(About) Applies To

SSDBCombo
SSDBCommand

SSDBDropDown
SSDBData

SSDBGrid
SSDBOptSet

About SelBookmarks

The SelBookmarks collection represents a set of selected bookmark objects. Bookmarks are added to
this collection whenever a user selects a row in the grid. If Multiselect is True, then each row selected will
be added to the collection in the order in which the selection occured. Order is never based on the
displayed order. When a row is unselected, that row is then removed from the SelBookmarks collection. It
is dangerous and not recommended to ever store the ordinal position of a row within this collection.

You can also add bookmarks to the SelBookmarks collection through code. The following example will
add the first five rows to the collection:

Dim i as integer

SSDBGrid1.MoveFirst ' Position at the first row

fori=0to4
SSDBGrid1.SelBookmarks.Add SSDBGrid1.Bookmark
SSDBGrid1.MoveNext

next i

It is also easy to access the rows in the SelBookmarks collection without moving the current row position.
For example, if there was a column in the grid called Amount and you wanted to add up all the rows that
were selected to get a total, you could use the following code:

Dim nTotal as long

Dim nTotalSelRows as integer

Dim i as integer

Dim bkmrk as Variant ' Bookmarks are always defined as variants

nTotalSelRows = SSDBGrid1.SelBookmarks.Count
' In the following, get the bookmark of the selected rows
for i = 0 to nTotalSelRows
bkmrk = SSDBGrid1.SelBookmarks(i)
nTotal = nTotal + SSDBGrid1.Columns("Amount").Cell Value(bkmrk)

next i

Debug.Print "The total amount =" & Format(nTotal, "Currency")

About StyleSets

To understand StyleSet objects and the StyleSets collection, you should become familiar with the concept
of collections.

A StyleSet is an object that contains a set of visual properties. In Data Widgets, the Data Grid, Data
Combo, and Data DropDown all make use of StyleSet objects.

Creating StyleSets

It is possible to create style sets through the Grid Editor. It is also possible, and sometimes more
appropriate, to create StyleSets through code.

In the case of the Data Grid, different StyleSets can be created and applied to specific columns, groups,
and headers. Each of these Stylesets can in-turn be given characteristics which make one stand out
from the other. For example, a "Loss" column of a grid containing financial data can have its BackColor
property set to ‘red’, while a "Profit" column of a grid can have its BackColor property set to "green".

The following is an example of how a StyleSet may be set up:

1. The StyleSet is first added to the StyleSets Collection as follows:
SSDBGrid1.StyleSets.Add "Houston"

2. Once added, the properties of a StyleSet may be set as follows:
SSDBGrid1.StyleSets("Houston").BackColor = RGB(255,255,0)

Applying StyleSets

Once the StyleSet is created, it can be applied to an object that has a StyleSet Property . The following
code applies the ‘Houston’ StyleSet to the Column object of a Data Grid control:

SSDBGrid1.Columns(1).StyleSet = "Houston"

Note If a change is made to a StyleSet, it does not have to be reapplied to an object to take effect.
However, the control may need to be redrawn by invoking the Refresh method.

Achieving a 3D Look with the Data Combo

By setting just a few properties, you can quickly make your Data Combo have a 3D look to it. The
following settings allow for a 3D look:

SSDBCombo1l.BackColorEven = &H00COC0C0&* Gray
SSDBCombo1l.BackColorOdd = &HOOCOCOCO0&* Gray
SSDBCombol.ForeColorEven = &H00000000& ‘ Black
SSDBCombo1l.ForeColorOdd = &H00000000& ‘ Black
SSDBCombol.DividerStyle = 3 ‘ Inset
SSDBCombol.DividerType = 3 ‘ Both

Au ID |Authul | Year | -

Adriaan, Mery
Ageloff, Foy 1343
And

Antonovich Michael P.
Arnott, Steven E. 21
Arntzon, L. Joyce
Ault, Michael B -|

[mm M ey B TR

ActiveCell Applies To
SSDBGrid

ActiveCell Method See Also

ActiveCell Object

ActiveCell Object See Also
ActiveCell Method

ActiveRowStyleSet Property See Also

HeadStyleSet property

StyleSet property
StyleSet object

StyleSets collection

ActiveRowSyleSet Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Add Method Applies To

Bookmarks collection
Buttons collection
Columns collection
Groups collection
SelBookmarks collection
StyleSets collection

Add Method See Also

Bookmarks collection
Buttons collection
Columns collection
Groups collection
StyleSets collection
Count property
Remove method
RemoveAll method

Addltem Method (Column Object) Applies To

Column Object

Addltem Method (Column Object) See Also

Style
Columns collection

Addltem Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Addltem Method See Also

DataMode
FieldDelimiter

FieldSeparator
Removeltem method

AddltemBookmark Method

Applies To
Description

Returns the Addltem bookmark for a given absolute row number.

Syntax
object.AddlitemBookmark(RowNum As Long)

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
RowNum A numeric expression specifying the absolute row number.

Remarks

In bound mode, you are able to access bookmarks through the data control. This method gives the
programmer access to the bookmarks for Addltem mode.

AddltemBookmark Method Applies To
SSDBGrid

Adding a Bound Data Combo

The Data Combo relies on the host environment’s standard data control to access database information.
To use the Data Control with your application in Visual Basic:

1. Place two standard data controls on your form.
One is used for the edit portion, the other is used for the list portion.

2. For both data controls, set the DatabaseName and RecordSource properties to point to a database
and the table within the database.

3. Place a Data Combo control on your form.

4. Set the DataSource property of the Data Combo to point to the data control used for the edit portion.
Set the DataField property to point to the field used.

5. Set the DataSourceList property of the Data Combo to point to the data control used for the list
portion. Set the DataFieldList property to point to the field used.

Adding a Bound Data DropDown

Much like a Data Combo, the field in the cell is related to the list in the Data DropDown. To use the Data
DropDown in a Data Grid:

1. Place two standard data controls on your form.
One is used for the data grid, the other is used for the data combo.

2. For both data controls, set the DatabaseName and RecordSource properties to point to a database
and the table within the database.

3. Place a Data Grid control on the form and bind it to the first data control.

4. Place a Data DropDown control on the form.
The location of the Data DropDown is unimportant since it is invisible at runtime.

5. Set the DataSource property of the Data DropDown to the second data control.
6. Set the DataFieldList property of the Data DropDown to the field you want used for the list.

7. Link the Data DropDown to the Data Grid by adding the following code in the InitColumnProps

procedure of the Data Grid:
SSDBGrid1.Columns(n).DropDownhWnd = SSDBDropDown1.hWnd

Note The instructions above assume that the Data Grid is also bound to a data control. It is possible
to have a bound Data DropDown work in conjunction with an unbound Data Grid. If the Data
Grid is unbound, you will only need one data control, the one used for the Data DropDown.

Adding a Bound Data Grid to your application

The Data Grid makes use of the host environment’s standard data control. To create a functional grid for
your application in Visual Basic:

Add a Visual Basic Data Control to your form.

Set the DatabaseName and RecordSource properties in the data control.

Add a SSDBGrid Control to your form.

Set the DataSource property in the SSDBGrid control to the data control (i.e., Data1).

il

Your grid is now aware of the database associated with the data control. At this point, you can use the
Grid Editor to design a grid format.

Adding a Data Command Button

The Data Command button only works when bound to a data control.

To use the Data Command button with your application in Visual Basic:

Place a standard data control on your form.

2. Set the DatabaseName and RecordSource properties to point to a database and the table within the
database.

3. Place the Data Command button on your form.

4. Setthe DataSource property of the Data Command button to point to the data control you created in
Step 1.

5. Set the DatabaseAction property of the Data Command button to perform the action you want.

Adding an Addltem Grid to Your Application

In Addltem mode, you can add as many rows of data as you want, at any time during operation. This
data is accessible as if the grid was bound (i.e., when you scroll, the next row of data is displayed
automatically). Instead of a data control managing the flow of data, the grid does.

This mode operates similarly to the Visual Basic list box, but has all the features and power of the
SSDBGrid. You can use the Grid Editor to help create the Addltem grid, or you can manually specify the
properties.

Wherever possible, the grid in Addltem mode has the same functionality as a grid in bound mode, and
most programmatic statements are the same.

The uses of this mode are virtually endless. One of its most useful features is being able to fill the grid
with information without the need for a database. The Addltem mode is much better on system
resources because it does not require the overhead of a Data Control. Addltem mode is best used for
small lists that are easily maintained.

To create a an Addltem grid for your application:

1. Add a SSDBGrid control to your form.

2. Set the DataMode property to 2 (Addlitem mode).

3. Specify the number of columns to use by setting the Cols property.
4

If you want to change the FieldDelimiter or FieldSeperator properties from their defaults, specify
them now.

5. Specify code in the InitColumnProps event of the grid so that items are added when the grid first
appears.

The following example demonstrates how InitColumnProps can be used to fill an Addltem grid:

Sub SSDBGrid1_InitColumnProps
Dim | As Integer

Forl=0to 32
SSDBGrid1.Addltem "Hello" + CHR$(9) + "World"
Next |

End Sub

Adding an Unbound Data Combo

the Data Combo has two portions that it retrieves data for, with the ability to bind each part to different
data sources. You can also configure the Data Combo to have either or both portions unbound, in which
case, you will need to supply the data yourself.

When the edit portion of the Data Combo is unbound, you need to initially supply the field value yourself
via the Text property which contains the value of the data in the edit portion of the Data Combo. When
the user clicks on the dropdown button, the list portion will automatically update the Text property and the
contents of the edit portion if the user selects a value, much like a standard combo box. The functionality
of the Data Combo in unbound mode is identical to the Data Grid in unbound mode.

You can also set the Data Combo to AddIitem mode, following the same guidelines used for the Data Grid
in Addltem mode.

Adding an Unbound Data DropDown

The functionality of the Data DropDown in unbound mode is identical to the Data Grid in unbound mode.

You can also set the Data DropDown to Addltem mode, following the same guidelines used for the Data
Grid when in this mode.

Adding an Unbound Data Grid to your application

The primary use of the Data Grid is to manage the display and entry of data into a record set of the bound
data control. Because a database may contain an unlimited amount of data, the Data Grid has to
manage the data in a virtual fashion, meaning that it only reads in as much data as it needs to display
information on the screen.

Another important feature of the Data Grid is its ability to perform as an unbound control. Unbound mode
is most useful when you need to handle data that the host environment’s standard data control cannot.
The only difference between bound and unbound mode is how the data is handled coming into the grid
and going out of the grid.

The unbound grid sends cues in the form of events notifying you when it needs a response. When it
needs more data, it fires the UnboundReadData event, likewise, when it needs to save data, it fires the
UnboundWriteData event. Your primary responsibility in unbound mode is to supply the grid with data
when it requests it, and to store data when it sends it.

To create an unbound grid for your application in Visual Basic:

1. Add a SSDBGrid Control to your form.
2. Set the DataMode to ‘1 - Unbound'.

3. Place code in the UnboundReadData event of the Data Grid that extracts data from your data
source.

4. Place code in the UnboundWriteData event of the Data Grid that writes modified data back to your
data source.

5. Place code in the UnboundAddData event of the Data Grid that appends a new row to your data
source.

6. Place code in the UnboundDeleteRow event of the Data Grid that deletes a row from your data
source.

Your unbound data grid is now ready for use.

Adding the DataOptionSet

Option buttons for the DataOptionSet can be created at either design or runtime. Once you have placed
the control on the form, all you need to do is set properties that define the values for your DataOptionSet.

To use the DataOptionSet with your application in Visual Basic:

1. Place a standard data control on your form.

2. Set the DatabaseName and RecordSource properties to point to a database and the table within the
database.

3. Place the DataOptionSet on your form.
4. Set the DataSource property of the DataOptionSet to point to the data control you created in Step 1.
5. Set the DataField property of the DataOptionSet so that it points to the field to work with.

The DataOptionSet has been added to your form, but you must create buttons at design time, or create
buttons at run time in order for the control to be useful.

Adding the Enhanced Data Control

Adding the Enhanced Data Control to your form is quite simple. Remember that the EDC works in
conjunction with the standard data control, not without it.

To use the Enhanced Data Control with your application:

1. Place a standard data control on your form.

2. Set the DatabaseName and RecordSource properties to point to a database and the table within the
database.

3. Place the Enhanced Data Control on your form.
4. Setthe DataSource property of the EDC to point to the data control you created in Step 1.
5. Set the DataField property of the EDC to point to the database field you want the EDC bound to.

AfterClick Event Applies To
SSDBCommand

AfterColUpdate Event Applies To
SSDBGrid

AfterColUpdate Event See Also

Afterlnsert event

AfterUpdate event

BeforeColUpdate event
BeforeDelete event

Beforelnsert event
BeforeUpdate event

AfterDelete Event Applies To
SSDBGrid

AfterDelete Event See Also

AfterColUpdate event
Afterinsert event
AfterUpdate event

BeforeColUpdate event
BeforeDelete event

Beforelnsert event
BeforeUpdate event

Afterlnsert Event Applies To
SSDBGrid

Afterlnsert Event See Also

AfterColUpdate event
AfterDelete event
AfterUpdate event

BeforeColUpdate event
BeforeDelete event

Beforelnsert event
BeforeUpdate event

AfterUpdate Event Applies To
SSDBGrid

AfterUpdate Event See Also

AfterColUpdate event
AfterDelete event

Afterinsert event
BeforeColUpdate event
BeforeDelete event
Beforelnsert event

BeforeUpdate event

Alignment Property (Column Object) Applies To

Column Object

Alignment Property Applies To

SSDBData
SSDBOptSet

Alignment Property See Also
CaptionAlignment property

AllowAddNew Property Applies To
SSDBGrid

AllowAddNew Property See Also

AllowDelete
AllowUpdate

AllowColumnMoving Property Applies To
SSDBGrid

AllowColumnMoving Property See Also

AllowColumnSizing
AllowColumnSwapping

AllowColumnShrinking Property Applies To
SSDBGrid

AllowColumnShrinking Property See Also
AllowGroupShrinking

AllowColumnSizing Property Applies To
SSDBGrid

AllowColumnSizing Property See Also

AllowColumnMoving
AllowColumnSwapping

AllowColumnSwapping Property Applies To
SSDBGrid

AllowColumnSwapping Property See Also

AllowColumnMoving
AllowColumnSizing

AllowDelete Property Applies To
SSDBGrid

AllowDelete Property See Also

AllowAddNew
AllowUpdate

AllowDragDrop Property Applies To
SSDBGrid

AllowGroupMoving Property Applies To
SSDBGrid

AllowGroupMoving Property See Also

AllowGroupSizing
AllowGroupSwapping

AllowGroupShrinking Property Applies To
SSDBGrid

AllowGroupShrinking Property See Also
AllowColumnShrinking

AllowGroupSizing Property Applies To
SSDBGrid

AllowGroupSizing Property See Also

AllowGroupMoving
AllowGroupSwapping

AllowGroupSwapping Property Applies To
SSDBGrid

AllowGroupSwapping Property See Also

AllowGroupMoving
AllowGroupSizing

AllowInput Property Applies To
SSDBCombo

Allowlnput Property See Also

AllowNull

AllowNull Property Applies To
SSDBCombo

AllowRowsSizing Property Applies To
SSDBGrid

AllowSizing Property Applies To

Column object
Group object

AllowSizing Property See Also
AllowColumnSizing

AllowUpdate Property Applies To
SSDBGrid

AllowUpdate Property See Also

AllowAddNew
AllowDelete

Anatomy of a Data Combo

Although there are major fundamental differences, the Data Combo control looks and behaves much like
a standard Windows combo box. The major difference is that the Data Combo can be bound to a data
control.

The Data Combo is made up of two portions:
e The Edit portion of the Data Combo displays the selected field and allows entry.
e The List portion drops down when the user clicks the dropdown button.

Typically, a combo box is used to allow entry of a particular field while allowing the user to select a value
for that field via the dropdown list. With the Data Combo, you can bind the edit portion to a field in one
database while the list portion can dropdown a list of values from another.

A classic example is to link the edit portion of the Data Combo to a field in a record set of a data control
such as StateCode. Then, link the list portion of the Data Combo to a data control that manages a table
having all state codes and translations. The results would look similar to:

w Ship To Address _ (O]

Company ISheridan S oftware

Address [Line 1) |35 Pinelawn Foad

Addresz [Line 2] | Sheridan Softvare

City {Medvills

State M j

Zip Code Code State o
] Mew Jerzey »
CT Connect
i California v|

Anatomy of a Data Grid

Click on an area of the Data Grid to learn more about it:

s Forml
SSDEGrid1.Caption
Group # Group #
Column 70 (Hame) Column %2 (Address)
Column 21 (Company} Column #3 (City) Col #4 (Zip) Col #5 (Zip) Col #6 (Paid)
ACM 33 Pinela
B=zosiation for Computing Meluille [m [11747
Bddizon-Wesley Rite 128
iddizan-Wesley Fublishing Feading [Ma, [01g67 []
Bantarmn Books EEE Fifth fue
Eantam Bocks Diu of: Bartam [Reading [m [10102
Eenjarin/Curnmings 390 Bridge Plwoy.
Eenjamin-Cummings Fedwood City [ca [a4065
Erady Pub. 13 Columbus Cir.
Erady Books Div. of Frertice M ork [m [10022 []
Computer Science Press 41 Madizon Mve
Computer fcience Press Inc Hew York - | HY |1IZII:I1III |:|
ETH Corporation Cinci nnati -
ETH Corp. [17754-9422
Gale
Gale Research, Incorporated Hormewood Ml |43226-4UE|4 |:|
IEEE Lanharn ke
IEEE Computer Society Press Menlo Park hdl 5y [an7zn
Intertext 2633 E. 17th Mue.
Intertext Bnchorage Ak, EERE []
M&T Books 4301 Galweston Or
M AT MAe elie P = WAT Flediiim mod Mk |r\-n Iﬂdl’\l"""\ ATAn '_l il
7 £

Anatomy of the Enhanced Data Control

4 |«| 4 |+|?f;|9:| = |E|§| Ault, Michasl R -ﬁﬂlmlﬁlﬁl » |H>| M I

[

B O EF H &3 =

M &

#
z
*

T

=l [E]

First Record

Jumps to the first record in the database. This button is
displayed/hidden by the ShowFirstLastButtons property.

Previous Page

Jumps to the previous page in the database. A page is
determined by the setting of PageValue. This button is
displayed/hidden by the ShowPageButtons property.

Previous Record

Jumps to the previous record in the database. This button
is displayed/hidden by the ShowPrevNextButtons property.

Add Record

Adds a new record to the end of the database. This button
is displayed/hidden by the ShowAddButton property.

Cancel Add

Cancels theadding of a new record to the database. This button is
displayed/hidden by the ShowCancelButton property.

Delete Record

Deletes a record from the database. This button is
displayed/hidden by the ShowDeleteButton property.

Update Record

Updates the selected record in the database. This button is
displayed/hidden by the ShowUpdateButton property.

