplied by 1000, so 1300 really

in.doc – page 96

means 1.3.) If the driver reports a value greater than 1000, it means that the driver
requires that all destination rectangles must be stretched along the X-axis by a ratio of
the reported value. For example, if the driver reports a stretch factor 1.3 and the
source rectangle is 320 pixels wide, the destination rectangle must be at least 416
pixels wide. If the driver reports a stretch factor less than 1000, it means that the
driver can display overlays smaller than the source rectangle, but can also stretch the
overlay if desired.

Next, the sample examines values describing the driver’s size alignment restrictions,
as shown in the following example:

 // Grab any alignment restrictions and set the local variables acordingly.

 uSrcSizeAlign = (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC)?

capsDrv.dwAlignSizeSrc:0;

 uDestSizeAlign= (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC)?

capsDrv.dwAlignSizeDest:0;

The sample uses more temporary variables to hold the reported size alignment
restrictions taken from the dwAlignSizeSrc and dwAlignSizeDest members. These
values provide information about pixel width alignment restrictions and are needed
when setting the dimensions of the source and destination rectangles to reflect these
restrictions later. Source and destination rectangles must have a pixel width that is a
multiple of the values in these members.

Last, the sample examines the value that describes the destination rectangle boundary
alignment:

 // Set the "destination position alignment" global so we won't have to

 // keep calling GetCaps() every time we move the overlay surface.

 if (capsDrv.dwCaps & DDCAPS_ALIGNBOUNDARYDEST)

 g_dwOverlayXPositionAlignment = capsDrv.dwAlignBoundaryDest;

 else

 g_dwOverlayXPositionAlignment = 0;

The preceding code uses a global variable to hold the value for the destination
rectangle’s boundary alignment, as taken from the dwAlignBoundaryDest member.
This value will be used when the program repositions the overlay later. (For details,
see Step 5: Updating the Overlay Display Position) You must set the x-coordinate of
the destination rectangle’s top left corner to be aligned with this value, in pixels. That
is, if the value specified is 4, you can only specify destination rectangles whose top-
left corner has an x-coordinate at pixels 0, 4, 8, 12, and so on. The Mosquito
application initially displays the overlay at 0,0, so alignment compliance is assumed
and the sample doesn’t need to retrieve the restriction information until after
displaying the overlay the first time. Your implementation might vary, so you will
probably need to check this information and adjust the destination rectangle before
displaying the overlay.

in.doc – page 97

Step 4.2: Setting Up the Source and Destination
Rectangles

After retrieving the driver’s overlay restrictions you should set the values for your
source and destination rectangles accordingly, assuring that you will be able to
successfully display the overlay. The following sample from the Mosquito sample
application starts by setting the characteristics of the source rectangle:

 // Set initial values in the source RECT.

 rs.left=0; rs.top=0;

 rs.right = 320;

 rs.bottom = 240;

 // Apply size alignment restrictions, if necessary.

 if (capsDrv.dwCaps & DDCAPS_ALIGNSIZESRC && uSrcSizeAlign)

 rs.right -= rs.right % uSrcSizeAlign;

The preceding code sets initial values for the surface to include the dimensions of the
entire surface. If the device driver requires size alignment for the source rectangle, the
example adjusts the source rectangle to conform. The example adjusts the width of
the source rectangle to be narrower than the original size because the width cannot be
expanded without completely recreating the surface. However, your code could just
as easily start with a smaller rectangle and widen the rectangle to meet driver
restrictions.

After the dimensions of the source rectangle are set and conform with hardware
restrictions, you need to set and adjust the dimensions of the destination rectangle.
This process requires a little more work because the rectangle might need to be
stretched first, then adjusted to meet size alignment restrictions. The following code
performs the task of accounting for the minimum stretch factor:

 // Set up the destination RECT, starting with the source RECT values.

 // We use the source RECT dimensions instead of the surface dimensions in

 // case they differ.

 rd.left=0; rd.top=0;

 rd.right = (rs.right*uStretchFactor1000+999)/1000; // (Adding 999 avoids integer

truncation problems.)

 // (This isn't required by DDraw, but we'll stretch the

 // height, too, to maintain aspect ratio).

 rd.bottom = rs.bottom*uStretchFactor1000/1000;

The preceding code sets the top left corner of the destination rectangle to the top left
corner of the screen, then sets the width to account for the minimum stretch factor.
While adjusting for the stretch factor, note that the example adds 999 to the product
of the width and stretch factor. This is done to prevent integer truncation that could
result in a rectangle that isn’t as wide as the minimum stretch factor requires. For
more information, see Minimum and Maximum Stretch Factors. Also, after the

in.doc – page 98

example stretches the width, it stretches the height. Stretching the height isn’t
required, but was done to preserve the bitmap’s aspect ratio and avoid a distorted
appearance.

