
1

C H A P T E R 4

About DirectPlay
The Microsoft® DirectPlay® application programming interface (API) for
Microsoft Windows® 95 is a software interface that simplifies application access
to communication services. DirectPlay has become a technology family that not
only provides a way for applications to communicate with each other,
independent of the underlying transport, protocol, or online service, but also
provides this independence for matchmaking servers and game servers.

Applications (especially games) can be more compelling if they can be played
against real players, and the personal computer has richer connectivity options
than any game platform in history. Instead of forcing the developer to deal with
the differences that each connectivity solution represents, DirectPlay provides
well-defined, generalized communication capabilities. DirectPlay shields
developers from the underlying complexities of diverse connectivity
implementations, freeing them to concentrate on producing a great application.

What's New in DirectPlay 5?
This section discusses new features in DirectPlay 5. For the most recent updates
including new features, additional samples, and further technical information,
consult the Microsoft DirectX web site at http://www.microsoft.com/DirectX.

DirectPlay 5 has a new interface, IDirectPlay3. This interface inherits directly
from IDirectPlay2 and by default behaves as IDirectPlay2. All new functionality
is enabled through new methods or new flags.

DirectPlay 5 supports the following new features and methods:

· DirectPlay interface objects can be created directly by using the
CoCreateInstance method. This eliminates the need to link directly to the
dplayx.dll.

DirectPlay

· IDirectPlay3::EnumConnections enumerates the service providers and lobby
providers available to the application. This method supersedes
DirectPlayEnumerate.

· IDirectPlay3::InitializeConnection initializes a DirectPlay connection. This
method supersedes DirectPlayCreate.

· The new IDirectPlayLobby2::CreateCompoundAddress method creates an
address to pass to the InitializeConnection method.

· IDirectPlay3::SecureOpen creates or joins a session on a server that requires
security.

· IDirectPlay3::CreateGroupInGroup, IDirectPlay3::AddGroupToGroup,
IDirectPlay3::DeleteGroupFromGroup, and
IDirectPlay3::EnumGroupsInGroup add richer group functionality and
navigation. The new IDirectPlay3::GetGroupFlags and
IDirectPlay3::GetGroupParent methods give ready access to additional group
information.

· IDirectPlay3::SendChatMessage enables players to chat with other players in a
session or connected to a lobby server, using standardized messages.

· IDirectPlay3::SetGroupConnectionSettings,
IDirectPlay3::GetGroupConnectionSettings, and IDirectPlay3::StartSession
enable synchronized application launching from a lobby server.

· The new DPCREDENTIALS structure holds the user name, password, and
domain to use when connecting to a secure server. The DPSECURITYDESC
structure describes the security properties of a DirectPlay session instance.

· The new DPCOMPOUNDADDRESSELEMENT structure describes a
DirectPlay Address data chunk that can be used to create longer DirectPlay
Addresses.

· The new IDirectPlay3::GetPlayerAccount method and new
DPACCOUNTDESC can be used by a session host to obtain account information
for a player logged into a secure session.

· The new IDirectPlay3::GetPlayerFlags method gives access to a player's flag
settings.

DirectPlay 5 also supports new functionality for existing DirectPlay 3 methods:

· An application can create multiple DirectPlay objects.

· The IDirectPlay3::SetSessionDesc method enables the host to change the session
description.

· The IDirectPlay3::EnumSessions method can now be called asynchronously and
will maintain a constantly refreshing list of sessions available on the session

· Password protection of sessions has been improved. Specify the
DPENUMSESSIONS_PASSWORDREQUIRED flag in EnumSessions to
enumerate password-protected sessions (in addition to nonpassword-protected
sessions). The DPSESSIONDESC2 structure will contain a flag indicating that

Chapter 4 DirectPlay 3

the session needs a password. Put the password in the DPSESSIONDESC2
structure passed to the Open method to join the session.

· Applications can override the service provider dialog boxes that prompt users for
information. To prevent these dialog boxes from appearing, create a DirectPlay
Address using the IDirectPlayLobby2::CreateAddress or
IDirectPlayLobby2::CreateCompoundAddress methods and then call
IDirectPlay3::InitializeConnection with this DirectPlay Address. A subsequent
call to IDirectPlay3::EnumSessions will not display a dialog box prompting the
user for address information.

· A new multicast server option improves group messaging.

· Support has been added for scalable client/server architecture applications.

· Sessions can be hosted securely and require users to log in with a name and
password.

· Members of a secure session can send digitally signed or encrypted messages, by
using the DPSEND_SIGNED and DPSEND_ENCRYPTED flags in the Send
method.

Updates to DirectPlay
Be sure to consult the Microsoft DirectX web site for the latest information
about new features and updates to DirectPlay, additional samples, and further
technical information about using DirectPlay.

The web site is http://www.microsoft.com/DirectX.

Writing a Network Application
The fundamental concern when writing a networked, multiplayer application is
how to propagate state information to all the computers in the session. The state
of the session defines what users see on their computers and what actions they can
perform. Generally, two things make up the session state: the environment, and
the individual users or players.

The environment consists of the objects that the players can manipulate or interact
with. This can include a map of a dungeon, a racecourse, or even a document. The
environment can also include computer-controlled players.

Within the environment, each player also has a state indicating the player's
current properties. These can include position, velocity, energy, armor, and so on.

When a player first joins the session, the session's current state must be
downloaded, including the environment and the state of the other players.

Actions performed by users or the natural progression of a game change the state
of the session. When this happens, the change must be propagated to the other
computers in the session through messages. There are many techniques for

updating the session state, but they all depend on sending messages between
computers.

When two players perform an action on the same object (like opening a door) or
on each other (like swinging a sword) a conflict can arise. That is, two players are
trying to do something where only one of them can succeed. In these cases,
arbitration or conflict resolution is needed. There are several ways to resolve
conflicts like this: the two players can communicate with each other and decide
which one wins, or a special player can arbitrate all conflicts.

The actions of players change the state of a game, and conflicting actions must be
resolved before the game's state can be updated. There are two fundamental ways
of maintaining state in a session. The first way is called peer-to-peer. In peer-to-
peer sessions, all the computers in the session have the complete state of the
environment and all the players. Any change in state that happens on one
computer must be propagated to all the other computers in the session. No one
computer is really in charge.

The second way to maintain the session state is called client/server. In
client/server sessions, one computer is designated the server, and it maintains the
complete state of the game and performs conflict resolution. All the other
computers in the session are clients, and they download some portion of the state
from the server. When they need to change the state, they tell the server, and the
server propagates the change to other clients as needed.

With DirectPlay, you can create and manage both peer-to-peer and client/server
applications. DirectPlay provides all the tools needed to write a networked,
multiplayer application by providing the services to manage players, send
messages between players, and automatically propagate the state among all the
computers.

DirectPlay Overview
This section contains the following topics, which provide general information
about the DirectPlay component.

· Architecture

· Session Management

· Player Management

· Message Management

· Group Management

· Overview of DirectPlay Communications

Chapter 4 DirectPlay 5

Architecture
The DirectPlay API is a network abstraction and distributed object system that
applications can be written to. The API defines the functionality of the abstract
DirectPlay network and all the functionality is available to your application
regardless of whether the actual underlying network supports it or not. In cases
where the underlying network does not support a method, DirectPlay contains all
the code necessary to emulate it. Examples include group messaging and
guaranteed messaging.

DirectPlay's service provider architecture insulates the application from the
underlying network it is running on. The application can query DirectPlay for
specific capabilities of the underlying network, such as latency and bandwidth,
and adjust its communications accordingly.

The following diagram illustrates the DirectPlay service provider architecture.

The first step in using DirectPlay is to select which service provider to use. The
service provider determines what type of network or protocol will be used for
communications. The protocol can range from TCP/IP over the Internet to an IPX
local area network to a serial cable connection between two computers.

Use the service provider to make a connection to a point on the network. The user
may need to provide additional information to make a connection, or the
application can specify the connection parameters.

Connection Management Methods

DirectPlay provides two very useful connection management methods:

· IDirectPlay3::EnumConnections enumerates all the connections that are
available to the application.

· IDirectPlay3::InitializeConnection initializes a specific connection.

Session Management
A DirectPlay session is a communications channel between several computers.
Before an application can start communicating with other computers it must be
part of a session. An application can do this in one of two ways: it can enumerate
all the existing sessions on a network and join one of them, or it can create a new
session and wait for other computers to join it. Once the application is part of a
session, it can create a player and exchange messages with all the other players in
the session.

Each session has one computer that is designated as the host. The host is the
owner of the session and is the only computer that can change the session's
properties.

The following diagram illustrates the DirectPlay session model.

Session Management Methods

DirectPlay provides several session management methods:

· IDirectPlay3::EnumSessions enumerates all the available sessions.

· IDirectPlay3::Open joins one of the enumerated sessions or creates a new
session.

· IDirectPlay3::SecureOpen performs the same function as IDirectPlay3::Open,
but enables the application to alter the default opening behavior.

· IDirectPlay3::Close leaves the currently open session.

· IDirectPlay3::GetSessionDesc gets the properties of the current session.

· IDirectPlay3::SetSessionDesc changes the properties of the current session.

· IDirectPlay3::GetCaps gets the communications capabilities of the underlying
network.

Chapter 4 DirectPlay 7

Player Management
The most basic entity within a DirectPlay session is a player. A player represents
a logical object within the session that can send and receive messages. DirectPlay
does not have any representation of a physical computer in the session. Each
player is identified as being either a local player (one that exists on your
computer) or a remote player (one that exists on another computer). Each
computer must have at least one local player before it can start sending and
receiving messages. Individual computers can have more than one local player.

When an application sends a message, it is always directed to another player —
not another computer. The destination player can be another local player (in
which case the message will not go out over the network) or a remote player.
Similarly, when an application receives messages they are always addressed to a
specific (local) player and marked as being from some other player (except
system messages, which are always marked as being from DPID_SYSMSG).

DirectPlay provides some additional player management methods that an
application can use. These methods can save the application from having to
implement a list of players and data associated with each one. You do not need
these methods to use DirectPlay successfully. They enable an application to
associate a name with a player and automatically propagate that name to all the
computers in the session. Similarly, the application can associate some arbitrary
data with a player that will be propagated to all the other computers in the session.
The application can also associate private local data with a player that is available
only to the local computer.

Basic Player Management Methods

DirectPlay provides several basic player management methods:

· IDirectPlay3::EnumPlayers enumerates all the players in the sessions.

· IDirectPlay3::CreatePlayer creates a local player.

· IDirectPlay3::DestroyPlayer destroys a local player.

Additional Player Management Methods

DirectPlay provides these additional methods to manage player information:

· IDirectPlay3::GetPlayerCaps gets a player's communications capabilities.

· IDirectPlay3::GetPlayerName gets a player's name.

· IDirectPlay3::SetPlayerName changes a player's name.

· IDirectPlay3::GetPlayerData gets the application-specific data associated with a
player.

· IDirectPlay3::SetPlayerData changes the application-specific data associated
with a player.

· IDirectPlay3::GetPlayerAddress gets a player's network-specific address.

· IDirectPlay3::GetPlayerAccount gets a player's account information.

· IDirectPlay3::GetPlayerFlags gets a player's flag settings.

Message Management
Once an application has created a player within a session, it can start exchanging
messages with other players in the session. DirectPlay imposes no message
format or extra bytes on the message. A message can be sent to an individual
player, to all the players in the sessions, or to a subset of players that have been
defined as a group (see Group Management). When sending a message it must
also be marked as being from a specific local player.

All the messages received by an application are put into a receive queue. The
application must retrieve individual messages from the queue and act on them as
appropriate. The application can either poll the receive queue for messages or use
a separate thread that waits on a synchronization event for notification that a new
message has arrived.

There are two types of messages. Player messages are messages that another
player in the session sent. This type of message is directed to a specific player and
is marked as being from the sending player. System messages are sent to all the
players in a session and are all marked as being from the system
(DPID_SYSMSG). DirectPlay generates system messages to notify the
application of some change in state of the session; for example, when a new
player has been created. See Using System Messages for more information.

Basic Message Management Methods

DirectPlay provides several message management methods:

· IDirectPlay3::Send sends a message from a local player to another player in the
session.

· IDirectPlay3::SendChatMessage enables players to chat with other players
using standardized messages.

· IDirectPlay3::Receive retrieves a message from the incoming message queue.

· IDirectPlay3::GetMessageCount gets the number of messages currently in the
incoming message queue.

Group Management
DirectPlay supports groups within a session. A group is logical collection of
players. By creating a group of players, an application can send a single message

Chapter 4 DirectPlay 9

to the group and all the players in the group will receive the message. A group is
the means by which a network's multicast capabilities are exposed to the
application.

Groups can also be used as a general means to organize players in a session. A
player can belong to more than one group. DirectPlay provides methods for
administering groups and their membership. Additional methods associate names
and data with individual groups as a convenience, but you don't need them to use
groups.

The following diagram shows a logical representation of the contents of a
DirectPlay session.

Basic Group Management Methods

DirectPlay provides several group management methods:

· IDirectPlay3::EnumGroups enumerates all the groups in the session.

· IDirectPlay3::CreateGroup creates a new group.

· IDirectPlay3::DestroyGroup destroys a group that this computer created.

· IDirectPlay3::EnumGroupPlayers enumerates the players that are in a group.

· IDirectPlay3::AddPlayerToGroup adds a player to a group.

· IDirectPlay3::DeletePlayerFromGroup removes a player from a group.

Additional Group Management Methods

DirectPlay provides these additional methods to manage group information:

· IDirectPlay3::GetGroupName gets the group's name.

· IDirectPlay3::SetGroupName changes the name of a group created by this
computer.

· IDirectPlay3::GetGroupData gets the application-specific data associated with a
group.

· IDirectPlay3::SetGroupData changes the application-specific data associated
with a group created by this computer.

· IDirectPlay3::GetGroupFlags gets the flags describing a group.

· IDirectPlay3::GetGroupParent gets the DPID of the parent of the group.

New Group Management Methods

DirectPlay 5 has added these methods that manage groups within groups and
shortcuts to groups:

· IDirectPlay3::CreateGroupInGroup creates a group within an existing group.

· IDirectPlay3::EnumGroupsInGroup enumerates all the groups within another
group.

· IDirectPlay3::AddGroupToGroup adds a shortcut from a group to an already
existing group.

· IDirectPlay3::DeleteGroupFromGroup removes a group previously added to
another with AddGroupToGroup, but doesn't destroy the deleted group.

· IDirectPlay3::GetGroupConnectionSettings retrieves a group's connection
settings.

· IDirectPlay3::SetGroupConnectionSettings sets a group's connection settings.

Overview of DirectPlay Communications
DirectPlay's default mode of communications is peer-to-peer. In this model, the
session's complete state is replicated on all the computers in the session. This
means that the session description data, the list of players and groups, and the
names and remote data associated with each session are duplicated on every
computer. When one computer changes something, it is immediately propagated
to all the other computers.

DirectPlay's alternative mode of communications is client/server. In this model,
only the server stores the session's complete state and each client has only a
subset of the session's state. Each client has only the information that is relevant
to that computer and receives that information from the server. When one
computer changes something, it propagates the change to the server. The server
then determines which clients it must inform of the change.

An application can manage its own data using either a client/server model or
peer-to-peer model, but this will not change how the underlying DirectPlay
session state is managed.

The following sections discuss the two modes of communications within
DirectPlay sessions:

· Peer-to-Peer Session

Chapter 4 DirectPlay 11

· Client/Server Session

Peer-to-Peer Session
In a peer-to-peer DirectPlay session, one computer is designated the name server.
This computer responds to enumeration requests, regulates computers trying to
join the session, downloads the session's state to new computers that have joined,
and generates ID numbers as players and groups are created. Beyond that, the
name server is just another peer in the session and runs the same application as all
the other peers. Messages are not routed through the name server and the name
server does not generate all the system messages.

DirectPlay automatically performs the name server functions, which are not
exposed to the application in any way. The DirectPlay application running on the
name server is also the session's host. Only the host application can change the
session description data. Each peer application in the session has access to the
complete list of players and groups in the session (see Session Management) and
can send and receive messages from any other player in the session or send a
message to any group in the session. See Session Management for more details.

The session's network address corresponds to the name server's network address.
When a computer needs to join the session, it sends the join request to the name
server. In response, the name server downloads the session's state to new
computers. If the name server leaves the session, a new computer is elected name
server. When the name server migrates, the session's network address also
changes.

The following diagram illustrates joining a session. To join a session, a machine
sends the join request to the name server of the session.

Peer-to-peer sessions generally have a limitation on the number of computers that
can participate. Every change in state on every computer (like player movements)
must be broadcast to all the other computers in the session. Because there is a
limit on how much data a computer can receive (especially if connected through a

phone line) there is a limit to how many computers can generate data. Minimizing
the quantity and frequency of data exchanged can help increase the number of
computers that can be in a session before performance degrades.

Computers in a peer-to-peer DirectPlay session communicate directly with each
other. That is, messages are not sent through an intermediate computer to reach
their destination (although they can go through a router). When DirectPlay needs
to send the same message to a set of computers, it attempts to use any multicast
capabilities in the service provider. If multicast is not supported, then individual
unicast messages are sent to each destination computer.

The following diagram illustrates group messaging without multicast. To
broadcast a message, individual messages are sent to each machine.

This can be a source of inefficiency in sessions with a large number of players
(more than four). Adding a multicast server to the session can alleviate this. A
multicast server is a computer that will forward a single message to multiple
destinations. A computer needing to broadcast a message to all the other
computers in the session can send one message to the multicast server, which in
turn sends individual messages to all the other computers. This is more efficient,
because the multicast server is connected to the network through a high-speed
link and can therefore pump out unicast messages faster than any individual
computer. The assumption is that the server has a high-speed link to the network
(such as a T1 line) while the other computers have slow-speed links (such as
phone lines).

The following diagram illustrates group messaging using a multicast server.
Player-to-player messages are sent directly to the destination machine. Group
messages are sent to the multicast server, which forwards them to all the
destination machines.

Chapter 4 DirectPlay 13

DirectPlay supports the creation of a multicast server in a session. If the name
server is on a sufficiently high-speed link, it can choose to be a multicast server
for the session as well. Adding a multicast server to a session only changes how
group messages (including broadcast) are routed — the application's behavior
doesn't change. Unicast player-to-player messages are still sent directly to the
destination computers.

Client/Server Session
In a DirectPlay client/server session, one computer is designated the server. Like
the peer-to-peer name server, this computer responds to enumeration requests,
regulates computers trying to join the session, downloads the session's state to
new computers that have joined, and generates ID numbers as players and groups
are created. Unlike the peer-to-peer name server, all messages in the session are
routed through the server.

The server computer runs a special version of the application (the application
server) that can maintain the master state of the game, updating that state
according to actions that the client computers take, and notifying individual
clients of relevant events. The application server creates a special player called
the server player. Any client computer can send a message directly to the server
player or receive a message from the server player. When the server player
receives a message it can send messages to other client players to inform them of
a change in state.

The following diagram illustrates client\server communications. Each machine
communicates directly with the server only. The server can forward messages to
other clients.

The client computers run client versions of the application that can maintain the
local state, updating the state in response to messages from the server, and
sending messages to the server when some local action has occurred.

You can implement a client/server application in two ways. One mode is a hybrid
peer-to-peer and client/server session, where every client application has the
complete player and group list available to it (including the server player). Any
client player can send a message directly to any player in the session, and each
player or group can have data associated with it (such as name or remote data)
that will be updated on all the computers whenever it changes. All the benefits of
peer-to-peer state propagation are available, and, in addition, a server player is
available. However, you can't control the propagation of the player-to-player data.
Depending on the frequency with which players and groups are created and
destroyed or their data changes, client computers could be overloaded with in-
coming messages. This type of a session is not scalable beyond about 16 players.
It isn't very different from a peer-to-peer session, except that it has a server
player, all messages are routed through the server, and the server player will
receive a copy of all the messages that pass through the server.

The second mode is pure client/server. Here, each client application sees only the
server player and its own local players in the session. A client player can send
messages only to the server player and receive messages from only the server
player. The application server can see all the players on all clients. When the
server receives a message from a client, it can intelligently decide how to update
the master application state and which clients it must inform of this update. In this
mode, the client application must manage the player list and the data associated
with each player.

The following diagram shows a logical representation of the contents of a
DirectPlay client/server session.

Chapter 4 DirectPlay 15

Like a peer-to-peer session, the session's network address corresponds to the
server's network address. When a computer needs to join the session, it sends the
join request to the server. In response, the server downloads the session's state to
the new computers. If the server leaves the session, the session is terminated.

Because all messages are routed through the server, it automatically behaves as a
multicast server.

Security
Using DirectPlay security features, an application running on a server can create
secure sessions. DirectPlay implements security through the Security Support
Provider Interface (SSPI) on Windows. Key features supported by DirectPlay in a
secure session are:

· Authentication to verify the identity of the user. Once a user has been
authenticated, communications between the client and server can be done securely
either by digitally signing or encrypting the messages.

· Digitally signed system messages to verify the identity of the sender.

· Encryption of sensitive system messages.

For more information, including how to set up a secure server, start a secure
session, and specify security packages, see Security and Authentication.

DirectPlay Lobby Overview
A DirectPlay lobby server is a common place on a network that (at a minimum)
tracks DirectPlay application sessions in progress, and users that are connected to
the server. Users can navigate around the lobby server to find areas of interest. At
any location on the lobby server the user can chat with other users, join sessions
that are in progress, or gather a group of players to start a new session.

A lobby server's main advantage is that it acts as a central, well-known location
where users can go to find sessions and other people to interact with. The lobby
server manages all the network addresses of the various players and sessions and
can automatically manage launching applications and connecting them to the
correct address without user intervention. The management of sessions, players,
and their network addresses is especially useful on the Internet, where users
generally can't find opponents or get applications connected in a session easily. It
also has the advantage of launching application sessions for the user without the
user having to enter any network configuration information.

Lobby servers can be greatly enhanced to provide more services to the user, such
as tournaments, individual score tracking and high scores, personal profiles,
avatars, message boards, news, a broader user interface, authenticated
membership, software updates, and so on.

A lobby-aware application is one that has been specifically developed to
interoperate with lobby servers. There are two types of lobbies that a user can
experience. An external lobby is a client application whose sole purpose is to
interact with a lobby server and the other users connected to it. When the time
comes to start or join an application session, the lobby client launches the
application in a separate process and gives it all the information necessary to
establish a connection to the session. Adding support for external lobby launching
to a DirectPlay application is quite straightforward and explained further in
Supporting External Lobby Launching.

An internal lobby is a lobby user interface that is integrated into the application
itself. This is more difficult to implement because the application must implement
the user interface for the lobby as well as that for the game. However, it has the
advantage that you can customize the lobby experience to match the application's
theme.

This section discusses the following topics.

· DirectPlay Lobby Architecture

· Lobby Sessions

· Lobby Navigation

· Synchronized Launching

DirectPlay Lobby Architecture
The DirectPlay lobby architecture consists of a client API that all applications,
whether they are external lobby clients or applications that have a lobby client
built in, use to connect to any DirectPlay-compliant lobby server. This is done
through a lobby provider interface that, like a service provider, abstracts the
interaction with the lobby server. The author of the lobby server application must
write the lobby provider that resides on the client computer. The application calls

Chapter 4 DirectPlay 17

the standard DirectPlay APIs, and the lobby provider's dynamic-link library
(DLL) services these methods by communicating with the lobby server software.

The following diagram illustrates the DirectPlay lobby architecture. Different
lobby client applications can connect to the same lobby server through the
DirectPlay API.

At the very least, the lobby server must be able to track all the users currently
connected to it, organize those players by grouping them, and synchronize the
launch of an application session.

The DirectPlay API defines a common level of functionality for all lobby servers.
Any generic lobby client application can connect to any generic lobby server and,
through the DirectPlay API and the lobby provider architecture, they can
interoperate successfully. An application can extend the basic functionality with
Send and Receive. A lobby client designed to work with a specific lobby server
can implement extended functionality that is not defined by the DirectPlay API.

There is no separate API to communicate with a DirectPlay lobby server.
Interaction with a lobby server has been abstracted so that the same IDirectPlay3
interface used to communicate in an application session can be used to
communicate with the lobby server. Additional methods and messages have been
added to the interface to support the additional functionality that a lobby server
requires.

By using the same DirectPlay methods to interact with the lobby server, it is
simple to add a lobby client interface to an application, because the same APIs
and concepts are being leveraged.

Lobby Sessions
A lobby session closely resembles a DirectPlay client/server session (see the
illustration in Client/Server Session). The term lobby session refers to a
connection to a lobby server where clients and the server have not been
specifically written to interoperate. The term application session refers to a
traditional DirectPlay session in which all the clients and the server (if any) have
been specifically written to interoperate.

A DirectPlay lobby session is used to represent a connection to a lobby server.
Like a DirectPlay application, the first step in using DirectPlay to communicate
with a lobby server is to select which lobby provider to use and which lobby
server to connect to. Like a DirectPlay application, the
IDirectPlay3::EnumConnections and IDirectPlay3::InitializeConnection
methods are used to do this.

The lobby client uses the same session management methods as an application
client to locate and to join a lobby session; for example, EnumSessions, Open,
SecureOpen, and Close. Joining a lobby session gives the client application
access to all the information on the lobby server and enables the user to interact
with other users on the lobby server.

Like a DirectPlay application session, the player is the basic entity in a lobby
session. Each player represents a user on a client computer connected to the lobby
server. There is also the server player representing the lobby server. Once a lobby
client connects to a lobby server (by joining the lobby session), it must establish
the user's presence by creating a player and adding the player to an initial group
before the player can start communicating with the server and other players. In
fact, other users connected to the session won't even be aware of the new user's
presence until this happens.

The same player management methods used by application sessions are used to
manage players in a lobby session; for example, EnumPlayers, CreatePlayer,
DestroyPlayer, GetPlayerName, SetPlayerName, and GetPlayerCaps.

Unlike a DirectPlay application session, Send and Receive generally cannot be
used to exchange messages with other players. In the DirectPlay lobby
architecture, any application that uses the DirectPlay API can connect to any
lobby server. This means that many different lobby client applications might be
present in the same lobby session, all of which were written by different
developers. Simply sending a message to another client player or the server player
does not guarantee that it will be interpreted correctly by the recipient application.

Common functions that require communications between clients and the server
have new methods created for them. DirectPlay determines the message's format.
The recipient receives a system message containing the content of the message in
a well-defined data structure. For example, the IDirectPlay3::SendChatMessage
method sends a text chat message to another player.

Chapter 4 DirectPlay 19

Groups take on more significance in a lobby session, because they are used to
define the organization of the entire lobby server and for launching application
sessions. You can create a complete hierarchy of groups to manage and organize
all the players and sessions that the lobby server tracks.

For the purposes of the lobby server, groups are classified as one of two types. A
standard group can contain players and other groups and is called a room. A room
is primarily used as a meeting place for players to interact with other players in
the context of the lobby. The room contains links to other rooms and links to the
second type of group — a staging area.

A staging area group typically contains only players. A staging area is used to
marshal players together in order to launch a new session. Once the session has
been launched, the staging area can remain in existence so that new players can
join the session in progress.

Room groups are primarily organized in a hierarchical structure. A few top-level
groups are created and other groups are created within existing groups. The lobby
client can enumerate all the top-level groups as well as the groups contained
within a group. The lobby server can also organize the groups in a web structure.
Once a group is created, you can add it to another group, which creates a link
between the two groups. When a lobby client enumerates groups within a group,
all subgroups and linked groups are returned.

The following diagram illustrates the organization of a lobby session.

Players can only be seen in groups. They cannot be seen until they are part of a
group. Players can belong to more than one group at once.

Lobby Navigation
Players can navigate through the lobby server space simply by deleting
themselves from their current group and adding themselves to a new group. At
any time, the IDirectPlay3::EnumGroupsInGroup method can be called to
determine what groups are linked to the current group.

In general, the scope of the lobby session visible to a player is limited by the
groups the player is part of. This is done to limit the amount of information that
the server must download to the client.

Synchronized Launching
Application sessions are marshaled and launched from a staging area. One player
creates a staging area and waits for other players to join it. A player can set the
properties of the application session to be created through the
IDirectPlay3::SetGroupConnectionSettings method. Other players who are
considering joining the group can find out what the application session properties
are by calling the IDirectPlay3::GetGroupConnectionSettings method. Once
enough players have joined the staging area, any player can call the
IDirectPlay3::StartSession method to initiate the synchronized launch sequence.
Every player in the staging area groups receives a DPMSG_STARTSESSION
system message with a DPLCONNECTION structure. If the player is using an
external lobby client, it can launch the application using the
IDirectPlayLobby2::RunApplication method. If the player is using an internal
lobby, the application can use the information to establish a connection to the
appropriate session by calling IDirectPlayLobby2::Connect.

DirectPlay Providers
This section describes the DirectPlay interface and the DirectPlay service
providers and how they interact with each other. See:

· Service Providers

· Lobby Providers

The DirectPlay interface is a common interface to the application for simple send
and receive type messaging as well as higher-level services like player
management, groups for multicast, data management and propagation, and lobby
services for locating other players on a network.

The service providers furnish network-specific communications services as
requested by DirectPlay. Online services and network operators can supply
service providers to use specialized hardware, protocols, communications media,
and network resources. A service provider can simply be a layer between
DirectPlay and an existing transport like Winsock, or it can use specialized
resources on an online service such as multicast servers, enhanced quality of
service, or billing services. Microsoft includes four generic service providers with
DirectPlay: head-to-head modem (TAPI), serial connection, Internet TCP/IP
(using Winsock), and IPX (also using Winsock).

The DirectPlay interface hides the complexities and unique tasks required to
establish an arbitrary communications link inside the DirectPlay provider

Chapter 4 DirectPlay 21

implementation. An application using DirectPlay need only concern itself with
the performance and capabilities of the virtual network presented by DirectPlay. It
need not know whether a modem, network card, or online service is providing the
medium.

DirectPlay will dynamically bind to any DirectPlay provider installed on the
user's system. The application interacts with the DirectPlay object. The DirectPlay
object interacts with one of the available DirectPlay service providers, and the
selected service provider interacts with the transport, protocol, and other network
resources.

The DirectPlay API is exposed to the application through several COM interfaces.
(See DirectPlay Interfaces for a discussion of COM and DirectPlay.) Application
sessions can talk to someone else on the network through the IDirectPlay3 and
IDirectPlay3A interfaces. The first uses Unicode strings in all the DirectPlay
structures, while the second uses ANSI strings. IDirectPlay, IDirectPlay2, and
IDirectPlay2A still exist for backward compatibility with applications written to
a previous version of the DirectPlay SDK.

Lobby clients can talk to another application on the same machine through the
IDirectPlayLobby2 and IDirectPlayLobby2A interfaces. The first interface uses
Unicode strings while the second uses ANSI strings. The IDirectPlayLobby
interface still exists for backward compatibility.

Service Providers
The service provider furnishes network-specific communication services as
requested by DirectPlay. Online services and network operators can supply
service providers for specialized hardware and communications media. Microsoft
includes the following service providers with DirectPlay:

· TCP/IP

· IPX

· Modem-to-Modem

· Serial Link

Individual service providers are identified using a GUID. GUIDs for the standard
service providers are listed in the header file DPLAY.H. Third-party service
providers will have their own GUIDs.

This section outlines what to expect from the default service providers that
Microsoft ships. To obtain information about the behavior of third-party service
providers, contact the network operator.

TCP/IP
The TCP/IP service provider uses Winsock to communicate over the Internet or
local area network (LAN) using the TCP/IP protocol. It uses UDP (User
Datagram Protocol) packets for nonguaranteed messaging and TCP for
guaranteed messaging. A single computer can host multiple DirectPlay sessions
using TCP/IP.

When the IDirectPlay3::EnumSessions method is called, TCP/IP displays a
dialog box asking the user for the session's IP address. The user must enter the IP
address of the computer hosting the session to be joined. If the computer has a
name (such as microsoft.com), the name can be used instead of the IP address,
and DirectPlay will use Domain Name System (DNS) lookup to find it. The
IDirectPlay3::EnumSessions method will return the sessions that the computer
is hosting. The user can also leave the address blank and hit OK. In this case,
DirectPlay will broadcast a message looking for sessions. This will generally only
work on a LAN and only on the same subnet.

A Windows 95 user can determine his or her IP address by choosing Run
from the Start menu and typing WINIPCFG as the program to run. A

Windows NT user can determine his or her IP address by running IPConfig from the
command line. If the user is connected to both a LAN and a dial-up Internet service
provider (ISP), the computer can have two IP addresses and the correct one must be
selected. Most dial-up ISPs assign a dynamic IP address that changes each time the
user logs on.

An application can call IDirectPlay3::InitializeConnection, or can call
IDirectPlayLobby2::SetConnectionSettings followed by a call to Connect, to
supply an IP address to the service provider in a DirectPlay Address. The address
must be a null-terminated ANSI or Unicode string (each has a different data type
GUID). If a broadcast enumeration of sessions is desired, the address must be a
zero-length string; that is, a string consisting of just the null terminator.

