
4th Dimension®

Addendum Version 6.0.2
for Windows and Mac OS

4th Dimension
by

Laurent Ribardière
Adapted by Bernard Gallet

__

4th Dimension
Addendum 6.0.2 for Windows® and Mac™ OS

Copyright © 1985-1997 ACI SA/ACI US, Inc.
All rights reserved
__

The Software described in this manual is governed by the grant of license in the ACI
Product Line License Agreement provided with the Software in this package. The
Software, this manual, and all documentation included with the Software are copyrighted
and may not be reproduced in whole or in part except for in accordance with the ACI
Product Line License Agreement.

4th Dimension, 4D, the 4D logo, 4D Server, ACI, and the ACI logo are registered
trademarks of ACI SA.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Apple, Macintosh, Mac, Power Macintosh, LaserWriter, ImageWriter, ResEdit, and
QuickTime are trademarks or registered trademarks of Apple Computer, Inc.
All other referenced trade names are trademarks or registered trademarks of their
respective holders.

IMPORTANT LICENSE INFORMATION

Use of this Software is subject to the ACI Product Line License Agreement, which is
provided in electronic form with the Software. Please read the ACI Product Line License
Agreement carefully before completely installing or using the Software.

Contents

1. Addendum 4D 6.0.2 5
Addendum 4D 6.0.2 7

2. Picture Library (6.0.2) 9
PICTURE LIBRARY LIST (6.0.2) 11
GET PICTURE FROM LIBRARY (6.0.2) 13
SET PICTURE TO LIBRARY (6.0.2) 14
REMOVE PICTURE FROM LIBRARY (6.0.2) 17

3. Process Communications (6.0.2) 19
VARIABLE TO VARIABLE (6.0.2) 21

4. Users and Groups (6.0.2) 23
GET USER PROPERTIES (6.0.2) 25
SET USER PROPERTIES (6.0.2) 26
Validate password (6.0.2) 27

5. Web Server (6.0.2) 29
The Text Parameter Passed to 4D Methods Called via URLs (6.0.2) 31
CHANGE WEB LICENSE (6.0.2) 34

Addendum 4th Dimension 6.0.2 3

4 Addendum 4th Dimension 6.0.2

1 Addendum 4D 6.0.2

Addendum 4th Dimension 6.0.2 5

6 Addendum 4th Dimension 6.0.2

Addendum 4D 6.0.2 Addendum 4D 6.0.2

version 6.0.2
__

This document describes the changes that have been made to the 4D language since
version 6.0

Picture Library
__

Starting with version 6.0.2, you can access the Picture Library of a database
programmatically. The following commands have been added:

• PICTURE LIBRARY LIST (6.0.2)
• GET PICTURE FROM LIBRARY (6.0.2)
• SET PICTURE TO LIBRARY (6.0.2)
• REMOVE PICTURE FROM LIBRARY (6.0.2)

These new commands allow you to get the list of the pictures currently stored in the
Picture Library, as well as to change, add and delete pictures.

Note: These new commands are described in this addendum as well as the 4th Dimension
Language Reference manual delivered with version 6.0.2.

Process (Communications)
__

The command SET PROCESS VARIABLE does NOT write an array as a whole from one
process to another. In order to provide this capability, the new command VARIABLE TO
VARIABLE has been added to the language. For more information, see the section VARIABLE
TO VARIABLE (6.0.2).

Note: This new command is described in this Addendum as well as in the 4th Dimension
Language Reference manual delivered with version 6.0.2. The description of the command
SET PROCESS VARIABLE has been updated accordingly.

Addendum 4th Dimension 6.0.2 7

User and Groups
__

The command GET USER PROPERTIES no longer returns the encrypted password in the
password parameter. For more information, see the section GET USER PROPERTIES (6.0.2).

The command SET USER PROPERITES now accepts the * symbol as value for the password
parameter. For more information, see the section SET USER PROPERTIES (6.0.2).

The command Validate password has been added. For more information, see the section
Validate password (6.0.2).

Note: Changes and additions to the Users and Groups theme are described in this
Addendum, but are not described in the 4th Dimension Language Reference manual
delivered with version 6.0.2.