After stretching the destination rectangle, the example continues by adjusting it to
conform to size alignment restrictions as follows:

 // Adjust the destination RECT's width to comply with any imposed

 // alignment restrictions.

 if (capsDrv.dwCaps & DDCAPS_ALIGNSIZEDEST && uDestSizeAlign)

 rd.right = (int)((rd.right+uDestSizeAlign-1)/uDestSizeAlign)*uDestSizeAlign;

The example checks the capabilities flags to see if the driver imposes destination size
alignment restrictions. If so, the destination rectangle’s width is increased by enough
pixels to meet alignment restrictions. Note that the rectangle is adjusted by expanding
the width, not by decreasing it. This is done because decreasing the width could cause
the destination rectangle to be smaller than is required by the minimum stretch factor,
consequently causing attempts to display the overlay surface to fail.

Step 4.3: Displaying the Overlay Surface

After you’ve set up the source and destination rectangles, you can display the overlay
for the first time. If you’ve prepared correctly, this will be simple. The Mosquito
sample uses the following code to initially display the overlay:

 // Set the flags we'll send to UpdateOverlay

 dwUpdateFlags = DDOVER_SHOW | DDOVER_DDFX;

 // Does the overlay hardware support source color keying?

 // If so, we can hide the black background around the image.

 // This probably won't work with YUV formats

 if (capsDrv.dwCKeyCaps & DDCKEYCAPS_SRCOVERLAY)

 dwUpdateFlags |= DDOVER_KEYSRCOVERRIDE;

 // Create an overlay FX structure so we can specify a source color key.

 // This information is ignored if the DDOVER_SRCKEYOVERRIDE flag isn't set.

 ZeroMemory(&ovfx, sizeof(ovfx));

 ovfx.dwSize = sizeof(ovfx);

 ovfx.dckSrcColorkey.dwColorSpaceLowValue=0; // Specify black as the color key

 ovfx.dckSrcColorkey.dwColorSpaceHighValue=0;

 // Call UpdateOverlay() to displays the overlay on the screen.

 ddrval = g_lpddsOverlay->UpdateOverlay(&rs, g_lpddsPrimary, &rd, dwUpdateFlags, &ovfx);

 if(FAILED(ddrval))

 return FALSE;

in.doc – page 99

The preceding example starts by setting the DDOVER_SHOW and
DDOVER_DDFX flags in the dwUpdateFlags temporary variable, indicating that the
overlay is to be displayed for the first time, and that the hardware should use the
effects information included in an associated DDOVERLAYFX structure to do so.
Next, the example checks a previously existing DDCAPS structure to determine if
overlay source color keying is supported. If it is, the
DDOVER_KEYSRCOVERRIDE is included in the dwUpdateFlags variable to take
advantage of source color keying and the example sets color key values accordingly.

After preparation is complete, the example calls the
IDirectDrawSurface3::UpdateOverlay method to display the overlay. For the call,
the first and third parameters are the addresses of the adjusted source and destination
rectangles. The second parameter is the address of the primary surface over which the
overlay will be displayed. The fourth parameter consists of the flags placed in the
previously prepared dwUpdateFlags variable, and the fifth parameter is the address of
DDOVERLAYFX structure whose members were set to match those flags.

If the hardware only supports one overlay surface and that surface is in use, the
UpdateOverlay method fails, returning DDERR_OUTOFCAPS. Additionally, if
UpdateOverlay fails, you might try increasing the width of the destination rectangle
to accommodate for the possibility that the hardware incorrectly reported a minimum
stretch factor that was too small. However, this rarely occurs and Mosquito simply
fails if UpdateOverlay doesn’t succeed.

Step 5: Updating the Overlay Display Position
After displaying the overlay surface, you might not need to do anything else.
However, some software might need to reposition the overlay surface. The Mosquito
sample uses the IDirectDrawSurface3::SetOverlayPosition method to reposition
the overlay, as shown in the following example.

 // Set X- and Y-coordinates

 .

 .

 .