The DirectPlay TCP/IP service provider does not generally work through
firewalls.

Adding DirectPlay lobby support can eliminate the need for users to enter an IP
address if they start the game from a lobby server.

This service provider can be identified using the symbol definition
DPSPGUID_TCPIP.

A Windows 95 user can configure his or her computer connections to display
or not display a dialog box requesting connection information when

DirectPlay tries to initiate a TCP/IP connection. To suppress the display of this dialog
box, follow these steps:

1 Open Control Panel.

Note:

Note:

Chapter 4 DirectPlay 23

2 Double-click the Internet icon.

3 Choose the Connection tab.

4 Clear the checkbox next to Connect to the Internet as needed.

IPX
The IPX service provider uses Winsock to communicate over a local area network
(LAN) using the Internet Packet Exchange (IPX) protocol. The service provider
only supports nonguaranteed messaging. A single computer can host only one
DirectPlay session using IPX.

IPX always uses a broadcast to find sessions on the network, so the
IDirectPlay3::EnumSessions method will not display a dialog box requesting IP
addresses.

IPX will not enumerate sessions on another subnet.

Once a session is established, packets are sent directly between computers (they
are not broadcast).

This service provider can be identified using the symbol definition
DPSPGUID_IPX.

Modem-to-Modem
Modem-to-modem communication uses TAPI (Telephony Application
Programming Interface) to communicate with another modem.

Creating a session (by using the IDirectPlay3::Open method) causes a dialog
box to appear, asking the user which modem to wait for a call on. The
IDirectPlay3::EnumSessions method will also display a dialog box asking the
user what phone number to call and which modem to use. Once the information is
entered, DirectPlay will dial the modem and try to find sessions hosted by the
computer on the other end. In both cases, dialogs are displayed to show the
progress.

The current list of available modems can be obtained from the service provider by
initializing it and calling IDirectPlay3::GetPlayerAddress with a player ID of
zero. The DirectPlay Address returned will contain a data chunk with the ANSI
modem names (DPAID_Modem) and the Unicode modem names
(DPAID_ModemW). The list of modems is a series of NULL-terminated strings
with a zero-length string at the end of the list.

If you insert too many delays into the message processing, you may lose packets;
for example, if you print a lot of debug information.

This service provider can be identified using the symbol definition
DPSPGUID_MODEM.

Serial Link
A serial link is used to communicate with another computer through the serial
ports.

Creating a session (using the IDirectPlay3::Open method) causes a dialog box to
appear asking the user to configure the serial port. The
IDirectPlay3::EnumSessions method will also display a dialog box asking the
user to configure the serial port. You must configure the serial port the same way
on both computers.

If you insert too many delays into the message processing, you may lose packets;
for example, if you print a lot of debug information.

This service provider can be identified using the symbol definition
DPSPGUID_SERIAL.

Lobby Providers
The lobby provider is a client component (DLL) supplied by the developer of a
lobby server. It implements communications functions with the lobby server as
requested by DirectPlay. A lobby client written using the DirectPlay API can
interoperate with any lobby server for which a lobby provider DLL is present on
the system.

The DirectX SDK installs a lobby provider for use with the test lobby server
(LSERVER.EXE) included with the SDK. This lobby provider is used by the
BELLHOP sample lobby client and together they can be used to test the lobby-
aware functions your applications.

Using DirectPlay
This section contains the following topics that explain how to use different
aspects of DirectPlay.

· Debug versus Retail DLLs

· Working with GUIDs

· DirectPlay Interfaces

· Using Callback Functions

· Building Lobby-Aware Applications

· DirectPlay Messages

· DirectPlay Address (Optional)

Chapter 4 DirectPlay 25

· Migrating from Previous Versions of DirectPlay

· DirectPlay Tools and Samples

· Security and Authentication

Debug versus Retail DLLs

The SDK has the option to install debug or retail builds of the DirectPlay
DLLs. When developing software, it best to install the debug versions of the
DLLs. The debug DLLs have addition code in them which will validate
internal data structures and output debug error messages (using the Win32
OutputDebugString API) while your program is executing. When an error
occurs, the debug output will give you a more detailed description of what the
problem is. The debug DLLs will execute more slowly than the retail DLLs but
are much more useful for debugging an application. Be sure to ship the retail
version with your application.

In order to see the debug messages, it is necessary to configure your
computer so that debug output will be displayed in a window or on a remote
computer. An interactive development environment like Microsoft Visual C++
allows you to do this. Consult the environment’s documentation for exactly
how to set this up.

Working with GUIDs
Globally unique identifiers are 16-byte data structures that you can use to identify
objects in a globally unique way. Whenever a GUID is required in an API, a
symbol representing that GUID should be used. The symbols are either defined in
one of the DirectPlay header files or the application developer must generate
them. You can generate GUIDs by using the Guidgen.exe utility that comes with
Microsoft Visual C++. For example, every application must define an application
GUID that identifies the application that is running in a session.

If there are different versions of an application that cannot interoperate in the
same session, they should have different application GUIDs to distinguish

them.

To use DirectPlay-defined GUIDs successfully in your application, you must
either define the INITGUID symbol prior to all other include and define
statements, or you must link to the Dxguid.lib library. If you define INITGUID,
you should define it in only one of your source modules.

Note

DirectPlay Interfaces
All the functionality in DirectPlay is accessed through member functions on
COM (Component Object Model) interfaces. To use them, an application must
obtain the appropriate COM interface.

The standard method of obtaining COM interfaces is to use the Win32
CoCreateInstance API. To use it successfully, the application must first call the
Win32 CoInitialize API to initialize COM and then call CoCreateInstance,
specifying the GUID of the desired interface. For example, use the following code
to obtain an IDirectPlay3A interface:

 // C++ example
 hr = CoCreateInstance(CLSID_DirectPlay, NULL, CLSCTX_INPROC_SERVER,
 IID_IDirectPlay3A, (LPVOID*)&lpDirectPlay3A);
 // C example
 hr = CoCreateInstance(&CLSID_DirectPlay, NULL, CLSCTX_INPROC_SERVER,
 &IID_IDirectPlay3A, (LPVOID*)&lpDirectPlay3A);

When the program is finished, all the COM interfaces must be freed by calling the
Release method on each interface. Finally, the Win32 CoUninitialize method
should be called to uninitialize COM.

If you call CoCreateInstance without first calling CoInitialize you will get a
CO_E_NOTINITIALIZED error, with the error text "CoInitialize has not been
called."

DirectPlay has several COM interfaces. Each interface represents a revision of an
earlier version of DirectPlay in which new methods are added. COM interfaces
are numbered sequentially with each revision. The latest COM interface will have
all the latest functionality of DirectPlay. To access the new functionality (for
example, IDirectPlay3::SendChatMessage), you must use the latest COM
interface. Source code written for a earlier COM interface will work fine.

Once a COM interface is obtained, an alternate interface can be used on the same
object by calling the QueryInterface method on the interface. For example,
DirectPlayCreate will create a DirectPlay object and return an IDirectPlay
interface. If your application requires an IDirectPlay3 interface, it can call
QueryInterface on the IDirectPlay interface. Be sure to release the original
IDirectPlay interface if it is no longer needed.

Using Callback Functions
The enumeration methods in DirectPlay are used to return a list of items to the
application. The application calls an enumeration method (such as
IDirectPlay3::EnumPlayers) and supplies a pointer to a callback function that it

Chapter 4 DirectPlay 27

has implemented. DirectPlay will call the callback function once for each item in
the list. The enumeration method will not return until all the items in the list have
been returned to the application through the callback function.

It is extremely important that all callbacks be declared correctly. For example:

BOOL FAR PASCAL EnumConnectionsCallback(LPCGUID lpguidSP, LPVOID
lpConnection, DWORD dwConnectionSize,
LPCDPNAME lpName, DWORD dwFlags, LPVOID pContext);

The FAR PASCAL symbol will define the function as _stdcall. That means it
will clean up the stack before returning to DirectPlay. Do not cast function
pointers when passing them to a DirectPlay enumeration method. If there is a
compiler warning about the function pointer, fix the function declaration.

Building Lobby-Aware Applications
A lobby-aware application is one that, at a minimum, supports being launched
from a lobby. A matchmaking lobby is a site on the Internet where end users can
find other people to play games with. Once a group of people has decided to start
an application session, the lobby software can launch the application on each
person's computer and have them all connect to a session. The main benefit for
end users is the ease with which they can establish a session with other players.
Not only does it allow a user to easily find opponents, but there is also no need for
the user to:

· Select a service provider. The lobby will specify which service provider to use.

· Decide whether to host or join a session. The lobby will specify whether to create
or join a session.

· Enter a network address or configure the network. The lobby will supply this
information if it is needed.

· Enter the name of the player. The lobby will pass in the same name that the user
connected to the lobby with.

Other benefits of the lobby are:

· It can keep track of sessions in progress and enable users to join them.

· It can receive status messages from the session and display the progress to other
users on a scoreboard.

· It can obtain final scores and maintain player rankings for tournament play.

For a DirectPlay application to be lobby-aware, at a minimum it must support
being launched from a lobby. You can add other features to make it integrate
better with the lobby. For additional information see the following topics within
this section.

· Registering Lobby-Aware Applications

· Supporting External Lobby Launching

· LobbyMessaging (Optional)

Registering Lobby-Aware Applications
To enable a lobby to launch a DirectPlay application, the application must add the
following entries to the system registry. Once an application has been registered,
it will be recognized as a lobby-aware application and lobbies can launch it.
These registry entries must be deleted when the application is removed.

The following example shows the registry entries for the DPCHAT sample
application included in the SDK.

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DirectPlay\Applications\DPChat]
"Guid"="{5BFDB060-06A4-11D0-9C4F-00A0C905425E}"
"File"="dpchat.exe"
"CommandLine"=""
"Path"="C:\DXSDK\sdk\bin"
"CurrentDirectory"="C:\DXSDK\sdk\bin"

The keys and values are:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DirectPlay\Applications\

The key's name will be the name of the application that the
IDirectPlayLobby2::EnumLocalApplications method returns.
It is DPChat in the preceding example.

Guid

This is the 16-byte GUID that identifies the application. It is
formatted as shown in the example. This should be the same
GUID that is put in the guidApplication member of the
DPSESSIONDESC2 structure when creating a session. A
globally unique identifier (GUID) can be generated using the
Guidgen.exe utility.

File

This is the file name of the application executable.

CommandLine

This lists any command-line parameters that are to be specified
when a lobby launches the application.

Path

This is the directory that the application executable resides in.

CurrentDirectory

This is the directory to set as the current directory after
launching the application executable.

Chapter 4 DirectPlay 29

Supporting External Lobby Launching
Once the application has been registered, the DirectPlay application must be able
to recognize whether a lobby launched it or not. If a lobby launched it, it must
follow a slightly different code path to set up the network connection. Consult the
DUEL (Lobby.c) and DPCHAT (Lobby.cpp) samples in the SDK for the code
necessary to support external lobby launching. See Tutorial 1: Connecting by
Using the Lobby for a demonstation on how to connect an application by using a
DirectPlay lobby.

Here are the basic steps necessary:

1 At startup, create an IDirectPlayLobby2 interface using the CoCreateInstance
API.

2 The application can examine the connection information that was passed in by the
lobby and modify some of the connection settings if necessary. The
IDirectPlayLobby2::GetConnectionSettings method returns a
DPLCONNECTION structure with the connection settings. This method returns
DPERR_NOTLOBBIED if a lobby did not launch the application. New settings
can be set with IDirectPlayLobby2::SetConnectionSettings.

3 IDirectPlayLobby2::Connect creates or joins the specified application session
using the specified service provider, and returns an IDirectPlay2 interface.
Connect returns an error if the session could not be created/joined, or if a lobby
didn't launch the application.

4 Use QueryInterface to obtain an IDirectPlay3 interface and then call Release on
the IDirectPlay2 interface.

5 Create a player using the name information supplied in the DPLCONNECTION
structure obtained in step 2.

At this point, the application can continue on the same code path as if the user had
manually selected a connection, joined or created a session, and entered the name
of the player to create.

The IDirectPlayLobby2 interface can be saved if the game will pass information
back to the lobby (see Lobby Messaging), or it can be discarded by using the
Release method if no messages will be sent.

Many lobbies will launch the application and then go into a suspend mode
waiting for the application to terminate. DirectPlay will notify the lobby when the
application that it launched has terminated. For this reason it is very important
that the application launched by the lobby not launch another application.

Lobby Messaging (Optional)
After registering a lobby-aware application and adding the code to support
external lobby launching, the next step in integrating the application with the

lobby is to send information back to the lobby or request information from the
lobby. This is done by exchanging messages with the lobby through the
IDirectPlayLobby2::SendLobbyMessage and
IDirectPlayLobby2::ReceiveLobbyMessage methods on the
IDirectPlayLobby2 interface. Standard message structures have been defined by
DirectPlay to facilitate this functionality.

Sending information to the lobby is done through setting properties. The
application must create and fill in a DPLMSG_SETPROPERTY structure and
send it to the lobby by using the SendLobbyMessage method. Each property
identifies a distinct type of data. The application developer should generate
GUIDs (using Guidgen.exe) for every property that will be set. The lobby
operator needs to obtain this list of GUIDs from the application developer along
with the description of each property and the data structure of the property.

Properties can take the form of:

· Current individual player scores.

· Final individual player scores.

· Player configuration for later retrieval.

· Current game status (level or mission).

The lobby can store this information or display it to other users in the lobby so
they can monitor the game's progress. An application can request confirmation
that the property was set correctly by supplying a nonzero request ID with the set
property message.

Requesting information from the lobby is done through requesting properties. The
application must create and fill in a DPLMSG_GETPROPERTY structure and
send it to the lobby by using the SendLobbyMessage method. At some later
time, the lobby will send a message back to the application — a
DPLMSG_GETPROPERTYRESPONSE structure that contains the property
data that was requested. The application can retrieve the message from the lobby
message queue using the ReceiveLobbyMessage method. As before, the
application developer generates the GUIDs for each property and the lobby
operator must obtain them from the developer.

The following list shows examples of some properties that can be requested from
the lobby:

· Game configuration settings — enables players to configure the game in the lobby
before launching the game.

· Player configuration settings — enables players to configure their players in the
lobby or use a stored configuration from a previous session.

· Other information stored from a previous session.

Chapter 4 DirectPlay 31

Not all lobbies will be able to support these standard lobby messages. The
application can determine if the lobby that it was launched from supports standard
lobby messages by sending a DPLMSG_GETPROPERTY message requesting
the DPLPROPERTY_MessagesSupported property.

DirectPlay Messages
The following sections describe how to use messages in DirectPlay.

· Synchronization

· Using System Messages

· Using Lobby Messages

Synchronization
An application can use two methods to process DirectPlay messages. The first is
to check the receive queue during the main loop of the application. Typically, this
means the application is single threaded.

Alternatively, an application can have a separate thread to wait for messages and
process them. In this case the application should supply a non-NULL auto-reset
synchronization event handle (see the Win32 CreateEvent API) when it creates
players. DirectPlay will set this event whenever a message arrives for that player.
All the local players in an application can share the same event or each can have
his or her own event.

The message processing thread should then use the Win32 WaitForSingleObject
API to wait until the event is set. Keep calling Receive until there are no more
messages in the message queue.

Using System Messages
Messages returned by the IDirectPlay3::Receive method from player ID
DPID_SYSMSG are system messages. All system messages begin with a double-
word value specified by the dwType DWORD value. You can cast the buffer
returned by the IDirectPlay3::Receive method to a generic message
(DPMSG_GENERIC) and switch on the dwType element, which will have a
value equal to one of the messages with the DPSYS_ prefix. After the application
has determined which system message it is, the buffer should be cast to the
appropriate structure (beginning with the DPMSG_ prefix) to read the data.

Your application should be prepared to handle the following system messages.

Value of dwType Message structure Cause

DPSYS_ADDGROUPTOGROUP DPMSG_ADDGROUPTOGROUP An existing group has
been added to an existing
group.

DPSYS_ADDPLAYERTOGROUP DPMSG_ADDPLAYERTOGROUP An existing player has
been added to an existing
group.

DPSYS_CHAT DPMSG_CHAT A chat message has been
received.

DPSYS_CREATEPLAYERORGROUP DPMSG_CREATEPLAYERORGROUP A new player or group
has been created.

DPSYS_DELETEGROUPFROMGROUP DPMSG_DELETEGROUPFROMGROUP A group has been
removed from a group.

DPSYS_DELETEPLAYERFROMGROUP DPMSG_DELETEPLAYERFROMGROUP A player has been
removed from a group.

DPSYS_DESTROYPLAYERORGROUP DPMSG_DESTROYPLAYERORGROUP An existing player or
group has been
destroyed.

DPSYS_HOST DPMSG_HOST The current host has left
the session and this
application is the new
host.

DPSYS_SECUREMESSAGE DPMSG_SECUREMESSAGE A digitally signed or
encrypted message has
been received.

DPSYS_SESSIONLOST DPMSG_SESSIONLOST The connection with the
session has been lost.

DPSYS_SETPLAYERORGROUPDATA DPMSG_SETPLAYERORGROUPDATA Player or group data has
changed.

DPSYS_SETPLAYERORGROUPNAME DPMSG_SETPLAYERORGROUPNAME Player or group name has
changed.

DPSYS_SETSESSIONDESC DPMSG_SETSESSIONDESC The session description
has changed.

DPSYS_STARTSESSION DPMSG_STARTSESSION The lobby server is
requesting that a session
be started.

Using Lobby Messages
Messages returned by the IDirectPlayLobby2::ReceiveLobbyMessage method
fall into two categories: DirectPlay-defined messages and custom-defined
messages. The message category can be identified by the lpdwMessageFlags
parameter of ReceiveLobbyMessage. The flags indicate that the message is
either a system message (the DPLMSG_SYSTEM flag) or a standard message
(the DPLMSG_STANDARD flag). If neither of these flags is set, the message is
custom-defined. System messages are generated automatically by DirectPlay and
sent only to the lobby to inform it of changes in the status of the application.
Standard messages can be generated by either the lobby or the application and
sent to the other.

Chapter 4 DirectPlay 33

The advantage of standard messages over custom-defined messages is that the
receiver can positively interpret the message. It is not required that all
applications or lobbies act on standard messages.

DirectPlay-defined messages all start with a DWORD value that identifies the
type of the message. After retrieving a message using ReceiveLobbyMessage,
the lpData pointer to the message data should be cast to the
DPLMSG_GENERIC structure and the structure's dwType member examined.
Based on the value of dwType, the lpData pointer should then be cast to the
appropriate message structure for further processing.

Lobbies should be prepared to handle all the following message types.
Applications need to handle the DPLMSG_GETPROPERTYRESPONSE
message if they generate DPLMSG_GETPROPERTY messages.

Messages returned by the IDirectPlayLobby2::ReceiveLobbyMessage method
that have a dwFlags parameter set to DPLMSG_SYSTEM are system messages.
All system messages begin with a double-word value specified by dwType. You
can cast the buffer returned by the IDirectPlayLobby2::ReceiveLobbyMessage
method to a generic message (DPLMSG_GENERIC) and switch on the dwType
element, which will have a value equal to one of the messages with the DPLSYS_
prefix.

The following list shows the possible values of the dwType data member, and the
message structure and message cause associated with each value.

Value of dwType Message structure Cause

DPLSYS_APPTERMINATED DPLMSG_GENERIC The application has terminated.

DPLSYS_CONNECTIONSETTINGSREAD DPLMSG_GENERIC The application has read the
connection settings.

DPLSYS_DPLAYCONNECTFAILED DPLMSG_GENERIC The application failed to connect to
the DirectPlay session.

DPLSYS_DPLAYCONNECTSUCCEEDED DPLMSG_GENERIC The application successfully
connected to the DirectPlay
session.

DPLSYS_GETPROPERTY DPLMSG_GETPROPERTY The application is requesting a
property from the lobby.

DPLSYS_GETPROPERTYRESPONSE DPLMSG_GETPROPERTYRESPONSE The lobby is responding to a prior
DPLMSG_GETPROPERTY
message.

DPLSYS_SETPROPERTY DPLMSG_SETPROPERTY The application is setting a
property on the lobby.

DPLSYS_SETPROPERTYRESPONSE DPLMSG_SETPROPERTYRESPONSE The lobby is responding to a prior
DPLMSG_SETPROPERTY
message.

DirectPlay Address (Optional)
A DirectPlay Address is a data format that DirectPlay uses to pass addressing
information between lobby servers, applications, DirectPlay, and service
providers. The format is flexible enough to hold any number of variable-length
data fields that make up a network address. It is not necessary to understand
DirectPlay Addresses in order to use DirectPlay. In fact, it is possible to
successfully write a DirectPlay application without understanding DirectPlay
Addresses at all.

It is only necessary to learn about DirectPlay Addresses if you want to do the
following things.

· Override the standard service provider dialog boxes. You need to create a
DirectPlay Address that specifies which service provider to use and contains all
the information the service provider needs to establish a connection. You then
pass the DirectPlay Address to the IDirectPlay3::InitializeConnection method.

· Write a lobby client that will launch an external DirectPlay application. The lobby
client needs to create a DirectPlay Address that specifies which service provider to
use and contains all the information the service provider needs to establish a
connection and automatically connect the client to a session. You need to create a
DirectPlay Address of the session to be joined and put it in the
DPLCONNECTION structure before calling the
IDirectPlayLobby2::RunApplication method.

A DirectPlay Address is a sequence of variable-length data chunks tagged with a
GUID that supply all the address information needed by DirectPlay. Examples are
the network address of a server, the network address of a player, the email name
of a player, or the network address of a session.

DirectPlay Address Data Types
Microsoft has predefined the following general data types for each data chunk.
Based on the data type, the data must be cast to the appropriate type or structure
to interpret the data.

GUID Type of data.

DPAID_ComPort A DPCOMPORTADDRESS structure that contains all the
settings for the COM port. The serial connection service
provider will use this information to configure the serial
port.

DPAID_INet A null-terminated ANSI string (LPSTR) containing an IP
address ("137.55.100.173") or a domain net
("gameworld.com"). The length in bytes must include the
terminator.

A blank address is a string that contains only the ANSI
terminator (0x00) and has a length of 1 byte. If a blank

Chapter 4 DirectPlay 35

address is supplied, the Internet TCP/IP Connection service
provider will use this information to enumerate sessions on
the specified network address or broadcast on the subnet.

DPAID_INetW A null-terminated Unicode string (LPWSTR) containing an
IP address ("137.55.100.173") or a domain net
("gameworld.com"). The length in bytes must include the
terminator.

A blank address is a string that contains only the Unicode
terminator (0x0000) and has a length of 2 bytes. If a blank
address is supplied, the Internet TCP/IP Connection service
provider will use this information to enumerate sessions on
the specified network address or broadcast on the subnet.

DPAID_Modem A variable-length null-terminated ANSI string (LPSTR)
specifying which installed modem to use. The length in
bytes must include the terminator. The modem service
provider will use this modem without displaying a dialog
box asking the user which modem to use. Use the
IDirectPlay3::GetPlayerAddress method to determine
which modems are available.

DPAID_ModemW A variable-length null-terminated Unicode string
(LPWSTR) specifying which installed modem to use. The
length in bytes must include the terminator. The modem
service provider will use this modem without displaying a
dialog box asking the user which modem to use. Use the
IDirectPlay3::GetPlayerAddress method to determine
which modems are available.

DPAID_Phone A variable-length null-terminated ANSI string (LPSTR)
containing a phone number. The length in bytes must
include the terminator. The modem service provider will
call this phone number on the
IDirectPlay3::EnumSessions method. If no modem is
specified, the first modem will be used.

DPAID_PhoneW A variable-length null-terminated Unicode string
(LPWSTR) containing a phone number. The length in bytes
must include the terminator. The modem service provider
will call this phone number on the
IDirectPlay3::EnumSessions method. If no modem is
specified, the first modem will be used.

DPAID_ServiceProvider The 16-byte GUID that specifies the service provider this
DirectPlay Address applies to.

Using DirectPlay Addresses
You can use a DirectPlay Address to encapsulate all the information necessary to
initialize a DirectPlay object. At a minimum, this is the GUID of a DirectPlay
provider, but can also include the network address of an application or lobby
server and even a specific session instance GUID.

A DirectPlay Address can be used to supply enough information to DirectPlay
(and the DirectPlay provider) when it is initialized so that no dialog boxes appear
later during the process of establishing a session or connecting to a session.

The DirectPlay Addresses returned by EnumConnections are simply registered
DirectPlay providers that the user can choose from. When one of these is
initialized, dialog boxes can appear asking the user for more information.

The application can create a DirectPlay Address directly using the
IDirectPlayLobby2::CreateAddress and
IDirectPlayLobby2::CreateCompoundAddress methods on the
IDirectPlayLobby2 interface and pass the connection to the
IDirectPlay3::InitializeConnection method to initialize the DirectPlay object. If
enough valid information is supplied, then no DirectPlay dialog boxes will
appear.

Examples of Using DirectPlay Addresses
This topic contains examples of DirectPlay Addresses and the data they contain
for different connection types.

A DirectPlay Address describing an IPX connection

Initializing this connection will bind the DirectPlay object to the IPX service
provider.

guidDataType dwDataSize Data

DPAID_ServiceProvider 16 {685BC400-9D2C-11cf-A9CD-00AA006886E3}

A DirectPlay Address describing a modem connection

Initializing this connection will bind DirectPlay to the modem service provider
and store the phone number. A subsequent call the IDirectPlay3::EnumSessions
will dial the number without asking the user for a phone number.

guidDataType dwDataSize Data

DPAID_ServiceProvider 16 {44EAA760-CB68-11cf-9C4E-00A0C905425E}

DPAID_Phone 9 (including NULL
terminator)

"555-8237"

A DirectPlay Address describing a TCP/IP connection

Initializing this connection will bind DirectPlay to the TCP/IP service provider
and store the IP address. A subsequent call IDirectPlay3::EnumSessions will
enumerate sessions on this server without asking the user for an IP address.

guidDataType dwDataSize Data

DPAID_ServiceProvider 16 {36E95EE0-8577-11cf-960C-0080C7534E82}

Chapter 4 DirectPlay 37

DPAID_INet 10 (including NULL
terminator)

"127.0.0.1"

Migrating from Previous Versions of
DirectPlay
The DirectPlay version 5 API is fully compatible with applications written for any
previous version of DirectPlay. That is, you can recompile your application by
using DirectPlay on the DirectX 5 SDK without making any changes to the code.
DirectPlay supplied with the DirectX 5 SDK supports all the APIs and behavior
of earlier DirectPlay versions.

For specific information, see:

· Migrating from DirectPlay 3

· Migrating from DirectPlay 2 or Earlier

Migrating from DirectPlay 3
If you are migrating to DirectPlay version 5 from DirectPlay version 3, you do
not have to make any changes. However, you should upgrade your application to
use the new IDirectPlay3 or IDirectPlay3A interfaces.

For a list of new features in version 5 of DirectPlay, see What's New in
DirectPlay 5.

Some system messages have changed for DirectPlay 5, with new data members
added to the end. Applications that need to be backward compatible with older
run times should either:

· compile with the DirectX 3 header files and libraries

· not reference new data members

· test with both the DirectX 3 and the DirectX 5 runtime

The system message structures that have new members for DirectPlay 5 are:

Structure New Members

DPMSG_CREATEPLAYERORGROUP DPID dpIdParent

DWORD dwFlags

DPMSG_DESTROYPLAYERORGROUP DPNAME dpnName

DPID dpIdParent

DWORD dwFlags

Migrating from DirectPlay 2 or Earlier
The names of the DirectPlay DLLs in version 3 and later are different from those
in previous DirectPlay versions. Applications compiled with DirectX 2 or earlier
do not use the new DirectPlay DLLs. To use the new DLLs, the application must
be recompiled and linked to the Dplayx.lib import library.

It is also recommended that you add the code necessary to make the application
lobby aware. This means that an external lobby or matchmaking program can
start the application and supply it with all the information necessary to connect to
a session. The application need not ask the user to decide on a service provider,
select a session, or supply any other information (such as a telephone number or
network address).

In addition, several other new features were added in the DirectPlay version 5
API, including the following:

· Internet support.

· Direct serial connection.

· More stability and robustness.

· Support for Unicode to better support localization.

· Host migration. If the host of a session drops out of the session, host
responsibilities are passed on to another player. In DirectPlay version 2, if the host
(name server) left a session, no new players could be created.

· Ability of the application to communicate with the lobby program to update
games status for spectators, as well as receive information about initial conditions.

· Ability to host more than one application session on a computer.

· Ability to determine when a remote computer loses its connection and to generate
appropriate messages.

There are other features in DirectPlay 5 that you can use to reduce the amount of
communication-management code in your application, including the following:

· Ability to associate application-specific data with a DirectPlay group ID or player
ID. This allows the application to leverage the player and group list-management
code that is already part of DirectPlay. Local data is data that the local application
uses directly, such as a bitmap that represents a player. Local data is not
propagated over the network. Remote data is associated with the player or group.
DirectPlay propagates any changes to remote data to all other applications in the
session. Remote data must be shared among all the applications in a session, such
as a player's position, orientation, and velocity. By using DirectPlay functions to
propagate this data, the application need not manage it by using a series of
methods that send and receive information.

· Ability for application to associate a name with a group. This is useful for team
play.

Chapter 4 DirectPlay 39

Some of the new features added to DirectPlay 5 are not directly related to
applications, including the following:

· APIs that the lobby client software uses to start and connect a lobby-able
DirectPlay application. Also included are APIs that allow an application and the
lobby to exchange information during a session.

· Service Provider development kit that includes documentation and sample code
for creating your own service provider.

Migrating to the IDirectPlay3 Interface
To migrate an application created with DirectPlay version 2 or earlier, carry out
the following steps:

1 Find out if your application was launched from a lobby client. For more
information, see Step 2: Retrieving the Connection Settings.

2 If your application is enumerating service providers, use the EnumConnections
method to determine if a service provider is available. If so, call the
InitializeConnection method on the service provider. If InitializeConnection
returns an error, the service provider cannot run on the system, and you should not
add that service provider to the list to show to the user. If the call succeeds, use the
Release method to release the DirectPlay object and add the service provider to
the list.

3 Call the QueryInterface method on the IDirectPlay interface to obtain an
IDirectPlay3 (Unicode) or IDirectPlay3A (ANSI) interface. The only difference
between the two interfaces is how strings in the structures are read and written.
For the Unicode interface, Unicode strings are read and written to the member of
the structure that is of the LPWSTR type. For the ANSI interface, ANSI strings
are read and written to the member of the structure that is of the LPSTR type.

4 Make all the changes necessary to use the new structures in existing APIs. For
example, instead of the following:

lpDP->SetPlayerName(pidPlayer, lpszFriendlyName, lpszFormalName)

where lpDP is an IDirectPlay interface, use the following:

DPNAME PlayerName, *lpPlayerName;
PlayerName.dwSize = sizeof(DPNAME);
lpPlayerName = &PlayerName;

lpPayerName->lpszShortNameA = lpszFriendlyName;
lpPlayerName->lpszLongNameA = lpszFormalName;
lpDP3A->SetPlayerName(pidPlayer, lpPlayerName, 0)

where lpDP3A is an IDirectPlay3A interface. If the application is using Unicode
strings (and therefore instantiates an IDirectPlay3 interface), use the following:

lpPayerName->lpszShortName = lpwszFriendlyName;
lpPlayerName->lpszLongName = lpwszFormalName;

lpDP3->SetPlayerName(pidPlayer, lpPlayerName, 0)

where lpDP3 is an IDirectPlay3 interface.

5 Update the following system messages:

· DPSYS_ADDPLAYER has been replaced by
DPSYS_CREATEPLAYERORGROUP.

· DPSYS_DELETEPLAYER and DPSYS_DELETEGROUP have been
combined in a single DPSYS_DESTROYPLAYERORGROUP message.

· DPSYS_DELETEPLAYERFROMGRP has been changed to
DPSYS_DELETEPLAYERFROMGROUP.

6 Update your application to generate a DPSYS_SETPLAYERORGROUPNAME
message when a player or group name changes, and a
DPSYS_SETPLAYERORGROUPDATA message when the player or group data
changes.

7 Update the DPSESSIONDESC structure to DPSESSIONDESC2, and add the
new members to the DPCAPS structure.

8 Update the callback functions for IDirectPlay3::EnumSessions,
IDirectPlay3::EnumGroups, IDirectPlay3::EnumGroupPlayers, and
IDirectPlay3::EnumPlayers.

9 Update the manner in which the hEvent parameter is supplied to the
IDirectPlay3::CreatePlayer method. In previous versions of DirectPlay, this
parameter was lpEvent. DirectPlay does not return an event; instead, the
application must create it. This allows the application the flexibility of creating
one event for all the players.

10 Set the DPSESSION_KEEPALIVE flag in the DPSESSIONDESC2 structure if
the application needs DirectPlay to detect when players drop out of the game
abnormally.

