

Oracle Video Client

Developer’s Guide

Release 3.0

February 3, 1998

Part No: A53949-02

Developer’s Guide

Part No: 3.0 A53949-02

Copyright © Oracle Corporation 1997, 1998

All rights reserved. Printed in the U.S.A.

Primary Author: Rick Herrick

Contributors: Gordon Furbush, Leslie Kew, Nancy Baltz, Richard Bettelheim, John Dowden, Brice Dun-
woodie, Dana Izenson, Martin McKendrick, Mason Ng, Matt Prather, Bettina Rafailovic, James Steel, Sean
Trabosh, Shiu Wong, John Zussman, Bernie Cohen.

This software was not developed for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It is the customer’s responsibility to take all appropriate measures to ensure
the safe use of such applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle Corporation; it is provided
under a license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Reverse engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense,
then it is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Soft-
ware (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with “Restricted Rights”, as defined in FAR 52.227-14, Rights in Data - Gen-
eral, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any problems in the doc-
umentation, please report them to us in writing. Oracle Corporation does not warrant that this document
is error-free.

Oracle Video Server, Oracle Video Client, Oracle Forms, and Oracle Power Objects are trademarks of Ora-
cle Corporation. Oracle is a registered trademark of Oracle Corporation.

Windows is a trademark of Microsoft Corporation. Microsoft and Visual Basic are registered trademarks
of Microsoft Corporation. Adobe and Acrobat are trademarks of Adobe Systems Incorporated or its sub-
sidiaries and may be registered in certain jurisdictions.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Alpha and Beta Draft Documentation Alpha and Beta Draft documentation are considered to be in prer-
elease status. This documentation is intended for demonstration and preliminary use only, and we expect
that you may encounter some errors, ranging from typographical errors to data inaccuracies. This docu-
mentation is subject to change without notice, and it may not be specific to the hardware on which you are
using the software. Please be advised that Oracle Corporation does not warrant prerelease documentation
and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

Contents

Preface... xv

Reader’s Comment Form .. xxi

1 Introducing the Oracle Video Client

Client Interfaces ... 1-2

Interface Descriptions ... 1-3

Oracle Video Web Plug-in... 1-3

Oracle Video Java Library... 1-3

Oracle Video ActiveX Control .. 1-3

Choosing a Client Interface .. 1-4

Browser-Hosted Client Applications... 1-4

Stand-Alone Client Applications ... 1-6

Client Software Components .. 1-6

Developing and Deploying a Client Application ... 1-8

2 Oracle Video Web Plug-in

Introduction to the Oracle Video Web Plug-in .. 2-2

Requirements.. 2-3

Installing the Oracle Video Web Plug-in.. 2-4

Associating Oracle Video Files with the Oracle Video Web Plug-in 2-4

Client MIME Configuration.. 2-5

Server MIME Configuration ... 2-6
 iii

Embedding the Oracle Video Web Plug-in in an HTML Document ... 2-6

Creating the <Embed> Tag .. 2-7

Specifying the Media File and MIME Type ... 2-8

Type and Mediafile Attributes ... 2-8

Src and Mediafile Attributes ... 2-9

Specifying Plug-in Characteristics... 2-10

Playing Audio-Only Streams ... 2-13

Controlling the Plug-in Using JavaScript and Java... 2-13

Controlling the Plug-in with JavaScript ... 2-15

Naming an Embedded Plug-in... 2-15

Accessing Plug-in Methods and Properties.. 2-16

Controlling the Plug-in with Form Buttons.. 2-16

Using Graphical Controls.. 2-17

Controlling the Plug-in with Dynamic Parameters... 2-17

Creating a Pop-up List ... 2-18

Using an Image Map .. 2-19

Other Things You Can Do with JavaScript... 2-20

Sample Code for JavaScript-Controlled Plug-in .. 2-20

Controlling the Plug-in with Java.. 2-23

OviPlayer and OviObserver.. 2-23

Retrieving the OviPlayer Object ... 2-25

Using OviObserver... 2-26

Simple Plug-in Example using Java... 2-27

3 Oracle Video Java Library

Introduction to the Oracle Video Java Library ... 3-2

Player Classes ... 3-2

Player.. 3-3

PlayerFactory... 3-4

PlayerListener ... 3-4

PlayerException .. 3-5

Stream Information Classes.. 3-5

Content Query Classes.. 3-6
 iv

Requirements.. 3-7

Installing and Configuring the Oracle Video Java Library ... 3-7

Run-time Requirements.. 3-7

Version Requirements... 3-8

Programming with the Oracle Video Java Library.. 3-8

Importing the Oracle Video Java Library Package ... 3-9

Creating a Player ... 3-9

Terminating a Player... 3-10

Getting and Setting Player Properties .. 3-10

Stream Position ... 3-11

Volume Settings.. 3-13

Stream and Player State... 3-13

Handling Player Events.. 3-17

PlayerListener Methods... 3-17

Implementing and Registering a PlayerListener ... 3-18

Displaying and Customizing the Player Interface.. 3-20

Retrieving Player Interface Components.. 3-21

Customizing Interface Components.. 3-22

Setting Full-Screen Interface ... 3-22

Loading and Unloading Streams .. 3-23

Controlling Playback... 3-25

Querying Available Content Titles ... 3-26

Content Classes... 3-26

Performing a Query ... 3-28

Synchronizing Calls to Player Methods ... 3-29

Handling Player Exceptions... 3-30

Using the PlayerApplet Class.. 3-31

Quick Start: A Sample Java Application ... 3-31

Step-by-Step Tutorial of Simple.java .. 3-32
 v

4 Oracle Video ActiveX Control

Introduction to the Oracle Video ActiveX Control.. 4-2

Becoming Familiar with the Oracle Video ActiveX Control ... 4-2

Installing the Oracle Video ActiveX Control ... 4-3

Using the Oracle Video ActiveX Control ... 4-3

Controlling the Oracle Video ActiveX Control ... 4-4

In HTML Documents ... 4-4

In Application Development Tools.. 4-4

Requirements.. 4-5

Using the Oracle Video ActiveX Control in HTML Documents .. 4-5

Embedding the Oracle Video ActiveX Control ... 4-6

Setting Properties for an Embedded Oracle Video ActiveX Control 4-7

Security Requirements in Internet Explorer .. 4-8

Sample ActiveX Control in HTML.. 4-10

Creating Applications with the Oracle Video ActiveX Control.. 4-11

Loading the Oracle Video ActiveX Control ... 4-11

Oracle Power Objects 2.1 ... 4-11

Microsoft Visual Basic.. 4-12

Programming with the Oracle Video ActiveX Control .. 4-12

A Simple Application.. 4-13

5 Working with Oracle Forms

A Simple Application.. 5-2

Accessing Methods and Properties... 5-6

Executing a Method... 5-6

Executing a Method with Parameters... 5-7

Setting the Value of a Property.. 5-8

Getting the Value of a Property ... 5-8

Modifying Properties .. 5-9

Troubleshooting ... 5-10
 vi

A Oracle Video Web Plug-in Reference

<Embed> Attributes ... A-1

autoStart... A-2

background ... A-2

controls .. A-2

controlMask .. A-3

height ... A-3

hidden .. A-4

leftClick.. A-4

loop... A-4

mediafile .. A-5

name... A-5

playFrom ... A-5

playTo .. A-6

popupMenu .. A-6

sliderRate... A-6

src.. A-6

toolTips .. A-7

type... A-7

volume ... A-7

width .. A-8

JavaScript Methods .. A-8

Java Classes .. A-9

OviPlayer ... A-9

advise()... A-9

forward().. A-9

getLength() .. A-10

getMaxPos() .. A-10

getMinPos() ... A-10

getObserver() .. A-10

getPos() .. A-10

getState() .. A-11

getVol() .. A-11

load() .. A-12

pause().. A-12
 vii

play() .. A-12

resume() ... A-12

rewind() ... A-13

setAutoStart() .. A-13

setFullScreen()... A-13

setLoop() .. A-13

setPopupMenu() ... A-14

setPos() ... A-14

setVol() ... A-14

stop()... A-14

unload().. A-15

OviObserver .. A-15

onPositionChange().. A-15

onStop().. A-15

B Oracle Video Java Library Reference

Content .. B-2

query().. B-2

ContentException .. B-2

ContentException Constants... B-3

ContentException.EX_BADPARAM ... B-3

ContentException.EX_BADSTATE.. B-3

ContentException.EX_ERROR ... B-3

ContentException.EX_INTERNAL.. B-3

ContentException.EX_NOTIMPL .. B-3

ContentException.EX_UNTRANS... B-3

ContentException Data Members .. B-3

m_code ... B-4

m_msg.. B-4

m_type.. B-4

ContentException Methods... B-4

toString() .. B-4
 viii

ContentIter ... B-4

ContentIter Data Members.. B-5

m_num... B-5

m_pos... B-5

ContentIter Methods .. B-6

ContentIter().. B-6

Player... B-6

Player Constants ... B-7

Player State Reference... B-7

Player.ST_EOS .. B-7

Player.ST_ERROR .. B-8

Player.ST_INIT ... B-8

Player.ST_PAUSED.. B-8

Player.ST_PLAYING ... B-8

Player.ST_REALIZED.. B-8

Player.ST_UNINIT... B-8

Player Methods ... B-8

User Interface Methods .. B-9

getControlComp() .. B-9

getPlayerUI()... B-9

getSelRange() .. B-9

getStatusComp()... B-10

getVisualComp() .. B-10

Media Control Methods ... B-10

getPos() .. B-10

getVol() .. B-10

load() .. B-11

pause().. B-11

play() .. B-12

resume() ... B-12

setFullScreen()... B-12

setPos()... B-12

setVol() ... B-13

stateToString() .. B-13

stop() .. B-13
 ix

unload().. B-13

Player Service Methods .. B-13

addListener() ... B-14

getInfo().. B-15

getState() .. B-15

getStats() .. B-15

term() .. B-15

PlayerApplet .. B-16

PlayerException ... B-16

PlayerException Constants.. B-17

PlayerException.EX_BADPARAM .. B-17

PlayerException.EX_BADSTATE... B-17

PlayerException.EX_ERROR .. B-17

PlayerException.EX_INTERNAL... B-17

PlayerException.EX_NOTIMPL ... B-18

PlayerException.EX_UNTRANS.. B-18

PlayerException Data Members ... B-18

m_type.. B-18

m_code ... B-18

m_msg.. B-18

PlayerException Methods.. B-18

toString() .. B-18

PlayerFactory.. B-19

PlayerFactory Methods .. B-19

createPlayer() .. B-19

getPlayer() ... B-19

getPlayerFactory() .. B-20

PlayerListener .. B-20

PlayerListener Methods ... B-20

error() ... B-20

endOfStream()... B-21

stateChange() .. B-21
 x

StmInfo ... B-21

StmInfo Constants .. B-22

StmInfo.CSTAT_DISK ... B-22

StmInfo.CSTAT_FEED .. B-22

StmInfo.CSTAT_LOCALFILE .. B-22

StmInfo.CSTAT_NETWORK.. B-22

StmInfo.CSTAT_ROLLING .. B-22

StmInfo.CSTAT_TAPE .. B-22

StmInfo.CSTAT_TERMINATED.. B-22

StmInfo.CSTAT_UNKNOWN ... B-22

StmInfo Data Members .. B-23

m_aspect .. B-23

m_asset... B-23

m_bitrate.. B-23

m_bytes.. B-23

m_contStat... B-23

m_contType... B-24

m_createTime.. B-24

m_desc ... B-24

m_fps.. B-24

m_msecs... B-24

m_name ... B-24

m_proto.. B-25

m_size .. B-25

m_url .. B-25

StmInfo Methods .. B-25

contStatToString() .. B-25

toString().. B-25

StmOpts .. B-26

StmOpts Constants ... B-26

StmOpts.DEFAULT_VOL... B-26
 xi

StmOpts Data Members... B-27

m_autoStart ... B-27

m_img .. B-27

m_leftClick .. B-27

m_loop ... B-27

m_playFrom .. B-28

m_playTo... B-28

m_popup.. B-28

m_volume.. B-28

StmOpts Methods ... B-28

StmOpts()... B-29

StmPos... B-29

StmPos Constants ... B-30

StmPos.POSFMT_BEGINNING... B-30

StmPos.POSFMT_CURRENT ... B-30

StmPos.POSFMT_DEFAULT.. B-30

StmPos.POSFMT_END.. B-30

StmPos.POSFMT_FRAMES .. B-30

StmPos.POSFMT_TIME... B-31

StmPos Data Members ... B-31

m_fmt ... B-31

m_val .. B-31

StmPos Methods ... B-31

StmPos() ... B-32

fromString() ... B-33

toString() .. B-33

StmStats .. B-34

StmStats Constants ... B-34

StmStats.STM_CONTROL .. B-34

StmStats.STM_ENDED.. B-34

StmStats.STM_IDLE... B-34

StmStats.STM_PAUSED.. B-34

StmStats.STM_PLAYING.. B-35

StmStats.STM_STALLED .. B-35
 xii

StmStats Data Members... B-35

m_bps... B-35

m_cnsState... B-35

m_curFrame .. B-35

m_curTime .. B-35

m_drops... B-36

m_fBytes .. B-36

m_fps.. B-36

m_maxTime... B-36

m_minTime ... B-36

m_pkts.. B-36

m_prdState .. B-37

m_rBytes .. B-37

StmStats Methods ... B-37

stateToString() .. B-37

toString().. B-37

C Oracle Video ActiveX Control Reference

Methods .. C-1

Forward()... C-2

GetInfo()... C-2

GetPos() ... C-4

GetStats() ... C-4

GetVol().. C-5

ImportFileAs() .. C-6

ImportStreamAs() .. C-6

Load() ... C-7

Pause().. C-7

Play() .. C-7

Resume() .. C-7

Rewind() .. C-7

SetPos() .. C-8

SetVol() .. C-8

ShowInfoDialog() ... C-8

ShowStatsDialog().. C-8
 xiii

Stop() .. C-8

Unload() ... C-8

Properties .. C-9

AutoStart.. C-10

BorderStyle .. C-10

EnableLeftClick... C-10

EnablePopup ... C-10

IsLoaded .. C-11

Loop.. C-11

Mediafile .. C-11

PlayFrom.. C-12

PlayTo .. C-12

ShowControls.. C-13

ShowPositionAndStatus.. C-13

State .. C-13

TimerFrequency.. C-14

Events .. C-14

Completed ... C-14

LeftClick... C-14

PlayStarted .. C-15

Resumed .. C-15

RightClick .. C-15

Stopped .. C-15

<Object> Attributes and Parameters... C-16

ClassID ... C-16

Height... C-16

ID .. C-16

Width.. C-16

D The Media File

mediafile Syntax .. D-1

Logical Content Asset Cookies... D-2

mediafile Examples ... D-3

Index
 xiv

Preface

The Oracle Video Client software enables you to develop interactive, video-based
multimedia applications, such as computer-based training (CBT), interactive
kiosks, and movies-on-demand. Oracle Video Client applications can receive and
display streamed MPEG-1 (Motion Picture Experts Group) video, MPEG audio,
and OSF (Oracle Streaming Format) files from the Oracle Video Server (OVS) sys-
tem. Other formats can be converted to OSF and streamed also, including WAV and
AVI files.

The Oracle Video Server allows many different clients to access media files concur-
rently. Multiple users can even receive streaming video from different segments of
the same media file at the same time. The Oracle Video Client software provides
the following tools to help you build media applications:

■ The Oracle Video ActiveX Control enables Windows 95, Windows NT 4.0, and
Internet multimedia applications to handle streams from the Oracle Video
Server. This control is designed to work with any application that hosts
ActiveX controls; it has been tested with:

– Microsoft Visual Basic 4.0 and 5.0

– Internet Explorer 3.0 and 4.0

– Oracle Forms 4.5 and 5.0.5

– Oracle Power Objects 2.1

Note: The Oracle Video Client can play both video and audio. For
simplicity, this manual usually refers only to video, since this
includes both visual and auditory elements, but all information
applies equally to audio, unless otherwise noted.
 xv

■ The Oracle Video Web Plug-in is a Netscape-compatible plug-in that enables
Web-based applications to handle streams from the Oracle Video Server. Using
Netscape’s LiveConnect interface, you can use JavaScript or Java to
dynamically control the Oracle Video Web Plug-in.

■ The Oracle Video Java Library is a set of Java 1.1 classes and interfaces that
enable Java applications to handle streams from the Oracle Video Server. The
library also includes support classes for things like handling player events and
querying a video server for a list of available content.

The Oracle Video Client package also includes the Iterated Systems ClearVideo
(fractal) video and Voxware MetaSound audio encoder/decoders (also known as
codecs). These codecs are suitable for low-bit-rate streaming, enabling the Oracle
Video Client to receive and display video and audio at low bit rates.

The Oracle Video Client Developer’s Guide provides the information necessary to
develop applications with the Oracle Video Client software, specifically:

■ Conceptual information: Descriptions of the available client interfaces that you
can use to create your own Oracle Video Client applications, as well as the
infrastructure that enables the client interfaces to access the Oracle Video Server

■ Step-by-step tutorials: Instructions for developing applications with Microsoft
Visual Basic 4.0 and 5.0, Oracle Power Objects 2.1, Oracle Forms 4.5 and 5.0,
Internet applications, and Java applications that stream video locally and from
the Oracle Video Server

■ Developer reference: Descriptions and code examples for the methods and
properties associated with the Oracle Video ActiveX Control, the Oracle Video
Web Plug-in and the Oracle Video Java Library

You can find installation and configuration information for the Oracle Video Client,
including system requirements and software compatibility requirements, in the
booklet that came inserted with your Oracle Video Client installation CD-ROM.
This information is also available in electronic form in the file ovcinstl.pdf in the
\Docs directory of your installation CD-ROM.

Intended Audience
This manual is for multimedia developers or anyone with the appropriate experi-
ence who wants to create stand-alone or Web-based applications that use streaming
audio or video from the Oracle Video Server.
xvi

How This Manual Is Organized
This manual is divided into the following chapters:

Chapter 1, “Introducing the Oracle Video Client” contains:

■ Descriptions of the Oracle Video Client system and its components

■ High-level information on the various client interfaces available

■ Information on the development and deployment process for creating your
own custom video clients

Chapter 2, “Oracle Video Web Plug-in” contains:

■ Step-by-step procedures for displaying and controlling media files from the
Oracle Video Server in HTML pages, using the Netscape-compatible plug-in
client interface

■ Sample applications using Javascript and Java to control the plug-in

Chapter 3, “Oracle Video Java Library” contains:

■ Information on creating Java applications that can display and control
streaming video and audio from the Oracle Video Server

■ A sample Java application that loads a media file and controls playback

Chapter 4, “Oracle Video ActiveX Control” provides:

■ Procedures for embedding the control in HTML pages for ActiveX-enabled
browsers and scripting the control through VBScript and JScript

■ Steps for building applications with the Oracle Video ActiveX Control using
Oracle Power Objects 2.1 and Microsoft Visual Basic 4.0 and 5.0

Chapter 5, “Working with Oracle Forms” provides:

■ Steps for building applications with the Oracle Video ActiveX Control using
Oracle Forms 4.5.8

Appendix A, “Oracle Video Web Plug-in Reference” contains reference information for
the Oracle Video Web Plug-in interface.

Appendix B, “Oracle Video Java Library Reference” contains reference information for
the Oracle Video Java Library interface.
 xvii

Appendix C, “Oracle Video ActiveX Control Reference” contains reference information for
the Oracle Video ActiveX Control interface.

Appendix D, “The Media File” describes how to request a specific content file from the
Oracle Video Server using either the path and file name of an MDS file or the asset
cookie of the logical content title.

Related Publications
See the Oracle Video Server Road Map for related publications.

Conventions Used in This Manual
This guide uses particular notational conventions to clarify syntax, enhance visual
access to pages, and otherwise distinguish elements, such as code examples and
keystrokes the user should enter from the text provided as background for those
examples. These conventions are listed here:

Conventions for Examples
This guide shows command and code examples in a monospace Courier font:

file://C:\orawin\vc30\demo\www\client\test.htm

For examples that are longer than a single line, a backslash (\) appears at the end of
a line to indicate the line continues on the next:

<embed name=”Video1” width=400 height=400 type=”application/oracle-video”\
mediafile=”/mds/video_archive/oracle2.mpg”>

Do not enter the backslash if you type out this example. It is used only as a typo-
graphic convention.

Table Preface–1 Typographical conventions used in this manual

Feature Example Explanation

boldface mna.h

timeout

Identifies file names.

Identifies method arguments.

boldface, trailing parenthesis mzsInit() Identifies method names.

italics container1 Identifies a place holder in command or
function-call syntax; replace with a
value or string of your own.

ellipses n, ... Indicates that the preceding item can be
repeated any number of times.
xviii

The installation application installs Oracle files in different areas on different client
platforms. For this reason, file paths in this document are relative to the location
indicated by the environment variable ORACLE_HOME, which represents the
directory where you installed the Oracle Video Client software. You can find the
default ORACLE_HOME directories for various platforms in the table below.

Worldwide Customer Support
When you or someone in your company acquired this Oracle product, you
probably also purchased some level of customer support. Oracle then sent you a
package that includes telephone numbers, email addresses, and web sites you
should use to contact customer support.

Oracle provides web-based support for our OracleMetaLink and OracleMercury
services at http://support.us.oracle.com.

If your company did not purchase customer support, you can visit http://
www.oracle.com/support to find out about Oracle’s Worldwide Customer Support
services.

Your Comments Are Welcome
We value and appreciate your comments as an Oracle user and reader of the manu-
als. As we write, revise, and evaluate our documentation, your opinions are the
most important input we receive. At the back of our printed manuals is a Reader’s
Comment Form, which we encourage you to use to tell us what you like and dis-
like about this manual or other Oracle manuals. If the form is not available, please
use the following address or FAX number.

Oracle Video Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Mailstop 6OP5
Redwood Shores, CA 94065
U.S.A.
FAX: 650-506-7615
omsdoc@us.oracle.com

Table Preface–2 Default ORACLE_HOME directories

Platform Directory

Windows 95 C:\ORAWIN95

Windows NT 4.0 C:\ORANT
 xix

xx

Reader’s Comment Form
Reader’s Comment Form
Name of Document: Oracle Video Client Developer’s Guide Version 3.0

Part Number A53949-02

Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Could you have better access to the information that you need? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have suggestions for improvement, please indicate the
topic, chapter, and page number below:

Please send your comments to:

Oracle Video Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Mailstop 6OP5
Redwood Shores, CA 94065

You can e-mail comments to: omsdoc@us.oracle.com

You can also fax us at (650) 506-7615.

Reader’s Comment Form
If you would like a reply, please give your name, address, and telephone number
below:

Thank you for helping us improve our documentation.
Comments on 1Oracle Video Client Developer’s Guide

 Introducing the Oracle Video
1

Introducing the Oracle Video Client

The Oracle Video Client (OVC) provides several ways to incorporate streaming
video and audio from the Oracle Video Server (OVS) into your own applications.
OVC provides easy-to-use client interfaces that you can embed in your applications
to make video and audio available to your users. The interfaces include:

■ Oracle Video Web Plug-in, a Netscape-compatible plug-in

■ Oracle Video ActiveX Control, an ActiveX control

■ Oracle Video Java Library, a set of Java classes

These interfaces handle selecting a file to load, video display, and user control of
playback by passing client requests to the video server through a software layer.
This software layer handles the technical aspects of communicating with the server,
controlling the real-time stream, and audio-video playback. By handling the
technical aspects of the process and providing many different client interfaces
around which you can create your own client applications, the Oracle Video Client
provides a flexible and portable client development tool for creating client
applications that can run on many different platforms.

This introduction contains the following sections:

■ Client Interfaces discusses the different client interfaces, including their
individual advantages and attributes, to help you decide which interface to use
for your own client applications

■ Client Software Components describes the OVC software architecture

■ Developing and Deploying a Client Application discusses the development
and deployment process for creating your own video clients
Client 1-1

Client Interfaces
Client Interfaces

The main components of the Oracle Video Client are the client interfaces. These
interfaces use the Oracle Video Interface (OVI), described in “Client Software
Components” on page 1-6, to access streaming video from the Oracle Video Server.
The separation of the client interfaces from the basic streaming functionality
supported by OVI means that you can harness the functionality of the Oracle Video
Server from a variety of platforms, without worrying about the underlying
mechanisms that handle the low-level tasks.

This section describes the interfaces that OVC provides, and discusses factors that
can affect your decision as to which of the client interfaces you want to use to create
your own custom video clients.

Note: It is important to understand the multiple meanings of
client as used in the OVC/OVS model:

■ The first level of client is that of enterprise client: somewhere
on your network, there is a video server that can be accessed
by users seated at remote workstations. These workstations are
clients of the OVS system and are termed “client machines”.

■ The client machine contains the Oracle Video Client (OVC)
software. This client consists of two parts, the OVI abstraction
layer and the client interfaces, such as the Oracle Video Web
Plug-in, Oracle Video Java Library, and Oracle Video ActiveX
Control.

■ OVI is a client of the OVS system and the client interfaces can
themselves be considered clients of OVI.

■ You can create your own client applications through a
combination of client interfaces, scripting commands, and your
own applications that use the OVC client interfaces.
1-2 Oracle Video Client Developer’s Guide

Client Interfaces
Interface Descriptions
OVC provides the following client interfaces:

■ Oracle Video Web Plug-in

■ Oracle Video Java Library

■ Oracle Video ActiveX Control

Oracle Video Web Plug-in
Use the Oracle Video Web Plug-in to create HTML documents containing
streaming audio and video for Netscape-compatible browsers. You can customize
the behavior of the plug-in at load time through the attributes to the <EMBED> tag
used to include the video on your Web page. The plug-in also provides a
LiveConnect interface that allows you to create controls on your page that can
manage the plug-in after load time, through JavaScript or Java.

You can find usage information on the Oracle Video Web Plug-in in Chapter 2,
“Oracle Video Web Plug-in”. You can find reference information for the Oracle
Video Web Plug-in in Appendix A, “Oracle Video Web Plug-in Reference”.

Oracle Video Java Library
The Oracle Video Java Library consists of Java classes and interfaces that enable
you to create Java applications that can play streaming audio and video, combining
audio and video with any of your other needs.

Due to browser security restrictions, browser-embeddable applets created with the
Oracle Video Java Library may not function in all Java-enabled browsers. The
library includes an embeddable applet, PlayerApplet, which has the same
restrictions.

You can find usage information on the Oracle Video Java Library in Chapter 3,
“Oracle Video Java Library”. You can find reference information in Appendix B,
“Oracle Video Java Library Reference”.

Oracle Video ActiveX Control
You can embed the Oracle Video ActiveX Control into most applications that
support ActiveX control embedding. For example, you can use it in an HTML
document for Microsoft Internet Explorer or embed it in an Oracle Power Objects
or Visual Basic application. You can manage the control using scripting languages,
such as VBScript and JScript. You can also use the Oracle Video ActiveX Control in
Oracle Forms.
 Introducing the Oracle Video Client 1-3

Client Interfaces
You can find usage information on the Oracle Video ActiveX Control in Chapter 4,
“Oracle Video ActiveX Control”. For information on using the control in Oracle
Forms, see Chapter 5, “Working with Oracle Forms”. You can find reference
information for the Oracle Video Web Plug-in in Appendix C, “Oracle Video
ActiveX Control Reference”.

Choosing a Client Interface
To a large extent, the primary target platform and preferred application
environment for your client application determines which client interface you
should choose. You also need to consider how you want to use the video client.
There are two main types of clients you can develop:

■ Browser-Hosted Client Applications

■ Stand-Alone Client Applications

Browser-Hosted Client Applications
Browser-hosted clients generally consist of an HTML page (static or dynamic) with
the plug-in or ActiveX control embedded in the page:

■ If your target browser is Netscape Navigator or Communicator, use the Oracle
Video Web Plug-in.

■ If your target browser is Microsoft Internet Explorer, use the Oracle Video
ActiveX Control. Internet Explorer 3.0 and later supports Netscape plug-ins,
but not plug-in scripting.

You can also add scripting to an HTML document. In Netscape browsers, use either
JavaScript or Java. In Microsoft Internet Explorer, use VBScript or JScript. Scripts
can be invoked based on normal events, such as mouse-over, click, and focus
events. You can use scripts to create custom interfaces that follow your look-and-
feel standards.
1-4 Oracle Video Client Developer’s Guide

Client Interfaces
Figure 1–1 shows an example of a browser-hosted client.

Figure 1–1 Example of a Browser-Hosted Client

The buttons shown in Figure 1–1 use simple JavaScript methods to start and stop
the video and turn looping off and on. Users can click the buttons on the page to
turn video playback on and off and can also set the video to loop automatically.
 Introducing the Oracle Video Client 1-5

Client Software Components
Stand-Alone Client Applications
There are two ways to create stand-alone applications using OVC:

■ Using an ActiveX-enabled development tool, such as Visual Basic or Oracle
Forms, add the Oracle Video ActiveX Control to the development tool’s control
palette or equivalent. You can then use the client control in your applications
the same as any other custom control.

■ Use the Oracle Video Java Library in a Java application. The Java classes
provide full control over the client and easy programmatic access to all the
features of the client.

Your choice depends on the tools you prefer and the platforms on which you wish
to run your client application. If you are developing for Windows platforms on x86
hardware, you can use the ActiveX control. If you are concerned about platform
independence, you should develop your client application using the Oracle Video
Java Library.

Client Software Components

This section discusses the components that constitute the Oracle Video Server
system, from the video server to the viewing client. The system has three parts:

■ The Oracle Video Server provides streaming video and audio, as well as a
number of supporting services, to the client machine.

■ The Oracle Video Interface, running on the client, manages the streams from
OVS, handles messages and transactions to and from OVS, and controls the
display technology.

■ The OVC client interfaces provide user control of streams, set up the display
area, and handle transactions with the client environment.
1-6 Oracle Video Client Developer’s Guide

Client Software Components
Figure 1–2 show the various components in the system.

Figure 1–2 Software components of the Oracle Video Client

OVS is the backbone of this system. It stores, retrieves, and dispatches media
content files throughout the system. You can find out more about OVS in
Introducing Oracle Video Server.

OVI is the video client’s gateway to the OVS system. It provides the following
services:

■ communicates with the client interface, passing requests from the interface on
to the video server

■ handles network communications between the client machine and the video
server, including managing video and audio streams as they arrive from the
video server

■ communicates with the playback and display technology to play back the
incoming stream using standard display technologies such as Oracle Video
Framework and ActiveMovie

Client
Interfaces

OVS

Java
classes

ActiveX
control

Netscape
plug-in

OVI
� Interface to video display
� Server communications
� Stream management

Other
Clients

Network

Display
Uses ActiveMovie, Quicktime,
or Oracle Video Framework to

display video
 Introducing the Oracle Video Client 1-7

Developing and Deploying a Client Application
Developing and Deploying a Client Application

This section discusses the process of developing your own client application, as
well as how to make your new client available to your users. There are a number of
things to consider:

1. Decide which client interface you want to use. See “Choosing a Client
Interface” on page 1-4.

2. Decide how much functionality you want to make available to your users. Each
client interface provides control over the stream playback, but you can specify
how much of the provided functionality to make available to the user.

For example, suppose you want to use the ActiveX control. This control
provides the ability to play, stop, rewind, fast forward, and pause the video.
But you’re creating a kiosk application, where you don’t want your end users
to be able to interrupt the video. You can turn the controls off, so that the user
can’t manipulate the video at all, or add only volume controls so that the user
can change the volume, but not interrupt the video.

3. Before any of your end users can use your new client application, they must
install the minimum Oracle Video Client installation. This includes OVI, as
well as whichever client interfaces your application requires. Make the OVC
installation available to users, for example, through a Web page or shared
network resource. You then need to give instructions to your users on how to
install OVC, such as which client interfaces they require.

You can also install OVC as part of the installation process for your client
application. To find out whether the proper version of OVC is already installed
on the user’s system, check the Windows registry for the Oracle Video Client
version. This key is located in:

HKEY_LOCAL_MACHINE\SOFTWARE\Oracle\Oracle Video Client
1-8 Oracle Video Client Developer’s Guide

Developing and Deploying a Client Application
There are further considerations that depend on the client interface you choose:

■ If you are creating Web page applications using the Oracle Video Web Plug-in
or the Oracle Video ActiveX Control, the “application” is really the HTML
documents themselves. The documents embed the plug-in or control, but
doesn’t require the user to download the client interface, since that should have
been installed along with OVC.