Web Server
__

• 4th Dimension sends a text parameter to any 4D method called via a URL. Regarding
this text parameter:
- Although you do not use this parameter, you must explicitly declare it with the line
C_TEXT($1), otherwise runtime errors will occur when using the Web to access a database
that runs in compiled mode.
- This parameter returns the extra data placed at the end of the URL, and can be used as a
placeholder for passing values from the HTML environment to the 4D environment.

For more information, see the section The Text Parameter Passed to 4D Methods Called via
URLs (6.0.2).

Note: This text parameter is described in this Addendum as well as in the 4th Dimension
Language Reference manual delivered with version 6.0.2.

• The command CHANGE WEB LICENSE has been added. This command displays the Web
License dialog box in the User or Custom menus environment. For more information, see
the section CHANGE WEB LICENSE (6.0.2).

Note: The command CHANGE WEB LICENSE is described in this Addendum, but is not
described in the 4th Dimension Language Reference manual delivered with version 6.0.2.

8 Addendum 4th Dimension 6.0.2

2 Picture Library (6.0.2)

Addendum 4th Dimension 6.0.2 9

10 Addendum 4th Dimension 6.0.2

PICTURE LIBRARY LIST Pictures

version 6.0.2
__

PICTURE LIBRARY LIST (picRefs; picNames)

Parameter Type Description

picRefs Numeric Array ¬ Reference numbers of the Picture Library
graphics

picNames String Array ¬ Names of the Picture Library graphics

Description
The command PICTURE LIBRARY LIST returns the reference numbers and names of the
pictures currently stored in the Picture Library of the database.

After the call, you retrieve the reference numbers in the array picRefs and the names in
the array picNames. The two arrays are synchronized: the nth element of picRefs is the
reference number of the Picture Library graphic whose name is returned in the nth
element of picNames.

The array picRefs can be a Real, Long Integer or Integer array. In interpreted mode, if the
array is not declared prior to the call to PICTURE LIBRARY LIST, a Long Integer array is
created by default.

The array picNames can be a String or Text array. In interpreted mode, if the array is not
declared prior to the call PICTURE LIBRARY LIST, a Text array is created by default.

The maximum length of a Picture Library graphic name is 31 characters. If you use a
String array as picNames, declare it with a large enough fixed length to avoid having a
truncated name returned.

If there are no pictures in the Picture Library, both arrays are returned empty.

To obtain the number of pictures currently stored in the Picture Library, use the Size of
array command to get the size of one of the two arrays.

Examples
1. The following code returns the catalog of the Picture Library in the arrays alPicRef and
asPicName:

Þ PICTURE LIBRARY LIST(alPicRef;asPicName)

Addendum 4th Dimension 6.0.2 11

2. The following example tests whether or not the Picture Library is empty:

PICTURE LIBRARY LIST(alPicRef;asPicName)
If (Size of array(alPicRef)=0)

ALERT("The Picture Library is empty.")
Else

ALERT("The Picture Library contains "+String(Size of array(alPicRef))+" pictures.")
End if

3. The following example exports the Picture Library to a document on disk:

Þ PICTURE LIBRARY LIST($alPicRef;$asPicName)
$vlNbPictures:=Size of array($alPicRef)
If ($vlNbPictures>0)

SET CHANNEL(12;"")
If (OK=1)

$vsTag:="4DV6PICTURELIBRARYEXPORT"
SEND VARIABLE($vsTag)
SEND VARIABLE($vlNbPictures)
gError:=0
For($vlPicture;1;$vlNbPictures)

$vlPicRef:=$alPicRef{$vlPicture}
$vsPicName:=$asPicName{$vlPicture}

Þ GET PICTURE FROM LIBRARY(alPicRef{$vlPicture};$vgPicture)
If (OK=1)

SEND VARIABLE($vlPicRef)
SEND VARIABLE($vsPicName)
SEND VARIABLE($vgPicture)

Else
$vlPicture:=$vlNbPictures+1
gError:=-108

End if
End for
SET CHANNEL(11)
If (gError#0)

ALERT("The Picture Library could not be exported, retry with more memory.")
DELETE DOCUMENT (Document)

End if
End if

Else
ALERT("The Picture Library is empty.")

End if

See Also
GET PICTURE FROM LIBRARY, REMOVE PICTURE FROM LIBRARY, SET PICTURE TO
LIBRARY.