11 Update your application to create sessions with the
DPSESSION_MIGRATEHOST flag. This enables another computer to become
the host if the current host drops out of the session. If your application has any
special code that only the host runs, then your application should set this flag
when it creates a session. It should also add support for the DPSYS_HOST system
message. For a list of system messages, see Using System Messages.

12 Become familiar with the new methods of the IDirectPlay3 interface and use
them in your application. Pay particular attention to the
IDirectPlay3::SetPlayerData and IDirectPlay3::GetPlayerData methods. You
might be able to substitute the code where you broadcast player state information
to all the other players by using the IDirectPlay3::Send and
IDirectPlay3::Receive methods.

Chapter 4 DirectPlay 41

DirectPlay Tools and Samples
The following samples can be examined for examples of how to use DirectPlay.
These DirectPlay samples are included on the DirectX 5 CD. The Control Panel
tool can be used to find out about DirectPlay applications.

DirectX Control Panel Tool

· Found in Control Panel. Double-click to open the DirectX Properties dialog box.

· The DirectPlay tab displays all the registered DirectPlay service providers and
applications.

· Open the DirectX Properties dialog box before starting a DirectPlay application to
see on-the-fly statistics about DirectPlay communications such as bytes/second
and messages/second.

SDK/SAMPLES/BELLHOP

· A lobby client program the uses the IDirectPlay3 interface to communicate with a
lobby server.

· Uses the LSERVER test lobby server so that a real lobby client/server
environment can be set up.

· BELLHOP can be used to test external lobby support in your application.

· LSERVER can be used as a test server to write your own lobby client or integrate
a lobby client into your application.

SDK/SAMPLES/DPCHAT

· A simple Windows-based chat program that uses IDirectPlay3

· Uses IDirectPlayLobby to make it lobby-able

SDK/SAMPLES/DPLAUNCH

· A stand-alone application that demonstrates how a DirectPlay 5 application can be
launched from an external source using the IDirectPlayLobby2 interface

· Can also be used to test the lobby support in your application

SDK/SAMPLES/DPSLOTS

· A DirectPlay client/server application that uses security.

· The server controls all the slot machines and tracks how much money each player
has.

· The client securely logs in to the server.

SDK/SAMPLES/DUEL

· Multiplayer game that uses the IDirectPlay interface

· Uses IDirectPlayLobby to make it lobby-able

SDK/SAMPLES/DXVIEW

· An application that shows all the available service providers and their capabilities.

· Shows all the registered lobby-aware applications installed on the system.

· Uses asynchronous EnumSessions to monitor the active sessions on the service
provider.

SDK/SAMPLES/OVERRIDE

· A simple demonstration of how to override the DirectPlay service provider
dialogs.

Security and Authentication
DirectPlay security allows an application running on a server to authenticate users
against a database of known users before allowing them to join a session. Once a
user has been authenticated, all communications between the client and server can
be done securely either by digitally signing messages (to verify the identity of the
sender) or by encrypting the messages.

The following diagram shows DirectPlay security architecture. (SSPI = Security
Support Provider Interface, CAPI = CryptoAPI, MS RSA Base CP = Microsoft
RSA Base Cryptographic Provider, NTLM = NT LAN Manager.)

User and Message Authentication

DirectPlay provides user and message authentication (digital signing) support
through the Windows Security Support Provider Interface (SSPI). This is a
standard interface that gives software access to various security packages under
the Windows Operating System. A security package is an implementation of a
protocol between a client and server that establishes the identity of the client and

Chapter 4 DirectPlay 43

provides other security services, such as digital signing. The default security
package that DirectPlay uses is called NTLM (Windows NT LAN Manager)
Security Support Provider.

This security package is based on the NTLM authentication protocol. NTLM is a
shared-secret, user challenge-response authentication protocol that supports pass-
through authentication to a domain controller in the server's domain or in a
domain trusted by the current domain's domain controller. This protocol provides
a high level of security, as passwords are never sent out on the network.
NTLMSSP ships with the Windows 95 and Windows NT operating systems.

A DirectPlay application can choose to use a different SSPI security package
when it creates a session by calling the SecureOpen method. For example, DPA
(Distributed Password Authentication) Security Support Provider is another
security package that organizations can use to provide membership services to a
large customer base (hundreds of thousands). This security package is available
through the Microsoft Commercial Internet Services (MCIS) Membership Server.

Message Privacy (encryption/decryption)

DirectPlay provides message encryption support through the Windows
Cryptography Application Programming Interface (CAPI). This is a standard
interface similar to SSPI that gives software access to various cryptographic
packages under the Windows Operating System. This architecture allows
DirectPlay applications to plug in cryptographic packages that provide the desired
level of encryption (40 bit, 128 bit, and so on) legally allowed in the locale of use.

The default CryptoAPI (CAPI) provider for DirectPlay cryptography services is
the Microsoft RSA Base Cryptographic Provider v. 1.0. The default CAPI
provider type is PROV_RSA_FULL. The default encryption algorithm is the
CALG_RC4 stream cipher. This provider is supplied by Microsoft and is included
with Internet Explorer for Windows 95, Windows 95 OSR-2 Update, and
Windows NT 4.0 operating system.

A DirectPlay application can choose to use a different Cryptographic provider
when it creates a session by using the SecureOpen method. Please note that
DirectPlay only supports stream ciphers.

For more information about SSPI, NTLM, DPA, MCIS, CAPI, and the RSA Base
Cryptographic Provider, see http://www.microsoft.com.

Secure Sessions

User authentication should not be confused with password protection of a session.
Authentication is used to verify that the user is allowed access to the server by
virtue of having been added to the membership database by the administrator of
the server. Only users that are part of the membership database are permitted to
join the session. A password can be added to a session, so that only those
members who know the password can join a particular session. Additionally,

authentication requires a server that supports authentication, while any computer
can put a password on a session.

For example, a server on the Internet might have a membership of a thousand
users. Anybody can enumerate the sessions that are available on the server but
only members will be able to join sessions on the server. Users who want only
their friends (who are members) to be able to join can put a password on their
session.

Once a secure server has been set up and an initial membership list has been
established, a secure DirectPlay session can be started on it. Creating a secure
DirectPlay session simply requires the server to create a session using
IDirectPlay3::Open or IDirectPlay3::SecureOpen and specify the
DPSESSION_SECURESERVER flag in the DPSESSIONDESC2 structure.

A DirectPlay application can choose to use alternate providers when it creates a
session by calling the SecureOpen method and specifying the providers to use in
the DPSECURITYDESC structure. For a different SSPI provider (for user and
message authentication), an application needs to specify the provider name in the
lpszSSPIProvider member of the DPSECURITYDESC structure. For a different
CryptoAPI provider (for message privacy), an application needs to specify the
provider name, provider type, and encryption algorithm in the lpszCAPIProvider,
dwCAPIProviderType, and dwEncryptionAlgorithm members respectively.

When a client enumerates this session, the DPSESSIONDESC2 structure
returned by IDirectPlay3::EnumSessions will have the
DPSESSION_SECURESERVER flag set. This tells the client that
authentication credentials will be required to join the session. If the client
attempts to join the session using IDirectPlay3::Open, the security package may
allow the user in if the user's credentials were already established through a
system logon (for example, through NT LAN Manager). Otherwise, a
DPERR_LOGONDENIED error is returned. The application must then collect
credentials from the user, put them in a DPCREDENTIALS structure, and try to
join the session again by calling SecureOpen, passing in the
DPCREDENTIALS structure. SecureOpen is recommended for security.

Within a secure session, all DirectPlay system messages are digitally signed to
verify the identity of the sender. Certain system messages that carry sensitive
information are encrypted. System messages that originate from one player and
need to be broadcast to all the other players in the session are first sent to the
server. The server then puts its signature on the message and forwards the
message to all the other computers in the session. Player to player messages are
not signed by default and are not routed through the server.

An application can choose to sign or encrypt specific player-to-player messages
using the DPSEND_SIGNED and DPSEND_ENCRYPTED flags in the
IDirectPlay3::Send method. Signed and encrypted player messages are routed

Chapter 4 DirectPlay 45

through the server and delivered as secure system messages. When a secure
message is received by a player, the message will contain flags indicating whether
the message came in signed or encrypted. Messages that don't pass the
verification are dropped.

DirectPlay Interface Overviews
DirectPlay is composed of objects and interfaces based on the component object
model (COM). COM is a foundation for an object-based system that focuses on
the reuse of interfaces, and it is the model at the heart of OLE programming. It is
also an interface specification from which any number of interfaces can be built.

New methods and functionality are exposed in COM through the use of new
interfaces that are sequentially numbered. The current DirectPlay interface is
called IDirectPlay3. The old interfaces, IDirectPlay and IDirectPlay2, still exist
for backward compatibility with applications written to those interfaces.

This section contains general information about the following DirectPlay COM
interfaces:

· Unicode vs. ANSI Interfaces

· IDirectPlay Interface

· IDirectPlay2 Interface

· IDirectPlay3 Interface

· IDirectPlayLobby Interface

· IDirectPlayLobby2 Interface

Unicode vs. ANSI Interfaces
DirectPlay supports both Unicode and ANSI strings by defining string pointers in
a structure as the union of a Unicode string pointer (LPWSTR) and an ANSI
string pointer (LPSTR). The two string pointers have different names. Typically,
the ANSI member ends with the letter "A". Depending on which IDirectPlay
interface is chosen (IDirectPlay3 for Unicode or IDirectPlay3A for ANSI), or
which IDirectPlayLobby2 interface is chosen (IDirectPlayLobby2 for Unicode
or IDirectPlayLobby2A for ANSI), the application should read and write the
appropriate strings from the structure and ignore the other one.

IDirectPlay Interface
The IDirectPlay COM interface remains part of DirectPlay version 5. It contains
the methods required to run applications that were written for the DirectX SDK
versions 1 and 2. Although you could use this interface to create new
applications, it is recommended that you use the newer DirectPlay interfaces,

IDirectPlay3 and IDirectPlay3A, to take advantage of their increased
functionality.

IDirectPlay2 Interface
The IDirectPlay2 COM interface remains part of DirectPlay version 5. It
contains the methods required to run applications that were written for the
DirectX SDK versions 3. Although you could use this interface to create new
applications, it is recommended that you use the newer DirectPlay interfaces,
IDirectPlay3 and IDirectPlay3A, to take advantage of their increased
functionality.

IDirectPlay3 Interface
This is the latest interface. IDirectPlay3 directly inherits from IDirectPlay2 so
any code written for IDirectPlay2 will work with IDirectPlay3 with no
modification.

The new methods in IDirectPlay3 are:

· AddGroupToGroup

· CreateGroupInGroup

· DeleteGroupFromGroup

· EnumConnections

· EnumGroupsInGroup

· GetGroupConnectionSettings

· GetGroupFlags

· GetGroupParent

· GetPlayerAccount

· GetPlayerFlags

· InitializeConnection

· SecureOpen

· SendChatMessage

· SetGroupConnectionSettings

· StartSession

IDirectPlayLobby Interface
The IDirectPlayLobby COM interface remains part of DirectPlay version 5. It
contains the methods required to run applications that were written for the
DirectX SDK versions 1 and 2. Although you could use this interface to create

Chapter 4 DirectPlay 47

new applications, it is recommended that you use the newer DirectPlay interface,
IDirectPlayLobby2, to take advantage of its increased functionality.

IDirectPlayLobby2 Interface
The IDirectPlayLobby2 interface lets game developers launch external
applications, enable communication between an application and a lobby client,
and manipulate DirectPlay Addresses.

IDirectPlayLobby2 supports all the methods of IDirectPlayLobby. See Building
Lobby-Aware Applications for information about detecting a launch by an
external lobby and registering lobby-aware applications. See DirectPlay Lobby
Overview for general information about lobby sessions.

The new method in IDirectPlayLobby2 is:

· CreateCompoundAddress

DirectPlay Tutorials
This section contains four tutorials that provide step-by-step instructions about
how to connect an application with or without a lobby, how to override service
provider dialog boxes, and how to create a self-refreshing session list.

The first tutorial demonstrates how to connect an application by using a
DirectPlay lobby. The second tutorial demonstrates how to connect an application
by using a dialog box that queries the user for connection information. You
should write your application so that it can start by using either method. The code
is available in the DPCHAT sample in the LOBBY.CPP and DIALOG.CPP files.

The third tutorial demonstrates the calls you need to supply the service provider
with all the information it needs so that it doesn't display dialog boxes to the user
requesting information.

The fourth tutorial demonstrates how to create a self-refreshing session list.

· Tutorial 1: Connecting by Using the Lobby (DPCHAT)

· Tutorial 2: Connecting by Using a Dialog Box (DPCHAT)

· Tutorial 3: Overriding the Service Provider Dialogs

· Tutorial 4: Creating Self-Refreshing Session Lists

The sample files in these tutorials are written in C++. If you are using a C
compiler, you must make the appropriate changes to the files for them to

successfully compile. At the very least, you must add the vtables and this pointers to
the interface methods. For more information, see .

Note

Tutorial 1: Connecting by Using the Lobby
An application written to use the IDirectPlayLobby2 interface can be connected
to a session without requiring the user to manually enter connection information
in a dialog box. To demonstrate how to create a lobbied application, the
DPCHAT sample performs the following steps:

· Step 1: Creating a DirectPlayLobby Object

· Step 2: Retrieving the Connection Settings

· Step 3: Configuring the Session Description

· Step 4: Connecting to a Session

· Step 5: Creating a Player

Step 1: Creating a DirectPlayLobby Object
To use a DirectPlay lobby, you first create an instance of a DirectPlayLobby
object by calling the DirectPlayLobbyCreate function. This function contains
five parameters. The first, third, and fourth parameters are always set to NULL
and are included for future expansion. The second parameter contains the address
of a pointer that identifies the location of the DirectPlayLobby object if it is
created. The fifth parameter is always set to 0, and is also included for future
expansion.

The following example shows one way to create a DirectPlayLobby object:

// Get an ANSI DirectPlay lobby interface.
hr = DirectPlayLobbyCreate(NULL, &lpDirectPlayLobbyA, NULL, NULL, 0);
if FAILED(hr)
 goto FAILURE;

Step 2: Retrieving the Connection Settings
After the DirectPlayLobby object has been created, use the
IDirectPlayLobby2::GetConnectionSettings method to retrieve the connection
settings returned from the lobby. If this method returns
DPERR_NOTLOBBIED, the lobby did not start this application and the user
will have to configure the connection manually. If any other error occurs, your
application should report an error that indicates that lobbying the application
failed.

The following example shows how to retrieve the connection settings:

// Retrieve the connection settings from the lobby.
// If this routine returns DPERR_NOTLOBBIED, then a lobby did not
// start this application and the user needs to configure the
// connection.

Chapter 4 DirectPlay 49

// Pass a NULL pointer to retrieve only the size of the
// connection settings
hr = lpDirectPlayLobbyA->GetConnectionSettings(0, NULL, &dwSize);
if (DPERR_BUFFERTOOSMALL != hr)
 goto FAILURE;

// Allocate memory for the connection settings.
lpConnectionSettings = (LPDPLCONNECTION) GlobalAllocPtr(GHND, dwSize);
 if (NULL == lpConnectionSettings)
 {
 hr = DPERR_OUTOFMEMORY;
 goto FAILURE;
 }

 // Retrieve the connection settings.
 hr = lpDirectPlayLobbyA->GetConnectionSettings(0,
 lpConnectionSettings, &dwSize);
 if FAILED(hr)
 goto FAILURE;

Step 3: Configuring the Session Description
You should examine the DPSESSIONDESC2 structure to ensure that all the
flags and properties that your application needs are set properly. If modifications
are necessary, store the modified connection settings by using the
IDirectPlayLobby2::SetConnectionSettings method.

The following example shows how to configure the session description and set
the connection settings:

// Before the game connects, it should configure the session
// description with any settings it needs.

// Set the flags and maximum players used by the game.
lpConnectionSettings->lpSessionDesc->dwFlags = DPSESSION_MIGRATEHOST |
 DPSESSION_KEEPALIVE;
lpConnectionSettings->lpSessionDesc->dwMaxPlayers = MAXPLAYERS;

// Store the updated connection settings.
hr = lpDirectPlayLobbyA->SetConnectionSettings(0, 0,
 lpConnectionSettings);
if FAILED(hr)
 goto FAILURE;

Step 4: Connecting to a Session
After the session description is properly configured, your application can use the
IDirectPlayLobby2::Connect method to start and connect itself to a session. If
this method returns DP_OK, you can create one or more players. If it returns

DPERR_NOTLOBBIED, the user will have to manually select a communication
medium for your application. (You can identify the service providers installed on
the system by using the DirectPlayEnumerate function.) If any other error value
is returned, your application should report an error that indicates that lobbying the
application failed.

The following example shows how to connect to a session:

// Connect to the session. Returns an ANSI IDirectPlay3A interface.
hr = lpDirectPlayLobbyA->Connect(0, &lpDirectPlay2A, NULL);
if FAILED(hr)
 goto FAILURE;
// Obtain an IDriectPlay3A interface
hr= lpDirectPlay2A->QueryInterface(IID_DirectPlay3A,
(LPVOID*)&lpDirectPlay3A);
if FAILED(hr)
 goto FAILURE;

Step 5: Creating a Player
If the application was successfully started by using the
IDirectPlayLobby2::Connect method, it can now create one or more players. It
can use the IDirectPlay3::CreatePlayer method to create a player with the name
specified in the DPNAME structure (which was filled in by the
IDirectPlayLobby2::GetConnectionSettings method).

The following example shows how to create a player:

// create a player with the name returned in the connection settings
hr = lpDirectPlay3A->CreatePlayer(&dpidPlayer,
 lpConnectionSettings->lpPlayerName,
 lpDPInfo->hPlayerEvent, NULL, 0, 0);
if FAILED(hr)
 goto FAILURE;

Now your application is connected and you are ready to play.

Tutorial 2: Connecting by Using a Dialog
Box
If a lobby did not start your application, you should include code that allows the
user to manually enter the connection information. To demonstrate how to
manually connect to the session and create one or more players, the DPCHAT
sample performs the following steps:

· Step 1: Creating the DirectPlay Object

· Step 2: Enumerating and Initializing the Service Providers

· Step 3: Joining a Session

Chapter 4 DirectPlay 51

· Step 4: Creating a Session

· Step 5: Creating a Player

Step 1: Creating the DirectPlay Object
Before any methods can be called, the application must create an interface to a
DirectPlay object.

The following example shows how the create the IDirectPlay3A interface:

HRESULT CreateDirectPlayInterface(LPDIRECTPLAY3A *lplpDirectPlay3A)
{
 HRESULT hr;
 LPDIRECTPLAY3A lpDirectPlay3A = NULL;

 // Create an IDirectPlay3 interface
 hr = CoCreateInstance(CLSID_DirectPlay, NULL, CLSCTX_INPROC_SERVER,
 IID_IDirectPlay3A, (LPVOID*)&lpDirectPlay3A);

 // Return interface created
 *lplpDirectPlay3A = lpDirectPlay3A;

 return (hr);
}

Step 2: Enumerating and Initializing the Service
Providers
The next step in creating a manual connection is to request that the user select a
communication medium for the application. Your application can identify the
service providers installed on a personal computer by using the
EnumConnections method.

The following example shows how to enumerate the service providers:

lpDirectPlay3A->EnumConnections(&DPCHAT_GUID,
DirectPlayEnumConnectionsCallback, hWnd, 0);

The second parameter in the EnumConnections method is a callback that
enumerates service providers registered with DirectPlay. The following example
shows one possible way of implementing this callback function:

BOOL FAR PASCAL DirectPlayEnumConnectionsCallback(
 LPCGUID lpguidSP, LPVOID lpConnection, DWORD dwConnectionSize,
 LPCDPNAME lpName, DWORD dwFlags, LPVOID lpContext)
{
 HWND hWnd = (HWND) lpContext;
 LRESULT iIndex;
 LPVOID lpConnectionBuffer;

 // Store service provider name in combo box
 iIndex = SendDlgItemMessage(hWnd, IDC_SPCOMBO, CB_ADDSTRING, 0,
 (LPARAM) lpName->lpszShortNameA);
 if (iIndex == CB_ERR)
 goto FAILURE;

 // make space for connection
 lpConnectionBuffer = GlobalAllocPtr(GHND, dwConnectionSize);
 if (lpConnectionBuffer == NULL)
 goto FAILURE;

 // Store pointer to connection in combo box
 memcpy(lpConnectionBuffer, lpConnection, dwConnectionSize);
 SendDlgItemMessage(hWnd, IDC_SPCOMBO, CB_SETITEMDATA, (WPARAM) iIndex,
 (LPARAM) lpConnectionBuffer);

FAILURE:
 return (TRUE);
}

Once the user selects which connection to use, the DirectPlay object must be
initialized with the connection buffer associated with it.

hr = lpDirectPlay3A->InitializeConnection(lpConnection, 0);

Step 3: Joining a Session
If the user wants to join an existing session, enumerate the available sessions by
using the IDirectPlay3::EnumSessions method, present the choices to the user,
and then connect to that session by using the IDirectPlay3::Open method,
specifying the DPOPEN_JOIN flag. The service provider might display a dialog
box requesting some information from the user before it can enumerate the
sessions.

See Tutorial 4 for details on the asynchronous EnumSessions functionality.

The following example shows how to enumerate the available sessions:

// Search for this kind of session.
ZeroMemory(&sessionDesc, sizeof(DPSESSIONDESC2));
sessionDesc.dwSize = sizeof(DPSESSIONDESC2);
sessionDesc.guidApplication = DPCHAT_GUID;

hr = lpDirectPlay3A->EnumSessions(&sessionDesc, 0, EnumSessionsCallback,
 hWnd, DPENUMSESSIONS_AVAILABLE);
if FAILED(hr)
 goto FAILURE;

Chapter 4 DirectPlay 53

In the previous example, the third parameter in the
IDirectPlay3A::EnumSessions method is a callback that enumerates the
available sessions. The following example shows one way to implement this
callback function:

BOOL FAR PASCAL EnumSessionsCallback(
 LPCDPSESSIONDESC2 lpSessionDesc, LPDWORD lpdwTimeOut,
 DWORD dwFlags, LPVOID lpContext)
{
HWND hWnd = lpContext;
LPGUID lpGuid;
LONG iIndex;

// Determine if the enumeration has timed out.
if (dwFlags & DPESC_TIMEDOUT)
 return (FALSE); // Do not try again

// Store the session name in the list.
iIndex = SendDlgItemMessage(hWnd, IDC_SESSIONLIST, LB_ADDSTRING,
 (WPARAM) 0, (LPARAM) lpSessionDesc->lpszSessionNameA);
if (iIndex == CB_ERR)
 goto FAILURE;

// Make space for the session instance GUID.
lpGuid = (LPGUID) GlobalAllocPtr(GHND, sizeof(GUID));
if (lpGuid == NULL)
 goto FAILURE;

// Store the pointer to the GUID in the list.
*lpGuid = lpSessionDesc->guidInstance;
SendDlgItemMessage(hWnd, IDC_SESSIONLIST, LB_SETITEMDATA,
 (WPARAM) iIndex, (LPARAM) lpGuid);

FAILURE:
 return (TRUE);
}

After the user has selected a session, your application can allow the user to join an
existing session. The following example shows how to join an existing session:

// Join an existing session.
ZeroMemory(&sessionDesc, sizeof(DPSESSIONDESC2));
sessionDesc.dwSize = sizeof(DPSESSIONDESC2);
sessionDesc.guidInstance = *lpguidSessionInstance;

hr = lpDirectPlay3A->Open(&sessionDesc, DPOPEN_JOIN);
if FAILED(hr)
 goto OPEN_FAILURE;

Step 4: Creating a Session
If the user wants to create a new session, your application can create it by using
the IDirectPlay3::Open method and specifying the DPOPEN_CREATE flag.
Again, the service provider might display a dialog box requesting information
from the user before it can create the session.

The following example shows how to create a new session:

// Host a new session.
ZeroMemory(&sessionDesc, sizeof(DPSESSIONDESC2));
sessionDesc.dwSize = sizeof(DPSESSIONDESC2);
sessionDesc.dwFlags = DPSESSION_MIGRATEHOST | DPSESSION_KEEPALIVE;
sessionDesc.guidApplication = DPCHAT_GUID;
sessionDesc.dwMaxPlayers = MAXPLAYERS;
sessionDesc.lpszSessionNameA = lpszSessionName;

hr = lpDirectPlay3A->Open(&sessionDesc, DPOPEN_CREATE);
if FAILED(hr)
 goto OPEN_FAILURE;

Step 5: Creating a Player
After a session has been created or joined, your application can create one or
more players by using the IDirectPlay3::CreatePlayer method. The following
example shows one way to create a player:

// Fill out the name structure.
ZeroMemory(&dpName, sizeof(DPNAME));
dpName.dwSize = sizeof(DPNAME);
dpName.lpszShortNameA = lpszPlayerName;
dpName.lpszLongNameA = NULL;

// Create a player with this name.
hr = lpDirectPlay3A->CreatePlayer(&dpidPlayer, &dpName,
 lpDPInfo->hPlayerEvent, NULL, 0, 0);
if FAILED(hr)
 goto CREATEPLAYER_FAILURE;

Your application can determine a player's communication capabilities by using
the IDirectPlay3::GetCaps and IDirectPlay3::GetPlayerCaps methods. Your
application can find other players by using the IDirectPlay3::EnumPlayers
method.

Now your application is connected and you are ready to play.

Chapter 4 DirectPlay 55

Tutorial 3: Overriding the Service Provider
Dialogs
DirectPlay now gives applications the ability to suppress the standard service
provider dialogs. Below is a brief outline of how this is to be done. A code
example can be found in the OVERRIDE sample application.

It is generally not possible to suppress all service provider dialogs. The standard
TCP/IP, modem, and serial service provider dialogs can be suppressed (IPX has
no dialog box). However, there is the possibility that third party service providers
might require fairly complex information from the user which cannot be
overridden in any general way. The solution is to simply allow these dialog boxes
to appear over your application user interface. If the application is a DirectDraw
full-screen application, be sure to turn off page flipping before calling
IDirectPlay3::EnumSessions or IDirectPlay3::Open to create a session.

Another way to suppress service provider dialog boxes is to make your
application lobby-aware. Most third party service providers will also have a lobby
from which to launch games, and games launched from a lobby do not display a
connection dialog box.

An application first calls IDirectPlay3::EnumConnections to see what
connections are available, presents the list to the user, and allows the user to
select one. Once the user has selected one, the application can attempt to override
the dialog box before calling IDirectPlay3::EnumSessions or
IDirectPlay3::Open.

These are the steps you should follow to suppress service provider dialog boxes:

1 Examine the service provider GUID of the selected service provider to see if it
matches one of the known service providers that the application knows how to
override. If the service provider GUID is unknown then skip the remaining steps
and be prepared to allow a dialog box to appear.

2 Display the appropriate user interface to collect the information needed from the
user for that specific service provider. IPX requires no information. TCP/IP
requires an IP address for EnumSessions (DPAID_Inet or DPAID_InetW) but
requires nothing to create a session using Open. Modem-to-modem requires the
user to select a modem (DPAID_Modem or DPAID_ModemW), and also needs a
phone number (DPAID_Phone or DPAID_PhoneW) when calling EnumSessions.
Serial link needs the DPCOMPORTADDRESS structure (DPAID_ComPort)
filled in to configure the COM port for both EnumSessions and Open.

3 Build a DirectPlay Address using the
IDirectPlayLobby2::CreateCompoundAddress method. The address elements
that must be passed in are the service provider GUID (DPAID_ServiceProvider)
and the individual address components for the selected service provider.

4 Initialize the DirectPlay object by calling InitializeConnection with the
DirectPlay Address.

5 Call EnumSessions with the DPENUMSESSIONS_RETURNSTATUS flag. This
will prevent any status dialog boxes from appearing and, if the connection cannot
be made immediately, EnumSessions will return with a DPERR_CONNECTING
error. Your application must periodically call EnumSessions until DP_OK is
returned (meaning the enumeration was successful) or some other error is returned
(meaning it failed).

6 If a session is to be created using the Open method with DPOPEN_CREATE,
specify the DPOPEN_RETURNSTATUS flag as well. Like
DPENUMSESSIONS_RETURNSTATUS, this will suppress status dialog boxes
and return DPERR_CONNECTING until the function is complete.

In some cases, the application will need to query the service provider at
runtime to obtain a list of valid choices for a particular DirectPlay Address

element. For example, to obtain a list of the modems installed in the system. The
application must create a separate DirectPlay object, initialize the modem service
provider and then call IDirectPlay3::GetPlayerAddress with a DPID of zero to
obtain a DirectPlay Address that will contain the list of modems. After releasing the
DirectPlay object, the application must parse the address using
IDirectPlayLobby2::EnumAddress and extract the modem list to present to the
user.

Tutorial 4: Creating Self-Refreshing
Session Lists
IDirectPlay3::EnumSessions can now be called asynchronously. This gives an
application the ability to maintain a self-refreshing session list. A code example
can be found in the DUEL and DXVIEW sample applications.

The steps you need to follow to create a self-refreshing session list are:

1 Call IDirectPlay3::EnumSessions with the DPENUMSESSIONS_ASYNC flag
and a time-out of zero (which will use the service provider default). The method
will not enumerate any sessions and will return immediately. However, DirectPlay
is enumerating sessions in the background.

2 Display the user interface in which all the sessions will appear. Set a timer to go
off at whatever interval you want to refresh your session list. The application can
find out what the default time-out interval of the enumeration is by calling
IDirectPlay3::GetCaps.

3 Each time the timer goes off, call EnumSessions to obtain the current session list.
This is a complete active session list with stale sessions deleted, new sessions
added, and existing sessions updated. Delete all the items from the list before

Note:

Chapter 4 DirectPlay 57

calling EnumSessions and add the sessions back to the list in the
EnumSessionsCallback2 function.

DirectPlay Reference

Functions

DirectPlayCreate
This function is obsolete and remains for compatibility with applications written
using DirectX 3. It is recommended that applications create the desired DirectPlay
interface directly using CoCreateInstance. By using CoCreateInstance you can
obtain an IDirectPlay3 interface directly rather than getting an IDirectPlay
interface, having to use QueryInterface to access an IDirectPlay3 interface, and
releasing the IDirectPlay interface.

Creates a new DirectPlay object and obtains an IDirectPlay interface pointer. If
the application supplies GUID_NULL for the lpGUIDSP parameter, this function
creates a DirectPlay object but does not initialize a service provider. The
application can then call the IDirectPlay3::InitializeConnection method to
initialize the service provider or lobby provider.

The application can supply a service provider GUID (see DirectPlayEnumerate)
to indicate which service provider to bind.

In order to use the latest DirectPlay functionality, the application must obtain an
IDirectPlay3 or IDirectPlay3A interface pointer using the QueryInterface
method.

HRESULT WINAPI DirectPlayCreate(
LPGUID lpGUIDSP,
LPDIRECTPLAY FAR *lplpDP,
IUnknown *lpUnk
);

lpGUIDSP
Pointer to the GUID of the service provider that the DirectPlay object should be
initialized with. Pass in a pointer to GUID_NULL to create an uninitialized
DirectPlay object.

Parameters

lplpDP
Pointer to an interface pointer to be initialized with a valid IDirectPlay interface.
The application will need to use the QueryInterface method to obtain an
IDirectPlay2, IDirectPlay3 (UNICODE strings) or IDirectPlay2A,
IDirectPlay3A (ANSI strings) interface.

lpUnk
Pointer to the containing IUnknown. This parameter is provided for future
compatibility with COM aggregation features. Presently, however, the
DirectPlayCreate function returns an error if this parameter is anything but
NULL.

Returns DP_OK if successful, or one of the following error values otherwise:

CLASS_E_NOAGGREGATION

DPERR_EXCEPTION

DPERR_INVALIDPARAMS

DPERR_UNAVAILABLE

DPERR_UNAVAILABLE is returned if a DirectPlay object could not be created.
DPERR_INVALIDPARAMS is returned if the GUID provided is invalid.

This function attempts to initialize a DirectPlay object and sets a pointer to it if
successful. Your application should call the DirectPlayEnumerate function
immediately before initialization to determine what types of service providers are
available (the DirectPlayEnumerate function fills in the lpGUIDSP parameter of
DirectPlayCreate).

This function returns a pointer to an IDirectPlay interface. The current interfaces
for DirectX 5 are IDirectPlay3 and IDirectPlay3A, which need to be obtained
through a call to the QueryInterface method on the IDirectPlay interface
returned by DirectPlayCreate.

IDirectPlay3::InitializeConnection, DirectPlayEnumerate

DirectPlayEnumerate
Enumerates the DirectPlay service providers installed on the system.

This function is obsolete and remains for compatibility with applications written
using DirectX 3. It will only enumerate service providers, not DirectPlay
Addresses (connections). It is recommended that applications use the
IDirectPlay3::EnumConnections method to enumerate all the connections
available to the application after creating an IDirectPlay3 interface.

Return Values

Remarks

See Also

Chapter 4 DirectPlay 59

This function will not enumerate service providers that have the Enumerate
value in the registry set to zero. For backward compatibility, this function will
only return simple service providers registered under the "Service Providers"
registry key.