The only exception is if you use a Java applet to control the plug-in through the
LiveConnect interface. In that case, the user has to download the applet. This
works just like downloading a normal Java applet.

■ If you create a stand-alone application using the Oracle Video ActiveX Control
or Oracle Video Java Library, you need to make the application available to
your users, just as you make the OVC installation available to them.
 Introducing the Oracle Video Client 1-9

Developing and Deploying a Client Application
1-10 Oracle Video Client Developer’s Guide

 Oracle Video Web P
2

Oracle Video Web Plug-in

This chapter describes the Oracle Video Web Plug-in. This Netscape-compatible
plug-in enables you to create Web pages and applications that contain streaming
video and audio from the Oracle Video Server. You can use Java or JavaScript to
control the plug-in, allowing you to add controls and interfaces and tailor the
amount of end-user control.

This chapter contains these sections:

■ Introduction to the Oracle Video Web Plug-in

■ Requirements

■ Embedding the Oracle Video Web Plug-in in an HTML Document

■ Controlling the Plug-in Using JavaScript and Java

If you install the Typical configuration or choose to install the sample applications
in the Custom configuration, your client installation includes a sample that uses the
Oracle Video Web Plug-in. Open the file index.htm in the directory
vc30\demo\webplugin in your ORACLE_HOME.

You can find reference information about the Oracle Video Web Plug-in in “Oracle
Video Web Plug-in Reference” on page A-1, including valid attributes for the
<embed> HTML tag and methods available on the plug-in itself.

In order to gain the most from this chapter, you should be familiar with HTML,
JavaScript, and Java. Specifically, knowledge of the following would be helpful:
embedding Netscape-compatible plug-ins in HTML documents, responding to
basic events such as mouse clicks, and embedding applets in HTML documents.
lug-in 2-1

Introduction to the Oracle Video Web Plug-in
Introduction to the Oracle Video Web Plug-in

The Oracle Video Web Plug-in provides a screen for video playback, audio
playback, as well as optional controls and status line. Using the plug-in is easy:
place the Oracle Video Web Plug-in in your HTML document by adding an
<embed> statement to an HTML document. Within the <embed> statement, you
can set attributes to modify the appearance and behavior of the plug-in. For
example, you can specify whether the controller appears or whether the video
starts playing automatically. You can even make the plug-in completely invisible if
you’re using the plug-in for audio playback only.

Within Netscape Navigator version 3.0 or later, you can customize the plug-in’s
functionality by adding JavaScript or Java graphical user interfaces to dynamically
control the plug-in. The LiveConnect interface provides easy access to the control
from either language. Starting and stopping video, modifying the volume or stream
position, and even changing the current media file are all possible.

Each time a user loads a page that uses the plug-in, the <embed> statement loads
the Oracle Video Web Plug-in automatically (the user first needs to install the
Oracle Video Client). The plug-in appears in the browser as a video screen (unless
hidden), with some optional components

■ Controller with:

– Play/Pause button

– Stream position slider

– Volume slider

■ Status line

Controls that you design using JavaScript or Java appear wherever you place them.

Depending on the attributes set in the <embed> statement, the plug-in can connect
to the video server immediately upon being loaded and play a predetermined
video. Or you can make the plug-in load, but not play until the user clicks the Play
button. If you are using the built-in controls, the Play button turns into the Pause
button when playback begins, and becomes the Play button again when playback
stops. When the page is closed, the video stream is automatically deallocated and
the plug-in is unloaded by the browser.
2-2 Oracle Video Client Developer’s Guide

Requirements
Figure 2–1 Plug-in with controls and status line visible

The plug-in also offers other means of control:

■ Click the video screen to start the video. To pause, click the video screen again.

■ Right-click the plug-in to display a pop-up menu with the following options:
Play, Pause, Rewind to Start of Movie, Forward to End of Movie, and more.
Choose Play from the pop-up menu to start the video. Choose Pause to pause it.

■ The LiveConnect interface lets you call stream control methods on the plug-in
through JavaScript or Java.

Requirements

The Oracle Video Client must be installed on all machines on which you want to
use the Oracle Video Web Plug-in. In addition to the standard client requirements,
the Oracle Video Web Plug-in requires a browser that supports Netscape plug-ins,
such as Netscape Navigator 2.0 or greater, or Microsoft Internet Explorer 3.0 or
greater.

Video screen

Volume controlPlay/Pause
button

Stop button

Status panel

Slider control

Current playing
time
 Oracle Video Web Plug-in 2-3

Requirements
To control the plug-in with JavaScript or Java, the Oracle Video Web Plug-in
requires a browser that supports the Netscape LiveConnect interface, such as
Netscape Navigator 3.0 or greater.

Installing the Oracle Video Web Plug-in
To install the Oracle Video Web Plug-in, run the OVC installer and either:

■ Select the Typical installation configuration, or

■ Select the Custom installation configuration, making sure you select the Oracle
Video Web Plug-in check box, when prompted.

When you elect to install the Oracle Video Web Plug-in, the installer automatically
installs it for any browsers on your system that support Netscape plug-ins. The
plug-in file npovc.dll is installed in the default plug-in directory for each browser.
When you restart your browser, the plug-in is configured and ready to use. If your
browser was running during the installation, you need to close and re-open it.

You can find the complete installation instructions for the Oracle Video Client in
the CD insert that came with your installation CD-ROM. This information is also
available in electronic form in the file ovcinstl.pdf in the \docs directory of your
installation CD-ROM and, if you selected the Typical installation configuration or
selected the Docs option in the Custom configuration, in the vc30\docs directory of
your ORACLE_HOME.

Associating Oracle Video Files with the Oracle Video Web Plug-in
When you download a data file in a network application, such as your browser or
e-mail program, you want to be able to handle the data properly without having to
save it to your hard drive and manually start another application. For example, if
you download a sound file, you don’t want to have to save the file, start your
sound player, load the file, then finally play the sound. You just want to hear the
sound played over your speakers.

The problem is that your browser or e-mail program doesn’t necessarily know
what application to launch for a particular type of data. This is handled through
MIME types (for Multimedia Internet Message Extensions), which provide a way of
associating a particular type of data with a particular application. There are three
parts to a MIME type:

■ MIME type name. This comes in the form content-type/subtype. content-type is a
broad classification of the data, such as image, application, or video. subtype
defines the type more specifically. For example, MIDI files are commonly given
the MIME type audio/midi.
2-4 Oracle Video Client Developer’s Guide

Requirements
■ Associated file extensions. In order to identify a file as having a particular
MIME type, you either have to know that the file has that MIME type, such as
through data packet headers, or find some way of extracting this from the
information that you have about the file. Most browsers and HTTP servers use
the file extension for this. Thus, each MIME type has one or more file
extensions associated with it.

■ Associated application. This specifies the application that can handle data of a
particular MIME type.

Oracle video files are accessed through tag files, which have the extension .mpi (for
more information on Oracle video files and Oracle video tag files, see the Oracle
Video Server Content Administrator’s Guide). The Oracle Video Web Plug-in requires
that Oracle video files be associated with the plug-in through the MIME type
application/oracle-video. When this MIME type is properly configured, you can
access data files with the extension .mpi, which are associated with the Oracle
Video Web Plug-in, through the MIME type.

There are two places you need to configure the Oracle Video MIME type:

■ Client MIME Configuration

■ Server MIME Configuration

Client MIME Configuration
Under normal circumstances, your browser automatically configures which MIME
types it supports when it starts up. Netscape’s plug-in specification requires that
browsers check their plug-in directory to see which plug-ins are installed. The
browser then queries each plug-in to find which MIME type or types the plug-in
supports. Then, when the user tries to access data with a supported MIME type, the
browser uses the appropriate plug-in to handle the data.

When you embed an Oracle video file in an HTML document, you need to specify
the file’s MIME type so the browser knows to load the Oracle Video Web Plug-in.
There are two ways to do this:

■ The mediafile and src attributes; mediafile indicates to the plug-in which
media file to open, while the src attribute, recognized by the browser, indicates
a dummy file with the .mpi extension. The dummy file’s name causes the
browser to properly set the MIME type for the data and load the plug-in, while
the plug-in finds the actual media file to load through the mediafile attribute.

■ The mediafile and type attributes; mediafile indicates to the plug-in which file
to open, while type explicitly specifies the MIME type of the embedded object.
 Oracle Video Web Plug-in 2-5

Embedding the Oracle Video Web Plug-in in an HTML Document
Although only the extension .mpi is associated with the Oracle Video Client
through the MIME type application/oracle-video, OVC can also play Oracle
Stream Format (extension .osf) and regular MPEG files (extension .mpg). You can
embed these files in HTML documents by using the src or type attribute to specify
the MIME type, while the mediafile attribute tells the plug-in which media file to
actually load. The extension of the media file does not affect the loading of the plug-
in. See “Specifying the Media File and MIME Type” on page 2-8 for an example of
how to do this.

Server MIME Configuration
If you plan to serve video through HTML pages that embed the Oracle Video Web
Plug-in, you need to configure your HTTP server to handle the application/oracle-
video MIME type. The HTTP server recognizes the MIME type of requested data
by the file extension. It then returns the data with the appropriate MIME type
specified in the HTTP packet header. The browser maintains its own list of MIME
types, which includes the appropriate application or plug-in to load for supported
MIME types. The browser loads the appropriate plug-in based on that information.

Configure your HTTP server to associate the extension .mpi with the application/
oracle-video MIME type. Consult the documentation for your HTTP server for
information on configuring MIME types.

Embedding the Oracle Video Web Plug-in in an HTML Document

To embed the plug-in into an HTML document, insert an <embed> statement with
the appropriate attributes in your HTML code. The <embed> statement uses
attributes to determine which video plays (the mediafile attribute), whether the
video starts as soon as the plug-in loads (the autoStart attribute), whether the video
replays every time it ends (the loop attribute), and more. See “<Embed>
Attributes” on page A-1 for definitions of all of the available <embed> attributes.

Note: The type attribute only works in Netscape 3.0 or greater.
For other browsers, use the src and mediafile attributes; see the
discussions of these attributes starting on page 2-8.
2-6 Oracle Video Client Developer’s Guide

Embedding the Oracle Video Web Plug-in in an HTML Document
This section contains the following topics:

■ Creating the <Embed> Tag

■ Specifying the Media File and MIME Type

■ Specifying Plug-in Characteristics

■ Playing Audio-Only Streams

Creating the <Embed> Tag
The example below shows a simple HTML document with an <embed> tag.

<html>
<head>
<title>Oracle Video Web Plug-in Example</Title>
</head>

<body>

<embed type="application/oracle-video" name="video1" width=352
height=240 mediafile="vstcp://ovs-sun:5000/mds/video/oracle1.mpi">

</body>
</html>

where:

type="application/oracle-video"
Specifies the MIME type. In this case, it invokes the plug-in and prepares it to play
an Oracle video file.

name="video1"
Provides a name for the plug-in for JavaScript and Java calls. In this case, the plug-
in is named video1. This enables you to call methods on the plug-in using the
syntax document.video1.method().

Note: The type attribute only works in Netscape 3.0 or greater.
For other browsers, use the src and mediafile attributes; see the
discussions of these attributes starting on page 2-8.
 Oracle Video Web Plug-in 2-7

Embedding the Oracle Video Web Plug-in in an HTML Document
width=352
Specifies the plug-in width of 352 pixels. This value includes both the plug-in itself
and the border, if one was specified. In this case, no border was specified, so this
represents the actual width of the plug-in.

height=240
Specifies the plug-in height of 240 pixels. This value includes both the plug-in itself,
the border, if one was specified, and the optional controller and status line. In this
case, no border was specified and the controls aren’t displayed, so this represents
the actual height of the plug-in.

mediafile="vstcp://ovs-sun:5000/mds/video/oracle1.mpi"
Tells the plug-in to go to port 5000 on the server ovs-sun and return the tag file
oracle1.mpi located in the MDS volume video. The resulting stream uses the TCP
protocol. For a complete description of the syntax, see the mediafile attribute
discussion in Appendix D, “The Media File”.

Specifying the Media File and MIME Type
To embed an Oracle Video Server file into an HTML document, specify the actual
media file to be loaded and played using the mediafile attribute of the <embed>
tag. Browsers themselves don't recognize the mediafile attribute: they just pass it
on to the plug-in, which uses it to locate the media resource. The browser still
needs to identify and recognize the MIME type of the embedded item in order to
load the proper plug-in for playback. Use the following methods to identify the
desired media file and the MIME type of that media file:

■ Type and Mediafile Attributes

■ Src and Mediafile Attributes

Type and Mediafile Attributes
The preferred way to specify the MIME type of the embedded media is to use the
type attribute. The browser checks its list of registered MIME types and loads the
appropriate plug-in for that type. The plug-in uses the mediafile attribute to load
the appropriate media file.

For Oracle Video Server media files, you should always specify the MIME type
application/oracle-video. When you install the plug-in, the installer associates files
with a MIME type of application/oracle-video with the Oracle Video Web Plug-in.
2-8 Oracle Video Client Developer’s Guide

Embedding the Oracle Video Web Plug-in in an HTML Document
Example: This sample <embed> tag shows how to embed a media file from the
server ovs-sun with the appropriate MIME type.

<embed type="application/oracle-video" width=352 height=240
mediafile="vsudp://ovs-sun/mds/video/oracle1.mpi">

Src and Mediafile Attributes
The src attribute should be used for all browsers that don't support the type
attribute (any browser other than Netscape Navigator 3.0 or greater). Browsers
inspect the src attribute to determine the MIME type of the embedded file from the
file's extension. This works like the type attribute: the browser associates .mpi files
with the MIME type application/oracle-video, which is associated with the Oracle
Video Web Plug-in.

However, there are a couple of things to be aware of when you're using the src
attribute:

■ The src attribute actually specifies a file name, instead of just a plain MIME
type like the type attribute. This file does not have to be the same as the file
specified by the mediafile attribute. It must, however, be a real file, specified by
a valid URL or path, with the extension .mpi.

The Oracle Video Web Plug-in sample pages handle this by setting the src
attribute to point to the file oracle.mpi, which is installed in the same directory
as the sample HTML pages.

■ Some browsers can't handle “empty” or “dummy” files (files that are zero-
length and contain no data) specified by the src attribute. This means that you
should specify a file that contains some data of any type.

Again, the Oracle Video Web Plug-in sample pages handle this with the
oracle.mpi file, which contains 1K of data.

Note: The type attribute only works in Netscape 3.0 or greater.
For other browsers, use the src and mediafile attributes; see the
discussions of these attributes starting on page 2-8.
 Oracle Video Web Plug-in 2-9

Embedding the Oracle Video Web Plug-in in an HTML Document
Example: This sample shows how to embed a media file using the src attribute to
indicate the MIME type of the media file.

<embed src="muse.mpi" mediafile="c:\tmp\muse.mpg" width=352 height=240>

Notice that the src and mediafile attributes specify files with different names and
even different extensions. The .mpi extension in the src attribute instructs the
browser to load the Oracle Video Web Plug-in, while the mediafile attribute
instructs the plug-in to load the file c:\tmp\muse.mpg.

Specifying Plug-in Characteristics
The Oracle Video Web Plug-in also recognizes a number of other attributes from
the <embed> tag. Table 2–1 summarizes these attributes and their effects on the
plug-in’s look-and-feel and play characteristics. You can find more detailed
descriptions of each of these attributes in Appendix A, “Oracle Video Web Plug-in
Reference”.

Table 2–1 <embed> tag attributes

Attribute

Values—
default in
italics Description Req’d?

autoStart true|false Specifies whether video starts playing
as soon as the plug-in is loaded.

background “file” Specifies a background image

controls true|false Specifies whether the plug-in appears
with or without controls.

controlMask ”controller”
[+] “statusline”

Selects which controls appear in the
plug-in; requires the added statement
controls=true.

height nnnn Specifies the height of the plug-in in
pixels.

✔

hidden true|false Specifies whether the plug-in is
displayed. Overrides height and
width settings.

leftClick true|false Specifies whether left clicking in the
video screen toggles Play and Pause.

loop true|false Specifies whether the stream plays
continually, returning to the playFrom
position when it reaches the playTo
position and continuing playback
2-10 Oracle Video Client Developer’s Guide

Embedding the Oracle Video Web Plug-in in an HTML Document
mediafile mediafile_url Specifies the protocol, server, and
media file to play.

Note: For information on how the
mediafile, src, and type attributes
work together, see “Specifying the
Media File and MIME Type” on page
2-8. For information on media file
specifiers, see Appendix D, “The
Media File”.

✔

name plugin_name Specifies a local name for the plug-in.

Note: This parameter is required if you
call the plug-in from a JavaScript
function or Java applet embedded in
the same HTML page as the plug-in.

✔

(See
note)

playFrom {“beginning”
|”end”
|hh:mm:ss:cc
|millisecs}

Starts play at the specified stream
position. If the loop attribute is true,
then playback loops to the playFrom
point.

playTo {“beginning”
|”end”
|hh:mm:ss:cc
|millisecs}

Stops play at the specified stream
position. If the loop attribute is true,
then playback loops when it reaches
the playTo position.

popupMenu true|false Specifies whether the pop-up menu
appears when the right mouse button
is clicked on the plug-in. This menu
allows basic operations like play and
pause, rewind, forward, and close.

sliderRate nnnn Specifies the increment in milliseconds
by which you can adjust the plug-in’s
seek slider. The default is 1000.

Table 2–1 <embed> tag attributes

Attribute

Values—
default in
italics Description Req’d?
 Oracle Video Web Plug-in 2-11

Embedding the Oracle Video Web Plug-in in an HTML Document
src file.extension Specifies the source file and MIME
type of the requested media file.
Should be used in conjunction with
mediafile.

Note: If you don’t use src, you must
use type. See “Specifying the Media
File and MIME Type” on page 2-8 for
more information on type, src, and
mediafile.

✔

(See
note)

toolTips “true | false” Specifies whether tool tips show up
when the user moves the mouse over
the plug-in.

type application/
oracle-video

Specifies the media file MIME type.
The only value you should specify for
type attribute is application/oracle-
video, as shown. Should be used in
conjunction with mediafile.

Note: If you don’t use type, you must
use src. See “Specifying the Media File
and MIME Type” on page 2-8 for more
information on mediafile, src, and
type.

✔

(See
note)

volume vol Specifies a volume level from 0
(inaudible) to 100.

width nnnn Specifies the plug-in’s width in pixels. ✔

Table 2–1 <embed> tag attributes

Attribute

Values—
default in
italics Description Req’d?
2-12 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
Playing Audio-Only Streams
You can run the plug-in using audio streams without video, with or without
controls:

■ If you don’t need the controller or status line, you can hide the plug-in by
specifying the hidden plug-in tag or by specifying a width and height of 0. In
this case, you can only control the stream through JavaScript or Java calls.

■ To display the controller, add 24 pixels to the height attribute. The width
attribute should be set to at least 144 pixels to allow some slider range. Using
the default controls, the stream is controlled by a Play/Pause button and the
seek slider. The volume is set by the pop-up volume slider or by setting the
volume attribute.

■ If you need the status line, add an additional 21 pixels to the height attribute.

Controlling the Plug-in Using JavaScript and Java

You can dynamically control the Oracle Video Web Plug-in using JavaScript and
Java through the Netscape LiveConnect interface. For example, you can have
buttons or icons that play the current stream, pause, seek, pop up lists of available
movies, and any other type of custom control or function that you want to develop.
You can see an example of this in Figure 2–2.

This section contains the following topics:

■ “Controlling the Plug-in with JavaScript” on page 2-15

■ “Controlling the Plug-in with Java” on page 2-23

You can also examine the sample code files that were installed along with the
Oracle Video Client. The directories are in your ORACLE_HOME:

■ JavaScript: vc30\demo\webplugin\samples\liveconnect\javascript

■ Java: vc30\demo\webplugin\samples\liveconnect\java

Note: Because you need to use Netscape’s LiveConnect interface
to control plug-ins through Java or JavaScript, you must use a
browser that supports LiveConnect. This means Netscape
Navigator version 3.0 or later.
 Oracle Video Web Plug-in 2-13

Controlling the Plug-in Using JavaScript and Java
Run these sample applets and applications to better understand how plug-ins
work. Feel free to modify and re-use these code examples in your Oracle Video
Client custom applets and applications. You can find a reference to all of the
methods available on the Oracle Video Web Plug-in in “JavaScript Methods” on
page A-8.

Figure 2–2 One way to customize a plug-in using JavaScript or Java

Oracle Video
Web Plug-in

JavaScript or
Java applet
2-14 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
Controlling the Plug-in with JavaScript
This section describes a number of techniques you can use to control and customize
the Oracle Video Web Plug-in, including:

■ Naming an Embedded Plug-in

■ Accessing Plug-in Methods and Properties

■ Controlling the Plug-in with Form Buttons

■ Using Graphical Controls

■ Controlling the Plug-in with Dynamic Parameters

■ Creating a Pop-up List

■ Using an Image Map

■ Other Things You Can Do with JavaScript

■ Sample Code for JavaScript-Controlled Plug-in

Naming an Embedded Plug-in
To give JavaScript a handle on the plug-in, specify a value for the name attribute in
the <embed> statement:

<embed name="video1" width=352 height=240 type="application/oracle-video"
mediafile="vsudp:///mds/video/oracle1.mpi">

The name you specify should be unique within the HTML document. This includes
other named items, such as images, tables, forms, and so on. This is the name you’ll
use whenever you want to address a property or method of the plug-in.

Once you’ve named your plug-in, you can access it through the document object
from anywhere within your document by that name. For example, if you want to
call the play() method for the plug-in named video1, use something like this:

document.video1.play();
 Oracle Video Web Plug-in 2-15

Controlling the Plug-in Using JavaScript and Java
Accessing Plug-in Methods and Properties
You can access the Oracle Video Web Plug-in in several ways using JavaScript. The
easiest is to load the HTML file that contains the <embed> statement, enter a
JavaScript statement as a URL in the Location box of Netscape Navigator (located
right above the main browser window), then press Enter.

To start playing the video specified in the example above, you would enter the
following statement in the Location box:

javascript:document.video1.play()

To pause the video using the Location box, enter:

javascript:document.video1.pause()

Controlling the Plug-in with Form Buttons
Entering commands in the Location box has limited value. Using JavaScript calls to
form elements—such as buttons, selection lists, or edit boxes—is more useful.

For example, you can create a form button in your HTML page that calls the play()
method. The following example creates a button labelled Play. When you click this
button, the browser searches for an item in the document whose name attribute
value is video1. Once it finds the video, it calls the plug-in’s play() method, which
instructs the plug-in to play the movie specified in the mediafile attribute of the
<embed> statement.

<embed name="video1" width=352 height=240 type="application/oracle-video"
mediafile="vsudp:///mds/video/oracle1.mpi">

<form name="form1">
<input type="button" value="play" onClick="document.video1.play()">
</form>
2-16 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
Using Graphical Controls
You can let users control the plug-in using simple form buttons, but it’s more “Web-
like” to use a graphical icon to control the video. This example plays the video
when the user clicks the /images/play.gif image.

<embed name="video1"
 width=352
 height=240
 type="application/oracle-video"
 mediafile="vsudp:///mds/video/oracle1.mpi">

Controlling the Plug-in with Dynamic Parameters
You can extend the concepts introduced in the previous sections and create an
input field, which can contain numeric or textual data, in the form. In this example,
the user can type a number representing a position in the stream into the input
field. When the user clicks the button, the setPos() method sets the position in the
movie to the value entered in the input field.

<embed name="video1" width=352 height=240 type="application/oracle-video"
mediafile="vsudp:///mds/video/oracle1.mpi">

<form name="form1">
<input name="editSeek" type="text" value=0 size=10>
<input type="button" value="Seek"

onClick="document.video1.setPos(parseInt(form.editSeek.value))">

</form>

Be sure to validate the user’s input. For the sake of clarity, this example contains no
validation code. In a deployment environment, however, you should make sure
that the values that users input are valid.

Play icon
 Oracle Video Web Plug-in 2-17

Controlling the Plug-in Using JavaScript and Java
Creating a Pop-up List
When creating custom controls or interfaces using JavaScript and the Oracle Video
Web Plug-in, you can use all of the techniques that are normally available to you.
The following code allows the user to select a movie from a selection list. When the
user selects a new movie from the list, the plug-in loads the movie and starts
playing it. This also creates a Close button, allowing the user to turn off a currently
playing movie.

<html><head>
<title>Pop-up Test</title>

<script language="JavaScript">
function playSel()
{

// get a handle on the pop-up list
var mlist = document.forms[0].movielist;

// get the name of the movie to load
var movie = mlist.options[mlist.selectedIndex].value;

if (movie != "")// if movie is not empty
{

document.video1.load(movie); // load the selected movie
document.video1.play(); // play the selected movie

}
}
</script>
</head>

<body>
<embed name="video1" width=352 height=240 type="application/oracle-video"
mediafile="vsudp:///mds/video/oracle1.mpi">

<form name="form1">
<select name="movielist" onChange="playSel()">

<option value="">Default
<option value="/mds/video/oracle.mpi">Demo
<option value="/mds/video/oracle1.mpi">Demo 1
<option value="/mds/video/oracle2.mpi">Demo 2
<option value="/mds/video/oracle3.mpi">Demo 3

</select>
<input type=button value="Close" onClick="document.video1.close()">
</form>
</body></html>
2-18 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
Using an Image Map
Using client-side image maps can greatly improve the appearance and
functionality of a web page. Image maps give the greatest amount of flexibility
possible in designing your client interface. They allow you to control the
appearance, overall interface metaphor, and user environment. By associating hot
spots in the image map to methods and properties of the Oracle Video Web Plug-in,
you can produce a sleek, professional interface that still offers the full functionality
of the OVC video client.

This example shows how to create a spinner that increases or decreases the value in
the editSeek field in one-second increments.

<script language="JavaScript">
function spinUp()
{

// get the current value of the editSeek field
var seekVal = parseInt(document.forms[0].editSeek.value);

// add one second (1000 ms) to the value of the editSeek field
document.forms[0].editSeek.value = seekVal + 1000;

}

function spinDown()
{

// get the current value of the editSeek field
var seekVal = parseInt(document.forms[0].editSeek.value);

// make sure you don’t create a negative number (1000 ms = 1 second)
if (seekVal < 1000) seekVal = 1000;

// subtract one second (1000 ms) from the value of the editSeek field
document.forms[0].editSeek.value = seekVal - 1000;

}
</script>

<!-- Create the image map -->

<map name="spinmap">

<!-- Associate the up arrow in the image with spinUp() -->
<area shape="rect" coords="0,0,11,10" href="javascript:spinUp()">

<!-- Associate the down arrow in the image with spinDown() -->
<area shape="rect" coords="0,10,11,20" href="javascript:spinDown()">
</map>

Spin control
 Oracle Video Web Plug-in 2-19

Controlling the Plug-in Using JavaScript and Java
Other Things You Can Do with JavaScript
The examples above are just a few of the things you can do with JavaScript. Some
other ideas:

■ Create a single image that contains all of the typical VCR controls. Use a client-
side image map to correlate mouse click locations with play(), pause(), and
other plug-in methods.

■ Create a client-side image map with various hot spots. Map each hot spot to a
different seek point (or even a completely different stream) so that when the
user clicks on a location, the video changes. For instance, you could create a
map of the United States displaying the hometowns of each of the teams in the
National Football League. Users click a city to play a movie about that city’s
home team.

■ Create a custom video stream position scrollbar. Get an image you would like
to use as a scrollbar. Use a client-side image map to split it up into many sub-
regions, each of which seeks to a slightly different position in the stream.

■ Create a function that checks stream position and updates a text field or
graphic, or changes a document in a frame at various key points in the stream.

Sample Code for JavaScript-Controlled Plug-in
This section shows a very simple sample HTML file that uses JavaScript to let the
user control the plug-in. The form buttons below the plug-in let the user play and
pause the currently loaded video, or unload the video entirely.

You can find the source code for this example in the file defvid.htm in your
ORACLE_HOME in the directory:

vc30\demo\webplugin\samples\liveconnect\javascript\simple\sample1
2-20 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
Figure 2–3 Sample Plug-in using JavaScript

<html><head>
<title>Oracle Video Web Plug-in Simple JavaScript Demo</title>
<script language="JavaScript">
function play() {

// If player is currently in state realized --> call play
if (document.OVSplugin.getState() == 4) {
 if (document.OVSplugin.play())

return true;
}
// if player is in any other state --> call resume
else {
 if (document.OVSplugin.resume())

return true;
}
return false;

}
</script>
</head>
 Oracle Video Web Plug-in 2-21

Controlling the Plug-in Using JavaScript and Java
<body bgcolor="#FFFFFF">
<center>

(Netscape 3.0 or greater only!)
<p>

<table border=5 cellpadding=0 cellspacing=0 align=center valign=center>
<tr align="center" valign="middle">

<td align="center" valign="middle">
<!-- Embed the Oracle Video Client Web Plug-in -->
<embed

name="ovsplugin"
border=0
width=240
height=200
type="application/oracle-video"
autoStart="false"
controls="false"
loop=true
leftClick=true
toolTips=false
popupMenu=true
volume=100
mediafile="vstcp:///mds/video/ovs_mpg1_2048k.mpi">

</embed>

<center>
<form name=form1>

<input type=button onclick="play()" value=play>
<input type=button onclick="OVSplugin.pause()" value=pause>
<input type=button onclick="document.OVSplugin.unload()" value=close>

</form>

</td>
</tr>
</table>
</body>
</html>
2-22 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
Controlling the Plug-in with Java
OVC provides two Java classes, OviPlayer and OviObserver, to allow interaction
between the plug-in and your Java applets.

This section covers:

■ OviPlayer and OviObserver

■ Retrieving the OviPlayer Object

OviPlayer and OviObserver
OVC provides a Java class and an interface that let you control and observe the
Oracle Video Web Plug-in from your applet:

■ The OviPlayer class declares methods to access and control video. This class
allows basic operations on a video like load(), unload(), play(), pause(),
getLength(), and getPos(). The real implementation of these methods is
contained in a section of native code contained in the plug-in.

■ The OviObserver interface lets you take advantage of “observer” methods.
These methods provide a callback mechanism that notifies you when the
stream has advanced or reached the end of stream. You can then respond with
some action that you define.

Table 2–2 and Table 2–3 give short descriptions of the methods available in the
OviPlayer and OviObserver classes. You can find more detailed references of these
classes in “OviPlayer” on page A-9 and “OviObserver” on page A-15.

Table 2–2 OviPlayer methods

Method Description

advise() Specifies the OviObserver object for this OviPlayer.

forward() Forwards the stream to the end of the movie or the position
indicated by the playTo property.

getLength() Gets the total length of the stream (in milliseconds).

getMaxPos() Returns the maximum stream position.

getMinPos() Returns the minimum stream position.

getObserver() Returns the OviObserver object associated with this object, if
any.

getPos() Gets the current stream position (in milliseconds).

getState() Returns the current state of the player.

getVol() Gets the play volume (0 to 100).
 Oracle Video Web Plug-in 2-23

Controlling the Plug-in Using JavaScript and Java
load() Loads the stream indicated by the media file specifier
contained in the String parameter.

pause() Pauses the stream; stays at current position.

play() Plays the currently loaded stream. There are two versions:

■ boolean play()

■ boolean play(String playFrom, String playTo)

resume() Resume playing from the current stream position.

rewind() Rewind the stream to the beginning of the movie or the
position indicated by the playFrom property

setAutoStart() Tell the movie to automatically play when loaded. Takes a
boolean parameter.

setFullScreen() Puts the plug-in into full-screen mode.

setLoop() If true, loop from beginning of stream (or playFrom if
specified) when the end of stream (or playTo, if specified) is
reached. Takes a boolean parameter.

setPopupMenu() Activate or deactivate the right mouse button pop-up menu.
Takes a boolean parameter.

setPos() Seek to a specified stream position (in milliseconds). After this
command, the movie is in the pause state.

setVol() Set the play volume (range from 0 to 100).

stop() Stop playing the stream and rewind to the beginning of the
stream or the position indicated by the playFrom property.

unload() Unload the current stream.

Table 2–3 OviObserver methods

Method Description

onPositionChange() Notify the applet when the movie changes position by
increments. The increment is set by the sliderRate
attribute. If sliderRate isn’t set, the default increment is
1,000 milliseconds (one second).

onStop() Notify applet when end of stream reached.

