Push: ThinHelp’s hypergraphics powerhouse

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"pushoverview')} Push: an
overview

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;CLOSBOOK.BMP;0/0/0/0/0/255/0;;JI("'~'IDH_HELPDEBUG")}

HelpDebug: troubleshooting your Help projects

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~'pushmanagement’)}
Project management features

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"pushprep’)} Preparing to
work with Push

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI('~ pushsteps')} Step by

step: creating Push hypergraphics

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"pushscale’)} Scaling
bitmaps

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"pushconv')} Push scaling

and filter examples

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"pushconv')} Converting
and exporting bitmaps

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;PI("'~"pushzoom')} Zoom
function

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~" pushmetafile’')} Working
with metafiles

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;PI("'~"pushupdate')} Updating
existing JPANI/LZANI .SEG files

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ pushtrouble’)}
Troubleshooting Push

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"pushregistry')} Push
registry information (Windows 95)

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ pushformat')} The SEG
file format

Push: an overview

What exactly does Push do?

{ewl THNHLP,THIN,!PUSHBMPS.LZH;pushicon.bmp;0/0/0/0/0/128/128}PUSH.EXE is “SHED
for ThinHelp”, a full-featured hypergraphics editor with everything you’re likely to need in a
hypergraphics editor except for actual painting tools. It's the most versatile and complete
replacement for SHED.EXE ever released, and could very well take SHED’s place for all your
hypergraphic chores. Here’s a brief list of its capabilities with links to the associated Help
topics:

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLYEL.BMP;0/0/0/0/192/192/192} Creation of
SHED/image-map-style hypergraphic hotspots in Help bitmaps.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLYEL.BMP;0/0/0/0/192/192/192} Fast two-
step conversion of existing .SHG files to high-compression, resolution-independent
ThinHelp embedded hypergraphics.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLYEL.BMP;0/0/0/0/192/192/192} Editing
of .SHG hotspots without the need for SHED.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLYEL.BMP;0/0/0/0/192/192/192} Conversion
of various standard bitmap formats to ThinHelp-compatible .BMPs and JPEGs.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLYEL.BMP;0/0/0/0/192/192/192} Export of
resolution-independent .SHG graphics...no more worries about scaling or end-user font
sizes.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLYEL.BMP;0/0/0/0/192/192/192} Clean, crisp
scaling of screen shots and bitmaps for reduced-size display.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLYEL.BMP;0/0/0/0/192/192/192} Addition of
WMF metafile banners to embedded-window .BMPs and JPGs.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLYEL.BMP;0/0/0/0/192/192/192} Precision
control over hypergraphic hotspot dimensions with a built-in zoom function.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLYEL.BMP;0/0/0/0/192/192/192} Automatic
import and update of existing SEG.EXE hypergraphics datafiles for quick conversion of
JPANI/LZANI .SEG files to ThinHelp-compatible .SEGs

{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~"IDH_PUSHHELP")}

HelpDebug: troubleshooting your Help projects

{ewl THNHLP, THIN,!PUSHBMPS.LZH;HLPDEBUG.BMP;0/0/0/0/255/255/255}HelpDebug was
originally developed for use with ThinHelp’s own help system as a means of checking link
integrity and insuring that some common authoring errors that the compiler doesn’t report,
specifically errors in embedded window statement syntax, were caught and fixed before the help
system was released. It has evolved into the much more thorough tool you now have at your
disposal for checking a wide range of helpfile errors that were previously uncheckable without
extensive manual testing.

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("*~"hda’)} About
HelpDebug Lite

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI(*'~"hdb’)} How
HelpDebug checks your Help’s health

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"hdc')}
HelpDebug’s error reporting

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"hdd')} HelpDebug
step by step

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"hde')} Using
HelpDebug with multi-file Help systems

{ewc THNHLP,THIN,!

PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"hdf')} What
HelpDebug won’t check

{ewc THNHLP,THIN,'PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~" IDH_PUSHHELP")}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

About HelpDebug Lite

The version of HelpDebug included with ThinHelp is a “lite” version of HelpDebug++, and as
such it has some limitations and features not found in the full version of HelpDebug++.

e HelpDebug Lite is designed for 16 bit Windows Help projects only. 32 bit HCRTF.EXE-
compiled helpfiles and Viewer titles are not supported. Error checking is possible with
both of these file types insofar as they are compatible with 16 bit Help’s file format and
RTF tagging protocols, but this application of HelpDebug Lite is not supported.

e HelpDebug Lite is integrated into the Push hypergraphics editor. It is not available as a
stand-alone utility with ThinHelp and must be launched by loading an .HPJ file into Push.

e HelpDebug++ supports saving and printing of error and project statistics reports. There
is no option to save or print error reports in HelpDebug Lite.

e Custom third-party Help/Viewer DLLs and functions can be added to HelpDebug++’s
error-checking capabilities via an extension interface. HelpDebug Lite will check syntax

for custom macros, but it does not check for syntax errors in embedded window
statements other than ThinHelp’s own.

* HelpDebug++ will include an optional interface to ASETUP for automatic generation of
self-extracting, auto-starting installation archives for effortless creation of setup
packages for product updates, catalogs, stand-alone Help/Viewer projects and more.

e HelpDebug++ will support the multimedia embedding functions of Viewer 2.0, offering
among other things the ability to error-check 256 color SHGs.

{ewc THNHLP,THIN,!PUSHBMPS.LZH;TOP.BMP;0/0/34/0;;JI("'~'IDH_HELPDEBUG")}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

How HelpDebug checks your Help’s health

HelpDebug Lite is activated automatically when you load your project’s .HPJ file into Push.
First it checks to make sure all needed source files are found where you have referenced them
in the .HPJ file. Then it checks the [FILES] section for your RTF source documents.

Next it examines your source RTF files, character by character, and looks for anything
amiss...macros that aren’t authored properly, embedded window statements that don’t make
sense, bitmaps referenced to the wrong compressed graphics library, topics that aren’t linked
properly, and jump and popup macros that don’t go to the correct topic (a critical factor when
authoring with ThinHelp and something that the Help compiler won’t check for you). All results
are logged to its internal database.

Finally it displays its results window as a series of tables representing project statistics. A drop-
down list is provided at the top of the window allowing you to select the type of data you want to
see displayed.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;J1("'~'IDH_HELPDEBUG")}
{ewc THNHLP,THIN,!PUSHBMPS.LZH;separat2.bmp}

HelpDebug’s error reporting

Naturally the first thing you'll want to see is an error report, and ThinHelp’s error reporting goes
far beyond that of the Help compiler. It's an “instant bug list” for quickly repairing source file
errors prior to compiling and getting error-free compiles on the first try without the bother of
manually checking links and macros that the Help compiler doesn’t check.

Here’s a list of the types of errors which HelpDebug will report that the compiler won’t catch.
The green bullets indicate items which users of the ForeHelp interface will not have to worry
about.

e invalid or incorrect interfile links

e invalid or incorrect JumpID and PopupID macros both within the current helpfile and in
all helpfiles found in the project directory which the current helpfile might reference

e topic titles used in more than one topic

e missing parentheses at the end of a macro (especially useful for debugging complex
nested macros)

e invalid macros, even macros-within-macros such as those used in IfThenElse() and
ChangeButtonBinding() macros

» footnote references (#, $, K etc.) with more than one character, a common occurrence
when migrating RTF source between versions of Word or between authoring tools

¢ illegal characters which Help cannot display; especially common with non-American
versions of Word

e improper data types used in ThinHelp’s custom macros and other custom API or DLL
macros used in your project

e missing or incorrectly referenced bitmaps in ThinHelp embedded window statements

e syntax errors in ThinHelp embedded window macros (something non-ForeHelp users
will find indispensable as they get used to ThinHelp’s use of tildes instead of commas)

e incorrect or invalid display parameters in ThinHelp embedded window statements

e incorrect semicolon usage in ThinHelp embedded window statements

When the analysis is finished, you’ll also have access to a number of other useful reports for
helping you discover files that don’t need inclusion, authoring errors in browse sequences and
misplaced keywords. HelpDebug Lite is a vast improvement over the error-checking provided
by the Help compiler and it’s certain to save both time, effort and mental stress for any Help
developer.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~'IDH_HELPDEBUG")}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

HelpDebug step by step

1. Activate HelpDebug to error-check your Help project by loading the .HPJ file into Push.
Click File from Push’s top menu bar and selecting Read Help project (.HPJ) File....
You will be presented with a Windows File|Open dialog box for selecting the .HPJ file.