Add Bookmark

Adds a bookmark for the current record. This button is
displayed/hidden by the ShowBookmarksButton property.

Clear All Bookmarks

Clears all stored bookmarks. This button is
displayed/hidden by the ShowBookmarksButton property.

Current Record

When the DataField property is set, the active record is
displayed. When DataField is left blank, the Caption is
displayed.

Goto Bookmark

Presents a list of all stored bookmarks (up to a user-
definable limit of 100). This button is displayed/hidden by
the ShowBookmarksButton property.

Find Record

Invokes the Find dialog, allowing the user to search the
database.

Find Previous Record

]

= E [

Searches backwards in the database for the next
occurrence of data specified in the Find dialog.

Find Next Record

Searches forwards in the database for the next occurrence
of data specified in the Find dialog.

Next Record

Jumps to the next record in the database. This button is
displayed/hidden by the ShowPrevNextButtons property.

Next Page

Jumps to the next page in the database. A page is
determined by the setting of PageValue. This button is
displayed/hidden by the ShowPageButtons property.

Last Record

Jumps to the last record in the database. This button is
displayed/hidden by the ShowFirstLastButtons property.

AutoRestore Property Applies To
SSDBCombo

AutoSize Property Applies To
SSDBCommand

BIBLIO File Structure

Visual Basic ships with a sample database file called BIBLIO.MDB, which is in Access 2.0 format. Due to
the implementation of OCX compatibility by many development tools, it is very possible that users of Data
Widgets may not be using Visual Basic as their host development environment.

In light of this fact, the following table describes the structure of the BIBLIO database so that those users
can create a database for use with the examples given in this manual.

The BIBLIO database is made up of the following tables:

e Authors
e Publishers
e Title Author

e Titles
Authors
Au_ID Unique key identifier
Author Author’s name
Year born Author’s birthdate
Publishers
PublD Unique key identifier
Name Short name
Company Name Full business name
Address Publisher’s address
City Publisher’s city
State Publisher’s state
Zip Publisher’s zip code
Telephone Publisher’s phone
number
Fax Publisher’s fax number
Comments General comments
Title Author
ISBN Foreign key into Titles table
Au_ID Foreign key into Authors table
Titles
Title Book title
Year Publisher Publication date

ISBN Unique key

PubID
Description
Notes
Subject

Comments

Foreign key into publishers table
Reference info

General notes

Keywords

Description of book contents

BackColor Property Applies To

Column object
SSDBCombo

SSDBDropDown
SSDBData

SSDBGrid
SSDBOptSet

BackColorEven Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

BackColorEven Property See Also

BackColor
BackColorOdd

BackColorOdd Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

BackColorOdd Property See Also

BackColor
BackColorEven

BalloonHelp Property Applies To

SSDBData
SSDBGrid

BeforeColUpdate Event Applies To
SSDBGrid

BeforeColUpdate Event See Also

AfterColUpdate
AfterDelete

Afterinsert
AfterUpdate
BeforeDelete
Beforelnsert

BeforeUpdate

BeforeDelete Event Applies To
SSDBGrid

BeforeDelete Event See Also

AfterColUpdate
AfterDelete

Afterlnsert

AfterUpdate

BeforeColUpdate
Beforelnsert

BeforeUpdate

Beforelnsert Event Applies To
SSDBGrid

Beforelnsert Event See Also

AfterColUpdate
AfterDelete

Afterlnsert

AfterUpdate

BeforeColUpdate
BeforeDelete

BeforeUpdate

BeforeUpdate Event Applies To
SSDBGrid

BeforeUpdate Event See Also

AfterColUpdate
AfterDelete

Afterlnsert

AfterUpdate

BeforeColUpdate
BeforeDelete

Beforelnsert

BevelColorFace, BevelColorFrame, BevelColorHighlight, BevelColorShadow Properties
Applies To

SSDBCombo
SSDBCommand
SSDBData

SSDBDropDown
SSDBGrid

SSDBOptSet

BevelColorScheme Property Applies To

SSDBCombo
SSDBCommand
SSDBData

SSDBDropDown
SSDBGrid

SSDBOptSet

BevelColorScheme Property See Also

BevelColorFace
BevelColorFrame

BevelColorHighlight
BevelColorShadow

Bevellnner Property Applies To
SSDBData

Bevellnner Property See Also

BevelColorFace
BevelColorFrame
BevelColorHighlight
BevelColorScheme
BevelColorShadow

BevelOuter Property Applies To
SSDBData

BevelOuter Property See Also

Bevellnner
BevelColorHighlight
BevelColorScheme
BevelColorShadow

BevelType Property Applies To

SSDBCombo
SSDBDropDown

BevelWidth Property Applies To

SSDBCombo
SSDBCommand
SSDBData

BevelWidth Property See Also

Bevellnner
BevelOuter

Binding a Data Command to a Data Control Across Forms

Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy task. In the past,
the only way to accomplish this task was to set a DataSourceHwnd property to point to the hWnd of a
data control. You are now able to set the data controls to look at one another.

To bind o a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the database table you want to use.

2. On Form2, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the same database table as Step 1.

3. Inthe Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!Data1.Recordset.
4. On Form 2, create a Data Command button, setting the DataSource property to Data1.

The data controls are now bound across forms, that is, actions to the data control on either form are
automatically reflected by one another.

Binding a Data DropDown to a Data Control Across Forms

Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy task. In the past,
the only way to accomplish this task was to set a DataSourceHwnd property to point to the hWnd of a
data control. You are now able to set the data controls to look at one another.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the database table you want to use.

2. On Form2, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the same database table as Step 1.

3. Inthe Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!Data1.Recordset.
4. On Form 2, create a Data DropDown, setting the DataSource property to Data1.

The data controls are now bound across forms, that is, actions to the data control on either form are
automatically reflected by one another.

Binding a DataOptionSet to a Data Control Across Forms

Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy task. In the past,
the only way to accomplish this task was to set a DataSourceHwnd property to point to the hWnd of a
data control. You are now able to set the data controls to look at one another.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the database table you want to use.

2. On Form2, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the same database table as Step 1.

3. Inthe Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!Data1.Recordset.
4. On Form 2, create an Enhanced Data Control, setting the DataSource property to Data1.

The data controls are now bound across forms, that is, actions to the data control on either form are
automatically reflected by one another.

Binding an EDC to a Data Control Across Forms

Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy task. In the past,
the only way to accomplish this task was to set a DataSourceHwnd property to point to the hWnd of a
data control. You are now able to set the data controls to look at one another.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the database table you want to use.

2. On Form2, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the same database table as Step 1.

3. Inthe Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!Data1.Recordset.
4. On Form 2, create an Enhanced Data Control, setting the DataSource property to Data1.

The data controls are now bound across forms, that is, actions to the data control on either form are
automatically reflected by one another.

Binding the Data Combo to a Data Control Across Forms

Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy task. In the past,
the only way to accomplish this task was to set a DataSourceHwnd property to point to the hWnd of a
data control. You are now able to set the data controls to look at one another. This functionality is
useful for the edit portion of the Data Combo.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the database table you want to use.

2. On Form2, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the same database table as Step 1.

3. Inthe Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!Data1.Recordset.
4. On Form 2, create a Data Combo, setting the DataSource property to Data1.

The data controls are now bound across forms, that is, actions to the data control on either form are
automatically reflected by one another.

Binding to a Data Control Across Forms

Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy task. In the past,
the only way to accomplish this task was to set a DataSourceHwnd property to point to the hWnd of a
data control. You are now able to set the data controls to look at one another.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the database table you want to use.

2. On Form2, create a standard Data Control (Data1), setting the Database and RecordSource
properties to point to the same database table as Step 1.

3. Inthe Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!Data1.Recordset.
4. On Form 2, create a Data Grid Control, setting the DataSource property to Data1.

The data controls are now bound across forms, that is, actions to the data control on either form are
automatically reflected by one another.

Bold Property Applies To

Font object
Headfont object

Bookmark Object Applies To

Bookmarks collection

BookmarkDisplay Property Applies To
SSDBData

BookmarkDisplay Property See Also
BookmarksToKeep

Bookmarks Collection Applies To

SSDBData

Bookmarks Collection See Also

Bookmark Object

BookmarksToKeep Property Applies To
SSDBData

BookmarksToKeep Property See Also
BookmarkDisplay

BorderStyle Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

BorderWidth Property Applies To
SSDBData

BorderWidth Property See Also

Bevellnner
BevelOuter
BevelColorFace

BtnClick Event Applies To
SSDBGrid

Button Object Applies To

Buttons collection

ButtonEnabled Property Applies To
SSDBOptSet

ButtonFromCaption Method Applies To
SSDBOptSet

ButtonFromCaption Method See Also

ButtonFromPos

ButtonFromPos Method Applies To
SSDBOptSet

ButtonFromPos Method See Also

ButtonFromCaption method
Wherels method

ButtonSize Property Applies To
SSDBData

ButtonVisible Property Applies To
SSDBOptSet

ButtonVisible Property See Also
Visible

Buttons Collection Applies To
SSDBOptSet

Buttons Collection See Also

Button Object

ButtonsAlways Property Applies To

Column object

ButtonsAlways Property See Also

Style

Caption Property Applies To

Button object
Column object
Group object
SSDBCommand
SSDBData

SSDBOptSet

Caption Property See Also
CaptionAlignment

Picture

PictureAlignment

CaptionAlignment Property Applies To

Group object
SSDBData

SSDBGrid
SSDBOptSet

CaptionAlignment Property See Also
PictureAlignment

Case Property Applies To

Column object

CellNavigation Property Applies To
SSDBGrid

CellNavigation Property See Also
RowNavigation

CellStyleSet Method Applies To

Column Object

CellStyleSet Method See Also

ActiveRowStyleSet

StyleSet
StyleSets collection

CellText Method Applies To

Column Object

CellText Method See Also

CellValue method

CellValue Method Applies To

Column object

CellValue Method See Also

CellText method

Change Event Applies To

SSDBCombo
SSDBGrid

Change Event See Also
For SSDBGrid

AfterUpdate
BeforeColUpdate

BeforeUpdate
BtnClick

CheckBox Column Style
The CheckBox column style can be set using the Style property

CheckBox3D Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Click Event Applies To
SSDBData

CloseBookmarkDropDown Event Applies To

SSDBData

CloseBookmarkDropDown Event See Also

ShowBookmarkDropDown event

CloseFindDialog Event Applies To
SSDBData

CloseUp Event Applies To

SSDBCombo
SSDBDropDown

CloseUp Event See Also
ComboDropDown event

Col Property Applies To
SSDBGrid

Col Property See Also

r

ColContaining Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

ColMove Event Applies To
SSDBGrid

ColMove Event See Also

ColSwap event
GrpMove event
GrpSwap event

ColOffSet Property Applies To

Button object
SSDBOptSet

ColOffSet Property See Also
RowOffSet

ColPosition Method Applies To

Group object
SSDBGrid

ColPosition Method See Also

Position
GrpPosition method

ColResize Event Applies To
SSDBGrid

ColResize Event See Also

GrpResize

RowResize

SplitterMove

ColSwap Event Applies To
SSDBGrid

ColSwap Event See Also

ColMove event
GrpMove event

GrpSwap event

ColWidth Property Applies To
DataOptSet

ColorMask Property Applies To
SSDBData

ColorMask Property See Also
ColorMaskEnabled

ColorMaskEnabled Property Applies To
SSDBData

ColorMaskEnabled Property See Also
ColorMask

Cols Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

SSDBOptSet

Cols Property See Also

¥
X

Ry
o
<

X
o
=
5

Column Header

Column Object Applies To

Columns collection

Column Object See Also

Columns collection

ColumnHeaders Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

ColumnHeaders Property See Also

GroupHeaders

Columns Collection Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Columns Collection See Also

Column object

Columns Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Combo Box Column Style

This is different than the SSDBCombo control. Setting the Style property allows for a combo box in the
grid. You can populate this box through the Grid Editor or through code.

ComboCloseUp Event Applies To
SSDBGrid

ComboCloseUp Event See Also
ComboDropDown event

ComboDropDown Event Applies To
SSDBGrid

ComboDropDown Event See Also

ComboCloseUp event

ComboDroppedDown Property Applies To
SSDBGrid

Data Widgets™ 2.0

Copyright Notice

B E
= =g

I e
Data

s
L

=

e
58

What is Data Widgets?

Background on the product and its features as well as information on
how to use Data Widgets with your applications.

What's New?
New features that have been added to Data Widgets 2.0.

Guided Tours
Designed to get you up and running quickly by walking you through
Data Widgets.

Control Descriptions
Describes each of the Data Widgets custom controls, giving detailed
infomation on each.

Technical Specifications

System requirements, included files, files needed for distribution, and
error messages.

Technical Support

Getting technical and product support for Sheridan products.

Version

Control Caption Area

Data Widgets |E

&H

==
FETE|

Ef

=] 3

Control Descriptions

Data Grid

A fully editable bound grid that allows you to edit an entire record set,
regardless of size, on screen without writing any code. Also supports
Unbound and AddItem modes.

Data Combo
A bound combo box you can include in your application.

Data DropDown

A control used for attaching a Data Grid column to a dropdown list of
values from another source of data.

DataOptionSet

Option buttons that can be used to represent field values by binding
the control to a data source.

Enhanced Data Control
A front end to the Visual Basic data control adding new functionality
such as bookmark navigation and page movement.

Data Command Button
Command buttons that perform database functions.

Copyright © 1993-1996 Sheridan Software Systems, Inc. All rights reserved.

Information in this document is subject to change without notice and does not represent a commitment on
the part of Sheridan Software Systems. The software described in this document is furnished under a
license agreement or nondisclosure agreement. The software may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. No part of this manual may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying
and recording, for any purpose without the express written permission of Sheridan Software Systems, Inc.

Printed in the United States of America.

VBAssist and the Sheridan logo are trademarks of Sheridan Software Systems, Inc.
Microsoft, Visual Basic and Windows are registered trademarks of Microsoft Corporation.
All other trademarks and registered trademarks are the property of their respective owners.

Count Property Applies To

Bookmarks collection
Buttons collection
Columns collection
Groups collection
SelBookmarks collection
StyleSets collection

Count Property See Also

Bookmarks collection
Buttons collection
Columns collection
Groups collection
StyleSets collection
Add method
Remove method
RemoveAll method

Creating Buttons at Design Time

To create DataOptionSet buttons at runtime:

1. Select the total number of buttons by setting the NumberOfButtons property.
The control will immediately redraw to reflect the new setting.

2. Set the IndexSelected property to the button number you want to modify.
All changes made to button-specific properties will affect the button selected with this property.

3. Set the OptionValue property for this button.
This is the value that will be compared against the database value.

4. Set any additional properties you wish to alter.
5. Repeat Steps 2-4 as needed.

Creating Buttons at Runtime

Creating buttons at runtime is a much simpler task thanks to the Button Object and its related Buttons
Collection. The Button Object makes it possible to directly access a button without the need for selecting
the IndexSelected property first. Additionally, you do not need to set the NumberOfButtons property
since adding or deleting a button object within the collection automatically updates this value.

For example, to modify the fifth button’s caption, you only need to write the code:
SSDBOptSet1.Buttons(4).Caption = "Fifth Button".

ek
aryS
Development ____|RohS
aveP

Jasonkd

ary'

-
B
>
3
—
3
3
3
3
B
3
)
=

Customizing the Bound Data Combo

When you select a data combo, all fields in the associated database are displayed by default.
Sometimes, this is not a convenient way of displaying your data. Using the Visible property on individual
columns allows you to display only the field you want listed.

For example, the following code displays only the first and third columns of a database with four fields:

Sub SSDBCombo1_InitColumnProps()
SSDBCombo1.Columns(1).Visible = False
SSDBCombo1.Columns(3).Visible = False
End Sub

For simplicity, you could use the Grid Editor to make the changes.

Customizing the Bound Data DropDown

When you select a Data DropDown, all fields in the associated database are displayed by default.
Sometimes, this is not a convenient way of displaying your data. Using the Visible property on individual
columns allows you to display only the field you want listed. Refer to the Properties listing for a complete
listing of properties used with the Data DropDown control.

For example, the following code displays only the first and third columns of a database with four fields:
Sub SSDBDropDown1_InitColumnProps()
SSDBDropDown1.Columns(1).Visible = False

SSDBDropDown1.Columns(3).Visible = False
End Sub

For simplicity, you could use the Grid Editor to make the changes.

Data Combo Control Filenames ObjectType

Anatomy of a Data Combo

The Data Combo custom control is a combo box that can be used to display/edit a field value from one
record set while providing a dropdown list of field values from another set. The Data Combo functions in
bound, unbound and Addltem modes.

For bound mode operation, you simply need to set four properties; two for the edit portion and two for the
list portion. When you dropdown the list, it will automatically be filled with the rows and columns of the
record sets you chose.

Keyboard Interface

Adding a Bound Data Combo
Customizing the Bound Data Combo
Adding an Unbound Data Combo
Achieving a 3D Look with the Data Combo
Binding to a Data Control Across Forms

Data Combo Features

The Data Combo is a bound combo box you can include in your application.

The following is a list of the features found in this control:

Variable edit area height similar to that used in Microsoft Access
Multiline edit area

User is not limited to the width of the edit area for entering/displaying data
Same formatting capabilities as the SSDBGrid control

Full design time capabilities

Data Combo: Exercise 1

This section guides you through the creation of a sample program using the Data Combo control. For a
complete description of this control, refer to the Data Combo Control

For the exercises in this section, it is assumed that you have already launched your development
application (Visual Basic), and that the control has been added to your toolbox. For more information on
how to do this, refer to Using Data Widgets.

In this exercise, you will create a data entry program that makes use of the Data Combo control.

—_

Place a Visual Basic data control on the form.

2. Set the DatabaseName property to BIBLIO.MDB.
Be sure to qualify the filename with the path of where the file is located, if needed.
3. Set the RecordSource property to ‘Titles’.
4. Place four text boxes on the form.
Your form should look like:
Forml _ (O] <]

ITez-:t'I

ITEHt2
ITEHt3

ITEHM

4] 4| Datal |3 | Hl

5. Create five text labels on the form.
Your form should look like:

W Forml [_ O]

Title |Te:-:t1

Publizher

Y'ear Published ITe:-:tE
[SBM IT extd

Description |Te:-:t4

4] 4| Datat » vl

6. For each text box, set the DataSource field to Data7 and the DataField as follows:

Text1 = Title’
Text2 = ‘Year Published’
Text3 = ‘ISBN’

Text4 = ‘Description’

7. Add a SSDBCombo control to the form.
Your form should now look like:

W Forml =2
Title [Test1
Publisher | S50BCombol =

'ear Publizhed ITe:-:tz
[SBM IT extd

Description |Te:-:t4

4] 4| Datal |3 | Hl

8. Place a second Visual Basic data control on the form.

9. Set the data control's DatabaseName property to BIBLIO.MDB.
10. Set the data control's RecordSource property to ‘Publishers’.
11. Set the data control’s Visible property to ‘False’.