Table 2–2 OviPlayer methods

Method Description
2-24 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
Retrieving the OviPlayer Object
You cannot simply create an OviPlayer object in your Java code and invoke the
methods on the object, because the Java run-time engine can’t resolve the references
to the native code in the plug-in and produces unresolved link errors. Instead,
retrieve the instance of the OviPlayer object used internally by the plug-in. To do
this, you must import the OviPlayer class, as well as the JSObject and the
JSException classes from the Netscape LiveConnect/Plug-in SDK. You can then
follow these steps to get a valid OviObject instance that references the plug-in:

1. Retrieve the JavaScript context of the current HTML page using the
JSObject.getWindow() method. The getWindow() method takes a single
parameter, the window containing the applet.

The JSObject.getWindow() method is static, so you don’t actually need to
create a JSObject object. The return value is a JSObject.

2. Call the getMember() method on the JSObject object returned in the last step.

This method takes a String parameter, where the String specifies the name of
the member you want. Use “document” as the parameter. This tells the
getMember() method to retrieve the document object for the current page. The
getMember() method returns a JSObject.

3. Call the getMember() method on the JSObject object returned in the last step,
passing the plug-in name (from the name attribute in the <embed> tag) as the
parameter to getMember(). Cast the return value to OviPlayer.

Once you’ve retrieved the OviPlayer object, you can use it just as you’d expect: you
can load media files with the load() method, play the current media file by calling
play(), and so on.

// The following code gets a handle on the window in which
// the applet (and plug-in) appear
JSObject jsWindow = JSObject.getWindow(this);

// the next line of code gets a handle on the HTML document
// (web page) in which the applet (and plug-in) appear
JSObject jsContext = jsWindow.getMember("document");

OviPlayer playerInstance = (OviPlayer) jsContext.getMember("plugin_name")

playerInstance.load("vstcp:///mds/video/oracle1.mpi");
playerInstance.play();
 Oracle Video Web Plug-in 2-25

Controlling the Plug-in Using JavaScript and Java
Using OviObserver
The OviObserver interface is a Java interface that you implement in one of your
own classes. To use OviObserver in your applet:

1. Implement the interface in one of your applet’s classes.

Here’s a simple example:

public class myApplet extends Applet implements OviObserver {
// The rest of the class implementation goes here...

}

2. Implement the onStop() and onPositionChange() methods of the OviObserver
interface. Take whatever action you want when these events happen.

Here’s a simple example of an implementing class:

class myApplet extends Applet implements OviObserver {
// notify applet when end of stream reached and do something
public void onStop() {

System.out.println ("End of stream reached");
}

// notify applet when the stream position advances by one second
// and do something, like keep track of were you are in the stream

public void onPositionChange() {
System.out.println (“The stream just advanced one second");

}
}

3. Retrieve an instance of the OviPlayer object, as described in “Retrieving the
OviPlayer Object” on page 2-25.

4. Call the OviPlayer.advise() method, passing as a parameter the object that
implements the OviObserver interface:

// "this" is the object that implements the OviObserver interface.
playerInstance.advise(this);

Once you’ve registered the observer with the OviPlayer, the onStop() and
onPositionChange() methods are called whenever the appropriate events occur.
2-26 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
Simple Plug-in Example using Java
The following code example consists of two parts, the HTML code for the web page
and the code for the Java applet. The file containing the Java code, simpleJava.java,
becomes simpleJava.class after compiling it.

Figure 2–4 Sample Plug-in using Java
 Oracle Video Web Plug-in 2-27

Controlling the Plug-in Using JavaScript and Java
HTML Code for Simple Plug-in Java Applet This shows the HTML code for a document
that contains the Oracle Video Web Plug-in and a Java applet that controls it. You
can find the sample source in the file defvid.htm in your ORACLE_HOME in the
directory:

vc30\demo\webplugin\samples\liveconnect\java\simple\sample1

<html>
<head>
<title>Simple Java Applet Example of Plug-in Controls</title>
</head>
<body bgcolor="#FFFFFF">
<center>
<table border=1 cellspacing=2 cellpadding=2>
<tr><td align="center" valign="middle" bgcolor="Gray">
<center>

<!-- Embed the Oracle Video Client Web Plug-in -->
<embed

name="ovsplugin"
border=0
width=240
height=200
type="application/oracle-video"
controls=false
loop=false
leftClick=true
toolTips=false
popupMenu=true
volume=100
mediafile="vstcp:///mds/video/ovs_mpg1_2048k.mpi">

</embed>
<p>
2-28 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
<!-- ###
IMPORTANT!

###
- The 'MAYSCRIPT="true"' flag in the applet tag is critical. This tells the

browser's security manager to allow communication between the applet and
the plug-in.

- The value of the applet parameter, pluginName, must agree with the
'name' attribute of the embed object (the plug-in). In this case the
plug-in name attribute has the value 'OVSplugin', and the below applet
parameter, pluginName, also has the value 'OVSplugin'. This agreement of
attribute / parameter values is imperative for communication between the
plug-in and the Java applet. -->

<!-- Embed the Java Applet Controls -->
<applet

code=simplejava.class
name=ovc_applet
mayscript="true"
width=320
height=30>

<param name=pluginname value=ovsplugin>
</applet>
</center>
</td></tr>
</table>
</center>

</body></html>
 Oracle Video Web Plug-in 2-29

Controlling the Plug-in Using JavaScript and Java
Java Applet Code for Simple Plug-in Example This shows the code for the Java applet
that controls the Oracle Video Web Plug-in. You can find the sample source in the
file simpleJava.java in your ORACLE_HOME in the directory:

vc30\demo\webplugin\samples\liveconnect\java\simple\sample1

//**
// simpleJava.java:Applet
//**
import java.applet.*;
import java.awt.*;
import netscape.javascript.JSObject; //provides access to objects
import netscape.javascript.JSException; //provides access to objects

import OviObserver; //plug-in listener (not implemented)
import OviPlayer; //OviPlayer interface

//==
// Main Class for applet simpleJava
//
//==
public class simpleJava extends Applet
{

// Members for applet parameters
// <type> <MemberVar> = <Default Value>
//--
private String m_plgname = "";

// GUI Objects
//--

Button btnPlay = null;
Button btnPause = null;
Button btnClose = null;
JSObject document, window;
OviPlayer ovi = null;
2-30 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
// The init() method is called by the AWT when an applet is first loaded or
// reloaded. Override this method to perform whatever initialization your
// applet needs, such as initializing data structures, loading images or
// fonts, creating frame windows, setting the layout manager, or adding UI
// components.
//--
public void init()
{

// PARAMETER SUPPORT
// The following code retrieves the value of the applet parameter
//--
String param;

// param: Parameter description
//--
param = getParameter("pluginName");
if (param != null)

m_plgname = param;

resize(320, 30);
setBackground(Color.gray);

btnPlay = new Button ("Play");
btnPause = new Button ("Pause");
btnClose = new Button ("Close");

add(btnPlay);
add(btnPause);
add(btnClose);

// GET JAVASCRIPT OBJECT (document)
// Retrieve the the document object from the Browser environment
//---

}

public void start()
{
}

public void stop()
{
}

 Oracle Video Web Plug-in 2-31

Controlling the Plug-in Using JavaScript and Java
public void destroy()
{

ovi = null;
document = null;
window = null;
System.gc();

}

// MOUSE SUPPORT:
// The mouseUp() method is called if the mouse button is released
// while the mouse cursor is over the applet's portion of the screen.
//--
public boolean mouseUp(Event evt, int x, int y) {

// GRAB PLUG-IN OBJECT
// Retrieve the plug-in object handle from the browser context
//---
ovi = getPlugin();

boolean cond = false;
if(evt.target == btnPlay) {

if (ovi.getState() == ovi.ST_REALIZED)
ovi.play();

else
ovi.resume();

cond = true;
}

if (evt.target == btnPause) {
ovi.pause();
cond = true;

}

if (evt.target == btnClose) {
ovi.unload();
cond = true;

}

return cond;
}

2-32 Oracle Video Client Developer’s Guide

Controlling the Plug-in Using JavaScript and Java
// GET JS OBJECT HANDLES AND POINTER TO PLUGIN
// Retrieves JavaScript Object contexts from Browswer.
// This function depends upon the Netscape supplied Java package,
// netscape.javascript. This function will NOT work under Internet
// Explorer.
//---
public OviPlayer getPlugin() {

OviPlayer plugin = null;
ovi = null;
document = null;
window = null;
System.gc();

try {
window = JSObject.getWindow(this); //grab window obj

}
catch(NullPointerException e) {

System.out.println("getWindow() failed in getNavWinDoc()...");
}

if (window != null)
try {

//grab document obj
document = (JSObject) window.getMember("document");

}
catch(NullPointerException e) {

System.out.println("getMember() failed in getNavWinDoc()...");
}

if (document != null) {
try {

plugin = (OviPlayer) document.getMember(m_plgname);
}
catch(NullPointerException e) {

System.out.println("unable to grab plugin");
}

}
else {

System.out.println("Document null in getPlugin()...\n");
}

return plugin;

} //end getPlugin
}

 Oracle Video Web Plug-in 2-33

Controlling the Plug-in Using JavaScript and Java
2-34 Oracle Video Client Developer’s Guide

 Oracle Video Java L
3

Oracle Video Java Library

This chapter describes the Oracle Video Java Library, which enables Java
applications to play streaming video and audio from the Oracle Video Server. This
chapter contains these sections:

■ Introduction to the Oracle Video Java Library

■ Requirements

■ Programming with the Oracle Video Java Library

■ Using the PlayerApplet Class

■ Quick Start: A Sample Java Application

You can also find the API reference for the Oracle Video Java Library in Appendix
B, “Oracle Video Java Library Reference”.

Note: Java applets created with the Oracle Video Java Library can
be run from the command line, in an applet viewer, or in browsers
that permit the execution of unsigned applets. To play video in
other browsers, you need to use one of the following:

■ The Oracle Video Web Plug-in, as discussed in Chapter 2

■ The Oracle Video ActiveX Control, as discussed in Chapter 4
ibrary 3-1

Introduction to the Oracle Video Java Library
Introduction to the Oracle Video Java Library

The Oracle Video Java Library enables you to create Java applications that play
video and audio from an Oracle Video Server. It provides a number of public
classes and interfaces that allow you to play back and control video and audio
streams, find out information about the current stream, and query the video server
for available content titles. This section describes the main groups of public classes
and interfaces and how they work together, including:

■ Player Classes

■ Stream Information Classes

■ Content Query Classes

There is also an applet class in the Oracle Video Java Library called PlayerApplet.
You can use PlayerApplet in Java-enabled browsers that allow the use of unsigned
applets and as an embedded applet in a Java application. In effect, this means that
you can use PlayerApplet in Sun’s HotJava browser or the JDK appletviewer
utility, but not in Netscape Navigator or Microsoft Internet Explorer. For more
information on PlayerApplet, see “Using the PlayerApplet Class” on page 3-31.

This section provides an introduction and description of the Oracle Video Java
Library classes and interfaces. For complete reference information on all of the
classes and interfaces in the Oracle Video Java Library, see Appendix B, “Oracle
Video Java Library Reference”.

Player Classes
This section describes the primary classes and interfaces in the Oracle Video Java
Library. These are:

■ Player, which contains all of the functionality needed to directly control media
file loading and playback

■ PlayerFactory, which creates new Player objects

■ The PlayerListener interface, which allows your application to be notified of
events affecting the Player object

■ PlayerException, which supports notification of raised exceptions specific to
the Oracle Video Java Library
3-2 Oracle Video Client Developer’s Guide

Introduction to the Oracle Video Java Library
Player
The primary object in the Oracle Video Java Library is the Player object. The public
methods of Player can be loosely grouped into three categories:

■ User-interface methods allow you to control the appearance and behavior of
the user interface components, including the video screen, playback controls,
and status bar

■ Media control methods give you VCR-like control over stream playback,
including play/pause functionality, stop, rewind, and forward

■ Service methods enable you to control the actual Player object by monitoring
the player’s state, adding a listener, or terminating the player

User-interface methods The Java video player provides three separate interface
components: the video screen, the playback controls and the status bar. You can
retrieve these controls from the Player object as a single object, contained in a
standard Java Component object. This simplifies the layout of each component
when the host window is resized. However, you can also get the video screen, the
playback controls, or the status bar as separate components for maximum control.
Each of these is also returned as a standard Java Component object.

You can also implement your own custom controls in place of the default controls
or status bar. This is possible since Player offers methods that provide VCR-like
control over the stream. The only caveat is that you can’t override the player’s
video screen. But you can play audio-only streams without a video screen.

You can find out more about working with the player’s interface components in
“Retrieving Player Interface Components” on page 3-21.

Media control methods The second group of Player methods allows full VCR-like
control over the playback of the stream. This includes methods that can pause and
resume, play, start and stop, set the position within the stream, and so on. You can
use this functionality to provide your own custom user controls or provide hidden
control of a stream in the background.

You can find out more about controlling the player in “Loading and Unloading
Streams” on page 3-23 and “Controlling Playback” on page 3-25.
 Oracle Video Java Library 3-3

Introduction to the Oracle Video Java Library
Service methods This group of methods provides basic object functionality for the
Player object. This includes such operations as terminating the Player object,
retrieving an object’s state, and registering an object listener, which provides event-
handling methods for the Player object.

You can find out more about managing Player objects in “Getting and Setting
Player Properties” on page 3-10, “Terminating a Player” on page 3-10, and
“Handling Player Events” on page 3-17.

PlayerFactory
The PlayerFactory class instantiates a Player object in a platform-independent
manner. Calling the static method PlayerFactory.getPlayer() returns a Player object.

static Player player=null; // create a Player object variable
player = PlayerFactory.getPlayer(); // instantiate the player

Note that a Player object is not tied to a particular stream. The same Player can be
reused for many different streams of completely different content types such as
MPEG or OSF.

You can find out more about creating a new Player object in “Creating a Player” on
page 3-9.

PlayerListener
The PlayerListener interface specifies a number of methods that a Player object
may call when specific events occur: errors, end of stream, and changes in the
player state. To receive these events, you need to create a class that implements the
PlayerListener interface. This example shows a simple implementation:

public class myApp implements PlayerListener {
// The actual class implementation goes here...

public void stateChange(int newState) {
System.out.println("newState: " + newState);

}

public void error(int code, String msg){
System.out.println("OVC- " + code + ": " + msg);

}

public void endOfStream() {
System.out.println("end of stream reached");

}

3-4 Oracle Video Client Developer’s Guide

Introduction to the Oracle Video Java Library
Register the class that implements the listener interface by calling the method
Player.addListener(), passing the object that implements the PlayerListener
interface. When the appropriate events occur, the Player object calls the listener
methods on the implementing object.

You can find out more about implementing the PlayerListener interface and
handling Player events in “Handling Player Events” on page 3-17.

PlayerException
Methods in the Oracle Video Java Library throw a PlayerException object when an
exception is raised. PlayerException can indicate a number of conditions:

■ The requested operation is not implemented

■ The Player object is in the incorrect state to execute the requested operation

■ An invalid parameter was passed to the method

■ An internal error occurred

■ A general error occurred

■ An untranslated error occurred

PlayerException also contains a numeric code, which provides specific information
on the exception that occurred, and a description, which provides a textual
explanation of the problem. It also contains a toString() method that returns all of
the information contained in the exception object.

You can find out more about handling Oracle Video Java Library exceptions in
“Handling Player Exceptions” on page 3-30.

Stream Information Classes
This section describes the classes provided by the Oracle Video Java Library to
report on the current stream, including:

■ Stream position

■ Stream information, such as the name, transport protocol, description, frame
rate, and so on

■ Stream statistics, such as the number of data packets received, number of data
packets dropped, average frames per second, and so on
 Oracle Video Java Library 3-5

Introduction to the Oracle Video Java Library
Player methods deal with stream position through the StmPos class. StmPos gives
you flexibility over how you specify the stream position, whether you’re querying
to find out the current stream position or to set the stream position to a new point.
You can set the position as an absolute time from the beginning of the stream in
either milliseconds or hh:mm:ss:cc format. You can also use the current frame
number or set it to the beginning or end of the stream.

Player methods use the StmInfo class to pass static stream information back and
forth. This class contains information such as the name of the stream, the transport
protocol, the media file specifier for the stream, and a text description of the stream.
You can get stream information for a player by calling the Player.getInfo(), which
returns a StmInfo object. Then call StmInfo.toString(), which returns a formatted
string containing all of the above information and more.

You can find the stream’s statistics through the StmStats class. This class contains
network and technical information about the stream, such as the number of data
packets received and dropped, consumer (client) and producer (server) playback
state, and average frames and bits per second. You can get stream information for a
player by calling the Player.getStats(), which returns a StmStats object. Then call
StmStats.toString(), which returns a formatted string containing all of the above
information and more.

You can find out more about getting stream information in “Getting and Setting
Player Properties” on page 3-10.

Content Query Classes
The Oracle Video Java Library provides a set of classes that you can use to query
the Oracle Video Server for a list of available content files. The classes are:

■ Content, which performs the actual content query

■ ContentIter, which you use to iterate through the returned content entries

■ ContentException, which is thrown when an exception occurs during the
query operation

You can find information on the use of these classes in “Querying Available
Content Titles” on page 3-26.
3-6 Oracle Video Client Developer’s Guide

Requirements
Requirements

There are some basic requirements for creating and running Java applications that
use the Oracle Video Java Library, including:

■ Installing and Configuring the Oracle Video Java Library

■ Run-time Requirements

■ Version Requirements

While some Java tutorial information is presented in this chapter, you should be
familiar with Java programming concepts such as objects, classes, interfaces,
methods, and compiling and running Java applications.

Installing and Configuring the Oracle Video Java Library
To install the Oracle Video Java Library, either:

■ Select the Typical option during OVC installation, or

■ Select the Custom option and select the Oracle Video Java Library check box.

If you want to develop and compile Java applications or applets that use the Oracle
Video Java Library, you need the Java Development Kit (JDK) version 1.1.5.

The Oracle Video Java Library is contained in the Java archive file ovc.jar. The
installer installs this file in %ORACLE_HOME%\jbin.

To run or compile Java classes that use the Oracle Video Java Library, you need to
add the ovc.jar file to your Java class path. Because this is a JAR archive and not a
collection of .class files, you explicitly need to indicate the file itself and not just the
path to the file. So your CLASSPATH should look something like this:

CLASSPATH=C:\JDK1.1.5\Lib;C:\OraWin95\jbin\ovc.jar;.

Run-time Requirements
To run Java applications or applets that use the Oracle Video Java Library, you
need the following components:

■ The Oracle Video Client, with the Oracle Video Java Library option installed

■ The Java Runtime Environment (JRE) version 1.1.5; the JRE is available at
http://www.javasoft.com.
 Oracle Video Java Library 3-7

Programming with the Oracle Video Java Library
Version Requirements
The Oracle Video Java Library is compliant with Java 1.1. It will not run in any
applications that support only Java 1.0, such as Netscape Navigator or Microsoft
Internet Explorer, before version 4.0 of either browser. There is an update for
Netscape Communicator 4.0 that updates its Java support to Java 1.1.

Programming with the Oracle Video Java Library

This section describes a number of common programming tasks that you can
perform when using the Oracle Video Java Library, including:

■ Creating a Player

■ Terminating a Player

■ Getting and Setting Player Properties

■ Handling Player Events

■ Displaying and Customizing the Player Interface

■ Loading and Unloading Streams

■ Controlling Playback

■ Querying Available Content Titles

■ Synchronizing Calls to Player Methods

■ Handling Player Exceptions

If you need to find the exact syntax for a specific method referenced in this section,
refer to Appendix B, “Oracle Video Java Library Reference”.

Note: Many of the methods in the Oracle Video Java Library can
throw PlayerException objects. You should always check whether
methods you call throw exceptions and handle them appropriately.
See “Handling Player Exceptions” on page 3-30 for information on
how to handle PlayerException.
3-8 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
Importing the Oracle Video Java Library Package
The Oracle Video Java Library is stored in a Java archive (JAR) file named ovc.jar.
By default, the installer places this file in the jbin directory below your
%ORACLE_HOME% directory. This file needs to be placed in your CLASSPATH.
See “Installing and Configuring the Oracle Video Java Library” on page 3-7 for
more information on configuring your CLASSPATH.

Once you’ve set the CLASSPATH, you need to import the Oracle Video Java
Library package into your source file. The package name is oracle.ovc. You need to
import all of the classes and interfaces used in your application.

For example, if your application uses Player, PlayerFactory, and PlayerException,
you need to import these:

import oracle.ovc.PlayerFactory;
import oracle.ovc.PlayerException;
import oracle.ovc.Player;

If you want to import all of the classes and interfaces contained in this package, use
the * wildcard in your import statement:

import oracle.ovc.*;

Creating a Player
A Java application can use the Oracle Video Java Library to create and embed a
Player in three basic steps:

1. Get a new Player object by calling the PlayerFactory.getPlayer() method:

Player m_player = PlayerFactory.getPlayer();

Note that you don’t need to create a PlayerFactory object before making this
call. The PlayerFactory.getPlayer() method is static, meaning that you can call
it through the PlayerFactory class instead of a specific instance of that class.
When called, getPlayer() checks whether a PlayerFactory object has already
been initialized. The PlayerFactory class stores a central PlayerFactory object in
a static member. If this member hasn’t been initialized, getPlayer() initializes it
automatically. If it has already been initialized, getPlayer() uses the already
created PlayerFactory object to create the new Player object.

2. Call getPlayerUI() to get the interface for the player. This method returns a
standard Java Component object. You can pass this Component to the window
containing the player just as you would a regular Java component, such as a
button or text field.
 Oracle Video Java Library 3-9

Programming with the Oracle Video Java Library
You can also specify which components of the player interface you want to
appear, including the video screen, control panel, and status panel. This
example shows how to retrieve the default configuration of the player, which
displays all three components:

Component m_playerUI = m_player.getPlayerUI();

You can find out how to change the configuration of the player’s user interface
in “Retrieving Player Interface Components” on page 3-21.

3. Add the interface component to the containing window. In this example, it’s
added to a Frame window:

Frame m_window = new Frame();
m_window.add(m_playerUI);

4. Show the containing window. This example continues from Step 3:

m_window.show();

Once you’ve created a player and displayed it in a window, you can load a stream
and begin playback, as described in “Loading and Unloading Streams” on page
3-23.

Terminating a Player
You can terminate your player—including unloading the stream, shutting down
the player window, and deallocating all resources—by calling the Player.term()
method:

m_player.term();

This method takes no parameters and returns void.

term() automatically unloads the stream before terminating the player. See
“Loading and Unloading Streams” on page 3-23 for more information. Once you’ve
terminated a player, you can no longer use it to load other media files.

Getting and Setting Player Properties
A Player object has a number of attributes that you can examine and, in some
cases, modify. The basic categories are:

■ Stream Position

■ Volume Settings

■ Stream and Player State
3-10 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
Stream Position
The stream position indicates where the current playback position. You can both
query the player to find its current stream position and set the current stream
position to wherever you want.

Getting the stream position You can retrieve the current stream position by calling the
Player.getPos() method. This method takes an int parameter that specifies what
format you want for the return value. This returns a StmPos object containing the
current position in its m_val member.

StmPos has two public data members that you can examine and modify:

■ The int m_fmt indicates the format in which StmPos returns the current
position when queries through the toString() method. m_fmt can have the
values shown in Table 3–1:

■ The long m_val contains the actual position of the stream. This is stored as the
number of milliseconds from the beginning, but is converted by toString() to
the units indicated by m_fmt.

You can get the stream position from the returned StmPos object by calling the
StmPos.toString() method. This returns the current position in the current format,
as indicated by m_fmt. To change the format of the current position returned by
toString(), change the value of m_fmt.

The following example shows how to get the current position from a Player object
and display it as a time-formatted string.

// Get the StmPos object with the current position
StmPos pos = m_player.getPos(StmPos.POSFMT_TIME);
System.out.println(pos.toString());

Setting the stream position You can set the current stream to a new position by calling
the Player.setPos() method, which takes a StmPos parameter and returns void.
There are a number of steps to setting the player to a new position. These steps
assume you have already created a Player object and loaded a stream. In the
example code shown here, the Player object is called m_player.

Table 3–1 Stream Position Formats

Value Returns stream position as...

StmPos.POSFMT_TIME Number of milliseconds from beginning of stream

StmPos.POSFMT_FRAMES Number of frames from beginning of stream
 Oracle Video Java Library 3-11

Programming with the Oracle Video Java Library
1. Create a new StmPos object. There are three different ways to do this:

a. Call the StmPos(int fmt, long val) constructor. The fmt parameter
indicates the format for the new StmPos object, while val indicates the
position you want to set.

b. The StmPos(int fmt) constructor is just like the first constructor, except that
you only set the format; the value is assumed to be 0. Set the StmPos
object’s m_val to the desired value if you want some other position.

c. Call the StmPos.fromString() method. This method is static, which means
you can call it through the StmPos class instead of a specific instance of the
class. This method works like a constructor, returning a StmPos object that
you can use as your new instance of the StmPos class. fromString() takes a
single String parameter, which it uses this String to set the format of the
new StmPos object. The values recognized for this parameter are shown in
Table 3–2. Note that fromString() is not case sensitive.

2. Call the Player.setPos() method, passing the StmPos object you created in Step
1 to the method.

Once this has been successfully completed, the stream position changes to the set
value. Playing the stream causes playback to begin at that position.

See “Loading and Unloading Streams” on page 3-23 for information on setting the
stream position at load time.

Table 3–2 Meaning of StmPos.fromString() parameters

Parameter Format

Beginning Sets m_fmt to StmPos.POSFMT_BEGINNING; sets the stream position to
the beginning

End Sets m_fmt to StmPos.POSFMT_END; sets the stream position to the end

Current Sets m_fmt to StmPos.POSFMT_CURRENT; sets the stream position to its
current value

Default Sets m_fmt to StmPos.POSFMT_DEFAULT; sets the stream position to its
default position:

■ For all streams except for unbounded streams (streams with no
predetermined end, such as live video), the default position is the
beginning of the stream

■ For unbounded streams, the default position is the end of the stream

string Sets m_fmt to StmPos.POSFMT_TIME and m_val to the time contained in
string; string should be of the form hh:mm:ss:cc
3-12 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
Volume Settings
Getting and setting the volume is fairly straightforward. Volume is represented as
an integer from 0 to 100, with 0 meaning no volume and 100 meaning full volume.

Getting the volume You can get the current volume setting of a Player object by
calling the getVol() method. This method takes no parameters and returns an int
that indicates the current volume. The volume setting goes from 0 (off) to 100 (full
volume).

Setting the volume You can change the volume setting of a Player object by calling
the setVol() method. This method takes an int that indicates the new volume. The
volume setting can be from 0 (off) to 100 (full volume).

You can also set the volume when you load a new stream:

1. Create a new StmOpts object.

2. Set the StmOpts.m_volume member to the desired volume setting.

3. Pass the StmOpts object to the Player.load() method.

Stream and Player State
There are three different types of player state you can query:

■ The state of the Player itself, such as whether it’s initialized or not, loading or
unloading, playing, and so on

■ Static information about the stream, such as its name, description, or length

■ Statistics about the stream, such as network performance, average frames or
bits per second, or playback state
 Oracle Video Java Library 3-13

Programming with the Oracle Video Java Library
Player state To find the state of the player, call the Player.getState() method. This
method takes no parameters and returns an int. This return value can have a
number of possible values, as shown in Table 3–3.

The sample code below shows how you might use this information.

// Create a new player and load a media file
Player m_player = new Player();
m_player.load("/mds/video/oracle.mpi");

while(m_player.getState() == Player.ST_UNINIT) {
// Just loop while the player’s still loading...
}

// Now that we know it’s loaded, we can start playing
m_player.play();

Table 3–3 Player States

Value Indicates player is...

Player.ST_UNINIT Uninitialized

Player.ST_INIT Initialized but does not have a stream loaded

Player.ST_REALIZED Ready to play the currently loaded stream

Player.ST_PLAYING Playing the currently loaded stream

Player.ST_PAUSED Paused during playback

Player.ST_EOS At the end of the currently loaded stream

Player.ST_ERROR In an error state
3-14 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
Stream Information You can get information about the current stream by calling the
Player.getInfo() method. This method takes no parameters and returns a StmInfo
object.

Table 3–4 StmInfo Data Members

Name Type Description

m_aspect int Aspect ratio * 1000

m_asset String Asset cookie in media file

m_bitrate int Total bit rate in bits per second

m_bytes long File size

m_contStat int Content status; this can have the following values:

■ StmInfo.CSTAT_DISK indicates the current
stream is stored on disk on the video server

■ StmInfo.CSTAT_FEED indicates the current
stream is a one-step encode file from the video
server

■ StmInfo.CSTAT_LOCALFILE indicates the current
stream is a local file

■ StmInfo.CSTAT_NETWORK indicates the current
stream is a wide network stream, such as multicast

■ StmInfo.CSTAT_ROLLING indicates the current
stream is a unbounded stream

■ StmInfo.CSTAT_TAPE indicates the current
stream is stored on in the Hierarchical Storage
Manager (HSM) on the video server

■ StmInfo.CSTAT_UNKNOWN indicates unknown
status

You can get this information as a String value by calling
the StmInfo.contStatToString() method.

m_contType String Container type, such as MPEG, OSF, WAV, and so on

m_createTime Date Date and time the content file was created (GMT)

m_desc String Description

m_fps int Frame rate, expressed as frames per second * 1000

m_msecs int Total duration of the stream in milliseconds

m_name String Printable name of stream

m_proto String Transport protocol

m_size Dimension Source input size in pixels

m_url String Media file specifier for stream
 Oracle Video Java Library 3-15

Programming with the Oracle Video Java Library
You can also get all of this information in a formatted String by calling the
StmInfo.toString() method.

Stream statistics You can get information about the current stream by calling the
Player.getStats() method. This method takes no parameters and returns a StmStats
object. The public data members for StmStats are shown in Table 3–5.

You can also get all of this information in a formatted String by calling the
StmStats.toString() method.

Table 3–5 StmStats Data Members

Name Type Description

m_bps int Average bits per second

m_cnsState int Consumer playback state:

■ StmStats.STM_CONTROL indicates that the stream is in
the middle of a network transaction.

■ StmStats.STM_ENDED indicates that the end of stream
has been reached.

■ StmStats.STM_IDLE indicates that the stream is idle.

■ StmStats.STM_PAUSED indicates that the stream is
paused.

■ StmStats.STM_PLAYING indicates that the stream is
playing.

■ StmStats.STM_STALLED indicates that the stream has
stalled.

m_curFrame long Current frame in stream

m_curTime long Current time in stream

m_drops int Number of data packets dropped

m_fBytes int Number of free bytes in cache

m_fps int Average frames per second

m_maxTime long Last seekable position in stream

m_minTime long Earliest seekable position in stream

m_pkts int Number of data packets received

m_prdState int Producer playback state; possible values are the same as for
m_cnsState

m_rBytes int Number of ready bytes in cache
3-16 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
Handling Player Events
To handle events from a Player object, you need to implement the PlayerListener
interface. This section describes the methods in PlayerListener you need to
implement and also describes how to implement the listener interface and add it a
Player’s list of listeners.

PlayerListener Methods
PlayerListener handles a number of Player events, including:

■ Change of player state

■ End of stream

■ Errors

The methods required to handle these events are described below.

Change of player state A change of player state indicates that the player has
undergone a change from one state to another. This is often the point at which you
may wish to take some sort of action. For example, whenever a user starts playing a
stream, you want to change an icon on the interface to indicate the play status.
Because playing is one of the state changes handled by the PlayerListener
interface, you can watch for this event.

The method used to handle changes of state is called stateChange(). This method
takes a single parameter, an int. This parameter indicates the new state of the
Player object and can have one of the values shown in Table 3–3 on page 14.

End of stream Reaching the end of a stream means that the Player has run out of
data to play. In short, the movie’s over. You may want to take some sort of action
whenever a stream finishes. For example, you may want to begin loading the next
stream.

The method used to handle the end of a stream is called endOfStream(). This
method takes no parameters.

Note: You should be familiar with the Java 1.1 event model, as
well as the concept of interfaces, before reading this section.
 Oracle Video Java Library 3-17

Programming with the Oracle Video Java Library
Errors You need to do something when an error occurs in your application. Most
recoverable errors are handled through the use of exceptions. If an error occurs that
isn’t handled by an exception, you can assume that it was a fatal error. The error()
method gives you a chance to do clean up and damage control, including
destroying the Player object.

The error() method takes two parameters:

■ An int that contains an error code. This code may be used by Oracle technical
support in case diagnostic help is required.

■ A String that contains a text message.