2. In anywhere from a few seconds to a minute or so you’ll see a report window pop up
over top of Push with HelpDebug’s findings. The first time you run HelpDebug you will
probably find that its window dimensions are inappropriate for your screen resolution.
(Resize the window to the maximum allowable screen width for better display. When
the window is closed these dimensions will be saved as defaults and used for all
subsequent executions of HelpDebug.)

3. HelpDebug’s error report is always the first report which appears on the screen. Use
this report as a guide to errors needing attention. You may need to repair your RTF
and/or HPJ source and Update the report several times before you get an error-free
analysis.

4. Before exiting HelpDebug and finishing your project, be sure to check the Required
files list to insure that your distributed Help project includes all these files as part of its
distribution. This list will also tell you if you have incorrectly referenced one or more
embedded window statements. For example, if you authored your helpfile with all
compressed graphics libraries included as Help baggage and you see one of your .LZH
files listed as a required file, this indicates that you have forgotten to add a “!” to the
LZH archivename parameter in one or more of your embedded window statements.

{ewl THNHLP, THIN,!PUSHBMPS.LZH;IDEA.BMP;0/0/0/0/0/255/0}Any additional reports can be
selected from the List selection drop-down list. Reports can also be sorted by topic or data
type, or by file for projects with multiple RTF source files, by clicking File, Topic or the data type
header on the header bar just beneath the List data caption, or by right-clicking within the data
display area.

{ewc THNHLP,THIN,'PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~" IDH_HELPDEBUG')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Using HelpDebug with multi-file Help systems

If you’re in charge of a large multi-file Help system, HelpDebug can provide you with a complete
checklist of all improper links in all files in the system. Checking interfile link integrity in multi-
file systems is a task that could previously take several days to complete with projects

containing several thousand links. HelpDebug takes care of it in just minutes.

{ewl THNHLP, THIN,!PUSHBMPS.LZH;0/0/0/0/0/255/0} HelpDebug Lite will not check the
integrity of compiled helpfiles. In order to completely test the integrity of a multi-file Help
system you must take the following two steps prior to testing each helpfile in the project:

1. Copy all needed helpfiles (and externally stored LZH files if necessary) to the root
directory of the helpfile you wish to analyze, or insure that the needed files and
extensions are referenced in WINHELP.INI or located within the Windows path.

2. Insure that all baggageable .LZH graphics libraries for this helpfile can be found at the
locations specified in its .HPJ file.

Now load the .HPJ file into Push.

These precautions should insure a minimum of “false error reports” based on HelpDebug’s
inability to find a component of the Help system which is referenced in the helpfile currently
being analyzed.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;J1("'~'IDH_HELPDEBUG")}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

What HelpDebug won’t check

HelpDebug Lite does an extremely thorough job of troubleshooting 16 bit helpfiles, but it is by no
means perfect. Here’s a list of some of the things it will not check for:

e incorrect placement of bitmaps in a topic

* hotspots or macros which jump to valid links which are not appropriate links

e incorrect versions of extension DLLs

e RTF formatting tags or WinHelp macros used exclusively in 32 bit helpfiles (HelpDebug
Lite is not intended for use with 32 bit Help projects)

e popups which are incorrectly coded to jump to secondary windows (these are reported
by the compiler if the popup link is located in the same helpfile as the anchor text)

e undocumented WinHelp macros. Some macros, such as Command(), Generate() and
JumpHash() are available for use in your Help projects and are supported by some
authoring tools (e.g. Help Writer’s Assistant and HDK) but were never properly
documented by Microsoft. HelpDebug Lite does not recognize these macros and will
report an error if they are used in your helpfiles. These errors do not mean that your
macros will not work, only that HelpDebug does not recognize the macro.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~"IDH_HELPDEBUG')}

Push’s project management features

Automatic, one-touch bug checking for Help projects

{ewl THNHLP, THIN,!PUSHBMPS.LZH;HLPDEBUG.BMP;0/0/0/0/255/255/255}The registered
version of ThinHelp includes an integrated “lite” version of our HelpDebug utility for checking the
integrity of your Help projects prior to compiling. HelpDebug includes its own online Help at
this link. HelpDebug runs automatically each time you open your .HPJ file into Push.

Automatic project handling and macro syntax checking

{ewl THNHLP, THIN,!PUSHBMPS.LZH;pushicon.bmp;0/0/0/0/0/128/128}Push is integrated with
HelpDebug and reads context IDs directly from your Help project. Simply load your .HPJ file
into Push and you’ll have a handy drop-down list of topic IDs to select from when you define
new jump or popup hotspots. Any macros or window definitions you specify in Push hotspots
will also be checked for accuracy.

File locations stored in .SEG data

{ewl THNHLP,THIN,!PUSHBMPS.LZH;brain.bmp;0/0/0/0/0/255/0}Push also remembers the
locations of the files it processes. When you load a bitmap into Push and add hotspot
information to it, the resulting information is saved in a separate file which contains both the
hotspot information and the name and location of the source bitmap on your system. The next
time you load a saved .SEG file, Push will automatically find and load the associated bitmap if it
still exists at its former location.

The MRU (Most Recently Used) list

{ewl THNHLP, THIN,!PUSHBMPS.LZH;pushbutn.bmp;0/0/0/0/0/128/0}Push keeps a list of the
nine most recently used .SHG or .SEG files in its File menu for easy access. Since Push is not
intended as a graphics processing tool, but as a hypergraphics editor, it only keeps track

of .SHGs and .SEGs, not bitmaps.

Preferences

{ewl THNHLP,THIN,!PUSHBMPS.LZH;magfold.bmp;0/0/0/0/0/255/0}In order to speed up the
process of debugging your Help and loading topic ID information for use in Jump/Popup
hotspots, Push can save the name and location of your current project, load it and automatically
run HelpDebug whenever Push is launched. The Preferences item under the File menu calls
up a dialog which retrieves and records the name and location of your Help project file.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~"IDH_PUSHHELP")}

Preparing to work with Push

{ewl THNHLP, THIN,!PUSHBMPS.LZH;pushicon.bmp;0/0/0/0/0/128/128}PUSH.EXE looks and
feels much like SHED.EXE, and does virtually everything all known versions of SHED can do
except for creating visible hotspots. If you are familiar with SHED.EXE you should have little
difficulty working with Push at a basic level.

Functional differences between SHED and Push

{ewl THNHLP, THIN,!PUSHBMPS.LZH;GEAR.BMP;0/0/0/0/0/255/0}The most important
functional differences between SHED and Push from an authoring standpoint are that Push can
save both true .SHG files compatible with Help and Viewer and also save the exact same
hotspot data to ThinHelp’s proprietary .SEG format which allows for superior compression
performance in your compiled projects. The .SEG data is stored separately from the bitmap in
its own file similar to the way World Wide Web image map generators save .MAP files. This
allows you to add hotspots to 256 color .BMPs for display in all common versions of
WINHELP.EXE and even offers the ability to assign hotspots to TrueColor JPEG bitmaps.

SHED, on the other hand, saves hotspot information in the same file as bitmap itself and is
limited to the inefficient RLE and/or LZ77 compression algorithms used by the Help and Viewer
compilers.

Push also allows forms of WinHelp-compatible .SHGs which SHED can’t handle. Help to RTF
will correctly extract .SHG files from Windows 95 32 bit helpfiles which have been compressed
using both RLE and LZ77 compression, and Push handles these files correctly for processing
and recompiling into 32 bit Help. SHED, on the other hand, can’t deal with these files. It

expects RLE- or LZ77-compressed files only.

{ewl THNHLP, THIN,!PUSHBMPS.LZH;CAUTION.BMP;0/0/0/0/0/255/0}Push is not capable of
generating metafile (WMF) based SHG files. Instead Push will convert any metafile loaded
into it into a bitmap. This usually degrades the display quality of the bitmap and increases its
file size unless the source .WMF was a “pseudo-metafile” generated by Paint Shop Pro from a
source bitmap.ing the file size. We recommend using SHED.EXE to process .WMF-based
SHGs.

The only other significant difference between Push and SHED is that Push does not support
visible hotspot boundaries. These will have to be drawn in manually using other graphics
software if they are required. They are so seldom used or needed in helpfiles (they are not
even available in HTML authoring) that we did not add this feature to this version of Push.

There are many more subtle differences in the features provided by SHED and Push. As you
progress through your first few Push hypergraphics you’ll discover how these features work and
where to apply them in your authoring. You'll find Push provides a lot more “room to grow” than
SHED does.