HRESULT WINAPI DirectPlayEnumerate(
LPDPENUMDPCALLBACK lpEnumCallback,
LPVOID lpContext
);

lpEnumCallback
Pointer to a callback function that will be called with a description of each
DirectPlay service provider installed in the system. Depending on whether
UNICODE is defined or not, the prototype for the callback function will have the
service provider name lpSPName defined as a LPWSTR (for Unicode) or LPSTR
(for ANSI).

lpContext
Pointer to an application-defined structure that will be passed to the callback
function each time the function is called.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_EXCEPTION

DPERR_GENERIC

DPERR_INVALIDPARAMS

DPERR_INVALIDPARAMS is returned if an invalid enumeration callback was
supplied.

This function will enumerate service providers installed in the system even
though the system might not be capable of using those service providers. For
example, a TAPI service provider will be part of the enumeration even though the
system might not have a modem installed.

IDirectPlay3::EnumConnections, DirectPlayCreate

DirectPlayLobbyCreate
Creates an instance of a DirectPlayLobby object. This function attempts to
initialize a DirectPlayLobby object and set a pointer to it.

HRESULT WINAPI DirectPlayLobbyCreate(
LPGUID lpGUIDSP,
LPDIRECTPLAYLOBBY *lplpDPL,

Parameters

Return Values

Remarks

See Also

IUnknown *lpUnk,
LPVOID lpData,
DWORD dwDataSize
);

lpGUIDSP
Reserved for future use; must be set to NULL.

lplpDPL
Pointer to a pointer to be initialized with a valid IDirectPlayLobby interface. To
get an IDirectPlayLobby2 interface, use this function to get an
IDirectPlayLobby interface, then call:

 IDirectPlayLobby->QueryInterface(IID_IDirectPlayLobby2, (LPVOID*)
&lpDP2);

lpUnk
Pointer to the containing IUnknown interface. This parameter is provided for
future compatibility with COM aggregation features. Presently, however,
DirectPlayLobbyCreate returns an error if this parameter is anything but NULL.

lpData
Extra data needed to create the DirectPlayLobby object. This parameter must be
set to NULL.

dwDataSize
This parameter must be set to zero.

Returns DP_OK if successful, or one of the following error values otherwise:

CLASS_E_NOAGGREGATION

DPERR_INVALIDPARAMS

DPERR_OUTOFMEMORY

Callback Functions

EnumAddressCallback
Application-defined callback function for the
IDirectPlayLobby2::EnumAddress method.

BOOL FAR PASCAL EnumAddressCallback(
REFGUID guidDataType,
DWORD dwDataSize,
LPCVOID lpData,
LPVOID lpContext

Parameters

Return Values

Chapter 4 DirectPlay 61

);

guidDataType
Pointer to a globally unique identifier (GUID) indicating the type of this data
chunk. For example, this parameter might be &DPAID_Phone or &DPAID_INet.
(In C++, it is a reference to the GUID.)

dwDataSize
Size, in bytes, of the data chunk.

lpData
Pointer to the constant data.

lpContext
Context passed to the callback function.

Returns TRUE to continue the enumeration or FALSE to stop it.

The service provider should examine the GUID in the guidDataType parameter
and process or store the value specified in lpData. Unrecognized values in
guidDataType can be ignored.

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then
store the pointer to this new data. In this function, lpData is temporary.

EnumAddressTypeCallback
Application-defined callback function for the
IDirectPlayLobby2::EnumAddressTypes method.

BOOL FAR PASCAL EnumAddressTypeCallback(
REFGUID guidDataType,
LPVOID lpContext,
DWORD dwFlags
);

guidDataType
Pointer to a globally unique identifier (GUID) indicating the address type. (In C+
+, it is a reference to the GUID.) Predefined address types are DPAID_Phone,
DPAID_INet, and DPAID_ComPort. For more information about these address
types, see DirectPlay Address (Optional).

lpContext
Context passed to the callback function.

Parameters

Return Values

Remarks

Parameters

dwFlags
Reserved; do not use.

Returns TRUE to continue the enumeration or FALSE to stop it.

EnumConnectionsCallback
Application-defined callback function for the IDirectPlay3::EnumConnections
method.

BOOL FAR PASCAL EnumConnectionsCallback(
LPCGUID lpguidSP,
LPVOID lpConnection,
DWORD dwConnectionSize,
LPCDPNAME lpName,
DWORD dwFlags,
LPVOID lpContext
);

lpguidSP
The GUID of the DirectPlay service provider or lobby provider associated with
the connection. Use this GUID to uniquely identify the service or lobby provider,
rather than using the order in the enumeration or the name.

lpConnection
A read-only pointer to a buffer that contains the connection. This parameter is
passed to the IDirectPlay3::InitializeConnection method to initialize the
DirectPlay object. This buffer contains a DirectPlay Address.

dwConnectionSize
The size, in bytes, of the lpConnection buffer.

lpName
A read-only pointer to a DPNAME structure. The structure contains the short
name of the connection that should appear to the user.

If IDirectPlay3::EnumConnections was called on an ANSI interface, reference
the strings as ANSI. If EnumConnections was called on a Unicode interface,
reference the strings as Unicode.

dwFlags
Flags to indicate the type of connection. Not used at this time.

lpContext
Pointer to an application-defined context.

Returns TRUE to continue the enumeration or FALSE to stop it.

Return Values

Parameters

Return Values

Chapter 4 DirectPlay 63

The application must implement this function in order to use the
IDirectPlay3::EnumConnections method. It is called once for each connection
that is enumerated.

The application should allocate memory and copy each of the connections for
presentation to the user and for use in the IDirectPlay3::InitializeConnection
method.

IDirectPlay3::EnumConnections, IDirectPlay3::InitializeConnection, Using
DirectPlay Addresses

EnumDPCallback
Application-defined callback function for the DirectPlayEnumerate function.
Depending on whether UNICODE is defined or not, the prototype for the callback
function will have lpSPName defined as either the LPWSTR type (for Unicode)
or the LPSTR type (for ANSI).

BOOL FAR PASCAL EnumDPCallback(
LPGUID lpguidSP,
LPSTR/LPWSTR lpSPName,
DWORD dwMajorVersion,
DWORD dwMinorVersion,
LPVOID lpContext
);

lpguidSP
Pointer to the unique identifier of the DirectPlay service provider.

lpSPName
Pointer to a string containing the driver description. Depending on whether the
UNICODE symbol is defined or not, the parameter will be of the LPWSTR type
(Unicode) or the LPSTR type (ANSI).

dwMajorVersion and dwMinorVersion
Major and minor version numbers of the driver.

lpContext
Pointer to an application-defined context.

Returns TRUE to continue the enumeration or FALSE to stop it.

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then

Remarks

See Also

Parameters

Return Values

Remarks

store the pointer to this new data. In this function, lpGUIDSP and lpSPName are
temporary.

EnumLocalApplicationsCallback
Application-defined callback function for the
IDirectPlayLobby2::EnumLocalApplications method.

BOOL FAR PASCAL EnumLocalApplicationsCallback(
LPCDPLAPPINFO lpAppInfo,
LPVOID lpContext,
DWORD dwFlags
);

lpAppInfo
Pointer to a read-only DPLAPPINFO structure containing information about the
application being enumerated.

lpContext
Context passed from the IDirectPlayLobby2::EnumLocalApplications call.

dwFlags
Reserved; do not use.

Returns TRUE to continue the enumeration or FALSE to stop it.

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then
store the pointer to this new data. In this function, lpAppInfo is temporary. Also
note that the pointers inside the structure specified in the lpAppInfo parameter —
lpszAppNameA and lpszAppName — are also temporary.

EnumPlayersCallback2
Application-defined callback function. The application must implement this
function and pass a pointer to it in the IDirectPlay3::EnumGroups,
IDirectPlay3::EnumGroupPlayers, IDirectPlay3::EnumPlayers, and
IDirectPlay3::EnumGroupsInGroup methods. The callback is called once for
each player/group that is enumerated.

Parameters

Return Values

Remarks

Chapter 4 DirectPlay 65

BOOL FAR PASCAL EnumPlayersCallback2(
DPID dpId,
DWORD dwPlayerType,
LPCDPNAME lpName,
DWORD dwFlags,
LPVOID lpContext
);

dpId
The DPID of the player or group being enumerated.

dwPlayerType
Type of entity, either DPPLAYERTYPE_GROUP or
DPPLAYERTYPE_PLAYER.

lpName
Read only pointer to a DPNAME structure containing the name of the player or
group. This pointer is only valid for the duration of the callback function. Any
data that is to be saved for future reference must be copied to some application
owned memory.

dwFlags
Flags describing the group or player being enumerated.

DPENUMGROUPS_SHORTCUT — the group is a shortcut.

DPENUMGROUPS_STAGINGAREA — the group is a staging area.

DPENUMPLAYERS_GROUP — both players and groups are being enumerated.
This flag is returned only if it was specified in the enumeration method calling this
callback.

DPENUMPLAYERS_LOCAL — the player or group exists on a local computer.
This flag is returned only if it was specified in the enumeration method calling this
callback.

DPENUMPLAYERS_REMOTE — the player or group exists on a remote
computer. This flag is returned only if it was specified in the enumeration method
calling this callback.

DPENUMPLAYERS_SESSION — the player or group exists in the session
identified by lpguidInstance in the enumeration method. This flag is returned only
if it was specified in the enumeration method calling this callback.

DPENUMPLAYERS_SERVERPLAYER — the player is the server player in an
application/server session. Only one server player exists in each session.

DPENUMPLAYERS_SPECTATOR — the player is a spectator (applies to
players only).

lpContext
Pointer to an application-defined context.

Returns TRUE to continue the enumeration or FALSE to stop it.

Parameters

Return Values

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then
store the pointer to this new data.

DPNAME, IDirectPlay3::EnumGroups, IDirectPlay3::EnumPlayers,
IDirectPlay3::EnumGroupPlayers, IDirectPlay3::EnumGroupsInGroup

EnumSessionsCallback2
Application-defined callback function for the IDirectPlay3::EnumSessions
method.

BOOL FAR PASCAL EnumSessionsCallback2(
LPCDPSESSIONDESC2 lpThisSD,
LPDWORD lpdwTimeOut,
DWORD dwFlags,
LPVOID lpContext
);

lpThisSD
Pointer to a DPSESSIONDESC2 structure describing the enumerated session.
This parameter will be set to NULL if the enumeration has timed out.

lpdwTimeOut
Pointer to a variable containing the current time-out value. This parameter can be
reset when the DPESC_TIMEDOUT flag is returned if you want to wait longer
for sessions to reply.

dwFlags
Typically, this flag is set to zero.

DPESC_TIMEDOUT

The enumeration has timed out. Reset lpdwTimeOut and return TRUE to
continue, or FALSE to stop the enumeration.

lpContext
Pointer to an application-defined context.

Returns TRUE to continue the enumeration or FALSE to stop it.

The application must implement this function in order to use the
IDirectPlay3::EnumSessions method. This callback function will be called once
for each session that is enumerated. Once all the session are enumerated, the
callback function will be called one additional time with the
DPESC_TIMEDOUT flag.

Remarks

See Also

Parameters

Return Values

Remarks

Chapter 4 DirectPlay 67

Applications should look at the flags of the DPSESSIONDESC2 to determine
the nature of the session.

Any pointers returned in a callback function are temporary and are valid only in
the body of the callback function. If the application needs to save pointer
information, it must allocate memory to hold the data, copy the data, and then
store the pointer to this new data. In this function, lpThisSD is temporary. Also
note that the pointers inside the structure specified in the lpThisSD parameter —
lpszSessionName / lpszSessionNameA and lpszPassword / lpszPasswordA — are
also temporary.

IDirectPlay3
Applications use the methods of the IDirectPlay3 interface to create DirectPlay
objects and work with system-level variables. (The IDirectPlay3A interface is the
same as the IDirectPlay3 interface, except that IDirectPlay3A uses ANSI
characters, and IDirectPlay3 uses Unicode.) This section is a reference to the
methods of this interface.

The methods of the IDirectPlay3 interface can be organized into the following
groups:

Session Management Close

EnumConnections

EnumSessions

GetCaps

GetGroupConnectionSettings

GetSessionDesc

InitializeConnection

Open

SetGroupConnectionSettings

SetSessionDesc

StartSession

Player management CreatePlayer

DestroyPlayer

EnumPlayers

GetPlayerAddress

GetPlayerCaps

GetPlayerData

GetPlayerName

SetPlayerData

SetPlayerName

Message Management GetMessageCount

Receive

Send

SendChatMessage

Group management AddGroupToGroup

AddPlayerToGroup

CreateGroup

CreateGroupInGroup

DeleteGroupFromGroup

DeletePlayerFromGroup

DestroyGroup

EnumGroupPlayers

EnumGroups

EnumGroupsInGroup

GetGroupData

GetGroupName

SetGroupData

SetGroupName

Initialization Initialize

Security and Authentication SecureOpen

The IDirectPlay3 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

AddRef

QueryInterface

Release

Chapter 4 DirectPlay 69

IDirectPlay3::AddGroupToGroup
Adds a shortcut to a group to an already existing group. This allows the linked
group to be enumerated by the IDirectPlay3::EnumGroupsInGroup method.
To remove a group's shortcut from another group, call DeleteGroupFromGroup.

HRESULT AddGroupToGroup(
DPID idParentGroup,
DPID idGroup
);

idParentGroup
ID of the group to which the shortcut will be added. Can be any valid group ID.

idGroup
The group ID of the group whose shortcut will be added. Can be any valid group
ID.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_ACCESSDENIED

DPERR_INVALIDGROUP

This method can be used to place a group "inside" more than one group.

A DPMSG_ADDGROUPTOGROUP system message is generated to inform
players of this change.

IDirectPlay3::CreateGroupInGroup,
IDirectPlay3::DeleteGroupFromGroup,
IDirectPlay3::EnumGroupsInGroup, DPMSG_ADDGROUPTOGROUP

IDirectPlay3::AddPlayerToGroup
Add a player to an existing group. A player can be a member of multiple groups.
Groups cannot be added to other groups using this API (see
IDirectPlay3::AddGroupToGroup). An application can add any player to any
group (including players and groups that weren't created locally).

HRESULT AddPlayerToGroup(
DPID idGroup,
DPID idPlayer

Parameters

Return Values

Remarks

See Also

);

idGroup
Group ID of the group to be augmented.

idPlayer
Player ID of the player to be added to the group.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_CANTADDPLAYER

DPERR_INVALIDGROUP

DPERR_INVALIDPLAYER

DPERR_NOSESSIONS

This method returns DPERR_INVALIDPLAYER if the player DPID is not a
player id or if the id is not for a local player.

A DPMSG_ADDPLAYERTOGROUP system message will be generated and
sent to all the other players.

IDirectPlay3::CreateGroup, IDirectPlay3::DeletePlayerFromGroup,
DPMSG_ADDPLAYERTOGROUP

IDirectPlay3::Close
Closes a previously opened session. Any locally created groups will migrate to be
owned by the host of the session.

HRESULT Close();

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_NOSESSIONS

All locally created players will be destroyed and appropriate
DPMSG_DELETEPLAYERFROMGROUP and
DPMSG_DESTROYPLAYERORGROUP system messages will be sent to
other session participants.

IDirectPlay3::DestroyPlayer, DPMSG_DESTROYPLAYERORGROUP,
IDirectPlay3::Open

Parameters

Return Values

Remarks

See Also

Return Values

Remarks

See Also

Chapter 4 DirectPlay 71

IDirectPlay3::CreateGroup
Creates a group in the current session. A group is a logical collection of players or
other groups.

HRESULT CreateGroup(
LPDPID lpidGroup,
LPDPNAME lpGroupName,
LPVOID lpData,
DWORD dwDataSize,
DWORD dwFlags
);

lpidGroup
Pointer to a variable that will be filled with the DirectPlay group ID. This value is
defined by DirectPlay.

lpGroupName
Pointer to a DPNAME structure that holds the name of the group. NULL
indicates that the group has no initial name. The name in lpGroupName is
provided for human use only; it is not used internally and need not be unique.

lpData
Pointer to a block of application-defined remote data to associate initially with the
Group ID. NULL indicates that the group has no initial data. The data specified
here is assumed to be remote data that will be propagated to all the other
applications in the session as if IDirectPlay3::SetGroupData were called.

dwDataSize
Size, in bytes, of the data block that lpData points to.

dwFlags
Flag indicating what type of group to create. By default (dwFlags = 0), ownership
of the group will migrate to the host when the owner leaves the session, and the
group persists until it is explicitly destroyed.

DPGROUP_STAGINGAREA – the group is created as a staging area. A staging
area is used to marshal players together in order to launch a new session.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_CANTADDPLAYER

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

This method will generate a DPMSG_CREATEPLAYERORGROUP system
message that will be sent to all the other players. The application can use
IDirectPlay3::Send to send a message to all the players in a group by sending

Parameters

Return Values

Remarks

one message to the group ID. DirectPlay will either use multicast to send the
message (if the service provider supports it) or send individual messages to each
player in the group.

The group ID returned to the application should be used to identify the group for
message passing and data association. Player and group IDs assigned by
DirectPlay will always be unique within the session.

Groups created with CreateGroup are top-level groups in the session. They are
enumerated with IDirectPlay3::EnumGroups. In contrast, the
IDirectPlay3::CreateGroupInGroup method creates a group that is a sub-group
of a parent group.

Groups can also be used by the application for general organization. In a lobby
session, a staging area is used as the mechanism for collecting players for the
purpose of starting a new application session using IDirectPlay3::StartSession.

The player that creates a group is the default owner of it. Only the owner can
change group properties such as the name and remote data. If the owner leaves
the session, ownership is transferred to the host of the session.

Any player in the session can change the membership of the group or delete the
group.

Groups will persist in the session until they are explicitly destroyed.

DPNAME, DPMSG_CREATEPLAYERORGROUP,
IDirectPlay3::DestroyGroup, IDirectPlay3::EnumGroups,
IDirectPlay3::EnumGroupPlayers, IDirectPlay3::Send,
IDirectPlay3::SetGroupData, IDirectPlay3::SetGroupName,
IDirectPlay3::CreateGroupInGroup, IDirectPlay3::GetGroupFlags

IDirectPlay3::CreateGroupInGroup
Creates a group within an existing group. A group created within another group
can only be enumerated using the IDirectPlay3::EnumGroupsInGroup method.
A group created this way can be destroyed by calling the
IDirectPlay3::DestroyGroup method.

HRESULT CreateGroupInGroup(
DPID idParentGroup,
LPDPID lpidGroup,
LPDPNAME lpGroupName,
LPVOID lpData,
DWORD dwDataSize,

See Also

Chapter 4 DirectPlay 73

DWORD dwFlags
);

idParentGroup
The DPID of the group within which a group will be created. Must be an already
existing group.

lpidGroup
Pointer to the DPID that will be filled in with the DirectPlay group ID of the
created group.

lpGroupName
Pointer to a DPNAME structure that holds the name of the group to be created.
NULL indicates that the group has no initial name.

lpData
Pointer to a block of application-defined remote data to associate initially with the
group ID. NULL indicates that the group has no initial data. The data specified
here is assumed to be remote data that will be propagated to all the other
applications in the session as if the IDirectPlay3::SetGroupData method had
been called.

dwDataSize
Size, in bytes, of the data block that the lpData parameter points to.

dwFlags
Flag indicating what type of group to create. Default (dwFlags = 0) is a normal
group.

DPGROUP_STAGINGAREA – the group can be used to launch DirectPlay
sessions using the IDirectPlay3::StartSession method.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_CANTADDPLAYER

DPERR_INVALIDFLAGS

DPERR_INVALIDGROUP

DPERR_INVALIDPARAMS

This method returns DPERR_CANTADDPLAYER if the group could not be
created. It returns DPERR_INVALIDGROUP if the parent group ID is invalid.

A DPMSG_CREATEPLAYERORGROUP system message is generated to
inform players of this change.

IDirectPlay3::DestroyGroup, IDirectPlay3::EnumGroupsInGroup,
DPMSG_CREATEPLAYERORGROUP

Parameters

Return Values

Remarks

See Also

IDirectPlay3::CreatePlayer
Creates a local player for the current session.

HRESULT CreatePlayer(
LPDPID lpidPlayer,
LPDPNAME lpPlayerName,
HANDLE hEvent,
LPVOID lpData,
DWORD dwDataSize,
DWORD dwFlags
);

lpidPlayer
Pointer to a variable that will be filled with the DirectPlay player ID. This value is
defined by DirectPlay.

lpPlayerName
Pointer to a DPNAME structure that holds the name of the player. NULL
indicates that the player has no initial name information. The name in
lpPlayerName is provided for human use only. It is not used internally and need
not be unique.

hEvent
An event object created by the application that will be signaled by DirectPlay
when a message addressed to this player is received.

lpData
Pointer to a block of application-defined data to associate with the player ID.
NULL indicates that the player has no initial data. The data specified in this
parameter is assumed to be remote data that will be propagated to all the other
applications in the session, as if IDirectPlay3::SetPlayerData were called.

dwDataSize
Size, in bytes, of the data block that lpData points to.

dwFlags
Flags indicating what type of player this is. Default (dwFlags = 0) is a
nonspectator, nonserver player.

DPPLAYER_SERVERPLAYER – the player is a server player for client/server
communications. Only the host can create a server player. There can only be one
server player in a session. CreatePlayer will always return a player ID of
DPID_SERVERPLAYER if this flag is specified.

DPPLAYER_SPECTATOR – the player is created as a spectator. A spectator
player behaves exactly as a normal player except the player is flagged as a
spectator. The application can then limit what a spectator player can do. The

Parameters

Chapter 4 DirectPlay 75

behavior of a spectator player is completely defined by the application. DirectPlay
simply propagates this flag.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_CANTADDPLAYER

DPERR_CANTCREATEPLAYER

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

DPERR_NOCONNECTION

A single process can have multiple local players that communicate through a
DirectPlay object with other players on the same computer or players on remote
computers.

Upon successful completion, this method sends a
DPMSG_CREATEPLAYERORGROUP system message to all the other
players in the session announcing that a new player has joined the session. By
default, all local players receive copies of all the system messages.

Your application should use the player ID returned to the application to identify
the player for message passing and data association. Player and group IDs
assigned by DirectPlay will always be unique within the session.

If the application closes the session, any local players created will be
automatically destroyed. Only the application that created the player can:

· destroy the player.

· change the player's name or remote data.

· send messages from the player.

If the application uses a separate thread to retrieve DirectPlay messages, it is
highly recommended that a non-NULL hEvent be supplied and used for
synchronization. This event will be set when this player receives a message.
Within the message receive thread, use the Win32 API WaitForSingleObject (or
use WaitForMultipleObjects if more than one event is used) within the thread to
determine if a player has messages. It is inefficient to loop on
IDirectPlay3::Receive inside a separate thread waiting for a message. The same
event can be used for all the local players, or the application can supply different
events for each player. The application is responsible for creating and destroying
the event. See Synchronization for more information.

DPNAME, DPMSG_CREATEPLAYERORGROUP,
IDirectPlay3::DestroyPlayer, IDirectPlay3::EnumPlayers,
IDirectPlay3::Receive, IDirectPlay3::Send, IDirectPlay3::SetPlayerData,
IDirectPlay3::SetPlayerName, IDirectPlay3::GetPlayerFlags

Return Values

Remarks

See Also

IDirectPlay3::DeleteGroupFromGroup
Removes a shortcut to a group previously added with the
IDirectPlay3::AddGroupToGroup method from a group. Deleting the shortcut
does not destroy the group.

HRESULT DeleteGroupFromGroup(
DPID idParentGroup,
DPID idGroup
);

idParentGroup
The group DPID of the group containing the shortcut to be deleted. Can be any
valid group DPID.

idGroup
The group DPID of the group to delete. Can be any valid group DPID.

Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_ACCESSDENIED

DPERR_INVALIDGROUP

A DPMSG_DELETEGROUPFROMGROUP system message is generated to
inform players of this change.

IDirectPlay3::AddGroupToGroup,
DPMSG_DELETEGROUPFROMGROUP

IDirectPlay3::DeletePlayerFromGroup
Removes a player from a group.

HRESULT DeletePlayerFromGroup(
DPID idGroup,
DPID idPlayer
);

idGroup
Group ID of the group to be adjusted.

idPlayer
Player ID of the player to be removed from the group.

Parameters

Return Values

Remarks

See Also

Parameters

Chapter 4 DirectPlay 77

Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_INVALIDGROUP

DPERR_INVALIDOBJECT

DPERR_INVALIDPLAYER

A DPSYS_DELETEPLAYERFROMGROUP system message is generated to
inform the other players of this change. For a list of system messages, see Using
System Messages.

A player can delete any player from a group, even if that group was created by
some other computer.

IDirectPlay3::AddPlayerToGroup,
DPMSG_DELETEPLAYERFROMGROUP

IDirectPlay3::DestroyGroup
Deletes a group from the session. The ID belonging to this group will not be
reused during the current session.

HRESULT DestroyGroup(
DPID idGroup
);

idGroup
The ID of the group being removed from the game.

Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_INVALIDGROUP

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

It is not necessary to empty a group before deleting it. The individual players
belonging to the group are not destroyed. This method will generate a
DPMSG_DELETEPLAYERFROMGROUP system message for each player in
the group, and then a DPMSG_DESTROYPLAYERORGROUP system
message. For a list of system messages, see Using System Messages.

Any application can destroy any group even if the group was not created locally.

IDirectPlay3::CreateGroup, DPMSG_DESTROYPLAYERORGROUP

Return Values

Remarks

See Also

Parameters

Return Values

Remarks

See Also

IDirectPlay3::DestroyPlayer
Deletes a local player from the session, removes any pending messages destined
for that player from the message queue, and removes the player from any groups
to which it belonged. The player ID will not be reused during the current session.

HRESULT DestroyPlayer(
DPID idPlayer
);

idPlayer
Player ID of the player that is being removed from the session.

Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_ACCESSDENIED

DPERR_INVALIDOBJECT

DPERR_INVALIDPLAYER

This method will generate a DPMSG_DELETEPLAYERFROMGROUP
system message for each group that the player belongs to, and then a
DPMSG_DESTROYPLAYERORGROUP system message.

Only the application that created the player can destroy it.

IDirectPlay3::CreatePlayer, DPMSG_DESTROYPLAYERORGROUP

IDirectPlay3::EnumConnections
Enumerates all the registered service providers and lobby providers that are
available to the application. These should be presented to the user to make a
selection. The connection that the user selects should be passed to the
IDirectPlay3::InitializeConnection method.

HRESULT EnumConnections(
LPCGUID lpguidApplication,
LPDPENUMCONNECTIONSCALLBACK lpEnumCallback,
LPVOID lpContext,
DWORD dwFlags
);

Parameters

Return Values

Remarks

See Also

Chapter 4 DirectPlay 79

lpguidApplication
Pointer to an application GUID. Only service providers and lobby providers that
are usable by this application will be returned. If set to a NULL pointer, a list of
all the connections is enumerated regardless of the application GUID.

lpEnumCallback
Pointer to a user-supplied EnumConnectionsCallback function that will be
called for each available connection.

lpContext
Pointer to a user-defined context that is passed to the callback function.

dwFlags
Flags that specify the type of connections to be enumerated. The default (dwFlags
= 0) will enumerate DirectPlay service providers only. Possible values are:

DPCONNECTION_DIRECTPLAY – enumerate DirectPlay service providers
to communicate in an application session.

DPCONNECTION_DIRECTPLAYLOBBY – enumerate DirectPlay lobby
providers to communicate with a lobby server.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

This method replaces the DirectPlayEnumerate function.
DirectPlayEnumerate still works, but only returns registered service providers.

The order in which the service and lobby providers are returned is not guaranteed
to be the same in subsequent calls to EnumConnections

Not all the enumerated connections are available for use. For example, this
method will return the Modem service provider even if the user has no modem
installed. The application can call the IDirectPlay3::InitializeConnection
method on each connection and check for an error code to determine if the service
provider can be used.

IDirectPlay3::InitializeConnection, EnumConnectionsCallback, DirectPlay
Address (Optional)

IDirectPlay3::EnumGroupPlayers
Enumerates the players belonging to a specific group in the currently open
session. If there is no open session, players in a remote session can be enumerated
by specifying the DPENUMPLAYERS_SESSION flag and the guidInstance of
the session. Password protected remote sessions cannot be enumerated.

Parameters

Return Values

Remarks

See Also

A pointer to an application-implemented callback function must be supplied, and
DirectPlay calls it once for each player in the group that matches the criteria
specified in dwFlags.

You can't use EnumGroupPlayers in a lobby session you're not connected to.

HRESULT EnumGroupPlayers(
DPID idGroup,
LPGUID lpguidInstance,
LPDPENUMPLAYERSCALLBACK2 lpEnumPlayersCallback2,
LPVOID lpContext,
DWORD dwFlags
);

idGroup
DPID of the group whose players are to be enumerated.

lpguidInstance
Pointer to a GUID identifying the session to be enumerated. This parameter is
ignored unless the DPENUMPLAYERS_SESSION flag is specified. The GUID
must be equal to one of the sessions enumerated by
IDirectPlay3::EnumSessions.

lpEnumPlayersCallback2
Pointer to the EnumPlayersCallback2 function that will be called for every
player in the group that matches the criteria specified in dwFlags.

lpContext
Pointer to an application-defined context that is passed to each enumeration
callback.

dwFlags
Flags specifying how the enumeration is to be done. The default (dwFlags = 0)
enumerates players in a group in the current active session. You should OR
together the flags that you want to specify. Only players that meet all the criteria
of the combined flags will be enumerated. For example, if you specify
(DPENUMPLAYERS_LOCAL | DPENUMPLAYERS_SPECTATOR) only
players in the group that are local and are spectator players will be enumerated. If
you specify (DPENUMPLAYERS_LOCAL | DPENUMPLAYERS_REMOTE),
no players will be enumerated because no player can be both local and remote.

Can be one or more of the following values:

DPENUMPLAYERS_LOCAL

Enumerates players created locally by this DirectPlay object.

DPENUMPLAYERS_REMOTE

Enumerates players created by remote DirectPlay objects.

DPENUMPLAYERS_SERVERPLAYER

Enumerates the server player.

Parameters

Chapter 4 DirectPlay 81

DPENUMPLAYERS_SESSION

Enumerates the players for the session identified by lpguidInstance. This
flag can only be used if there is no current open session. This flag can't be
used in a lobby session.

DPENUMPLAYERS_SPECTATOR

Enumerates players who are spectator players.

Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_ACCESSDENIED

DPERR_INVALIDPARAMS

DPERR_INVALIDGROUP

DPERR_NOSESSIONS

DPERR_UNAVAILABLE

This method returns DPERR_ACCESSDENIED if the session is a lobby session
you're not connected to. It returns DPERR_INVALIDPARAMS if an invalid
callback, an invalid guidInstance, or invalid flags were supplied. It returns
DPERR_NOSESSIONS if there is no active session. It returns
DPERR_UNAVAILABLE if the session could not be enumerated.

By default, this method will enumerate all players in the current session. The
DPENUMPLAYERS_SESSION flag can be used, along with a session instance
GUID, to request that a session's host provide its list for enumeration. Use of the
DPENUMPLAYERS_SESSION flag with this method must occur after the
IDirectPlay3::EnumSessions method has been called, and before any calls to the
IDirectPlay3::Close or IDirectPlay3::Open methods.

IDirectPlay3::CreatePlayer, IDirectPlay3::DestroyPlayer,
IDirectPlay3::AddPlayerToGroup, IDirectPlay3::DeletePlayerFromGroup

IDirectPlay3::EnumGroups
Enumerates all the top-level groups in the current session. Top-level groups are
groups that were created with the IDirectPlay3::CreateGroup method. If there
is no open session, groups in a remote session can be enumerated by specifying
the DPENUMGROUPS_SESSION flag and the guidInstance of the session.
Password protected remote sessions cannot be enumerated.

A pointer to an application-implemented callback function must be supplied, and
DirectPlay calls it once for each group in the session that matches the criteria
specified in dwFlags.

Return Values

Remarks

See Also

You can't use EnumGroups in a lobby session you're not connected to.

HRESULT EnumGroups(
LPGUID lpguidInstance,
LPDPENUMPLAYERSCALLBACK2 lpEnumPlayersCallback2,
LPVOID lpContext,
DWORD dwFlags
);

lpguidInstance
This parameter should be NULL to enumerate groups in the currently open
session. If there is no open session, this parameter can be a pointer to a GUID
identifying the session to be enumerated. The GUID must be equal to one of the
sessions enumerated by IDirectPlay3::EnumSessions. This parameter is ignored
unless the DPENUMGROUPS_SESSION flag is specified.

lpEnumPlayersCallback2
Pointer to the EnumPlayersCallback2 function that will be called for every
group in the session that matches the criteria specified in dwFlags.

lpContext
Pointer to an application-defined context that is passed to each enumeration
callback.

dwFlags
Flags specifying how the enumeration is to be done. Default (dwFlags = 0)
enumerates all groups in the current active session. You should OR together the
flags that you want to specify. Only groups that meet all the criteria of the
combined flags will be enumerated. For example, if you specify
(DPENUMGROUPS_LOCAL | DPENUMGROUPS_STAGINGAREA) only
groups that are local and are staging areas will be enumerated. If you specify
(DPENUMGROUPS_LOCAL | DPENUMGROUPS_REMOTE), no groups will
be enumerated because no group can be both local and remote.