Implementing and Registering a PlayerListener
To implement a PlayerListener to handle Player events:

1. Create a new class that implements the PlayerListener interface.

You can create any class to implement this interface, although you may find it
easiest to implement in whichever class you create the Player object. The
example below shows the syntax for adding PlayerListener to another class:

public class myClass implements PlayerListener {
// Class implementation goes here...
}

2. Add the PlayerListener methods to the class in which you implemented the
PlayerListener interface.

public class myClass implements PlayerListener {
// Class implementation goes here...

// PlayerListener methods
public void stateChange(int newState) {

// Take whatever actions you want for this event
}

public void error(int code, String msg) {
// Take whatever actions you want for this event
}

public void endOfStream() {
// Take whatever actions you want for this event
}

}

3. Create an instance of your new class:

myClass m_inst = new myClass();
3-18 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
4. Create a new Player object:

Player m_player = PlayerFactory.getPlayer();

5. Call the addListener() method on the Player object you created in the last step,
passing the object you created in Step 3. The addListener() method takes a
single parameter, an object that implements the PlayerListener interface.

m_player.addListener(m_inst);

Once you’ve registered an implementation of PlayerListener with a Player through
the addListener() method, the Player object calls the appropriate methods on the
listener whenever an event occurs.

The sample code below shows a simple example of how to implement and register
a player listener.

public class myClass implements PlayerListener {
Player m_player = null;
myClass app = null;

public static void main(String args[]) {
app = new myClass();

try {
m_player = PlayerFactory.getPlayer();
}

catch(PlayerException e) {
System.out.println("Failed to getPlayer()");
}

try {
m_player.addListener(app);

}
catch(PlayerException e) {

System.out.println("Failed to addListener()");
}

// Get player interface, add to frame, load stream, and so on...
}

// PlayerListener methods
public void stateChange(int newState) {

System.out.println("Player state change to: " + newState);
}

 Oracle Video Java Library 3-19

Programming with the Oracle Video Java Library
public void error(int code, String msg) {
System.err.println("Error code: " + code);
System.err.println("Error message: " + msg);
}

public void endOfStream() {
System.out.println("End of stream reached!");
}

}

Displaying and Customizing the Player Interface
The Oracle Video Java Library player provides three Java Component-based
interface objects that you can use to provide a video display, status bar, and
playback controls. You can also combine any combination of the three interfaces
into a single Component, simplifying the process of adding the player to your
interface.

Because these objects are based on the standard Java Component, you can use
them in windows, frames, and containers just as you would any standard Java
component, such as buttons, list boxes, and icons.

This section covers the following topics:

■ Retrieving Player Interface Components

■ Customizing Interface Components

■ Setting Full-Screen Interface
3-20 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
Retrieving Player Interface Components
There are two ways you can get object references for the interfaces:

■ Call individual methods to retrieve each separate component. There are three
methods provided by Player, one for each component:

– getControlComp()

– getStatusComp()

– getVisualComp()

Each of these methods returns a Component object representing the requested
component.

■ You can also retrieve one or more of the components combined into a single
Component object by calling the Player.getPlayerUI() method. There are three
versions of the this method:

– The first version takes no parameters. This creates the default player
interface, combining a video screen, controls, and status bar.

This example uses the first version of getPlayerUI() to specify the default
configuration—all three components displayed:

Component m_UI = m_player.getPlayerUI();

– The second version takes three boolean parameters. This allows you to
specify which parts of the default interface—video screen, controls, and
status bar, respectively—you want displayed. Specifying true for any
component means that component should be included in the returned
Component.

This example uses the second version of getPlayerUI() to create the player
with only the video screen showing, with no controls or status bar:

Component m_UI = m_player.getPlayerUI(true, false, false);

– The third version takes three boolean and two int parameters. The boolean
parameters function the same as in the second version, turning various
interface components on and off. The int parameters let you specify the
width and height of the returned Component object; that is, the overall size
of the player interface.

This example uses the third version of getPlayerUI() to create the player
with the video screen and controls showing, with no status bar, and a size
of 320 by 240 pixels:

Component m_UI = m_player.getPlayerUI(true, false, false, 320, 240);
 Oracle Video Java Library 3-21

Programming with the Oracle Video Java Library
Once you’ve retrieved the Component containing the player interface, you can add
it to a frame or window just as you would any other Component. The code below
shows a simple example using the default player interface:

public class Spud extends Frame {
public static void main(String argv[]) {

Component myUI = null;
Spud spud = new Spud();
try {

Player m_player = PlayerFactory.getPlayer();
myUI = m_player.getPlayerUI(); // Get the default UI component
}

catch(PlayerException e) {
System.out.println("Exception raised: " + e.toString());
}

spud.add(myUI); // Add the UI to the enclosing frame
spud.show(); // Show the enclosing frame
}

}

Customizing Interface Components
Because you can request the player’s interface components separately, you can mix
and match the elements that you use. You can also substitute your own interface
components for the default components provided by the player, with the exception
of the video screen: you must use the default screen if you want to show video.

To create your own interface component, simply design and lay the component or
components out as you would normal Java controls. Through the event handlers
for these components, call Player’s playback control methods in response to user
actions. See “Controlling Playback” on page 3-25 for more information on the
playback control methods.

Setting Full-Screen Interface
In addition to displaying the player interface in a container window, you can also
change the video window to full-screen mode. To do this, call the method
Player.setFullScreen(). This method returns void and takes a single parameter, a
boolean. Passing true as the parameter puts the player in full-screen mode: the
controls, status bar, and other operating system desktop items disappear and the
video screen takes up the available real estate.
3-22 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
Note that you don’t necessarily have to call this method yourself to provide this
functionality to your users. If the pop-up menu is enabled, the user can select full-
screen mode through the pop-up menu.

The user can get out of full-screen mode by pressing the Escape key.

Loading and Unloading Streams
A Player object is not tied to a particular stream. In fact, you can’t create a Player
with a default stream. In order to use a Player to play a stream, you need to
explicitly load the stream you want to play by calling the Player.load() method.

load() returns void and takes two parameters:

■ A String containing the media file specifier for the stream you want to load.
For information on media file specifiers, see Appendix D, “The Media File”

■ A StmOpts object. StmOpts wraps a number of start-up options for the player
in a single object. It consists of a number of public data members that you can
modify to specify your own start-up options. Table 3–6 shows the available
data members in StmOpts and the default values given to these members
when you call the default StmOpts constructor.

Table 3–6 StmOpts Data Members

Name Type Default Description

m_autoStart boolean false When true, playback starts at the beginning of
the stream or the position specified by
m_playFrom once the player loads the media
file; otherwise, waits for a play command.

m_img String "" Specifies a background image to be displayed
when the player is inactive.

m_leftClick boolean true Specifies whether a left mouse click on the video
screen can play and pause playback.

m_loop boolean false Specifies whether playback loops when the
stream position reaches the end or the position
specified by m_playTo, if specified.

m_playFrom StmPos Beginning Specifies the position from which to begin
playback; see “Stream Position” on page 3-11 for
more information on the StmPos class.

m_playTo StmPos End Specifies the position at which to end playback;
see “Stream Position” on page 3-11 for more
information on the StmPos class.
 Oracle Video Java Library 3-23

Programming with the Oracle Video Java Library
You can call the load() method as soon as you’ve created a valid Player object. If
you want to load the stream with options other than the default, you first need to
create a StmPos object, change the desired options, then call load() with the
modified StmPos object.

This example shows how to load a stream using the default options. Notice that the
call to load() uses null in place of a StmPos object.

public class Spud extends Frame {
public static void main(String argv[]) {

Spud app = new Spud("Load a file");
Player player = null;

try {
player = PlayerFactory.getPlayer();
app.add(player.getPlayerUI());
app.show();
player.load("/mds/video/intro.mpi", null);
}

catch (PlayerException e) {
System.out.println("Exception: " + e.m_msg);
}

}

public Spud(String title) {
super(title);
}

}

m_popup boolean true Specifies whether a pop-up menu appears when
the right-clicks the video screen.

m_volume int Specifies the master volume.

Table 3–6 StmOpts Data Members

Name Type Default Description
3-24 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
You can also unload media files from the player by calling the unload() method.
This method returns void and takes no parameters. If you’ve already loaded a
stream, call unload() before trying to load another. You should also call unload()
before terminating a stream. See “Terminating a Player” on page 3-10 for more
information on terminating Player objects. The example below shows how you
might use the unload() method.

// Stop playing and get rid of the player
m_player.unload();
m_pleyer.term();

Controlling Playback
Player provides a number of methods that provide VCR-like control over media
file playback. These methods, which all return void, include:

■ play() starts stream playback; where playback starts depends on which play()
method you call, play() or play(StmPos from, StmPos to):

– play() starts from the beginning of the stream, regardless of the current
stream position, as long as you didn’t specify a playFrom position with the
load() method. If so, playback starts from that point.

– play(StmPos from, StmPos to) plays from the position indicated by from
until it reaches the position indicated by to.

You can only call play() when the stream is stopped. To start a paused stream,
call resume().

■ stop() stops playback, resetting the position back to the beginning of the
stream. If you specified a starting position, stop() resets that to the beginning of
the stream also.

■ pause() stops playback, but, unlike stop(), doesn’t set the current position back
to the beginning.

■ resume() resumes playback at the current position. You can only call resume()
when the stream is paused. To start a stopped stream, call play().
 Oracle Video Java Library 3-25

Programming with the Oracle Video Java Library
Querying Available Content Titles
The Content class, along with ContentIter and ContentException, enables you to
request a list of available content titles from an Oracle Video Server. This section
contains the following topics:

■ Content Classes

■ Performing a Query

You can find a sample using the content query classes in your OVC installation.
Look in the directory VC30\DEMO\JAVA in your ORACLE_HOME. The file
CtntList.java contains a demonstration of using the content query classes to get a
list of available titles from the Oracle Video Server.

Content Classes
There are three classes used for retrieving list of available content titles from the
Oracle Video Server:

Content The Content class contains only one method, query(), and no data
members. Since query() is static, you never need to actually create a Content object,
but instead can just call query() through the class.

Content.query() takes three parameters:

■ A String containing the address (in the form of a media file specifier) of the
server you want to query. If you pass null for this parameter, query() checks
the default server. If you don’t have a default server specified, or if that server
can’t be contacted, query() raises a ContentException.

■ A String that contains a file specifier. query() uses this as a filter to determine
which files are retrieved on the query. You can use UNIX-style wildcards to
build this. For example, the string "ora*" would retrieve only titles whose
names begin with “ora”.

■ A ContentIter object. This object works with query() so that you can retrieve
the available titles in discreet chunks.

query() returns an array of StmInfo objects. Each of these StmInfo objects
represents a content title available on the specified server that matches the wildcard
you passed to query(). The number of objects in the returned array depends on the
values you passed to the ContentIter constructor and the number of titles
available. See the description of ContentIter for more information on how query()
uses the ContentIter object.
3-26 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
ContentIter The ContentIter class works with the Content.query() method to
retrieve lists of available content from an Oracle Video Server. The ContentIter
constructor takes two parameters:

■ Position to start querying, stored in the int data member m_pos. For example,
you may specify that you want to start at position 30. This means that the first
30 items that meet the file specification passed to the query() method are
disregarded. Your returned list begins with the 31st.

■ Number of titles to retrieve with each query. This is stored in the int data
member m_num. Specify 10 titles and query() returns 10 titles each time you
call it; at least, query() returns that many as long as there are that many
available.

Because the number of available titles is potentially quite high, you do the query
iteratively; that is, you perform the same steps repeatedly, each time retrieving
another bunch of titles until you’ve exhausted the available ones. You can also
specify which position you want to start on, meaning that if you already retrieved
some titles, you don’t have to start back at the beginning.

The query() method updates m_pos after each query operation. For example,
suppose you start with m_pos set to 0 and m_num set to 10. After the first call to
query() (assuming it’s successful), query() sets m_pos to 10. After the second call,
query() sets m_pos to 20, and so on.

Once you’ve exhausted the available files, query() makes some changes to your
ContentIter object:

■ m_pos is set to -1

■ m_num is set to the number of titles successfully retrieved

Continuing from the example above, you call query(), passing your ContentIter
object with a 10-title capacity for each query. If there are 55 titles available on your
server, you can call query() six times: the first five calls give you ten titles, with
m_pos becoming progressively larger (0, 10, 20, and so on) and m_num staying the
same, 10. But when you make the sixth call, query() realizes that there aren’t
enough titles left to retrieve ten titles for you. It sets m_pos to -1 and sets m_num to
5, since, after retrieving five chunks of ten titles, there are five titles left in the list.

ContentException The Content.query() method can raise a ContentException if it
encounters an exceptional situation. Possible causes are poorly formed server
addresses or a down or inactive server.

ContentException is nearly identical to the PlayerException object in usage,
methods, and data members. See “Handling Player Exceptions” on page 3-30.
 Oracle Video Java Library 3-27

Programming with the Oracle Video Java Library
Performing a Query
To find a list of available titles:

1. Declare a StmInfo array. Don’t declare the size of the array. This array is used
to store the list of available titles. Your array declaration should look something
like this:

StmInfo[] contentList;

2. Create a ContentIter object.

For the ContentIter constructor, pass two parameters, the position at which
you want to start in the list of available titles and the number of titles you want
to retrieve with each query.

The example below shows an iterator that starts at the first available title and
gets 10 titles at a time:

ContentIter iter = new ContentIter(0, 10);

3. Call the Content.query() method. Because this method is static, you can call it
through the class without creating an instance of the Content class.

query() takes three parameters:

■ A server address (as a String)

■ A file specifier (as a String)

■ The ContentIter object you created in Step 2

Assign the return value of the Content.query() call to the StmInfo array you
created in Step 1.

This example returns all available titles from the default server:

contentList = Content.query(null, "*", iter);
3-28 Oracle Video Client Developer’s Guide

Programming with the Oracle Video Java Library
4. Check the value of the m_pos member of your ContentIter object:

■ If m_pos is not -1, perform whatever operations you want with the list of
titles. After that, you can go to Step 3 and get another chunk of titles.

■ If m_pos is -1, the last call to query() returned the last available titles.
Check the value of m_num to find out how many titles were returned.

This example shows how to create a StmInfo array and a ContentIter object,
retrieve all of the available titles from the default video server in chunks of 10, and
print out their names and descriptions.

int i;
ContentIter iter = ContentIter(0, 10);
StmInfo[] contentList;

try {
while (iter.m_pos!=-1) {

contentList = Content.query(null,"*",iter);

for(i=0; i<iter.m_num;i++) {
System.out.println("Name: " + contentList[i].m_name);
System.out.println("Description: " + contentList[i].m_desc);
}

}
}

catch(ContentException e) {
System.out.println("ContentException raised: " + e.toString());

}

Synchronizing Calls to Player Methods
All Player methods are synchronous in the sense that, when the routine returns, the
calling thread can assume the routine has completed. For example, when
Player.load() returns, you can assume that the Player object has completed loading
a stream. The methods are not, however, necessarily synchronized in the context of
a multi-threaded Java programming environment. In certain cases, it is possible
that you may call Player methods concurrently or in an inappropriate order. For
instance, in the case of a graphical user interface, by default Java spawns a new
thread for every mouse event that occurs. It’s possible for different threads to call
Player methods, resulting in improper or contradictory sequences of calls.
 Oracle Video Java Library 3-29

Programming with the Oracle Video Java Library
Therefore, when writing applications that are based on the Oracle Video Java
Library, you must take into account the multi-threaded environment of Java. The
potential for concurrent or unordered calls to Player methods can be managed by
carefully tracking the Player object’s states. The relationships between Player states
and Player methods are discussed in detail in “Media Control Methods” on page
B-10. See the description of the Player.getState() method in “Service methods” on
page 3-4 and the PlayerListener class reference on page B-20 for detailed
information on tracking Player object states.

Handling Player Exceptions
Most Player methods throw the PlayerException exception object when they
encounter errors or other exceptional situations. PlayerException provides
information on the exception, so that you can recover from the error or clean up
and exit the application if you can’t recover from the error.

PlayerException has three public members. The first is an int named m_type.
m_type can have one of the following values:

■ PlayerException.EX_BADPARAM indicates that an invalid parameter was
passed to the method.

■ PlayerException.EX_BADSTATE indicates that the player is in the incorrect
state to execute the requested operation.

■ PlayerException.EX_ERROR indicates a general error state.

■ PlayerException.EX_INTERNAL indicates an internal error.

■ PlayerException.EX_NOTIMPL indicates that the requested operation is not
implemented.

■ PlayerException.EX_UNTRANS indicates an untranslated error. Call
PlayerException.toString() for more information on the exception.

PlayerException also contains an int member m_code that contains a specific
numeric code and a String member m_msg that provides a more detailed
explanation of the problem. You can get all of this information in one string by
calling the toString() method.
3-30 Oracle Video Client Developer’s Guide

Quick Start: A Sample Java Application
Using the PlayerApplet Class

The PlayerApplet is a simple applet that supports the same syntax and features as
the Oracle Video Web Plug-in. You can embed this applet in stand-alone Java
applications.

You can also use it to embed video into an HTML document just as you would with
the Oracle Video Web Plug-in, except that PlayerApplet works only in Java-
enabled browsers that allow the use of unsigned applets. In effect, this means that
you can use PlayerApplet in Sun’s HotJava browser or the JDK appletviewer
utility, but not in Netscape Navigator or Microsoft Internet Explorer. For more
information on PlayerApplet, see “Using the PlayerApplet Class” on page 3-31.

Quick Start: A Sample Java Application

This section describes how to use the Oracle Video Java Library to create a simple
Java application that displays video in a window. A step-by-step tutorial presents
each section of code, along with explanations of what’s happening. The compiled
and source code for this example (and other more complex examples) is installed
when the Oracle Video Java Library is installed. You can find the sample code in
the file Simple.java, located in the directory vc30\demo\java in your
ORACLE_HOME.

Figure 3–1 shows how this simple Java application appears and shows the features
of the application’s interface.
 Oracle Video Java Library 3-31

Quick Start: A Sample Java Application
Figure 3–1 Simple.bat runs Simple.class, the compiled version of Simple.java

Step-by-Step Tutorial of Simple.java
The following is a step-by-step tutorial of the code in the sample application,
Simple.java. Keep in mind that this is the minimum code required to create a Java
client application. Applications using the Oracle Video Java Library can be
implemented in many different ways.

1. Import the basic Java packages required: java.awt and java.awt.events.

This provides support for windowing and interface event handling.

// Sun JDK Imports
import java.awt.*;
import java.awt.event.*;

2. Import the Oracle Video Java Library classes:

// Oracle Video Client Imports
import oracle.ovc.PlayerFactory;
import oracle.ovc.PlayerException;
import oracle.ovc.Player;

Video screen

Volume controlPlay/Pause
button

Stop button

Status panel

Slider control
3-32 Oracle Video Client Developer’s Guide

Quick Start: A Sample Java Application
3. Create an application class. This is the class that contains the main() method,
data members, and methods. In the sample application, this class is called
Simple:

public class Simple
{

// Rest of the class, including member variables and methods, go here...
}

4. In your main() method, create an application object so that you can call the
methods of that object. In the sample application, the application object is
called app.

Simple app = new Simple ();

5. Create a window to hold the video player.

In Simple.java, the window is created as a subclass of the Java AWT Frame
class. The subclass is named PlayerFrame. The instantiation of PlayerFrame is
relatively straightforward:

■ The title parameter is passed on to the superclass

■ A window adapter (PFAdapter, a subclass of WindowAdapter) that
handles only the window closing event is created and added as a window
listener

■ The size of the window is set to the size of the height and width
parameters passed to the PlayerFrame constructor

playerframe = new PlayerFrame("OVPlayer", m_Width, m_Height);

Later, after you create the Player object (Step 6) and its user interface (Step 7),
this frame window hosts the player’s interface, which is “added” to the frame
window using the add() method.

6. Create a Player object by calling the PlayerFactory.getPlayer() method. This
method takes no parameters and returns a Player object reference.

In the sample, this is handled in the addPlayer() method of the Simple object.
You'll note that, in this example, the PlayerFactory object is instantiated
dynamically: since it's needed only once here, there's no need to keep it around.
 Oracle Video Java Library 3-33

Quick Start: A Sample Java Application
Because Player and PlayerFactory methods can throw exceptions, you must
enclose method calls on these objects with a try-catch block. There are two
specific exceptions you may encounter:

■ UnsatisfiedLinkError is a standard Java exception thrown when the virtual
machine can't satisfy all of the links in a class that it has loaded.

■ PlayerException is thrown by all members of the Player class when an
error is encountered. To find out more about exception handling in the
Oracle Video Java Library, see “Handling Player Exceptions” on page 3-30.

// Create a player object.
try {

player = PlayerFactory.getPlayer();
}

catch (UnsatisfiedLinkError e) {
System.out.println(e.getMessage());
}

catch (PlayerException e) {
System.out.println("Unable to create a Player object.");

}

7. Create and install the player's user interface. This consists of three steps:

a. Get a user interface object from the Player object by calling the
getPlayerUI() method. This method returns a Component object that
contains the various elements of the video player, including the video
screen, a control panel, and a status line. You can actually specify which of
these elements you want in your interface by specifying different
parameters to the getPlayerUI() method. See “User Interface Methods” on
page B-9 for more information.

b. Add the user interface to the application’s frame window by calling the
window’s add() method, passing as a parameter the object returned by
getPlayerUI().

c. Finally, display the frame window by calling the window’s show() method.

try {
playerUI = player.getPlayerUI();
}
catch (PlayerException e) {
// Handle the exception here...
}

3-34 Oracle Video Client Developer’s Guide

Quick Start: A Sample Java Application
// Add the visual component of the player object
// to the frame before invoking init().
playerframe.add(playerUI);
playerframe.show();

The player object is now ready to load and display video.

8. To load a video file, call the Player.load() method. This method takes two
parameters:

■ A String parameter containing a valid media file specifier. Media file
specifiers describe the file to be loaded. You can find the format for media
file specifiers in “mediafile Syntax” on page D-1.

■ A StmOpts object. StmOpts objects allow you to specify options for the
video stream, such as whether the video should start automatically, where
to start and stop within the stream, and more. You can find out more about
the StmOpts class on page B-26. Specifying null for this parameter
indicates that the stream should load with the default options: no
automatic start, no looping, full volume, start at the beginning and end at
the end.

player.load(m_MediaFile, null);

In Simple.java, the m_Mediafile points to one of the sample content files
installed with the Oracle Video Server. You could change this so that:

– the Java application queries the video server for a list of available content
(see “Querying Available Content Titles” on page 3-26)

– the user can select from a preset list of videos. For example, you may want
to limit the user to a set of training videos. You could present the titles in a
drop-down list and load the appropriate video when one is selected.

– the user can browse locally stored files. For example, create a dialog box
that contains a list of files in a particular directory or provides the ability to
browse the local hard drive.

Now the media file is loaded and you can perform whatever operations you want:
play the video, change the volume, change the position, and so on.
 Oracle Video Java Library 3-35

Quick Start: A Sample Java Application
3-36 Oracle Video Client Developer’s Guide

 Oracle Video ActiveX C
4

Oracle Video ActiveX Control

The Oracle Video ActiveX Control defines methods, properties, and events that you
can incorporate into Visual Basic, Oracle Power Objects, Oracle Forms, and other
ActiveX-enabled applications. The ActiveX (formerly OCX and OLE) standard lets
you create modular applications that can run on the Internet, embed into ActiveX
container applications, or work in your own applications.

This chapter is intended for developers who want to add video capabilities to their
ActiveX-compliant applications. It shows you how to load the Oracle Video
ActiveX Control in Visual Basic, Oracle Power Objects, and HTML documents, and
guides you through creating a simple application.

The procedure for using the Oracle Video ActiveX Control with Oracle Forms is
somewhat different, so information about using the Oracle Video ActiveX Control
with Oracle Forms is presented in Chapter 5, “Working with Oracle Forms”.

This chapter contains these sections:

■ Introduction to the Oracle Video ActiveX Control

■ Requirements

■ Using the Oracle Video ActiveX Control in HTML Documents

■ Creating Applications with the Oracle Video ActiveX Control

You can also find reference information about the Oracle Video ActiveX Control in
Appendix C, “Oracle Video ActiveX Control Reference”, including methods,
properties, and events associated with the control.
ontrol 4-1

Introduction to the Oracle Video ActiveX Control
Introduction to the Oracle Video ActiveX Control

This section provides a basic introduction to the Oracle Video ActiveX Control:

■ Becoming Familiar with the Oracle Video ActiveX Control

■ Installing the Oracle Video ActiveX Control

■ Controlling the Oracle Video ActiveX Control

Becoming Familiar with the Oracle Video ActiveX Control
Figure 4–1 shows the Oracle Video ActiveX Control as it appears on-screen.

Figure 4–1 The Oracle Video ActiveX Control

The controls located at the bottom of the Oracle Video ActiveX Control enable users
to play, pause, seek, and stop the video and adjust the volume.

Video screen

Volume controlPlay/Pause
button

Stop button

Status panel

Slider control

Current playing
time
4-2 Oracle Video Client Developer’s Guide

Introduction to the Oracle Video ActiveX Control
Installing the Oracle Video ActiveX Control
To install the Oracle Video ActiveX Control, make sure you select either the Typical
or Compact installation configuration or select the Oracle Video ActiveX Control
checkbox if you choose the Custom installation configuration.

The installer installs Oracle files in different areas on different platforms. For this
reason, file paths are given relative to ORACLE_HOME, which represents the
directory where you installed the client.

■ On Windows 95 clients, the default ORACLE_HOME is C:\ORAWIN95

■ On Windows NT 4.0 clients, the default ORACLE_HOME is C:\ORANT

The installer registers the Oracle Video ActiveX Control in the Windows registry
during installation.

You can find the complete installation instructions for the Oracle Video Client in
the CD insert that came with your installation CD-ROM. This information is also
available in electronic form in the file CDInsert.PDF in the \Docs directory of your
installation CD-ROM and, if you selected the Typical installation configuration or
selected the Docs option in the Custom configuration, in the directory
VC30\DOCS in your ORACLE_HOME.

Using the Oracle Video ActiveX Control
Because it is an ActiveX control, the Oracle Video ActiveX Control is very versatile.
It can be used as:

■ An embedded control in an HTML document. Microsoft’s Internet Explorer
supports ActiveX controls in its Windows-based browsers. To find out how to
use the control in an HTML document, see “Using the Oracle Video ActiveX
Control in HTML Documents” on page 4-5.

■ A custom component in ActiveX-enabled development environments, such as
Visual Basic and Oracle Power Objects. You can use this capability to add OVS
video to your own stand-alone applications. To find out how to use the control
in Visual Basic or Oracle Power Objects, see “Loading the Oracle Video ActiveX
Control” on page 4-11. To find out how to use the control with Oracle Forms,
see Chapter 5, “Working with Oracle Forms”.
 Oracle Video ActiveX Control 4-3

Introduction to the Oracle Video ActiveX Control
The Oracle Video ActiveX Control has been tested and certified to work with
various versions of Visual Basic, Oracle Power Objects, Oracle Forms, and Internet
Explorer. See the Oracle Video Client Release Notes for the most up-to-date
compatibility information. The control will function properly in any application
that fully supports ActiveX controls, but we cannot guarantee its performance in
untested applications or development tools. Oracle strongly recommends that you
test the control in any uncertified applications before using it for development.

Controlling the Oracle Video ActiveX Control
You can use a number of techniques to script and control the Oracle Video ActiveX
Control. What you use depends on where you are using the control:

■ In HTML Documents

■ In Application Development Tools

In HTML Documents
You can control the Oracle Video ActiveX Control in an HTML document using
JScript and VBScript.

■ You can get the highest level of control in Microsoft’s Internet Explorer using
VBScript. VBScript allows you to call the control’s methods, handle any events,
and modify and check the properties of the control using a subset of Visual
Basic specific to Internet Explorer.

■ Internet Explorer also provides JScript, which is similar to Netscape’s
JavaScript. Both of these are related to (but not identical to) the Java language.

You can find information on controlling the Oracle Video ActiveX Control in an
HTML document using VBScript in “Using the Oracle Video ActiveX Control in
HTML Documents” on page 4-5.

In Application Development Tools
Embedding the Oracle Video ActiveX Control in your own application is the same
as with any ActiveX control. For example, in Visual Basic, you add the control as a
component, where it appears as an icon. Either double-click the icon or select the
control’s icon on the toolbar and click and drag on the form. Once you’ve added it
to your application, you can select it to make its property sheet appear. There, you
can modify the control properties, add event handlers, and so on.

You can also reference the control’s properties and methods from outside the
control. Simply reference the control and method name, passing the appropriate
parameters.
4-4 Oracle Video Client Developer’s Guide

Using the Oracle Video ActiveX Control in HTML Documents
For more information on using the Oracle Video ActiveX Control in Visual Basic or
Oracle Power Objects, see “Loading the Oracle Video ActiveX Control” on page
4-11 and “Programming with the Oracle Video ActiveX Control” on page 4-12. For
information on using the Oracle Video ActiveX Control with Oracle Forms, see
Chapter 5, “Working with Oracle Forms”.

Requirements

There are some basic requirements for creating client applications using the Oracle
Video ActiveX Control:

■ You need to be working in a development environment that supports ActiveX
controls. This means Windows 95 or Windows NT 4.0.

■ If you are creating a stand-alone application, you need an appropriate
development tool such as Visual Basic 4.0 or 5.0.

■ If you are creating an HTML document, you need an ActiveX-enabled browser,
usually Microsoft Internet Explorer 3.0 or later, for testing and development
purposes.

Using the Oracle Video ActiveX Control in HTML Documents

This section discusses how to insert the Oracle Video ActiveX Control into an
HTML document, including:

■ Embedding the Oracle Video ActiveX Control

■ Setting Properties for an Embedded Oracle Video ActiveX Control

■ Security Requirements in Internet Explorer

■ Sample ActiveX Control in HTML
 Oracle Video ActiveX Control 4-5

Using the Oracle Video ActiveX Control in HTML Documents
Embedding the Oracle Video ActiveX Control
To embed the Oracle Video ActiveX Control into an HTML document, you must
use the <object> tag. This tag is recognized by Microsoft Internet Explorer and
indicates that you want to use an ActiveX control to display media or somehow
interact with the user.

To load the control, the main attributes to the <object> tag that you need to specify
are:

■ ID, which you need to specify only if you want to script the control, since you
refer to the control in your code by this name

■ ClassID, which specifies the control you want to load

■ Width and Height

A typical object statement looks something like this:

<object id=”ovcax1” width=352 height=240
classid=”CLSID:547A04EF-4F00-11D1-9559-0020AFF4F597”>

If you specify a border, the width and height values include both the control itself
and the border. In this case, no border was specified, so this represents the actual
width and height of the plug-in. If you do specify a border, you need to add double
the border width to the desired size of the control to get the actual width you need
to set.

Also, if you include the optional control panel and status line, you need to take
these into account when setting the height of the control.

■ If you include the control panel, add 24 pixels to the height.

■ If you include the status line, add 21 pixels to the height.

You control the appearance of the control panel and status line by setting control
properties, as discussed in the next section. Note that the extra height for these
optional panels is in addition to any that you need to add for the border.
4-6 Oracle Video Client Developer’s Guide

Using the Oracle Video ActiveX Control in HTML Documents
Setting Properties for an Embedded Oracle Video ActiveX Control
The <object> statement actually tells the browser which control you want to
embed in the HTML document. The Oracle Video ActiveX Control doesn’t actually
take any of its start-up information from it, though. Instead it gets it from the
<param> tags placed within the <object> block, that is, between the <object> and
</object> tags. You need to specify information such as:

■ Media file to load

■ Whether to start playback automatically

■ How to display the control’s VCR controls

These elements are controlled through the use of properties on the Oracle Video
ActiveX Control. You can set any Oracle Video ActiveX Control property (except
for those that are read-only) when embedding the Oracle Video ActiveX Control
into an HTML document using <param> tags within the <object> block.

<param> tags have three elements:

■ The <param> tag itself

■ The property name, such as AutoStart or Mediafile:

name=”propName”

■ The property value; for string or numeric properties, this should just be the
string or value, while for boolean properties, you should specify 1 for true or
on and 0 for false or off

value=”value”

For example, to set the media file specifier, the <param> tag would look something
like this:

<param name=”Mediafile” value=”vstcp://server:5000/mds/video/video.mpi”>

Any properties that you don’t set through the use of <param> tags use the default
value for that property.
 Oracle Video ActiveX Control 4-7

Using the Oracle Video ActiveX Control in HTML Documents
Security Requirements in Internet Explorer
Microsoft Internet Explorer offers a great deal of control over whether and how the
browser deals with different types of active content, including:

■ Allowing the downloading of active content

■ Enabling ActiveX controls and plug-ins

■ Running ActiveX scripts

In addition, Internet Explorer offers three different security levels:

■ High means that any potentially unsafe content is avoided. Unsigned controls
are not allowed.