Working with the dropdown topic ID list

{ewl THNHLP, THIN,!PUSHBMPS.LZH;MAP.BMP;0/0/0/0/0/255/0}The most significant aspect of
Push’s behavior in comparison to SHED is the way it wires into your Help project. Because
Push is designed to work with ThinHelp, it doesn’t completely “mesh” with Help or Viewer (i.e.
you can’t simply generate Push’s proprietary .SEG file format, reference it in your project as
{bmc filename.seg} and expect it to work). On the other hand, it can extract and use data from
your helpfile in ways that SHED can't.

{ewl THNHLP, THIN,!PUSHBMPS.LZH;NOTE.BMP;0/0/0/0/0/255/0}Push relies on its own
integrated version of HelpDebug Lite to compile a list of all topic IDs from your source RTF

documents, and it allows you to either select these from a dropdown list or define new strings
for topics in other helpfiles or topics which you have not yet authored. Push will issue a
warning when no topic ID matching the one specified in the hotspot attributes was found by
HelpDebug, or if HelpDebug has not been applied in the current editing session. These
warnings will appear at least twice when you create popup and jump hotspots, but they have no
effect on Push’s ability to save the file and do not indicate problems in your compiled project,
unless of course the hotspot you specified was entered incorrectly.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~ IDH_PUSHHELP")}

Push hypergraphics step by step

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ pstartup’)}
Starting Push

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"pload')} Loading
bitmaps and hypergraphics

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ pedit')} Editing
bitmaps and hypergraphics

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"psave')} Saving
bitmaps and hypergraphics

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"puse')} Using
Push-generated bitmaps and hypergraphics

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"pnti')} Notes, tips
and issues

{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~ IDH_PUSHHELP')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Starting Push

1. Start PUSH.EXE. If you want to avoid a lot of alerts and save a little time searching out
topic ID strings while adding hotspots, debug your Help project before editing any new
hypergraphics. You can activate HelpDebug at any time during an editing session by
loading the project’s .HPJ file into Push. Click File and select Read Help Project (.HPJ)
File... to automatically start HelpDebug and compile a list of topic IDs for the the dropdown
list in the Hotspot Attributes dialog. (For more information on HelpDebug, see the
section devoted to this utility.) If you intend to work on the same Help project for several
sessions with Push, use the Preferences entry to select its HPJ file for automatic loading
and debugging at startup.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;TOP.BMP;0/0/34/0;;JI("'~ pushsteps')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Loading bitmaps and hypergraphics

2. There are several load options available for selecting graphics datafiles for editing in Push.

Here’s how to load each type:

a) If you want to work with existing .SHG files, load the .SHG into Push by clicking File
from the top menu bar and selecting Open SEG/SHG.... Note that Push can only
handle .SHG files generated from .BMP files. It will not process .SHGs generated
from .WMF metafiles.

b) If you want to work with a bitmap on your hard disk, load it into Push by clicking File and
selecting Open Picture File.... PUSH.EXE will import WMF, DXF, BMP, TIF, GIF, PCX

and JPG file formats.

c¢) If you want to use a bitmap which you have been editing in another graphics program,
you can copy this bitmap directly into Push’s editing window. Here’s how:
1. Select the bitmap from the graphics editor (Select All is the most commonly used
menu item for this function) and copy it to the clipboard.
2. Task-switch back to Push.
3. Click Edit from the top menu bar of Push and select Paste Bitmap. This option will
only be available if there is actual bitmap data on the clipboard which can be pasted.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;TOP.BMP;0/0/34/0;;JI("'~ pushsteps")}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Editing bitmaps and hypergraphics

3. Apply any needed filtering or scaling to the bitmap before adding hotspots. This will
usually insure the most efficient results. (See the associated Help topics for more
information on these features of Push.) Scaling can be applied after hotspots are defined
if you like. Push will ask whether you want your hotspots automatically reproportioned
when the rescaling operation is complete.

4. Create your hotspots just as you would with SHED.EXE or an image map tool by clicking
and dragging the mouse to create rectangular hotspots. These hotspots can be moved
and resized by clicking anywhere inside the hotspot and dragging the entire hotspot to its
new location. The status bar at the bottom of Push’s window will provide information on
hotspot coordinates and attributes.

If you want more precise control over the size or location of the hotspot, use Push’s zoom
function (under the View menu) to zoom in on the graphic and tweak the hotspot size.

5. a) Add hotspot ID information to your hotspots by double-clicking inside the hotspot. A
Hotspot Attributes box will pop up which functions almost identically to SHED’s, with
the exception of a handy drop-down list of jumps and macros available in the Binding
section. This list can be used to insure correct spelling of any jump or popup ID string.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLRED.BMP;0/0/0/0/192/192/192} Note: You
are likely to encounter difficulties if you attempt to create a new hotspot directly on
the surface of a bitmap smaller than 14x14 pixels in size. Generally speaking it is
more sensible to attach macros to these bitmaps in your RTF source than to add
hotspots to them using Push.

b) Add metafile overlays to hotspots by pasting them directly from the clipboard using
either Ctrl+V or the Paste Metafile entry under the Edit menu. A hotspot can have
both a metafile overlay and a hotspot attribute, but you can only have one metafile
overlay per hotspot.

{ewc THNHLP,THIN,!PUSHBMPS.LZH;BULLRED.BMP;0/0/0/0/192/192/192} Note: You
must plan your metafile overlays carefully since Push doesn’t allow the same
flexibility with overlapping hotspots that SHED allows. Use two or more smaller,
identically-attributed rectangular hotspots to achieve the same effect as an
overlapped hotspot. While this takes a little more effort than working with SHED
overlapping hotspots, you’ll never have to worry about hotspot order again, and we
recommend avoiding overlap with SHED too for this very reason.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;J1("'~"pushsteps')}
{ewc THNHLP,THIN,!PUSHBMPS.LZH;separat2.bmp}

Saving bitmaps and hypergraphics

6. Save your graphic and/or hotspot information using the following guidelines:

a) If you have been working on an .SHG file or an existing .SEG file on your hard disk,
clicking File and selecting Save will save the edited .SHG or .SEG. .SEGs can be
saved as .SHG files and vice versa. Saved .SHG files will be fully compatible
with .SHGs generated with all known versions of SHED, SHED2, MVSHED and
Enhanced SHED. If modified .SHGs are to be saved as .SEG files for an additional
reduction in compiled file size, make sure you also save the SHG’s source bitmap as
a .BMP prior to closing Push.

b) If you have been working on a new hypergraphic, you will need to save it as either
a .SEG file or as a SHED-compatible .SHG file. Click File and select Save. When the
File|Save dialog pops up, save and you will be prompted to give a name to your
new .SEG file. .SEG file naming convention follows the name of the bitmap file
with which it will be used, so if your bitmap is named MYICON.BMP, the .SEG file
should be named MYICON.SEG.

c) If you are working with a non-BMP or non-JPEG bitmap, or if you have modified the
image using Push’s scaling or matrix filters, you will also need to save the bitmap in a
ThinHelp compatible format. ThinHelp compatible bitmaps should be saved in either
BMP or JPG format. It is strongly recommended that modified TrueColor bitmaps
designed to be displayed as JPEG graphics be saved twice...once as a .BMP
“master” and at least once as a JPG for inclusion in your project. (See the section on
exporting for more information on saving JPEGs.)

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~"pushsteps')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Referencing Push-generated bitmaps and hypergraphics in source
RTF files

7. Insure that your modified graphics, .SHGs and/or .SEGs are correctly added to your
project using the following guidelines:

a) If you edited and saved an .SHG file, you can either treat this as a normal .SHG file to
be referenced in the usual fashion, or you can display it as a ThinHelp embedded
window.

Keep in mind that 256 color SHGs are only recommended for use with 32 bit helpfiles,
Viewer projects, or projects developed on platforms which support Microsoft's SHG file
format. If you wish to display 256 color .SHGs in 16 bit helpfiles we strongly
recommend displaying them as ThinHelp embedded windows for full compatibility with
Windows NT and Windows 3.1/3.11.

Also be aware that the end user may encounter scaling problems when attempting to
print normal .SHG files. If you wish to insure accurate printing of the .SHG’s bitmap
data, we recommend displaying any .SHGs which originated as .BMPs as ThinHelp
embedded windows.

b) If you created or edited a .SEG file, this file must be added to same LZH-compressed
archive that contains the bitmap with which it is associated. If this bitmap is a JPEG
graphic, then the .JPG file and its associated .SEG file must be included in the same
LZH-compressed graphics library. A JPEG and a .SEG file cannot be added to baggage
without LZH compression...the “no-compression-needed” feature of ThinHelp is reserved
exclusively for non-hotspotted JPEGs.