12. Set the data combo’s DataSource property to ‘Datat’.
This binds the edit portion of the data combo to the ‘Titles’ table.

13. Set the data combo’s DataField property to ‘PubID’.
This determines the field used in the edit portion of the data combo.

14. Set the data combo’s DataSourcelList property to ‘Data2’.
This binds the list portion of the data combo to the ‘Publishers’ table.

15. Set the data combo’s DataFieldList property to ‘PublD’.
This determines the field used in the list portion of the data combo.

Try running your application at this point, using the data control to navigate through the records. Click on
the Data DropDown and you’ll see how the record in the edit field is automatically selected in the list
portion. Try changing the field value by selecting another record from the list.

This is a quick example of how the Data Combo can be used in your applications. Save this project, as
we’ll be using it in the next exercise.

Data Combo: Exercise 2

This exercise demonstrates how you can customize the Data Combo to suit your specific needs. This
exercise makes use of objects and collections. If you are not familiar with object and collections, you
should refer to the Introduction to OCX Controls section before proceeding. The project used in the last
exercise should be running at this point.

As you saw in the last exercise, when you click on the data combo, the entire table in the list portion
displays. Sometimes this is fine, but there are times when you want to limit what is displayed and how it
is displayed. The Data Combo allows you to make use of the objects that the Data Grid uses.

Let’'s make it so that the Data Combo only displays the fields "PublD", "Name", and "Company
Name". In the SSDBCombo1_DropDown event, add the following code:
SSDBCombo1.Columns(3).Visible = False

SSDBCombo1.Columns(4).Visible = False

SSDBCombo1.Columns(5).Visible = False

SSDBCombo1l.Columns(6).Visible = False

SSDBCombo1.Columns(7).Visible = False

SSDBCombo1.Columns(8).Visible = False

SSDBCombo1.Columns(9).Visible = False

Run your application, and drop down the Data Combo. You will now see that only the PubID, Name, and
Company Name fields appear.

Altering properties is a simple task when dealing with objects. If we wanted to make the first column
a different color, all we need to add in the SSDBCombo1_DropDown event is the following:

SSDBCombo1.Columns(0).Backcolor=RGB(200,200,200)

Try experimenting with setting different properties on the control, as well as on the columns themselves.
Remember that you can also use the Grid Editor to customize the Data DropDown properties.

Data Command Button Control

The Data Command custom control is a 3D command button that can be bound to a data control.
button can be configured to automatically perform database actions as designated by you when clicked.
The control also contains a speed button feature, allowing the user to hold the button in the down state to

repeat a function.

A full set of appearance properties, including the capability of placing pictures on the buttons, are

available with the Data Command control. The command button can be set to perform one of the

following database actions:

Goto first record
Goto previous record
Goto next record
Goto last record

Goto previous page (pages are defined by you)
Goto next page (pages are defined by you)

Create bookmark
Goto bookmark
Refresh display

Filenames

& Publizhers |_ O] =]
SS5DBGd1
PublD |Hame Company Mame Address =
3 1|ACK Azzaciation for 17w 42
2 Addizaon-weslay Addizon-Wesley Rte 128
3|Bantam Boaoks Bantar Books Div af. | GBS Fifth &
I | 4 | Beniamin/Cumrminas Beniamin-Cumrminaz 390 Bridaes ¥
4 3
|F'reviu:uus Recard | Mext Recaord | Last Record
| Previouz Page | Mext Page
| Save Bookmarl:, | ot Bookmark, | R efrezh

Adding a Data Command Button
Speed Buttons

Binding to a Data Control Across Forms

ObjectType

Data Command Button Features

The Data Command Button allows you to create command buttons that perform database functions.

The following is a list of the features for this control:

Add, Delete, Refresh, Bookmark, and Auto-Positioning functions
Click and After Click events

Auto-Repeat functionality

3D font capability

Multiline captions

Custom color options

Auto-sizing capability

Data Command: Exercise 1

This guides you through the creation of a sample program using the Data Command control. For a
complete description of this control, refer to the Data Command section.

For this exercise, it is assumed that you have already launched your development application (Visual
Basic), and that the control has been added to your toolbox. For more information on how to do this,
refer to Using Data Widgets.

You will create an application that makes use of the Data Command control. The database used will be
the BIBLIO.MDB that ships with Visual Basic and is located in the Visual Basic home directory. If you are
using an environment other than Visual Basic, and do not have the BIBLIO.MDB database, consult
BIBLIO File Structure for details on the file layout.

1. Place a standard data control on the form.

2. Set the DatabaseName property to BIBLIO.MDB and set the RecordSource property to ‘Publishers’.
Set the Visible property to ‘False’.
This example will demonstrate how the Data Command buttons can replace navigation functions of
the data control. We can set the data control to invisible since we will use the buttons for navigation.

3. Add four standard labels and four standard text boxes as shown below. Set the DataSource
property to ‘Data1’ for all text boxes.

4. Set the DataField for the first text box to ‘Name’, set the second one to ‘Company Name’, the third to
‘Telephone’, and the fourth to ‘Fax’.

w. Forml M= E3

iz Text

Comparny Text?

M ame
Telephane Tent3
Fax Textd

4] 4 |Datal » [

5. Add six Data Command buttons to the form setting the DataSource property for each one to ‘Data?’
and changing the Caption property for each one so that they look like this:

| Firzt Record | Last Record

| Previouz Record | M ext Record

| Save Bookmark | ot Bookmark,

6. For each button, set the DatabaseAction property so it corresponds to the caption.

7. The Save Bookmark button requires one line of code to make it functional. To add it, double click on
the Save Bookmark button and add the following:

Private Sub SSDBCommand3_AfterClick()
SSDBCommand6.SavedBookmark = SSDBCommand3.SavedBookmark

End Sub
8. Run the application.
w. Forml [_ (O] x|
M ame I!'f""I:l'""I
Campany Azzociation for Computing bMachinen
M arne
Telephone 212-869-7440
Fax
| Firzt Record | Last Record
| Previouz Becord | Mext Recaord
| Save Bookmarl:, | ot Bookmark,

And there you have it! This is just a sampling of what the Data Command buttons are capable of. Try
using this application to get a feel for how the buttons work. To see how the bookmarks work, click the
Save Bookmark button, and then move to another record. Clicking on the Goto Bookmark button will
take you back to the record you saved.

Data DropDown Control Filenames ObjectType

The Data DropDown custom control is a grid that can be linked to the cells in the Data Grid (SSDBGrid)
for use as a value selection list. The Data DropDown, when used in conjunction with a cell in a Data
Grid, functions very similar to the Data Combo, with the exception that it does not contain an edit portion.
The field that would normally be in the edit portion of a Data Combo is in the cell of the Data Grid. You
can display as few or as many fields in the dropdown list as you want.

One of the advantages of the Data DropDown is that it allows you to cross-reference data to a value.
Let’'s say you have a field (EmployeelD) that stores the identification number of your employees.
Instead of a person needing to memorize each employee’s number, you can create a Data DropDown in
the EmployeelD field that lists the employee’s full name next to their identification number in a scrollable
list for easy selection. You could do the same for customers, parts, or just about any other information
that you want to access from a list.

Forml _ O] x|
Order Lookup Table
EmployeelD Date [Customer Hame Customer Aq ~
|0 1010495 [General S avings 109 Plyrnouth
Bl =| 10/10/95 Amplified Elec. 10-20 82 Stree
E mployeelD Employeed ame | | Bl 210 East 32nc
b ark. Ronztein 932 “Woodside
14 Johh Ewens | 222 East BOth
I[g Richard Adams 10231 E ast 1 hd
1 Bob Sanderson

Keyboard Interface

Adding a Bound Data DropDown
Customizing the Bound Data DropDown
Adding an Unbound Data DropDown
Binding to a Data Control Across Forms

Data DropDown Features

The Data DropDown control is used for attaching a Data Grid column to a dropdown list of values from
another source of data.

The following is a list of the features for this control:

Used in conjunction with the Data Grid

Supports multiple data modes including bound, unbound, and Addltem
User is not limited to the width of the edit area for entering/displaying data
Same formatting capabilities as the SSDBGrid control

Full design time capabilities

Data DropDown: Exercise 1

This section guides you through the creation of a sample program using the Data DropDown control. For
a complete description of this control, refer to the Data DropDown control.’

For the exercises in this section, it is assumed that you have already launched your development
application (Visual Basic), and that the control has been added to your toolbox. For more information on
how to do this, refer to Using Data Widgets.

In this exercise, you will create a simple program that makes use of the Data DropDown control.

1. Place a Visual Basic data control on the form.

2. Set the Visible property to False.
This hides the data control when your program runs.

3. Set the DatabaseName property to BIBLIO.MDB.
Be sure to qualify the filename with the path of where the file is located, if needed.

4. Setthe RecordSource property to ‘Titles’
5. Place a SSDBGrid control directly on the form by double clicking on the tool in the Visual Basic
toolbox. Resize the grid to a size that is suitable for your form.

6. For the SSDBGrid control, set the DataSource property to Data?.
This points the Data Grid to the data control you created in Step 1.

7. Forthe SSDBGrid control, set the AllowAddNew and AllowDelete properties to True.
8. Place a second Visual Basic data control on the form.
9. For the data control, set the Visible property to False.

10. For the data control, set the DatabaseName property to BIBLIO.MDB.
Be sure to qualify the filename with the path of where the file is located, if needed.

11. For the data control, set the RecordSource property to ‘Publishers’

12. Place a Data DropDown control on the form.
The location of the Data DropDown is unimportant since it is invisible at runtime.

13. For the SSDBDropDown control, set the DataSource property of the Data DropDown to the second
data control.

14. For the SSDBDropDown control, set the DataFieldList property of the Data DropDown to ‘PublID’.

15. Link the Data DropDown to the Data Grid by adding the following code in the InitColumnProps
procedure of the Data Grid:
SSDBGrid1.Columns(3).DropDownhWnd = SSDBDropDown1.hWnd

Try running your application at this point. Click on the PubID column, and it will drop down the
‘Publisher’s table. Try changing the field value by selecting another record from the list.

By default, all fields in the table display. You can selectively hide fields by adding code in the DropDown
event of the Data DropDown.

Data Grid Control Filenames ObjectType

Anatomy of a Data Grid

The Data Grid custom control is an editable grid that can be used to display and edit data. In just a few
steps, you can have a fully functional program that allows users to view, edit, add, and delete rows in a
database without a single line of code! The Data Grid can operate in bound, unbound, or Addltem mode.
When working in bound mode, the Data Grid communicates with the host environment’s data control,
which allows your grid to interact with any database the data control is capable of using.

In Addltem mode, the Data Grid can be used as a multi-column list box, in which case, it is not linked to a
database. Since the Data Grid uses virtual data management techniques, meaning it can handle any
amount of data without using up all of Windows memory, you can use it to handle large lists of data.
When being used in add item mode, the Data Grid stores all data in memory, which is in contrast to bound
and unbound modes where only the amount of data needed to display is kept in memory.

The Data Grid is fully-customizable and can contain multiple groups and columns with the ability to
specify attributes such as colors, fonts, and user permissions to individual columns and groups.

The SSDBGrid control is zero-based, which means that numbering for all rows, columns, levels, etc. start
at 0. For example, the command ?SSDBGrid1.Columns(1).Caption returns the caption of the second
column in the grid.

When using the grid in bound mode, by default, each column represents a field in the database with each
column header being named after the respective database field.

Note In Data Widgets 1.0, you could not see any groups, columns or special attributes when in design
mode. Version 2.0 now allows you at design time to view the grid as it will appear at runtime.

Adding a Bound Data Grid to your application
Adding an Unbound Data Grid to your application
Adding an Addltem Grid to Your Application

Grid Editor

Keyboard Interface

About SelBookmarks

Using the Data Grid as a List Box

Using the Cell Button Feature of the Data Grid
Using a Data DropDown in a Data Grid Column
Binding to a Data Control Across Forms
Updating Rows from a Modal Form

Data Grid Ex 1 - Part I: Adding the grid

Place a Visual Basic data control on the form.

2. Set the Visible property to False.

This hides the data control when your program runs.

3. Set the DatabaseName property to BIBLIO.MDB.
Be sure to qualify the filename with the path of where the file is located, if needed.

4. Setthe RecordSource property to ‘Publishers’

5. Place a SSDBGrid control directly on the form by double clicking on the @ tool in the Visual Basic
toolbox. Resize the grid to a size that is suitable for your form.

6. Setthe DataSource property to Data’.
This points the Data Grid to the data control you created in Step 1.

7. Set the AllowAddNew and AllowDelete properties to True.

Believe it or not, you just created a fully functional database grid in six steps!

entire table, as well as add new rows and delete existing rows.

To see for yourself, try running the application at this point (select Start from the Run menu of Visual
Basic). The results should look something like:

You can view and edit the

S5DBGrid1 |

PublD (Mame Company Hame Addreszs City State Zipl
2 1 [ACk Agzociation for 11 %, 42nd St 3rd il [Mew York, N 100
2| Addizon-i#f esley Addison-wesley Rte 128 Reading bl 18
3|Bantam Books Bantam Books Div of: |BEE Fifth Auwve Mew vork, Ny 107

4 | Benjamin/Cummirigs Benjamin-Cummings 390 Bridge Py, Redwood City Lo 3401
5|Brady Pub. Brady Books Div. of 15 Columbug Cir, Mew ok, My 100,

B | Computer Science Computer Science 41 Madizon Ave Mew “ork, N 100
7|ETH Corporation ETH Corp. RO 4, Bow BR3 b ortoursville P 177!

3| Gale [zale Research, 335 Penobzcot Bldg Dretroit il 482,
9||IEEE |EEE Computer Society |10662 Loz Vagqueros Log Alamitos L a0y,

10 Intertexst | nkertext ZE33 E. 17th Ave. Anchorage A 9335I

17 [M&T Books b & T Books Div of: A01 Galvestan Dr Redwood City L 3401

12 | Macmillan Education acmillar Education 175 Fifth Awve Mew vork, N 100

13 | McGraw-Hill M Graw-Hill Inc 1221 bve of the Mew vork, Ny 100

14 | Microzoft Press bicrozoft Press Div of. | One Microsoft ' ay Redmond il 330!

15| kargan K.aufmann korgan K.aufmann 2929 Campus Dr, Suite |San Mateo L 3441

16 | Ozbarne OzbornedtcGraw-Hill | 2600 Tenth St Berkeley Lo 947

17 |Prentice Hall Frentice Hall Div. of 15 Columbus Cir. Mew vork, Ny 100

18 | Prentice Hall Prentice Hall Rte. 9w E nalewood Cliffz [l 07E:
13|30 E D Information [1 E D Information F.0. Bow 82-131 WWellezley b 021

21 5RA Science Rezearch 156 M. Wacker Dir. Chicago IL B!

22 |5lawzon Slawzon 166 Vallecitoz de O |San Marcos Ca, 920
m —— e — S e e = =

Data Grid Ex 1 - Part II: Creating groups and columns

While the grid displays all your data, wouldn’t it be nice to spice it up a little? In this next part, we'’re
going to make use of a powerful tool called the Grid Editor. With the Grid Editor, we’ll be able to create
groups and columns, as well as easily specify a variety of display attributes.

With the application we created in Part | open, let's do the following:

¢ In Design mode, select the grid and then select "(Custom)" from the Properties list. The Grid Editor
appears.

The first thing we want to do is divide the various fields into organizational groups:

1. Select the "Groups" tab.
The Groups tab allows us to create and delete group definitions.

2. Click the Add button and type "Company Information"
3. Click the Add button and type "Address Information"
4. Click the Add button and type "Other"

You have just created three groups. Now, it's time to add some fields (herein referred to as "Columns")
to the groups.

1. Select the "Columns" tab.
The Columns tab allows us to create and delete column definitions.

2. Click on the group header labeled "Company Information".

3. Click the Fields button.
The Fields button allows us to automatically create columns from a bound database.

4. Select the fields "Name" and "Company Name" from the Fields Selection list.
5. Click the OK button.
You have just added these two fields to the "Company Information" group.
6. Click on the group header labeled "Address Information".
7. Click the Fields button.
8. Select the fields "Address", "City", "State", and "Zip" from the Fields Selection list.
9. Click the OK button.

You have just added these four fields to the "Address Information" group.
10. Click on the group header labeled "Other".
11. Select the fields "Telephone”, "Fax", and "Comments" from the Fields Selection list.

12. Click the OK button.
You have just added these four fields to the "Other" group.

You've just created a grid layout making use of groups and columns! Resize the groups to your liking by
clicking on the right edge of the group headers and dragging them to either the left for smaller, or right for
larger. You can do the same for the columns by clicking on the column headers and dragging. You'll
notice that we left two fields out of our grid, "PubID" and "Comments". The Grid Editor allows you to
selectively use fields in your grid.

Once you have specified your layout, it's a good idea to actually Apply it to the grid by clicking the Apply
button. This updates the SSDBGrid control with the layout you just designed. You'll then want to close

the Grid Editor for now by clicking the OK button.

Note

You can apply your changes and close the Grid Editor simply by clicking the OK button.

changes have not yet been applied, you will be prompted to apply them prior to closing.

If your

If you want, try running the application at this point (select Start from the Run menu of Visual Basic).
The results should look something like:

S5DBGrid1
Company Information Addrezs Information Other |
u Company Hame Address City State |Zip Telephone Fax
0 I =i [oo 11 42nd St [New York My 110036 [212-B69-7440
Addizon-wesley Publizhing Co Fte 128 Feading b 01867 B17-344-3700 B17-96:
B antam Books Div of: Bantam EEE Fifth e Mew vork, M 10103 a00-223-6834 212-7E!
Benjamin-Curmmings Publizhing 390 Bridge Plwy. |Fedwood City | T4, 34065 a00-950-2665 415-59:
Brady Books Div. of Prentice Hall |15 Columbuz Cir. | Mew vork My 10023 2123738093 212437
Computer Science Press Inc 41 Madizon dve | Mew vork My 10010 212-676-9400 21268
ETH Corp. RO 4, Box 659 Montoursvile |Pdy 17754-947 | 7F17-435-2202 | 71743
Gale Research, Incorporated 335 Penobzcot Dretroit 5l 43226-40° | 313961 -2242 13-96
|IEEE Computer Society Prezs 10662 Loz Loz Alamitoz | Cé 0720 a00-27 2-6657 1482
...... |ntertext Publicationzfdultizcience | 2633 E. 17th Ave. | Anchaorage Ak, 33508
b & T Books Div of: kET A01 Galveston D |Redwood City | Ch 4063-47: | 800-533-4372 | 415-36
tacmillan Education Macmillan Education Lid 175 Fifth Awve Mew vork, Ny 10010 212-460-1500
M cGraw-Hill Inc 1227 Ave of the |Mework, M 10020 212-512-2000
ki Microzoft Prezsz Div of: Microzaft | One Microzaft 'Way | Bedmond i, 98052-63¢ | 800-MSPRESS | 206-88:
kaorgan Faufmann Publishers Inc. |2329 Campus Dr, | San Mateo Ch, 34403 4156789911 41557
Ozbarne OzborneteGraw-Hill Div, of 2600 Tenth St Berkeley i, 34710 a00-227-0300
Prentice Hall Div. of Simor & 15 Columbus Cir. | Mew ork, M 10023 a00-922-0573
Prentice Hall Prentice Hall International, Fite. 9w E nglewwond [07632 201-592-2000
[E D Information Sciences, P.O.Box 82181 |Wellesley b 02131 a00-343-4a48 G723
Science Rezearch Aszociates 155 M. “Wacker Dr. | Chizago IL GOGOE a00-621-04 76 A12-98:

Data Grid Ex 1 - Part lll: Customizing the Data Grid

The Data Grid is quite versatile when it comes to customizing both look and functionality. The Grid Editor
allows you to work with a number of properties at design time. In this next section, we’re going to
customize our grid so that you can begin to see the wide-range of possibilities the grid offers.