■ Medium means that you are notified before potentially unsafe content is
downloaded. You must explicitly approve the use of unsigned controls.

■ Low means that all content is allowed. You do not need to approve the use of
unsigned controls.

Internet Explorer also lets you specify different security settings for different zones,
such as Local Intranet Zone or Internet Zone. How you set this depends on where
your Web server is on the network.

Because the Oracle Video ActiveX Control is unsigned, you (and the end users of
your client application) must set the active content safety level to Medium or Low:

■ In Internet Explorer 3.0:

1. Select the Options command on the View menu.

2. Switch to the Security tab.

3. Make sure the Allow downloading of active content and Enable ActiveX
controls and plug-ins check boxes are checked.

4. Click the Safety Level button.
4-8 Oracle Video Client Developer’s Guide

Using the Oracle Video ActiveX Control in HTML Documents
5. In the Safety Level dialog box, select either Medium or Low.

Medium prompts you before downloading unsigned ActiveX controls.
Low downloads the control without prompting. Which you select depends
on your environment. If your users work exclusively in enterprise, intranet,
or other closed environment situations, you may just want to set the
security level to Low on the assumption that users are safe from unsafe
controls within the firewall. If there’s a possibility that users may also go
onto the Internet or some other uncontrolled area, you may want to set the
security level to Medium so that users know when a site attempts to pass
active content on to them.

6. Click OK, then OK again.

■ In Internet Explorer 4.0:

1. Select the Internet Options command on the View menu.

2. Switch to the Security tab.

3. Select the zone containing the Web server or server with HTML documents
with the Oracle Video ActiveX Control embedded.

This will probably be either Local Intranet Zone or the Trusted Sites Zone.
For both of these zones, you can also explicitly specify a particular site.

4. Select either Medium or Low.

Medium prompts you before downloading unsigned ActiveX controls.
Low downloads the control without prompting. If you trust the entire site,
you should set this to Low to avoid having to approve the download each
time you access a page containing the Oracle Video ActiveX Control.
 Oracle Video ActiveX Control 4-9

Using the Oracle Video ActiveX Control in HTML Documents
Sample ActiveX Control in HTML
This sample shows a simple example of embedding the Oracle Video ActiveX
Control into your HTML documents and controlling it through VBScript routines.

<html>
<head>
<title>New Page</title>
</head>

<body>
 <object ID=”ovcax1” Width=352 Height=240
 ClassID=”CLSID:547A04EF-4F00-11D1-9559-0020AFF4F597”>
 <param name=”Mediafile” value=”vstcp://server:5000/mds/video/oracle1.mpi”>
 <param name=”ShowControls” value=”1”>
 <param name=”AutoStart” value=”0”>
 <param name=”BorderStyle” value=”1”>
 <param name=”Loop” value=”0”>
 <param name=”EnablePopup” value=”1”>
 <param name=”EnableLeftClick” value=”1”>
 <param name=”PlayFrom” value=”beginning”>
 <param name=”PlayTo” value=”end”>
 <param name=”ShowPositionAndStatus” value=”1”>
 <param name=”TimerFrequency” value=”500”>
 </object>

 <form name=”Button1”>
 <input type=Button value=”Play” onClick=”ovcax1.Play()”>
 </form>
</body>
</html>
4-10 Oracle Video Client Developer’s Guide

Creating Applications with the Oracle Video ActiveX Control
Creating Applications with the Oracle Video ActiveX Control

This section discusses how to create stand-alone applications in Oracle Power
Objects and Visual Basic, using the Oracle Video ActiveX Control as a component
to provide streaming media capabilities. There are three main topics in this section:

■ Loading the Oracle Video ActiveX Control

■ Programming with the Oracle Video ActiveX Control

■ A Simple Application

Loading the Oracle Video ActiveX Control
Before you can use the Oracle Video ActiveX Control, it must be available to your
application. To see if the control is available, start Oracle Power Objects or
Microsoft Visual Basic and verify that the Movie Tool icon (shown here) is visible.

■ In Oracle Power Objects, look in the Object Palette

■ In Microsoft Visual Basic, look in the Toolbox (if you can’t find the Toolbox,
choose the Toolbox command on the View menu)

If you can’t see the movie icon, follow these steps to add the icon.

Oracle Power Objects 2.1
When you start Oracle Power Objects for the first time after installing the Oracle
Video Client, the Movie Tool icon is not visible in the Object Palette.

To load the 32-bit Oracle Video ActiveX Control (ovcax.dll):

1. Choose Custom Controls from the Edit menu.

2. Select “Oracle Video ActiveX Control” from the list of installed controls.

If it’s not listed, click the Register button, locate and select the ovcax.dll file,
and click OK. By default, this file is located in the bin directory in your
ORACLE_HOME.

Movie
Tool icon
 Oracle Video ActiveX Control 4-11

Creating Applications with the Oracle Video ActiveX Control
Microsoft Visual Basic
When you begin a Visual Basic project, the movie icon is not visible in the Toolbox.
You must load the custom control for each new project, as follows:

1. Choose Components from the Project menu.

2. Find the Oracle Video ActiveX Control in the list box on the Controls tab.

3. Check the box next to the Oracle Video ActiveX Control entry.

4. Click the OK button.

Programming with the Oracle Video ActiveX Control
Once you have loaded the control, you can use the Oracle Video ActiveX Control as
you would any other item in the Oracle Power Objects Object Palette or Visual
Basic Toolbox:

■ Select the Movie Tool icon and add the Oracle Video ActiveX Control to your
application.

■ Set the properties of the control dynamically at design time using the Oracle
Video ActiveX Control’s property sheet.

■ Add code to handle any of the events defined for the control just as you would
with any other ActiveX control.

■ Create buttons to execute any of the control’s methods. For example, create
your own control set, such as play and pause, instead of the built-in controls.

Note: You can have only one active Oracle Video ActiveX Control
in any one application.

Movie
Tool icon
4-12 Oracle Video Client Developer’s Guide

Creating Applications with the Oracle Video ActiveX Control
A Simple Application
This tutorial is designed to guide you through creating a simple Oracle Video
Client application in Visual Basic and Oracle Power Objects. The finished
application lets users view, select, and play media files from a local hard disk or
from a video server on the network. Use the finished application, shown in Figure
4–2, as a starting point for developing your own applications.

Figure 4–2 The Finished Application

1. Add the Oracle Video ActiveX Control object to your application.

For Visual Basic:

a. Double click the Movie Tool icon in the Toolbox to add it to your project.
The default name of an Oracle Video ActiveX Control object is ovcax1.
 Oracle Video ActiveX Control 4-13

Creating Applications with the Oracle Video ActiveX Control
b. Alternatively you can click the Movie Tool icon, then drag in your form.
This allows you to easily customize the size of the control.

For Oracle Power Objects:

a. Click on the Oracle Video Control icon in the Object Palette.

b. Drag it to the application window. The default name of an Oracle Video
Control object is ovcax1.

2. If you can’t see the VCR controls on the Oracle Video ActiveX Control, set the
ShowControls property to true (1).

3. Add a button labeled Local Videos. This example uses the ImportFileAs()
method to bring up a list of videos available from the hard disk. For more
information on this method, see “Methods” on page C-1.

For Visual Basic:

a. Double-click on the CommandButton icon in the Toolbox. A command
button appears on the form. If the command button becomes deselected,
click this button to reselect it.

b. Change the Caption property to Local Videos.

c. Double-click on the Local Videos button. This opens the script window
and places the cursor in the Command1_Click() method.

d. Type the following in the script window:

ovcax1.ImportFileAs

The ImportFileAs() method opens a dialog box that lets the user browse
for a media file stored locally.

e. Close the script window.

Note: When you first open the Oracle Video ActiveX Control, you
might not be able to see the controls if the initial size of the object is
too small. If necessary, click on the control and drag the corners to
resize it in the application window.
4-14 Oracle Video Client Developer’s Guide

Creating Applications with the Oracle Video ActiveX Control
For Oracle Power Objects:

a. Double-click on the PushButton icon in the Object Palette, and drag the
button to the form. A push button appears on the form. If the push button
becomes deselected, click this button to reselect it.

b. Change the Label property to Local Videos.

c. Edit the Click() method on the Property Sheet to read as follows:

ovcax1.ImportFileAs

The ImportFileAs() method opens a dialog box that lets the user browse
for a media file stored locally.

4. Add a button labeled Server Videos. When clicked, this button calls the
ImportStreamAs() method, which opens a dialog box that lets the user select
from a list of videos available on the video server. For more information on
this, see “Methods” on page C-1.

For Visual Basic:

a. Add a button to the form, as described in Step 3.

b. Change the Caption property to Server Videos.

c. Double-click on the Server Videos button. This opens the script window
and places the cursor in the Command2_Click() method.

d. Type the following in the script window:

ovcax1.ImportStreamAs(““)

e. Close the script window.

For Oracle Power Objects:

a. Add a button to the form, as described in Step 3.

b. Change the Label property to Server Videos.

c. Edit the Click() method on the Property Sheet to read as follows:

ovcax1.ImportStreamAs(““)

5. Finally, add a Quit button to the form.
 Oracle Video ActiveX Control 4-15

Creating Applications with the Oracle Video ActiveX Control
For Visual Basic:

a. Add a command button to the form.

b. Change the Caption property to Quit.

c. Double-click on the Quit button. This opens the script window and places
the cursor in the Command3_Click() method.

d. Type the following in the script window:

End

e. Close the script window.

For Oracle Power Objects:

a. Add a push button to the form.

b. Change the Label property to Quit.

c. Edit the Click() method:

Form1.CloseWindow

d. Close the script window.

6. Run the application.

■ In Visual Basic, from the Run menu, choose Start.

■ In Oracle Power Objects, from the Run menu, choose Run Application or
Run Form.

You can now select and play videos from a local hard disk or a networked video
server, and can use the play, pause, stop, controls when viewing the video.

You can also use the slider control to seek to any location in the video. If the slider
control is used while viewing a video content file, the video frame is not updated
until play is resumed.

This is all you need to do to use video in your application. You can also use the
features of the Oracle Video ActiveX Control to create much richer applications. For
example, you can use the Play(), Pause(), Resume(), SetPos(), and Stop() methods
to create your own start, pause, seek, and stop buttons.
4-16 Oracle Video Client Developer’s Guide

 Working with Oracle F
5

Working with Oracle Forms

This chapter is intended for developers who want to use the Oracle Video ActiveX
Control to add video capabilities to their Oracle Forms applications. Oracle Forms
is a component of Oracle Developer/2000. This chapter guides you through
creating a simple Oracle Video Client application, then provides reference material
to help you build more elaborate applications.

Although there are no functional differences in the Oracle Video ActiveX Control
between Oracle Forms and Oracle Power Objects (or Microsoft Visual Basic), there
are some substantial differences in how to load and use the Oracle Video ActiveX
Control from Oracle Forms.

For information on the methods, properties, and events provided by the Oracle
Video ActiveX Control, see Chapter 4, “Oracle Video ActiveX Control”. You can
find reference information for the Oracle Video ActiveX Control in Appendix C,
“Oracle Video ActiveX Control Reference”.

This chapter contains these sections:

■ A Simple Application

■ Accessing Methods and Properties

■ Modifying Properties

■ Troubleshooting
orms 5-1

A Simple Application
A Simple Application

This example uses the Oracle Video ActiveX Control to create a simple application
which enables users to view, select, and play videos from a local hard disk or the
Oracle Video Server. To see this same application created in Oracle Power Objects
and Visual Basic, see Chapter 4, “Oracle Video ActiveX Control”.

1. Open the Forms Designer and go to the Layout Editor in the Tools menu.

2. Create the ActiveX object:

a. Click on the OLE2 object icon in the Tool Palette.

b. Position the cursor on the grid, then click and drag to create a box for the
object.

c. Right-click on the box and choose Insert Object. The Insert Object dialog
box appears.

d. Select the Create Control radio button.

e. Scroll down the Object Type list and choose Oracle Video ActiveX Control.
Click OK.

f. Expand the size of the box as necessary to see all the buttons.

g. Right-click on the ActiveX object and select Properties from the pop-up
menu.

h. Under the Functional section, change the OLE In-place Activation setting
to True.

i. Before closing the properties box, change the name to “MY_VIDEO”. Click
on a setting other than Name to implement the name you entered.

j. Close the Properties dialog box.

Note: When you initially create the Oracle Video ActiveX Control
object, you will not be able to modify the properties of the object
until you deselect it (by clicking anywhere else on the screen) and
then reselect it.
5-2 Oracle Video Client Developer’s Guide

A Simple Application
3. Create a button to choose videos from the local hard disk.
This button uses the ImportFileAs() method to display videos available on the
local hard disk or CD-ROM.

a. Click on the Push Button icon in the Tool Palette.

b. Click on the grid to place the button.

c. Double-click on the button to display its properties.

d. Under the Functional section, change the Label property to Local Videos.

e. Close the Properties dialog box.

4. Create a trigger for the button:

a. With the button selected in the Layout Editor, choose PL/SQL Editor from
the Tools menu.

b. Choose New.

c. Select WHEN-BUTTON-PRESSED as the type of trigger and click OK.

d. Enter the following text:

declare
video_obj ole2.obj_type;
begin
video_obj := forms_ole.get_interface_pointer (‘MY_VIDEO’);
ole2.invoke(video_obj, ‘ImportFileAs’);
end;

e. Choose Compile.

f. Choose Close.

5. Create the button to choose a video from the server:

a. Click on the Push Button icon in the Tool Palette.

b. Click on the grid to place the button.

c. Double-click on the button to display its properties.

d. Under the Functional section, change the Label property to Server Videos.

e. Close the Properties dialog box.
 Working with Oracle Forms 5-3

A Simple Application
6. Create a trigger for the button:

a. With the button selected in the Layout Editor, choose PL/SQL Editor from
the Tools menu.

b. Choose New.

c. Select WHEN-BUTTON-PRESSED as the type of trigger and click OK.

d. Enter the following text:

declare
video_obj ole2.obj_type;
myArgList ole2.list_type;

begin
video_obj := forms_ole.get_interface_pointer (‘MY_VIDEO’);
myArgList := ole2.create_arglist;

ole2.add_arg(myArgList, ‘svraddr:port’);
ole2.invoke(video_obj, ‘ImportStreamAs’, myArgList);
end;

Substitute a valid server name and port for svraddr and port in the
ole2.add_arg call.

e. Choose Compile.

f. Choose Close.
5-4 Oracle Video Client Developer’s Guide

A Simple Application
7. Create another trigger. This trigger prevents Forms from trying to log into a
database when you run the form:

a. Choose PL/SQL Editor from the Tools menu.

b. Change Object to Form Level.

c. Choose New.

d. Choose ON-LOGON as the type of trigger and click OK.

e. Enter the following:

null;

f. Choose Compile.

g. From the File menu, Choose Save.

h. Choose Close.

8. View your final application by choosing Run from the File menu. A dialog box
appears asking if you want to log on before performing compilation. Choose
No.

9. Click either the Local Videos or Server Videos button to select a video. After
you select a video, the Play button will turn green. Click on this button to play
the video.
 Working with Oracle Forms 5-5

Accessing Methods and Properties
Accessing Methods and Properties

The commands in the PL/SQL scripts that work with the Oracle Video ActiveX
Control take different forms depending on whether they are:

■ Executing a method

■ Setting the value of a property

■ Getting the value of a property

Executing a Method
For buttons that execute a method, the PL/SQL script for the WHEN-BUTTON-
PRESSED trigger should follow this form:

declare
video_obj ole2.obj_type;

begin
 video_obj := forms_ole.get_interface_pointer('OLE-object-name');
 ole2.invoke(video_obj, 'method');
end;

Where:

■ video_obj is a variable name.

■ OLE-object-name is the name of the video object.

■ method is the name of the method to invoke (such as play, stop, and so on).
5-6 Oracle Video Client Developer’s Guide

Accessing Methods and Properties
Executing a Method with Parameters
For buttons that execute a method that takes parameters, such as GetStats(), the
PL/SQL script for the WHEN-BUTTON-PRESSED trigger should follow this form:

declare
video_obj ole2.obj_type;
myArgList ole2.list_type;

begin
 video_obj := forms_ole.get_interface_pointer('OLE-object-name');
 myArgList := ole2.create_arglist;

 ole2.add_arg(myArgList, “arg”);

 ole2.invoke(video_obj, 'method', myArgList);
end;

Where:

■ video_obj is a variable name.

■ myArgList is a list of items.

■ arg is a parameter for the method call.

■ OLE-object-name is the name of the video object.

■ method is the name of the method to invoke (such as play, stop, and so on).

Repeat the call to ole2.add_arg() for each parameter of the method.
 Working with Oracle Forms 5-7

Accessing Methods and Properties
Setting the Value of a Property
For buttons that set a property, the PL/SQL script for the WHEN-BUTTON-
PRESSED trigger should follow this form:

declare
video_obj ole2.obj_type;

begin
video_obj := forms_ole.get_interface_pointer('OLE-object-name');
ole2.set_property(video_obj , 'property','value');

end;

Where:

■ video_obj is a variable name.

■ OLE-object-name is the name of the video object.

■ property is the name of the property to be set (such as ShowControls).

■ value is the value to be assigned to the property (such as True or False).

Getting the Value of a Property
For buttons that get the numeric value of a property, the PL/SQL script for the
WHEN-BUTTON-PRESSED trigger should follow this form:

declare
video_obj ole2.obj_type;
variable number;

begin
video_obj := forms_ole.get_interface_pointer('OLE-object-name');
variable := ole2.get_num_property(video_obj , ‘num-property’);

end;

Where:

■ video_obj is a variable name.

■ variable is the variable that holds the returned property value.

■ OLE-object-name is the name of the video object.

■ num-property is the name of the property to be queried (such as IsLoaded).
5-8 Oracle Video Client Developer’s Guide

Modifying Properties
For buttons that get the string of a property, here’s the PL/SQL script for the
WHEN-BUTTON-PRESSED event:

declare
video_obj ole2.obj_type;
variable char;

begin
video_obj := forms_ole.get_interface_pointer('OLE-object-name');
variable := ole2.get_char_property(video_obj, 'char-property');

end;

Where:

■ video_obj is a variable name.

■ OLE-object-name is the name of the video object.

■ char-property is the name of a property that contains a character value, such as
Mediafile.

■ num-property is the name of a property that returns a numeric value, such as
PlayFrom.

Modifying Properties

To set the Oracle Video ActiveX Control properties, click the right mouse button in
the Oracle Video ActiveX Control object, then drag down to the Oracle Video
ActiveX Control Object | Properties.

Do not try to set properties by double-clicking on the Oracle Video ActiveX Control
object. You can’t set the properties from the dialog box that appears.

Note: If you set any visual properties, such as ShowControls, to
0, the controls disappear in the designer, but the change will not be
reflected in the run-time version. To see the changes in the run-
time version, you must close the Layout Editor to save the changes
and run the form.
 Working with Oracle Forms 5-9

Troubleshooting
Troubleshooting

When using Oracle Forms, you might receive this run-time error:

FRM-41344: OLE object not defined for object in current record.

which can occur for either of these reasons:

■ The OLE container has lost the definition of the Oracle Video ActiveX Control.

To fix this problem, go into the Forms Designer. Re-insert the Oracle Video
ActiveX Control by clicking the right mouse button inside the OLE container
and choosing Insert Object.

■ The Oracle Video ActiveX Control has not been initialized.

To fix this problem, modify the form so that it can navigate to the block that
contains the Oracle Video ActiveX Control. You can either make this block the
first block on the form or add a GO_BLOCK command in the WHEN-NEW-
FORM-INSTANCE script to navigate to that block. If necessary, you can add a
GO_BLOCK command followed by SYNCHRONIZE before any commands
that access the Oracle Video ActiveX Control. (You can tell when the Oracle
Video ActiveX Control has been initialized because the video control buttons
will be visible.)
5-10 Oracle Video Client Developer’s Guide

 Oracle Video Web Plug-in Refe
A

Oracle Video Web Plug-in Reference

This appendix contains the reference information for the Oracle Video Web Plug-in.
This plug-in allows you to embed the Oracle Video Client in applications that
support the Netscape plug-in standard. For details on how to embed the plug-in in
an HTML page and other tasks, see Chapter 2, “Oracle Video Web Plug-in”.

This appendix contains the following information:

■ <Embed> Attributes

■ JavaScript Methods

■ Java Classes

<Embed> Attributes
This section lists all of the available <embed> statement attributes recognized by
the Oracle Video Web Plug-in. The following attributes are available:

autoStart loop sliderRate

background mediafile src

controls name toolTips

controlMask playFrom type

height playTo volume

hidden popupMenu width

leftClick
rence A-1

<Embed> Attributes
autoStart

Syntax: autoStart="true | false"

Specifies whether the plug-in begins playing as soon as the player has completed
loading the stream.

If true, the stream starts as soon as the page is opened. The default value is false.

background

Syntax: background="#rrggbb"

Specifies a background color to be displayed behind the plug-in area. This uses the
standard HTML format for specifying RGB color values. This background can’t be
seen when the plug-in video screen is displayed.

controls

Syntax: controls="true | false"

Specifies whether the player displays the VCR-style controller. The controller
consists of:

■ a push button that toggles between the Play and Pause icon

■ a stop button

■ a seek slider indicating the current stream position; you can change the stream
position by dragging the slider to another position

■ a volume slider indicating the current volume; you can change the volume by
dragging the slider to another position

If controls is true, the plug-in displays the controls specified by the controlMask
parameter. The default value is false.

Figure A–1 shows the Oracle Video Web Plug-in with both the controller and the
status line visible.
A-2 Oracle Video Client Developer’s Guide

<Embed> Attributes
Figure A–1 controls=true and controlMask="controller+statusline"

controlMask

Syntax: controlMask="controller" [+] "statusline"

Selects which controls appear in the plug-in. The default is the controller only. This
requires you to set controls to true, otherwise no controls show up:

■ controls=true displays the controller only

■ controls=true and controlMask= “controller+statusline” displays both the
controller and the status line

■ controls=true and controlMask= “statusline” displays the status line only

height

Syntax: height=nnnn

Required. Specifies the height of the plug-in in pixels. If the controls and border
attributes are not set, then this indicates the actual height of the plug-in. If the
border attribute is set, then:

1. Multiply the border thickness times two.

2. Add this to the height that you want the video screen.

Controller

Status line
 Oracle Video Web Plug-in Reference A-3

<Embed> Attributes
3. Use this number for height.

If controls is turned on:

1. If the controller is displayed, add 24 pixels.

2. If the status line is displayed, add 21 pixels.

For example, if you want a video screen that is 200 pixels high with a 10-pixel thick
border and the controller displayed, multiply the border times two to get 20, add
this to the desired width of the screen, 200, then add 24 pixels for the controller.
This gives you a height of 244 pixels.

hidden

Syntax: hidden="true | false"

Specifies whether the plug-in is displayed on the page or not. If true, the plug-in is
not displayed, regardless of the value of height and width attributes. The default
value is false.

leftClick

Syntax: leftClick="true | false"

Specifies whether a left click on the video screen toggles Play and Pause. If
leftClick is true, left clicking in the video screen has the same effect as clicking on
the Play/Pause button. The default value is true.

loop

Syntax: loop="true | false"

Specifies whether the player loops the current stream by starting back at the
beginning whenever it reaches the end of stream. The default value is false.

If you set the playFrom and playTo attributes or started playback by calling the
play() method with to and from parameters, the stream returns to the playFrom
position when it reaches the playTo position.
A-4 Oracle Video Client Developer’s Guide

<Embed> Attributes
mediafile

Syntax: mediafile="mediafile_url"

Required. Specifies the protocol, server, and media file to play. You must use the
this attribute in conjunction with either the src or type attribute.

For information on how these attributes work together, see “Specifying the Media
File and MIME Type” on page 2-8. For information on media file specifiers, see
Appendix D, “The Media File”.

name

Syntax: name="plugin_name"

Required (if you want to call methods on the plug-in from a JavaScript function or a
Java applet). Declares the public name for the plug-in instance.

In the following example, the plug-in instance is named video1:

<embed type="application/oracle-video" name="video1" width=352
height=240 mediafile="vstcp://sun:5000/mds/video/oracle1.mpi">

A JavaScript call to the plug-in would look like this:

document.video1.play();

playFrom

Syntax: playFrom=["beginning" | "end" | "hh:mm:ss:cc" | millisecs]

Specifies a start time for playback. If loop is true, then playback loops back to the
point specified by this attribute; the default is to play from the beginning.

To specify a time, use one of these formats:

■ The predefined string values “beginning” or “end”

■ A string in the format hh:mm:ss:cc

For example, 00:02:40:10 starts the stream two minutes, forty seconds, and ten
hundredths of a second from the beginning of the stream (160.1 seconds).

■ The number of milliseconds from the beginning of the stream

For example, 160100 is the millisecond equivalent of 00:02:40:10 above.
 Oracle Video Web Plug-in Reference A-5

<Embed> Attributes
playTo

Syntax: playTo==["beginning" | "end" | "hh:mm:ss:cc" | millisecs]

Specifies a stop time for playback. If the loop attribute is false or not set, the plug-in
stops when it reaches this point. The default is to play until the end. If loop is true,
the stream restarts at the playFrom position when the playTo position is reached.

To set a specified time use one of these formats:

■ The predefined string values “beginning” or “end”

■ A string in the format hh:mm:ss:cc

For example, 00:02:40:10 starts the stream two minutes, forty seconds, and ten
hundredths of a second from the beginning of the stream (160.1 seconds).

■ The number of milliseconds from the beginning of the stream

For example, 160100 is the millisecond equivalent of 00:02:40:10 above.

popupMenu

Syntax: popupMenu="true | false"

Specifies whether the pop-up menu appears when the user clicks the right mouse
button on the player. This pop-up menu allows basic operations like play and
pause, rewind to the beginning of the movie, forward to the end of the movie, and
close. The default value is true.

sliderRate

Syntax: sliderRate=milliseconds

Specifies the increments by which you can adjust the plug-in’s seek slider. This also
affects the time units displayed in the status line and when the
OviObserver.onPositionChange() method is called.

src

Syntax: src="file.mpi"

Required (if not used, type must be used). The src attribute is recognized by all
browsers. Use the src attribute if your browser does not support the type attribute
(for example, Microsoft Internet Explorer and Netscape 2.x). The src attribute
identifies the type of plug-in to load by the extension of the file specified. In the
A-6 Oracle Video Client Developer’s Guide

<Embed> Attributes
case of the Oracle Video Web Plug-in, this attribute doesn’t identify the actual file
to load, however: the plug-in actually gets that from the mediafile attribute.

Note that your HTTP server must be configured to recognize the application/
oracle-video MIME type, which are associated with files with an extension of .mpi.

toolTips

Syntax: toolTips=”true | false”

Indicates whether the plug-in displays tool tips when the user moves the mouse
pointer over the plug-in area.

type

Syntax: type="application/oracle-video"

Required (if not used, src must be used). Specifies the MIME type. In this case, it
invokes the plug-in and prepares it to play an Oracle video file. The plug-in gets
the name of the file to play from the mediafile attribute.

The only value you should specify for the type attribute is application/
oracle-video, as shown.

volume

Syntax: volume=nnn

Where n is a volume level (integer value) in the range 0-100. Normally, allow the
user to set the volume with the volume slider. This attribute is useful if there are
multiple clips on the same server that have varying base volume levels.

Note: The type attribute only works in Netscape 3.0 or greater.
For Microsoft Internet Explorer or Netscape Navigator 2.x
browsers, use the src attribute. See “Specifying the Media File and
MIME Type” on page 2-8 for more information.
 Oracle Video Web Plug-in Reference A-7

JavaScript Methods
width

Syntax: width=nnn

Required. Specifies the width of the plug-in in pixels. If the border attribute is not
set, then this indicates the actual width of the plug-in. If the border attribute is set,
then:

1. Multiply the border width times two.

2. Add this to the width that you want the video screen.

3. Use this number for width.

For example, if you want a video screen that is 320 pixels wide with a 10-pixel thick
border, multiply the border times two to get 20, add this to the desired width of the
screen, 320, for a width of 340 pixels.

JavaScript Methods
From JavaScript, you can call most of the methods on the plug-in defined in the
OviPlayer class, as described in “OviPlayer” on page A-9. The methods you can
call from JavaScript are:

If you want to call any of these methods through the JavaScript LiveConnect
interface, call the method through the plug-in’s name. For example, you have a
plug-in embedded into an HTML document with the following code:

<embed name=”video1” height=320 width=200 src=”oracle.mpi” mediafile=”spud.spi”>

Call the setLoop() method for this instance of the plug-in like this:

document.video1.setLoop(1);

See “OviPlayer” on page A-9 for descriptions of available methods’ syntax.

forward() resume() setLoop()

getLength() rewind() setPopupMenu()

getMaxPos() setAutoStart() setPos()

getMinPos() setFullScreen() setVol()

getPos() load() stop()

getState() pause() unload()

getVol() play()
A-8 Oracle Video Client Developer’s Guide

Java Classes
Java Classes
OVC provides two classes to facilitate communications between Java applets,
JavaScript, and the Oracle Video Web Plug-in. These classes are:

■ OviPlayer

■ OviObserver

OviPlayer
This section describes the public methods in the OviPlayer Java class. For
information on controlling the Oracle Video Web Plug-in from a Java applet, see
“Retrieving the OviPlayer Object” on page 2-25. The following methods are
available:

advise()

Syntax: boolean advise(OviObserver o)

Specifies the observer object for plug-in events. Returns true if the observer was
successfully registered.

forward()

Syntax: boolean forward()

Forward the stream to the end of the movie or the position specified in the playTo
property. Returns true if the forward operation was successful.

advise() getVol() setFullScreen()

forward() load() setLoop()

getLength() pause() setPopupMenu()

getMaxPos() play() setPos()

getMinPos() resume() setVol()

getObserver() rewind() stop()

getPos() setAutoStart() unload()

getState()
 Oracle Video Web Plug-in Reference A-9

Java Classes
getLength()

Syntax: int getLength()

Returns the total length of the stream in milliseconds.

getMaxPos()

Syntax: long getMaxPos()

Returns the maximum stream position. If no end point has been set, either through
the playTo attribute or the play() method, then getMaxPos() returns:

■ The length of the stream, as long as the stream has a finite length; for example,
a movie stored on the video server has a finite length

■ Zero, if the stream is unbounded; for example, a live video feed has no set
endpoint

Otherwise it returns the value of the end point.

getMinPos()

Syntax: long getMinPos()

Returns the minimum stream position. If no startpoint has been set, either through
the playFrom attribute or the play() method, then getMinPos() returns zero.
Otherwise it returns the value of the start point.

getObserver()

Syntax: OviObserver getObserver()

Returns the registered observer object.

getPos()

Syntax: long getPos()

Gets the current stream position in milliseconds.
A-10 Oracle Video Client Developer’s Guide

Java Classes
getState()

Syntax: int getState()

Returns the current state of the player:

When calling getState() through JavaScript, you can’t access the symbolic
representation of the return values. Instead you need to use the literal numeric
values shown in Table A–2.

getVol()

Syntax: int getVol()

Gets the play volume (0 to 100).

Table A–1 State Values for OviPlayer

Value Description

OviPlayer.ST_EOS Indicates the end of stream has been reached. If the playTo
attribute was set or playback was started by calling the
play() method with to and from parameters, playback stops
at the position indicated.

OviPlayer.ST_ERROR Indicates a non-recoverable error has occurred.

OviPlayer.ST_INIT Indicates the player has been created and initialized; this
state is also set after the unload() method returns.

OviPlayer.ST_PAUSED Indicates the player is paused.

OviPlayer.ST_PLAYING Indicates the player is playing.

OviPlayer.ST_REALIZED Indicates the player has completed loading a stream.

Table A–2 State Values for getState() JavaScript Call

Symbolic Value

OviPlayer.ST_INIT 1

OviPlayer.ST_ERROR 2

OviPlayer.ST_REALIZED 4

OviPlayer.ST_PLAYING 5

OviPlayer.ST_PAUSED 6

OviPlayer.ST_EOS 7
 Oracle Video Web Plug-in Reference A-11

Java Classes
load()

Syntax: boolean load(String mediafile)

Loads a new stream. mediafile indicates the filename or asset cookie to load.
Returns true if the media file was loaded successful.