8. If you are creating a ThinHelp embedded window, reference the bitmap file in your RTF

source using the appropriate embedded window syntax. Instead of using a .BMP or .JPG
extension in the file’s name, it should be referenced with no extension at all. This will tell

ThinHelp to load both the bitmap and the associated .SEG file when it displays the bitmap.
For example, if you were embedding MYPIC.JPG and MYPIC.SEG in a helpfile, and the
bitmap was stored as a compressed graphic in BITMAPS.LZH, you would reference it as:

{ewx THNHLP,THIN,!BITMAPS.LZH;MYPIC}
...if BITMAPS.LZH is to be stored inside the helpfile as baggage, or...

{ewx THNHLP,THIN,./.BITMAPS.LZH;MYPIC}
...if BITMAPS.LZH is to be stored separately on disk in the helpfile’s directory.

9. Compile and test. If you encounter problems which were not covered in this topic, jump to
the troubleshooting section for more help.

{ewl THNHLP, THIN,'PUSHBMPS.LZH;CAUTION.BMP;0/0/0/0/0/255/0}Be careful not to
use .SEG extensions in your embedded window statements. ThinHelp can’t handle a
hotspotted bitmap referenced as BITMAP.SEG.

{ewc THNHLP,THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~ pushsteps')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Notes, tips and issues

{ewc THNHLP,THIN,!PUSHBMPS.LZH;CHECKMRK.BMP;0/0/0/0/255/255/255} Be sure to use
the appropriate HCRTF.EXE-compatible abbreviated macro names when authoring .SEG
and .SHG hotspot macros for 32 bit helpfiles. HCRTF.EXE won’t automatically convert
JumplD to JI, for example, when it sees this macro in the embedded window statement.
Most 16 bit Help macro syntax will function properly when compiled in a 32 bit project but
some macros will not.

{ewc THNHLP,THIN,!PUSHBMPS.LZH;CHECKMRK.BMP;0/0/0/0/255/255/255} Any graphics
software capable of handling bitmaps as metafiles can be used to generate metafile-format
graphics usable by PUSH.EXE. JASC Inc.’s Paint Shop Pro is a shareware program which
will allow you to open virtually any type of bitmap, cut or copy all or part of it to the clipboard,
and paste it into a Push hotspot as a stretchable metafile overlay. Try it...the results range
from satisfying to disgusting, and it's another unique technique to add to your Help authoring

toolkit.

{ewc THNHLP,THIN,!PUSHBMPS.LZH;CHECKMRK.BMP;0/0/0/0/255/255/255} The file format
for .SEG files is documented in SEG.H if you require it for a particular application or
extension to your project.

{ewc THNHLP, THIN,!PUSHBMPS.LZH: TOP.BMP;0/0/34/0;;JI("'~ pushsteps')}

{ewl THNHLP, THIN,!
PUSHBMPS.LZH;CAUTION.BMP;0/0/0/0/0/2
55/0}If you decide to use JumplD() and/or
PopuplD() macros in Push hotspots in place
of standard Jump/Popup hotspots, shorten
the references to their abbreviated forms (JI
or PI) prior to saving the .SEG file. This will
prevent problems with compiled 32 bit
helpfiles which rely on abbreviated versions of
Help’s macro names.

Scaling bitmaps

{ewl THNHLP,THIN,!PUSHBMPS.LZH;pushicon.bmp;0/0/0/0/0/128/128}Push offers intelligent
scaling of screenshots and other difficult-to-display bitmaps so that they can be shown within a
desired Help window size regardless of the end user’s screen resolution. It's a quick solution to
the problem of displaying large screenshots in a minimum of Help window space, and ideal for
quickly creating high-quality “thumbnails” of large graphics, especially JPEGs, for use as “pick-
and-click” menu bitmaps. It is not suited to reducing the sizes of all your bitmaps. Size
reduction nearly always produces a degree of image quality degradation regardless of the
process used.

Steps

1. Select a bitmap you wish to rescale.

2. Start PUSH.EXE and load the bitmap into Push from File|Open Picture File.... [fit's
an .SHG file you will need to select File|Open SEG/SHG.... You may load non-BMP,
non-JPEG, non-SHG graphics but they must be a Push-compatible file format.

3. Select Edit from the top menu bar and click one of the three Scale ratios.

1:2 scales the bitmap to one-half its width and one-half its height, or one-quarter of its
original area.

2:3 scales to two-thirds width and two-thirds height, or a little less than one-half of the
original area.

3:4 scales to three-quarters by three-quarters of the original dimensions.

4. If you have a 256 color display, what you see on your screen after the reduction may
not match the actual appearance of the bitmap in your helpfile. Push converts bitmaps
to 16 million color TrueColor bitmaps in the scaling process. In order to preview the
scaled bitmap, select Edit again and click Reduce to 236 colors. When the reduction
is complete, what you see on your screen will be an accurate rendering of the rescaled
graphic. Although scaled bitmaps generally look best when preserved at 16 million
colors, most reduced screen shots and line drawings, as well as thumbnail-sized
TrueColor bitmaps, will produce quite acceptable display results when reduced to 256
colors.

5. In most cases, reducing a rescaled bitmap to 16 colors will result in an unusable
graphic. Before experimenting with reduction to 16 colors in a scaled graphic, it is
recommended that you save your work. Select File and click Save Picture As.... You
can select any supported format for saving the graphic. (At 256 color depth, BMP is
usually the preferred format.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLRED.BMP;0/0/0/0/192/192/192} Note: If
there is a chance that further processing of the bitmap may be required, do not save
itas a JPEG. Always preserve a .BMP copy of any bitmap you wish to include in
your project as a .JPG. Use the TrueColor .BMP, not the .JPG, as the base bitmap
for all future editing. (See the section on exporting for information on saving
JPEGs.)

6. In many cases, particularly with photorealistic renderings, reducing a scaled bitmap to
256 colors for saving as a .BMP will result in a negative effect on file size. You may
wish to try saving both a .JPG and a .BMP to see which produces the smallest file size
when added to your helpfile’s baggage. Sometimes you have to actually add a .BMP to
an LZH graphics library and tally the difference in file sizes to determine which method
offers the best overall compiled size.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~ IDH_PUSHHELP")}

Push’s matrix filters

{ewl THNHLP,THIN,!PUSHBMPS.LZH;pushicon.bmp;0/0/0/0/0/128/128}In addition to its scaling
algorithms, Push includes filters for improving the esthetic appearance of rescaled images and
TrueColor bitmaps. These include a Sharpen, Soften, Brighten and Darken. They should
behave exactly as you'd expect based on their names, and if you’'ve dabbled with programs
such as Paint Shop Pro, Hijaak, Photoshop or PhotoStyler, you already have a good idea what
to expect from them.

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ filtguid')} General
guidelines

{ewc THNHLP,THIN,!

PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ filtbrit')} Brighten
and darken

{ewc THNHLP, THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~filtsoft')} Soften

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI(*'~ filtsharp')}

Sharpen
{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~"IDH_PUSHHELP")}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

General guidelines

The four matrix filters in Push are designed exclusively for use with TrueColor images. If you
do not load a TrueColor image into Push, then the only time you will have access to these filters
is after you scale a bitmap. (Scaling always results in a TrueColor image.)

Multiple passes of these filters on the same bitmap are not merely permissible, but often
recommended for optimum results. You will seldom require more than two passes of any filter
to achieve optimum appearance.

Reduction to 256 colors and save-as-BMP are highly recommended for screen shots and line
drawings which have been rescaled and then filtered. Generally speaking, screen shots and
line drawings saved as 256 color LZH-compressed .BMPs will result in smaller compiled
projects than the same bitmaps saved as .JPG graphics. Experiment with the available quality
options when saving as .JPG to determine the best ratio of quality to file size.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~ pushfilter')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Brighten and darken

The brightening and darkening filters are intended for use with complex (usually photorealistic)
images which lose critical details when scaled. If possible the brightening or darkening should
be done before scaling so that the best possible contrast balance is passed along to the
reduced graphic. The resulting effect varies from image to image, however, and the actual
results for any given image can only be determined through experimentation.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~ pushfilter')}

{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}
Sharpen

The sharpening filter will likely become your most-used Push matrix filter. It should never be
applied to a bitmap prior to scaling unless this bitmap is not going to be scaled down, and it
should never be needed with unscaled screen shots or line drawings.

If you only want a single size reduction of 3:4 or 2:3, then you should apply this filter after
scaling the image. If you need a reduction of 1:2, or if you intend to use multiple applications of
the scaling filters, you may want to try reducing by 3:4, applying a single pass of the sharpening
filter, then reducing by 3:4 again and sharpening a second time (and perhaps a third) after that.