Can be one or more of the following values:

DPENUMGROUPS_ALL

Enumerates all groups in this session.

DPENUMGROUPS_LOCAL

Enumerates groups created locally by this DirectPlay object.

DPENUMGROUPS_REMOTE

Enumerates groups created by remote DirectPlay objects.

DPENUMGROUPS_SESSION

Performs enumeration in the session identified by the lpguidInstance
parameter. This flag can only be used if there is no current active session.
You can't use this flag in a lobby session.

DPENUMGROUPS_STAGINGAREA

Parameters

Chapter 4 DirectPlay 83

Enumerates groups that are staging areas. (Staging areas are used to
marshal players together in order to launch a new session.)

Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_INVALIDPARAMS

DPERR_NOSESSIONS

DPERR_UNAVAILABLE

This method returns DPERR_INVALIDPARAMS if an invalid callback, an
invalid guidInstance, or invalid flags were supplied. It returns
DPERR_NOSESSIONS if there is no open session. It returns
DPERR_UNAVAILABLE if the remote session could not be enumerated.

To enumerate the subgroups in a group, use
IDirectPlay3::EnumGroupsInGroup.

EnumPlayersCallback2, IDirectPlay3::CreateGroup,
IDirectPlay3::DestroyGroup, IDirectPlay3::EnumSessions

IDirectPlay3::EnumGroupsInGroup
Enumerates all groups and shortcuts to groups that are contained within another
group. Groups are placed inside other groups by creating them with the
IDirectPlay3::CreateGroupInGroup method or by adding them to a group with
the IDirectPlay3::AddGroupToGroup method. This method is not recursive.

You can't use EnumGroupsInGroup in a lobby session you're not connected to.

HRESULT EnumGroupsInGroup(
DPID idGroup,
LPGUID lpguidInstance,
LPDPENUMPLAYERSCALLBACK2 lpEnumCallback,
LPVOID lpContext,
DWORD dwFlags
);

idGroup
DPID of the group whose subgroups are to be enumerated.

lpguidInstance
Pointer to a GUID identifying the session to be enumerated. This parameter is
ignored unless the DPENUMPLAYERS_SESSION flag is specified. The GUID

Return Values

Remarks

See Also

Parameters

must equal one of the sessions enumerated by the IDirectPlay3::EnumSessions
method.

lpEnumCallback
Pointer to the EnumPlayersCallback2 function that will be called for every
group in the group that matches the criteria specified in dwFlags.

lpContext
Pointer to an application-defined context that is passed to each enumeration
callback.

dwFlags
Flags specifying how the enumeration will be done. The default (dwFlags = 0)
enumerates all groups in the current active session. You should OR together the
flags that you want to specify. Only groups that meet all the criteria of the
combined flags will be enumerated. For example, if you specify
(DPENUMGROUPS_LOCAL | DPENUMGROUPS_STAGINGAREA) only
groups that are local and are staging areas will be enumerated. If you specify
(DPENUMGROUPS_LOCAL | DPENUMGROUPS_REMOTE), no groups will
be enumerated because no group can be both local and remote.

Can be one or more of the following values:

DPENUMGROUPS_ALL

Enumerates all groups in the group.

DPENUMGROUPS_LOCAL

Enumerates groups in the group created locally by this DirectPlay object.

DPENUMGROUPS_REMOTE

Enumerates groups in the group created by remote DirectPlay objects.

DPENUMGROUPS_SESSION

Performs enumeration in the session identified by the lpguidInstance
parameter. This flag can only be used if there is no current active session.
This flag can't be used in lobby sessions.

DPENUMGROUPS_SHORTCUT

Enumerates groups that are shortcuts added to the group using
IDirectPlay3::AddGroupToGroup. (A shortcut is a link to another
group.)

DPENUMGROUPS_STAGINGAREA

Enumerates groups in the group that are staging areas. (Staging areas are
used to marshal players together in order to launch a new session.)

Returns DP_OK if successful, or one of the following error messages otherwise:

DPERR_INVALIDFLAGS

DPERR_INVALIDGROUP

DPERR_INVALIDPARAMS

DPERR_NOSESSIONS

Return Values

Chapter 4 DirectPlay 85

DPERR_UNSUPPORTED

This method returns DPERR_INVALIDPARAMS if an invalid callback or an
invalid guidInstance is supplied. It returns DPERR_NOSESSIONS if there is no
active session. It returns DPERR_UNSUPPORTED if the session could not be
enumerated.

IDirectPlay3::CreateGroupInGroup, IDirectPlay3::DestroyGroup,
IDirectPlay3::AddGroupToGroup, IDirectPlay3::DeleteGroupFromGroup

IDirectPlay3::EnumPlayers
Enumerates the players in the current open session. If there is no open session,
players in a remote session can be enumerated by specifying the
DPENUMPLAYERS_SESSION flag and the guidInstance of the session.
Password protected remote sessions cannot be enumerated.

A pointer to an application-implemented callback function must be supplied and
DirectPlay calls it once for each player in the session that matches the criteria
specified in dwFlags.

Within a lobby session, this method will always return
DPERR_ACCESSDENIED.

HRESULT EnumPlayers(
LPGUID lpguidInstance,
LPDPENUMPLAYERSCALLBACK2 lpEnumPlayersCallback2,
LPVOID lpContext,
DWORD dwFlags
);

lpguidInstance
This parameter should be NULL to enumerate players in the currently open
session. If there is no open session, this parameter can be a pointer to a GUID
identifying the session to be enumerated. The GUID must be equal to one of the
sessions enumerated by IDirectPlay3::EnumSessions. This parameter is ignored
unless the DPENUMPLAYERS_SESSION flag is specified.

lpEnumPlayersCallback2
Pointer to the EnumPlayersCallback2 function that will be called for every
player in the session that matches the criteria specified in dwFlags.

lpContext
Pointer to an application-defined context that is passed to each enumeration
callback.

See Also

Parameters

dwFlags
Flags specifying how the enumeration is to be done. Default (dwFlags = 0)
enumerates all players in the current active session. You should OR together the
flags that you want to specify. Only players that meet all the criteria of the
combined flags will be enumerated. For example, if you specify
(DPENUMPLAYERS_LOCAL | DPENUMPLAYERS_SPECTATOR) only
players that are local and are spectator players will be enumerated. If you specify
(DPENUMPLAYERS_LOCAL | DPENUMPLAYERS_REMOTE), no players
will be enumerated because no player can be both local and remote.

Can be one or more of the following values:

DPENUMPLAYERS_ALL

Enumerates all players in this session.

DPENUMPLAYERS_GROUP

Includes groups in the enumeration of players.

DPENUMPLAYERS_LOCAL

Enumerates players created locally by this DirectPlay object.

DPENUMPLAYERS_REMOTE

Enumerates players created by remote DirectPlay objects.

DPENUMPLAYERS_SERVERPLAYER

Enumerates the server player.

DPENUMPLAYERS_SESSION

Enumerates the players for the session identified by lpguidInstance. This
flag can only be used if there is no current open session.

DPENUMPLAYERS_SPECTATOR

Enumerates players who are spectator players.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDPARAMS

DPERR_NOSESSIONS

DPERR_UNAVAILABLE

This method returns DPERR_INVALIDPARAMS if an invalid callback, an
invalid guidInstance, or invalid flags were supplied. It returns
DPERR_NOSESSIONS if there is no open session. It returns
DPERR_UNAVAILABLE if the remote session could not be enumerated.

By default, this method will enumerate players in the current open session.
Groups can also be included in the enumeration by using the
DPENUMPLAYERS_GROUP flag. The DPENUMPLAYERS_SESSION flag
can be used, along with a session instance GUID, to request that a session's host
provide its list for enumeration. This method cannot be called from within an
IDirectPlay3::EnumSessions enumeration. Furthermore, use of the

Return Values

Remarks

Chapter 4 DirectPlay 87

DPENUMPLAYERS_SESSION flag with this method must occur after the
IDirectPlay3::EnumSessions method has been called, and before any calls to the
IDirectPlay3::Close or IDirectPlay3::Open methods.

IDirectPlay3::CreatePlayer, IDirectPlay3::DestroyPlayer,
IDirectPlay3::EnumSessions

IDirectPlay3::EnumSessions
Enumerates all the active sessions for a particular application and/or all the active
lobby sessions that serve a particular application. This method can be called after
a DirectPlay object has been created and initialized either by DirectPlayCreate
or IDirectPlay3::InitializeConnection.

This method returns an error if called while a session is already open.

HRESULT EnumSessions(
LPDPSESSIONDESC2 lpsd,
DWORD dwTimeout,
LPDPENUMSESSIONSCALLBACK2 lpEnumSessionsCallback2,
LPVOID lpContext,
DWORD dwFlags
);

lpsd
Pointer to the DPSESSIONDESC2 structure describing the sessions to be
enumerated. Only those sessions that meet the criteria set in this structure will be
enumerated. The guidApplication member can be set to the globally unique
identifier (GUID) of an application of interest if it is known, or to GUID_NULL
to obtain all sessions. The lpszPassword member is only needed if you want
private sessions. All data members besides guidApplication and lpszPassword are
ignored.

dwTimeout
In the synchronous case, the total amount of time, in milliseconds, that DirectPlay
will wait for replies to the enumeration request (not the time between each
enumeration). Any replies received after this time-out will be ignored. The
application will be blocked until the time-out expires.

In the asynchronous case, this is the interval, in milliseconds, that enumeration
requests will be broadcast by DirectPlay in order to update the internal sessions
list.

If the time-out is set to zero, a default time-out appropriate for the service provider
and connection type will be used. It is recommended that you set this value to
zero. The application can determine this time-out by calling

See Also

Parameters

IDirectPlay3::GetCaps and examining the dwTimeout data member of the
DPCAPS structure.

lpEnumSessionsCallback2
Pointer to the application-supplied EnumSessionsCallback2 function to be called
for each DirectPlay session responding.

lpContext
Pointer to a user-defined context that is passed to each enumeration callback.

dwFlags
The default is 0, which is equivalent to DPENUMSESSIONS_AVAILABLE.
When enumerating sessions with DPENUMSESSIONS_ALL or
DPENUMSESSIONS_PASSWORDREQUIRED it is important for the
application to know which sessions cannot be joined and which sessions are
password-protected so the user can be warned or prompted for a password.

DPENUMSESSIONS_ALL

Enumerate all active sessions, whether they are accepting new players or
not. Sessions in which the player limit has been reached, new players
have been disabled, or joining has been disabled will be enumerated.

Password protected sessions will not be enumerated unless the
DPENUMSESSIONS_PASSWORDREQUIRED flag is also specified.

If DPENUMSESSIONS_ALL is not specified,
DPENUMSESSIONS_AVAILABLE is assumed.

DPENUMSESSIONS_ASYNC

Enumerates all the current sessions in the session cache and returns
immediately. Starts the asynchronous enumeration process if not already
started. Updates to the session list continue until canceled by calling
EnumSessions with the DPENUMSESSIONS_STOPASYNC flag, or
by calling Open, or by calling Release.

If this flag is not specified, the enumeration is done synchronously.

DPENUMSESSIONS_AVAILABLE

Enumerate all sessions that are accepting new players to join. Sessions
which have reached their maximum number of players, or have disabled
new players, or have disabled joining will not be enumerated.

Password protected sessions will not be enumerated unless the
DPENUMSESSIONS_PASSWORDREQUIRED flag is also specified.

DPENUMSESSIONS_PASSWORDREQUIRED

When used in combination with one of the two flags
DPENUMSESSIONS_AVAILABLE or DPENUMSESSIONS_ALL,
enables password-protected sessions to be enumerated in addition to
sessions without password protection.

If this flag is not specified, no password protected sessions will be
returned.

DPENUMSESSIONS_RETURNSTATUS

Chapter 4 DirectPlay 89

If this flag is specified, the enumeration will not display any dialog boxes
showing the connection progress status. If the connection cannot be made
immediately, the method will return with the DPERR_CONNECTING
error. The application must keep calling EnumSessions until either
DP_OK is returned, indicating successful completion, or some other error
code is returned, indicating an error.

DPENUMSESSIONS_STOPASYNC

Enumerates all the current sessions in the session cache and cancels the
asynchronous enumeration process.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_CONNECTING

DPERR_EXCEPTION

DPERR_GENERIC

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_UNINITIALIZED

DPERR_USERCANCEL

This method returns DPERR_GENERIC if the session is already open. It returns
DPERR_UNINITIALIZED if the DirectPlay object has not been initialized. It
returns DPERR_USERCANCEL if the user canceled the enumeration process
(usually by canceling a service provider dialog box). It returns
DPERR_CONNECTING if the method is in the process of connecting to the
network.

EnumSessions works by requesting that the service provider locate one or more
hosts on the network and send them an enumeration request. The replies that are
received make up the sessions that are enumerated.

EnumSessions can be called synchronously (default) or asynchronously. When
called synchronously, DirectPlay will clear the internal session cache, send out an
enumeration request, and collect replies until the specified time-out expires. Each
session will then be returned to the application through the callback function. The
application will be blocked until all the sessions have been returned through the
callback function.

When called asynchronously (DPENUMSESSIONS_ASYNC), all the current
sessions (if any) in the session cache will be returned to the application through
the callback function and then the method will return. DirectPlay will then
automatically send out enumeration requests with the period of the time-out
parameter and listen for replies. Each reply will be used to update the session
cache:

· Sessions already in the cache will be updated

Return Values

Remarks

· Sessions that haven't been updated for a set period of time (and thus have expired)
will be deleted

· New sessions will be added

The application must call EnumSessions (with the
DPENUMSESSIONS_ASYNC flag) again to obtain the most up-to-date session
list with all the expired sessions deleted, new sessions added, and updated
sessions. Subsequent calls to EnumSessions will not generate an enumeration
request. Enumeration requests will be generated periodically by DirectPlay until
the process is either canceled by calling EnumSessions with the
DPENUMSESSIONS_STOPASYNC flag, a session is opened using the
IDirectPlay3::Open method, or the DirectPlay object is released.

Once enumeration of the available sessions is complete, the application can join
one of the sessions using the IDirectPlay3::Open method. Only sessions in the
session cache can be opened. It is possible for the application to attempt to open a
session that has expired since the last time EnumSessions was called in which
case an error will be returned.

No authentication is performed when enumerating sessions on a secure server. All
sessions that meet the enumeration criteria will be returned. Authentication will
be done when the application attempts to open one of these sessions with
IDirectPlay3::Open or IDirectPlay3::SecureOpen.

If the application was not started by a lobby, the service provider can display a
dialog box asking the user for information (such as a phone number or IP address)
in order to perform the enumeration on the network, if that information was not
provided in IDirectPlay3::InitializeConnection. If the service provider can do a
broadcast enumeration and requires no extra information from the user, no dialog
box will appear. If the user cancels a service provider dialog box, EnumSessions
returns DPERR_USERCANCEL.

DPSESSIONDESC2, IDirectPlay3::Open, IDirectPlay3::SecureOpen

IDirectPlay3::GetCaps
Obtains the capabilities of this DirectPlay object.

HRESULT GetCaps(
LPDPCAPS lpDPCaps,
DWORD dwFlags
);

See Also

Chapter 4 DirectPlay 91

lpDPCaps
Pointer to a DPCAPS structure that will be filled with the capabilities of the
DirectPlay object. The dwSize member of the DPCAPS structure must be filled in
before using IDirectPlay3::GetCaps.

dwFlags
If this parameter is set to 0, the capabilities will be computed for nonguaranteed
messaging.

DPGETCAPS_GUARANTEED

Retrieves the capabilities for a guaranteed message delivery.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

This method returns the capabilities of the current session, while the
IDirectPlay3::GetPlayerCaps method returns the capabilities of the requested
player.

DPCAPS, IDirectPlay3::GetPlayerCaps, IDirectPlay3::Send

IDirectPlay3::GetGroupConnectionSettings
Retrieves the connection settings for a group from the DPLCONNECTION
structure. Any sessions launched from this group will use these settings. This
method can only be used in a lobby session.

HRESULT GetGroupConnectionSettings(
DWORD dwFlags,
DPID idGroup,
LPVOID lpData,
LPDWORD lpdwDataSize
);

dwFlags
Not used. Must be zero.

idGroup
The DPID of the group to get the connection settings for.

lpData
Pointer to a buffer into which the DPLCONNECTION structure and all its data
will be copied. Set this parameter to NULL to request only the size of data. The
lpdwDataSize parameter will be set to the minimum size required to hold the data.

Parameters

Return Values

Remarks

See Also

Parameters

lpdwDataSize
Pointer to a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the data. If the buffer was too small (DPERR_BUFFERTOOSMALL), then this
parameter will be set to the minimum buffer size required.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_ACCESSDENIED

DPERR_BUFFERTOOSMALL

DPERR_INVALIDGROUP

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

DPERR_UNSUPPORTED

Group connection settings are only relevant for staging area groups.

You can see if a game has been launched by looking at the guidInstance data
member of the DPSESSIONDESC2 structure, whose pointer is contained in the
lpSessionDesc data member of the DPLCONNECTION structure returned by
this method. The guidInstance will be GUID_NULL until a game has been
launched.

DPLCONNECTION, IDirectPlayLobby2::RunApplication,
IDirectPlay3::SetGroupConnectionSettings, DPGROUP_STAGINGAREA

IDirectPlay3::GetGroupData
Retrieves an application-specific data block that was associated with a group ID
by using IDirectPlay3::SetGroupData.

HRESULT GetGroupData(
DPID idGroup,
LPVOID lpData,
LPDWORD lpdwDataSize,
DWORD dwFlags
);

idGroup
Group ID for which data is being requested.

Return Values

Remarks

See Also

Parameters

Chapter 4 DirectPlay 93

lpData
Pointer to a buffer where the application-specific group data is to be written. Set
this parameter to NULL to request only the size of data. The lpdwDataSize
parameter will be set to the size required to hold the data.

lpdwDataSize
Pointer to a variable that is initialized to the size of the buffer before calling the
method. After the method returns, this parameter will be set to the size, in bytes,
of the group data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size required.

dwFlags
If this parameter is set to 0, the remote data will be retrieved.

DPGET_LOCAL

Retrieves the local data set by this application

DPGET_REMOTE

Retrieves the current data from the remote shared data space.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL

DPERR_INVALIDGROUP

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

DirectPlay can maintain two types of group data: local and remote. The
application must specify which type of data to retrieve. Local data was set by this
DirectPlay object by using the DPSET_LOCAL flag. Remote data might have
been set by any application in the session by using the DPSET_REMOTE flag.

IDirectPlay3::SetGroupData

IDirectPlay3::GetGroupFlags
Returns the flags describing the group.

HRESULT GetGroupFlags(
DPID idGroup,
LPDWORD lpdwFlags
);

Return Values

Remarks

See Also

idGroup
The DPID of the group whose flag settings are to be retrieved.

lpdwFlags
Pointer to a DWORD to be set to the group flag settings. Can be one or more of
the following:

DPGROUP_LOCAL – the group was created by this application. If this flag is not
specified, the group is a remote group.

DPGROUP_STAGINGAREA – the group is a staging area.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDGROUP

DPERR_INVALIDPARAMS

IDirectPlay3::CreateGroup

IDirectPlay3::GetGroupName
Returns the name associated with a group.

HRESULT GetGroupName(
DPID idGroup,
LPVOID lpData,
LPDWORD lpdwDataSize
);

idGroup
ID of the group whose name is being requested.

lpData
Pointer to a buffer where the name data is to be written. Set this parameter to
NULL to request only the size of data. lpdwDataSize will be set to the size
required to hold the data.

lpdwDataSize
Pointer to a variable that is initialized to the size of the buffer before calling the
method. After the method returns, this parameter will be set to the size, in bytes,
of the name data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size that is required.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL

DPERR_INVALIDGROUP

DPERR_INVALIDOBJECT

Parameters

Return Values

See Also

Parameters

Return Values

Chapter 4 DirectPlay 95

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

After the method returns, the pointer lpData should be cast to the DPNAME
structure to read the group name data.

DPNAME, IDirectPlay3::SetGroupName

IDirectPlay3::GetGroupParent
Returns the DPID of the parent of the group.

HRESULT GetGroupParent(
DPID idGroup,
LPDPID lpidParent
);

idGroup
ID of the group whose parent is being requested.

lpidParent
Pointer to a DPID to be set to the ID of the parent group. If this method returns a
parent ID of zero, the group is a root group.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDGROUP

DPERR_INVALIDPARAMS

IDirectPlay3::CreateGroupInGroup

IDirectPlay3::GetMessageCount
Queries for the number of messages in the receive queue for a specific local
player.

HRESULT GetMessageCount(
DPID idPlayer,
LPDWORD lpdwCount
);

Remarks

See Also

Parameters

Return Values

See Also

idPlayer
ID of the player whose message count is requested. The player must be local.

lpdwCount
Pointer to a variable that will be set to the message count when this method
returns.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

IDirectPlay3::Receive

IDirectPlay3::GetPlayerAccount
In a secure session, can be called by the session host to obtain account
information about the specified player.

HRESULT GetPlayerAccount(
DPID idPlayer,
DWORD dwFlags,
LPVOID lpData,
LPDWORD lpdwDataSize
);

idPlayer
The DPID of the player whose account information is to be retrieved.

dwFlags
Not used. Must be zero.

lpData
A pointer to a buffer (allocated by the application) where the account data is to be
written. A DPACCOUNTDESC structure will be copied as well as any data
referenced by the members of the structure; therefore, the number of bytes copied
is variable. Cast the lpData parameter to LPDPACCOUNTDESC in order to read
the name. By passing NULL, the application can request the number of bytes
required be put in the lpdwDataSize parameter. The application can then allocate
the space and call this method again.

lpdwDataSize
A pointer to a DWORD that is initialized with the size of the buffer. After the
method returns, lpdwDataSize will be set to the number of bytes that were actually
copied into the buffer. If the buffer was too small the method returns

Parameters

Return Values

See Also

Parameters

Chapter 4 DirectPlay 97

DPERR_BUFFERTOOSMALL, and lpdwDataSize is set to the minimum
required buffer size.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_ACCESSDENIED

DPERR_BUFFERTOOSMALL

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

The information returned by GetPlayerAccount uniquely identifies an account.
This information can be used to record the transactions or other activities of a
logged-in player.

IDirectPlay3::SecureOpen

IDirectPlay3::GetPlayerAddress
Retrieves the DirectPlay Address for a player.

The DirectPlay Address is a network address for a player using a specific service
provider. You should call the IDirectPlayLobby2::EnumAddress method to
parse the DirectPlay Address buffer retrieved by
IDirectPlay3::GetPlayerAddress.

HRESULT GetPlayerAddress(
DPID idPlayer,
LPVOID lpData,
LPDWORD lpdwDataSize
);

idPlayer
Player ID that the address is being requested for. Pass in zero to obtain a list of
valid address options for a service provider (for example, a list of valid modem
choices for the modem-to-modem service provider).

lpData
Pointer to a buffer where the DirectPlay Address is to be written. Set this
parameter to NULL to request only the size of data. The lpdwDataSize parameter
will be set to the size required to hold the data.

lpdwDataSize
Pointer to a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,

Return Values

Remarks

See Also

Parameters

of the group data. If the buffer was too small, then this parameter will be set to the
buffer size that is required and the method will return
DPERR_BUFFERTOOSMALL.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

To get a list of valid modem choices, pass in zero for the idPlayer parameter. A
list of modem choices will be returned as a list of ANSI or Unicode strings with a
zero-length string at the end.

For more information about the DirectPlay Address, see DirectPlay Address
(Optional).

IDirectPlayLobby2::EnumAddress

IDirectPlay3::GetPlayerCaps
Retrieves the current capabilities of a specified player.

HRESULT GetPlayerCaps(
DPID idPlayer,
LPDPCAPS lpPlayerCaps,
DWORD dwFlags
);

idPlayer
Player ID for which the capabilities should be computed.

lpPlayerCaps
Pointer to a DPCAPS structure that will be filled with the capabilities. The dwSize
member of the DPCAPS structure must be filled in before using
IDirectPlay3::GetPlayerCaps.

dwFlags
If this parameter is set to 0, the capabilities will be computed for nonguaranteed
messaging.

DPGETCAPS_GUARANTEED

Retrieves the capabilities for a guaranteed message delivery.

Returns DP_OK if successful, or one of the following error values otherwise:

Return Values

Remarks

See Also

Parameters

Return Values

Chapter 4 DirectPlay 99

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

This method returns the capabilities of the requested player, while the
IDirectPlay3::GetCaps method returns the capabilities of the current session.

DPCAPS, IDirectPlay3::GetCaps, IDirectPlay3::Send

IDirectPlay3::GetPlayerData
Retrieves an application-specific data block that was associated with a player ID
by using IDirectPlay3::SetPlayerData.

HRESULT GetPlayerData(
DPID idPlayer,
LPVOID lpData,
LPDWORD lpdwDataSize,
DWORD dwFlags
);

idPlayer
ID of the player for which data is being requested.

lpData
Pointer to a buffer where the application-specific player data is to be written. Set
this parameter to NULL to request only the size of data. The lpdwDataSize
parameter will be set to the size required to hold the data.

lpdwDataSize
Pointer to a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the group data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size required.

dwFlags
If this parameter is set to 0, the remote data will be retrieved.

DPGET_LOCAL

Retrieves the local data set by this application.

DPGET_REMOTE

Retrieves the current data from the remote shared data space.

Returns DP_OK if successful, or one of the following error values otherwise:

Remarks

See Also

Parameters

Return Values

DPERR_BUFFERTOOSMALL

DPERR_INVALIDFLAGS

DPERR_INVALIDOBJECT

DPERR_INVALIDPLAYER

DirectPlay can maintain two types of player data: local and remote. The
application must specify which type of data to retrieve. Local data was set by this
DirectPlay object by using the DPSET_LOCAL flag. Remote data might have
been set by any application in the session by using the DPSET_REMOTE flag.

IDirectPlay3::SetPlayerData

IDirectPlay3::GetPlayerFlags
Returns the flags describing the player.

HRESULT GetPlayerFlags(
DPID idPlayer,
LPDWORD lpdwFlags
);

idPlayer
The DPID of the player whose flag settings are to be retrieved.

lpdwFlags
Pointer to a DWORD to be set to the player's flag settings. Can be one or more of
the following:

DPPLAYER_LOCAL – the player was created by this application. If this flag is
not specified, the player is a remote player.

DPPLAYER_SERVERPLAYER – the player is a server player for client/server
communications.

DPPLAYER_SPECTATOR – the player was created as a spectator.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

IDirectPlay3::CreatePlayer

Remarks

See Also

Parameters

Return Values

See Also

Chapter 4 DirectPlay 101

IDirectPlay3::GetPlayerName
Retrieves the name associated with a player.

HRESULT GetPlayerName(
DPID idPlayer,
LPVOID lpData,
LPDWORD lpdwDataSize
);

idPlayer
ID of the player whose name is requested.

lpData
Pointer to a buffer where the name data is to be written. Set this parameter to
NULL to request only the size of data. The lpdwDataSize parameter will be set to
the size required to hold the data.

lpdwDataSize
Pointer to a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the name data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size required.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL

DPERR_INVALIDOBJECT

DPERR_INVALIDPLAYER

After this method returns, the pointer lpData should be cast to the DPNAME
structure to read the group name data.

DPNAME, IDirectPlay3::SetPlayerName

IDirectPlay3::GetSessionDesc
Retrieves the properties of the current open session.

HRESULT GetSessionDesc(
LPVOID lpData,
LPDWORD lpdwDataSize

Parameters

Return Values

Remarks

See Also

);

lpData
Pointer to a buffer where the session description data is to be written. Set this
parameter to NULL to request only the size of data. The lpdwDataSize parameter
will be set to the size required to hold the data.

lpdwDataSize
Pointer to a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the group data. If the buffer was too small (DPERR_BUFFERTOOSMALL),
then this parameter will be set to the buffer size required. If this parameter is
NULL, the method returns DPERR_INVALIDPARAM.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_NOCONNECTION

After this method returns, the pointer lpData should be cast to the
DPSESSIONDESC2 structure to read the session description data.

DPSESSIONDESC2, IDirectPlay3::EnumSessions, IDirectPlay3::Open

IDirectPlay3::Initialize
This method is provided for compliance with the COM protocol.

HRESULT Initialize(
LPGUID lpGUID
);

lpGUID
Pointer to the globally unique identifier (GUID) used as the interface identifier.

Returns DPERR_ALREADYINITIALIZED.

Because the DirectPlay object is initialized when it is created, this method always
returns the DPERR_ALREADYINITIALIZED return value.

IUnknown::AddRef, IUnknown::QueryInterface

Parameters

Return Values

Remarks

See Also

Parameters

Return Values

Remarks

See Also

Chapter 4 DirectPlay 103

IDirectPlay3::InitializeConnection
Initializes a DirectPlay connection. All the information about the connection,
including the service provider to use, the network address of the server, and the
GUID of the session, is passed in through the lpConnection parameter.

HRESULT InitializeConnection(
LPVOID lpConnection,
DWORD dwFlags
);

lpConnection
Pointer to a buffer that contains all the information about the connection to be
initialized as a DirectPlay Address.

dwFlags
Not used. Must be zero.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_ALREADYINITIALIZED

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

DPERR_UNAVAILABLE

This method returns DPERR_ALREADYINITIALIZED if
InitializeConnection has previously been called on this object. It returns
DPERR_UNAVAILABLE if the service provider could not be initialized. This
can be because the resources necessary to operate this service provider are not
present (for example, TCP/IP stack not present).

The lpConnection parameter supplied to this method can be obtained from the
IDirectPlay3::EnumConnections method, or the application can create one
directly using the IDirectPlayLobby2::CreateCompoundAddress method.

This method loads and initializes the appropriate service provider. The
lpConnection parameter is passed on to the service provider, which extracts and
saves any relevant information. This information is used when the
IDirectPlay3::EnumSessions or IDirectPlay3::Open method is called so that
the service provider does not pop up a dialog box asking for that information.

This method replaces DirectPlayCreate as the means of binding a service
provider to a DirectPlay object. The primary benefits of InitializeConnection are
that you can override the service provider dialogs, and you can initialize a lobby
provider.

Parameters

Return Values

Remarks

IDirectPlay3::EnumConnections,
IDirectPlayLobby2::CreateCompoundAddress, DirectPlay Address (Optional)

IDirectPlay3::Open
Used to join a session that has been enumerated by a previous call to
IDirectPlay3::EnumSessions or to create a new session that other users can
enumerate and join.

HRESULT Open(
LPDPSESSIONDESC2 lpsd,
DWORD dwFlags
);

lpsd
Pointer to the DPSESSIONDESC2 structure describing the session to be created
or joined. If a session is being joined, then only the dwSize, guidInstance, and
lpszPassword data members need to be specified. A password need only be
supplied if the enumerated session had the DPSESSION_PASSWORD flag set.

If a session is being created, then the application must completely fill out the
DPSESSIONDESC2 structure with the properties of the sessions to be created.
The guidInstance will be generated by DirectPlay.

dwFlags
One and only one of the following flags:

DPOPEN_CREATE

Create a new instance of an application session. The local computer will
be the name server and host of the session.

DPOPEN_JOIN

Join an existing instance of an application session for the purpose of
participating. The application will be able to create players and send and
receive messages.

DPOPEN_RETURNSTATUS

If this flag is specified, the method will not display any dialog boxes
showing the connection progress status. If the connection cannot be made
immediately, the method will return with the DPERR_CONNECTING
error. The application must keep calling Open until either DP_OK is
returned, indicating successful completion, or some other error code is
returned, indicating an error.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_ACCESSDENIED

See Also

Parameters

Return Values

Chapter 4 DirectPlay 105

DPERR_ALREADYINITIALIZED

DPERR_AUTHENTICATIONFAILED

DPERR_CANTLOADCAPI

DPERR_CANTLOADSECURITYPACKAGE

DPERR_CANTLOADSSPI

DPERR_CONNECTING

DPERR_ENCRYPTIONFAILED

DPERR_INVALIDCREDENTIALS

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

DPERR_INVALIDPASSWORD

DPERR_LOGONDENIED

DPERR_NOCONNECTION

DPERR_NONEWPLAYERS

DPERR_SIGNFAILED

DPERR_TIMEOUT

DPERR_UNINITIALIZED

DPERR_USERCANCEL

This method returns DPERR_ALREADYINITIALIZED if there is already an
open session on this DirectPlay object. It returns DPERR_TIMEOUT if the
session did not respond to the Open request. It returns DPERR_USERCANCEL
if the user canceled the enumeration process(usually by canceling a service
provider dialog box).

Once an application has joined a session, it can create a player and start
communicating with other players in the session. The application will not receive
any messages nor can it send any messages on this DirectPlay object until it
creates a local player using IDirectPlay3::CreatePlayer.