After loading, if the autoStart attribute is false, the plug-in state is set to
OviPlayer.ST_REALIZED. If autoStart is true, the stream starts playing and the
plug-in state is set to OviPlayer.ST_PLAYING.

pause()

Syntax: boolean pause()

Pauses stream playback at the current position. Returns true and sets the plug-in
state to OviPlayer.ST_PAUSED if the pause was successful.

play()

Syntax: boolean play(), boolean play(String from, String to)

Starts stream playback:

■ The first version starts from the beginning of the stream or at the position set
with playFrom. Playback continues until the end of the stream.

■ The second version starts at the position indicated by from and continues to
play until the position indicated by to.

Both methods return true if playback was successfully started. The plug-in state is
set to OviPlayer.ST_PLAYING.

Note that you can’t call play() while the player is paused (state set to
OviPlayer.ST_PAUSED), only when stopped. When the player is paused, call the
resume() method to restart playback.

resume()

Syntax: boolean resume()

Resumes playback of the stream from the pause state. Returns true and sets state to
set to OviPlayer.ST_PLAYING if playback was successfully resumed.
A-12 Oracle Video Client Developer’s Guide

Java Classes
Note that you can’t call resume() while the player is stopped (state
OviPlayer.ST_REALIZED), only when paused (state OviPlayer.ST_PAUSED).
When the player is stopped, call the play() method to start playback.

rewind()

Syntax: boolean rewind()

Rewind the stream to the beginning of the movie or the position specified in the
playFrom property. Returns true if the rewind was successful.

setAutoStart()

Syntax: void setAutoStart(boolean startflag)

Turns the autostart feature on and off. If startflag is true, the stream starts
automatically when loaded.

setFullScreen()

Syntax: void setFullScreen(boolean mode)

Sets normal and full-screen mode. Passing mode as true sets full-screen mode,
while passing mode as false sets normal mode.

setLoop()

Syntax: void setLoop(boolean loop)

If loop is true, the position indicator returns to the beginning of the stream when
playback reaches the end of the stream, except:

■ If the playFrom property specifies a playback starting point other than the
beginning of the stream. In that case, the position indicator returns to the
playFrom position instead of the beginning.

■ If the playTo property specifies a playback end point other than the end of the
stream. In that case, the position indicator returns to the beginning (or
playFrom position) when it reaches the playTo position.
 Oracle Video Web Plug-in Reference A-13

Java Classes
setPopupMenu()

Syntax: void setPopupMenu(boolean menu)

Specifies whether the pop-up menu appears when the user clicks the right mouse
button on the player. This pop-up menu allows basic operations like play and
pause, rewind to the beginning of the movie, forward to the end of the movie, and
close.

setPos()

Syntax: boolean setPos(long position)

Go to a specified stream position, indicated in milliseconds. Returns true if the
position change was successful.

You should only call this method when the loaded stream is active; this means that
the stream has been loaded and is currently playing or paused. setPos() does not
function properly from the initialized or realized states (see getState() for
information on plug-in states). Call play() with the from and to for initialized or
realized streams.

After the call to this method, the stream maintains its current state: if playing, it
continues playing, if paused, it remains paused.

setVol()

Syntax: void setVol(int vol)

Set the play volume (range from 0 to 100).

stop()

Syntax: boolean stop()

Stop playing the stream and rewind to the beginning. If a start position was
specified by playFrom or the from parameter of play(), it’s erased and the start
position returns to the beginning of the stream. Returns true and sets player state to
OviPlayer.ST_REALIZED if the stop operation was successful.
A-14 Oracle Video Client Developer’s Guide

Java Classes
unload()

Syntax: boolean unload()

Unloads the stream. Returns true if the unload operation was successful.

OviObserver
The OviObserver interface specifies two methods you must complete when you
implement the OviObserver interface. Because there are no implementations
provided by OVC for these methods, the description of these methods explains
when the methods are called. You then need to implement whatever functionality
you want for these events. For more information on using the OviObserver
interface, see “Using OviObserver” on page 2-26.

OviObserver contains the following methods:

onPositionChange()

Syntax: public void onPositionChange()

Called when the stream changes position, as measured in regular increments. The
default is one second, but this changes to reflect the setting of the sliderRate
attribute.

onStop()

Syntax: public void onStop()

Called when the plug-in reaches the end of the stream or the playTo position if set.

onPositionChange() onStop()
 Oracle Video Web Plug-in Reference A-15

Java Classes
A-16 Oracle Video Client Developer’s Guide

 Oracle Video Java Library Refe
B

Oracle Video Java Library Reference

This appendix describes the public Java classes and interfaces in the Oracle Video
Java Library. You can use this library to build native Java applications that access
the Oracle Video Server. You can find out how to use these classes in your
applications by referring to Chapter 3, “Oracle Video Java Library”.

This section contains descriptions of the following classes and interfaces:

■ Content on page B-2

■ ContentException on page B-2

■ ContentIter on page B-4

■ Player on page B-6

■ PlayerApplet on page B-16

■ PlayerException on page B-16

■ PlayerFactory on page B-19

■ PlayerListener on page B-20

■ StmInfo on page B-21

■ StmOpts on page B-26

■ StmPos on page B-29

■ StmStats on page B-34
rence B-1

Content
Content
The Content class provides the ability to query an Oracle Video Server for a list of
the available content titles in a directory of the media data store. Content provides
only one public method, query(). Since this method is static, and Content has no
data members or constants, you don’t need to create Content objects.

You can find information on using the content classes Content, ContentException,
and ContentIter in “Querying Available Content Titles” on page 3-26.

query()

Syntax: static StmInfo[] query(String srvAddr, String spec, ContentIter iter)

This method returns an array of StmInfo objects containing information about all
of the content titles that:

■ Are on the server indicated by srvAddr

■ Meet the specification spec on the server indicated by srvAddr

Use the ContentIter to move through the returned objects. See “Querying
Available Content Titles” on page 3-26 for more information on how to query for
content titles.

ContentException
ContentException objects are thrown when a problem occurs during content query
operations. ContentException contains the following members:

Constants

ContentException.EX_BADPARAM ContentException.EX_INTERNAL

ContentException.EX_BADSTATE ContentException.EX_NOTIMPL

ContentException.EX_ERROR ContentException.EX_UNTRANS

Data Members

m_code m_type

m_msg

Methods

toString()
B-2 Oracle Video Client Developer’s Guide

ContentException
You can find information on using the content classes Content, ContentException,
and ContentIter in “Querying Available Content Titles” on page 3-26.

ContentException Constants
All of the constants defined in the ContentException class are of type int. You can
check the particular type of exception thrown by examining the ContentException
member m_type, which is set to one of these constants.

ContentException.EX_BADPARAM
Indicates that one of the parameters passed to the routine was invalid in the context
of that Content method. For instance, if you call Content.query() with an
uninitialized ContentIter reference, a ContentException with this value is thrown.

ContentException.EX_BADSTATE
Indicates that a Content method was called during an invalid state.

ContentException.EX_ERROR
Indicates an error has occurred that is not covered by any other ContentException
constants.

ContentException.EX_INTERNAL
Indicates that an internal (unexpected) error occurred. In this case, m_code and
m_msg are set and should be reported to Oracle Worldwide Customer Support
Services.

ContentException.EX_NOTIMPL
Indicates the caller attempted to use functionality that is not implemented in the
current version of the Oracle Video Java Library.

ContentException.EX_UNTRANS
Indicates that an untranslatable error has occurred.

ContentException Data Members
The ContentException class contains the following public data members:
 Oracle Video Java Library Reference B-3

ContentIter
m_code

Type: int

Set to an Oracle-specific error code. This code may be useful in debugging and
problem solving interactions with Oracle Worldwide Customer Support Services.

m_msg

Type: int

Contains a string containing additional information on the thrown exception.

m_type

Type: int

Indicates the type of exception thrown by a Content method. This is one of the
EX_* constants described in “ContentException Constants” on page B-3.

ContentException Methods
The ContentException class contains the following public method:

toString()

Syntax: String toString()

Returns a single string consisting of all the information contained in each of the
member variables.

ContentIter
ContentIter works in conjunction with the Content class to let you retrieve lists of
available content titles from an Oracle Video Server. The process of retrieving these
titles is iterative, which means that it is performed in steps, by retrieving only a few
titles at a time. You use a ContentIter object to manage this process.
B-4 Oracle Video Client Developer’s Guide

ContentIter
ContentIter contains the following members:

You can find information on using the content classes Content, ContentException,
and ContentIter in “Querying Available Content Titles” on page 3-26.

ContentIter Data Members
ContentIter contains the following public data members.

m_num

Type: int

Indicates the number of titles to retrieve with each query operation. When all
available titles have been retrieved, Content.query() sets this to the number of titles
actually retrieved with the last query. Content.query() also sets m_pos to -1 when
the last titles have been queried.

m_pos

Type: int

Indicates the current position in the list of available titles. Content.query() sets this
to -1 when all available titles have been retrieved. Content.query() also sets
m_num to the number of titles actually retrieved with the last query.

Data Members

m_num m_pos

Methods

ContentIter()
 Oracle Video Java Library Reference B-5

Player
ContentIter Methods
ContentIter contains only one public method, its constructor.

ContentIter()

Syntax: ContentIter(int pos, int num)

Sets the iterator values to be used during a query operation:

■ pos indicates the position in the list of available titles at which you want to
start. For example, if your last query retrieved the first 30 titles from a
particular server, you may not want to retrieve those again. You could then set
pos to 30 before your next query.

■ num indicates the number of titles you want to retrieve with each query
operation.

Player
Player is the central object in the Oracle Video Java Library. It provides:

■ A set of constants for defining the player state

■ Default user interface

■ Media control API

■ Service methods

Unlike the PlayerListener interface, the Player interface is already implemented at
a lower level in the oracle.ovc package and therefore cannot be implemented in
your own Java application. Note that Player does not have a constructor: to create a
Player object, call PlayerFactory.getPlayer(). See “getPlayer()” on page B-19 for
more information on this method.
B-6 Oracle Video Client Developer’s Guide

Player
Player contains the following members:

Player does not have a public constructor. To create new Player objects, use the
PlayerFactory.getPlayer() method. See “PlayerFactory” on page B-19 for more
information.

Player Constants
This section details the possible states of the Player object. All Player states are
expressed as constants in the form Player.ST_*.

Player State Reference
This section describes the Player states and the various ways a Player object can
arrive at these states. Methods that are briefly mentioned in this section are
discussed in detail in “Player Methods” on page B-8. For more information on
tracking Player states, see “Stream and Player State” on page 3-13 and “Handling
Player Events” on page 3-17.

Player.ST_EOS
Indicates the end of stream has been reached. PlayerListener.endOfStream()
provides another method for determining when the player reaches the end of a
stream.

Constants

Player.ST_EOS Player.ST_PAUSED Player.ST_REALIZED

Player.ST_ERROR Player.ST_PLAYING Player.ST_UNINIT

Player.ST_INIT

Methods

addListener() getStatusComp() setFullScreen()

getControlComp() getVisualComp() setPos()

getInfo() getVol() setVol()

getPlayerUI() load() stateToString()

getPos() pause() stop()

getSelRange() play() term()

getState() resume() unload()

getStats()
 Oracle Video Java Library Reference B-7

Player
Player.ST_ERROR
Indicates a non-recoverable error has occurred. PlayerListener.error() provides
another method for determining when such errors occur.

Player.ST_INIT
Indicates the Player object has been created and initialized, without having a
stream loaded. You can also encounter this state after the unload() method returns.

Player.ST_PAUSED
Indicates the Player object is paused.

Player.ST_PLAYING
Indicates the Player object is playing the current stream. This happens after the
play() or resume() methods return. It also happens after load() returns if
StmOpts.m_autoStart is true. See the StmOpts class reference on page B-26 for
more information.

Player.ST_REALIZED
Indicates the player has completed loading a stream.

Player.ST_UNINIT
Indicates the player has been terminated and uninitialized. The player is in this
state a very brief period of time after the term() method is called. Note that the
term() method should only be called after unload() returns and the state is
Player.ST_INIT. You can not reuse a Player object after calling term().

Player Methods
Player methods break down into three general categories:

■ User Interface Methods

■ Media Control Methods

■ Player Service Methods

There are some things that all of these methods share:

■ All of the Player methods can throw PlayerException objects. You must place
Player method calls within try blocks and catch any PlayerException objects in
order for your code to compile.

■ Each of the methods presented here are declared public.
B-8 Oracle Video Client Developer’s Guide

Player
User Interface Methods
The following methods deal with retrieving or configuring the user interface
portion of the video client.

getControlComp()

Syntax: Component getControlComp()

Retrieves the standard controller interface component to be added to the player
interface. The controller includes a Play/Pause button, a Stop button and a Seek
scrollbar.

getPlayerUI()

Syntax: Component getPlayerUI()
 Component getPlayerUI(boolean Video, boolean Controls, boolean Status)
 Component getPlayerUI(boolean Video, boolean Controls, boolean Status,
 int width, int height)

Retrieves the video screen (visual component), the controller panel and the status
line panel bundled together as a single component to be added to the player
interface.

■ The first form of this method returns the interface with all of the components.

■ The second form lets you select which interface components are displayed.

■ The third form, like the second, lets you select which interface components are
displayed, but also lets you specify a width and height for the interface. This
forces the interface component to keep a fixed width and height, even if the
host window is resized.

getSelRange()

Syntax: void getSelRange(StmPos from, StmPos to)

Retrieves the current start and end positions of the player and puts them in the
from and to parameters.
 Oracle Video Java Library Reference B-9

Player
getStatusComp()

Syntax: Component getStatusComp()

Retrieves the standard status line interface component to be added to the player
interface. This status line component includes a stream position counter and a
status message text area.

getVisualComp()

Syntax: Component getVisualComp()

Retrieves the video screen (visual component) as a interface component to be
added to the player interface.

Media Control Methods
The following methods give you control over stream playback.

getPos()

Syntax: StmPos getPos(int fmt)

Returns the current position of the stream in the form of a StmPos object. This
method requires that the position format, fmt, be stipulated by the Java application.

The only two position formats supported by this method are
StmPos.POSFMT_TIME and StmPos.POSFMT_FRAMES. You can call this
method from any state in which a stream is present. See the StmPos class reference
on page B-29 for more information.

getVol()

Syntax: int getVol()

Returns the current volume setting of the player as an integer in the range of 0 to
100. You can call this method from any state in which a stream is present.
B-10 Oracle Video Client Developer’s Guide

Player
load()

Syntax: void load(String mediafile, StmOpts opts)

Loads the media content file and prepares it for playback. You can call this method
from all active states.

mediafile is a String object containing a media file specifier. This specifier
describes the location of the media resource to be loaded. See Appendix D, “The
Media File”, for more information on media file specifiers.

StmOpts defines a number of stream attributes, such as auto start, start position,
end position, and so on. See the StmOpts class reference on page B-26 for more
information.

Pass a null StmOpts object if you want all of the following default media stream
options:

■ m_autoStart=false

■ m_loop=false

■ m_volume=StmOpts.DEFAULT_VOL

■ m_playFrom=beginning

■ m_playTo=end

For example:

try {
myapp.m_player.load("/mds/video/oracle1.mpi", null);

}
catch(PlayerException e) {

System.out.println("Failed to load default stream.");
}

pause()

Syntax: void pause()

Pauses playback, preserving the current position. The current frame will remain on
screen. Can only be called from Player.ST_PLAYING.
 Oracle Video Java Library Reference B-11

Player
play()

Syntax: void play(), void play(StmPos from, StmPos to)

Starts stream playback:

■ The first version starts from the beginning of the stream or the position
indicated by the m_playFrom member of the StmOpts object passed to load().
Unless interrupted, playback continues until the stream reaches its end or the
position indicated by the m_playTo member of the StmOpts object passed to
load().

■ The second version starts playback from the position indicated by the from
parameter and continues until the stream reaches the position indicated by the
to parameter. The from and to parameters override the start and end positions
set in the m_playFrom and m_playTo members of the StmOpts object passed
to load(), but do not replace them: the next call to the first version of play() uses
the original start and end positions.

You must call this method while the player is stopped. You can’t call play() to
resume play from a paused state; in that case, call resume().

resume()

Syntax: void resume()

Resumes playback of the stream from the current position. You must call this
method while the player is paused. You can’t call resume() to resume play from a
stopped state; in that case, call play().

setFullScreen()

Syntax: void setFullScreen(boolean mode)

Toggles player between normal and full-screen mode. Passing mode as true sets
full-screen mode, while passing mode as false sets normal mode.

setPos()

Syntax: void setPos(StmPos pos)

Moves the stream position to the value contained in the StmPos object. You can call
this method from any state in which a stream is present. See the StmPos class
reference on page B-29 for more information.
B-12 Oracle Video Client Developer’s Guide

Player
setVol()

Syntax: void setVol(int vol)

Sets the current volume of the Player as an integer from 0 to 100. You can call this
method from any state in which a stream is present.

stateToString()

Syntax: String stateToString(int state)

Converts the player state indicated by state into a text description contained in the
returned String value. Use this to convert Player constants such as
Player.ST_PLAYING or Player.ST_ERROR returned from getState() into text.

stop()

Syntax: void stop()

Stops playback and resets the stream position to the beginning of the stream. If a
start position was specified in StmOpts.m_playFrom or the from parameter of
play(), it’s erased and the start position returns to the beginning of the stream. The
stream rewinds to the first frame, which appears in the video screen. Note that
encoding sometimes makes the first frame black. You can call this method while the
player state is one of Player.ST_PLAYING, Player.ST_PAUSED, or Player.ST_EOS.

unload()

Syntax: void unload()

Releases any resources associated with the current stream. You can call this method
from any state in which a stream is present.

Player Service Methods
The following methods give you access to the internals of the Player object, such as
player state and configuring the listener object.
 Oracle Video Java Library Reference B-13

Player
addListener()

Syntax: void addListener(PlayerListener listener)

Registers the listener object as a PlayerListener. The listener is notified of specific
events occurring in the Player object through the PlayerListener interface methods.

This example shows a simple class that implements the PlayerListener interface,
creates a Player object, and adds itself as a listener to the Player object.

public class myClass implements PlayerListener {
Player m_player = null;
myClass app = null;

public static void main(String args[]) {
app = new myClass();

m_player = PlayerFactory.getPlayer();
m_player.addListener(app);
m_player.load(args[0], null);
m_player.play();
}

// PlayerListener methods
public void stateChange(int newState) {

System.out.println("Player state change to: " + newState);
}

public void error(int code, String msg) {
System.out.println("Error! Code: " + code);
}

public void endOfStream() {
System.out.println("End of stream reached!");
}

}

Note: A Java application or object must implement the
PlayerListener interface to be registered as a listener object. See the
PlayerListener interface reference on page B-20 for more
information.
B-14 Oracle Video Client Developer’s Guide

Player
getInfo()

Syntax: StmInfo getInfo()

Returns a StmInfo object containing information about the current stream. You can
call this method from any state in which a stream is present. See the StmInfo class
reference on page B-21 for more information.

getState()

Syntax: int getState()

Returns the current state of the Player object. The return value of this method can
be any of the values described in “Player Constants” on page B-7. You can call this
method from any Player state.

getStats()

Syntax: StmStats getStats()

Returns a StmStats object containing information concerning the current playback
states and statistics of the stream. You can call this method from any state in which
a stream is present. See the StmStats class reference on page B-34 for more
information.

term()

Syntax: int term()

Terminates the internal Oracle Video Client processes but does not release the
Player object in the Java context. If necessary, this method calls unload() before
terminating the player. This method should be called prior to exiting applications
that use the Oracle Video Java Library.

Note: If you want an application to free the Player object in the
Java context and continue running, call this method, set the Player
object to null, and call the Java garbage collection service.
 Oracle Video Java Library Reference B-15

PlayerApplet
Setting the Player object to null allows the Java garbage collector to immediately
release all resources associated with the object. For example, this code sample
terminates the Player, sets the object reference to null, then calls the Java garbage
collector:

try {
app.m_player.term();

}
catch(PlayerException e){

System.out.println("term() failed.");
}

app.m_player = null;
System.gc();

PlayerApplet
PlayerApplet is a simple Java applet that supports the same syntax and features as
the Oracle Video Web Plug-in, which is described in Chapter 2, “Oracle Video Web
Plug-in” and Appendix A, “Oracle Video Web Plug-in Reference”. Note that the
applet is not signed, so it may not function in all browsers. You can find out more
about using PlayerApplet in “Using the PlayerApplet Class” on page 3-31.

PlayerApplet recognizes the same attributes to the <APPLET> tag that the Oracle
Video Web Plug-in recognizes for the <EMBED> tag. For information on these
attributes, see “<Embed> Attributes” on page A-1.

PlayerException
The PlayerException class represents exceptions thrown specifically by the
methods of the Player class. All public methods of the Player class throw
PlayerException exception objects.

The PlayerException object’s m_type member represents the exception type
thrown. This is indicated by a constant of the format EX_* (the constants used are
described in “PlayerException Constants” on page B-17). The PlayerException
object’s m_code property is set to an Oracle-specific error code useful for
debugging purposes. The m_msg property is a String, which may contain
additional information about the exception thrown.
B-16 Oracle Video Client Developer’s Guide

PlayerException
PlayerException contains the following members:

PlayerException Constants
All of the constants defined in the PlayerException class are of type int. You can
check the type of exception thrown by examining m_type, which is set to one of
these constants.

PlayerException.EX_BADPARAM
Indicates that one of the parameters passed to the routine was invalid in the context
of that Player method. For instance, if you call Player.setVol() with an integer value
greater than 100 or less than 0, a PlayerException with this value is thrown.

PlayerException.EX_BADSTATE
Indicates that a Player method was called during an invalid state. For instance,
calling Player.pause() while loading a stream causes this PlayerException to be
thrown.

PlayerException.EX_ERROR
Indicates an error has occurred that is not covered by any other PlayerException
constants.

PlayerException.EX_INTERNAL
Indicates that an internal (unexpected) error occurred. In this case, m_code and
m_msg are set and should be reported to Oracle Worldwide Customer Support
Services.

Constants

PlayerException.EX_BADPARAM PlayerException.EX_INTERNAL

PlayerException.EX_BADSTATE PlayerException.EX_NOTIMPL

PlayerException.EX_ERROR PlayerException.EX_UNTRANS

Data Members

m_code m_type

m_msg

Methods

toString()
 Oracle Video Java Library Reference B-17

PlayerException
PlayerException.EX_NOTIMPL
Indicates the caller attempted to use functionality that is not implemented in the
current version of the Oracle Video Java Library.

PlayerException.EX_UNTRANS
Indicates that an untranslated error has occurred. To translate the error, call the
toString() method.

PlayerException Data Members
The PlayerException class contains the following public data members:

m_type

Type: int

Indicates the type of exception thrown by a Player method. This is one of the EX_*
constants described in “PlayerException Constants” on page B-17.

m_code

Type: int

Set to an Oracle-specific error code. This code may be useful when debugging and
solving OVC and Oracle Video Java Library problems with Oracle Worldwide
Customer Support Services.

m_msg

Type: int

Contains a string containing additional information on the thrown exception.

PlayerException Methods
The PlayerException class contains the following public method:

toString()

Syntax: String toString()

Returns a single string consisting of all the information contained in each of the
member variables.
B-18 Oracle Video Client Developer’s Guide

PlayerFactory
PlayerFactory
The PlayerFactory class provides a platform-independent means of creating new
Player objects. You must call the methods of PlayerFactory class to create Player
objects, rather than calling a Player constructor method.

PlayerFactory contains the following members:

PlayerFactory Methods
As with the members of the Player class, all the methods presented here are
declared public and can throw a PlayerException object.

createPlayer()

Syntax: Player createPlayer()

Instantiates a Player object for use by the calling Java application. createPlayer()
throws a PlayerException object if a Player cannot be instantiated.

getPlayer()

Syntax: static synchronized Player getPlayer()

Returns a new Player object appropriate to the current platform. This is the easiest
and most common method of instantiating new Player objects. This method is
equivalent to calling PlayerFactory.getPlayerFactory().createPlayer().

Here is an example of calling getPlayer():

try {
myapp.m_player = PlayerFactory.getPlayer();

}
catch(PlayerException e) {

System.out.println("getPlayer() failed...");
}

Methods

createPlayer() getPlayer() getPlayerFactory()
 Oracle Video Java Library Reference B-19

PlayerListener
getPlayerFactory()

Syntax: static synchronized PlayerFactory getPlayerFactory()

Returns the default PlayerFactory object for the current platform, which can then
be used to instantiate appropriate Player objects with the createPlayer() method.
Throws a PlayerException object if a factory is not available for the platform.

PlayerListener
The PlayerListener interface can be implemented by Java applications or objects
that wish to be notified of state changes that occur in the Player object.

To receive notification from a Player object, the Java application or object must:

■ Properly register itself as a PlayerListener by calling Player.addListener(); see
"Player Service Methods" on page B-13 for more details about this method.

■ Implement all of the PlayerListener methods described in this section

PlayerListener contains the following members:

PlayerListener Methods
All PlayerListener methods must be implemented if you want a Player object to
notify your Java application or object each time an event occurs. Once properly
registered, each of these methods is invoked as the corresponding event occurs. For
information on registering an object as a listener, see “Handling Player Events” on
page 3-17.

error()

Syntax: void error(int code, String msg)

Indicates a known, non-recoverable error has occurred in the Player object. code is
an error code specific to the Oracle Video Client in the format OVC-xxxx. msg
describes the error.

After this method is invoked, the player is in the state Player.ST_ERROR. This is a
non-recoverable state: the player must be unloaded using the Player.unload()
method.

Methods

endOfStream() error() stateChange()
B-20 Oracle Video Client Developer’s Guide

StmInfo
endOfStream()

Syntax: void endOfStream()

Indicates the player has reached the end of the current stream.

stateChange()

Syntax: void stateChange(int newState)

Indicates the Player object has changed state.

One of the states of which stateChange() is notified is Player.ST_EOS (end of the
current stream). This performs the same function as the endOfStream() method,
providing another way of detecting the end of a stream. For a complete list of
Player states and their descriptions, refer to “Player Constants” on page B-7.

StmInfo
The StmInfo class represents static information about the current stream. StmInfo
objects are returned by the Player.getInfo() method.

StmInfo contains the following members:

Constants

StmInfo.CSTAT_DISK StmInfo.CSTAT_LOCALFILE StmInfo.CSTAT_TERMINATED

StmInfo.CSTAT_FEED StmInfo.CSTAT_NETWORK StmInfo.CSTAT_UNKNOWN

StmInfo.CSTAT_TAPE StmInfo.CSTAT_ROLLING

Data Members

m_aspect m_contType m_name

m_asset m_createTime m_proto

m_bitrate m_desc m_size

m_bytes m_fps m_url

m_contStat m_msecs

Methods

contStatToString() toString()
 Oracle Video Java Library Reference B-21

StmInfo
StmInfo Constants
All of the constants defined in the StmInfo class are of type int. You can check the
container status of the current stream by examining the StmInfo member
m_contStat, which is set to one of these constants. The container status indicates
what type of container the current stream is using.

StmInfo.CSTAT_DISK
Indicates the current stream originates from a file stored on disk on the Oracle
Video Server.

StmInfo.CSTAT_FEED
Indicates the current stream comes from a one-step encode feed.

StmInfo.CSTAT_LOCALFILE
Indicates the current stream originates from your local file system.

StmInfo.CSTAT_NETWORK
Indicates the current stream comes from a network feed, such as multicast
broadcast or other wide-band network feed.

StmInfo.CSTAT_ROLLING
Indicates the current stream comes from a rolling live feed.

StmInfo.CSTAT_TAPE
Indicates the current stream originates from a file stored in the Hierarchical Storage
Manager on the Oracle Video Server.

StmInfo.CSTAT_TERMINATED
Indicates the current stream comes from a terminated feed.

StmInfo.CSTAT_UNKNOWN
Indicates the current container status is unknown.
B-22 Oracle Video Client Developer’s Guide

StmInfo
StmInfo Data Members
The StmInfo class contains the following public data members:

m_aspect

Type: int

Contains the video aspect ratio.

So that the aspect ratio, which usually contains a decimal portion, can be contained
in an int instead of a float, the value of m_aspect actually contains the aspect ratio
multiplied by 1,000. For example, the aspect ratio 1.6 would be represented as 1600.

m_asset

Type: String

Contains the logical content asset cookie name.

m_bitrate

Type: int

The total bit rate of the current stream. This includes the audio component, the
video component, and the container overhead.

m_bytes

Type: long

File size in bytes of the stored content. This is zero if the stream is unbounded, such
as with a live video feed.

m_contStat

Type: int

Indicates the content status of the stream. This is one of the StmInfo constants of
the form CSTAT_*. You can convert the integer value contained in this property
into a String description by calling the contStatToString() method.
 Oracle Video Java Library Reference B-23

StmInfo
m_contType

Type: String

Contains the container type of the stream.

m_createTime

Type: Date

Contains the date and time the content was created, contained in a Java Date object.

m_desc

Type: String

Contains a text description of the stream.

m_fps

Type: int

Contains the frame rate of the current video component. The format is:

fps x 1,000

where fps is frames per second. To find the actual frames per second, divide this by
1,000.

m_msecs

Type: int

File size in milliseconds of the stored content. This is zero if the stream is
unbounded, such as with a live video feed.

m_name

Type: String

Contains the name of the stream.
B-24 Oracle Video Client Developer’s Guide

StmInfo
m_proto

Type: String

Contains the transport protocol of the stream.

m_size

Type: Dimension

Contains the source input size.

m_url

Type: String

Contains the media file specifier used in the Player.load() method. See Appendix
D, “The Media File” for a description of media file specifiers.

StmInfo Methods
The StmInfo class contains the following public methods:

contStatToString()

Syntax: static String contStatToString(int cstat)

Converts the stream container status indicated by cstat into a text description
contained in the returned String value. Use this to convert the m_contStat property
and StmInfo constants such as StmInfo.CSTAT_DISK or StmInfo.CSTAT_FEED
into text.

toString()

Syntax: String toString()

This routine returns a single string consisting of all the information contained in
each of the StmInfo member variables.
 Oracle Video Java Library Reference B-25

StmOpts
StmOpts
The StmOpts class consists of various media stream options. Modification of these
options allows you to customize attributes of the stream playback.

See the code sample provided on page B-9 for an example of passing a null default
StmOpts object to the Player.load() method. See the code sample on page B-29 for
an example of passing a modified StmOpts object to the Player.load() method.

StmOpts contains the following members:

StmOpts Constants
All constants in the StmOpts class are of type int.

StmOpts.DEFAULT_VOL
This constant indicates the default player volume. Setting StmOpts.m_volume to
this when calling Player.load() leaves the volume unchanged.

Note: The StmOpts object is passed to the Player.load() method.
Typically, if default values are desired, pass a null StmOpts object
when loading a stream. Alternatively, create an object of this class
that uses some of the default values and customizes other values.

Constants

StmOpts.DEFAULT_VOL

Data Members

m_autoStart m_loop m_popup

m_img m_playFrom m_volume

m_leftClick m_playTo

Methods

StmOpts()
B-26 Oracle Video Client Developer’s Guide

StmOpts
StmOpts Data Members
The StmOpts class contains the following public data members:

m_autoStart

Type: boolean

Specifies whether playback starts automatically. If true, the player starts playback
as soon it loads the stream. This is slightly faster than calling Player.load() then
Player.play().

The default value is false, meaning that you must explicitly call Player.play() to
begin playback.

m_img

Type: String

Contains the name of an image file to be displayed when the video screen is blank.

m_leftClick

Type: boolean

Specifies whether a left click on the video screen toggles Play and Pause. If
m_leftClick is true, left clicking in the video screen has the same effect as clicking
on the Play/Pause button. The default value is true.

m_loop

Type: boolean

If true, the player, upon reaching the end of the stream, returns to the beginning of
the stream and continues playback from that point. If start and end points were set,
then the player returns from the end point to the start point and continues playback.