Effective use of the sharpening filter requires some experimentation. When scaling screen
shots, you will usually (but not always) achieve the best esthetic appearance with a single pass
of the sharpening filter and the most accurate appearance with two passes. A second pass of
the sharpening filter on a reduced bitmap will usually result in speckling, whereas one pass, a
further reduction, and then another pass will keep speckling to a minimum. (Many third-party
graphics processors include de-speckling filters if additional fine-tuning is required on the
bitmap. Despeckling will generally, but not always, reduce the bitmap’s space requirement
when the bitmap is added to an LZH archive.)

Sharpening can be applied to highly detailed thumbnails of reduced photorealistic graphics to
enhance subject detail in the reduced graphic. This nearly always results in a degree of
distortion, but the distortion is generally pleasing to the eye and often makes the thumbnail’s
subject matter more intelligible.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;J1("'~"pushfilter')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Soften

This filter will also require experimentation. It produces a blurring effect in your graphic which
is usually much less drastic than Blur filters available in many graphics processing utilities.

One trick used by application-oriented Help experts for making crisp reductions of screen shots
is to soften a screen shot prior to any serious downscaling. Push’s scaling filters are optimized
to produce clear results when reducing your graphics, so this may not be desirable unless the
default font size of the original screen shot is 12-point bold or larger.

On the other hand, if you have a photorealistic graphic with a lot of high-contrast detail, such as
sunlight through trees, sun on water or a sunlit snowy landscape, you may find that a pass of
the softening filter prior to scaling will enhance the overall appearance of the scaled graphic.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~pushfilter')}

Push scaling and filter examples

{ewl THNHLP, THIN,!PUSHBMPS.LZH;pushicon.bmp;0/0/0/0/0/128/128}This topic presents two
sample images and demonstrates the results that can be obtained using various combinations
of scaling and filtering.

Example 1: a thumbnailed screen shot

This first example shows a Notepad screen shot without scaling, and the same screen shot after
a 1:2 reduction in size, two passes of the sharpening filter, and a color reduction to 256 colors
optimized. The window borders in the first reduction are a little speckled, but the text is still
readable.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;NOTEPAD1.BMP;0/0/0/0/0/255/0}

Now a second reduction is applied. The image on the left was scaled down from the original
Notepad screen shot by a ratio of 1:2, reduced again by 1:2, then sharpened. The image on
the right was reduced, then sharpened twice, then reduced a second time and sharpened twice
again. The difference is subtle in this example, but it could be more striking with other screen
shots or less severe reductions in size. You’ll have to experiment to achieve the best results
with a given type of image. Use the Reload option under the File menu to reload the original
graphic and start over if you don't like the results of your experiments.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;NPRSHARP.BMP} {ewc THNHLP, THIN,!
PUSHBMPS.LZH;NPRSHARP.BMP}

Example 2: a “difficult” photorealistic image

Now let’'s see what happens with a TrueColor photorealistic graphic. (These examples have
been reduced to 256 colors for demonstration purposes.) If you have a 256 color display, scroll
the screen so that the Notepad bitmaps are no longer visible to prevent palette conflict
distortion.

The next photo was poorly shot. We know that Help authors very often don’t have top-quality
graphics to work with, which is why a poorly-rendered image was selected here as an example.

{ewr THNHLP,THIN,!PUSHBMPS.LZH;PHOTO.BMP;0/0/0/0/255/255/255}When reduced by
1:2 twice to create the top right thumbnail image, the result is a dark, difficult-to-understand
image. The image at the bottom right represents the same thumbnail after being Sharpened
twice, then Brightened twice. You'll probably find that the bread and cheese are much more
readily identifiable in the lower right image than in the one in upper right.

This example demonstrates how important it is to have quality original graphics to work with.
Although some enhancement was achieved using Push’s filters, neither thumbnail looks like the
appetizing feast it was intended to represent, and there isn’t a lot you can do about this without
heavily editing the original bitmap. The wine glass, for example, is barely identifiable in the
original graphic and disappears completely in the reduction. It will require a graphic artist’s
hand to enhance it properly.

A note about conflicting 256 color palettes

{ewc THNHLP, THIN,!PUSHBMPS.LZH;NOTE.BMP;0/0/0/0/0/255/0} The scaling and filtering
examples in this topic produced scaled bitmaps with conflicting 256 color palettes. If the three
Notepad bitmaps or the three bread-and-cheese shots had been displayed without modification,
significant color distortion would be visible on 256 color displays. We dealt with this problem by
assigning a shared palette to each set of images so that all the Notepad screenshots used the

same palette and all three photo images used another shared palette.

If you intend to display both the original image and its thumbnail on the screen at once, or
multiple thumbnails in the same area of the topic window, you should create a matched,
optimized 256 color palette for use by all thumbnails so that color distortion in 256 color display
mode will be kept to a minimum. 256 colors is now the standard for Windows video display.
You should never assume that your user has HiColor or TrueColor capability, or the knowledge
or desire to switch to this mode.

{ewl THNHLP, THIN,!PUSHBMPS.LZH;HLP-
BUTT.BMP;0/0/2/0;;JI("techdata.hlp>main'~'ID_PALETTE")}For more information on palette
matching and palette-related issues with ThinHelp, browse the technical advice topic in the main
ThinHelp helpfile linked to this button.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~'IDH_PUSHHELP")}

Converting bitmaps

{ewl THNHLP,THIN,!PUSHBMPS.LZH;pushicon.bmp;0/0/0/0/0/128/128}In addition to being a
hypergraphics creator, Push is also a versatile import/export filter and a simple graphics
converter. Stand-alone graphics processing software is much better suited to the task of
converting multiple bitmaps, but Push can certainly handle most of your single-bitmap
conversion needs.

To convert a bitmap from one format to another using Push, simply click File, select Open
Picture File... and choose from the available file formats listed under Files of type: in the
Graphic Import dialog box. Then save your bitmap by clicking Save Picture As... and

selecting the type of file you want to save from the dialog box at the bottom of the window.

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~'conva')} Accepted
formats for import

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~'convb')} Accepted
formats for export

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"convc')}
Resolution-independent export

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~'convd')} Pasting
graphics from the clipboard

{ewc THNHLP,THIN,!

PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~'conve')} Color
depth reduction

{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~ IDH_PUSHHELP')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Accepted graphics formats for import

By default, Push will import SHED’s SHG-format hypergraphics, TIFF-format graphics, PCX,
Windows standard BMP bitmaps, DXF (AutoCAD) format vector graphics, GIF, JPEG and WMF
metafiles. The 16 bit version of Push can make use of any additional MS Graphic Import Filters
you may have on your system for use with other applications, which may give you import facility
for dozens of different formats.

Note that PUSH can also import RLE-compressed .BMP files, but ThinHelp’s DLLs won’t be
able to display them. You might want to load the .BMP and save it without alterations just to
make sure. The load-and-save will strip any RLE compression that might have been applied to
the bitmap.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;BULLRED.BMP;0/0/0/0/192/192/192} Not all MS
Graphic Import Filters will produce acceptable results expected when importing,
exporting and rescaling. Metafile-based SHG, WMF, CorelDraw and AutoCAD, and other
vector-based graphics are likely to suffer from noticeable degradation in the conversion
process. Try to stick with bitmaps (GIF, PCX, BMP, etc.) where possible as source files
when converting from one format to another with Push.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~"pushconv')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Accepted graphics formats for export (convert-and-save)

Valid formats for saving with both 16 bit and 32 bit versions of Push include SHG (Microsoft
Segmented Hypergraphic format), WMF (Windows metafile format), BMP (Windows-compatible
bitmap), JPG (JPEG-compressed), and TIF (Tagged Image Format).

SHG format export:

The file is saved as a Microsoft-compatible BMP-based .SHG graphic without resolution
information. The removal of resolution information from the .SHG insures accurate display at
all screen resolutions in compiled Help projects but may result in scaling distortion when printed
if the .SHG is not displayed as an embedded window.

BMP format export:
No additional options are available. The file is saved as a standard Windows .BMP.
WMF format export:

No additional options are available. The file is saved as a standard Windows .WMF metafile.
Keep in mind that WMFs are not just a different format, but an entirely different type of graphic.
Exporting bitmaps from Push as metafiles is not recommended.