In order to have two sessions open simultaneously, the application must create
two DirectPlay objects and open a session on each one.

To join a session, it is only necessary to fill in the dwSize and guidInstance
members of the DPSESSIONDESC2 structure. The lpszPassword member must
also be filled in if the session was marked as password protected. An enumerated
session will have the DPSESSION_PASSWORDREQUIRED flag set if it
requires a password.

If joining a secure session, you must use SecureOpen to provide login
credentials. The enumerated session will have the
DPSESSION_SECURESERVER flag set if it requires credentials.

Remarks

If you specify the DPSESSION_SECURESERVER flag in the
DPSESSIONDESC2 structure, the session will be opened with the default
security package, NTLM (NT LAN Manager). To specify an alternate security
package, use SecureOpen.

When an application attempts to join a session, the server can reject the Open
request or ignore it (in which case Open will time-out). Attempting to join a
session where new players are disabled, joining is disabled, the player limit has
been reached, or an incorrect password is supplied will result in a
DPERR_NONEWPLAYERS or DPERR_INVALIDPASSWORD error.

DPSESSIONDESC2, IDirectPlay3::Close, IDirectPlay3::SecureOpen,
IDirectPlay3::EnumSessions

IDirectPlay3::Receive
Retrieves a message from the message queue.

HRESULT Receive(
LPDPID lpidFrom,
LPDPID lpidTo,
DWORD dwFlags,
LPVOID lpData,
LPDWORD lpdwDataSize
);

lpidFrom
Pointer to a DPID that will be set to the sender's player ID when this method
returns. If the DPRECEIVE_FROMPLAYER flag is specified, this variable must
be initialized with the player ID before calling this method.

lpidTo
Pointer to a DPID that will be set to the receiver's player ID when this method
returns. If the DPRECEIVE_TOPLAYER flag is specified, this variable must be
initialized with the player ID before calling this method.

dwFlags
One or more of the following control flags can be set. By default (dwFlags = 0),
the first available message will be retrieved.

DPRECEIVE_ALL

Returns the first available message. This is the default.

DPRECEIVE_PEEK

Returns a message as specified by the other flags, but does not remove it

See Also

Parameters

Chapter 4 DirectPlay 107

from the message queue. This flag must be specified if lpData is NULL.

DPRECEIVE_TOPLAYER and DPRECEIVE_FROMPLAYER

If both DPRECEIVE_TOPLAYER and DPRECEIVE_FROMPLAYER
are specified, Receive will only return messages that are 1) sent to the
player specified by lpidTo and 2) sent from the player specified by
lpidFrom. Note that both conditions must be met.

If only DPRECEIVE_TOPLAYER is specified, Receive will only return
messages sent to the player specified by lpidTo.

If only DPRECEIVE_FROMPLAYER is specified, Receive will only
return messages sent from the player specified by lpidFrom.

If neither DPRECEIVE_TOPLAYER nor DPRECEIVE_FROMPLAYER
is set, Receive will return the first available message.

lpData
Pointer to a buffer where the message data is to be written. Set this parameter to
NULL to request only the size of data. The lpdwDataSize parameter will be set to
the size required to hold the data. If the message came from player ID
DPID_SYSMSG, the application should cast lpData to DPMSG_GENERIC and
check the dwType member to see what type of system message it is before
processing it.

lpdwDataSize
Pointer to a DWORD that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the number of
bytes copied into the buffer. If the buffer was too small
(DPERR_BUFFERTOOSMALL), then this parameter will be set to the buffer size
required. The message order in the receive queue can change between calls to
IDirectPlay3::Receive. Therefore, it is possible to get a
DPERR_BUFFERTOOSMALL error again even after the application has
allocated the memory requested from the previous call to IDirectPlay3::Receive.
It is best to keep reallocating memory until a DPERR_BUFFERTOOSMALL
error is not received.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL

DPERR_GENERIC

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

DPERR_NOMESSAGES

Any message received from a player ID defined as DPID_SYSMSG is a system
message used to notify the application of a change in the session. In those cases,
the lpData of system messages should be cast to DPMSG_GENERIC and the
dwType member should be examined to see what specific system message it is.

Return Values

Remarks

Messages that were sent to a player ID defined as DPID_ALLPLAYERS or to a
Group ID still appear to come from the sending player ID. An application will
only receive messages directed to a local player. A player cannot receive a
message in which the values pointed to by lpidFrom and lpidTo are equal.

If DPSESSION_NOMESSAGEID is specified in the session description, the
lpidFrom will always be 0xFFFFFFFF and the lpidTo value is arbitrary.

All the service providers shipped with DirectPlay perform integrity checks on the
data to protect against corruption. Any message retrieved using Receive is
guaranteed to be free from corruption.

DPMSG_GENERIC, IDirectPlay3::Send

IDirectPlay3::SecureOpen
Creates or joins a secure session. When joining a secure session, use this method
to supply login credentials.

When creating a new session, the host computer can specify an alternate security
package to use. When joining a session, a computer can specify a user name and
password.

HRESULT IDirectPlay3::SecureOpen(
LPCDPSESSIONDESC2 lpsd,
DWORD dwFlags,
LPCDPSECURITYDESC lpSecurity,
LPCDPCREDENTIALS lpCredentials
)

lpsd
Pointer to the DPSESSIONDESC2 structure describing the session to be created
or joined. If a session is to be joined, then only the guidInstance and
lpszPassword members need to be specified. The password need only be supplied
if the enumerated session had the DPSESSION_PASSWORDREQUIRED flag
set.

If a session is to be created, then the application must completely fill out the
DPSESSIONDESC2 structure with the properties of the sessions to be created.
The guidInstance will be generated by DirectPlay. NOTE: The
DPSESSION_SECURESERVER flag must be set to indicate that all computers
attempting to open the session must be authenticated.

See Also

Parameters

Chapter 4 DirectPlay 109

If you don't specify the DPSESSION_SECURESERVER flag when filling out the
DPSESSIONDESC2 structure, SecureOpen will open an unsecure session, just
as if you had called Open.

dwFlags
One of the following flags:

DPOPEN_CREATE

Creates a new instance of a secured session.

DPOPEN_JOIN

Joins an existing instance of a secured session.

DPOPEN_RETURNSTATUS

If this flag is specified, the method will not display any dialog boxes
showing the connection progress status. If the connection cannot be made
immediately, the method will return with the DPERR_CONNECTING
error. The application must keep calling SecureOpen until either DP_OK
is returned, indicating successful completion, or some other error code is
returned, indicating an error.

lpSecurity
Pointer to a DPSECURITYDESC structure containing the security package to
use. Set this parameter to NULL to use the default security package (NT LAN
Manager) and CryptoAPI package (Microsoft RSA Base Cryptographic Provider).
Relevant only when creating a session. Must be set to NULL when joining a
session.

lpCredentials
Pointer to a DPCREDENTIALS structure containing the logon name, password,
and domain to be authenticated on the server. NULL if there are no credentials.
Credentials are ignored when creating a session.

Returns DP_OK if successful or one of the following error values:

DPERR_ACCESSDENIED

DPERR_ALREADYINITIALIZED

DPERR_AUTHENTICATIONFAILED

DPERR_CANTLOADCAPI

DPERR_CANTLOADSECURITYPACKAGE

DPERR_CANTLOADSSPI

DPERR_CONNECTING

DPERR_ENCRYPTIONFAILED

DPERR_INVALIDCREDENTIALS

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

DPERR_INVALIDPASSWORD

Return Values

DPERR_LOGONDENIED

DPERR_NOCONNECTION

DPERR_NONEWPLAYERS

DPERR_SIGNFAILED

DPERR_TIMEOUT

DPERR_UNINITIALIZED

DPERR_USERCANCEL

This method DPERR_LOGONDENIED after being called with invalid
creadentials or without credentials when credentials are required. The application
must collect the user's credentials and call SecureOpen again.

When joining a session, first call SecureOpen with no credentials. If the method
returns DPERR_LOGONDENIED, then the application must collect the user
name and password from the user and call SecureOpen again, passing in the
user's credentials through the lpCredentials parameter. If the method returns
DP_OK, then the player was able to login with the credentials he or she had
specified earlier during system logon (network logon in NTLM).

IDirectPlay3::Open

IDirectPlay3::Send
Sends a message to another player, to a group of players, or to all players in the
session. To send a message to another player, specify the target player's player ID.
To send a message to a group of players, send the message to the group ID
assigned to the group. To send a message to the entire session, send the message
to the player ID DPID_ALLPLAYERS. Messages can be sent using either a
guaranteed or nonguaranteed protocol on a per message basis. If the session is
being hosted on a secure server, messages can be sent encrypted (to ensure
privacy) or digitally signed (to ensure authenticity) on a per message basis.

HRESULT Send(
DPID idFrom,
DPID idTo,
DWORD dwFlags,
LPVOID lpData,
DWORD dwDataSize
);

Remarks

See Also

Chapter 4 DirectPlay 111

idFrom
ID of the sending player. The player ID must correspond to one of the local
players on this computer.

idTo
The destination ID of the message. To send a message to another player, specify
the ID of the player. To send a message to all the players in a group, specify the
ID of the group. To send a message to all the players in the session, use the
constant symbol DPID_ALLPLAYERS. To send a message to the server player,
specify the constant symbol DPID_SERVERPLAYER. A player cannot send a
message to itself.

dwFlags
Indicates how the message should be sent. By default (dwFlags = 0), the message
is sent nonguaranteed.

DPSEND_ENCRYPTED

Sends the messages encrypted. This can only be done in a secure session.
This flag can only be used if the DPSEND_GUARANTEED flag is also
set. The message will be sent as a DPMSG_SECUREMESSAGE system
message.

DPSEND_GUARANTEED

Sends the message by using a guaranteed method of delivery if it is
available.

DPSEND_SIGNED

Sends the message with a digital signature. This can only be done in a
secure session. This flag can only be used if the
DPSEND_GUARANTEED flag is also set. The message will be sent as
a DPMSG_SECUREMESSAGE system message.

lpData
Pointer to the data being sent.

dwDataSize
Length of the data being sent.

Returns DP_OK if successful or one of the following error values:

DPERR_BUSY

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

DPERR_NOTLOGGEDIN

DPERR_SENDTOOBIG

This method returns DPERR_INVALIDPARAMS if the encrypted or signed flag
is specified for a message that is not also specified as guaranteed. It returns
DPERR_NOTLOGGEDIN when the client application tries to send a secure
message without first logging in.

Parameters

Return Values

Messages can be sent guaranteed or nonguaranteed. By default, messages are sent
nonguaranteed which means that DirectPlay does no verification that the message
reached the intended recipient. Sending a guaranteed message takes much longer;
a minimum of 2 to 3 times longer than nonguaranteed messages. Applications
should try to minimize sending guaranteed messages as much as possible and
design the application to tolerate lost messages. All the service providers shipped
with DirectPlay perform integrity checks on the data to protect against corruption.
Any message retrieved using this method is guaranteed to be free from
corruption.

A player cannot send a message to itself. If a player sends a message to a group
that it is part of or to DPID_ALLPLAYERS, it will not receive a copy of that
message. The exception to this rule is if the DPSESSION_NOMESSAGEID was
specified in the session description (DPSESSIONDESC2). Then it is possible for
a player to receive a message that it sent to a group. Because there is no
DirectPlay message ID header on the message (indicating who sent the message),
it cannot filter out messages based on the message ID.

When DPSESSION_NOMESSAGEID is used, the idFrom parameter has no
meaning and the idTo parameter is used simply to direct the message to the
correct target computer. If the target computer has more than one player on it, it
cannot be determined whose receive queue the message will appear in. When the
message is received, it will appear to have come from player DPID_UNKNOWN.

There is no limit to the size of messages that can be transmitted using the Send
method. DirectPlay will automatically break up large messages into packets
(packetize) and reassemble them on the receiving end. Beware of sending large
messages nonguaranteed — if even one of the packets fails to reach the receiver
then the entire message will be ignored. The application can determine the
maximum size of a message before it starts packetizing by calling GetCaps and
examining the dwMaxBufferSize member of the DPCAPS structure.

When you send an encryted or signed message, it is not delivered as an
application message, but as a system message, DPMSG_SECUREMESSAGE.

IDirectPlay3::Receive, IDirectPlay3::SendChatMessage,
DPMSG_SECUREMESSAGE

IDirectPlay3::SendChatMessage
Sends a text message to another player, a group of players, or all players. This
method supports both Unicode (the IDirectPlay3 interface) and ANSI strings (the
IDirectPlay3A interface). The player receiving the chat message is informed

Remarks

See Also

Chapter 4 DirectPlay 113

through a DPMSG_CHAT system message in the player's receive queue. This
method must be used in a lobby session.

HRESULT SendChatMessage(
DPID idFrom,
DPID idTo,
DWORD dwFlags,
LPDPCHAT lpChatMessage
);

idFrom
ID of the sending player. The player ID must correspond to one of the local
players on this computer.

idTo
ID of the player to send the message to, the group ID of the group of players to
send the message to, or DPID_ALLPLAYERS to send the message to all players
in the session.

dwFlags
Indicates how the message should be sent. If this parameter is set to 0, the
message is sent nonguaranteed.

DPSEND_GUARANTEED

Sends the message by using a guaranteed method of delivery if it is
available.

lpChatMessage
Pointer to a DPCHAT structure containing the message to be sent.

Returns DP_OK if successful or one of the following error values:

DPERR_ACCESSDENIED

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

This method returns DPERR_INVALIDPARAMS if the idTo ID is not a valid
player or group. It returns DPERR_INVALIDPLAYER if the idFrom ID is not
a valid player. It returns DPERR_ACCESSDENIED if the idFrom ID is not a
local player.

This method facilitates player to player chatting within a lobby session where it is
possible for different client applications to be connected. You must use this
method in a lobby session. Use is optional in an application seession.

The receiving player will receive a system message (idFrom = DPID_SYSTEM).
The DPCHAT structure will specify which player the chat message came from.

Parameters

Return Values

Remarks

DPCHAT, DPMSG_CHAT, IDirectPlay3::Send

IDirectPlay3::SetGroupConnectionSettings
Sets the connection settings for a session that will be launched from this group.
This method can only be used in a lobby session.

HRESULT SetGroupConnectionSettings(
DWORD dwFlags,
DPID idGroup,
LPDPLCONNECTION lpConnection
);

dwFlags
Not used. Must be zero.

idGroup
The DPID of the group to set the connection settings on.

lpConnection
Pointer to a DPLCONNECTION structure describing the application to be
launched, the service provider to use, and the session description of the session to
be created.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_ACCESSDENIED

DPERR_INVALIDGROUP

DPERR_INVALIDPARAMS

DPERR_UNSUPPORTED

Call IDirectPlay3::GetGroupConnectionSettings before calling
SetGroupConnectionSettings to see if any of the DPLCONNECTION
structure members already have default values (non-NULL or non-zero). If so,
you may get an error if you try to change these default values.

You do not have to set the lpAddress and dwAddressSize data members of the
DPLCONNECTION structure with SetGroupConnectionSettings. In the
DPSESSIONDESC2 structure within the DPLCONNECTION structure, you do
not have to fill in the guidInstance member.

DPLCONNECTION, IDirectPlayLobby2::RunApplication,
IDirectPlay3::GetGroupConnectionSettings

See Also

Parameters

Return Values

Remarks

See Also

Chapter 4 DirectPlay 115

IDirectPlay3::SetGroupData
Associates an application-specific data block with a group ID. Only the computer
that created the group can change the remote data associated with it.

HRESULT SetGroupData(
DPID idGroup,
LPVOID lpData,
DWORD dwDataSize,
DWORD dwFlags
);

idGroup
Group ID for which data is being set.

lpData
Pointer to the data to be set. Set to NULL to clear any existing group data.

dwDataSize
Size of the data buffer. If lpData is NULL and this parameter does not equal zero,
the method returns DPERR_INVALIDPARAMS.

dwFlags
If this parameter is set to 0, the remote group data will be set and propagated using
nonguaranteed messaging.

DPSET_GUARANTEED

Propagates the data by using guaranteed messaging (if available). This
flag can only be used with DPSET_REMOTE.

DPSET_LOCAL

This data is for local use only and will not be propagated.

DPSET_REMOTE

This data is for use by all the applications, and will be propagated to all
the other applications in the session. This flag can only be used on groups
owned by the local session.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDGROUP

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

DirectPlay can maintain two types of group data: local and remote. Local data is
available only to the application on the local computer. Remote data is propagated

Parameters

Return Values

Remarks

to all the other applications in the session. A
DPSYS_SETPLAYERORGROUPDATA system message will be sent to all the
other players notifying them of the change unless
DPSESSION_NODATAMESSAGES is set in the session description. It is safe to
store pointers to resources in the local data; the local data block is available (in
the DPMSG_DESTROYPLAYERORGROUP system message) when the
group is being destroyed, so the application can free those resources. For a list of
system messages, see Using System Messages.

This method should not be used for updating real-time information (such as
position updates) due to the overhead introduced. It is much more efficient to use
IDirectPlay3::Send for this. IDirectPlay3::SetGroupData is more appropriate
for shared state information that doesn't change very often and is not time critical
(such as a team color).

DPMSG_SETPLAYERORGROUPDATA, IDirectPlay3::GetGroupData,
IDirectPlay3::Send

IDirectPlay3::SetGroupName
Sets the name of a group after it has been created. Only the computer that created
the group can set the name of the group. A
DPMSG_SETPLAYERORGROUPNAME system message will be sent to all
the other players notifying them of the change unless
DPSESSION_NODATAMESSAGES is set in the session description.

HRESULT SetGroupName(
DPID idGroup,
LPDPNAME lpGroupName,
DWORD dwFlags
);

idGroup
ID of the group for which the name is being set.

lpGroupName
Pointer to a DPNAME structure containing the name information for the group.
Set this parameter to NULL if the group has no name information.

dwFlags
If this parameter is set to 0, the name will be propagated to all the remote systems
by using nonguaranteed message passing. This value can only be used on groups
owned by the local session.

DPSET_GUARANTEED

See Also

Parameters

Chapter 4 DirectPlay 117

Propagates the data using guaranteed messaging (if available).

DPSET_LOCAL

This data is for local use only and will not be propagated.

DPSET_REMOTE

This data is for use by all the applications, and will be propagated to all
the other applications in the session. This flag can only be used on groups
owned by the local session.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDGROUP

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

DPNAME, DPMSG_SETPLAYERORGROUPNAME,
IDirectPlay3::GetGroupName, IDirectPlay3::Send

IDirectPlay3::SetPlayerData
Associates an application-specific data block with a player ID.

HRESULT SetPlayerData(
DPID idPlayer,
LPVOID lpData,
DWORD dwDataSize,
DWORD dwFlags
);

idPlayer
ID of the player for which data is being set.

lpData
Pointer to the data to be set. Set this parameter to NULL and dwDataSize to zero
to clear out any existing player data.

dwDataSize
Size of the data buffer. If lpData is NULL and this parameter does not equal zero,
the method returns DPERR_INVALIDPARAMS.

dwFlags
If this parameter is set to 0, the remote player data will be set and propagated by
using nonguaranteed messaging.

Return Values

See Also

Parameters

DPSET_GUARANTEED

Propagates the data by using guaranteed messaging (if available). This
flag can only be used with DPSET_REMOTE.

DPSET_LOCAL

This data is for local use only and will not be propagated.

DPSET_REMOTE

This data is for use by all the applications, and will be propagated to all
the other applications in the session.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_ACCESSDENIED

DPERR_INVALIDFLAGS

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_INVALIDPLAYER

SetPlayerData should not be used for updating real-time information (such as
position updates) due to the overhead introduced. It is much more efficient to use
Send for this. SetPlayerData is more appropriate for shared state information
that doesn't change very often and is not time critical (such as a player's name).

DirectPlay can maintain two types of player data: local and remote. Local data is
available only to the application on the local computer. Remote data is propagated
to all the other applications in the session. This method returns
DPERR_ACCESSDENIED if you try to set player data for a remote player. A
DPMSG_SETPLAYERORGROUPDATA system message will be sent to all
the other players notifying them of the change unless
DPSESSION_NODATAMESSAGES is set in the session description. It is safe
to store pointers to resources in the local data; the local data block is available (in
the DPMSG_DESTROYPLAYERORGROUP system message) when the
player is being destroyed, so the application can free those resources. For a list of
system messages, see Using System Messages.

DPMSG_SETPLAYERORGROUPDATA, IDirectPlay3::GetPlayerData,
IDirectPlay3::Send

IDirectPlay3::SetPlayerName
Sets the name of a local player after it has been changed. Only the computer that
created the player can change the name. A
DPMSG_SETPLAYERORGROUPNAME system message will be sent to all

Return Values

Remarks

See Also

Chapter 4 DirectPlay 119

the other players notifying them of the change unless
DPSESSION_NODATAMESSAGES is set in the session description.

HRESULT SetPlayerName(
DPID idPlayer,
LPDPNAME lpPlayerName,
DWORD dwFlags
);

idPlayer
ID of the local player for which data is being sent.

lpPlayerName
Pointer to a DPNAME structure containing the name information for the player.
Set this parameter to NULL if the player has no name information.

dwFlags
Flags indicating how the name will be propagated. It can be one of the following
values:

DPSET_GUARANTEED

Propagates the data by using guaranteed messaging (if available).

DPSET_LOCAL

Data is not propagated to other players.

DPSET_REMOTE

Propagates the data to all players in the session using nonguaranteed
message passing. This is the default value.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_INVALIDOBJECT

DPERR_INVALIDPLAYER

DPNAME, DPMSG_SETPLAYERORGROUPNAME,
IDirectPlay3::GetPlayerName, IDirectPlay3::Send

IDirectPlay3::SetSessionDesc
Changes the properties of the current session. Only the host of the session can
change the session properties. If a nonhost attempts to call it, the method returns
DPERR_ACCESSDENIED.

Parameters

Return Values

See Also

The updated session description will be propagated to all the other computers in
the session. Each player will receive a DPMSG_SETSESSIONDESC system
message.

You can't use SetSessionDesc in a lobby session.

HRESULT SetSessionDesc(
LPDPSESSIONDESC2 lpSessDesc,
DWORD dwFlags
);

lpSessDesc
Pointer to the DPSESSIONDESC2 structure containing the new settings.

dwFlags
No flags are currently used by this method.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_ACCESSDENIED

DPERR_INVALIDPARAMS

DPERR_NOSESSIONS

This method returns DPERR_ACCESSDENIED if this computer does not have
permission to change the session. Only the host can change the session properties.
It returns DPERR_INVALIDPARAMS if the application attempts to change a
property in the session description that cannot be changed or tries to give a
property an invalid value.

Changing the session description will cause a DPSYS_SETSESSIONDESC system
message to be generated on all the other computers in the session.

The following members and flags of the DPSESSIONDESC2 structure can be
changed using IDirectPlay3::SetSessionDesc:

dwFlags

DPSESSION_JOINDISABLED

DPSESSION_MIGRATEHOST

DPSESSION_NEWPLAYERSDISABLED

DPSESSION_NODATAMESSAGES

DPSESSION_PRIVATE

dwMaxPlayers

If you set the maximum players to a value less than the current number of
players, the method returns DPERR_INVALIDPARAMS.

lpszSessionName / lpszSessionNameA

lpszPassword / lpszPasswordA

Parameters

Return Values

Remarks

Chapter 4 DirectPlay 121

dwUser1

dwUser2

dwUser3

dwUser4

If the following members and flags of the DPSESSIONDESC2 structure are
changed, an error will occur (for example, if the DPSESSION_KEEPALIVE
flag is currently set and you try to set this bit, you will not get an error, but if you
try to clear this bit, you will get an error and IDirectPlay3::SetSessionDesc will
fail):

dwSize

dwFlags

DPSESSION_NOMESSAGEID

DPSESSION_KEEPALIVE

The following members of the DPSESSIONDESC2 structure are ignored (that is,
it does not matter what you pass in these members — DirectPlay will always use
the values passed when IDirectPlay3::Open was called):

guidInstance

guidApplication

dwCurrentPlayers

dwReserved1

dwReserved2

DPSESSIONDESC2, IDirectPlay3::GetSessionDesc

IDirectPlay3::StartSession
Use this method to initiate the launch of a DirectPlay session. Call
SetGroupConnectionSettings first to specify what application to launch, which
service provider to use, and what session description to use.

When StartSession is called, each player in the group receives a
DPMSG_STARTSESSION instructing the player to launch the session.

HRESULT StartSession(
DWORD dwFlags,
DPID idGroup

See Also

);

dwFlags
Not used. Must be zero.

idGroup
The DPID of the group to send start session commands to. The group must be a
staging area.

Returns DP_OK if successful or one of the following error values:

DPERR_ACCESSDENIED

DPERR_INVALIDFLAGS

DPERR_INVALIDGROUP

DPERR_INVALIDPARAMS

This method returns DPERR_INVALIDGROUP if the given group ID is not a
valid staging area.

A player joining a staging area group for which the session has already started can
call this method to join the session. The player will receive a
DPMSG_STARTSESSION message instructing it how to join the session.

You can determine if a session is already in progress by calling
IDirectPlay3::GetGroupConnectionSettings and examining the guidInstance
parameter it returns through a pointer in the DPLCONNECTION structure to the
DPSESSIONDESC2 structure. If guidInstance is GUID_NULL, no session is in
progress. If it is any other value, a session is already in progress.

DPMSG_STARTSESSION

IDirectPlayLobby2
Applications use the methods of the IDirectPlayLobby2 interface to manage
applications and their associated data. This section is a reference to the methods
of this interface. For a conceptual overview, see IDirectPlayLobby2 Interface.

Address management CreateAddress

CreateCompoundAddress

EnumAddress

EnumAddressTypes

Application management Connect

EnumLocalApplications

RunApplication

Parameters

Return Values

Remarks

See Also

Chapter 4 DirectPlay 123

Data management GetConnectionSettings

ReceiveLobbyMessage

SendLobbyMessage

SetConnectionSettings

SetLobbyMessageEvent

IDirectPlayLobby2::Connect
Connects an application to the session specified by the DPLCONNECTION
structure currently stored with the DirectPlayLobby object.

This method will return an IDirectPlay2 or IDirectPlay2A interface. Use the
standard COM QueryInterface method to obtain an IDirectPlay3 or

IDirectPlay3A method.

HRESULT Connect(
DWORD dwFlags,
LPDIRECTPLAY2 *lplpDP,
IUnknown FAR *pUnk
);

dwFlags
Reserved; must be zero.

lplpDP
Pointer to a pointer to be initialized with a valid interface — either IDirectPlay2
(if called on IDirectPlayLobby2) or IDirectPlay2A (if called on
IDirectPlayLobby2A).

pUnk
Pointer to the containing IUnknown interface. This parameter is provided for
future compatibility with COM aggregation features. Presently, however,
IDirectPlayLobby2::Connect returns an error if this parameter is anything but
NULL.

Returns DP_OK if successful, or one of the following error values otherwise:

CLASS_E_NOAGGREGATION

DPERR_INVALIDFLAGS

DPERR_INVALIDINTERFACE

DPERR_INVALIDOBJECT

Note

Parameters

Return Values

DPERR_INVALIDPARAMS

DPERR_NOTLOBBIED

DPERR_OUTOFMEMORY

After this method is successfully completed, the application can skip the process
of calling IDirectPlay3::InitializeConnection, IDirectPlay3::EnumSessions,
and IDirectPlay3::Open. The application should not ask the user a name but
instead create a player using the player name information in the
DPLCONNECTION structure.

Before calling this method, the application can examine the connection settings
that will be used to start the application by using the
IDirectPlayLobby2::GetConnectionSettings method. The application then can
modify these settings and set them by using the
IDirectPlayLobby2::SetConnectionSettings method. The application should
pay particular attention to the DPSESSIONDESC2 structure to ensure that the
proper session properties are set, especially dwFlags, dwMaxPlayers, and the
dwUser members.

IDirectPlayLobby2::CreateAddress
Creates a DirectPlay Address, given a service provider-specific network address.
The resulting address contains the globally unique identifier (GUID) of the
service provider and data that the service provider can interpret as a network
address.

For more information about the DirectPlay Address, see DirectPlay Address. For
a list of predefined Microsoft data types, see DirectPlay Address Data Types.

HRESULT CreateAddress(
REFGUID guidSP,
REFGUID guidDataType,
LPCVOID lpData,
DWORD dwDataSize,
LPVOID lpAddress,
LPDWORD lpdwAddressSize
);

guidSP
Pointer to the GUID of the service provider. (In C++, it is a reference to the
GUID.)

Remarks

Parameters

Chapter 4 DirectPlay 125

guidDataType
Pointer to the GUID identifying the specific network address type being used. (In
C++, it is a reference to the GUID.) For information about predefined network
address types, see DirectPlay Address.

lpData
Pointer to a buffer containing the specific network address.

dwDataSize
Size, in bytes, of the network address in lpData.

lpAddress
Pointer to a buffer in which the constructed DirectPlay Address is to be written.

lpdwAddressSize
Pointer to a variable containing the size of the DirectPlay Address buffer. Before
calling this method, the service provider must initialize lpdwAddressSize to the
size of the buffer. After the method has returned, this parameter will contain the
number of bytes written to lpAddress. If the buffer was too small
(DPERR_BUFFERTOOSMALL), this parameter will be set to the size required to
store the DirectPlay Address.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL

DPERR_INVALIDPARAMS

The IDirectPlayLobby2::CreateCompoundAddress method can be used to
create longer DirectPlay Addresses than CreateAddress allows.

IDirectPlayLobby2::EnumAddress,
IDirectPlayLobby2::CreateCompoundAddress

IDirectPlayLobby2::CreateCompoundAddress
Creates a DirectPlay Address from a list of individual data chunks. This method
can be used to create longer DirectPlay Addresses than
IDirectPlayLobby2::CreateAddress allows. For a list of predefined Microsoft
data types, see DirectPlay Address Data Types.

HRESULT CreateCompoundAddress(
LPDPCOMPOUNDADDRESSELEMENT lpElements,
DWORD dwElementCount,
LPVOID lpAddress,
LPDWORD lpdwAddressSize
);

Return Values

Remarks

See Also

lpElements
Pointer to the first element in an array of
DPCOMPOUNDADDRESSELEMENT structures that will be used to generate
the DirectPlay Address.

dwElementCount
The number of address elements in the array pointed to by the lpElements
parameter.

lpData
Pointer to a buffer that the complete DirectPlay Address is to be written to. Pass
NULL if only the required size of the buffer is desired.

lpdwDataSize
Pointer to a DWORD with the size of the lpData buffer. The DWORD will be
modified to reflect the actual number of bytes copied into the buffer. If the buffer
was too small, it will contain the number of bytes required.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL

DPERR_INVALIDFLAGS

DPERR_INVALIDPARAMS

IDirectPlayLobby2::CreateAddress, IDirectPlayLobby2::EnumAddress,
DPCOMPOUNDADDRESSELEMENT

IDirectPlayLobby2::EnumAddress
Parses out chunks from the DirectPlay Address buffer.

HRESULT EnumAddress(
LPDPENUMADDRESSCALLBACK lpEnumAddressCallback,
LPCVOID lpAddress,
DWORD dwAddressSize,
LPVOID lpContext
);

lpEnumAddressCallback
Pointer to a EnumAddressCallback function that will be called for each
information chunk in the DirectPlay Address.

lpAddress
Pointer to the start of the DirectPlay Address buffer.

dwAddressSize
Size of the DirectPlay Address.

Parameters

Return Values

See Also

Parameters

Chapter 4 DirectPlay 127

lpContext
Context that will be passed to the callback function.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_EXCEPTION

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

For more information about the DirectPlay Address, see DirectPlay Address.

IDirectPlayLobby2::CreateAddress

IDirectPlayLobby2::EnumAddressTypes
Enumerates all the address types that a given service provider needs to build the
DirectPlay Address. The application or lobby can use this information to obtain
the correct information from the user and create a DirectPlay Address.

HRESULT EnumAddressTypes(
LPDPLENUMADDRESSTYPESCALLBACK

lpEnumAddressTypeCallback,
REFGUID guidSP,
LPVOID lpContext,
DWORD dwFlags
);

lpEnumAddressTypeCallback
Pointer to the EnumAddressTypeCallback function that will be called for each
address type for a service provider. If the service provider takes no address type,
the callback will not be called.

guidSP
Pointer to the GUID of the service provider whose address types are to be
enumerated. (In C++, it is a reference to the GUID.)

lpContext
Context that will be passed to the callback function.

dwFlags
Reserved; must be zero.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_EXCEPTION

DPERR_INVALIDOBJECT

Return Values

Remarks

See Also

Parameters

Return Values

DPERR_INVALIDPARAMS

For more information about the DirectPlay Address, see DirectPlay Address. You
can use EnumAddressTypes to determine if a service provider displays dialog
boxes prompting the user for information; for example, a dialog box that asks for
an IP address. If the service provider takes no address types, then it needs no
information and will not display the dialog boxes.