At this point, we want to go back into the grid editor so that we can customize our grid. If you don’t
remember, we can launch the grid editor by selecting the grid control then select "(Custom)" from the
Properties list.

Changes made in the Grid Editor will not take affect in the real grid until we click the Apply button in the
Grid Editor.

Let’s begin to customize our grid:

Customizing General tab options

The General tab is a tree-structure representing the various properties that can be set for the Data Grid.
The General tab is the first tab to appear when you launch the Grid Editor. When you select a property
for modification, options for that property appear to the right. The two exceptions to this are the (Add
Items...) and StyleSets options, which are both fully explained in ‘Chapter 11 - The Data Grid Control’.

Set the following properties as shown:

Property Value What It Does
Caption "Publisher Specifies the caption title for
Database" the Data Grid

CaptionAlignment
AllowAddNew

AllowDelete

Font

HeadFont3D

HeadFont

AllowColumnMoving

AllowColumnSwappin
9
DividerType

SelectByCell

"0 - Left Justify"
True

True

"Arial" for Name
8 for Point Size

"Inset w/light
shading"

"Arial" for Name
12 for Point Size

"2 - Anywhere"

"2 - Anywhere"

"Horizontal"

True

Left justifies the caption

Allows users to add new
records to the Data Grid

Allows users to delete
records from the Data Grid

Specifies the font name and
size to be used for the grid
text.

Gives the text of your grid
headers a 3D appearance.

Specifies the font name and
size to be used for the grid
headers, including caption.

Allows users to move
columns anywhere on the
grid

Allows users to swap
columns anywhere on the
grid

Determines what type of row
divider is used.

Allows the selection of an
entire row if the user clicks
on a cell.

GroupHeadLines 2 Allows the Group Headers to
occupy two rows.

LevelCount 2 Allows each record to
occupy two rows. You will
need to decide what
columns you want on each
level.

Customizing Group options

1. Select the "Groups" tab.
2. Select the group "Other" from the Name list.

3. Set the AllowSizing property to False.
This prevents users from changing the width of the "Other" group.

4. Select the group "Company Information" from the Name list.
5. Set the HeadBackColor property to the color that you want to use.
The color you choose can either be from the palette shown, a custom color you define by clicking on

the Custom Color list, or a pre-defined system color from the System Color list that corresponds to
your Windows color scheme.

6. Repeat Step 5 for as many groups as you want to define colors for.

7. Move the "Company Name", "City", "State", and "Zip" columns so that they appear on the second
level.
To move a column from one level to another, select the column header and drag it to the appropriate
level. The results will look something like:

CSDBGHT
Company Information Address Information Other
Hame Address Telephone
Company Hame Citp |State [Zip Fax

Thiz iz an even line

%]

Thiz iz an oddline

Customizing Column options

Select the "Columns" tab.
2. Select the column "Name" from the Name list.

3. Set the Case property to ‘2 - UPPER'.
This causes all fields in the "Name" column to appear in uppercase.

4. Select the column "State" from the Name list.

5. Set the Style property to ‘3 - Combo Box'.
This causes the State field to appear as a combo box, allowing the user to choose from a list of
entries. When you select Combo Box, the Setup button appears, allowing you to modify the
contents of the combo box.

6. Click the Setup button.
The Manage Combo Items dialog appears:

Manage Combo Items
Lizt Items:
Califarnia
Flarida

EETT Cancel
o e

Mew Hampzhire

f e J erze —
DTN

Texas ﬂ
Add |
Bemove |
v Sort List

dgcending ©* Descending

7. Add the names of states listed in the graphic above by clicking the Add button and then typing
the name in the Add List Item edit box.
8. Select Sorted by clicking in the check box.

This will sort your entries in ascending or descending order based on your preference. You can manually
sort the list by selecting fields individually and clicking the Up or Down buttons.

9. Click the OK button.

You've just completed modifying the grid layout! Remember, in order for the changes we specify in the
Grid Editor to take affect on the actual grid, you must click the Apply button to activate the changes.
We’'re done with the Grid Editor, so you can click the OK button to go back to the form.

Data Grid Ex 1 - Part IV: Running the application

You can now run your application to see how the changes have affected your grid. Some items to note
about the grid are:

¢ Notice how the Company Name field displays all entries in uppercase.
e Try clicking on the State column. A combo box should appear listing the states you entered.

e Try resizing groups and columns by selecting the right side of the column or group header and
dragging left or right. Try doing this for the "Other" group. Remember that you disabled the resizing
for this group.

The Grid Editor can be run again at anytime in the future, that is, you can make further changes to your
grid whenever you’re in design mode.

The exercise just completed is just a taste of what’s possible with the Data Grid. The best way to learn
about the grid is to experiment with different settings. The Grid Editor provides context-sensitive help
throughout should you have any questions about a specific property. You should also refer to Chapter 11
for an in-depth view of the Data Grid control.

Data Grid Features

The Data Grid is a fully editable bound grid that allows you to edit an entire record set, regardless of size,
on screen without writing any code.

The following is a list of the features found in the Data Grid control:

Functionally and visually consistent with data grids in Microsoft Access and Visual Basic 4.0
Support for movable groups and columns

Optional dropdowns in headings allow users to select from a list of available fields and/or groups at
runtime

Additional cell types include checkbox, button, label, and combo box
Multiline row formats

Pictures and text in cells and headings

Use of fonts and colors by column, row, and cell

Drag and Drop of cells

Supports multiple data modes including bound, unbound, and Addltem.
Addltem at design time

Supports Sheridan Style Sets

Data Grid: Exercise 1 (Bound Mode)

This section guides you through the creation of some sample programs using the Data Grid control. For
a complete description of this control, refer to the Data Grid Control.

For this exercise, it is assumed that you have already launched your development application (Visual

Basic), and that the control has been added to your toolbox. For more information on how to do this,
refer to Using Data Widgets.

In this exercise, you will create an application that makes use of the Data Grid control. The database
used will be the BIBLIO.MDB that ships with Visual Basic and is located in the Visual Basic home

directory. If you are using an environment other than Visual Basic, and do not have the BIBLIO.MDB
database, consult BIBLIO File Structure for details on the file layout.

Part I: Adding the grid
Part Il: Creating groups and columns
Part llI: Customizing the Data Grid

Part IV: Running the application

Data Grid: Exercise 2 (Unbound Mode)

In this exercise, you will create a fully functional unbound Data Grid control. The database used will be
the UNBOUND.MDB that resides in the \SAMPLES\CHAP5 directory of Data Widgets 2.0. The reason
this is an unbound data grid is because we are not using the Visual Basic data control, and are using our
own routines to deal with data.

Note: This exercise makes use of the Microsoft DAO 2.5 Object Library by using Visual Basic
commands such as OpenDatabase and OpenRecordset. If you do not have this library
available, VB may generate a "User-defined type not defined" message when running this
application. If you encounter this situation, simply enable this library through the "References...'
dialog under Visual Basic's Tools menu.

1. Place a SSDBGrid control directly on the form by double clicking on the . tool in the Visual Basic
toolbox. Resize the grid to a size that is suitable for your form.

2. Set the DataMode property to’1 - Unbound’.
3. Set the AllowAddNew and AllowDelete properties to 'True'
4. Add the following code to the (declarations) section of your form:

Dim db As Database
Dim rs As Recordset
Dim ct As Integer

' DB represents the database to be used
' RS represents the recordset to be used
' CT represents the count of fields in the table

5. Add the following code to the Form_Load procedure:

Dim i As Integer
Set db = OpenDatabase(""unbound.mdb")
Set rs = db.OpenRecordset("Titles")
ct = rs.Fields.Count

SSDBGrid1.Columns.RemoveAll

Fori=0Toct-1
SSDBGrid1.Columns.Add i
SSDBGrid1.Columns(i). Visible = True
SSDBGrid1.Columns(i).Caption = rs.Fields(i).Name
Next i

In this section, the database is assigned, a table selected, and the number of fields in the table is
given to CT. The RemoveAll is issued to ensure that there are no existing columns when the grid
goes to add columns from the database. Inthe ‘Fori=0 To ct- 1’ loop, columns are created based
on the number of fields in the database, and headers are assigned based on the field name.

6. Add the following code to the SSDBGrid1_UnboundReadData event:
Dimr, i, j As Integer

If IsNull (StartLocation) Then
If ReadPriorRows Then
rs.MoveLast
Else
rs.MoveFirst
End If

Else
rs.Bookmark = StartLocation
If ReadPriorRows Then
rs.MovePrevious
Else
rs.MoveNext
End If

End If

For i = 0 to Rowbuf.RowCount - 1
if rs.BOF or rs.EOF Then Exit For

Forj=0toct-1
Rowbuf.Value(i,j) = rs(j)
Next j

Rowbuf.Bookmark(i) = rs.Bookmark

If ReadPriorRows Then
rs.MovePrevious
Else
rs.MoveNext
EndIf
r=r+1
Next i

Rowbuf.RowCount = r

The UnboundReadData event reads data into the grid. In this section, the program first looks to see
if it's dealing with an empty grid or not, by checking StartLocation. If itis empty, then the first or last
record is gone to based on the ReadPriorRows value (which indicates if scrolling should occur
forwards or backwards). If it is not empty, the database bookmark is set to the start location and
we move backwards or forwards based on ReadPriorRows.

We then read in the data, only stopping when we reach the beginning or end the file or when we
reach RowCount- 1. As we add each row, we keep track of a counter r, which we set
RowBuf.RowCount to when we finish.

Add the following code to the SSDBGrid1_UnboundAddData event:
Dim i As Integer
rs.AddNew

Fori=0to (ct-1)
If Not IsNull (Rowbuf.Value (0,i)) Then
rs(i) = Rowbuf. Value(0,i)
End If
Next i

rs.Update
rs.MoveLast
NewRowBookmark = rs.Bookmark

The UnboundAddData event adds a new row. In this section, the database is prepared for a row
addition, and the field values are passed from the ssRowBuffer to the database for each field. The
database is then updated. Finally, we move to the last row in the database, and point the

NewRowBookmark.

8. Add the following code to the SSDBGrid1_UnboundDeleteRow event:

rs.Bookmark = Bookmark
rs.Delete

The UnboundDeleteRow event deletes a row. In this section, the database is pointed to the row
being deleted, and then actually deletes it.

9. Add the following code to the SSDBGrid1_UnboundWriteData event:
Dim I As Integer
rs.Bookmark = WriteLocation
rs.Edit

Fori= 0 To (ct-1)
If Not IsNull(RowBuf.Value(0,i)) Then
rs(i) = RowBuf.Value(0,i)
End If
Next i

rs.Update

The UnboundWriteData event writes a row that has been changed. In this section, the database is
pointed to the row being written, and then put into edit mode. The data is then passed from the grid
to the database for each field, and then issued an update command.

10. Run your application.

Data Grid: Exercise 3 (Addltem Mode)

In this exercise, you will create a fully functional Addltem Data Grid control.

1. Place a SSDBGrid control directly on the form by double clicking on the . tool in the Visual Basic
toolbox. Resize the grid to a size that is suitable for your form.

2. Set the DataMode property to 2 - Addltem’.

3. Set the Cols property to 3.

This tells the grid that we will use three columns.

4. Set the FieldDelimiter property to ! (exclamation mark).

This property determines the character that represents the start and end of a field.

5. Set the FieldSeparator property to , (comma).
This property determines the character that represents a separation between fields.

6. Add the following code to the SSDBGrid1_InitColumnProps event:

Dim | As Integer
For1=0to 20

SSDBGrid1.Addltem "Hello!,'There!,!World!"
Next |

Run your program. You'll see that it functions just like an Unbound or Bound grid.

Select a Data Widget control:

Data Grid
Data Combo

Data DropDown

DataOptionSet
Enhanced Data

Data Command Button

DataField Property Applies To

Column object
SSDBCombo
SSDBCommand
SSDBData

SSDBOptSet

DataField Property See Also

DataSource

DataFieldList Property Applies To

SSDBCombo
SSDBDropDown

DataFieldList Property See Also

DataMode
DataSource
DataSourcelList

DataMode Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

DataOptionSet Control Filenames ObjectType

The DataOptionSet custom control allows you to use 3D options buttons that can be bound to a database
field. Using the DataOptionSet control, you can easily incorporate option buttons for use in your
database application. Instead of entering data which can lead to typographical errors, users may simply
click on an option button to select a pre-defined value for a field. For example, using one DataOptionSet,
you could have four option buttons to represent various credit-card payment methods.

If the value of the active field equals the value set for the control, the option button will be automatically
clicked. If another DataOptionSet button matches a value in the field or there is no match, the button will
automatically be clicked off.

One control can contain multiple option buttons, which can be added (up to 100 total) or deleted, as
specified by you at either design or runtime. Appearance of the buttons are user-controllable through the
use of layout properties. The DataOptionSet is zero based, meaning that numbering of buttons starts at
zero.

The DataOptionSet makes use of objects and collections.

Payment Method

Cazh I
® Visa
Housze Account I () MasterCard

Check I) &merican Express
) Discover
Credit Card

Keyboard Interface

Adding the DataOptionSet

Creating Buttons at Design Time
Creating Buttons at Runtime

Binding to a Data Control Across Forms

DataOptionSet Features

The DataOptionSet control allows the binding of data fields to option buttons for representation of field
values. For example, if you were writing a point-of-sale system, you could have four option buttons,
each representing various credit cards ("Visa", "MasterCard", "American Express", and "Discover").
Clicking on the appropriate option button automatically changes the value in the database and allows you
to store the type of payment that was used.

The following is a list of the features for this control:

Multiline captions

One control creates unlimited option buttons that are bound to the same data field
Saves Windows resources

Automatic and manual row/column positioning

Each individual button can have a caption with optional picture

Custom color options

3D capability

DataOptionSet: Exercise 1

This section guides you through the creation of a sample program using the DataOptionSet control. For
a complete description of this control, refer to the DataOptionSet.

For this exercise, it is assumed that you have already launched your development application (Visual
Basic), and that the control has been added to your toolbox. For more information on how to do this,
refer to Using Data Widgets.

In this exercise, you will create an application that makes use of the DataOptionSet control. The
database used will be the BIBLIO.MDB that ships with Visual Basic and is located in the Visual Basic
home directory. If you are using an environment other than Visual Basic, and do not have the
BIBLIO.MDB database, consult BIBLIO File Structure for details on the file layout.

1. Place a standard data control on the form.
2. Set the DatabaseName property to BIBLIO.MDB and set the RecordSource property to ‘Titles’.

3. Add three standard labels, three standard text boxes and a standard frame as shown below. Set the
DataSource property to ‘Data1’ for all three text boxes. Set the DataField for the first text box to
‘Title’, set the second one to ‘Subject’, and the third to ‘ISBN’.

. Form1 Mi=] E3
— "rear Published
Title |Te:-:t1
Subject |Te:-:t2
ISEM |Te:-:t3

4] 4 |Datal b M|

4. Add a DataOptionSet control to the form, within the frame captioned ‘Year Published’.

5. For the SSDBOptSet control, set the DataSource property to Data1 and the DataField property
to ‘Year Published’.

This binds the control to the ‘Year Published’ field of the database specified in Data1.

6. Also for the SSDBOptSet control, set the NumberOfButtons property to 10 and the Cols
property to 2.

This creates ten option set buttons on the form, divided into two columns.

7. Set the Caption property to "1986".
This changes the caption for the first button to 1986.

8. Set the IndexSelected property to 1.
This changes the selected button from the first (0) to the second (1). The DataOptionSet is zero-
based. When you first create a DataOptionSet, the first button is automatically selected.

9. Repeat Steps 7 and 8 until you have renamed all 10 buttons to look like:

— Tear Publizhed

1986
1987
1988
1389
1990

10. For each button, set the OptionValue property to match its caption.
Remember, you must first set the IndexSelected property to specify the button you want to work with.
The OptionValue property compares against the value in the database.

11. Run your application.

Try moving through some of the records using the data control. Notice how the option buttons change as
you move. You'll notice that some records cause the DataOptionSet to not select any button, this is
because the date does not match any of the option values specified. Remember, you didn’t need to write
a single line of code! However, it is possible to accomplish what we just did through code. The
following procedure can be used in place of Steps 6 through 10:

Private Sub Form_Load()
SSDBOptSet1.NumberOfButtons = 10
SSDBOptSet1.Cols = 2

SSDBOptSet1.Buttons(0).Caption = "1986 "
SSDBOptSet1.Buttons(0).OptionValue = "1986"

SSDBOptSet1.Buttons(1).Caption = "1987 "
SSDBOptSet1.Buttons(1).OptionValue = "1987"

SSDBOptSet1.Buttons(2).Caption = "1988 "
SSDBOptSet1.Buttons(2).OptionValue = "1988"

SSDBOptSet1.Buttons(3).Caption = "1989 "
SSDBOptSet1.Buttons(3).OptionValue = "1989"

SSDBOptSet1.Buttons(4).Caption = "1990 "
SSDBOptSet1.Buttons(4).OptionValue = "1990"

SSDBOptSet1.Buttons(5).Caption = "1991 "
SSDBOptSet1.Buttons(5).OptionValue = "1991"

SSDBOptSet1.Buttons(6).Caption = "1992 "
SSDBOptSet1.Buttons(6).OptionValue = "1992"

SSDBOptSet1.Buttons(7).Caption = "1993 "
SSDBOptSet1.Buttons(7).OptionValue = "1993"

SSDBOptSet1.Buttons(8).Caption = "1994 "
SSDBOptSet1.Buttons(8).OptionValue = "1994"

SSDBOptSet1.Buttons(9).Caption = "1995 "
SSDBOptSet1.Buttons(9).OptionValue = "1995"
End Sub

While the code is rather lengthy, you can begin to see how easy it is to work with DataOptionSet buttons
through code.