 // We need to check for any alignment restrictions on the X position

 // and align it if necessary.

 if (g_dwOverlayXPositionAlignment)

 dwXAligned = g_nOverlayXPos - g_nOverlayXPos % g_dwOverlayXPositionAlignment;

 else

 dwXAligned = g_nOverlayXPos;

 // Set the overlay to its new position.

 ddrval = g_lpddsOverlay->SetOverlayPosition(dwXAligned, g_nOverlayYPos);

 if (ddrval == DDERR_SURFACELOST)

 {

 if (!RestoreAllSurfaces())

 return;

in.doc – page 100

 }

The preceding example starts by aligning the rectangle to meet any destination
rectangle boundary alignment restrictions that might exist. The global variable that it
checks, g_dwOverlayXPositionAlignment, was set earlier to equal the value reported
in the dwAlignBoundaryDest member of the DDCAPS structure when the
application previously called the IDirectDraw2::GetCaps method. (For details, see
Step 4.1: Determining the Minimum Display Requirements). If destination alignment
restrictions exist, the example adjusts the new x-coordinate to be pixel-aligned
accordingly. Failing to meet this requirement will cause the overlay surface not to be
displayed.

After making any requisite adjustments to the new x-coordinate, the example calls
IDirectDrawSurface3::SetOverlayPosition method to reposition the overlay. For
the call, the first parameter is the aligned x-coordinate, and the second parameter is
the new y-coordinate. These values represent the new location of the overlay’s top-
left corner. Width and height information are not accepted, nor are they needed
because DirectDraw already knows the dimensions of the surface from the
IDirectDrawSurface3::UpdateOverlay method made to initially display the
overlay. If the call fails because one or more surfaces were lost, the example calls an
application-defined function to restore them and reload their bitmaps.

Note:
Take care not to use coordinates too close to the bottom or right edge of the
target surface. The IDirectDraw2::SetOverlayPosition method does not
perform clipping for you; using coordinates that would potentially make the
overlay run off the edge of the target surface will cause the method to fail,
returning DDERR_INVALIDPOSITION.

Step 6: Hiding the Overlay Surface
When you do not need the overlay surface anymore, or if you simply want to remove
it from view, you can hide the surface by calling the
IDirectDrawSurface3::UpdateOverlay method with appropriate flags. Mosquito
hides the overlay in preparation for closing the application using the following code:

void DestroyOverlay()

{

 if (g_lpddsOverlay){

 // Use UpdateOverlay() with the DDOVER_HIDE flag to remove an overlay

 // from the display.

 g_lpddsOverlay->UpdateOverlay(NULL, g_lpddsPrimary, NULL, DDOVER_HIDE, NULL);

 g_lpddsOverlay->Release();

 g_lpddsOverlay=NULL;

 }

}

in.doc – page 101

When the preceding example calls IDirectDrawSurface3::UpdateOverlay, it
specifies NULL for the source and destination rectangles, because they are irrelevant
when hiding the overlay. Similarly, the example uses NULL in the fourth parameter
because overlay effects aren’t being used. The second parameter is a pointer to the
target surface. Lastly, the example uses the DDOVER_HIDE flag in the fourth
parameter to indicate that the overlay will be removed from view.

After the example hides the overlay, the example releases its IDirectDrawSurface3
interface and invalidates its global variable by setting it to NULL. For the purposes of
the Mosquito sample application, the overlay surface is no longer needed. If you still
need the overlay surface for later, you could simply hide the overlay without releasing
it, then redisplay it whenever you require.

Other DirectDraw Samples
To learn more about how DirectDraw can be used in applications, you should check
out some of the other following samples included with the DirectX SDK:

· Stretch

Demonstrates how to create a nonexclusive (windowed) mode animation in a
window that is capable of clipped blitting and stretched-clipped blitting.

· Donut

Demonstrates testing multiple exclusive-mode applications interacting with
nonexclusive-mode applications.

· Wormhole

Demonstrates palette animation.

· Dxview

Demonstrates how to retrieve the capabilities of the display hardware.

Other samples you can examine for their DirectDraw code include Duel, Iklowns,
Foxbear, Palette, and Flip2d.

	About DirectDraw
	Why Use DirectDraw?
	Getting Started‑Basic Graphics Concepts
	Device-Independent Bitmaps
	Drawing Surfaces
	Blitting Concepts
	Page Flipping and Back Buffering
	Introduction to Rectangles
	Sprite Concepts
	What is a Sprite?
	Transparent Blitting and Color Keys
	Sprite and Patch Rectangles
	Bounds Checking and Hit Detection

	DirectDraw Architecture
	Architectural Overview
	DirectDraw Object Types
	Hardware Abstraction Layer (HAL)
	Software Emulation
	System Integration

	DirectDraw Essentials
	Cooperative Levels
	Display Modes
	About Display Modes
	Determining Supported Display Modes
	Setting Display Modes
	Restoring Display Modes
	Mode X and Mode 13 Display Modes
	Support for High Resolutions and True-Color Bit Depths

	The DirectDraw Object
	What Are DirectDraw Objects?
	What's New in IDirectDraw2?
	New Features in IDirectDraw2
	Cooperative Levels and Display Modes with IDirectDraw2
	Getting an IDirectDraw2 Interface