An application can call IDirectPlay3::GetPlayerAddress to obtain a list of valid
choices for an address type. This is only available for the modem-to-modem
service providers. DirectPlay Address data types that are null-terminated Unicode
strings end in W (for example, DPAID_INetW), while DirectPlay Address data
types that are null-terminated ANSI strings do not (for example, DPAID_INet).
For a list of predefined Microsoft data types, see DirectPlay Address Data Types.

IDirectPlayLobby2::CreateAddress

IDirectPlayLobby2::EnumLocalApplications
Enumerates what applications are registered with DirectPlay.

HRESULT EnumLocalApplications(
LPDPENUMLOCALAPPLICATIONSCALLBACK

lpEnumLocalAppCallback,
LPVOID lpContext,
DWORD dwFlags
);

lpEnumLocalAppCallback
Pointer to the EnumLocalApplicationsCallback function that will be called for
each enumerated application.

lpContext
Context passed to the callback function.

dwFlags
Reserved; must be zero.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_GENERIC

DPERR_INVALIDINTERFACE

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_OUTOFMEMORY

Remarks

See Also

Parameters

Return Values

Chapter 4 DirectPlay 129

DPLAPPINFO

IDirectPlayLobby2::GetConnectionSettings
Retrieves the DPLCONNECTION structure that contains all the information
needed to start and connect an application. The data returned is the same data that
was passed to the IDirectPlayLobby2::RunApplication method by the lobby
client, or set by calling the IDirectPlayLobby2::SetConnectionSettings method.

HRESULT GetConnectionSettings(
DWORD dwAppID,
LPVOID lpData,
LPDWORD lpdwDataSize
);

dwAppID
Identifies which application's connection settings to retrieve when called from a
lobby client (that communicates with several applications). When called from an
application (that only communicates with one lobby client), this parameter must
be zero. This ID number is obtained from IDirectPlayLobby2::RunApplication.

lpData
Pointer to a buffer in which the connection settings are to be written. Set this
parameter to NULL to request only the size of data. The lpdwDataSize parameter
will be set to the minimum size required to hold the data.

lpdwDataSize
Pointer to a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the data. If the buffer was too small (DPERR_BUFFERTOOSMALL), then this
parameter will be set to the minimum buffer size required.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_BUFFERTOOSMALL

DPERR_GENERIC

DPERR_INVALIDINTERFACE

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_NOTLOBBIED

DPERR_OUTOFMEMORY

See Also

Parameters

Return Values

The lpData member should be cast to the DPLCONNECTION structure when
the function returns to read the data from it.

DPLCONNECTION, IDirectPlayLobby2::RunApplication,
IDirectPlayLobby2::SetConnectionSettings

IDirectPlayLobby2::ReceiveLobbyMessage
Retrieves the message sent between a lobby client application and a DirectPlay
application. Messages are queued, so there is no danger of losing data if it is not
read in time.

HRESULT ReceiveLobbyMessage(
DWORD dwFlags,
DWORD dwAppID,
LPDWORD lpdwMessageFlags,
LPVOID lpData,
LPDWORD lpdwDataSize
);

dwFlags
Reserved; must be zero.

dwAppID
Identifies which application's message to retrieve when called from a lobby client
(that communicates with several applications). When called from an application
(that communicates only with one lobby client), this parameter must be set to zero.
This ID number is obtained by using the IDirectPlayLobby2::RunApplication
method.

lpdwMessageFlags
Flags indicating what type of message is being returned. The default
(lpdwMessageFlags = 0) indicates that the message is custom-defined by the
sender. Processing of this type of message is optional. The receiver must interpret
this message based on the identity of the sending application. A lobby can identify
the sending application based on the GUID of the application that was launched.
An application will need to identify the lobby by sending the lobby a standard
message requesting an identifying GUID.

DPLMSG_STANDARD

Indicates that this is a DirectPlay-defined message. Processing of this type
of message is optional.

DPLMSG_SYSTEM

Indicates that this is a DirectPlay generated system message used to

Remarks

See Also

Parameters

Chapter 4 DirectPlay 131

inform the lobby of changes in the status of the application it launched.

lpData
Pointer to a buffer in which the message is to be written. Set this parameter to
NULL to request only the size of message. The lpdwDataSize parameter will be
set to the minimum size required to hold the message.

lpdwDataSize
Pointer to a variable that is initialized to the size of the buffer before calling this
method. After the method returns, this parameter will be set to the size, in bytes,
of the message. If the buffer was too small (DPERR_BUFFERTOOSMALL), then
this parameter will be set to the minimum buffer size required.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_APPNOTSTARTED

DPERR_BUFFERTOOSMALL

DPERR_GENERIC

DPERR_INVALIDINTERFACE

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_NOMESSAGES

DPERR_OUTOFMEMORY

IDirectPlayLobby2::RunApplication,
IDirectPlayLobby2::SendLobbyMessage

IDirectPlayLobby2::RunApplication
Starts an application and passes to it all the information necessary to connect it to
a session. This method is used by a lobby client.

HRESULT RunApplication(
DWORD dwFlags,
LPDWORD lpdwAppID,
LPDPLCONNECTION lpConn,
HANDLE hReceiveEvent
);

dwFlags
Reserved; must be zero.

Return Values

See Also

Parameters

lpdwAppId
Pointer to a variable that will be filled with an ID identifying the application that
was started. The lobby client must save this application ID for use on with any
calls to the IDirectPlayLobby2::SendLobbyMessage and
IDirectPlayLobby2::ReceiveLobbyMessage methods.

lpConn
Pointer to a DPLCONNECTION structure that contains all the information
necessary to specify which application to start and how to get it connected to a
session instance without displaying any user dialog boxes.

hReceiveEvent
Specifies a synchronization event that will be set when a lobby message is
received. This event can be changed later by using the
IDirectPlayLobby2::SetLobbyMessageEvent method.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_CANTCREATEPROCESS

DPERR_GENERIC

DPERR_INVALIDINTERFACE

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_OUTOFMEMORY

DPERR_UNKNOWNAPPLICATION

This method will return after the application process has been created. The lobby
client will receive a system message indicating the status of the application. If the
lobby client is starting an application that will be hosting a session, it should wait
until it receives a DPLSYS_DPLAYCONNECTSUCCEEDED system message
before starting the other applications that will be joining the session. If the
application was unable to create or join a session, a
DPLSYS_DPLAYCONNECTFAILED message will be generated. The lobby
client will also receive a DPLSYS_CONNECTIONSETTINGSREAD system
message when the application has read the connection settings and a
DPLSYS_APPTERMINATED system message when the application terminates.

It is important that the lobby client not release its IDirectPlayLobby2 interface
before it receives a DPLSYS_CONNECTIONSETTINGSREAD system message.
The lobby client can either check IDirectPlayLobby2::ReceiveLobbyMessage
in a loop until it is received, or supply a synchronization event.

IDirectPlayLobby2::ReceiveLobbyMessage,
IDirectPlayLobby2::GetConnectionSettings,
IDirectPlayLobby2::SetLobbyMessageEvent

Return Values

Remarks

See Also

Chapter 4 DirectPlay 133

IDirectPlayLobby2::SendLobbyMessage
Sends a message between the application and the lobby client.

HRESULT SendLobbyMessage(
DWORD dwFlags,
DWORD dwAppID,
LPVOID lpData,
DWORD dwDataSize
);

dwFlags
Flags indicating the type of message being sent. The default (dwFlags = 0) is a
custom message defined by the application sending it. Other possible values are:

DPLMSG_STANDARD – this is a standard message defined by DirectPlay.

dwAppID
Identifies which application to send a message to when called from a lobby client
(that communicates with several applications). When called from an application
(that communicates with only one lobby client), this parameter must be zero. This
ID is obtained by using the IDirectPlayLobby2::RunApplication method.

lpData
Pointer to the buffer containing the message to send.

dwDataSize
Size, in bytes, of the buffer.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_APPNOTSTARTED

DPERR_BUFFERTOOLARGE

DPERR_GENERIC

DPERR_INVALIDINTERFACE

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_OUTOFMEMORY

DPERR_TIMEOUT

IDirectPlayLobby2::RunApplication,
IDirectPlayLobby2::ReceiveLobbyMessage, DPLMSG_SETPROPERTY,
DPLMSG_SETPROPERTYRESPONSE, DPLMSG_GETPROPERTY,
DPLMSG_GETPROPERTYRESPONSE,

Parameters

Return Values

See Also

IDirectPlayLobby2::SetConnectionSettings
Modifies the DPLCONNECTION structure, which contains all the information
needed to start and connect an application.

HRESULT SetConnectionSettings(
DWORD dwFlags,
DWORD dwAppID,
LPDPLCONNECTION lpConn
);

dwFlags
Reserved; must be zero.

dwAppID
When called from a lobby client (that communicates with several applications),
this parameter identifies which application's connection settings to retrieve. When
called from an application (that communicates with only one lobby client), this
parameter must be zero. This ID is obtained by using the
IDirectPlayLobby2::RunApplication method.

lpConn
Pointer to a DPLCONNECTION structure that contains all the information
necessary to specify which application to start and how to get it connected to a
session instance without displaying any user dialog boxes.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_GENERIC

DPERR_INVALIDINTERFACE

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_OUTOFMEMORY

IDirectPlayLobby2::GetConnectionSettings

IDirectPlayLobby2::SetLobbyMessageEvent
Registers an event that will be set when a lobby message is received. The
application must call this method if it needs to synchronize with messages. The
lobby client can call this method to change the events specified in the call to the
IDirectPlayLobby2::RunApplication method.

Parameters

Return Values

See Also

Chapter 4 DirectPlay 135

HRESULT SetLobbyMessageEvent(
DWORD dwFlags,
DWORD dwAppID,
HANDLE hReceiveEvent
);

dwFlags
Reserved; must be zero.

dwAppID
Identifies which application the event is associated with when called from a lobby
client (that communicates with several applications). When called from an
application (that communicates with only one lobby client), this parameter must
be zero. This ID number is obtained from IDirectPlayLobby2::RunApplication.

hReceiveEvent
Event handle to be set when a message is received.

Returns DP_OK if successful, or one of the following error values otherwise:

DPERR_GENERIC

DPERR_INVALIDINTERFACE

DPERR_INVALIDOBJECT

DPERR_INVALIDPARAMS

DPERR_OUTOFMEMORY

IDirectPlayLobby2::ReceiveLobbyMessage,
IDirectPlayLobby2::SendLobbyMessage

Structures
Some structures have changed for DirectPlay 5, with new data members added to
the end. Applications that use the IDirectPlay2 interface but are compiled using
the DirectX 5 header files can have problems. An application might crash if it is
run on a computer that has the DirectX 3 run time installed and the application
references data members that were added for DirectX 5.

Applications that need to be backward compatible with older run times should
either:

· use the structures that existed in the DirectX 3 header files

· check the dwSize member in each structure before attempting to access to
members of the structure

The structures that have new members for DirectPlay 5 are:

Parameters

Return Values

See Also

Structure New Members

DPCREDENTIALS union of

LPWSTR lpszDomain

LPSTR lpszDomainA

The DirectPlay structures are:

· DPACCOUNTDESC

· DPCAPS

· DPCHAT

· DPCOMPORTADDRESS

· DPCOMPOUNDADDRESSELEMENT

· DPCREDENTIALS

· DPLAPPINFO

· DPLCONNECTION

· DPNAME

· DPSECURITYDESC

· DPSESSIONDESC2

DPACCOUNTDESC
Describes the account information for a specific player.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 union {
 LPWSTR lpszAccountID;
 LPSTR lpszAccountIDA;
 };
} DPACCOUNTDESC, FAR *LPDPACCOUNTDESC;

dwSize
The size of the DPACCOUNTDESC structure, dwsize =
sizeof(DPACCOUNTDESC).

dwFlags
Not used. Must be zero.

lpszAccountID
Pointer to a Unicode string containing the account identifier. This is a unique
identifier that describes a player who is securely logged in. The format of the

Members

Chapter 4 DirectPlay 137

identifier depends on the Security Support Provider Interface (SSPI) package
being used.

lpszAccountIDA
Pointer to an ANSI string containing the account identifier. This is a unique
identifier that describes a player who is securely logged in. The format of the
identifier depends on the SSPI package being used.

IDirectPlay3::GetPlayerAccount

DPCAPS
Contains the capabilities of a DirectPlay object after a call to the
IDirectPlay3::GetCaps or IDirectPlay3::GetPlayerCaps methods. Any of
these capabilities can differ depending on whether guaranteed or nonguaranteed
capabilities are requested. This structure is read-only.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwMaxBufferSize;
 DWORD dwMaxQueueSize;
 DWORD dwMaxPlayers;
 DWORD dwHundredBaud;
 DWORD dwLatency;
 DWORD dwMaxLocalPlayers;
 DWORD dwHeaderLength;
 DWORD dwTimeout;
} DPCAPS, FAR *LPDPCAPS;

dwSize
The size of the DPCAPS structure, dwsize = sizeof(DPCAPS). Your application
must set this member before it uses this structure; otherwise, an error will result.

dwFlags
Indicates the properties of the DirectPlay object.

DPCAPS_ENCRYPTIONSUPPORTED

Indicates that message encryption is supported by this DirectPlay object,
either because it is a secure session or because the service provider can
encrypt messages.

DPCAPS_GROUPOPTIMIZED

Indicates that the service provider bound to this DirectPlay object can
optimize group (multicast) messaging.

DPCAPS_GUARANTEEDOPTIMIZED

Indicates that the service provider bound to this DirectPlay object

See Also

Members

supports guaranteed message delivery.

DPCAPS_GUARANTEEDSUPPORTED

Indicates that the DirectPlay object supports guaranteed message delivery,
either because the service provider supports it or because DirectPlay
implements it on a nonguaranteed service provider.

DPCAPS_ISHOST

Indicates that the DirectPlay object created by the calling application is
the session host.

DPCAPS_KEEPALIVEOPTIMIZED

The service provider can detect when the connection to the session has
been lost.

DPCAPS_SIGNINGSUPPORTED

Indicates that message authentication is supported by this DirectPlay
object , either because it is a secure session or because the service
provider can sign messages.

dwMaxBufferSize
Maximum number of bytes that can be sent in a single packet by this service
provider. Larger messages will be sent by using more than one packet.

dwMaxQueueSize
This member is no longer used.

dwMaxPlayers
Maximum number of local and remote players supported in a session by this
DirectPlay object.

dwHundredBaud
Bandwidth specified in multiples of 100 bits per second. For example, a value of
24 specifies 2400 bits per second. .

dwLatency
Estimate of latency by the service provider, in milliseconds. If this value is 0,
DirectPlay cannot provide an estimate. Accuracy for some service providers rests
on application-to-application testing, taking into consideration the average
message size. Latency can differ depending on whether the application uses
guaranteed or nonguaranteed message delivery.

dwMaxLocalPlayers
Maximum number of local players supported in a session.

dwHeaderLength
Size, in bytes, of the header that will be added to player messages by this
DirectPlay object. Note that the header size depends on which service provider is
in use.

dwTimeout
Service provider's suggested time-out value. By default, DirectPlay will use this
time-out value when waiting for replies to messages.

Chapter 4 DirectPlay 139

IDirectPlay3::Send

DPCHAT
Contains a DirectPlay chat message. Chat messages are sent with the
IDirectPlay3::SendChatMessage method.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 union{
 LPWSTR lpszMessage;
 LPSTR lpszMessageA;
 };
} DPCHAT, FAR *LPDPCHAT;

dwSize
The size of the DPCHAT structure, dwsize = sizeof(DPCHAT).

dwFlags
Not used. Must be 0.

lpszMessage
Pointer to a Unicode string containing the message to be sent. Can only be used
with a Unicode interface (IDirectPlay3).

lpszMessageA
Pointer to an ANSI string containing the message to be sent. Can only be used
with an ANSI interface (IDirectPlay3A).

IDirectPlay3::SendChatMessage

DPCOMPORTADDRESS
Contains information about the configuration of the COM port.

typedef struct DPCOMPORTADDRESS{
 DWORD dwComPort;
 DWORD dwBaudRate;
 DWORD dwStopBits;
 DWORD dwParity;
 DWORD dwFlowControl;
} DPCOMPORTADDRESS;

typedef DPCOMPORTADDRESS FAR* LPDPCOMPORTADDRESS;

See Also

Members

See Also

dwComPort
Indicates the number of the COM port to use. The value for this member can be 1,
2, 3, or 4.

dwBaudRate
Indicates the baud of the COM port. The value for this member can be one of the
following:

CBR_110 CBR_300 CBR_600

CBR_1200 CBR_2400 CBR_4800

CBR_9600 CBR_14400 CBR_19200

CBR_38400 CBR_56000 CBR_57600

CBR_115200 CBR_128000 CBR_256000

dwStopBits
Indicates the number of stop bits. The value for this member can be
ONESTOPBIT, ONE5STOPBITS, or TWOSTOPBITS.

dwParity
Indicates the parity used on the COM port. The value for this member can be
NOPARITY, ODDPARITY, EVENPARITY, or MARKPARITY.

dwFlowControl
Indicates the method of flow control used on the COM port. The following values
can be used for this member:

DPCPA_DTRFLOW Indicates hardware flow control with DTR.

DPCPA_NOFLOW Indicates no flow control.

DPCPA_RTSDTRFLOW Indicates hardware flow control with RTS
and DTR.

DPCPA_RTSFLOW Indicates hardware flow control with RTS.

DPCPA_XONXOFFFLOW Indicates software flow control (xon/xoff).

The constants that define baud, stop bits, and parity are defined in Winbase.h.

DPCOMPOUNDADDRESSELEMENT
Describes a DirectPlay Address data chunk. See DirectPlay Address Data Types
for a list of predefined Microsoft data types.

typedef struct {
 GUID guidDataType;
 DWORD dwDataSize;
 LPVOID lpData;
} DPCOMPOUNDADDRESSELEMENT, FAR *LPDPCOMPOUNDADDRESSELEMENT;

Members

Remarks

Chapter 4 DirectPlay 141

guidDataType
GUID identifying the type of data contained in this structure.

dwDataSize
Size of the data in bytes.

lpData
Pointer to a buffer containing the data.

IDirectPlayLobby2::CreateCompoundAddress

DPCREDENTIALS
Holds the user name, password, and domain to connect to a secure server.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 union {
 LPWSTR lpszUsername;
 LPSTR lpszUsernameA;
 };
 union {
 LPWSTR lpszPassword;
 LPSTR lpszPasswordA;
 };
 union {
 LPWSTR lpszDomain;
 LPSTR lpszDomainA;
 };

} DPCREDENTIALS, FAR *LPDPCREDENTIALS;

dwSize
The size of the DPCREDENTIALS structure, dwsize =
sizeof(DPCREDENTIALS).

dwFlags
Not used. Must be zero.

lpszUsername, lpszPassword, lpszDomain
Pointers to Unicode strings containing the user name, password, and domain
name. Can only be used with a Unicode interface.

lpszUsernameA, lpszPasswordA, lpszDomainA
Pointers to ANSI strings containing the user name, password, and domain name.
Can only be used with an ANSI interface.

IDirectPlay3::SecureOpen

Members

See Also

Members

See Also

DPLAPPINFO
Contains information about the application from the registry and is passed to the
IDirectPlayLobby2::EnumLocalApplications callback function.

typedef struct {
 DWORD dwSize;
 GUID guidApplication;
 union {
 LPSTR lpszAppNameA;
 LPWSTR lpszAppName;
 };
} DPLAPPINFO, FAR *LPDPLAPPINFO;

dwSize
The size of the DPLAPPINFO structure, dwsize = sizeof(DPLAPPINFO). Your
application must set this member before it uses this structure; otherwise, an error
will result.

guidApplication
Globally unique identifier (GUID) of the application.

lpszAppNameA, lpszAppName
Name of the application in ANSI or Unicode, depending on what interface is in
use.

DPLCONNECTION
Contains the information needed to connect an application to a session.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 LPDPSESSIONDESC2 lpSessionDesc;
 LPDPNAME lpPlayerName;
 GUID guidSP;
 LPVOID lpAddress;
 DWORD dwAddressSize;
} DPLCONNECTION, FAR *LPDPLCONNECTION;

dwSize
The size of the DPLCONNECTION structure, dwsize =
sizeof(DPLCONNECTION). Your application must set this member before it uses
this structure; otherwise, an error will result. Examine this member to determine if
the fields added in DirectPlay version 5 are available.

Members

Members

Chapter 4 DirectPlay 143

dwFlags
Indicates how to open a session.

DPLCONNECTION_CREATESESSION

Create a new session as described in the session description.

DPLCONNECTION_JOINSESSION

Join the existing session as described in the session description.

lpSessionDesc
Pointer to a DPSESSIONDESC2 structure describing the session to be created or
the session to join.

lpPlayerName
Pointer to a DPNAME structure holding the name the player should be created
with. This will be the name of the person registered in the lobby. The application
can ignore this name.

guidSP
Globally unique identifier (GUID) of the service provider to use to connect to the
session.

lpAddress
Pointer to a DirectPlay Address that contains the information that the service
provider needs to connect to a session. For more information about the DirectPlay
Address, see DirectPlay Address (Optional). For a list of Microsoft predefined
address data types, see DirectPlay Address Data Types.

dwAddressSize
Size, in bytes, of the address data.

IDirectPlayLobby2::RunApplication,
IDirectPlayLobby2::GetConnectionSettings,
IDirectPlayLobby2::SetConnectionSettings

DPNAME
Contains name information for a DirectPlay entity, such as a player or group.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 union {
 LPWSTR lpszShortName;
 LPSTR lpszShortNameA;
 };
 union {
 LPWSTR lpszLongName;
 LPSTR lpszLongNameA;

See Also

 };
} DPNAME, FAR *LPDPNAME;

dwSize
The size of the DPNAME structure, dwsize = sizeof(DPNAME). Your application
must set this member before it uses this structure; otherwise, an error will result.

dwFlags
Structure-specific flags. Currently set to zero.

lpszShortName and lpszLongName
Pointers to Unicode strings containing the short (friendly) and long (formal)
names of a player or group. Use these members only if the IDirectPlay3 interface
is in use.

lpszShortNameA and lpszLongNameA
Pointers to ANSI strings containing the short (friendly) and long (formal) names
of a player or group. Use these members only if the IDirectPlay3A interface is in
use.

IDirectPlay3::CreateGroup, IDirectPlay3::CreatePlayer,
IDirectPlay3::GetGroupName, IDirectPlay3::GetPlayerName,
IDirectPlay3::SetGroupName, IDirectPlay3::SetPlayerName

DPSECURITYDESC
Describes the security properties of a DirectPlay session instance.

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 union {
 LPWSTR lpszSSPIProvider;
 LPSTR lpszSSPIProviderA;
 };
 union {
 LPWSTR lpszCAPIProvider;
 LPSTR lpszCAPIProviderA;
 };
 DWORD dwCAPIProviderType;
 DWORD dwEncryptionAlgorithm;
} DPSECURITYDESC, FAR *LPDPSECURITYDESC;

dwSize
The size of the DPSECURITYDESC structure, dwsize =
sizeof(DPSECURITYDESC).

Members

See Also

Members

Chapter 4 DirectPlay 145

dwFlags
Not used. Must be zero.

lpszSSPIProvider, lpszSSPIProviderA
Pointer to a Unicode or ANSI string describing the Security Support Provider
Interface (SSPI) package to use for authenticated logins. Pass NULL to use the
default, the NTLM (NT LAN Manager) security provider.

lpszCAPIProvider, lpszCAPIProviderA
Pointer to a Unicode or ANSI string describing the CryptoAPI package to use for
cryptography services. Pass NULL to use the default, the Microsoft RSA Base
Cryptographic Provider v. 1.0.

dwCAPIProviderType
CryptoAPI service provider type. Pass zero to use the default type,
PROV_RSA_FULL.

dwEncryptionAlgorithm
Encryption algorithm to use. DirectPlay only supports stream ciphers. Pass zero to
use the default, the CALG_RC4 stream cipher.

For more information about the CryptoAPI, see the CryptoAPI amd Cryptography
topics at http://www.microsoft.com. The Microsoft RSA Base Cryptographic
Provider is supplied by Microsoft and is included with the Windows 95 and
Windows NT operating systems.

DirectPlay does not support block encryption.

IDirectPlay3::SecureOpen

DPSESSIONDESC2
Contains a description of an IDirectPlay3 session's capabilities. (The
DPSESSIONDESC structure is no longer used in the IDirectPlay3 interface.)

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 GUID guidInstance;
 GUID guidApplication;
 DWORD dwMaxPlayers;
 DWORD dwCurrentPlayers;
 union {
 LPWSTR lpszSessionName;
 LPSTR lpszSessionNameA;
 };
 union {
 LPWSTR lpszPassword;
 LPSTR lpszPasswordA;

Remarks

See Also

 };
 DWORD dwReserved1;
 DWORD dwReserved2;
 DWORD dwUser1;
 DWORD dwUser2;
 DWORD dwUser3;
 DWORD dwUser4;
} DPSESSIONDESC2, FAR *LPDPSESSIONDESC2;

dwSize
The size of the DPSESSIONDESC2 structure, dwsize =
sizeof(DPSESSIONDESC2). Your application must set this member before it uses
this structure; otherwise, an error will result.

dwFlags
A combination of the following flags. These flags can be changed after a session
has started by using IDirectPlay3::SetSessionDesc.

DPSESSION_CLIENTSERVER

This is a client/server session that is being hosted by an application server
process. This flag must be specified at the time the session is created. Any
clients that join this session will only be able to enumerate the server
player and any local players. The host of the session will see all the
players. If this flag is not set, the session is a peer-to-peer session. If this
flag is set, the host can only create a server player. This flag cannot be
used with DPSESSION_MIGRATEHOST.

DPSESSION_JOINDISABLED

No new applications can join this session. Any call to the
IDirectPlay3::Open method with the DPOPEN_JOIN flag and the
globally unique identifier (GUID) of this session instance will cause an
error. If this flag is not specified, new remote applications can join the
session until the session player limit is reached.

DPSESSION_KEEPALIVE

Automatically detect when remote players drop out of the game
abnormally. Those players will be deleted from the session. If a
temporary network outage caused the loss of the players, they will be
informed when they return that they were dropped from the session
through the DPMSG_SESSIONLOST system message. This flag must
be specified at the time the session is created. If this flag is not specified,
DirectPlay will not automatically keep the session alive if players are
abnormally terminated.

DPSESSION_MIGRATEHOST

If the current host exits, another computer in the session will become the
host. The players on the new host computer will receive a
DPMSG_HOST system message. This flag must be specified at the time
the session is created. If this flag is not specified, the host will not
migrate, new computers cannot join the session, and new players cannot
be created if the current host leaves. Note that the

Members

Chapter 4 DirectPlay 147

DPSESSION_MIGRATEHOST flag cannot be used with the
DPSESSION_CLIENTSERVER, DPSESSION_MULTICASTSERVER,
or DPSESSION_SECURESERVER flags.

DPSESSION_MULTICASTSERVER

In a peer-to-peer session, broadcast and group messages are routed
through the host which acts like a multicast server. This flag must be
specified at the time the session is created. The flag is only useful if the
host has a high bandwidth connection to the network. If this flag is not
specified, broadcast and group messages are sent directly between peers.
This flag cannot be used with DPSESSION_MIGRATEHOST.

DPSESSION_NEWPLAYERSDISABLED

Indicates that new players cannot be created in the session. Any call to the
IDirectPlay3::CreatePlayer method by an application in the session will
result in an error. Also, new applications cannot join the session. If this
flag is not specified, players can be created until the session player limit is
reached.

DPSESSION_NODATAMESSAGES

Do not send system messages when remote player data, group data, or
session data is changed with the IDirectPlay3::SetPlayerData,
IDirectPlay3::SetGroupData, IDirectPlay3::SetPlayerName,
IDirectPlay3::SetGroupName, or IDirectPlay3::SetSessionDesc
method. If this flag is not specified, messages will be generated indicating
that the data changed.

Note that setting this flag also suppresses the
DPMSG_SETSESSIONDESC message.

DPSESSION_NOMESSAGEID

Do not attach data to messages indicating what player the message is from
and to whom it is sent. Saves message overhead if this information is not
relevant. (For more information, see the IDirectPlay3::Receive method.)
If this flag is not specified, the message ID will be added. This flag must
be specified at the time the session is created.

DPSESSION_PASSWORDREQUIRED

This session is password protected. Any applications wishing to join the
session must supply the password in the IDirectPlay3::Open call. This is
a read-only flag. It will be set automatically by DirectPlay when the host
of the session specifies a non-NULL password.

DPSESSION_PRIVATE

This is a private session. It can not respond to enumeration requests
unless the request contains a non-NULL, matching password. If this flag
is not specified, the session will respond to enumeration requests.

DPSESSION_SECURESERVER

This session is being hosted on a secure server which will require
authentication credentials before it can be opened. The host must specify
this flag when the session is created. It cannot be changed later through

IDirectPlay3::SetSessionDesc. This flag can only be used if the
DPSESSION_CLIENTSERVER flag is also specified. This flag cannot
be used with the DPSESSION_MIGRATEHOST flag.

guidInstance
GUID of the session instance.

guidApplication
GUID for the application running in the session instance. It uniquely identifies the
application so that DirectPlay connects only to other computers running the same
application. This member can be set to GUID_NULL to enumerate sessions for
any application.

dwMaxPlayers
Maximum number of players allowed in this session. A value of zero means there
is no maximum.

dwCurrentPlayers
Number of players currently in the session.

lpszSessionName
Pointer to a Unicode string containing the name of the session. Use only if a
Unicode DirectPlay interface (IDirectPlay3) is being used.

lpszSessionNameA
Pointer to an ANSI string containing the name of the session. Use only if an ANSI
DirectPlay interface (IDirectPlay3A) is being used.

lpszPassword
Pointer to a Unicode string containing the password used to join the session for
participation. Use only if a Unicode DirectPlay interface (IDirectPlay3) is being
used.

lpszPasswordA
Pointer to an ANSI string containing the password used to join the session for
participation. Use only if an ANSI DirectPlay interface (IDirectPlay3A) is being
used.

dwReserved1 and dwReserved2
Must be zero.

dwUser1, dwUser2, dwUser3, and dwUser4
Application-specific data for the session.

IDirectPlay3::EnumSessions, IDirectPlay3::GetSessionDesc,
IDirectPlay3::Open, IDirectPlay3::SecureOpen,
IDirectPlay3::SetSessionDesc, IDirectPlay3::CreatePlayer,
DPPLAYER_SERVERPLAYER

See Also

Chapter 4 DirectPlay 149

System Messages
Some system message structures have changed for DirectPlay 5, with new data
members added to the end. Make sure you only reference these new members if
you are using the IDirectPlay3 interface.

The system message structures that have new members for DirectPlay 5 are:

Structure New Members

DPMSG_CREATEPLAYERORGROUP DPID dpIdParent

DWORD dwFlags

DPMSG_DESTROYPLAYERORGROUP DPNAME dpnName

DPID dpIdParent

DWORD dwFlags

DPMSG_ADDGROUPTOGROUP
DirectPlay generates this message and sends it to every player when a group is
added to a group.

typedef struct{
 DWORD dwType;
 DPID dpIdParentGroup;
 DPID dpIdGroup;
} DPMSG_ADDGROUPTOGROUP, FAR *LPDPMSG_ADDGROUPTOGROUP;

dwType
Identifies the message. This member is DPSYS_ADDGROUPTOGROUP.

dpIdParentGroup
ID of the group to which the group was added.

dpIdGroup
ID of the group that was added to the group.

IDirectPlay3::AddGroupToGroup

DPMSG_ADDPLAYERTOGROUP
Contains information for the DPSYS_ADDPLAYERTOGROUP system
message. DirectPlay generates this message and sends it to every player when a
player is added to a group.

Members

See Also

The application can use IDirectPlay3::GetPlayerCaps,
IDirectPlay3::GetPlayerName, and IDirectPlay3::GetPlayerData for
information about the player involved int his message, or
IDirectPlay3::GetGroupName and IDirectPlay3::GetGroupData to get more
information about the group involved in this message.

typedef struct{
 DWORD dwType;
 DPID dpIdGroup;
 DPID dpIdPlayer;
} DPMSG_ADDPLAYERTOGROUP, FAR *LPDPMSG_ADDPLAYERTOGROUP;

dwType
Identifies the message. This member is DPSYS_ADDPLAYERTOGROUP.

dpIdGroup
ID of the group to which the player was added.

dpIdPlayer
ID of the player that was added to the group.

IDirectPlay3::AddPlayerToGroup

DPMSG_CHAT
Contains information for the DPSYS_CHAT system message. The system
message is generated for a local player receiving a chat message from another
player.

typedef struct{
 DWORD dwType;
 DWORD dwFlags;
 DPID idFromPlayer;
 DPID idToPlayer;
 DPID idToGroup;
 LPDPCHAT lpChat;
} DPMSG_CHAT, FAR *LPDPMSG_CHAT;

dwType
Identifies the message. This member has the value DPSYS_CHAT.

dwFlags
Not used.

idFromPlayer
The DPID of the player from whom the message originated.
DPID_SERVERPLAYER indicates the message originated from the server.