DataSourcelList Property Applies To
SSDBCombo

DataSourcelList Property See Also

DataFieldList
DataMode
DataSource

DataType Property Applies To

Column object

DatabaseAction Property Applies To
SSDBCommand

DefColWidth Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Delaylnitial Property Applies To

SSDBCommand
SSDBData

Delaylnitial Property See Also
DelaySubsequent

DelaySubsequent Property Applies To

SSDBCommand
SSDBData

DelaySubsequent Property See Also

Delaylnitial

Distributing Your Application

Once you have created a program using Data Widgets controls, you must distribute the OCX files with
your application. There are no separate design time and runtime versions of the controls, therefore, the
same OCX files you develop with can be shipped with your application.

Filename Description

SSDATA16.0CX 16-Bit OCX containing SSDBData, SSDBOptSet, SSDBCommand
SSDATA32.0CX 32-Bit OCX containing SSDBData, SSDBOptSet, SSDBCommand
SSDATB16.0CX 16-Bit OCX containing SSDBGrid, SSDBDropDown, SSDBCombo
SSDATB32.0CX 32-Bit OCX containing SSDBGrid, SSDBDropDown, SSDBCombo

Support files needed for distribution

Due to the nature of the OLE architecture, the new OCX controls require that a number of supporting files
be shipped with your application. They have been installed in your system directory and are:

dao2516.dll vaen2.dll
msajt200.dll vaen21.olb
msjeterr.dl| vb40016.dlI
msjetint.dll vb4en16.dll
oc25.dll vbajet.dll
typelib.dll vbdb16.dll

A note about OLE file distribution

The introduction of OCX controls has created some confusion amongst developers when it comes to the
five files used for OLE (COMPOBJ.DLL, OLE2.DLL, OLE2DISP.DLL, OLE2NLS.DLL, STORAGE.DLL).
These files are only needed to support 16-Bit applications created with Data Widgets.

Windows 95 and Windows NT

If your application is running under Windows 95 or Windows NT, then the OLE DLLs are part of the OS
and you do not need to install or update these files, provided the version numbers match below:

Windows 95

compobj.dll Version 2.2
ole2.dll Version 2.2
ole2disp.dll Version 2.1
ole2nls.dll Version 2.1
storage.dll Version 2.2
Windows NT

compobj.dll Version 2.1

ole2.dll
ole2disp.dll
ole2nis.dll
storage.dll

Windows 3.x and Windows for Workgroups 3.x

Version 2.1
Version 2.1
Version 2.1
Version 2.1

If your application is running under Windows 3.x or Windows For Workgroups 3.x, you must make sure

that these DLLs are installed for any applications created with the OCX version of Data Widgets.

These

DLLs are included with the Data Widgets installation disks and are copied when you install Data Widgets
under either of these environments.

Windows 3.x and Windows for Workgroups 3.x

compobj.dll
ole2.dll
ole2disp.dll
ole2nls.dll
storage.dll

Version 2.03
Version 2.03
Version 2.03
Version 2.03
Version 2.03

DividerStyle Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

DividerStyle Property See Also
DividerType

DividerType Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

DividerType Property See Also

DividerStyle

DoClick Method Applies To

SSDBCombo
SSDBCommand

SSDBDropDown
SSDBGrid

DropDown Event Applies To

SSDBCombo
SSDBDropDown

DropDown Event See Also

CloseUp event

DropDownHwnd Property

Applies To
Description

Specifies the handle of the Data DropDown (Hwnd property) to be linked with the Data Grid.

Syntax
object.DropDownHwnd[= hwnd]

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
hwnd A variant expression specifying the handle of the DataDropDown to be linked.
Remarks

Set this property to the Hwnd property of a Data DropDown to enable a link between the grid and Data
DropDown. The Data Grid will automatically display the dropdown button in a cell when it is active.

This property is only available at runtime.

The DropDownHwnd property can only be used with the Data DropDown control. It will not work with
other controls.

Example
The following code ties the second column of a Data Grid to a Data DropDown:

SSDBGrid1.Columns(1).DropDownHwnd = SSDBDropDown1l.Hwnd

DropDownHwnd Property Applies To

Column object

DroppedDown Property Applies To

SSDBCombo
SSDBData

SSDBDropDown

DroppedDown Property See Also

CloseBookmarkDropdown event
ShowBookmarkDropdown event

kel
Enhanced Data Control Filenames ObjectType

The Enhanced Data Control (EDC) is an enhanced version of the Data Control that ships with Visual
Basic. The EDC is used in conjunction with the data control rather than taking its place. The EDC can
be oriented either horizontally or vertically, and can be sized to your liking at design time.

Some of the enhancements that the EDC provides include bookmark storage allowing you to return to a
particular row at a later time, next page and previous page buttons, the ability to selectively
enable/disable features of the EDC, and a speed button feature allowing the user to hold down a button to
repeat its function.

4 |«| 4 |+|?f;|9:| -El%l Avlt, Michael R .sﬂlmlﬁlﬁl » |H*|HI

Adding the Enhanced Data Control

Anatomy of the Enhanced Data Control

Finding Information with the Enhanced Data Control
What are Bookmarks?

Speed Buttons

Binding to a Data Control Across Forms

Enhanced Data Control: Exercise 1

This section guides you through the creation of a sample program using the Enhanced Data control. For
a complete description of this control, refer to the Enhanced Data Control section.

For these exercises, it is assumed that you have already launched your development application (Visual
Basic), and that the control has been added to your toolbox. For more information on how to do this,

refer to Using Data Widgets.

You will create an application that makes use of the Enhanced Data control. The database used will be
the BIBLIO.MDB that ships with Visual Basic and is located in the Visual Basic home directory. If you are
using an environment other than Visual Basic, and do not have the BIBLIO.MDB database, consult
BIBLIO File Structure for details on the file layout.

1. Place a standard data control on the form.

2. Set the DatabaseName property to ‘BIBLIO.MDB’ and set the RecordSource property to ‘All Titles’.
Set the Visible property to ‘False’.
This example will demonstrate how the Enhanced Data control supplements the standard data control
by adding new navigational features. The standard Data Control is required for access to the
database, but is not required for navigation.

3. Place a SSDBGrid control directly on the form by double clicking on the tool in the Visual Basic
toolbox.

Resize the grid to a size that is suitable for your form.
4. Set the grid’s DataSource property to ‘Data1’

5. Place an Enhanced Data Control (EDC) directly on the form by double clicking on the tool in the
Visual Basic toolbox.
Resize the EDC so that it fits the width of the form.

W Forml [_ (O]

SSDBGnd1

F | This iz an even line -
Thiz iz an odd line

F

4| =% 5SDEDAtal .ﬁlmlﬁlﬁlllﬂlﬂl
RIKIEL

|

This binds the EDC to the database.
access to the database.

Set the grid’s AllowAddNew and AllowDelete properties to True.

6. Setthe EDC’s DataSource property to ‘Data1’ and the DataField property to ‘Author’.
Remember that the EDC relies on the standard data control for

However, you can make the standard data control invisible so that your
users do not see it at runtime.

This allows you to add and delete records within the database by clicking the corresponding buttons

on the EDC.
8. Run the application.
w Forml _ (O] x|
S5DBGnd1

Title ISBM Author Year |Company Hame =
Ath dimenzion; a 0673281722 F.rught, Tirmathy Orr 1983 | Scott Foresman |F

B |4 quide to developing | 1-558E014-7-3 F.hozhafian, Setrag. 1932 | Morgan K.aufmann
A guide ko SOL IJnknovan Pratt, Philip J 1994 |Boypd & Fraszer
A guide ko the SOL 0-2015020-9-7 Date, C. J. 1983 | Addizonwesley
A Hitchhiker's Guide to |0-9840242-0-9 W aughn, Wwiliam R 1934 |Beta®f Spstems
A practical guide to 0-83435438-4-1 Aul, Michael B 1934 0 E [Information
A primer on SCEL 0-201E008-5-5 Agelaff, Boy 1988 | Times Mirmar /b ozby
A wizual introduction to | 0-4716168-4-2 Chappell, Dawid 1923 | John "Wiley & Sonz nc.
A wizual introduction to |0-4716168-4-2 Trmble, J. Harvey 1923 | John "Wiley & Sonz Inc.
Accesz 1.1 developer's |0-6723017-8-4 Jenningz, Roger 1933 | Samz Publications
Advanced dBASE W [-8733595-3-3 Pratt, Philip J 1994 |Boypd & Fraszer
Advanced dBASE |V 0-8733595-3-3 Lazt, Mary 2 1934 |Boypd & Fraszer
Advanced Vizual Bazic : |0-2016082-8-6 Burgess, Mark 5. 1994 | Addizonw/esley
An introduction to 0-6971185-3-3 F.anabar, Wijay 1937 "m. C. Brown -

m e —— — . e — PR E—————— }d
4 11| L | |4}=|=|“d%\|E| k.hozhafian, Setrag. ‘!lﬂﬁlﬁlﬁl r|»|"|I

Try scrolling through the application.
Use the following navigational buttons to help you:

First Record
Jumps to the first record in the database.
Previous Page

Jumps to the previous page in the database. A page is determined
by the setting of PageValue.

Previous Record

Jumps to the previous record in the database.
Next Record

Jumps to the next record in the database.

Next Page

EEHE E &

Jumps to the next page in the database. A page is determined by
the setting of PageValue.

E Last Record

Jumps to the last record in the database.

Try adding and deleting records (you might want to make a backup copy of the database before you do
this).

Use the following buttons to help you:

E Add Record

Adds a new record to the end of the database.
E Delete Record

Deletes the selected record from the database.
ﬂ Update Record

Updates the selected record in the database.

Don’t delete this project, we’ll need it in the next exercise.

Enhanced Data Control: Exercise 2

One of the many useful features of the Enhanced Data Control is its searching capabilities. This
exercise demonstrates some of the capabilities of the EDC’s search routine. The project used in the last
exercise should be running at this point.

1. To activate the Find dialog, click the . button.
The Find dialog appears:

Find
- Directi
Find: | =] r'_[e'il';” Find MNext |
o Cancel |
— Match o
= Less Than [<] Column(z] To Seanch:
" Less Than or Equal [<=] IBN
Avthor
" Equal[=] ‘Year Published

" Greater Than or Equal [>=] Compary Name

= Greater Than [3]
' Partial Match [strings only]

" Soundex [strings only]

In the Find box, type ‘John Wiley & Sons Inc.’.
Select ‘Equal (=) for the type of match.
Select ‘Company Name’ for the search column.

Click Find Next
The first occurrence of this text will be found.

ok on

To find the next occurrence of this text, click the Find Next button.

7. To find the last occurrence of this text, click the Find Previous Eﬂ button.

The Find dialog can be a very powerful tool for locating information in large databases. It also has
advanced searching capabilities that include Soundex searching and Partial String searching. To try
Soundex searching, replace the text in Step 2 with "Jon". To try Partial String searching, replace the text
in Step 2 with "John"

Enhanced Data Control: Exercise 3

Bookmarks are a powerful tool that allow you to "flag" a record in a database and later go back to it at the
click of the mouse. This exercise demonstrates how you can use bookmarks to better manage your
database. The project used in the last exercise should be running at this point.

Before we start, it is important to understand that using bookmarks is a two-step process. The first step
is to Add the bookmark, the second step is to Goto the bookmark. You can only go to a bookmark that
you have added.

o0 & w

Scroll though the database and select the first record you want to add a bookmark for.

Click the Add Bookmark button.
You will notice that two buttons (the Delete Bookmark and Goto Bookmark buttons) just became un-
grayed and available for selection.

Scroll though the database and select another record you want to add a bookmark for.

Click the Add Bookmark button.

Scroll through the database some more, and click the Goto Bookmark E button.

Select the bookmark you want to go to from the dropdown.

Notice how the bookmark is represented by the field you are bound to. This is because bookmarks
are binary and can not be displayed, so a text string must be associated with it. If you use the Add
method to add bookmarks in code, you need to include the second parameter which is the display
string.

Click the Clear All Bookmarks @ button.
All bookmarks that you created have just been deleted.

Now you can begin to see the power of the Enhanced Data Control. The three exercises we performed
are a sampling of what you can do. The EDC also allows you to customize its button interface including
the bitmap itself as well as selectively toggle buttons on or off.

Enhanced Data Control Features

The Enhanced Data Control behaves as a front end to the Visual Basic data control adding new
functionality such as bookmark navigation and page movement.

The following is a list of the features for this control:

Re-position recordset by selecting from a dropdown list of up to 100 previously marked rows
Buttons that perform database actions such as add, delete, update, plus bi-directional nth record
paging

Store and sort multiple bookmarks in the bookmark dropdown list

Conditional and Soundex searching

Optional user-defined pictures for each button

Auto-repeat movement keys (forward, backward) plus bidirectional nth record paging

3D Font capability

Caption text rotation

Display/Hide any button

Custom events give full programmatic control over button clicks and navigation.

Error Messages

The following is a list of trappable errors that could occur at runtime when using the Data Widgets custom
controls.

Error Number Description

30422 ssltemNotInList
"Item is not in list"

Validation determined that the current edit text is not in the
associated dropdown list.

30423 ssNullEdit
"A null value is not allowed for this field"

Validation determined that the current edit text is null, but
nulls are not allowed.

30424 ssBadTypeEdit
"The value is not of the correct type for this field"

Validation determined that the data type of the value
currently in edit text does not match the data type of the
associated list.

30425 ssBitMap
"PictureDropDown must be a bitmap"

You tried setting the PictureDropDown property to
something other than a bitmap

30426 ssDropltemsRange
"Value must be from 1 to 100"

You tried setting the MaxDropDownltems or
MinDropDownltems outside the allowed range.

30427 ssMaxLessMinDropltem

"MaxDropDownltems cannot be less than
MinDropDownltems™

You tried setting MaxDropDownltems to a number smaller
than the MinDropDownltems value.

30428 ssMinMoreMaxDropltem

"MinDropDownltems cannot be greater than
MaxDropDownltems"

You tried setting the MinDropDownltems to a value greater
than the MaxDropDownltems.

30434 ssBadParam

"Invalid parameter”

You tried passing an invalid parameter to a method.
30430 ssValueOto10

"Value must be from 0 to 10"

You tried setting a property outside the allowed range.
30433 ssBadHost

30435

30436

30437

30438

32033

32034

32035

32036

32037

32038

"Host environment does not support formatting™

You tried setting the BevelWidth property outside the
allowed range.

ssLevelCount

"LevelCount must be from 1 to 10"

You tried setting a property outside the allowed range.
ssFieldDelim

"FieldDelimiter can be any one character or the word
lNonelll

You tried setting FieldDelimeter to something other than
that allowed.

ssFieldSep

"FieldSeparator can be any one character, the word
'Tab’, or 'Space™

You tried setting FieldSeperator to something other than
that allowed.

ssLevelnoGroup

"The level count cannot be greater than zero if there
are no groups"

You tried setting the property to something other than that
allowed.

sseEDCBevellnner
"Bevellnner must be from 0 to 2"

You tried setting the property to something outside the
allowed range.

sseDCBevelOuter
"BevelOuter must be from 0 to 2"

You tried setting the property to something outside the
allowed range.

sseDCBevelWidth
"BevelWidth must be from 0 to 10"

You tried setting the property to something outside the
allowed range.

ssEDCBorderStyle
"BorderStyle must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

sseEDCBorderWidth
"BorderWidth must be from 0 to 10"

You tried setting the property to something outside the
allowed range.

ssEDCRoundedCorners
"RoundedCorners must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

32039

32040

32041

32042

32043

32044

32045

32046

32047

32048

32049

32050

ssEDCBevelColorScheme
"BevelColorScheme must be from 0 to 2"

You tried setting the property to something outside the
allowed range.

ssButtonSize
"ButtonSize must be from 5 to 100"

You tried setting the property to something outside the
allowed range.

ssPictureButtons
"PictureButtons must be of type Bitmap"

You tried specifying a type other than Bitmap for
PictureButtons.

ssShowBookmarkButtons
"ShowBookmarkButtons must be from 0 to 7"

You tried setting the property to something outside the
allowed range.

ssShowFirstLastButtons
"ShowFirstLastButtons must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssShowPageButtons
"ShowPageButtons must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssShowPrevNextButtons
"ShowPrevNextButtons must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssShowAddButton
"ShowAddButton must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssShowCancelButton
"ShowCancelButton must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssShowDeleteButton
"ShowDeleteButton must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssShowUpdateButton
"ShowUpdateButton must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssShowFindButtons

32051

32052

32053

32054

32055

32056

32057

32058

32059

32060

32062

"ShowFindButtons must be from 0 to 3"

You tried setting the property to something outside the
allowed range.

ssEDCAlignment
"Alignment must be from 0 to 8"

You tried setting the property to something outside the
allowed range.

ssBookmarkDisplay
"BookmarkDisplay must be from 0 to 2"

You tried setting the property to something outside the
allowed range.

ssBookmarksToKeep
"BookmarksToKeep must be from 1 to 100"

You tried setting the property to something outside the
allowed range.

sseEDCCaptionAlignment
"CaptionAlignment must be from 0 to 2"

You tried setting the property to something outside the
allowed range.

ssColorMaskEnabled
"ColorMastEnabled must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssPageValue
"PageValue must be from 2 to 1000"

You tried setting the property to something outside the
allowed range.

ssPictureCaptionAlignment
"PictureCaptionAlignment must be from 0 to 14"

You tried setting the property to something outside the
allowed range.

ssFindBufferSize
"FindBufferSize must be from 1 to 1000"

You tried setting the property to something outside the
allowed range.

ssOrientation
"Orientation must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssEDCBalloonHelp
"BalloonHelp must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssDeleteRecord
"Choose Yes to delete the current row or No to exit"

32063

32064

32065

32066

32067

32068

32069

32070

32071

32072

32073

32074

Prompts user before deleting a row.
ssNoBookmarksLeft

"There are no more bookmarks to remove"
You tried removing a bookmark when there are none.
ssCantMove

"No Current Record"

You've tried moving to where there is no record.
ssRemovelastButton

"Cannot remove last button"

You've attempted to remove the last button.
ssOptionNotUnique

"Option value must be unique”

You've tried setting the option value to something that is
already an option value for another button.

ssAlignment
"Alignment must be either 0 or 1"

You tried setting the property to something outside the
allowed range.

ssPictureAlignment
"PictureAlignment must be from 0 to 3"

You tried setting the property to something outside the
allowed range.

ssBevelColorScheme
"BevelColorScheme must be from 0 to 2"

You tried setting the property to something outside the
allowed range.

ssCols

"Cols must be from 1 to 10, but not greater than the
total number of buttons.”