12 Addendum 4th Dimension 6.0.2

GET PICTURE FROM LIBRARY Pictures

version 6.0.2
__

GET PICTURE FROM LIBRARY (picRef; picture)

Parameter Type Description

picRef Number ® Reference number of Picture Library graphic

picture Picture Variable ¬ Picture from the Picture Library

Description
The GET PICTURE FROM LIBRARY command returns in the picture parameter the Picture
Library graphic whose reference number is passed in picRef.

If there is no picture with that reference number, GET PICTURE FROM LIBRARY leaves
picture unchanged.

Examples
1. The following example returns in vgMyPicture the picture whose reference number is
stored in the local variable $vlPicRef:

Þ GET PICTURE FROM LIBRARY($vlPicRef;vgMyPicture)

2. See the third example for the command PICTURE LIBRARY LIST.

See Also
PICTURE LIBRARY LIST, REMOVE PICTURE FROM LIBRARY, SET PICTURE TO LIBRARY.

System Variables and Sets
If the Picture Library exists, the OK variable is set to 1. Otherwise, OK is set to zero.

Error Handling
If there is not enough memory to return the picture, an error -108 is generated. You can
catch this error using an error-handling method.

Addendum 4th Dimension 6.0.2 13

SET PICTURE TO LIBRARY Pictures

version 6.0.2
__

SET PICTURE TO LIBRARY (picture; picRef; picName)

Parameter Type Description

picture Picture ® New picture

picRef Number ® Reference number of Picture Library graphic

picName String ® New name of the picture

Description
The command SET PICTURE TO LIBRARY creates a new picture or replaces a picture in the
Picture Library.

Before the call, you pass:
• the picture reference number in picRef (range 1...32767)
• the picture itself in picture.
• the name of the picture in picName (maximum length: 31 characters).

If there is an existing Picture Library graphic with the same reference number, the picture
contents are replaced and the picture is renamed according to the values passed in picture
and picName.

If there is no Picture Library graphic with the reference number passed in picRef, a new
picture is added to the Picture Library.

4D Server: SET PICTURE TO LIBRARY cannot be used from within a method executed on
the server machine (stored procedure or trigger). If you call SET PICTURE TO LIBRARY on a
server machine, nothing happens—the call is ignored.

Warning: Design objects (hierarchical list items, menu items, etc.) may refer to Picture
Library graphics. Use caution when modifying a Picture Library graphic
programmatically.

Note: If you pass an empty picture in picture or a negative or null value in picRef, the
command does nothing.

14 Addendum 4th Dimension 6.0.2

Examples
1. No matter what the current contents of the Picture Library, the following example
adds a new picture to the Picture Library by first looking for a unique picture reference
number:

Þ PICTURE LIBRARY LIST($alPicRef;$asPicNames)
Repeat

$vlPicRef:=1+Abs(Random)
Until (Find in array($alPicRef;$vlPicRef)<0)

Þ SET PICTURE TO LIBRARY(vgPicture;$vlPicRef;"New Picture")

2. The following example imports into the Picture Library the pictures (stored in a
document on disk) created by the third example for the command PICTURE LIBRARY LIST:

SET CHANNEL(10;"")
If (OK=1)

RECEIVE VARIABLE($vsTag)
If ($vsTag="4DV6PICTURELIBRARYEXPORT")

RECEIVE VARIABLE($vlNbPictures)
If ($vlNbPictures)

For($vlPicture;1;$vlNbPictures)
RECEIVE VARIABLE($vlPicRef)
If (OK=1)

RECEIVE VARIABLE($vlPicName)
End if
If (OK=1)

RECEIVE VARIABLE ($vgPicture)
End if
If (OK=1)

Þ SET PICTURE TO LIBRARY($vgPicture;$vlPicRef;$vlPicName)
Else

$vlPicture:=$vlNbPictures+1
ALERT("This file looks like being damaged.")

End if
End for

Else
ALERT("This file looks like being damaged.")

End if
Else

ALERT("The file “"+Document+"” is not a Picture Library export file.")
End if
SET CHANNEL(11)

End

Addendum 4th Dimension 6.0.2 15

See Also
GET PICTURE FROM LIBRARY, PICTURE LIBRARY LIST, REMOVE PICTURE FROM
LIBRARY.