TIFF format export:

{ewr THNHLP,THIN,!PUSHBMPS.LZH; TIFSAV2.BMP;0/0/0/0/0/255/0}Four different options
are available for export as .TIF files as shown in the diagram at right, but please keep in mind
that none of these options will produce a bitmap which ThinHelp can display in your projects.
This option should be reserved for saving TrueColor bitmaps for cross-platform compatibility in
environments where you need to work with graphic artists or printers who require .TIF format
graphics from you, or for saving FAX-compatible .TIF graphics.

JPEG is a lossy form of graphic compression. The lossless compression offered by Push’s
TIFF export option allows you to save a high-quality, compressed TrueColor bitmap when
further editing of a photorealistic image may be required.

JPEG format export

{ewr THNHLP, THIN,!PUSHBMPS.LZH;JPEGSAV2.BMP;0/0/0/0/0/255/0}This diagram shows
the five options available when you select JPEG as the filetype for saving your bitmap. Each
option provides increasingly better display quality in the saved graphic at the expense of
increased filesize. Experiment with individual bitmaps to see which level of output quality
produces the best balance of reduced file size to bitmap display quality.

If you do not have a bitmap viewer, your Web browser can double as a bitmap preview
application for browsing JPEGs, or you can simply reload the saved JPEG into Push. Save-as-
JPG should only be used for bitmaps you are certain you want to have displayed at color
resolutions higher than 256 colors.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~ pushconv')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}
Resolution-independent export...no more MRBC blues

The compatibility and bitmap-handling enhancements provided by Microsoft’'s multi-resolution

bitmap creator (MRBC.EXE), MediaView SHED and Stephen Jenkins’ SHGREZ modifying tool
are no longer needed with the introduction of Push.

Push exports resolution-independent SHGs for accurate, no-surprises display as normal Help
bitmaps and adds the advantage of perfect printability if displayed as ThinHelp embedded
windows. The scaling distortion which you may have observed in some helpfiles need never
occur with Push. Simply load and save your SHGs with Push to insure proper scaling at all
resolutions, and display it as a ThinHelp embedded window to insure accurate printing.

{ewc THNHLP, THIN,'PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~ pushconv')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Pasting graphics from the clipboard

Any bitmap file format not compatible with Push’s supported import filters can be pasted from
the clipboard directly into PUSH.EXE and saved in any of Push’s supported file formats.
Unfortunately, not all graphics formats are paste-compatible. In order to be pasted into Push,
the bitmap must be copyable as a standard Windows DIB (device-independent bitmap) or DDB
(device-dependent bitmap) format. Most graphics programs have this capability, but some do
not.

Some bitmap editors, Paint Shop Pro for example, may also attempt to copy Windows metafile
(WMF) format information to the clipboard. This type of data can only be pasted into hotspots
as a metafile overlay...it cannot be used as a source bitmap to which hotspots can be added.
This task still requires the use of SHED.EXE.

When pasting bitmaps from the clipboard you must use the Paste Bitmap item from the Edit
drop-down menu or the Shift+insert hotkey combination. (Ctrl+V pasting is reserved for
pasting metafiles into hotspots or pasting context strings or macros in the Hotspot attributes
dialog.)

When copying non-JPEG high-resolution graphic data for saving as JPEG data it is strongly
recommended that you switch your display mode to HiColor, or -- if possible -- TrueColor (16
million color depth) prior to the copy-and-paste operation. If you do not switch to a high
resolution display mode, any bitmap data copied to the clipboard will be limited to the color
depth available on your system at the time of the copy operation.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~"pushconv')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Color depth reduction

If you select a color reduction from the Edit menu, Push will perform color reduction on
TrueColor and HiColor bitmaps and JPGs. The only two reduction options available from the
Edit menu are 16 and 236 colors. Reduction to 236 colors is recommended prior to saving
scaled screen shots. If the bitmap was originally a 16 million color bitmap, or the use of scaling
filters resulted in a 16 million color bitmap, this format can be saved as well, but bitmaps with 16
million color depth cannot be used as ThinHelp embedded windows unless they are either
converted to JPEG graphics or reduced to 256 colors.

Default palette

There are two options for 236 color reduction: Reduce using Default palette and Reduce
using Optimized palette. If Default palette is selected, the saved bitmap will appear in your
helpfile exactly as it appears in Push’s editing window. It will use the predefined standard 256
color VGA palette.

Optimized palette

Reducing color depth to the colors defined in the default palette will usually result in a vastly
inferior image to the same image reduced to 236 colors optimized. The optimization process
will automatically update the bitmap display in Push’s editing window, and what you see after
the color reduction is precisely what you will get when using the graphic in your
helpfile...provided, of course, that there are no palette conflicts between this bitmap and any
other bitmaps in the same topic, and provided you are running Push on a system capable of 256
color display.

{ewl THNHLP, THIN,!PUSHBMPS;NOTE.BMP;0/0/0/0/0/255/0}Push does not permit you to
increase the color depth of your graphics except when scaling. Color depth reduction is a one-
way process.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~ pushconv')}

Working with metafiles in Push

{ewl THNHLP, THIN,!PUSHBMPS.LZH;HLP-
BUTT.BMP;0/0/2/0;;JI("thinhelp.hlp>main'~"ID_METAFILE')}Push allows you to place metafile
graphics directly over top of embedded window bitmaps displayed in your projects. It offers this
capability with both .BMPs and .JPGs destined for use in ThinHelp-enhanced helpfiles. These
metafiles cannot be saved as separate graphics files from Push except as part of ThinHelp-
specific .SEG files. For more information about metafile overlays and how they are used with
ThinHelp, see the introductory topic linked to this Help button before continuing.

Creating metafiles

Metafiles are created with vector-based drawing tools such as CorelDraw, Microsoft Draw, Serif
DrawPlus or our own FormPad. However, any graphics software capable of handling bitmaps
as metafiles can be used to generate metafile-format graphics usable by Push.

Adding metafiles to ThinHelp bitmaps
1. Load the bitmap into PUSH.EXE using any of the accepted methods.

2. Define a hotspot area of any size using the mouse cursor in the same fashion as you
would with SHED.EXE or an image map generator.

3. Switch to your graphics software. Select the vector graphics object (or use Select All
from MS Draw to select a graphic composed of multiple objects) and Copy it to the
clipboard.

4. Switch back to Push and either use Ctrl+V from the keyboard or Paste Metafile from
the Edit menu. If the graphics software truly supports metafile cut-and-copy, your
graphic should appear in the Push hotspot.

5. Resize the hotspot to the appropriate dimensions. The corner regions of the hotspot
will change to “handles” when you move your mouse cursor over them. If you find that
parts of your graphic have “disappeared” off the bottom or right edge of your hotspot,
simply resize the hotspot until the entire graphic is visible.

6. Move the reshaped hotspot to the desired position over your graphic.

7. If you want to add a jump, popup or Help/Viewer macro to your hotspot, double-click the
hotspot to call up the Hotspot Attributes dialog. This dialog offers identical
functionality to the Attributes dialog in SHED.EXE with one exception: it provides for
invisible hotspot boundaries only.

8. Save the .SEG file.

9. See THINHELP.HLP’s section on working with metafile overlays for help with including
the metafile with your project.

Notes, tips and issues

{ewc THNHLP, THIN,!PUSHBMPS.LZH;CHECKMRK.BMP;0/0/0/0/255/255/255} For some
interesting special effects, try copying bitmap graphics into Paint Shop Pro and pasting them
into Push hotspots. Paint Shop’s unusual design uses a default which copies metafile
information to the clipboard even if the source image is not a vector graphic, meaning that
you can paste icons, small photos and other types of non-vector-based images into Push
hotspots. You won’t get the transparency effects of true vector graphics, however, and you'll
have to do some careful stretching and sizing of the hotspot to avoid distortion of the overlaid

image.
{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~"IDH_PUSHHELP")}

Troubleshooting Push

{ewc THNHLP, THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("*~ ptruba’)} Message:

Can’t find Topic ID in help project’s MAP

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"ptrubb’)} SHG
hypergraphics look strange in large font display modes or won’t print

properly

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ ptrubc')} Scaled

graphics look poor

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"ptrubc2’)} Saved
JPEG graphics are of poor quality

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"ptrubd')} Filters
won’t work

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ ptrube’)}
complains “hotspot misses ID information” and won’t save

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ ptrubf')} Scaling or
filtering went “one step too far”

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ ptrubh')} SEG
hotspots won’t execute the desired action in the compiled project

{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~"ptrubh2')} A .BMP

file that looks fine in Push won’t show up in the compiled Help or Viewer
title
{ewc THNHLP,THIN,!
PUSHBMPS.LZH;DOCUMENT.BMP;0/0/0/0/0/255/0;;JI("'~ ptother')} Other
problems
{ewc THNHLP,THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~" IDH_PUSHHELP")}

{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Message: Can’t find Topic ID in Help project’s MAP

{ewl THNHLP,THIN,!PUSHBMPS.LZH;DOCBAG2.BMP;0/0/0/0/0/255/0}This message appears
when you define a jump or popup link which is not associated with a topic which HelpDebug
was able to find when it analyzed your project. This message also appears when you try to
enter a jump or popup hotspot and you have not yet loaded your .HPJ file for HelpDebug’s
analysis. If the hotspot ID or macro information is entered correctly, the warning can be

ignored.
{ewc THNHLP, THIN,!PUSHBMPS.LZH;TOP.BMP;0/0/34/0;;JI1("'~ pushtrouble')}

U

ush

{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

SHG hypergraphics look strange in large font display modes or won’t
print properly

{ewl THNHLP,THIN,'PUSHBMPS.LZH;DOCBAG2.BMP;0/0/0/0/0/255/0}The .SHG was probably
never loaded and saved with Push. PUSH.EXE formats your saved .SHG file in a manner that
insures that its proportions are never altered when it is displayed on systems with screen
resolutions different from yours.