You tried setting the property to something outside the
allowed range.

ssColWidth
"ColWidth must be a positive integer”

You tried setting the property to something outside the
allowed range.

ssFont3D
"Font3D must be from 0 to 4"

You tried setting the property to something outside the
allowed range.

ssHeightGap
"HeightGap must be from 1 to 1000"

You tried setting the property to something outside the
allowed range.

ssIndexSelected

32075

32076

32077

32078

32079

32080

32097

32098

32099

32100

"IndexSelected must be from 0 to the total number of
buttons - 1"

You tried setting the property to something outside the
allowed range.

ssMinColWidth

"MinColWidth must be a positive integer equal to or
greater than 30"

You tried setting the property to something outside the
allowed range.

ssMinheight

"MinHeight must be a positive integer equal to or
greater than 15"

You tried setting the property to something outside the
allowed range.

ssNumberOfButtons
"NumberOfButtons must be from 0 to 99"

You tried setting the property to something outside the
allowed range.

ssPictureMetaHeight
"PictureMetaHeight must be a positive integer”

You tried setting the property to something outside the
allowed range.

ssPictureMetaWidth
"PictureMetaWidth must be a positive integer"

You tried setting the property to something outside the
allowed range.

ssWidthGap
"WidthGap must be a positive integer”

You tried setting the property to something outside the
allowed range.

ssDCBBevelWidth
"BevelWidth must be from 0 to 10"

You tried setting the property to something outside the
allowed range.

ssDCBDelayValue
"Delay Value must be from 1 to 5000"

You tried setting the property to something outside the
allowed range.

ssDCBPageValue
"PageValue must be from 2 to 1000"

You tried setting the property to something outside the
allowed range.

ssDCBBorderStyle
"BorderStyle must be either 0 or 1"
You tried setting the property to something outside the

32101

32102

32103

allowed range.
ssDCBCaptionAlignment
"CaptionAlignment must be from 0 to 8"

You tried setting the property to something outside the
allowed range.

ssDCBPictureAlignment
"PictureAlignment must be from 0 to 14"

You tried setting the property to something outside the
allowed range.

ssDCBDatabaseAction
"DatabaseAction must be from 0 to 8"

You tried setting the property to something outside the
allowed range.

Even Row (Row 0)

FieldDelimiter Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

FieldDelimiter Property See Also
FieldSeparator

FieldLen Property Applies To

Column object

FieldSeparator Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

FieldSeparator Property See Also

FieldDelimiter

FieldValue Property

Applies To
Description

Returns the field value for the active record.

Syntax

object.FieldValue[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
number An integer expression specifying the field value.

Remarks

FieldValue contains the value of the field specified in DataField for the active record.

Example

The following example displays a message box containing the employee name corresponding to the
current record, assuming that DataField is set to the field "EmployeeName":

MsgBox ("Current Employee: "+SSDBGrid1.FieldValue)

FieldValue Property Applies To
SSDBData

FindBufferSize Property Applies To
SSDBData

FindBufferSize Property See Also

FindDialog
ShowFindButtons

FindDialog Property Applies To
SSDBData

FindDialog Property See Also

FindBufferSize
ShowFindButtons

Finding Information with the Enhanced Data Control

Finding information in a database field is a snap with the Enhanced Data Control.

To activate the Find dialog, click the button. You can use the

and

buttons to continue searching once you’ve found a match.

Find

o - Directi

Fitud: ITWE'"" j rlruezpm Find Nert I

(o] Cancel

— Match i 4|

% Leszs Than [<] Column(z] Ta Search:
Ay D

® L T el —
 Equal (=] ear Bom

" Greater Than or Equal [»=]

' Greater Than [3]
' Partial Match [strings only]

™ 5 oundex [stings only]

Find

Direction

Less Than

Less Than
or Equal To

Equal To

Greater
Than or
Equal

Greater
Than

Partial
Match

Specify the data to search for. A list of recent searches is

available by clicking the El button.

Specifies the direction in which to search. Selecting Down
will search from the current point to the end of the database.
Selecting Up will search from the current point to the start of
the database.

Match only if the text entered in the Find dialog is less than
the value in the database. Examples of this are 1 <2 and
APPLE < BEAR

Match only if the text entered in the Find dialog is less than
or equal the value in the database. Examples of this are 2
<=2 and APPLE < BEAR

Match only if the text entered in the Find dialog equals the
value in the database. Examples of this are 5 =5 and DOG
=DOG

Match only if the text entered in the Find dialog equals or
exceeds the value in the database. Examples of this are 7
>=2 and DOT >= DOS

Match only if the text entered in the Find dialog exceeds the
value in the database. Examples of this are 10 > 9 and
TREE > BARK.

Match only if a portion of the string specified in the Find
dialog matches a portion in the database. An example of

Soundex

this is specifying "Eng" in the Find dialog and returning
"Engine" and "England”. This works for strings only.
Match only if the string sounds like one in the database. An

example of this is specifying "Skool" and returning "School".
This works for strings only.

FirstRow Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Font Object Applies To

SSDBCombo
SSDBCommand
SSDBData

SSDBDropDown
SSDBGrid

SSDBOptSet

Font Object See Also

Bold
Font3D
Italic
Name

Strikethrough

Font3D Property Applies To

SSDBCombo
SSDBCommand
SSDBData

SSDBDropDown
SSDBGrid

SSDBOptSet

Font3D Property See Also
Caption

Fonts

Fonts are supported through the Font object. At design time fonts are set through one of the font
properties (For example: Font). Depending on the development environment you are using, a dialog box
containing font information may be available so that you can set properties of the Font object. If not, you
can set the font properties through the Property Pages. The following properties are supported by the
Font object:

Properties
Bold Size Underline
Italic StrikeThrough
Name

Fonts can be set either through the font dialog at design time or by setting properties of the Font object at
runtime.

ForeColorEven Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

ForeColorEven Property See Also

ForeColor
ForeColorOdd

ForeColorOdd Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

ForeColorOdd Property See Also

ForeColor
ForeColorEven

GetBookmark Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Grid Editor

The grid editor is used to easily customize the appearance of the Data Grid, Data Combo, and Data
DropDown controls. Through a tabbed dialog, you can define the number of columns and groups as well
as their appearance and associated properties.

The Grid Editor uses a work area called the Design Grid that simulates how your Data Grid will appear.
The Design Grid works in much the same way as the Data Grid with the ability to move, resize, and swap
columns and groups.

Accessing the Grid Editor
General Tab

Groups Tab
Columns Tab

StyleSets tab

Bl 5hernidan Property Pages <SSDBGrid1> - Bound Mode M=l

Gereral I Groups I Columnsz I StyleSets I

—% Eevelgnlnrgighhlight 1| Font Font Style:
—[F BevelColorScheme :
M B evelColorShadow IMS Sans Serf IHEEI'J'E" j
~[F1 BorderStyle M3 S ans Serif Cie:

—[F Caption MS Serif = —
[Captiondlignment bzhd ail3 IE‘-25 =]
—[F CellM avigation MT Extra

[CheckBox30 Small Fonts . "

Effects

—[F ColumnHeaders Symbol LI [Stikeout [Underline
L[DefCalwidth 3yrmbol .

—[F CivviderS tyle ~
LM DividerT vpe] Sample
[Enabled
—[F FieldDelimiter éaBbivyzz
—[FY FieldSeparator

LG Font

[F] Font3D

—[F FareCoalar

LM FareColorEven

LM ForeColorddd

—[F GroupHeaders

—[FY GroupHeadlines

M HeadFant

M1 HeadFnnt 3N =

ok, Cancel I Apply I Help

Grid Editor: Accessing

The Grid Editor is activated by selecting the (Custom) property from the properties list, or by selecting
"Properties" from the right-click menu of Visual Basic. You can use the Grid Editor at any time in design
time to make changes to your grid. The Grid Editor simulates layout by displaying a grid known as the
Design Grid.

As a demonstration, the Grid Editor (GRIDEDIT.EXE) can be executed as a standalone program. In this
case, you will be able to select Open from the File menu and select a database to use. All functions of
the grid can be explored.

Clicking the OK button applies the changes you have made and exits the Grid Editor.
Clicking the Apply button applies the changes you have made and remains in the Grid Editor.
Clicking Cancel aborts the changes you have made and exits the Grid Editor.

Grid Editor: Columns tab

The Columns Tab allows you to define the columns that apepar in your grid. Columns appear in the
Design Grid, allowing you to visualize how your grid will look at runtime.

Resizing

The width of the grid or the selected column can be changed by entering a value (in twips) in the text
boxes labeled "Grid Width" and "Column Width".

Alternatively, you can resize the width of the grid by dragging the splitter, and you can resize the width of
a column by clicking on the right-edge of its header and dragging the column to the desired size.

Adding a column to the Design Grid

1. Click the Add button.

2. Specify the name for the column in the "Add Column" dialog.
The column will be added to the grid.

Removing a column from the Design Grid

1. In the Design Grid, click the header of the column to remove.
2. Click the Remove button.

Note: Itis possible to remove multiple columns at once. Simply click on each header corresponding to
the column you want removed.

Adding columns to the Design Grid from a bound datasource

It is possible to automatically create columns based on the field structure of a database that the grid is
bound to.lt is possible to automatically create columns based on the field structure of a database that the
grid is bound to. To add columns from a bound datasource:

1. Click the Fields button.
The "Field Selection" dialog appears listing all fields in the database.

Field 5election

Available Fields | ok |
Marme Column 1
PubiD 7 _ Cancal |
M arne 9
i : _ Sekctat|
City 3 Deselect Al |
State 9
Zip 9
Telephone 9
Fax 9
Comments 9

2. Select the fields you want to appear as columns.
To select all fields in the database, click the Select All button.

3. Click the OK button.
The selected fields appear as columns in the Design Grid.

Grid Editor: General tab

The General tab has the appearance of a standard Sheridan Property Page. Through a tree structure,
you are able to select and modify properties that apply to the grid as a whole. To modify a property,
simply select it from the tree and make the desired changes from the options presented on the right.

There are two items on the General Tab that need special explanation; (Add ltems...) and StyleSets.

Adding items to an Additem grid

If DataMode is set to Addltem, the (Add Items...) option appears on the top of the tree. Selecting this
option allows you to manually fill an Addltem grid with data.

Click the Add Items button to add data. The "Add Items To List" dialog appears:

[l Add Ivems to List =] E3

el
Company Mame Addrezs
Shendan Software 35 Pinelavn Road Cancel
bicrozoft 1 Microsoft W ay

L LT ¥

Fill in the data as needed, clicking the OK button when you are finished. Clicking the Cancel button
allows you to exit without saving your changes.

Working with StyleSets

[&] AEIRE

[1Z5E %acigarCenty
T e el
DEEUERE

[L) 2EEcpou] Wb

The Grid Editor allows you to easily maintain and apply StyleSets. If you are not familiar with StyleSets,
you should first read about StyleSets. Before you can apply a StyleSet, you must first define it. You
can have an unlimited amount of StyleSets for any given grid, however, StyleSets are not interchangable
between grids.

When you first access the Grid Editor’'s General Tab, the StyleSets Collection will be collapsed by default.
To expand the collection, double-click it. This will display any StyleSets that have already been created:

[S
() [1EE ¥etipomCany
rIHopgahe

i 2 CoECiy

PRI

To see the individual properties applicable to the StyleSet, double-click that StyleSet:

— It |]S g e ey
e s L
[l el CRrsysgue we | w1
) EICEFRE

(i R LT
|w) BRI

[(e e

SRS

To modify a property within a StyleSet, simply select it from the tree and make the desired changes from
the options presented on the right.

Adding StyleSets

Select StyleSets from the tree structure.
Click the Add button that appears to the right.
Specify a name in the "Add StyleSet" dialog.

E

'Il;hg HSjerSet now appears in the tree:
!— [26 #Ec ooy

Removing (Deleting) StyleSets

1. Select the StyleSet to remove from the tree structure.

2. Click the Remove button that appears to the right.
The selected StyleSet is deleted.

Applying StyleSets takes place in the StyleSets tab.

Grid Editor: Groups tab

The Groups Tab allows you to define the groups that appear in your grid. Groups allow you to logically
arrange fields that are associated with one another. For example, you could have a group called
"Address Information" that contains the Address, City, State, and Zip Code fields from a database.
Groups appear in the Design Grid, allowing you to visualize how your grid will look at runtime.

Resizing

The width of the grid or the selected group can be changed by entering a value (in twips) in the text boxes
labeled "Grid Width" and "Group Width".

Alternatively, you can resize the width of the grid by dragging the splitter, and you can resize the width of
a group by clicking on the right-edge of its header and dragging the group to the desired size.

Adding a group to the Design Grid

1. Click the Add button.

2. Specify the name for the group in the "Add Group" dialog.
The group will be added to the grid.

Removing a group from the Design Grid

1. Select the group from the Name drop-down list.
General Groups | I:l:ulumnsl

I arne:
Group Information j

Add ..
Bemove | Caompany Infarmation

2. Click the Remove button.

Working with group properties

There are certain properties that are group-specific. These properties can be easily changed through the
Grid Editor.

To set group specific properties:

1. Select the group from the Name drop-down list.

2. Select the property to modify from the tree and make the desired changes from the options presented
on the right.

Grid Editor: StyleSets tab

With the StyleSets Tab, you are able to apply the StyleSets you have created. Select the StyleSet you
want to use from the list, and drag it to the part of the Design Grid you want it applied to. For more
information on StyleSets, refer to the StyleSet Property.

When you select a StyleSet, a sample of the attributes it has will appear to the right. Similarly, when you
apply a StyleSet, you will see it in the Design Grid.

[l Shendan Property Pages <55DBGnd1> - Bound Mode [_ [O] x|

Eenerall Gn:uugsl Colurnns — StyleSets I

Stylezets:

[Author Names
Dave's Style

Maote: Sizing thiz grid will affect the width of wour Grid width: (5595
contral. Height will ot be affected. =

(] Cancel I Apply I Help I

Group Header

Group Object Applies To
Groups collection

Group Property
See Also Applies To

Description

Returns the current group.

Syntax

object.Group[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
number An integer expression specifying the current group.

Group Property Applies To
SSDBGrid

Group Property See Also

¥
X

22|

GroupHeadLines Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

GroupHeadLines Property See Also

HeadLines

GroupHeaders Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

GroupHeaders Property See Also

ColumnHeaders

Groups Collection Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Groups Collection See Also

Group object

Groups Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Grp Property
See Also Applies To
Description

Sets or returns the current group.

Syntax

object.Grp[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
number An integer expression specifying the group that the column belongs to.

Remarks

The Grp property is useful for returning the group number that the column is a member of. It can also be
used to set the group number that the column belongs to.

Grp Property Applies To

Column object

Grp Property See Also

¥
X

20|
2 e

GrpContaining Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

GrpHeadClick Event Applies To
SSDBGrid

GrpHeadClick Event See Also

GrpResize event
HeadClick event

GrpMove Event Applies To
SSDBGrid

GrpMove Event See Also

ColMove event
ColSwap event

GrpSwap event

GrpPosition Method Applies To
SSDBGrid

GrpPosition Method See Also

ColPosition method
Position property

GrpResize Event Applies To
SSDBGrid

GrpResize Event See Also

GrpHeadClick
HeadClick

ResizeWidth

GrpSwap Event Applies To
SSDBGrid

GrpSwap Event See Also

ColMove event
ColSwap event

GrpMove event

14 [44] 4 | P25 B = Auilt, Michae! B -@lmlﬁlﬁlblwlﬂl
H—I—I—I—IMM o Guided Tours

B Data Grid control
Sample programs using the Data Grid (Chapter 5)

Exercise 1: Creating a Bound Data Grid
Exercise 2: Creating an Unbound Data Grid
Exercise 3: Creating an Addltem data Grid

&g Data Combo Control
Sample programs using the Data Combo (Chapter 6)

Exercise 1: Creating an application using the Data Combo
Exercise 2: Customizing the Data Combo

= Data DropDown Control
Sample program using the Data DropDown (Chapter 7)

Exercise 1: Creating an application using the Data DropDown

E, DataOptionSet Control
Sample program using the Data DropDown (Chapter 8)

Exercise 1: Creating an application using the DataOptionSet

Enhanced Data Control Control
Sample programs using the Enhanced Data Control (Chapter 9)

Ef

Exercise 1: Creating an application using the EDC
Exercise 2: Using the Find feature of the EDC
Exercise 3: Using Bookmarks in the Enhanced Data Control

= Data Command Control
Sample program using the Data Command Button (Chapter 10)

Exercise 1: Creating an application using the Data Command

Biblio File Structure

HasBackColor Property Applies To

Column object

HasBackColor Property See Also

HasForeColor

HasForeColor Property Applies To

Column object

HasForeColor Property See Also

HasBackColor

HasHeadBackColor Property Applies To

Column object
Group object

HasHeadBackColor Property See Also

HasHeadForeColor
HeadBackColor
HeadForeColor

HasHeadForeColor Property Applies To

Column object
Group object

HasHeadForeColor Property See Also

HasHeadForeColor
HeadBackColor

HeadBackColor Property Applies To

Column object
Group object

HeadBackColor Property See Also

HasHeadBackColor
HasHeadForeColor
HeadForeColor

HeadClick Event Applies To
SSDBGrid

HeadClick Event See Also

GrpResize event
HeadClick event

HeadFont Object Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

HeadFont Object See Also

Bold
Font3D
Italic
Name

Strikethrough

HeadFont3D Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

HeadForeColor Property Applies To

Column object
Group object

HeadForeColor Property See Also

HasHeadBackColor
HasHeadForeColor
HeadBackColor

HeadLines Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

HeadLines Property See Also
GroupHeadLines

HeadStyleSet Property Applies To

Column object
Group object
SSDBCombo

SSDBDropDown
SSDBGrid

HeadStyleSet Property See Also

HeadStyleSet
StyleSet object
StyleSets collection

HeightGap Property Applies To
SSDBOptSet

Included Files

The Setup program will place OCX files in the directories you have specified. Sample applications from
the manual are located in the \SAMPLES subdirectory of the Data Widgets home directory.

The following table gives a brief description of the files that may have been installed on your hard disk
during the Setup process. Data Widgets selectively installs support files based on the version numbers
of files already installed on your system.