System Variables and Sets
None is affected.

Error Handling
If there is not enough memory to add the picture to the Picture Library, an error -108 is
generated. Note that I/O errors may also be returned (i.e., the structure file is locked). You
can catch these errors using an error-handling method.

16 Addendum 4th Dimension 6.0.2

REMOVE PICTURE FROM LIBRARY Pictures

version 6.0.2
__

REMOVE PICTURE FROM LIBRARY (picRef)

Parameter Type Description

npicRef Number ® Reference number of Picture Library graphic

Description
The command REMOVE PICTURE FROM LIBRARY removes from the Picture Library the
picture whose reference number is passed in picRef.

If there is no picture with that reference number, the command does nothing.

4D Server: REMOVE PICTURE FROM LIBRARY cannot be used from within a method
executed on the server machine (stored procedure or trigger). If you call REMOVE
PICTURE FROM LIBRARY on a server machine, nothing happens—the call is ignored.

Warning: Design objects (hierarchical list items, menu items, etc.) may refer to Picture
Library graphics. Use caution when deleting a Picture Library graphic programmatically.

Examples
1. The following example deletes the picture #4444 from the Picture Library.

Þ REMOVE PICTURE FROM LIBRARY(4444)

2. The following example deletes from the Picture Library any pictures whose names
begin with a dollar sign ($):

PICTURE LIBRARY LIST($alPicRef;$asPicName)
For($vlPicture;1;Size of array($alPicRef))

If ($asPicName{$vlPicture}="$@")
Þ REMOVE PICTURE FROM LIBRARY($alPicRef{$vlPicture})

End if
End for

See Also
GET PICTURE FROM LIBRARY, PICTURE LIBRARY LIST, SET PICTURE TO LIBRARY.

Addendum 4th Dimension 6.0.2 17

18 Addendum 4th Dimension 6.0.2

3 Process
Communications (6.0.2)

Addendum 4th Dimension 6.0.2 19

20 Addendum 4th Dimension 6.0.2

VARIABLE TO VARIABLE Process (Communications)

version 6.0.2
__

VARIABLE TO VARIABLE (process; dstVar; srcVar{; dstVar2; srcVar2; ...; dstVarN; srcVarN})

Parameter Type Description

process Number ® Destination process number

dstVar Variable ® Destination variable

srcVar Variable ® Source variable

Description
The command VARIABLE TO VARIABLE writes the dstVar process variables (dstVar2, etc.) of
the destination process whose number is passed in process using the values of the
variables srcVar1 srcVar2, etc.

VARIABLE TO VARIABLE has the same action as SET PROCESS VARIABLE, with the following
differences:
• You pass source expressions to SET PROCESS VARIABLE, and therefore cannot pass an
array as a whole. You must exclusively pass source variables to VARIABLE TO VARIABLE, and
therefore can pass an array as a whole.
• Each destination variable of SET PROCESS VARIABLE can be a variable or an array
element, but cannot be an array as a whole. Each destination variable of VARIABLE TO
VARIABLE can be a variable or an array or an array element.

For each couple of dstVar;expr variables, the source variable must be of a type compatible
with the destination variable, otherwise you may end up with a meaningless value in the
variable. In interpreted mode, if a destination variable does not exist, it is created and
assigned with the type and value of the source variable.

The current process “pokes” the variables of the destination process—the destination
process is not warned in any way that another process is writing the instance of its
variables.

Addendum 4th Dimension 6.0.2 21

Restrictions
VARIABLE TO VARIABLE does not accept local variables as destination variables.

VARIABLE TO VARIABLE accepts any type of destination process or interprocess variables
except:
• Pointers
• Array of pointers
• Two-dimensional arrays

The destination process must be a user process; it cannot be a kernel process. If the
destination process does not exist, an error is generated. You can catch this error using an
error-handling method installed with ON ERR CALL.

Example
The following example reads a process array from the process indicated by $vlProcess,
sequentially sets the elements to uppercase and then writes back the array as a whole:

GET PROCESS VARIABLE($vlProcess;at_IPCom_Array;$anArray)
For($vlElem;1;Size of array($anArray))

$anArray{$vlElem}:=Uppercase($anArray{$vlElem})
End for

Þ VARIABLE TO VARIABLE($vlProcess;at_IPCom_Array;$anArray)

See Also
GET PROCESS VARIABLE, Processes, SET PROCESS VARIABLE.