Members

See Also

Members

Chapter 4 DirectPlay 151

idToPlayer
The DPID of the player to whom the message was directed. If this DPID is zero,
then the message was sent to a group or broadcast to everyone.

idToGroup
The DPID of the group to whom the message was directed. If this DPID is zero
and idToPlayer is also zero, then the message was broadcast to everyone.

lpChat
Pointer to a DPCHAT structure containing the content of the chat message
received.

Use the idFromPlayer value to determine who sent the message. The value of
lpidFrom available through Receive will always be zero, so you must retrieve the
value of idFromPlayer in the DPMSG_CHAT structure.

IDirectPlay3::SendChatMessage, DPCHAT, IDirectPlay3::Receive

DPMSG_CREATEPLAYERORGROUP
Contains information for the DPSYS_CREATEPLAYERORGROUP system
message. The system sends this message when players and groups are created in a
session.

DirectPlay generates this message and sends it to each player when a new player
or group is created in a session.

typedef struct{
 DWORD dwType;
 DWORD dwPlayerType;
 DPID dpId;
 DWORD dwCurrentPlayers;
 LPVOID lpData;
 DWORD dwDataSize;
 DPNAME dpnName;
 DPID dpIDParent;
 DWORD dwFlags;
} DPMSG_CREATEPLAYERORGROUP, FAR *LPDPMSG_CREATEPLAYERORGROUP;

dwType
Identifies the message. This member must be set to
DPSYS_CREATEPLAYERORGROUP.

dwPlayerType
Indicates whether the message applies to a player (DPPLAYERTYPE_PLAYER)
or a group (DPPLAYERTYPE_GROUP).

Remarks

See Also

Members

dpId
The ID of a player or group created.

dwCurrentPlayers
Current number of players in the session before this player was created.

lpData
Pointer to any application-specific remote data associated with this player or
group. If this member is NULL, there is no remote data.

dwDataSize
Size of the data contained in the buffer referenced by lpData.

dpnName
Structure containing the name of the player or group.

dpIdParent
The ID of the parent group if this message is caused by a call to
IDirectPlay3::CreateGroupInGroup; otherwise, the value is 0.

dwFlags
The player or group flags.

The DirectPlay 5 version of this structure has two members added at the end,
dpIdParent and dwFlags.

IDirectPlay3::CreateGroup, IDirectPlay3::CreatePlayer;
IDirectPlay3::CreateGroupInGroup

DPMSG_DELETEGROUPFROMGROUP
DirectPlay generates this message and sends it to every player when a group is
removed from a group. Note that this structure is identical to
DPMSG_ADDGROUPTOGROUP.

typedef struct{
 DWORD dwType;
 DPID dpIdParentGroup;
 DPID dpIdGroup;
} DPMSG_ADDGROUPTOGROUP, FAR *LPDPMSG_ADDGROUPTOGROUP;
typedef DPMSG_ADDGROUPTOGROUP DPMSG_DELETEGROUPFROMGROUP;

dwType
Identifies the message. This member is DPSYS_DELETEGROUPFROMGROUP.

dpIdParentGroup
ID of the group from which the group was removed.

dpIdGroup
ID of the group that was removed from the group.

Remarks

See Also

Members

Chapter 4 DirectPlay 153

IDirectPlay3::DeleteGroupFromGroup

DPMSG_DELETEPLAYERFROMGROUP
Contains information for the DPSYS_DELETEPLAYERFROMGROUP system
message. DirectPlay generates this message and sends it to each local player on
the computer when a player is deleted from a group.

For a description of the structure members, see the
DPMSG_ADDPLAYERTOGROUP structure.

The application can use IDirectPlay3::GetPlayerCaps,
IDirectPlay3::GetPlayerName, and IDirectPlay3::GetPlayerData for
information about the player involved int his message, or
IDirectPlay3::GetGroupName and IDirectPlay3::GetGroupData to get more
information about the group involved in this message.

typedef struct{
 DWORD dwType;
 DPID dpIdGroup;
 DPID dpIdPlayer;
} DPMSG_ADDPLAYERTOGROUP, FAR *LPDPMSG_ADDPLAYERTOGROUP;
typedef DPMSG_ADDPLAYERTOGROUP DPMSG_DELETEPLAYERFROMGROUP;

dwType
Identifies the message. This member is
DPSYS_DELETEPLAYERFROMGROUP.

dpIdGroup
ID of the group from which the player was removed.

dpIdPlayer
ID of the player that was removed from the group.

IDirectPlay3::DeletePlayerFromGroup

DPMSG_DESTROYPLAYERORGROUP
Contains information for the DPSYS_DDESTROYPLAYERORGROUP system
message. DirectPlay generates this message and sends it to each player when a
player or group is destroyed in a session.

typedef struct{
 DWORD dwType;

See Also

Members

See Also

 DWORD dwPlayerType;
 DPID dpId;
 LPVOID lpLocalData;
 DWORD dwLocalDataSize;
 LPVOID lpRemoteData;
 DWORD dwRemoteDataSize;
 DPNAME dpnName;
 DPID dpIdParent;
 DWORD dwFlags;
} DPMSG_DESTROYPLAYERORGROUP, FAR *LPDPMSG_DESTROYPLAYERORGROUP;

dwType
Identifies the message. This member is DPSYS_DESTROYPLAYERORGROUP.

dwPlayerType
Identifies whether the message applies to a player (DPPLAYERTYPE_PLAYER)
or group (DPPLAYERTYPE_GROUP).

dpId
ID of a player or group that has been destroyed.

lpLocalData
Pointer to the local data associated with this player/group.

dwLocalDataSize
Size, in bytes, of the local data.

lpRemoteData
Pointer to the remote data associated with this player/group.

dwRemoteDataSize
Size, in bytes, of the remote data.

dpnName
Structure containing the name of the player/group.

dpIdParent
The ID of the parent group if the group being destroyed is a subgroup of the
parent group (the group being destroyed was created by a call to
IDirectPlay3::CreateGroupInGroup; otherwise, the value is 0.

dwFlags
The player or group flags.

The DirectPlay 5 version of this structure has three members added at the end,
dpnName, dpIdParent and dwFlags.

IDirectPlay3::DestroyGroup, IDirectPlay3::DestroyPlayer

Members

Remarks

See Also

Chapter 4 DirectPlay 155

DPMSG_GENERIC
This structure is provided for message processing.

typedef struct{
 DWORD dwType;
} DPMSG_GENERIC, FAR *LPDPMSG_GENERIC;

dwType
Identifies the system message type.

When a system message is received (that is, the value pointed to by the lpidFrom
parameter equals DPID_SYSMSG), first cast the unknown message data to the
DPMSG_GENERIC type, and then perform further processing based on the
value of dwType. After the message type has been determined, the message can
cast to one of the known types of system messages for further processing.

DPMSG_HOST
When the current session host exits the session, this message is sent to all the
players on the computer that inherits the host duties.

typedef DPMSG_GENERIC DPMSG_HOST;
typedef DPMSG_HOST FAR *LPDPMSG_HOST;

DPMSG_SECUREMESSAGE
DirectPlay generates this message when it receives a signed or encrypted message
from another player.

typedef struct {
 DWORD dwType;
 DWORD dwFlags;
 DPID dpIdFrom;
 LPVOID lpData;
 DWORD dwDataSize;
} DPMSG_SECUREMESSAGE, FAR *LPDPMSG_SECUREMESSAGE;

dwType
Identifies the system message type. This is DPSYS_SECUREMESSAGE.

Members

Remarks

Members

dwFlags
Flags indicating how the message was secured by the sender. One of the following
values:

DPSEND_SIGNED - the message was signed by the sender and the signature
was successfully verified.

DPSEND_ENCRYPTED - the messages was encrypted by the sender and
successfully decrypted.

dpIdFrom
The DPID of the player that sent the secure message.

lpData
Pointer to a buffer containing the fully verified message.

dwDataSize
Size of the buffer containing the message.

IDirectPlay3::Send

DPMSG_SESSIONLOST
This message is generated by DirectPlay when the connection to all the other
players in the session is lost. After the session is lost, messages cannot be sent to
remote players, but all data at the time the session was lost is still available. Your
applications should try to recover gracefully and exit if this message is received.

typedef DPMSG_GENERIC DPMSG_SESSIONLOST;
typedef DPMSG_SESSIONLOST FAR *LPDPMSG_SESSIONLOST;

DPMSG_SETPLAYERORGROUPDATA
Contains information for the DPSYS_SETPLAYERORGROUPDATA system
message. DirectPlay generates this message and sends it to each player when the
remote data of a player or group changes. This message will not be generated if
the DPSESSION_ NODATAMESSAGES flag is specified in the session
description.

typedef struct {
 DWORD dwType;
 DWORD dwPlayerType;
 DPID dpId;
 LPVOID lpData;
 DWORD dwDataSize;

See Also

Chapter 4 DirectPlay 157

} DPMSG_SETPLAYERORGROUPDATA, FAR *LPDPMSG_SETPLAYERORGROUPDATA;

dwType
Identifies the message. This member is always
DPSYS_SETPLAYERORGROUPDATA.

dwPlayerType
Identifies whether the message applies to a player (DPPLAYERTYPE_PLAYER)
or a group (DPPLAYERTYPE_GROUP).

dpId
ID of the player or group whose data changed.

lpData
Pointer to an application-specific block of data.

dwDataSize
Size of the data contained in the buffer referenced by lpData.

It is not necessary for the application to save the data from this message because
it can be retrieved at any time using IDirectPlay3::GetPlayerData or
IDirectPlay3::GetGroupData.

IDirectPlay3::GetPlayerData, IDirectPlay3::GetGroupData,
IDirectPlay3::SetPlayerData, IDirectPlay3::SetGroupData

DPMSG_SETPLAYERORGROUPNAME
Contains information for the DPSYS_SETPLAYERORGROUPNAME system
message. DirectPlay generates this message and sends it to each local player on
the computer when the name of a player or group changes. This message will not
be generated if the DPSESSION_ NODATAMESSAGES flag is specified in the
session description.

typedef struct {
 DWORD dwType;
 DWORD dwPlayerType;
 DPID dpId;
 DPNAME dpnName;
} DPMSG_SETPLAYERORGROUPNAME, FAR *LPDPMSG_SETPLAYERORGROUPNAME;

dwType
Identifies the message. This member is always
DPSYS_SETPLAYERORGROUPNAME.

dwPlayerType
Identifies whether the message applies to a player (DPPLAYERTYPE_PLAYER)
or a group (DPPLAYERTYPE_GROUP).

Members

Remarks

See Also

Members

dpId
ID of the player or group whose name changed.

dpnName
Structure containing the new name information for the player or group.

It is not necessary for the application to save the dpnName from this message
because it can be retrieved at any time using IDirectPlay3::GetPlayerName or
IDirectPlay3::GetGroupName.

IDirectPlay3::GetPlayerName, IDirectPlay3::GetGroupName,
IDirectPlay3::SetPlayerName, IDirectPlay3::SetGroupName

DPMSG_SETSESSIONDESC
Contains information for the DPSYS_SETSESSIONDESC system message.
Every player will receive this system message when the session description
changes.

This messages will not be generated if the DPSESSION_NODATAMESSAGES
flag is specified in the session description.

typedef struct
{
 DWORD dwType;
 DPSESSIONDESC2 dpDesc;
} DPMSG_SETSESSIONDESC, FAR *LPDPMSG_SETSESSIONDESC;

dwType
Identifies the message. This member is always DPSYS_SETSESSIONDESC.

dpDesc
Pointer to a DPSESSIONDESC2 structure containing the updated session
description.

IDirectPlay3::GetSessionDesc, IDirectPlay3::SetSessionDesc

DPMSG_STARTSESSION
Contains information for the DPSYS_STARTSESSION system message. The
lobby server sends this message to each player in a group when it is time for that
player to join an application session.

typedef struct {

Remarks

See Also

Members

See Also

Chapter 4 DirectPlay 159

 DWORD dwType;
 LPDPLCONNECTION lpConn;
} DPMSG_STARTSESSION, FAR *LPDPMSG_STARTSESSION;

dwType
Identifies the message. This member is always DPSYS_STARTSESSION.

lpConn
Pointer to a DPLCONNECTION structure that contains all the information
needed to launch an application into a session. This structure can be passed into
IDirectPlayLobby2::RunApplication (if an external application is to be
launched) or passed into IDirectPlayLobby2::SetConnectionSettings and then
followed by a call to IDirectPlayLobby2::Connect (to connect the current
application to the session).

Upon receipt of this message by a stand-alone lobby client, the client must launch
the application by calling the IDirectPlayLobby2::RunApplication method with
the DPLCONNECTION structure.

Upon receipt of this message by an application with an internal lobby, the
application must set the connection settings by calling
IDirectPlayLobby2::SetConnectionSettings and then connect to the session
using the IDirectPlayLobby2::Connect method.

IDirectPlay3::StartSession, IDirectPlayLobby2::RunApplication,
IDirectPlayLobby2::SetConnectionSettings, IDirectPlayLobby2::Connect

Standard Lobby Messages
To determine whether the lobby that launched your application supports standard
lobby messages, it is necessary to send the lobby an initial
DPLMSG_GETPROPERTY request and see whether it responds or not. The
property that should be requested is DPLPROPERTY_MessagesSupported.

If the lobby responds with TRUE, then you can assume that it will respond to all
further messages. If it responds with FALSE or doesn't respond at all within a
specified timeout, then you can assume that messages are not supported.

If the application supports spectator players, then the application should also
request DPLPROPERTY_PlayerGuid before creating players to determine if
they should be created as spectators or not.

Members

Remarks

See Also

DPLMSG_GENERIC
Generic structure of system messages passed between the lobby client and an
application.

typedef struct {
 DWORD dwType;
} DPL_GENERIC, FAR *LPDPLMSG_GENERIC;

dwType
Identifies what type of system message has been received.

DPLSYS_APPTERMINATED

Indicates the application started by
IDirectPlayLobby2::RunApplication has terminated.

DPLSYS_CONNECTIONSETTINGSREAD

Indicates the application started by the
IDirectPlayLobby2::RunApplication method has read the connection
settings.

DPLSYS_DPLAYCONNECTFAILED

Indicates the application started by
IDirectPlayLobby2::RunApplication failed to connect to a session.

DPLSYS_DPLAYCONNECTSUCCEEDED

Indicates the application started by
IDirectPlayLobby2::RunApplication has created a session and is ready
for other applications to join or has successfully joined a session.

DPLMSG_GETPROPERTY
Message sent by an application to the lobby to request the current value of a
property. These properties can be information such as the ranking of a player, a
bitmap representing a player, or initial configuration information for the game or
players that was done inside the lobby.

typedef struct {
 DWORD dwType;
 DWORD dwRequestID;
 GUID guidPlayer;
 GUID guidPropertyTag;
} DPLMSG_GETPROPERTY, FAR *LPDPLMSG_GETPROPERTY;

Members

Chapter 4 DirectPlay 161

dwType
Identifies the message. This value is DPSYS_ GETPROPERTY.

dwRequestID
An application generated ID to identify the request. When the lobby responds, it
will be tagged with this request ID. The application can use the request ID to
match responses to pending requests.

guidPlayer
GUID identifying the player that this property applies to (if applicable). If the
property is not player-specific, this member should be set to GUID_NULL. The
GUID for the player or players created by this application can be obtained from
the lobby by requesting the DPLPROPERTY_PlayerGuid property.

guidPropertyTag
A GUID identifying the property that is being requested. The property can one of
the predefined ones listed in the section DirectPlay Defined Properties or the
application/lobby can define its own GUIDs for additional properties.

Each property is identified by a GUID (defined by the application developer or
the lobby developer). When a request for a property is made, the lobby responds
with a DPLMSG_GETPROPERTYRESPONSE message. Even if the lobby
cannot supply the information, it should respond with an error indicating the
information is unavailable.

The application should not block waiting for a response and should have a way to
time-out pending requests that haven't been fulfilled.

DPLMSG_GETPROPERTYRESPONSE

DPLMSG_GETPROPERTYRESPONSE
Message sent by a lobby to an application in response to a
DPLMSG_GETPROPERTY message. The request that is being filled is
identified by the dwRequestID parameter.

typedef struct {
 DWORD dwType;
 DWORD dwRequestID
 GUID guidPlayer;
 GUID guidPropertyTag;
 HRESULT hr;
 DWORD dwDataSize;
 DWORD dwPropertyData[1];
} DPLMSG_GETPROPERTYRESPONSE, FAR *LPDPLMSG_GETPROPERTYRESPONSE;

Members

Remarks

See Also

dwType
Identifies the message. This value is DPSYS_ GETPROPERTYRESPONSE.

dwRequestID
The ID that identifies the DPLMSG_GETPROPERTY message that this
message is in response to.

guidPlayer
GUID identifying the player that this property applies to (if applicable). If the
property is not player-specific, this member will be set to GUID_NULL. This will
be the same as the GUID from the DPLMSG_GETPROPERTY message.

guidPropertyTag
A GUID identifying the property that is being requested. This will be the same as
the GUID from the DPLMSG_GETPROPERTY message.

hr
Return code for the get property request. One of the following values:

DP_OK - successfully returned the property.

DPERR_UNKNOWN - the requested property is unknown to the lobby.

DPERR_UNAVAILABLE - the requested property is unavailable.

dwDataSize
The size, in bytes, of the property data.

dwPropertyData
A variable-size buffer that contains the property data. The property tag will define
how to interpret this data.

A lobby must either respond to all DPLMSG_GETPROPERTY requests or
none of them.

When constructing this message, the lobby needs to allocate enough memory to
hold the DPLMSG_GETPROPERTYRESPONSE structure and the complete
property data. For example, if the property data requires 52 bytes, the lobby will
allocate (sizeof(DPLMSG_GETPROPERTYRESPONSE) + 52) bytes and assign
it to a DPLMSG_GETPROPERTYRESPONSE pointer.

DPLMSG_GETPROPERTY

DPLMSG_SETPROPERTY
Message sent by an application to the lobby to inform it that a property of a
specific player or a property of the session has changed. These properties can
range from the score or status of a player to the current level of a game or the
current status of the session.

typedef struct {

Members

Remarks

See Also

Chapter 4 DirectPlay 163

 DWORD dwType;
 DWORD dwRequestID
 GUID guidPlayer;
 GUID guidPropertyTag;
 DWORD dwDataSize;
 DWORD dwPropertyData[1];
} DPLMSG_SETPROPERTY, FAR *LPDPLMSG_SETPROPERTY;

dwType
Identifies the message. This value is DPSYS_ SETPROPERTY.

dwRequestID
A nonzero request ID supplied by the application if it would like confirmation that
the data was recognized and set appropriately. If no confirmation is required, set
this to DPL_NOCONFIRMATION.

guidPlayer
GUID identifying the player that this property applies to (if applicable). If the
property is not player-specific, this member should be set to GUID_NULL. The
GUID for the player or players created by this application can be obtained from
the lobby by requesting the DPLPROPERTY_PlayerGuid property.

guidPropertyTag
A GUID identifying the property that is being set. The property can be one of the
predefined GUIDs listed in the section DirectPlay Defined Properties or the
application/lobby can define its own GUIDs for additional properties.

dwDataSize
The size, in bytes, of the property data.

dwPropertyData
A variable size buffer that contains the property data. The property tag will define
how to interpret this data.

Each property is identified by a GUID (defined by the application developer or
the lobby developer), and it is the responsibility of the lobby to maintain a
mapping of property GUIDs of the various applications to their descriptions and
data types. The lobby server can choose to act on the information or ignore it.

When constructing this message, the application needs to allocate enough
memory to hold the DPLMSG_ SETPROPERTY structure and the complete
property data. For example, if the property data requires 52 bytes, the application
will allocate (sizeof(DPLMSG_SETPROPERTY) + 52) bytes and assign it to a
LPDPLMSG_SETPROPERTY pointer.

DPLMSG_SETPROPERTYRESPONSE

Members

Remarks

See Also

DPLMSG_SETPROPERTYRESPONSE
Message sent by a lobby to an application as confirmation of a
DPLMSG_SETPROPERTY message. The message that is being confirmed is
identified by the dwRequestID parameter.

typedef struct {
 DWORD dwType;
 DWORD dwRequestID
 GUID guidPlayer;
 GUID guidPropertyTag;
 HRESULT hr;
} DPLMSG_SETPROPERTYRESPONSE, FAR *LPDPLMSG_SETPROPERTYRESPONSE;

dwType
Identifies the message. This value is DPSYS_ SETPROPERTYRESPONSE.

dwRequestID
The ID that identifies the DPLMSG_SETPROPERTY message being
confirmed.

guidPlayer
GUID identifying the player that this property was set for (if applicable). If the
property is not player-specific, this member is GUID_NULL. This must be the
same as the GUID from the DPLMSG_SETPROPERTY message.

guidPropertyTag
A GUID identifying the property that was set. This must be the same as the GUID
from the DPLMSG_SETPROPERTY message.

hr
Result of the confirmation. One of the following values:

DP_OK - the property was set correctly.

DPERR_ACCESSDENIED - an attempt was made to set a property the lobby will
not allow to be changed.

DPERR_UNKNOWN - the property is unknown to the lobby.

DPLMSG_SETPROPERTY

DirectPlay Defined Properties
This section describes the defined properties that can be set and retrieved by
applications from a lobby.

When a DPLMSG_GETPROPERTYRESPONSE message is received its
guidPropertyTag field identifies the property and its dwPropertyData field
contains the property information. To extract this information, simply cast the

Members

See Also

Chapter 4 DirectPlay 165

dwPropertyData field to the appropriate value. For example, the following
routine retrieves the DPLDATA_PLAYERGUID struture from the given
message:

BOOL GetPlayerGuid(LPDPLMSG_GETPROPERTYRESPONSE lpPropertyResponseMsg,
 LPDPLDATA_PLAYERGUID lpPlayerGuid)
{
 if (IsEqualGUID(lpPropertyResponseMsg->guidPropertyTag, DPLPROPERTY_PlayerGuid))
 {
 *lpPlayerGuid = *((LPDPLDATA_PLAYERGUID) lpPropertyResponseMsg->dwPropertyData);
 return (TRUE);
 }
 else
 {
 return (FALSE);
 }

See the following descriptions of defined properties:

· DPLPROPERTY_LobbyGuid
· DPLPROPERTY_MessagesSupported
· DPLPROPERTY_PlayerGuid
· DPLPROPERTY_PlayerScore

DPLPROPERTY_LobbyGuid
A GUID used to identify the lobby software. If an application was designed to
interoperate with a specific lobby using custom messages, this property can be
used to identify the lobby.

However, an application should attempt to use standard messages whenever
possible to be able to interoperate with as many lobbies as possible.

For this property, the dwPropertyData field of the
DPLMSG_GETPROPERTYRESPONSE structure will contain the following:

GUID guidLobby;

DPLPROPERTY_MessagesSupported
A boolean value indicating whether the lobby supports standard messages or not.
An application can request this property from the lobby to determine if it supports
standard messages. If the lobby does not respond to this message or if it responds
with FALSE, then the application should assume that it does not support standard
lobby messages and not send any further messages. If the lobby returns TRUE,
then the application should freely send standard messages to the lobby and query
for further properties of the lobby.

For this property, the dwPropertyData field of the
DPLMSG_GETPROPERTYRESPONSE structure will contain the following:

BOOL fMessagesSupported;

DPLPROPERTY_PlayerGuid
A GUID used to uniquely identify the application’s local players. Any further
DPLMSG_SETPROPERTY or DPLMSG_GETPROPERTY messages that
require a player GUID will need to use this value to communicate with the lobby.

An application can manipulate properties for remote players on another computer.
The application only needs to obtain the player GUID from the remote player (not
from the lobby).

If an application supports spectator players, it should request this property before
creating any players in order to determine what flags (if any) to use when creating
the players; for example, DPPLAYER_SPECTATOR and
DPPLAYER_SERVERPLAYER.

For this property, the dwPropertyData field of the
DPLMSG_GETPROPERTYRESPONSE structure will contain the following:

typedef struct {
 GUID guidPlayer;
 DWORD dwPlayerFlags;
} DPLDATA_PLAYERGUID, FAR *LPDPLDATA_PLAYERGUID;

DPLPROPERTY_PlayerScore
A generic structure that can be used by an application to report a composite score
value to the lobby. The guidPlayer GUID of the player the score applies to must
be provided when setting or getting this property. This structure can handle an
arbitrary list of long integer values that collectively represent the score of a
player. The application must allocate enough memory to hold all the scores. For
example, if the score was passed as N integers, the application must allocate
(sizeof(DPLDATA_PLAYERSCORE) + N*sizeof(LONG)) bytes and cast the
pointer to LPDPLDATA_PLAYERSCORE.

For this property, the dwPropertyData field of the
DPLMSG_GETPROPERTYRESPONSE structure will contain the following:

typedef struct {
 DWORD dwScoreCount;
 LONG Score[1];
} DPLDATA_PLAYERSCORE, FAR *LPDPLDATA_PLAYERSCORE;

Return Values
Errors are represented by negative values and cannot be combined. This table lists
the values that can be returned by all IDirectPlay3 and IDirectPlayLobby2

Chapter 4 DirectPlay 167

methods. For a list of the error values each method can return, see the individual
method descriptions.

CLASS_E_NOAGGREGATION

A non-NULL value was passed for the pUnkOuter parameter in
DirectPlayCreate, DirectPlayLobbyCreate, or
IDirectPlayLobby2::Connect.

DP_OK

The request completed successfully.

DPERR_ACCESSDENIED

The session is full or an incorrect password was supplied.

DPERR_ACTIVEPLAYERS

The requested operation cannot be performed because there are existing
active players.

DPERR_ALREADYINITIALIZED

This object is already initialized.

DPERR_APPNOTSTARTED

The application has not been started yet.

DPERR_AUTHENTICATIONFAILED

The password or credentials supplied could not be authenticated.

DPERR_BUFFERTOOLARGE

The data buffer is too large to store.

DPERR_BUSY

A message cannot be sent because the transmission medium is busy.

DPERR_BUFFERTOOSMALL

The supplied buffer is not large enough to contain the requested data.

DPERR_CANTADDPLAYER

The player cannot be added to the session.

DPERR_CANTCREATEGROUP

A new group cannot be created.

DPERR_CANTCREATEPLAYER

A new player cannot be created.

DPERR_CANTCREATEPROCESS

Cannot start the application.

DPERR_CANTCREATESESSION

A new session cannot be created.

DPERR_CANTLOADCAPI

No credentials were supplied and the CryptoAPI package (CAPI) to use for

cryptography services cannot be loaded.

DPERR_CANTLOADSECURITYPACKAGE

The software security package cannot be loaded.

DPERR_CANTLOADSSPI

No credentials were supplied and the software security package (SSPI) that
will prompt for credentials cannot be loaded.

DPERR_CAPSNOTAVAILABLEYET

The capabilities of the DirectPlay object have not been determined yet. This
error will occur if the DirectPlay object is implemented on a connectivity
solution that requires polling to determine available bandwidth and latency.

DPERR_CONNECTING

The method is in the process of connecting to the network. The application
should keep calling the method until it returns DP_OK, indicating successful
completion, or it returns a different error.

DPERR_ENCRYPTIONFAILED

The requested information could not be digitally encrypted. Encryption is
used for message privacy. This error is only relevant in a secure session.

DPERR_EXCEPTION

An exception occurred when processing the request.

DPERR_GENERIC

An undefined error condition occurred.

DPERR_INVALIDCREDENTIALS

The credentials supplied (as to IDirectPlay3::SecureOpen) were not valid.

DPERR_INVALIDFLAGS

The flags passed to this method are invalid.

DPERR_INVALIDGROUP

The group ID is not recognized as a valid group ID for this game session.

DPERR_INVALIDINTERFACE

The interface parameter is invalid.

DPERR_INVALIDOBJECT

The DirectPlay object pointer is invalid.

DPERR_INVALIDPARAMS

One or more of the parameters passed to the method are invalid.

DPERR_INVALIDPASSWORD

An invalid password was supplied when attempting to join a session that
requires a password.

DPERR_INVALIDPLAYER

The player ID is not recognized as a valid player ID for this game session.

DPERR_LOGONDENIED

Chapter 4 DirectPlay 169

The session could not be opened because credentials are required and either
no credentials were supplied or the credentials were invalid.

DPERR_NOCAPS

The communication link that DirectPlay is attempting to use is not capable of
this function.

DPERR_NOCONNECTION

No communication link was established.

DPERR_NOINTERFACE

The interface is not supported.

DPERR_NOMESSAGES

There are no messages in the receive queue.

DPERR_NONAMESERVERFOUND

No name server (host) could be found or created. A host must exist to create a
player.

DPERR_NONEWPLAYERS

The session is not accepting any new players.

DPERR_NOPLAYERS

There are no active players in the session.

DPERR_NOSESSIONS

There are no existing sessions for this game.

DPERR_NOTLOBBIED

Returned by the IDirectPlayLobby2::Connect method if the application was
not started by using the IDirectPlayLobby2::RunApplication method or if
there is no DPLCONNECTION structure currently initialized for this
DirectPlayLobby object.

DPERR_NOTLOGGEDIN

An action cannot be performed because a player or client application is not
logged in. Returned by the IDirectPlay3::Send method when the client
application tries to send a secure message without being logged in.

DPERR_OUTOFMEMORY

There is insufficient memory to perform the requested operation.

DPERR_PLAYERLOST

A player has lost the connection to the session.

DPERR_SENDTOOBIG

The message being sent by the IDirectPlay3::Send method is too large.

DPERR_SESSIONLOST

The connection to the session has been lost.

DPERR_SIGNFAILED

The requested information could not be digitally signed. Digital signatures
are used to establish the authenticity of messages.

DPERR_TIMEOUT

The operation could not be completed in the specified time.

DPERR_UNAVAILABLE

The requested function is not available at this time.

DPERR_UNINITIALIZED

The requested object has not been initialized.

DPERR_UNKNOWNAPPLICATION

An unknown application was specified.

DPERR_UNSUPPORTED

The function is not available in this implementation. Returned from
IDirectPlay3::GetGroupConnectionSettings and
IDirectPlay3::SetGroupConnectionSettings if they are called from a
session that is not a lobby session.

DPERR_USERCANCEL

Can be returned in two ways. 1) The user canceled the connection process
during a call to the IDirectPlay3::Open method. 2) The user clicked Cancel
in one of the DirectPlay service provider dialog boxes during a call to
IDirectPlay3::EnumSessions.

	About DirectPlay
	What's New in DirectPlay 5?
	Updates to DirectPlay
	Writing a Network Application
	DirectPlay Overview
	Architecture
	Session Management
	Player Management
	Message Management
	Group Management
	Overview of DirectPlay Communications
	Peer-to-Peer Session
	Client/Server Session

	Security

	DirectPlay Lobby Overview
	DirectPlay Lobby Architecture
	Lobby Sessions
	Lobby Navigation
	Synchronized Launching

	DirectPlay Providers
	Service Providers
	TCP/IP
	IPX
	Modem-to-Modem
	Serial Link

	Lobby Providers

	Using DirectPlay
	Debug versus Retail DLLs
	Working with GUIDs
	DirectPlay Interfaces
	Using Callback Functions
	Building Lobby-Aware Applications
	Registering Lobby-Aware Applications
	Supporting External Lobby Launching
	Lobby Messaging (Optional)

	DirectPlay Messages
	Synchronization
	Using System Messages
	Using Lobby Messages

	DirectPlay Address (Optional)
	DirectPlay Address Data Types
	Using DirectPlay Addresses
	Examples of Using DirectPlay Addresses

	Migrating from Previous Versions of DirectPlay
	Migrating from DirectPlay 3
	Migrating from DirectPlay 2 or Earlier
	Migrating to the IDirectPlay3 Interface

	DirectPlay Tools and Samples
	Security and Authentication

	DirectPlay Interface Overviews
	Unicode vs. ANSI Interfaces
	IDirectPlay Interface
	IDirectPlay2 Interface
	IDirectPlay3 Interface
	IDirectPlayLobby Interface
	IDirectPlayLobby2 Interface

	DirectPlay Tutorials
	Tutorial 1: Connecting by Using the Lobby
	Step 1: Creating a DirectPlayLobby Object
	Step 2: Retrieving the Connection Settings
	Step 3: Configuring the Session Description
	Step 4: Connecting to a Session
	Step 5: Creating a Player

	Tutorial 2: Connecting by Using a Dialog Box
	Step 1: Creating the DirectPlay Object
	Step 2: Enumerating and Initializing the Service Providers
	Step 3: Joining a Session
	Step 4: Creating a Session
	Step 5: Creating a Player

	Tutorial 3: Overriding the Service Provider Dialogs
	Tutorial 4: Creating Self-Refreshing Session Lists

	DirectPlay Reference
	Functions
	Callback Functions
	IDirectPlay3
	IDirectPlayLobby2
	Structures
	System Messages
	Standard Lobby Messages
	DirectPlay Defined Properties
	DPLPROPERTY_LobbyGuid
	DPLPROPERTY_MessagesSupported
	DPLPROPERTY_PlayerGuid
	DPLPROPERTY_PlayerScore

	Return Values