Filename(s)
COMDLG16.0CX
COMPOBJ.DLL
DAO2516.DLL
MFC40.DLL
MFCO40.DLL
MFCANS32.DLL
MSAJT200.DLL
MSJETERR.DLL
MSJETINT.DLL
MSOUTL16.0CX
MSVC40.DLL
MSVCRT20.DLL
0OC30.DLL
OLE2.DLL
OLE2DISP.DLL
OLE2NLS.DLL
OLEPRO32.DLL
OLE2PROX.DLL
OLE2CONV.DLL
OLE2.REG
README.TXT
SCP.DLL
SSCMD16.EXE
SSCMD32.EXE
SSDATA16.0CX

SSDATA32.0CX
SSDATB16.0CX
SSDATB32.0CX

SSDATWD2.HLP
SSDATWDG.LIC
SSDBDATA.BMP

Description

16-Bit Common Dialog OCX (used for demo programs)
Support DLL

Support DLL

Support DLL (Microsoft Foundation Class DLL)
Support DLL (Microsoft Foundation Class DLL)
Support DLL (Microsoft Foundation Class DLL)
Support DLL (compatibility layer DLL)

Support DLL (compatibility layer DLL)

Support DLL (compatibility layer DLL)

16-Bit Outline Control OCX (used for demo programs)
Support DLL (Microsoft VC DLL)

Support DLL (Microsoft VC DLL)

Support DLL (32-Bit data binding DLL)
Support DLL (OLE DLL)

Support DLL (OLE DLL)

Support DLL (OLE DLL)

Support DLL (OLE DLL)

Support DLL (OLE DLL)

Support DLL (OLE DLL)

Support file (OLE registration file)

Data Widgets late-breaking information
Support DLL

16-Bit SSDBCommand custom property pages
32-Bit SSDBCommand custom property pages

16-Bit OCX containing SSDBData, SSDBOptSet,
SSDBCommand

32-Bit OCX containing SSDBData, SSDBOptSet,
SSDBCommand

16-Bit OCX containing SSDBGrid, SSDBDropDown,
SSDBCombo

32-Bit OCX containing SSDBGrid, SSDBDropDown,
SSDBCombo

Data Widgets Online Help
Data Widgets license file
SSDBData button bitmap

SSDODEMO.EXE
SSDOS16.EXE
SSDOS32.EXE
SSEDC16.EXE
SSEDC32.EXE
SSGRID16.EXE
SSGRID32.EXE
SSPP16.DLL
SSPP32.DLL
STDOLE.TLB
STORAGE.DLL
TABCTL16.0CX
THREED16.0CX
TYPELIB.DLL
UNBOUND.MDB
UNINSTALL.EXE
VAEN2.DLL
VAEN21.0LB
VBAJET.DLL
VBEN16.DLL
VB40016.DLL
VB40032.DLL
VBDB16.DLL
\SAMPLES

DataOptionSet demo

16-Bit SSDBOptSet custom property pages
32-Bit SSDBOptSet custom property pages
16-Bit SSDBData custom property pages
32-Bit SSDBData custom property pages
16-Bit SSDBGrid Layout Editor

32-Bit SSDBGrid Layout Editor

16-Bit Property Pages DLL

32-Bit Property Pages DLL

Support File

Support DLL (System DLL)

16-Bit Tab Control OCX (used for demo programs)
16-Bit 3D Control OCX (used for demo programs)
Support DLL (type library DLL)

Unbound grid sample database file

Data Widgets 2.0 uninstall program
Support DLL

Support DLL

Support DLL (compatibility layer DLL)
Support DLL

16-Bit Visual Basic Runtime DLL

32-Bit Visual Basic Runtime DLL

Support DLL (Visual Basic database DLL)

Directory containing projects demonstrated in Chapters
5-10

IndexSelected Property Applies To
SSDBOptSet

InitColumnProps Event Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Select a related topic:

Object Concepts

Property Pages
Fonts

Introduction to OCX controls
Related Topics

What is an OCX control?

An OCX control is a specific type of program that makes use of Object Linking and Embedding (OLE) to
provide functions to other programs. Because it gives programs something they did not originally have, an
OCX control is known as an OLE server, and the program that uses its services is an OLE client. OCX
controls can provide a nearly unlimited range of functions to their clients.

How is an OCX control different from a VBX control?

The VBX control specification was designed exclusively for use with Visual Basic. Although some other
languages offer limited VBX support, the majority of VBX controls function only in Visual Basic. VBX
controls are also limited in other ways. Their 16-bit architecture restricts their ability to use memory and to
function in a 32-bit operating system, such as Windows NT.

The difference between OCX and VBX controls may not even be apparent to you if you program
exclusively in Visual Basic. You access the properties of an OCX control at design time and through code
just as you do the properties of a VBX. The process of including both types of controls in your project and
distributing them is very similar. The similarities end when you move outside of the Visual Basic
programming environment.

OCX controls are supported by a much wider range of platforms, including other languages, database
management systems, and productivity applications. OCX controls can be used as the building blocks in
a modular software environment, where a complete project might include your own code, custom controls
and commercial applications all working together. OCX controls also have the ability to make full use of
the newest 32-bit operating systems, taking advantage of improved memory access, better multi-tasking
and increased performance.

When should | use OCX controls?

OCX controls come in two varieties: 16-bit and 32-bit. 16-bit controls offer compatibility with Windows and
Windows for Workgroups 3.1 and 3.11. 32-bit controls work with systems running Windows NT and
Windows 95. In general, you should use the most advanced version of the control that is available and is
supported by your host environment.

If you are using a 32-bit programming system to develop an application that will run exclusively on a 32-
bit platform, use the 32-bit OCX. If you are developing an application that must run on a mixed platform,
you can use a 16-bit OCX, although you will obtain better performance if you develop separate 16-bit and
32-bit versions of your program, using the appropriate OCX controls. If you are developing exclusively for
a 16-bit platform, use the 16-bit OCX.

IslteminList Method Applies To

SSDBCombo
SSDBGrid

IsltemInList Method See Also

IsTextValid method

IsTextValid Method Applies To
SSDBCombo

IsTextValid Method See Also

IsltemInList

Italic Property Applies To

Font object
Headfont object

Keyboard Interface

The following describes the keyboard interface for each of the Data Widgets controls that support

keyboard use.

SSDBGrid

Press
F4

ALT + UP ARROW
ALT + DOWN ARROW
UP ARROW

DOWN ARROW
PAGE UP

PAGE DOWN

LEFT ARROW

RIGHT ARROW

HOME
END
ESC
TAB

SHIFT + TAB
CTRL + X

DEL

To Comments

Toggles dropdown Only works in cells with a
dropdown.

Toggles dropdown Only works in cells with a
dropdown.

Toggles dropdown Only works in cells with a
dropdown.

Moves up a row in the

grid

Moves down a row in the

grid

Moves up a page in the

grid

Moves down a page in

the grid

Moves one cell to the left.

When in edit mode,
moves one character to
the left.

Moves one cell to the
right

When in edit mode,
moves one character to
the right.

When in edit mode,
moves to the beginning of
the cell

When in edit mode,
moves to the end of the
cell

Restores the cell value to
what it was prior to
entering the cell.

Moves one cell forward
Moves one cell backward

Deletes the selected row In the case of multiple rows
being selected, they will all

be deleted.

AllowDelete must be set to
True.

Deletes the selected row In the case of multiple rows
being selected, they will all

be deleted.

SSDBCombo

Press
F4

ALT + UP ARROW
ALT + DOWN ARROW

UP ARROW
DOWN ARROW
PAGE UP
PAGE DOWN
LEFT ARROW
RIGHT ARROW
HOME

END

ESC

ENTER

To

Toggles the Data
Combo’s dropdown.

Toggles the Data
Combo’s dropdown.

Toggles the Data
Combo’s dropdown.

Moves up a row
Moves down a row
Moves up a page
Moves down a page

Moves one character to
the left

Moves one character to
the right

Moves to the beginning of
the cell

Moves to the end of the
cell

When dropped down,
closes the dropdown and
restores the value to what
it was before dropping
down.

When not dropped down,
restores the text to the
previous database value.

When dropped down,
selects the current row
and closes the dropdown.

SSDBDropDown

Press
F4

ALT + UP ARROW

To
Toggles the dropdown.

Toggles the dropdown.

AllowDelete must be set to
True.

Comments

If the dropdown is open, it
will be closed. Ifitis
closed, it will be opened.

If the dropdown is open, it
will be closed. Ifitis
closed, it will be opened.

If the dropdown is open, it
will be closed. Ifitis
closed, it will be opened.

Only works in the dropdown
portion.

Only works in the dropdown
portion.

Only works in the dropdown
portion.

Only works in the dropdown
portion.

Works in the edit portion
only.

Works in the edit portion
only.

Works in the edit portion
only.

Works in the edit portion
only.

Works only on the
dropdown portion.

Comments

Causes the dropdown to
close up.

Causes the dropdown to

ALT + DOWN ARROW

UP ARROW
DOWN ARROW
PAGE UP
PAGE DOWN
ESC

ENTER

SSDBOptSet

Press
UP ARROW

DOWN ARROW
LEFT ARROW
RIGHT ARROW
HOME

END

close up.

Toggles the dropdown. Causes the dropdown to

close up.
Moves up a row

Moves down a row
Moves up a page
Moves down a page

Closes the dropdown and
restores the value to what
it was before dropping
down.

Selects the current row
and closes up the
dropdown.

To Comments
Moves up a button

Moves down a button
Moves up a button
Moves down a button

Moves to the first button
in the set

Moves to the last button
in the set

LeftCol Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

LeftCol Property See Also
LeftGrp

LeftGrp Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

LeftGrp Property See Also
LeftCol

Level 0 (Multi-Level Row)

Level 1 (Multi-Level Row)

Level Property Applies To

Column object

LevelCount Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

List Property Applies To

Column object

ListAutoPosition Property Applies To

SSDBCombo
SSDBDropDown

ListAutoValidate Property Applies To

SSDBCombo
SSDBDropDown

ListWidth Property Applies To

SSDBCombo
SSDBDropDown

ListWidth Property See Also
ListWidthAutoSize

ListWidthAutoSize Property Applies To
SSDBCombo

Locked Property Applies To

Column object

MaintainBtnHeight Property Applies To
SSDBOptSet

MaxDropDownltems Property Applies To

SSDBCombo
SSDBDropDown

MaxDropDownltems Property See Also

MinDropDownltems

MinColWidth Property Applies To
SSDBOptSet

MinDropDownltems Property Applies To

SSDBCombo
SSDBDropDown

MinDropDownltems Property See Also
MaxDropDownltems

MinHeight Property Applies To
SSDBOptSet

Mouselcon Property Applies To

SSDBCombo
SSDBCommand
SSDBData

SSDBOptSet

Mouselcon Property See Also

MousePointer

MousePointer Property Applies To

SSDBCombo
SSDBCommand
SSDBData

SSDBOptSet

MousePointer Property See Also

Mouselcon

MoveFirst Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

MoveFirst Method See Also

Movel ast
MoveNext
MovePrevious
MoveRecords

MoveLast Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

MoveLast Method See Also

MoveFirst
MoveNext
MovePrevious
MoveRecords

MoveNext Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

MoveNext Method See Also

MoveFirst
Movel ast
MovePrevious
MoveRecords

MovePrevious Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

MovePrevious Method See Also

MoveFirst
Movel ast
MoveNext
MoveRecords

MoveRecords Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

MoveRecords Method See Also

MoveFirst
Movel ast
MoveNext
MovePrevious

Name Property Applies To

Font object
Headfont object
StyleSet object

NumberFormat Property Applies To

Column object

NumberFormat Property See Also

Visual Basic's Format Function

NumberOfButtons Property Applies To
SSDBOptSet

NumberOfButtons Property See Also

IndexSelected

Object Concepts

This section will be of special interest to programmers who have worked with earlier versions of our
custom controls. It highlights the major differences between the older controls you may be familiar with
and the newer controls you now have.

Object-oriented programming offers you greater power than before, with less work on your part. However,
because this is a new technology, there are some new concepts with which you should be familiar. This
section provides a brief introduction to some of the new concepts you will encounter while using Sheridan
custom controls.

Sub-objects and Collections

Data Widgets provides an object-oriented approach to programming through the use of sub-objects and
collections. An object refers to a single unit or entity within your application which contains both code and
data. Objects can contain other objects, which have properties and methods of their own that can be
examined and changed. Objects may also contain collection objects. A collection is a special type of
object that contains sub-objects that are all of the same type, or class.

OhJECt Propert; Propert;
Propert; Propart:
sub-objects &= | || |
Sub-Object [Propert; | [Propert; I
-
Collection

Sub-Object [Propert

| ohect I| oo ect | | oo [ect | | oo fect I

You are probably familiar with the concept of sub-objects if you have used the Visual Basic data control.
The Recordset object is a sub-object of the Visual Basic Data Control. The Recordset contains a
collection sub-object called the Fields object, which contains information that relates to all the fields in the
Recordset collectively. The Fields collection also contains the Field objects themselves, which store
data and also information pertaining to that data.

Data Control [Wams [Caplion
[Enabled _[Wiibla
Recordset % | | | |
| |
=
Fields
———— Collection [count
|F|a|-:| I|F|a|-:| ”Hald IlHal-:l |

Objects within collections often have this type of "paired" arrangement; a single collection object (Fields)
which describes and contains the collection as a whole, and multiple member objects (Field) which make
up the collection. In addition, there is usually a corresponding property of the same name as the object

that returns information about the object.

Collections have replaced property arrays as the preferred method for accessing sets of controls at
runtime. This means you no longer have to specify an array for each property you wish to access, and
there are fewer special property names. For example, previously to set the caption text of the fifth tab in a
DataOptionSet control, you would have used the following code: SSDBOptSet1.Caption(4) = "5th Button"

Now, you would use the standard Caption property, specifying instead the object in the collection to
which it will apply: SSDBOptSet1.Buttons(4).Caption = "5th Button"

This control's object type is:

SSDBCombo

This control's object type is:

SSDBCommand

This control's object type is:

SSDBDropDown

This control's object type is:

SSDBGrid

This control's object type is:

SSDBOptSet

This control's object type is:

SSDBData

Odd Row (Row 1)

Optimizing Data Widgets

Improving Load Time

By default, the Data Grid, Data Combo, and Data DropDown custom controls each go to the last
record in a record set to determine the exact number of rows. The controls do this to give an
accurate number of rows in the Rows property. However, with large databases, this could cause
a decrease in performance.

To turn this option off, set the UseExactRowCount property to False. This will cause the control
to estimate the number of rows in the record set. If this property is set to False, do nof rely on
the Rows property for an accurate number of rows. If you do a MoveLast on the data control’s
record set, the Rows property will be accurate.

Optimizing the Data Combo and Data DropDown

The Data Combo and Data DropDown can be optimized when performing certain functions.
There are two functions that the controls perform automatically which can be overridden.

Auto List Validation

The Data Combo and Data DropDown automatically perform validation of the value in the
edit portion of the Data Combo or the cell of a Data Grid against the values in the list
portion to find a match. in some circumstances, this validation can be very slow, since
the control must sequentially search the entire database. With large databases, this
operation can be quite slow. To turn this feature off and perform you own validation of
the field, set the ListAutoValidate property to False. This will cause the control to skip
the validation process and trigger the ValidateList event.

Auto Positioning

Another specific way of optimizing the performance of the Data Combo or Data
DropDown controls is to set the ListAutoPosition property to False. This turns off the
automatic positioning of the list based on the contents of the edit portion of the Data
Combo or cell of the Data Grid. Instead, the PositionList event will be triggered.

Similar to the validation of data against the list, the positioning requires the control to
search the list sequentially which can cause a performance penalty with large databases.

OptionValue Property Applies To

Button object
SSDBOptSet

OptionValue Property See Also

DataField
DataSource

Orientation Property Applies To
SSDBData

PageValue Property Applies To

SSDBCommand
SSDBData

Picture Property Applies To

Button object
SSDBCommand

SSDBOptSet

Picture Property See Also

AutoSize

PictureMetaHeight
PictureMetaWidth

PictureAlignment

PictureAlignment Property Applies To

SSDBCommand
SSDBOptSet

PictureAlignment Property See Also
CaptionAlignment

PictureButton Property Applies To
SSDBGrid

PictureButton Property See Also

PictureComboButton
PictureRecordSelectors

PictureButtons Property Applies To
SSDBData

PictureButtons Property See Also

PictureCaption
PictureCaptionAlignment

PictureCaption Property Applies To
SSDBData

PictureCaption Property See Also

PictureButtons
PictureCaptionAlignment

PictureCaptionAlignment Property Applies To
SSDBData

PictureCaptionAlignment Property See Also

PictureButtons
PictureCaption

PictureComboButton Property Applies To
SSDBGrid

PictureComboButton Property See Also

PictureButton
PictureRecordSelectors

PictureDropDown Property Applies To
SSDBCombo

PictureMetaHeight Property Applies To

Button object
SSDBCommand

SSDBOptSet

PictureMetaHeight Property See Also

Picture
PictureMetaWidth

PictureMetaWidth Property Applies To

Button object
SSDBCommand

SSDBOptSet

PictureMetaWidth Property See Also

Picture
PictureMetaHeight

PictureRecordSelectors Property Applies To

SSDBGrid

PictureRecordSelectors Property See Also

PictureButton
PictureComboButton

Position Property Applies To

Column object
Group object

Position Property See Also

ColPosition method
GrpPosition method

PositionList Event Applies To

SSDBCombo
SSDBDropDown

PositionList Event See Also

ListAutoPosition

Property Pages

Sheridan Software custom controls support a feature known as property pages. Property pages provide
an interface through which you can view and modify the properties of your custom control objects. The
purpose of property pages is twofold. First, property pages allow you to set properties at design time that
would not otherwise be available - the so-called "runtime" properties. Second, property pages allow you
to modify your control in a host environment that does not provide a property sheet.

The Property Pages Interface

The property pages provide access to a different aspect of a control's behavior. What appears in a given
dialog will depend on the features that the control supports. There will always be at least one tab called
‘Properties’ which lists all the properties of the control. Other tabs may support added functions or utilities.

Properties are listed in a hierarchical menu structure similar to the tree view of the Windows File Manager.
This structure makes it easy for you to access the properties of sub-objects and collections. As you
choose a property name from the tree on the left, the valid settings for that property appear on the right,
enabling you to examine or modify them.

Accessing Property Pages

The method you use to access the property pages of your control depends on two things; the version of
the control you are using, and the host environment in which you are using the control.

Many host environments support the use of the right mouse button to pop up a context-specific menu. In
these environments, you simply click on your control with the right mouse button, and choose ‘Property
Pages’ or ‘Properties’ from the pop-up menu.

If this behavior is not supported, use the property sheet of your design environment. You will see a
property labeled ‘(Custom)’ in the property sheet. By double-clicking this property or choosing the ellipsis
(...) button, you can invoke the property pages for the selected control.

If neither of these methods are supported, you will need to consult the documentation of your host
environment for information on how to change the properties of objects. You may need to choose a
special menu option, or perform a shifted mouse-click or double-click on the control. Try searching your
environment’s online help file for references to objects, embedded objects, object properties, object
settings, OLE linking, OLE servers, or properties.

Note For the SSDBCombo, SSDBDropDown, and SSDBGrid controls, property pages are replaced by
the Grid Editor which performs all functions of a property page.

Rebind Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Record Selectors

RecordSelectors Property Applies To
SSDBGrid

Redraw Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Remove Method Applies To

Bookmarks collection
Buttons collection
Columns collection
Groups collection
SelBookmarks collection
StyleSets collection

Remove Method See Also

Add method
Count property
RemoveAll method

RemoveAll Method (Addltem Mode) Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

RemoveAll Method (Collections) Applies To

Bookmarks collection
Buttons collection
Columns collection
Groups collection
SelBookmarks collection
StyleSets collection

RemoveAll Method (Collections) See Also

Add method
Remove method

RemoveAll Method (Column Object) Applies To

Column object

Removeltem Method (Addltem Mode) Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Removeltem Method (Column Object) Applies To

Column object

Reset Method

Applies To
Description

Destroys the associated layout for a control.