22 Addendum 4th Dimension 6.0.2

4 Users and Groups
(6.0.2)

Addendum 4th Dimension 6.0.2 23

24 Addendum 4th Dimension 6.0.2

GET USER PROPERTIES (6.0.2) Users and Groups (6.0.2)

version 6.0.2
__

GET USER PROPERTIES (userID; name; startup; password; nbLogin; lastLogin{;
memberships})

Parameter Type Description

userID Number ® Unique user ID number

name String ¬ Name of the user

startup String ¬ Startup method name

password String ¬ Always an empty string

nbLogin Number ¬ Number of logins to the database

lastLogin Date ¬ Date of last login to the database

memberships Numeric Array ¬ ID numbers of groups to which
the user belongs

The command GET USER PROPERTIES no longer returns the encrypted password in the
password parameter. Starting with version 6.0.2, an empty string is always returned in
this parameter.

Note: The 4th Dimension Language Reference manual delivered with version 6.0.2 does not
describe this change.

See Also
GET USER PROPERTIES, SET USER PROPERTIES, SET USER PROPERTIES (6.0.2), Validate
password (6.0.2).

Addendum 4th Dimension 6.0.2 25

SET USER PROPERTIES (6.0.2) Users and Groups (6.0.2)

version 6.0.2
__

SET USER PROPERTIES (userID; name; startup; password; nbLogin; lastLogin{;
memberships})

Parameter Type Description

userID Number ® Unique ID number of user account, or
-1 for adding a user affiliated
with the Designer, or
-2 for adding a user affiliated
with the Administrator

¬ Unique ID number of new user

name String ® New user name

startup String ® Name of new user startup method

password String ® New (unencrypted) password, or
* to leave the password unchanged

nbLogin Number ® New number of logins to the database

lastLogin Number ® New date of last login to the database

memberships Numeric Array ® ID numbers of groups to which the user
belongs

The command SET USER PROPERITES now accepts the * symbol as a value for the password
parameter. This allows you to change the other properties of the user account without
changing the password for this account.

Note: The 4th Dimension Language Reference manual delivered with version 6.0.2 does not
describe this change.

See Also
GET USER PROPERTIES, GET USER PROPERTIES (6.0.2), SET USER PROPERTIES, Validate
password (6.0.2).

26 Addendum 4th Dimension 6.0.2

Validate password (6.0.2) Users and Groups (6.0.2)

version 6.0.2
__

Validate password (userID; password)

Parameter Type Description
userID Number ® Unique user ID number
password String ® Unencrypted password

Description
The command Validate password returns True if the string passed in password is the
password for the user account whose ID number is passed in userID.

Example
The following example checks whether the password of the user “Hardy” is “Laurel”:

GET USER LIST(atUserName;alUserID)
$vlElem:=Find in array(atUserName;"Hardy")
If ($vlElem>0)

Þ If (Validate password(alUserID{$vlElem};"Laurel")>0)
ALERT("Yep!")

Else
ALERT("Too bad!")

End if
Else

ALERT("Unknown user name")
End if

See Also
GET USER PROPERTIES (6.0.2), SET USER PROPERTIES (6.0.2).

Addendum 4th Dimension 6.0.2 27

28 Addendum 4th Dimension 6.0.2

5 Web Server (6.0.2)

Addendum 4th Dimension 6.0.2 29

30 Addendum 4th Dimension 6.0.2

The Text Parameter Passed to 4D Methods Called via URLs Web Server

version 6.0.2
__

4th Dimension sends a text parameter to any 4D method called via a URL. Regarding this
text parameter:
• Although you do not use this parameter, you must explicitly declare it with the line
C_TEXT($1), otherwise runtime errors will occur while using the Web to access a database
that runs in compiled mode.
• This parameter returns the extra data placed at the end of the URL, and can be used as a
placeholder for passing values from the HTML environment to the 4D environment.