Printing may be a problem with some bitmaps depending on how they were generated. If
loading and saving an .SHG file with Push does not solve your problem, you may need to format
the .SHG as a ThinHelp embedded window. .SHG files saved by Push and referenced as
standard Help .SHGs may suffer scaling problems if printed.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;TOP.BMP;0/0/34/0;;JI("'~"pushtrouble')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Scaled graphics look poor

{ewl THNHLP, THIN,!PUSHBMPS.LZH;DOCBAG2.BMP;0/0/0/0/0/255/0}Rescaled graphics
won’t always produce the results you want. Crisp scaling is almost a “holy grail” for context-
sensitive help specialists. Push will produce better results than many commercial products, but
it is by no means perfect. There are times when you simply won'’t get the kind of quality that
you or your client expect.

If you expect your scaled graphics to look as crisp and perfect as the downsized screenshots
you’'ve seen in some of Microsoft’s helpfiles, you will be disappointed no matter what tool you
use. Microsoft uses a proprietary process to create their screen shots.

{ewl THNHLP, THIN,!PUSHBMPS.LZH;CAUTION.BMP;0/0/0/0/0/255/0}One trap to avoid when
using Push’s scaling filters is to not reduce color depth until your bitmap has been scaled down
to the size you want. Each time you reduce color depth after scaling, you lose picture quality.
Wait until the final scaling operation has been completed before reducing the image’s color
depth to insure the highest possible quality in your resulting bitmap.

{ewl THNHLP, THIN,!PUSHBMPS.LZH;IDEA.BMP;0/0/0/0/0/255/0}You might also try applying
Push’s sharpening filter a second time to the same screen shot. Very often two application of
the sharpening filter instead of one will result in a much crisper appearance, but this often
comes at the expense of a little speckling, especially with screen shots.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI1("'~ pushtrouble')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Saved JPEG graphics look poor

{ewl THNHLP, THIN,!PUSHBMPS.LZH;DOCBAG2.BMP;0/0/0/0/0/255/0}Unlike most Windows
graphics converters capable of JPEG export, Push makes use of the full power of its DaVinci
export filters to offer you a range of export options.

{ewr THNHLP, THIN,!PUSHBMPS.LZH;JPEGSAV2.BMP;0/0/0/0/0/255/0}This diagram shows
the five options available when you select JPEG as the filetype for saving your bitmap. Each
option, from 10 to 80, provides better display quality in the saved graphic, and you’ll have to
experiment with individual bitmaps to see which option produces the best balance of reduced
file size to bitmap display quality by viewing save JPEGs in your browser of choice. If you do
not have a bitmap viewer, your Web browser can double as a preview application for browsing

JPEGSs, or you can simply reload the saved JPEG into Push.
{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI1("'~"pushtrouble')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Filters won’t work

{ewl THNHLP,THIN,!PUSHBMPS.LZH;DOCBAG2.BMP;0/0/0/0/0/255/0}Push’s matrix filters
function only when applied to 16 million color TrueColor graphics. They cannot be applied to
256 color graphics. You will either need to increase the color depth of the graphic using
another graphics processing tool, or else scale the graphic using one of Push’s scaling presets.
Scaling always results in a TrueColor graphic, so Push’s filters are always available immediately
after a scaling operation.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;J1("'~"pushtrouble')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Push complains “hotspot misses ID information” and won’t save

{ewl THNHLP, THIN,!PUSHBMPS.LZH;DOCBAG2.BMP;0/0/0/0/0/255/0}You have probably
clicked and dragged a very small hotspot somewhere on your bitmap and failed to add either a
metafile or a hotspot attribute (jump, popup or macro) to this hotspot. You'll have to find the
stray hotspot and either add an attribute or erase its bounding box.

Find this stray hotspot by using the Tab key to tab one by one through all hotspots on the
graphic. Once you track down the hotspot, use the Delete key to erase it. Unless you have
other stray hotspots, you will now be able to save your .SEG file.

{ewc THNHLP,THIN,!PUSHBMPS.LZH;TOP.BMP;0/0/34/0;;JI("'~"pushtrouble')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

Scaling or filtering went “one step too far”

{ewl THNHLP, THIN,!PUSHBMPS.LZH;DOCBAG2.BMP;0/0/0/0/0/255/0}Push’s filtering and
scaling features are relatively quick and simple, and no Undo feature is available for undoing
the last operation. You will need to reload the original image file and start over with your
scaling and filtering operations by selecting Reload from the File menu.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;TOP.BMP;0/0/34/0;;JI("'~"pushtrouble')}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;separat2.bmp}

SEG hotspots won’t execute the desired action in the compiled
project

{ewl THNHLP, THIN,!PUSHBMPS.LZH;DOCBAG2.BMP;0/0/0/0/0/255/0}This error should have
been reported by HelpDebug when you loaded your help project (.HPJ) file into Push for
analysis. One of several things could be happening. Here is a list of things to look for:

1. Have you checked your hotspot attribute information to insure that it is correct?

2. Have you updated HelpDebug’s database since altering your project so that Push’s
drop-down list of context strings will reflect any changes you may have made to your
source documents? You may be attempting to reference a topic whose ID has been
changed or removed.

3. If the hotspot is a custom macro hotspot, are you sure the macro was registered
correctly in your .HPJ file’s [CONFIG] section?

4. Have you loaded and saved all .SEG files from older JPANI or LZANI projects?
These .SEG files will not be compatible with ThinHelp and must be converted with a
simple load-and-save operation.

5. Have you checked related links, macros or other types of jumps as a means of
narrowing down the cause of the problem?

6. Are you trying to use full-length macro names in a 32 bit helpfile? 32 bit Help will not
function properly unless standard Help macros in .SHG hotspots, .SEG data files and
embedded window statements are referred to by their abbreviated names. JumplD(),
for example, must be referred to as JI() in order to function. The compiler will
automatically abbreviate macros coded in your RTF source, but it will not abbreviate
long-form macros coded in SHG files, embedded window statements and .SEG files.

A .BMP file that looks fine in Push won’t show up in the compiled Help or Viewer
title

{ewl THNHLP,THIN,!PUSHBMPS.LZH;DOCBAG2.BMP;0/0/0/0/0/255/0}If you're sure that your
embedded window syntax is correct and the embedded window reference is not used in a table,
then you have probably inherited an RLE compressed bitmap and tried to display it as an
embedded window. (If it is used in a table, you probably have a table formatting compatibility
problem.)

RLE compressed bitmaps import correctly into Push, but they’re not compatible with the
ThinHelp DLLs. Load the bitmap into Push and save it, unaltered, as a .BMP using Save
Picture As... to find out for sure. If the saved file is larger than the original .BMP, you more
than likely tried to embed an RLE-compressed bitmap without realizing it. If there is no change
in file size, try repacking the saved file into the LZH archive and recompiling anyway. There
may have been a “bogus byte” somewhere in the file and the load-and-save operation could
have repaired it.

Other problems

{ewl THNHLP, THIN,!PUSHBMPS.LZH;HLP-
BUTT.BMP;0/0/2/0;;JI("thinhelp.hlp>main'~"ID_TROUBLE')}Detailed help with other ThinHelp-
and Push-related problems is available from the main troubleshooting menu linked to the help
button.

If you have been unable to get a .SEG hotspot to function in your project even after checking all
these possible errors, contact us about support. It is possible that you have discovered a bug
in the software or an error in the user’s guide which resulted in the problem.