Syntax

object.Reset

Part Description
object An object expression that evaluates to an object or a control in the Applies To list.
Remarks

The reset method is useful for when the programmer changes the DataSource and needs to create a new
layout.

Example

The following example resets the layout, changes the data mode, and creates a new layout:

SSDBGrid1.Reset

SSDBGrid1.DataMode = 2

SSDBGrid1.Cols = 2

SSDBGrid1.Columns(0).Caption = "Name"

SSDBGrid1.Columns(1).Caption = "Social Security Number"

SSDBGrid1.Refresh ‘ Needed to display new layout

Reset Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

ResizeHeight Property Applies To
SSDBGrid

ResizeHeight See Also
ResizeWidth

ResizeWidth Property Applies To
SSDBGrid

ResizeWidth Property See Also
ResizeHeight

RotateText Property Applies To
SSDBData

RotateText Property See Also

Caption
Orientation

RoundedCorners Property Applies To

SSDBCommand
SSDBData

Row Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Row Property See Also

g

ol

RowBookmark Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

RowChanged Property Applies To
SSDBGrid

RowColChange Event Applies To
SSDBGrid

RowColChange Event See Also
Rowl oaded

RowContaining Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

RowContaining Method See Also
ColContaining

RowHeight Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

RowHeight Property See Also
DefColWidth

RowLoaded Event Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

RowLoaded Event See Also

RowColChange

RowNavigation Property Applies To
SSDBGrid

RowNavigation Property See Also
CellNavigation

RowOffset Property Applies To

Button object
SSDBOptSet

RowOffset Property See Also
ColOffSet

RowResize Event Applies To

SSDBGrid

RowSelectionStyle Property

See Also Applies To
Description

Determines how a row will appear when selected..

Syntax

object.RowNavigation[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
number An integer expression specifying how a row appears when selected..

Settings

Setting Description

0 Invert colors.

1 (Default) ListBox style (using System colors for highlight).

2 3D appearance.

RowSelectionStyle Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

RowSelectionStyle Property See Also

ActiveRowStyleSet

RowTop Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Rows Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Rows Property See Also

¥
X

O
o
n

Py
o
<

This control is located in:

SSDATA16.0CX, SSDATA32.0CX

This control is located in:

SSDATB16.0CX, SSDATB32.0CX

SavedBookmark Property Applies To
SSDBCommand

Scroll Event Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Scroll Event See Also

Scrollbars
Scroll method

Scroll Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Scroll Method See Also

Scrollbars
Scroll event

Scrollbars Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Scrollbars Property See Also

SelBookmarks Collection Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

SelBookmarks Method

Applies To
Description

Returns a Bookmark object at the specified index.

Syntax

object.SelBookmarks([Index As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
Index A variant specifying the bookmark number.

Remarks

When no index is specified the SelBookmarks collection object is returned.

SelBookmarks Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

SelChange Event

Applies To
Occurs when the current range changes to a different cell or range of cells.

Syntax

Sub control_SelChange (numselected As Long, SelType As Long, cancel As Integer)

The event parameters are:

Part Description

object An object expression that evaluates to an object in the Applies To list.
numselected Indicates the number of rows or columns selected.

seltype Indicates the type of selection (0=Group, 1=Column, 2=Row).

cancel Determines whether the selection reverts to its position before the event occurred.
Remarks

Occurs when a cell other than the current is clicked as well as when a user drags to select a new range of
cells.

Setting cancel to True causes the selection to revert to the cell or range active before the event occurred.

SelChange Event Applies To
SSDBGrid

SelectByCell Property Applies To
SSDBGrid

SelectByCell Property See Also

SelectionTypeCol
SelectionTypeRow

Selected Property Applies To

Column object
Group object

SelectionTypeCol Property Applies To
SSDBGrid

SelectionTypeCol Property See Also
SelectionTypeRow

SelectionTypeRow Property Applies To
SSDBGrid

SelectionTypeRow Property See Also
SelectionTypeCol

ShowAddButton Property Applies To
SSDBData

ShowAddButton Property See Also

ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowFirstl astButtons

ShowPageButtons
ShowPrevNextButtons

ShowUpdateButton

ShowBookmarkButtons Property Applies To
SSDBData

ShowBookmarkButtons Property See Also

ShowAddButton
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowFirstl astButtons

ShowPageButtons
ShowPrevNextButtons

ShowUpdateButton

ShowBookmarkDropDown Event Applies To
SSDBData

ShowBookmarkDropDown Event See Also

DroppedDown
CloseBookmarkDropDown Method

ShowCancelButton
See Also Applies To
Description

Determines whether the Cancel button is displayed on the control.

Syntax

object.ShowCancelButton[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
boolean A boolean expression specifying the display state of the Cancel button on the control.
Settings

Setting Description

True (Default) The Cancel button will be displayed.

False The Cancel button will not be displayed.

Remarks

The Cancel (Cancel Add) button cancels the adding of a new record to the database.

ShowCancelButton Applies To
SSDBData

ShowCancelButton See Also

ShowAddButton
ShowBookmarkButtons
ShowDeleteButton
ShowFindButtons
ShowFirstl astButtons

ShowPageButtons
ShowPrevNextButtons

ShowUpdateButton

ShowDeleteButton Property Applies To
SSDBData

ShowDeleteButton Property See Also

ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowFindButtons
ShowFirstl astButtons

ShowPageButtons
ShowPrevNextButtons

ShowUpdateButton

ShowFindButtons Property Applies To
SSDBData

ShowFindButtons Property See Also

ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFirstl astButtons

ShowPageButtons
ShowPrevNextButtons

ShowUpdateButton

ShowFindDialog Event Applies To
SSDBData

ShowFindDialog Event See Also

FindDialog
CloseFindDialog event

ShowFirstLastButtons Property Applies To
SSDBData

ShowFirstLastButtons Property See Also

ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons

ShowPageButtons
ShowPrevNextButtons

ShowUpdateButton

ShowPageButtons Property Applies To
SSDBData

ShowPageButtons Property See Also

ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowkFirstLastButtons
ShowPrevNextButtons

ShowUpdateButton

ShowPrevNextButtons Property Applies To
SSDBData

ShowPrevNextButtons Property See Also

ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowkFirstLastButtons

ShowPageButtons
ShowUpdateButton

ShowUpdateButton Property Applies To
SSDBData

ShowUpdateButton Property See Also

ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowkFirstLastButtons

ShowPageButtons
ShowPrevNextButtons

Size Property Applies To

Font object
HeadFont object

Speed Buttons

Speed buttons allow for a user to click on a button and hold it to repeat a function.

This function is controlled by the Delaylnitial and DelaySubsequent properties. Delaylnitial
determines the amount of time before a speed button begins to repeat when the mouse button is held
down. DelaySubsequent determines the amount of time between subsequent clicks are repeated when
the mouse button is held down on a repeatable button.

SplitterMove Event Applies To
SSDBGrid

SplitterMove Event See Also

SplitterPos
SplitterVisible

SplitterPos Property Applies To
SSDBGrid

SplitterPos Property See Also

SplitterVisible
SplitterMove Event

SplitterVisible Property Applies To
SSDBGrid

SplitterVisible Property See Also

SplitterPos
SplitterMove Event

Standard Property - Depending on your host environment, this property may be referred to by a different name or
may not apply to this control. Refer to your host environment's documentation or help file for further information
regarding this property.

Strikethrough Property Applies To

Font object
HeadFont Object

String Property Applies To

Bookmark object

String Property See Also

Value

Style Property Applies To

Column object

StyleSet Object Applies To
StyleSets collection

StyleSet Object See Also

HeadStyleSet

StyleSet
StyleSets collection.

StyleSet Property Applies To

ActiveCell object
Column object

Group object
SSDBCombo

SSDBDropDown
SSDBGrid

StyleSet Property See Also

HeadStyleSet
StyleSet object
StyleSets collection

StyleSets Collection Applies To

ActiveCell object
Column object

Group object
SSDBCombo

SSDBDropDown
SSDBGrid

StyleSets Collection See Also

HeadStyleSet
StyleSet
StyleSet object

StyleSets Method

Applies To
Description

Returns a StyleSet object at the specified index.

Syntax
object.StyleSets([Index As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
Index A variant specifying the StyleSet number.

Remarks

When no index is specified the StyleSets collection object is returned.

StyleSets Method Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

TagVariant Property Applies To

Column object

Group object
SSDBCombo

SSDBCommand

SSDBDropDown
SSDBGrid

SSDBOptSet

& Technical Specifications
You must have the following to utilize Data Widgets:

Microsoft Visual Basic version 4.x or a development tool that supports OLE Custom Controls (.OCX
files).

A hard disk with at least 5 megabytes of available space for a full installation.

For the 32-bit version of Data Widgets, you must have Windows 95 or later, or Windows NT 3.51 or
later.

For the 16-bit version of Data Widgets, you must have Windows version 3.1 or later, running in
enhanced mode.

Included Files

Distributing Your Application
Error Messages

Technical Support
World Wide Web

The Sheridan Software World Wide Web site provides the latest patches and product information, as well
as information for the Visual Basic developer.

http://www.shersoft.com

Internet Email

Submit your questions to our technical support staff via electronic mail. Be sure to include detailed
information on your problem, the Sheridan product and product version you are using, as well as
information on your host environment such as the machine type, RAM, video card, and operating system.

support@shersoft.com

CompusServe

You can obtain technical support on CompuServe by contacting the SYSOP at the SHERIDAN section of
the COMPA forum. You can type GO SHERIDAN at any CompuServe prompt.

Bulletin Board Service (BBS)

For free upgrades to Sheridan products, connect to the Sheridan BBS at (516) 753-5452. Have your
modem set to 8N1.

Fax
To fax questions or comments regarding any Sheridan product, dial (516) 753-3661.

Telephone Support

For free technical support for this or any other Sheridan product, contact Sheridan Software systems at
(516) 753-0985. You can either speak to a live technical support representative or get answers using the
Automated Fax Service. Sheridan's support hours are 9AM to 5PM (EST), Monday through Friday.

Text Property Applies To

ActiveCell object
Column object
SSDBCombo

TextError Event Applies To

SSDBCombo
SSDBDropDown

TextError Event See Also

ListAutoValidate

TextFormat Property Applies To
SSDBCombo

UnboundAddData Event Applies To
SSDBGrid

UnboundAddData Event See Also

AllowAddNew property
UnboundPositionData event
UnboundReadData event
UnboundWriteData event
ssRowBuffer Object

UnboundDeleteRow Event Applies To
SSDBGrid

UnboundDeleteRow Event See Also

AllowDelete property
UnboundAddData event
UnboundPositionData event
UnboundReadData event
UnboundWriteData event
ssRowBuffer Object

UnboundPositionData Event Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

UnboundPositionData Event See Also

UnboundAddData event
UnboundDeleteRow event
UnboundReadData event
UnboundWriteData event
ssRowBuffer Object

UnboundReadData Event Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

UnboundReadData Event See Also

UnboundAddData event
UnboundDeleteRow event
UnboundPositionData event
UnboundWriteData event
ssRowBuffer Object

UnboundWriteData Event Applies To
SSDBGrid

UnboundWriteData Event See Also

UnboundAddData event
UnboundDeleteRow event
UnboundPositionData event
UnboundReadData event
UnboundWriteData event
ssRowBuffer Object

Underline Property Applies To

Font object
Headfont object

Underline Property See Also

Font object
Headfont object

Updating Rows from a Modal Form

There is a caveat when using a bound control to update a row or rows in a record set of a data control on
a modal form. If a row is updated with an invalid field, such as a null key field, Visual Basic does not
display an error until the modal form is hidden or unloaded. To overcome this Visual Basic limitation,
include the following code in response to the Error event of the Visual Basic data control:

Sub Data1_Error (DataErr As Integer, Response As Integer)
On Error Resume Next
If DataErr Then
Beep
MsgBox Error (DataErr)
DataErr=0
Response =0
End If
End Sub

Note This is applicable to any bound control including the standard Visual Basic controls.

UseExactRowCount Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

Using Data Widgets

How Data Widgets Are Supplied

Data Widgets ships a total of four OCX files, grouped in pairs by 16-bit and 32-bit controls.

Filename Controls Contained

SSDATA16.0CX 16-bit version of the Enhanced Data Control, DataOptionSet, and
Data Command Button controls.

SSDATB16.0CX 16-bit version of the Data Grid, Data DropDown, and Data
Combo controls.

SSDATA32.0CX 32-bit version of the Enhanced Data Control, DataOptionSet, and
Data Command Button controls.

SSDATB32.0CX 32-bit version of the Data Grid, Data DropDown, and Data

Combo controls.

Including Data Widgets in Your Project

Custom controls are generally installed on a project-need basis. Once you have included a custom
control in a project and saved that project, the control will be available whenever you subsequently open
the project.

The method you use to add a Data Widgets control to your project varies depending on which
programming environment you are using. Data Widgets comes in two varieties:

32-bit OCX controls that are compatible with any programming system supporting OLE custom
controls, supports advanced data binding, and runs in a 32-bit environment such as Windows NT or
Windows 95.

16-bit OCX controls that are compatible with any programming system supporting OLE custom
controls and advanced data binding.

Visual Basic 4.0

The use of OLE Custom Controls are new to Version 4.0 of Visual Basic, replacing the previously used
VBX format. To use the Data Widgets controls in Visual Basic 4.0:

1. Open the project you want to add the Data Widgets control to.
2. Select Custom Controls from the Tools menu.

3. Select the appropriate Data Widgets control from the list of Available Controls.
All of the Data Widget controls are prefaced by the name Sheridan (i.e., Sheridan Data Command
Control). A checked box next to the control indicates that it has been selected.

4. Click the OK button.
The control(s) you have selected are now added to your project.

Other Languages
Data Widgets OCX controls are supported by a variety of host environments. To use Data Widgets in

programming environments other that Visual Basic 4.0, consult your development tool’s documentation
for information on how to use OLE Custom Controls or OCX Controls.

Once the control is loaded, it should appear as an extension of your environment. Use the control’s
Property Pages or the environment’s property sheet (if available) to set up the control.

For more information on compatibility between different versions of the controls across different host
environments, see Introduction to OCX Controls.

Using a Data DropDown in a Data Grid Column

Another powerful feature of the Data Grid is the ability to link a Data DropDown control to a column in the
Data Grid. Similar to the cell button feature, this feature allows the user to click a button in the cell to
drop down a list of choices.

The Data DropDown control can be bound to another record set in another data control. For instance, if
one of the columns in the Data Grid contains a State Code, you can link in a Data DropDown and bind it
to a data control with a list of State Codes and descriptions. When a button is clicked, a list of states
would drop down for the user to choose from.

This is done by setting the DropDownHwnd property to the window handle of a Data DropDown control
that is on your form. For more information on how to do this, refer to the Data DropDown.

Using the Cell Button Feature of the Data Grid

Each column in the Data Grid allows you to include on the right of each cell a button for you to perform
additional processing when pressed. To activate the cell button feature, set the property Style to Edit
Button for the corresponding column. Whenever the button is clicked, the BtnClick event will be
triggered, allowing you to perform any function you wish, such as displaying a dialog with a larger text box

for memo-type fields.

Using the Data Grid as a List Box

By default, the Data Grid does not look nor act much like a standard Windows list box. However, by
setting just a few properties, the Data Grid can look and behave just like one. It can be used as a bound
list box or an unbound virtual list.

To make the Data Grid work like a listbox, set the AllowAddNew, AllowDelete, AllowDragDrop,
AllowUpdate, and RecordSelectors properties all to False. Set SelectByCell to True,
SelectionTypeRow to either Single or MultiSelect, and set SelectionTypeCol to None. The Data Grid
can now be used as a multi-column list box with optional headings. You can modify other properties as
needed to customize the grid to your liking.

ValidateList Event Applies To

SSDBCombo
SSDBDropDown

Value Property (Bookmark) Applies To

Bookmark object

Value Property (Bookmark) See Also
String

Value Property (Button Obiject)

Applies To
Description

Sets or returns the current state (checked / not checked) of the button object.

Syntax

object.Value[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies To list.
value A boolean expression specifying whether the button is selected or not.

Settings

Setting Description

True (Default) Button object is selected.

False Button object is not selected.

Value Property (Button Object) Applies To

Button object

Value Property Applies To

ActiveCell Object
Column Object
ssRowBuffer Object

Value Property See Also

Text

Help File Version

Version 2.00.05 01/24/96

VertScrollBar Property Applies To

Column object

VisibleCols Property Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

VisibleCols See Also

¥
=X

O
o
n

VisibleGrps Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

VisibleRows Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

What are Bookmarks?
Bookmarks are a powerful feature that allow you to "flag" a record you want to remember. The EDC
allows you to Add, Store, and Delete bookmarks without the need for coding. To access a stored

bookmark, the user need only click on the E button, where a dropdown list of stored bookmarks will
appear for selection.

B &
SEEES What is Data Widgets?

Data Widgets is a set of custom controls that allow you to design front-ends for database applications
with all the simplicity and power you have come to expect from your host development application.

Designed with ease of use in mind, Data Widgets virtually eliminates the need for time-consuming coding
when developing applications involving database operations. What used to take hours of development
can now take minutes. All you need to do is drop a control on a form, set a few properties, and Data
Widgets does the rest!

Data Widgets includes six bound custom controls, each for specific data-manipulation functions, provided
in both 16-bit and 32-bit OLE Custom Control (OCX) format.

Data Widgets Features

Using Data Widgets
Introduction to OCX controls
Optimizing Data Widgets
StyleSets

Property Pages

ew!

Data what's New?

Perhaps the most significant change in Data Widgets 2.0 is the transition from VBX to OCX format for
custom controls. The OCX format utilizes Microsoft's OLE automation specifications. Controls such as
Data Widgets can now be used on a range of development environments, whereas in the past, Data
Widgets was limited to environments that supported the VBX format.

Version 2.0 of Data Widgets introduces the use of objects and collections. Objects allow you to
manipulate the custom controls much more easily and with more power than in the past. For example,
you can easily set a property specific to an object (such as an individual column) by accessing the object
directly. This means that you can customize Data Widgets to suit your individual needs. Collections are
simply organized groupings of objects.

Because of the introduction of objects and collections, code that worked in Version 1.0 will need to be
modified to take advantage of the new structure. Additionally, many of the properties that existed in 1.0
have either been altered to conform with this new structure, or eliminated completely.

Wherels Applies To

SSDBData

SSDBOptSet
SSDBGrid

Wherels Method See Also

ButtonFromCaption
ButtonFromPos

WidthGap Property Applies To
SSDBOptSet

WidthGap Property See Also

ColOffSet
RowOffSet

WordWrap Property Applies To

SSDBCommand
SSDBOptSet

ssRowBuffer Object Applies To

SSDBCombo

SSDBDropDown
SSDBGrid

ssRowBuffer Object See Also

UnboundAddData event
UnboundDeleteRow event
UnboundReadData event
UnboundWriteData event