The default value is false (no looping).
 Oracle Video Java Library Reference B-27

StmOpts
m_playFrom

Type: StmPos

Sets the starting position of the stream. The default for this member is the
beginning of the stream. Internally this is represented as a
StmPos(StmPos.POSFMT_BEGINNING) object.

m_playTo

Type: StmPos

Sets the ending position of the stream. Playback stops when this position is
reached. The default value for this member is the end of the stream. Internally this
is represented as a StmPos(StmPos.POSFMT_END) object.

m_popup

Type: boolean

Specifies whether the pop-up menu appears when the user clicks the right mouse
button on the player. This pop-up menu allows basic operations like play and
pause, rewind to the beginning of the movie, forward to the end of the movie, and
close. The default value is true.

m_volume

Type: int

Contains the audio volume setting for the stream. This value is an integer in the
range of 0 - 100. The default value for this member is StmOpts.DEFAULT_VOL,
which leaves the volume at its current setting.

StmOpts Methods
The StmOpts class contains the following public methods:
B-28 Oracle Video Client Developer’s Guide

StmPos
StmOpts()

Syntax: StmOpts()

The default constructor for the StmOpts class. Sets the StmOpts member fields to
their default values. To override an option, set the member value explicitly before
calling the Player.load() method.

Here is an example of overriding a StmOpts default member value:

//instantiate a default StmOpts object and change the m_playFrom position
StmOpts myStmOpts = new StmOpts();
myStmOpts.m_playFrom = 5000;

// Load the stream with the customized StmOpts object
try {

myapp.m_player.load("/mds/video/oracle1.mpi", myStmOpts);
}
catch(PlayerException e) {

System.out.println("Failed to load customized stream.");
}

StmPos
The StmPos class represents stream position information in various formats. This
class is used to specify stream positions as passed to the Player with the
Player.setPos() method, or as received from the Player with the Player.getPos()
method. StmPos objects are also utilized as member variables in the StmOpts class.

StmPos contains the following members:

Constants

StmPos.POSFMT_BEGINNIN
G

StmPos.POSFMT_DEFAULT StmPos.POSFMT_FRAMES

StmPos.POSFMT_CURRENT StmPos.POSFMT_END StmPos.POSFMT_TIME

Data Members

m_fmt m_val

Methods

StmPos() fromString() toString()
 Oracle Video Java Library Reference B-29

StmPos
StmPos Constants
StmPos constants specify the possible formats for the stream position. These
constants are used when instantiating StmPos objects. There are two forms of the
StmPos() constructor:

■ StmPos(int fmt)

■ StmPos(int fmt, long val)

The constants presented in this section are used for the int fmt parameter in both
versions of the constructor. Which version of the constructor you use depends on
what you specify for fmt. This is discussed both in this section and in “StmPos
Methods” on page B-31.

StmPos.POSFMT_BEGINNING
Indicates that the desired stream position is the beginning of the stream. Use the
StmPos(int fmt) version of the constructor to specify the
StmPos.POSFMT_BEGINNING constant.

StmPos.POSFMT_CURRENT
Indicates that the desired stream position is the current position (that is, don’t
change the stream position). Use the StmPos(int fmt) version of the constructor to
specify the StmPos.POSFMT_CURRENT constant.

StmPos.POSFMT_DEFAULT
Indicates that the desired stream position is the default position. The default
position is the beginning of the stream for all types of streams except for
unbounded streams. For unbounded streams, the default position is the end of the
stream. Use the StmPos(int fmt) version of the constructor to specify the
StmPos.POSFMT_DEFAULT constant.

StmPos.POSFMT_END
Indicates that the desired stream position is the end of the stream. Use the
StmPos(int fmt) version of the constructor to specify the StmPos.POSFMT_END
constant.

StmPos.POSFMT_FRAMES
Indicates that the desired stream position is expressed as the number of frames
from the beginning of the stream. Use the StmPos(int fmt, long val) version of the
constructor to specify the StmPos.POSFMT_FRAMES constant.
B-30 Oracle Video Client Developer’s Guide

StmPos
StmPos.POSFMT_TIME
Indicates that the desired stream position is expressed as a time in milliseconds
from the beginning of the stream. Use the StmPos(int fmt, long val) version of the
constructor to specify the StmPos.POSFMT_TIME constant.

StmPos Data Members
The StmPos class contains the following public data members:

m_fmt

Type: int

The format of the position field. This is limited to one of the StmPos constants.

m_val

Type: long

The format-specific stream position value. This field is only used for the time value
formats of StmPos.POSFMT_TIME and StmPos.POSFMT_FRAMES.

StmPos Methods
There are three ways of instantiating objects of the StmPos type: two StmPos
constructors and a fromString() method. Each of these ways results in the
instantiation of a new StmPos object, and each has its appropriate usage.

All of the methods presented here are declared public within the StmPos class
definition. Unlike some other classes in the Oracle Video Java Library, only the
constructors, not all of the StmPos methods, throw the PlayerException object.
 Oracle Video Java Library Reference B-31

StmPos
StmPos()

Syntax: StmPos(int fmt), StmPos(int fmt, long val)

Creates a new StmPos object:

■ The first constructor specifies only the m_fmt format field of the StmPos object
and can be used when the m_val field is not required by the object. m_val is
not required when you instantiate objects of the following formats:

– StmPos.POSFMT_BEGINNING

– StmPos.POSFMT_END

– StmPos.POSFMT_CURRENT

– StmPos.POSFMT_DEFAULT

In these cases, the positional information for the object is contained in the
format field. A PlayerException object is thrown if the format type passed
requires m_val to be specified.

■ The second constructor sets both the format and the value of a stream’s
positional information. You can only use this constructor when instantiating
StmPos objects of the formats StmPos.POSFMT_TIME or
StmPos.POSFMT_FRAMES.

Note that this constructor expects val to be in milliseconds. For instance, the
constructor interprets a long value of 4000 to mean 4 seconds (4000
milliseconds).

See Table B–1 for additional StmPos object constructor information.
B-32 Oracle Video Client Developer’s Guide

StmPos
fromString()

Syntax: static StmPos fromString(String pos)

This third method of instantiating StmPos objects can be used to convert an input
string into a StmPos object. Because it is possible to instantiate any of the StmPos
object formats with this method, this method is the most safe and versatile way of
instantiating StmPos objects.

See Table B–1 for the available input string formats.

toString()

Syntax: static String toString()

This method converts a StmPos object into a String. See Table B–1 for the possible
returned string formats.

Table B–1 Positional Values and StmPos constructor equivalents

Position Value Equivalent StmPos Constructor

milliseconds StmPos(StmPos.POSFMT_TIME, timeVal)

“hh:mm:ss:cc” StmPos.fromString(“hh:mm:ss:cc”)

frame_num StmPos(StmPos.POSFMT_FRAMES, frameVal)

“beginning” StmPos(StmPos.POSFMT_BEGINNING)
StmPos.fromString(“beginning”)

“current” StmPos(StmPos.POSFMT_CURRENT)
StmPos.fromString(“current”)

“end” StmPos(StmPos.POSFMT_END)
StmPos.fromString(“end”)

“default” StmPos(StmPos.POSFMT_DEFAULT)
StmPos.fromString(“default”)
 Oracle Video Java Library Reference B-33

StmStats
StmStats
The StmStats class contains dynamic information about both the playback states
and statistics of the current media stream. This object is returned from the
Player.getStats() method.

StmStats contains the following members:

StmStats Constants
These constants represent the current network stream state, not the state that is
returned by the Player.getState() method.

StmStats.STM_CONTROL
Indicates that the stream is in the middle of a network transaction.

StmStats.STM_ENDED
Indicates that the end of stream has been reached.

StmStats.STM_IDLE
Indicates that the stream is idle.

StmStats.STM_PAUSED
Indicates that the stream is paused.

Constants

StmStats.STM_CONTROL StmStats.STM_IDLE StmStats.STM_PLAYING

StmStats.STM_ENDED StmStats.STM_PAUSED StmStats.STM_STALLED

Data Members

m_bps m_drops m_minTime

m_cnsState m_fBytes m_pkts

m_curFrame m_fps m_prdState

m_curTime m_maxTime m_rBytes

Methods

stateToString() toString()
B-34 Oracle Video Client Developer’s Guide

StmStats
StmStats.STM_PLAYING
Indicates that the stream is playing.

StmStats.STM_STALLED
Indicates that the stream has stalled.

StmStats Data Members
The StmStats class contains the following public data members:

m_bps

Type: int

Indicates the average bit rate in bits per second (bps) over the life of the current
stream.

m_cnsState

Type: int

Playback state of the current media stream. This is an integer value limited to one
of the StmStats listed constants, such as StmStats.STM_CONTROL or
StmStats.STM_PLAYING.

m_curFrame

Type: long

Current frame that appears on the video screen. The number of frames starts with 0
at the beginning or playFrom position and increments with each successive frame
shown.

m_curTime

Type: long

Indicates the current position in the stream, in hundredths of a second.
 Oracle Video Java Library Reference B-35

StmStats
m_drops

Type: int

Indicates the number of packet drops since playback started. Unreliable network
protocols, such as UDP, tend to drop some packets.

m_fBytes

Type: int

Indicates the number of free bytes in the client cache.

m_fps

Type: int

Indicates the average frame rate in frames per second (fps) over the life of the
current stream.

m_maxTime

Type: long

Indicates the latest seekable time in the stream, in hundredths of a second.

m_minTime

Type: long

Indicates the earliest seekable time in the stream, in hundredths of a second.

m_pkts

Type: int

The number of packets received since stream playback began.
B-36 Oracle Video Client Developer’s Guide

StmStats
m_prdState

Type: int

Playback state of the current media stream. This is an integer value limited to one
of the StmStats listed constants, such as StmStats.STM_CONTROL or
StmStats.STM_PLAYING.

m_rBytes

Type: int

Indicates the number of bytes in the client cache ready for consumption.

StmStats Methods
The StmStats class contains the following public methods:

stateToString()

Syntax: static String stateToString(int state)

Converts the stream state indicated by state into a text description contained in the
returned String value. Use this to convert StmStats constants such as
StmStats.STM_PLAYING or StmStats.STM_ENDED into a text description. The
m_cnsState and m_prdState properties both use these constants.

toString()

Syntax: String toString()

Returns a single string consisting of all the information contained in each of the
member variables.
 Oracle Video Java Library Reference B-37

StmStats
B-38 Oracle Video Client Developer’s Guide

 Oracle Video ActiveX Control Refe
C

Oracle Video ActiveX Control Reference

This appendix contains the reference information for the \. It can be used to embed
the Oracle Video Client in applications that support the Microsoft ActiveX
standard. You can find out how to use these classes in your applications by
referring to Chapter 4, “Oracle Video ActiveX Control”.

This section contains descriptions of the following topics:

■ Methods on page C-1

■ Properties on page C-9

■ Events on page C-14

■ <Object> Attributes and Parameters on page C-16

Methods
The Oracle Video ActiveX Control provides the following methods:

Forward() ImportStreamAs() SetPos()

GetInfo() Load() SetVol()

GetPos() Pause() ShowInfoDialog()

GetStats() Play() ShowStatsDialog()

GetVol() Resume() Stop()

ImportFileAs() Rewind() Unload()
rence C-1

Methods
Forward()

Syntax: Forward

Forward the video to the end or the position set by the PlayTo property.

GetInfo()

Syntax: GetInfo(streamName As String,
 url As String,
 title As String,
 fmtType As String,
 extType As String,
 createTimeStr As String,
 byteLength As Long,
 bitrate As Long,
 presRate As Long,
 capabilities As Long,
 milliseconds As Long,
 frameHeight As Integer,
 frameWidth As Integer,
 aspectRatio As Long,
 frameRate As Long,
 contentStatus As Integer,
 protocol As Integer)

This method returns information about the current media file.

If the call to GetInfo() succeeds, it sets the variables passed as parameters to the
indicated data and returns 1. Otherwise GetInfo() returns 0 and the parameters do
not contain valid information about the stream. You should make sure you check
the return value before relying on the data contained in the variables.

Note: The descriptions in this section use Visual Basic syntax. For
examples that show how Oracle Power Objects can use the Oracle Video
ActiveX Control, see the Oracle Power Objects sample code in Chapter 4,
“Oracle Video ActiveX Control”.

Important: Make sure you declare all of the variables that you
pass as parameters, and initialize all of the strings to null strings,
before calling GetInfo().
C-2 Oracle Video Client Developer’s Guide

Methods
The parameters contain the following information after a successful GetInfo() call:

Parameter Description

streamName The unique name of the stream

url The URL or asset cookie of the stream

title The stream title or description (not unique)

extType File extension; for example, mpi, mpg, or osf

fmtType A readable string version of extType

createTimeStr Time at which the stream was created

byteLength Length of the stream in bytes

bitrate Average bit rate over the life of the stream, in bits per second (bps)

presRate Present bit rate

capabilities Capabilities of the stream; this is a reserved parameter

milliseconds Total length of video in milliseconds (ms); this is always 0 for
unbounded streams

frameHeight Default height of the video frame

frameWidth Default width of the video frame

aspectRatio Aspect ratio of the video

frameRate Current frame rate of the video, expressed in frames per second

contentStatus Indicates the status of the content stream. Possible values are:

■ 0: Unknown

■ 1: Stream is from a local file

■ 2: Stream is stored on disk on the server

■ 3: Stream is stored on Hierarchical Storage Manager (HSM) on
the server

■ 4: Stream is a server feed

■ 5: Stream is unbounded (that is, a rolling feed with no
determinate end)

■ 6: Stream is a wide network feed, such as multicast
 Oracle Video ActiveX Control Reference C-3

Methods
GetPos()

Syntax: GetPos(posfmt as integer)

Returns the current stream position. The posfmt parameter defines the format used
to query the position. Possible values are:

pos = ovcax1.GetPos(1)

Returns the current position. Returns 0 if:

■ the call fails, or

■ the video is at the beginning but hadn’t been played (such as when first loaded)

GetStats()

Syntax: GetStats(dropPkts as long,
 rcvdPkts as long,
 freeBytes as long,
 readBytes as long,
 streamState as long,
 streamSize as long,
 curPos as long,
 minPos as long,
 maxPos as long)

Returns statistics about the current stream.

protocol Network protocol by which the stream is being delivered.

■ 0: Protocol is unknown

■ 1: Stream is a local file (that is, there is no network protocol)

■ 2: Delivery is through UDP

■ 3: Delivery is through TCP

■ 4: Delivery is through HTTP

■ 5: Delivery is through ATM

Value Description

1 Returns the current position in milliseconds

2 Returns the current position as the number of
frames from the beginning

Parameter Description
C-4 Oracle Video Client Developer’s Guide

Methods
If the call to GetStats() succeeds, it sets the variables passed as parameters to the
indicated data and returns 1. Otherwise GetStats() returns 0 and the parameters do
not contain valid information about the stream. Make sure you check the return
value before relying on the data contained in the variables. GetStats() returns 0 if
no video is loaded.

The parameters contain the following information after a successful GetStats() call:

GetVol()

Syntax: GetVol() as integer

Returns the current volume setting of the player as an integer from 0 to 100.

Note: Make sure you declare all of the variables that you pass as
parameters before calling GetStats().

Parameter Description

dropPkts Indicates the number of packets dropped since stream creation

rcvdPkts Indicates the number of packets received since stream creation

freeBytes Indicates the number of free bytes in the local cache

readBytes Indicates the number of bytes in the cache ready for decoding

streamState Indicates the current stream state; valid values are described in
the State property on page C-13

streamSize Contains the overall size of the stream in milliseconds

curPos Indicates the current stream position in milliseconds

minPos Indicates the minimum stream position (same as PlayFrom) in
milliseconds

maxPos Indicates the maximum stream position (same as PlayTo) in
milliseconds
 Oracle Video ActiveX Control Reference C-5

Methods
ImportFileAs()

Syntax: ImportFileAs() as Boolean

Presents a standard dialog window from which the user can pick a video stored on
the local machine. When the user chooses a video and clicks the OK button, this
method:

■ Sets the Mediafile property to the name of the selected file

■ Call Load() to establish a link between the Oracle Video Client software and the
video file; this process does not take as long as preparing video from a server

■ Returns 1

If the user clicks the Cancel button or if the call fails, ImportFileAs() returns 0.

This sample code could be associated with a button that automatically plays the
video the user selected.

Private Sub Command1_Click()
 ovcax1.ImportFileAs
 ovcax1.Play
End Sub

ImportStreamAs()

Syntax: ImportStreamAs(server_addr as String) as Boolean

Presents a file dialog window from which the user can pick an play a video located
on the Oracle Video Server specified by the server_addr parameter. You can pass a
server name in the server_addr parameter or pass a null string (““). The null string
indicates that this method should use the default server.

When the user chooses a video and clicks the OK button, this method:

■ Sets the Mediafile property to the name of the selected file

■ Call Load() to establish a link between the Oracle Video Client software and the
selected file

■ Returns 1

If the user clicks Cancel or if the call fails, ImportStreamAs() returns 0.
C-6 Oracle Video Client Developer’s Guide

Methods
Load()

Syntax: Load(media_url as String) as Boolean

Loads the movie specified by the media_url parameter. If the Load() method is
successful, the Mediafile property is set to media_url. Load() returns 0 if the call
fails or if media_url is invalid or unspecified. Otherwise Load() returns 1.

Pause()

Syntax: Pause

Pauses playback, preserving the current position. You can only call this method
while the player is in the play state. The current frame remains displayed.

Play()

Syntax: Play

Starts stream playback. If the properties PlayFrom and PlayTo are not specified, the
playback starts at the beginning of the stream and continues until the end.
Otherwise playback starts at the position specified by PlayFrom and finishes at the
position set by PlayTo. See the descriptions of PlayFrom and PlayTo for proper
format information.

You can only call this method while the player is stopped. To start playing while
paused, call the Resume() method.

Resume()

Syntax: Resume

Resumes playback. This call can only be invoked from the paused state.

Rewind()

Syntax: Rewind

Rewinds the movie to the beginning or the position set by the PlayFrom property.
 Oracle Video ActiveX Control Reference C-7

Methods
SetPos()

Syntax: SetPos(posfmt as integer, streampos as long)

Seeks the stream to the position specified by the streampos parameter. The posfmt
parameter specified the format used to set the position. The possible values for
posfmt are the same as those used for GetPos().

SetVol()

Syntax: SetVol(volume as integer)

Sets the volume of the player as an integer from 0 (inaudible) to 100 (maximum).

ShowInfoDialog()

Syntax: ShowInfoDialog

This method displays a dialog box showing information about the current media
file. See GetInfo() for a description of the various statistics displayed.

ShowStatsDialog()

Syntax: ShowStatsDialog

This method displays a dialog box showing the current stream statistics. See
GetStats() for a description of the various statistics displayed.

Stop()

Syntax: Stop

Pauses playback, resetting the current position to the beginning of the stream. If a
start position was specified by the PlayFrom property, it’s erased and the start
position returns to the beginning of the stream. This call can only be called from the
playing state. The current frame remains displayed.

Unload()

Syntax: Unload

Frees all resources allocated within the call to the Load() method. If you call this
method while a stream is playing, the video is stopped and unloaded, and the
video rectangle is blanked.
C-8 Oracle Video Client Developer’s Guide

Properties
Properties
In addition to the standard Visual Basic or Oracle Power Objects object properties,
the Oracle Video ActiveX Control uses these properties to control aspects of the
video, its playback, and its external appearance. All properties are writable, unless
identified as “read-only”.

All of these properties except for those that are read-only can be set when
embedding the Oracle Video ActiveX Control into an HTML document through the
use of <param> tags with the <object> block (between the <object> and </object>
tags). The <param> tags have three elements:

■ The <param> tag itself

■ The property name, such as AutoStart or Mediafile:

name=”propName”

■ The property value; for string or numeric properties, this should just be the
string or value, while for boolean properties, you should specify 1 for true or
on and 0 for false or off

value=”value”

For example, to set the media file specifier, the <param> tag would look something
like this:

<param name=”Mediafile” value=”vstcp://server:5000/video.mpi”>

You can also set the values of the writable properties in the Designer component of
application development tools like Visual Basic and Oracle Power Objects. The
procedure for this depends on the tool being used.

AutoStart Loop ShowControls

BorderStyle Mediafile ShowPositionAndStatus

EnableLeftClick PlayFrom State

EnablePopup PlayTo TimerFrequency

IsLoaded
 Oracle Video ActiveX Control Reference C-9

Properties
AutoStart

Type: Boolean

Specifies whether stream playback begins automatically once the stream is finished
loading. If true, video playback starts as soon as the load completes. The default
value is 0.

BorderStyle

Type: Boolean

Specifies whether there is a border around the video screen. The border is one pixel
wide. Possible values are:

■ 0 specifies no border; this is the default

■ 1 specifies that the border should be displayed

EnableLeftClick

Type: Boolean

Specifies whether a left click on the video screen toggles Play and Pause. If
EnableLeftClick is 1, left clicking in the video screen has the same effect as clicking
on the Play/Pause button. The default value is 1.

EnablePopup

Type: Boolean

If EnablePopup is 1, the pop-up menu appears when the user right-clicks the video
area. The default value for EnablePopup is 1.

Note: If EnableLeftClick is 1, the control does not return the
LeftClick event since it’s handled by the video screen.

Note: If EnablePopup is 1, the control does not return the
RightClick event since it’s handled by the popup.
C-10 Oracle Video Client Developer’s Guide

Properties
IsLoaded

Type: Boolean

A read-only property that indicates whether the Oracle Video ActiveX Control has
a stream loaded.

Loop

Type: Boolean

Specifies whether the movie is to be rewound when the end or the position
specified by the PlayTo property is reached. If PlayFrom is specified, the movie is
rewinded at the PlayFrom position instead of the beginning.

Mediafile

Type: String

Contains a file on the local file system or the media file specifier of a file on the
Oracle Video Server. See Appendix D, “The Media File” for the complete syntax for
media file specifiers.
 Oracle Video ActiveX Control Reference C-11

Properties
PlayFrom

Type: String

Indicates the position from which to start playback when Play, Rewind, or Loop
actions are performed. You can specify the value for this property in one of three
formats:

PlayTo

Type: String

Indicates the position where playback should be stopped when Play or Forward
actions are performed. You can use the same formats for this as for PlayFrom.

Format Description

Literal There are three literal values you can use for PlayFrom:

■ “beginning” indicates that the start of play should be at the
beginning of the file or stream

■ “end” indicates that the start of play should be at the
beginning of the file or stream. This may seem
contradictory: how can playback begin at the end? The
answer lies in the nature of real-time streaming video. The
end of the stream doesn’t mean the end of the movie, just
the end of what has already been streamed. Basically it
indicates that playback should resume where it ended.

■ “default” indicates play should start at the default starting
point for the stream.

time In the format “hh:mm:ss:cc”.

For example, “00:02:40:10” means to start the movie at the
“second minute fortieth second ten hundredth of a second”
from the beginning.

position A single string value that indicates the position in milliseconds.
For example, “10000” indicates that the position from which to
begin is 10 seconds (10,000 milliseconds) from the beginning.
C-12 Oracle Video Client Developer’s Guide

Properties
ShowControls

Type: Boolean

Specifies whether the playback controls are visible or hidden. This is the master
property. When ShowControls is 1, the controls selected by
ShowPositionAndStatus are visible; when 0, all controls are hidden. The default
value is 1.

ShowPositionAndStatus

Type: Boolean

Specifies whether the position indicator and status line are visible or hidden when
the ShowControls property is 1. The default value is 1.

State

Type: Integer

A read-only property that indicates the state of the control. Possible values are:

State Indicates the player...

0 Has no video loaded.

1 Has loaded a stream, but not locked resources for playback

2 Has loaded a stream and locked the resources necessary for
playback

3 The player is currently playing a stream

4 The player is paused

5 The player has reached the end of the stream

6 The player has encountered an error
 Oracle Video ActiveX Control Reference C-13

Events
TimerFrequency

Type: Integer

Specifies the interval in milliseconds at which the position indicator (such as the
time counter and seek slider) are updated in the Oracle Video ActiveX Control.
Reasonable values are from 100 to 1000 milliseconds.

Events
Events are messages that the Oracle Video ActiveX Control sends to your
application. Your application can then perform specific actions in response to these
events. For example, the Stopped event is sent to your application when the video
stops playing.

The following events are defined by the Oracle Video ActiveX Control:

Completed
Sent when the video stream reaches its end or the position indicated by the PlayTo
property, if set.

In response to Completed, you might want to call Load() to prepare the next
stream (if you know what it is) so that it’s ready to play when the user wants it.

LeftClick
Sent when the user clicks the left mouse button while the cursor is over the video
screen portion of the Oracle Video ActiveX Control. This is only sent when a stream
is loaded.

Note: Ordinarily, do not set the interval to anything less than 100
milliseconds because the multiple screen repaints necessary to
update the position informations can seriously degrade video
rendering performance.

Completed PlayStarted RightClick

LeftClick Resumed Stopped

Note: This event is not sent when the EnableLeftClick property
is 1, since the LeftClick event is handled by toggling Play and
Pause.
C-14 Oracle Video Client Developer’s Guide

Events
PlayStarted
Sent when the video is started in response to a call to the Play() method.

Resumed
Sent when video playback is resumed in response to a call to the Resume() method.

RightClick
Sent when the user clicks the right mouse button while the cursor is over the video
screen portion of the Oracle Video ActiveX Control. This is only sent when a stream
is loaded.

Stopped
Sent when the video is stopped, in response to a call to the Stop() method, or in
response to a Pause() method.

In response to the Stopped event, you might want to prepare the next stream (if
you know what it is) so that it’s ready to play when the user wants it.

Note: When a paused video is resumed, the Oracle Video ActiveX
Control does not send a corresponding PlayStarted event. Instead
it sends Resumed.

Note: This event is not sent when the EnablePopup property is 1,
since the RightClick event is handled by opening the pop-up
menu.
 Oracle Video ActiveX Control Reference C-15

<Object> Attributes and Parameters
<Object> Attributes and Parameters
HTML defines a number of standard attributes that you can use in an <object>
statement to specify the behavior of the browser and how the browser displays
your embedded control. Only a subset of these standard attributes affect the Oracle
Video ActiveX Control. These include:

The Oracle Video ActiveX Control itself recognizes a number of parameters that
affect the behavior of the embedded control itself. These set the control’s properties
and use the same names as the properties. See “Properties” on page C-9 for more
information on setting the control properties.

ClassID
ActiveX control class identifier. This should always be the same value:

CLSID:547A04EF-4F00-11D1-9559-0020AFF4F597

If you’re creating your HTML page by hand, you’ll have to type this value in
manually. If you’re using a composition tool such as Microsoft FrontPage or
ActiveX Control Pad, this is usually inserted automatically when you place the
control on the page.

You can find this value in the Windows registry by searching under
HKEY_CLASSES_ROOT for ovcax.ovcax. This contains a single entry named
CurVer, which points to the entry for the current version of the control. Find that
entry, which in turn contains a single entry, the class ID.

Height
Indicates the height in pixels to be reserved to display the control.

ID
A string identifier used to refer to the embedded control. Use this when you have
more than one control or object in your document or when you want to script an
object.

Width
Indicates the width in pixels to be reserved to display the control.

ClassID ID

Height Width
C-16 Oracle Video Client Developer’s Guide

 The Medi
D

The Media File

This appendix describes how to specify which media resource to play. The full
description of the media resource you want to play, including transport protocol,
server, and location, is referred to as the media file specifier. The media resource can
be an MDS file or a logical content asset cookie.

Using the Oracle Video Web Plug-in, the mediafile attribute of the <embed> tag is
a media file specifier. With the Oracle Video Java Library, the Player.load() method
takes a media file specifier as a parameter. In the Oracle Video ActiveX Control, the
Mediafile property contains the media file specifier of the currently loaded stream.

mediafile Syntax
mediafile = protocol://server:port/media_resource
The media file specifier is similar to an URL: it specifies the protocol with which the
resource should be transferred, the machine and port that contains the resource,
and the location of the resource within the server’s virtual directory structure. The
format of the various parts of the media file specifier is:

■ protocol: This determines the protocol used to transmit media data (not the
protocol of the Media Net connection). If protocol is specified, three forward
slashes must appear between protocol: and the MDS path and filename or the
logical content asset cookie.
a File D-1

Logical Content Asset Cookies
OVC supports two protocols:

■ vsudp: This specifies the UDP protocol, which is the default protocol. You
should generally use UDP since it’s more efficient than TCP. UDP does not
retransmit dropped packets. AVI and WAV formats are not designed to
handle dropped data, so they must be rewrapped into OSF files to be sent
using the UDP protocol.

■ vstcp: This specifies the TCP protocol. TCP tracks and retransmits dropped
data. As noted earlier, AVI and WAV formats don’t handle dropped data,
so they must be rewrapped into OSF or transmitted using TCP.

■ server:port The server name and port number of the Media Net address server.
If the server name and port number are not specified, the default Media Net
address (configured through the Oracle Video Client Settings utility: choose
Start | Programs | Oracle Video Client | Oracle Video Client Settings) is
used.

■ media_resource The MDS file or the logical content asset cookie you want to play
from the Oracle Video Server.

Logical Content Asset Cookies
Logical content asset cookies lets you specify a logical content asset file, which
allows you to group multiple chunks of content into a single logical entity.

If there are spaces in your logical content asset cookie’s name, use quotation marks
to enable the system to see the words after the space. For example, suppose you
have a cookie name like this:

vstcp://sunserver:5000/vscontsrv:oracle video

You must enclose this in quotes for the system to get the whole name:

"vstcp://sunserver:5000/vscontsrv:oracle video"

If you don’t enclose this in quotes, the system sees only this:

vstcp://sunserver:5000/vscontsrv:oracle

Note: Before you can use logical content asset cookies, the Oracle
Video Server must be configured for logical content. See your
system administrator or the Oracle Video Server Administrator’s
Guide for more information.
D-2 Oracle Video Client Developer’s Guide

mediafile Examples
mediafile Examples
Here are some typical examples of possible mediafile values. The first example of
each type uses an MDS file, while the second example uses a logical content asset
cookie.

In this example, vstcp specifies the TCP protocol, sunserver:5000 specifies the
server and port (temporarily overriding the OMN_ADDR environment variable), /
mds/video/oracle1.mpi specifies the MDS file, and vscontsrv:oracle1 specifies the
logical content asset cookie.

vstcp://sunserver:5000/mds/video/oracle1.mpi
vstcp://sunserver:5000/vscontsrv:oracle1

In this example, vstcp specifies the TCP protocol, sunserver specifies the server and
the default port 5000 (again, temporarily overriding the OMN_ADDR environment
variable), /mds/video/oracle1.mpi specifies the MDS file, and vscontsrv:oracle1
specifies the logical content asset cookie.

vstcp://sunserver/mds/video/oracle1.mpi
vstcp://sunserver/vscontsrv:oracle1

In this example, vstcp specifies the TCP protocol, /mds/video/oracle1.mpi specifies
the MDS file, and vscontsrv:oracle1 specifies the logical content asset cookie. The
default server and port are used. Note that OMN_ADDR must be set for this to
work. Since the protocol is specified, three forward slashes are required.

vstcp:///mds/video/oracle1.mpi
vstcp:///vscontsrv:oracle1

In this example, the default UDP protocol is used as well as the default server and
port. Since the protocol is not specified, only one forward slash is required. Note
that OMN_ADDR must be set for this to work.