{ewc THNHLP, THIN,!PUSHBMPS.LZH; TOP.BMP;0/0/34/0;;JI("'~ pushtrouble')}

{ewl THNHLP,THIN,!
PUSHBMPS.LZH;NOTE.BMP;0/0/0/0/0/255/0}
HTML authors take note: WinHelp supports
rectangular hotspots only. Polygons and
freeform hotspots are not supported. To mimic
the effect of a polygon hotspot, use several
adjacent rectangular hotspots arranged to cover
the desired target area.

{ewl THNHLP,THIN,!
PUSHBMPS.LZH;MAGGLASS.BMP;0/0/0/0/0/255/0}Click
Zoom from the top menu of Push and select the
appropriate zoom level. 1 is one-to-one scaling, 2 is two-
to-one (twice as large as standard display), etc. You'll
find Push much faster to work with as a hypergraphics
editor once you master the zoom hotkeys (Alt+1 through
Alt+4).

Zooming in on a bitmap does not mean your bitmap will
be saved the way you see it when zoomed. Your bitmap
will only be saved in a different size if you select one of
the three Scale options from the Edit menu.

{ewl THNHLP,THIN,!
PUSHBMPS.LZH;CAUTION.BMP;0/0/0/0/0/255/0}
Existing .SEG files from previous JPANI/LZANI
projects are not compatible with ThinHelp. They will
need to be updated to conform to the new ThinHelp
format. Updating .SEGs is as easy as loading a
SEG.EXE-generated .SEG file into Push and saving
it...no other steps are required.

{ewl THNHLP,THIN,!
PUSHBMPS.LZH;NOTE.BMP;0/0/0/0/0/255/0}
When ThinHelp reduces your bitmap’s color depth
to 236 colors, it is actually creating a graphic with
only 236 custom colors. The remaining 20 colors
are Windows’ standard palette colors, reserved by
the system.

Push’s registry information

{ewl THNHLP,THIN,'PUSHBMPS.LZH;REGICON.BMP;0/0/0/0/0/255/0}Push writes two values
to the registry, one for the default HPJ file and one for the default window size as shown here.
This diagram shows how to locate these entries using RegEdit if you should ever need to erase
them or modify them manually.

{ewc THNHLP, THIN,!PUSHBMPS.LZH;REGISTRY.BMP}
{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~"IDH_PUSHHELP")}

The SEG file format

/*¥ SEG.H —————————— - *
* This Defined the SEGDATA-Structure used by Push and JPANI *
* To Store Data-Correspondence between Position on the Screen*

* and Help-Topic *
K e e e —— */

#ifndef _ SEG_H
#define _ SEG H

/* File structure of .SEG files had to be revised between JPANI
Version 1.x and ThinHelp. The new .SEG-Files are not compatible with
the old ones and old files have to be converted by PUSH.EXE

The main reason for the change in the file structure is that we
felt it would be necessary to support longer macro strings, especially
with respect to Windows Help V4.0. PUSH.EXE originally permitted only
128 characters in macro strings.

There are also more dummy data fields for future enhancements as we
pPlan to implement several additional Features.

To show the incompatibility of the Files the new SEG-Files to now
use a different SEG_MAGIC number.

*/

#define FILENAMELENGTH 256 // Maximum length of a filename
for .HPJ and .JPG/.BMP-File

#define MAX SEGINFOS 600 // Maximum number of SEGJUMP entries
in one SEG file.

#define MACROLENGTH 8000 // Maximum length of a macro-
string... more or less a random number...

#define HOTSPOTIDLENGTH 200 // Maximum length of a topic context
string... more or less a random number...

#define SEG MAGIC 12199 // Magic number to show it's

really one of our SEG files

#define SI_JUMP 0 // Marks hotspot type: Jump
#define SI_POPUP 1 // Popup
#define SI_MACRO 2 // Macro

/* SEGSTRINGs for macros and context strings have unlimited string
lengths.

When loaded into memory, the application program (THNHLP.DLL)
stores a pointer to the string on the hard disk. An offset into the
SEG file is to be used instead.

The end of the string is to be detected by the trailing zero as
usual in C.

Note that the string's length is not limited by the way this file
format is defined. THNHLP.DLL 16 bit will not allow the use of more
than about 4-8 Kbyte of strings at one time.

*/
typedef union
{

DWORD dw; // Byte offset from the beginning
of the SEG file

LPSTR 1lpsz; // Pointer to the string
when loaded into memory by PUSH.EXE

HLOCAL hlocal; // Local memory handle used by

THNHLP.DLL
} SEGSTRING;

/* SEGJUMP structure defines one rectangular hotspot area that is
connected to a context string or macro reference.
*/
typedef struct
{ /* Rectangular area for the segment.
Note: This is NOT binary-compatible to a RECT structure
on WIN32 */
short left, top, right, bottom;

/* WinHelp macro string to be executed when the user clicks
on the hotspot.
For SI_POPUP and SI_JUMP this member contains the
context string used for the jump */
SEGSTRING macro;

/* The hotspot ID is the string that SHED also allows for
entry for our hotspot. It may be used later for special effects. */
SEGSTRING HotspotId;

/* Metafiles can be huge pictures and are stored by
position in the file. */
DWORD metapos, // Position of the metafile in the
SEG file
metalen; // Length of the metafile
information in the SEG file.

/* Style-Control Flags */
DWORD flags; // SI_xxxx Style Flags

/* Variables reseved for future definition. Must be zero.
*/
DWORD dwReserved[9] ;

}
SEGJUMP, FAR *LPSEGJUMP;

typedef struct
{
short Magic; // Should Contain
SEG_MAGIC
short SegJumpCount; // Number of Segments
currently available

short Width, Height; // Width and height need
to show ALL Hotspots

char PictureFileName[FILENAMELENGTH];// Filename of the
picture file that shall be shown at design time

char HpjFileName [FILENAMELENGTH] ; // Filename of
the .HPJ - File containing the Help topic jump IDs

DWORD HeaderAndStringSize; // Size of
SEGINFOHEADER+SEGJUMP+strings without metafiles

/* Variables reserved for future Definition. Must be Zero.
*/
DWORD dwReserved[1l0];
}
SEGINFOHEADER, FAR *LPSEGINFOHEADER;

/* A SEG_File consists of one SEGINFOHEADER structure followed by
SegJumpCount SEGJUMP-Structures, which may be followed by metafile and
string data.

There is no common metafile or string information between the
SEGJUMPs or the SEGINFOHEADER and the SEGJUMPs

Hmmmm e Hmmmmm e +
0x000: | SEGINFOHEADER | SegJumpCount=3 |
o o +
0x208: | SEGJUMP | macro.dw=0x2aa | --\
Fom - Fom - + |
0x23e: | SEGJUMP | macro.dw=0x2b2 | --+--\
Fom - o +
0x27e: | SEGJUMP | macro.dw=0x2bd | --+--+--\
o mm e e + 1 1
R .
O0x2aa: "Print()\0" <--------mm—mm e /1
I
0x2b2: "JI(', ID_CONTENTS')\0" <----—=---—=--——mm—mm / |
|
0x2bd: "About()\0" <-----------———-—— - /

PUSH.EXE sorts the SEGJUMP records by the size of the rectangular
area, so large areas will be at the end of the file. Thus scanning
from the beginning of the file will find the smallest SEGJUMP matching
a given point.

The maximum length of the file excluding metafiles is 65535 Bytes,
thus limiting SegInfoCount to MAX SEGINFOS.

The metapos and metalen fields of a SEGJUMP give the starting-

Position of a Metafile byte relative to the beginning of the File. The
metafile data is metalen bytes long.

The "PictureFileName" and "HpjFileName'"-Members are only used
during SEG editing. They are not required by ThinHelp.
*/
#endif

{ewc THNHLP, THIN,!PUSHBMPS.LZH;PREVMENU.BMP;0/0/34/0;;JI("'~"IDH_PUSHHELP")}

About to launch Help to RTF...

All files in ThinHelp’s help system include complete, uncrippled functionality with our Help to
RTF conversion software for allowing you to create Word-compatible documentation from
helpfiles including all bitmaps and embedded window objects. This feature is reserved
exclusively for helpfiles included with Herd Software Development products. For complete

functionality with all helpfiles you will need to own a license to Help to RTF Standard or Help to
RTF Pro.

You can use the evaluation version of Help to RTF included in this package to create printable
documentation from any of the included helpfiles and optionally load the appropriate helpfile
directly into Help to RTF by selecting the Print Some or All Topics... item from each helpfile’s

File menu.
Select one of the following:

Launch Help to RTF Learn more about Help to RTF