Runtime Errors in Compiled Mode
__

Let’s consider the following example. You execute a method bound to an HTML object
using a link and obtain the following screen on your Web browser:

This runtime error is related to the missing declaration of the text $1 parameter in the 4D
method that is called when you click on the HTML link referring to that method. As the
context of the execution is the current HTML page, the error refers to the “line 0” of the
method that has actually sent the page to the Web browser.

Following the example from the section Web Services, Your First Time (Part I), you
eliminate the problem by explicitly declaring the text $1 parameter within the
M_ADD_RECORDS and M_LIST_RECORDS methods:

Addendum 4th Dimension 6.0.2 31

` M_ADD_RECORDS project method
Þ C_TEXT($1) ` This parameter MUST be declared explicitely

Repeat
ADD RECORD([Customers])

Until(OK=0)

` M_LIST_RECORDS project method
Þ C_TEXT($1) ` This parameter MUST be declared explicitely

ALL RECORDS([Customers])
MODIFY SELECTION([Customers])

After these changes have been made, the compiled runtime errors no longer occur.
Working with the URL Extra Data
__

The text $1 parameter passed to the 4D method returns the extra data appended to the
URL.

Again following the example in the 4th Dimension Language Reference manual, the change
(shown in the following figure) is made to the URL of the link that refers to the
M_ADD_RECORDS method:

Note: The figure depicts the change as made using Claris Home Page on MacOS.

32 Addendum 4th Dimension 6.0.2

The data added to the URL is therefore the string “/extraData”. After this change has been
made, you can use the Debugger window, on the 4D side, to quickly check that the $1
parameter actually returns the string “/extraData”:

By using conventions and algorithms similar to those described in the section On Web
Connection Database Method of the 4th Dimension Language Reference manual, you
therefore have the means to exchange additional data between the HTML and the 4D
environments when a 4D method is called by an HTML link.

How to Dynamically Set the URL Extra Data
__

If you create and write your own HTML files “on the fly” (using, for example, Create
document and SEND PACKET), you simply write the URLs accordingly to your needs.

If you work with existing HTML files, you can use JavaScript to dynamically set the link
properties of your objects.

See Also
Web Services, Your First Time (Part II).

Addendum 4th Dimension 6.0.2 33

CHANGE WEB LICENSE (6.0.2) Web Server (6.0.2)

version 6.0.2
__

CHANGE WEB LICENSE

Parameter Type Description
This command does not require any parameters

Description
The command CHANGE WEB LICENSE displays the Web License dialog box, which enables
the user to add and remove licenses to and from the built-in 4th Dimension Web Server.

Web License dialog box on Windows:

Web License dialog box on Macintosh:

34 Addendum 4th Dimension 6.0.2

This dialog box was originally available only in the Design environment. Using the
CHANGE WEB LICENSE command, you can display the Web License dialog box in the User
and Custom menus environment.

Note: In the Design environment, you display this dialog box by clicking on the Licenses
button in the Database Properties dialog box.
Tip: CHANGE WEB LICENSE is a convenient way to allow Web licensing expansion in a
compiled and merged 4D application distributed to customers. 4D developers or IS
managers can use this command to distribute a 4D application and let users expand their
Web License without sending an update of the application each time.

Example
In a custom configuration or preferences dialog box, you include a button whose method
is:

` bWebLicense button object method
Þ CHANGE WEB LICENSE

In doing so, you enable the user to increase the number of users who can connect
simultaneously to the 4D Web Server, without modifying the database itself.

Addendum 4th Dimension 6.0.2 35

36 Addendum 4th Dimension 6.0.2

	Cover Page
	Contents
	Addendum 4D 6.0.2
	Addendum 4D 6.0.2

	Picture Library (6.0.2)
	PICTURE LIBRARY LIST (6.0.2)
	GET PICTURE FROM LIBRARY (6.0.2)
	SET PICTURE TO LIBRARY (6.0.2)
	REMOVE PICTURE FROM LIBRARY (6.0.2)

	Process Communications (6.0.2)
	VARIABLE TO VARIABLE (6.0.2)

	Users and Groups (6.0.2)
	GET USER PROPERTIES (6.0.2)
	SET USER PROPERTIES (6.0.2)
	Validate password (6.0.2)

	Web Server (6.0.2)
	The Text Parameter Passed to 4D Methods Called via URLs (6.0.2)
	CHANGE WEB LICENSE (6.0.2)