	Multiple DirectDraw Objects per Process
	Creating DirectDraw Objects by Using CoCreateInstance

	Surfaces
	Basic Concepts
	What Are Surfaces?
	Surface Interfaces
	Width and Pitch
	Color Keying
	Pixel Formats

	Creating Surfaces
	Creating the Primary Surface
	Creating an Off-Screen Surface
	Creating Complex Surfaces and Flipping Chains
	Creating Wide Surfaces

	Flipping Surfaces
	Losing Surfaces
	Releasing Surfaces
	Updating Surface Characteristics
	Accessing the Frame-Buffer Directly
	Using Non-local Video Memory Surfaces
	Converting Color and Format
	Overlay Surfaces
	Overlay Surface Overview
	Significant DDCAPS Members and Flags
	Source and Destination Rectangles
	Boundary and Size Alignment
	Minimum and Maximum Stretch Factors
	Overlay Color Keys
	Positioning Overlay Surfaces
	Creating Overlay Surfaces
	Overlay Z-Orders
	Flipping Overlay Surfaces

	Blitting to Multiple Windows

	Palettes
	What are Palettes?
	Palette Types
	Setting Palettes on Nonprimary Surfaces
	Sharing Palettes
	Palette Animation

	Clippers
	What Are Clipper Objects?
	Clip Lists
	Sharing DirectDrawClipper Objects
	Independent DirectDrawClipper Objects
	Creating DirectDrawClipper Objects with CoCreateInstance
	Using a Clipper with the System Cursor
	Using a Clipper with Multiple Windows

	Advanced DirectDraw Topics
	Mode 13 Support
	About Mode 13
	Setting Mode 13
	Mode 13 and Surface Capabilities
	Using Mode 13

	Taking Advantage of DMA Support
	About DMA Device Support
	Testing For DMA Support
	Typical Scenarios For DMA
	Using DMA

	Using DirectDraw Palettes in Windowed Mode
	Types of Palette Entries in Windowed Mode
	Creating a Palette in Windowed Mode
	Setting Palette Entries in Windowed Mode

	Working with Multiple Monitors
	Video Ports
	What is a Video-Port Object?
	Video-Port Technology Overview
	About DirectDraw Video-Port Extensions
	Video Frames and Fields
	HREF, VREF, and Connections
	Vertical Blanking Interval Data
	Auto-flipping
	Solutions to Common Video Artifacts
	Solving Problems Caused by Half-Lines
	Exploiting Hardware Features

	Getting the Flip and Blit Status
	Blitting with Color Fill
	Determining the Capabilities of the Display Hardware
	Storing Bitmaps in Display Memory
	Triple Buffering
	DirectDraw Applications and Window Styles
	Matching True RGB Colors to the Frame Buffer’s Color Space

	DirectDraw Tutorials
	Tutorial 1: The Basics of DirectDraw
	Step 1: Creating a DirectDraw Object
	Step 2: Determining the Application's Behavior
	Step 3: Changing the Display Mode
	Step 4: Creating Flipping Surfaces
	Defining the Surface Requirements
	Creating the Surfaces

	Step 5: Rendering to the Surfaces
	Step 6: Writing to the Surface
	Step 7: Flipping the Surfaces
	Step 8: Deallocating the DirectDraw Objects

	Tutorial 2: Loading Bitmaps on the Back Buffer
	Step 1: Creating the Palette
	Step 2: Setting the Palette
	Step 3: Loading a Bitmap on the Back Buffer
	Step 4: Flipping the Surfaces

	Tutorial 3: Blitting from an Off-Screen Surface
	Step 1: Creating the Off-Screen Surfaces
	Step 2: Loading the Bitmaps to the Off-Screen Surfaces
	Step 3: Blitting the Off-Screen Surfaces to the Back Buffer

	Tutorial 4: Color Keys and Bitmap Animation
	Step 1: Setting the Color Key
	Step 2: Creating a Simple Animation

	Tutorial 5: Dynamically Modifying Palettes
	Step 1: Loading the Palette Entries
	Step 2: Rotating the Palettes

	Tutorial 6: Using Overlay Surfaces
	Step 1: Creating a Primary Surface
	Step 2: Testing for Hardware Overlay Support
	Step 3: Creating an Overlay Surface
	Step 4: Displaying the Overlay Surface
	Step 4.1: Determining the Minimum Display Requirements
	Step 4.2: Setting Up the Source and Destination Rectangles
	Step 4.3: Displaying the Overlay Surface

	Step 5: Updating the Overlay Display Position
	Step 6: Hiding the Overlay Surface

	Other DirectDraw Samples