/mds/video/oracle1.mpi
 The Media File D-3

mediafile Examples
D-4 Oracle Video Client Developer’s Guide

Index

Symbols
\ character in code examples, xviii

A
ActiveX objects

in HTML documents, 4-5
in Oracle Forms, 5-2
in Oracle Power Objects, 4-11
in Visual Basic, 4-11

ActiveX-compliant applications, 4-1
adding controls, 4-2
creating, 4-13 to 4-16

adding
controls to ActiveX applications, 4-2
controls to audio streams, 2-13
controls to forms, 4-14, 5-3
controls to plug-ins, 2-10, A-3

with JavaScript, 2-16, 2-19, 2-20
embed statements, 2-6
icons, 2-17
movie icon, 4-11, 4-12
Oracle Video ActiveX Control to forms, 5-1

addListener()
Player, B-14

addListener() method, B-14
advise()

OviPlayer, A-9
API reference

Oracle Video ActiveX Control, C-1 to C-16
Oracle Video Java Library, B-1 to B-37
Oracle Video Web Plug-in, A-1 to A-15

applet viewers, 3-1

applets
creating

with Java, 2-23 to 2-26
with JavaScript, 2-15 to 2-20

sample, 2-14
applications, xv, 5-1

ActiveX-compliant, 4-1
adding controls, 4-2
creating, 4-13 to 4-16

creating with Oracle Video ActiveX
Control, 5-2 to 5-5

Java-based, 3-1
creating, 3-31 to 3-35

running, 4-16
Web, 2-1

asset cookie, D-1
attributes

autoStart, 2-6
loop, 2-6
mediafile, 2-6

attributes (embed statements), 2-2
described, A-1 to A-8

audio codecs, xvi
audio playback, 3-3
audio streams, 2-13
audio volume control, 2-12, 2-13, A-2, A-7
automatic playback, A-2

Oracle Video ActiveX Control, 4-7
Oracle Video Java Library, 3-35
Oracle Video Web Plugin, 2-10

AutoStart, C-10
autoStart attribute, 2-6, 2-10, A-2
 Index-1

B
background attribute, A-2
backslash (\) in code examples, xviii
BorderStyle, C-10
browsers, 2-3
buttons

adding to forms, 4-14, 5-3
adding to plug-ins, 2-16
icons vs., 2-17

C
changing property settings, 5-2
choosing media resources, D-1 to D-3
ClassID, C-16
click events, C-14, C-15
clients, xv
code examples, xviii

Java, 2-23, 2-27
JavaScript, 2-18, 2-20

common dialogs (file open), C-6
communications protocols, specifying, D-1
Completed, C-14
Completed event, C-14
connections

setting communications protocols, D-1
constants

ContentException, B-3
conStatToString()

StmInfo, B-25
Content

methods
query(), B-2

Content class, 3-6
content files, D-1
ContentException

constants, B-3
EX_BADPARAM, B-3
EX_BADSTATE, B-3
EX_ERROR, B-3
EX_INTERNAL, B-3
EX_NOTIMPL, B-3
EX_UNTRANS, B-3

data members, B-3 to B-4

m_code, B-4
m_msg, B-4
m_type, B-4

methods, B-4
toString(), B-4

ContentException class, 3-6, B-2
ContentIter

data members
m_num, B-5
m_pos, B-5

methods
ContentIter(), B-6

ContentIter class, 3-6, B-4
ContentIter()

ContentIter, B-6
context menus (Oracle Video Web Plug-in), 2-3

enabling, 2-11, A-6, A-14
context menus (Web Plug-in)

enabling, B-28
continuous replay, 2-10, A-4
controller

description, 2-2
disabling, 2-10, A-3
enabling, 2-10, A-3
enabling/disabling, A-2

controlMask attribute, 2-10, A-3
controls

adding to ActiveX applications, 4-2
adding to audio streams, 2-13
adding to forms, 4-14, 5-3
adding to plug-ins, 2-10, A-3

with JavaScript, 2-16, 2-19, 2-20
changing property settings, 5-2
setting properties, 5-9

controls attribute, 2-10, A-2, A-3
createPlayer()

PlayerFactory, B-19
createPlayer() method, B-19
CSTAT_DISK

StmInfo, B-22
CSTAT_FEED

StmInfo, B-22
CSTAT_LOCALFILE

StmInfo, B-22
CSTAT_NETWORK
Index-2 Oracle Video Client Developer’s Guide

StmInfo, B-22
CSTAT_ROLLING

StmInfo, B-22
CSTAT_TAPE

StmInfo, B-22
CSTAT_TERMINATED

StmInfo, B-22
CSTAT_UNKNOWN

StmInfo, B-22
customer support, xix

D
deallocating

video streams, 2-2
DEFAULT_VOL

StmOpts, B-26
directories, xix
displaying video files, 5-3

in common dialogs, C-6
documentation, xvi

notational conventions, xviii
organization, xvii

E
embed statements, 2-2

adding, 2-6
required parameters, 2-11, A-5, A-6
specifying attributes, 2-2, A-1 to A-8

embed tag
attributes

hidden, 2-10
leftClick, 2-10
sliderRate, 2-11
toolTips, 2-12

EnableLeftClick, C-10
EnablePopup, C-10
endOfStream()

PlayerListener, B-21
endOfStream() method, B-21
error()

PlayerListener, B-20
error() method, B-20
errors, 5-10

event notification, B-20
events, C-14 to C-15
EX_BADPARAM

ContentException, B-3
PlayerException, B-17

EX_BADSTATE
ContentException, B-3
PlayerException, B-17

EX_ERROR
ContentException, B-3
PlayerException, B-17

EX_INTERNAL
ContentException, B-3
PlayerException, B-17

EX_NOTIMPL
ContentException, B-3
PlayerException, B-18

EX_UNTRANS
ContentException, B-3
PlayerException, B-18

exceptions, B-16
executing applications, 4-16

F
file paths, xix
files, D-1

displaying, 5-3
in common dialogs, C-6

opening
from pick lists, C-6

forms
adding controls, 4-14, 5-3

Forward(), C-2
forward()

OviPlayer, A-9
fromString()

StmPos, B-33
fromString() method, B-33
functions, 2-23

user-defined, 2-20
 Index-3

G
getControlComp()

Player, B-9
getControlComp() method, B-9
GetInfo(), C-2
getInfo()

Player, B-15
getInfo() method, B-15
getLength()

OviPlayer, A-10
getMaxPos()

OviPlayer, A-10
getMinPos()

OviPlayer, A-10
getObserver()

OviPlayer, A-10
getPlayer()

PlayerFactory, B-19
getPlayer() method, B-19
getPlayerFactory()

PlayerFactory, B-20
getPlayerFactory() method, B-20
getPlayerUI() method, B-9
getPlayerUI)

Player, B-9
GetPos(), C-4
getPos()

OviPlayer, A-10
Player, B-10

getPos() method, B-10
getSelRange()

Player, B-9
getState()

OviPlayer, A-11
Player, B-15

getState() method, B-15
GetStats(), C-4
getStats()

Player, B-15
getStats() method, B-15
getStatusComp()

Player, B-10
getStatusComp() method, B-10
getVisualComp()

Player, B-10
getVisualComp() method, B-10
GetVol(), C-5
getVol()

OviPlayer, A-11
Player, B-10

getVol() method, B-10
graphical user interfaces, 2-2

H
Height, C-16
height attribute, 2-10, A-3
hidden attribute, 2-10, A-4
host window, resizing, 3-3
hot spots, 2-20
HTML documents

adding plug-ins, 2-6
example, 2-7

I
icons, adding, 2-17
ID, C-16
image maps, 2-19

hot spots and, 2-20
ImportFileAs method, C-6
ImportFileAs(), C-6
ImportStreamAs(), C-6
input fields, 2-17
Insert Object command, 5-2
installation

Oracle Video Java Library, 3-7
installing

Oracle Video ActiveX Control, 4-3
Oracle Video Java Library, 3-7
Oracle Video Web Plug-in, 2-4

IsLoaded, C-11
Iterated Systems ClearVideo codecs, xvi
Index-4 Oracle Video Client Developer’s Guide

J
Java, 2-13

developing Web Plug-in, 2-23 to 2-26
required embed parameter, 2-11, A-5
sample code, 2-23, 2-25, 2-27

Java classes, 2-23, 3-1
Java Development Kit, 3-7
Java Run-time Executable, 3-7
Java supported browsers, 2-4
Java-based applications, 3-1

creating, 3-31 to 3-35
JavaScript, 2-2, 2-13

developing Web Plug-in, 2-15 to 2-20
entering statements, 2-16
required embed parameter, 2-11, A-5
sample code, 2-18, 2-19, 2-20
supported browsers, 2-4

JDK (Java Development Kit), 3-7
JRE (Java Run-time Executable), 3-7

L
LeftClick, C-14
leftClick attribute, 2-10, A-4
LeftClick event, C-14
Load(), C-7
load()

OviPlayer, A-12
Player, B-11

load() method, B-11
loading

from Java applet, 2-25
Oracle Video ActiveX Control, 4-11 to 4-12
Oracle Video Web Plug-in, 2-2

Loop, C-11
loop attribute, 2-6, 2-10, A-4
looping, 2-10, A-4
low-bitrate streaming, xvi

M
m_aspect

StmInfo, B-23
m_asset

StmInfo, B-23

m_autoStart
StmOpts, B-27

m_autoStart data member, B-27
m_bitrate

StmInfo, B-23
m_bitrate data member, B-23
m_bps

StmStats, B-35
m_bytes

StmInfo, B-23
m_cnsState

StmStats, B-35
m_code

ContentException, B-4
PlayerException, B-18

m_code data member, B-4, B-18
m_contStat

StmInfo, B-23
m_contType

StmInfo, B-24
m_contType data member, B-24
m_createDate data member, B-24
m_createTime

StmInfo, B-24
m_curFrame

StmStats, B-35
m_curFrame data member, B-35
m_curTime

StmStats, B-35
m_desc

StmInfo, B-24
m_desc data member, B-24
m_drops

StmStats, B-36
m_drops data member, B-36
m_fBytes

StmStats, B-36
m_fmt

StmPos, B-31
m_fmt data member, B-31
m_fps

StmInfo, B-24
StmStats, B-36

m_fps data member, B-24
m_img
 Index-5

StmOpts, B-27
m_leftClick

StmOpts, B-27
m_loop

StmOpts, B-27
m_loop data member, B-27
m_maxTime

StmStats, B-36
m_maxTime data member, B-37
m_minTime

StmStats, B-36
m_minTime data member, B-36
m_msecs

StmInfo, B-24
m_msg

ContentException, B-4
PlayerException, B-18

m_msg data member, B-4, B-18
m_name

StmInfo, B-24
m_num

ContentIter, B-5
m_pkts

StmStats, B-36
m_pkts data member, B-36
m_playFrom

StmOpts, B-28
m_playFrom data member, B-28
m_playTo

StmOpts, B-28
m_playTo data member, B-28
m_popup

StmOpts, B-28
m_pos

ContentIter, B-5
m_prdState

StmStats, B-37
m_proto

StmInfo, B-25
m_rBytes

StmStats, B-37
m_size

StmInfo, B-25
m_state data member, B-35, B-37
m_title data member, B-24

m_type
ContentException, B-4
PlayerException, B-18

m_type data member, B-4, B-18
m_url

StmInfo, B-25
m_url data member, B-25
m_val

StmPos, B-31
m_val data member, B-31
m_volume

StmOpts, B-28
m_volume data member, B-28
maps, 2-19
MDS files, D-1
media controls, 3-3
media resources, selecting, D-1 to D-3
Mediafile, C-11
mediafile attribute, 2-6, 2-11, A-5, D-1 to D-3
mediafiles

defined, D-1
menus (Oracle Video Web Plug-in), 2-3

enabling, 2-11, A-6, A-14
menus (Web Plug-in)

enabling, B-28
methods

executing from Oracle Forms, 5-6
Oracle Video ActiveX Control, C-1 to C-8

Microsoft Visual Basic
creating applications, 4-13
loading Oracle Video ActiveX Control, 4-12

MIME decoders, A-7
mmvx1 control, 4-13
mouse events, C-14, C-15
movie icon, 4-11

adding, 4-11, 4-12
movies

playing back, A-5, A-6
.mpi files, A-7
Index-6 Oracle Video Client Developer’s Guide

N
name attribute, 2-11, A-5

JavaScript and, 2-15
Name property, 5-2
Netscape LiveConnect interface, 2-4
notational conventions (documentation), xviii
notifications, B-20

O
Object Palette, installing movie icon, 4-11
OLE2 object icon, 5-2
onPositionChange()

OviObserver, A-15
onStop()

OviObserver, A-15
opening video files

from pick lists, C-6
Oracle Forms, 5-1

troubleshooting, 5-10
Oracle Power Objects

creating applications, 4-13
installing movie icon, 4-11
loading Oracle Video ActiveX Control, 4-11

Oracle Video ActiveX Control, 4-1
adding to applications, 4-12, 4-13
adding to forms, 5-1
adding to Oracle Forms, 5-2
API reference, C-1 to C-16
attributes

ClassID, C-16
changing property settings, 5-2
events, C-14 to C-15

Completed, C-14
LeftClick, C-14
PlayStarted, C-15
Resumed, C-15
RightClick, C-15
Stopped, C-15

initializing, 5-10
installing, 4-3
loading, 4-11 to 4-12
methods

Forward(), C-2

GetInfo(), C-2
GetPos(), C-4
GetStats(), C-4
GetVol(), C-5
ImportFileAs(), C-6
ImportStreamAs(), C-6
Load(), C-7
Pause(), C-7
Play(), C-7
Resume(), C-7
Rewind(), C-7
SetPos(), C-8
SetVol(), C-8
ShowInfoDialog(), C-8
ShowStatsDialog(), C-8
Stop(), C-8
Unload(), C-8

object attributes
Height, C-16
ID, C-16
Width, C-16

overview, 4-2
properties, C-9 to C-14

AutoStart, C-10
BorderStyle, C-10
EnableLeftClick, C-10
EnablePopup, C-10
IsLoaded, C-11
Loop, C-11
Mediafile, C-11
PlayFrom, C-12
PlayTo, C-12
ShowControls, C-13
ShowPositionAndStatus, C-13
State, C-13
TimerFrequency, C-14

requirements, 4-5
tutorial, 4-13 to 4-16

Oracle Video Client, xv
Oracle Video Java Library, 3-1

API reference, B-1 to B-37
architecture, 3-2 to 3-6
classes

Content, 3-6
ContentException, 3-6
 Index-7

ContentIter, 3-6
Player, 3-3
PlayerException, 3-5
PlayerFactory, 3-4
PlayerListener, 3-5
StmInfo, 3-6
StmPos, 3-6
StmStats, 3-6

creating applications, 3-31 to 3-35
installing, 3-7
overview, 3-2
requirements, 3-7 to 3-8

Oracle Video Web Plug-in, 2-1
adding audio streams, 2-13
API reference, A-1 to A-15
attributes

autoStart, 2-6, A-2
background, A-2
controlMask, A-3
controls, A-2
height, A-3
hidden, A-4
leftClick, A-4
loop, 2-6, A-4
mediafile, 2-6, A-5
name, A-5
playFrom, A-5
playTo, A-6
popupMenu, A-6
sliderRate, A-6
src, A-6
toolTips, A-7
type, A-7
volume, A-7
width, A-8

controlling, 2-13 to 2-33
developing with

Java, 2-23 to 2-26
JavaScript, 2-15 to 2-20

embedding, 2-6 to 2-13
hiding, 2-13
installing, 2-4
Java classes, A-9 to A-15
JavaScript methods, A-8
LiveConnect interface, A-8, A-9

loading, 2-2
from Java applet, 2-25

overview, 2-2 to 2-3
OviObserver

methods
onPositionChange(), A-15

onStop(), A-15
OviObserver class, A-15
OviPlayer

methods
advise(), A-9

forward(), A-9

getLength(), A-10

getMaxPos(), A-10

getMinPos(), A-10

getObserver(), A-10

getPos(), A-10

getState(), A-11

getVol(), A-11

load(), A-12

pause(), A-12

play(), A-12

resume(), A-12

rewind(), A-13

setAutoStart(), A-13

setFullScreen(), A-13

setLoop(), A-13

setPopupMenu(), A-14

setPos(), A-14

setVol(), A-14

stop(), A-14

unload(), A-15
OviPlayer class, A-9
requirements, 2-3 to 2-6
run-time requirements, 3-7
scripting, 2-13 to 2-33
setting size, 2-10, 2-12, 2-13, A-3, A-8
specifying embed attributes, A-1 to A-8
Index-8 Oracle Video Client Developer’s Guide

status line, 2-13
ORACLE_HOME, xix
ovcax1 control, 4-14
ovcax.dll, 4-11
OviObserver

methods
onPositionChange(), A-15
onStop(), A-15

OviObserver class, 2-26, A-15
OviPlayer

methods
advise(), A-9
forward(), A-9
getLength(), A-10
getMaxPos(), A-10
getMinPos(), A-10
getObserver(), A-10
getPos(), A-10
getState(), A-11
getVol(), A-11
load(), A-12
pause(), A-12
play(), A-12
resume(), A-12
rewind(), A-13
setAutoStart(), A-13
setFullScreen(), A-13
setLoop(), A-13
setPopupMenu(), A-14
setPos(), A-14
setVol(), A-14
stop(), A-14
unload(), A-15

OviPlayer class, 2-23, A-9
OviPlayer object

instantiating, 2-25

P
pages

Web, 2-1
paths, xix
Pause(), C-7
pause()

OviPlayer, A-12

Player, B-11
pause() method, B-11
pick lists, C-6
PL/SQL Editor command, 5-3
PL/SQL scripts, 5-6 to 5-9
Play method

event handler, C-15
Play(), C-7
play()

OviPlayer, A-12
Player, B-12

play() method, B-12
playback, 2-2

at specified time, 2-11, A-5, A-6
audio only, 3-3
automatic, 2-10, 3-35, 4-7
event handlers, C-15
movies, A-5, A-6
selecting media resources, D-1 to D-3
stopping, 2-11, A-6, C-15

playback control, 3-3
playback, automatic, A-2
Player

constants
ST_EOS, B-7
ST_ERROR, B-8
ST_INIT, B-8
ST_PAUSED, B-8
ST_PLAYING, B-8
ST_REALIZED, B-8
ST_UNINIT, B-8

methods
addListener(), B-14
getControlComp(), B-9
getInfo(), B-15
getPlayerUI(), B-9
getPos(), B-10
getSelRange(), B-9
getState(), B-15
getStats(), B-15
getStatusComp(), B-10
getVisualComp(), B-10
getVol(), B-10
load(), B-11
pause(), B-11
 Index-9

play(), B-12
resume(), B-12
setFullScreen(), B-12
setPos(), B-12
setVol(), B-13
stateToString(), B-13
stop(), B-13
term(), B-15
unload(), B-13

Player class, 3-3, B-6
constants, B-7 to B-8
methods, 3-29

media control, B-10
player service, B-13
user interface, B-9

Player object
closing, 3-4
instantiating, 3-4, B-19
notifications, B-20
volume control, B-10

PlayerApplet class, B-16
PlayerException

constants, B-17
EX_BADPARAM, B-17
EX_BADSTATE, B-17
EX_ERROR, B-17
EX_INTERNAL, B-17
EX_NOTIMPL, B-18
EX_UNTRANS, B-18

data members
m_code, B-18
m_msg, B-18
m_type, B-18

methods
toString(), B-18

PlayerException class, 3-5, B-16
data members, B-18
methods, B-18

PlayerException object, B-16
PlayerFactory

methods
createPlayer(), B-19
getPlayer(), B-19
getPlayerFactory(), B-20

PlayerFactory class, 3-4, B-19

methods, B-19
PlayerListener

methods
endOfStream(), B-21
error(), B-20
stateChange(), B-21

PlayerListener class, 3-5, B-20
methods, B-20

PlayFrom, C-12
playFrom attribute, 2-11, A-5
PlayStarted, C-15
PlayStarted event, C-15
PlayTo, C-12
playTo attribute, 2-11, A-6
pop-up menus (Oracle Video Web Plug-in), 2-3

enabling, A-6, A-14
popup menus (Oracle Video Web Plug-in)

enabling, 2-11
pop-up menus (Web Plug-in)

enabling, B-28
popupMenu attribute, 2-11, A-6
POSFMT_BEGINNING

StmPos, B-30
POSFMT_CURRENT

StmPos, B-30
POSFMT_DEFAULT

StmPos, B-30
POSFMT_END

StmPos, B-30
POSFMT_FRAMES

StmPos, B-30
POSFMT_TIME

StmPos, B-31
printing conventions (documentation), xviii
properties

changing, 5-2
getting, 5-8
Oracle Video ActiveX Control, C-9 to C-14
setting, 5-8, 5-9

Properties command, 5-9
protocols, specifying, D-1
Index-10 Oracle Video Client Developer’s Guide

Q
query()

Content, B-2

R
Reader’s Comment Form, xix
replay (continuous), 2-10, A-4
requirements

Oracle Video ActiveX Control, 4-5
Oracle Video Java Library, 3-7 to 3-8
Oracle Video Web Plug-in, 2-3 to 2-6

resizing
host windows, 3-3

Resume(), C-7
resume()

OviPlayer, A-12
Player, B-12

resume() method, B-12
Resumed, C-15
Rewind(), C-7
rewind()

OviPlayer, A-13
RightClick, C-15
RightClick event, C-15
running applications, 4-16
run-time errors, 5-10
run-time requirements

Oracle Video Web Plug-in, 3-7

S
sample applets, 2-14
sample code, xviii

Java, 2-23, 2-25, 2-27
JavaScript, 2-18, 2-19, 2-20

screens
returning, 3-3

scripts, 5-6 to 5-9
scrollbars, 2-20
selecting media resources, D-1 to D-3
service methods, 3-4
setAutoStart()

OviPlayer, A-13
setFullScreen()

OviPlayer, A-13
Player, B-12

setLoop()
OviPlayer, A-13

setPopupMenu()
OviPlayer, A-14

SetPos(), C-8
setPos()

OviPlayer, A-14
Player, B-12

setPos() method, B-12
SetVol(), C-8
setVol()

OviPlayer, A-14
Player, B-13

setVol() method, B-13
ShowControls, C-13
ShowInfoDialog(), C-8
ShowPositionAndStatus, C-13
ShowStatsDialog(), C-8
slider controls, 4-16
sliderRate attribute, 2-11, A-6
spinner controls, 2-19
src attribute, 2-12, A-6
ST_EOS

Player, B-7
ST_EOS constant, A-11
ST_ERROR

Player, B-8
ST_ERROR constant, A-11
ST_INIT

Player, B-8
ST_INIT constant, A-11
ST_PAUSED

Player, B-8
ST_PAUSED constant, A-11
ST_PLAYING

Player, B-8
ST_PLAYING constant, A-11
ST_REALIZED

Player, B-8
ST_REALIZED constant, A-11
ST_UNINIT

Player, B-8
standard dialogs (file open), C-6
 Index-11

State, C-13
stateChange()

PlayerListener, B-21
stateChange() method, B-21
stateToString()

Player, B-13
StmStats, B-37

status bar, 3-3
status line, 2-13

disabling, A-3
enabling, A-3

status line (Oracle Video Web Plug-in), 2-2
STM_CONTROL

StmStats, B-34
STM_IDLE

StmStats, B-34
STM_PAUSED

StmStats, B-34
STM_PLAYING

StmStats, B-35
STM_STALLED

StmStats, B-35
StmInfo

constants, B-22
CSTAT_DISK, B-22
CSTAT_FEED, B-22
CSTAT_LOCALFILE, B-22
CSTAT_NETWORK, B-22
CSTAT_ROLLING, B-22
CSTAT_TAPE, B-22
CSTAT_TERMINATED, B-22
CSTAT_UNKNOWN, B-22

data members
m_aspect, B-23
m_asset, B-23
m_bitrate, B-23
m_bytes, B-23
m_contStat, B-23
m_contType, B-24
m_createTime, B-24
m_desc, B-24
m_fps, B-24
m_msecs, B-24
m_name, B-24
m_proto, B-25

m_size, B-25
m_url, B-25

methods
conStatToString(), B-25
toString(), B-25

StmInfo class, 3-6, B-21
data members, B-23
methods, B-25

StmOpts
constants

DEFAULT_VOL, B-26
data members

m_autoStart, B-27
m_img, B-27
m_leftClick, B-27
m_loop, B-27
m_playFrom, B-28
m_playTo, B-28
m_popup, B-28
m_volume, B-28

methods
StmOpts(), B-29

StmOpts class, B-26
data members, B-27
methods, B-28

StmOpts()
StmOpts, B-29

StmOpts() method, B-29
StmPos

constants
POSFMT_BEGINNING, B-30
POSFMT_CURRENT, B-30
POSFMT_DEFAULT, B-30
POSFMT_END, B-30
POSFMT_FRAMES, B-30
POSFMT_TIME, B-31

data members
m_fmt, B-31
m_val, B-31

methods
fromString(), B-33
StmPos(), B-32
toString(), B-33

StmPos class, 3-6, B-29
constants, B-30
Index-12 Oracle Video Client Developer’s Guide

data members, B-31
methods, B-31

StmPos()
StmPos, B-32

StmPos() method, B-32
StmStats

constants
STM_CONTROL, B-34
STM_IDLE, B-34
STM_PAUSED, B-34
STM_PLAYING, B-35
STM_STALLED, B-35

data members
m_bps, B-35
m_cnsState, B-35
m_curFrame, B-35
m_curTime, B-35
m_drops, B-36
m_fBytes, B-36
m_fps, B-36
m_maxTime, B-36
m_minTime, B-36
m_pkts, B-36
m_prdState, B-37
m_rBytes, B-37

methods
stateToString(), B-37
toString(), B-37

StmStats class, 3-6, B-34
constants, B-34
data members, B-35
methods, B-37

Stop method
event handling, C-15

Stop(), C-8
stop()

OviPlayer, A-14
Player, B-13

stop() method, B-13
Stopped, C-15
Stopped event, C-15
stopping

playback, 2-11, A-6
event handler, C-15

streams

audio only, 2-13
deallocating, 2-2

support, xix
support, customer, xix
syntax, xviii

embed statements, 2-7

T
TCP protocol, D-2
term()

Player, B-15
term() method, B-15
timed playbacks, 2-11, A-5, A-6
TimerFrequency, C-14
toolTips attribute, 2-12, A-7
toString()

ContentException, B-4
PlayerException, B-18
StmInfo, B-25
StmPos, B-33
StmStats, B-37

toString() method
PlayerException, B-4, B-18
StmInfo, B-25
StmPos, B-33
StmStats, B-37

type attribute, A-7
typographical conventions, xviii

U
UDP protocol, D-2
UI Component object, 3-3
Unload(), C-8
unload()

OviPlayer, A-15
Player, B-13

unload() method, B-13
URLs, 2-16
user interfaces, 2-2
user-defined functions, 2-20
 Index-13

V
VCR controls, 2-20, 3-3
video codecs, xvi
video files, D-1

displaying, 5-3
in common dialogs, C-6

opening
from pick lists, C-6

stopping, 2-11, A-6
event handler, C-15

video screen
returning, 3-3

volume attribute, 2-12, A-7
volume control, 2-12, 2-13, A-2, A-7
vstcp setting, D-2
vsudp setting, D-2

W
Web applications, 2-1
Web browsers, 2-3
Web pages, 2-1
Web servers

MIME types and, A-7
web site

customer support, xix
WHEN-BUTTON-PRESSED trigger

executing methods and, 5-6, 5-7
getting properties and, 5-8
setting properties and, 5-8

Width, C-16
width attribute, 2-12, A-8
windows, resizing, 3-3
Worldwide Customer Support, xix
Index-14 Oracle Video Client Developer’s Guide

	Table of Contents
	Preface
	Reader’s Comment Form

	 Introducing the Oracle Video Client
	Client Interfaces
	Interface Descriptions
	Oracle Video Web Plug-in
	Oracle Video Java Library
	Oracle Video ActiveX Control

	Choosing a Client Interface
	Browser-Hosted Client Applications
	Stand-Alone Client Applications

	Client Software Components
	Developing and Deploying a Client Application

	Oracle Video Web Plug-in
	Introduction to the Oracle Video Web Plug-in
	Requirements
	Installing the Oracle Video Web Plug-in
	Associating Oracle Video Files with the Oracle Vid...
	Client MIME Configuration
	Server MIME Configuration

	Embedding the Oracle Video Web Plug-in in an HTML ...
	Creating the <Embed> Tag
	Specifying the Media File and MIME Type
	Type and Mediafile Attributes
	Src and Mediafile Attributes

	Specifying Plug-in Characteristics
	Playing Audio-Only Streams

	Controlling the Plug-in Using JavaScript and Java
	Controlling the Plug-in with JavaScript
	Naming an Embedded Plug-in
	Accessing Plug-in Methods and Properties
	Controlling the Plug-in with Form Buttons
	Using Graphical Controls
	Controlling the Plug-in with Dynamic Parameters
	Creating a Pop-up List
	Using an Image Map
	Other Things You Can Do with JavaScript
	Sample Code for JavaScript-Controlled Plug-in

	Controlling the Plug-in with Java
	OviPlayer and OviObserver
	Retrieving the OviPlayer Object
	Using OviObserver
	Simple Plug-in Example using Java

	Oracle Video Java Library
	Introduction to the Oracle Video Java Library
	Player Classes
	Player
	PlayerFactory
	PlayerListener
	PlayerException

	Stream Information Classes
	Content Query Classes

	Requirements
	Installing and Configuring the Oracle Video Java L...
	Run-time Requirements
	Version Requirements

	Programming with the Oracle Video Java Library
	Importing the Oracle Video Java Library Package
	Creating a Player
	Terminating a Player
	Getting and Setting Player Properties
	Stream Position
	Volume Settings
	Stream and Player State

	Handling Player Events
	PlayerListener Methods
	Implementing and Registering a PlayerListener

	Displaying and Customizing the Player Interface
	Retrieving Player Interface Components
	Customizing Interface Components
	Setting Full-Screen Interface

	Loading and Unloading Streams
	Controlling Playback
	Querying Available Content Titles
	Content Classes
	Performing a Query

	Synchronizing Calls to Player Methods
	Handling Player Exceptions

	Using the PlayerApplet Class
	Quick Start: A Sample Java Application
	Step-by-Step Tutorial of Simple.java

	Oracle Video ActiveX Control
	Introduction to the Oracle Video ActiveX Control
	Becoming Familiar with the Oracle Video ActiveX Co...
	Installing the Oracle Video ActiveX Control
	Using the Oracle Video ActiveX Control
	Controlling the Oracle Video ActiveX Control
	In HTML Documents
	In Application Development Tools

	Requirements
	Using the Oracle Video ActiveX Control in HTML Doc...
	Embedding the Oracle Video ActiveX Control
	Setting Properties for an Embedded Oracle Video Ac...
	Security Requirements in Internet Explorer
	Sample ActiveX Control in HTML

	Creating Applications with the Oracle Video Active...
	Loading the Oracle Video ActiveX Control
	Oracle Power Objects 2.1
	Microsoft Visual Basic

	Programming with the Oracle Video ActiveX Control
	A Simple Application

	Working with Oracle Forms
	A Simple Application
	Accessing Methods and Properties
	Executing a Method
	Executing a Method with Parameters
	Setting the Value of a Property
	Getting the Value of a Property

	Modifying Properties
	Troubleshooting

	Oracle Video Web Plug-in Reference
	<Embed> Attributes
	autoStart
	background
	controls
	controlMask
	height
	hidden
	leftClick
	loop
	mediafile
	name
	playFrom
	playTo
	popupMenu
	sliderRate
	src
	toolTips
	type
	volume
	width

	JavaScript Methods
	Java Classes
	OviPlayer
	advise()
	forward()
	getLength()
	getMaxPos()
	getMinPos()
	getObserver()
	getPos()
	getState()
	getVol()
	load()
	pause()
	play()
	resume()
	rewind()
	setAutoStart()
	setFullScreen()
	setLoop()
	setPopupMenu()
	setPos()
	setVol()
	stop()
	unload()

	OviObserver
	onPositionChange()
	onStop()

	Oracle Video Java Library Reference
	Content
	query()

	ContentException
	ContentException Constants
	ContentException.EX_BADPARAM
	ContentException.EX_BADSTATE
	ContentException.EX_ERROR
	ContentException.EX_INTERNAL
	ContentException.EX_NOTIMPL
	ContentException.EX_UNTRANS

	ContentException Data Members
	m_code
	m_msg
	m_type

	ContentException Methods
	toString()

	ContentIter
	ContentIter Data Members
	m_num
	m_pos

	ContentIter Methods
	ContentIter()

	Player
	Player Constants
	Player State Reference
	Player.ST_EOS
	Player.ST_ERROR
	Player.ST_INIT
	Player.ST_PAUSED
	Player.ST_PLAYING
	Player.ST_REALIZED
	Player.ST_UNINIT

	Player Methods
	User Interface Methods
	getControlComp()
	getPlayerUI()
	getSelRange()
	getStatusComp()
	getVisualComp()

	Media Control Methods
	getPos()
	getVol()
	load()
	pause()
	play()
	resume()
	setFullScreen()
	setPos()
	setVol()
	stateToString()
	stop()
	unload()

	Player Service Methods
	addListener()
	getInfo()
	getState()
	getStats()
	term()

	PlayerApplet
	PlayerException
	PlayerException Constants
	PlayerException.EX_BADPARAM
	PlayerException.EX_BADSTATE
	PlayerException.EX_ERROR
	PlayerException.EX_INTERNAL
	PlayerException.EX_NOTIMPL
	PlayerException.EX_UNTRANS

	PlayerException Data Members
	m_type
	m_code
	m_msg

	PlayerException Methods
	toString()

	PlayerFactory
	PlayerFactory Methods
	createPlayer()
	getPlayer()
	getPlayerFactory()

	PlayerListener
	PlayerListener Methods
	error()
	endOfStream()
	stateChange()

	StmInfo
	StmInfo Constants
	StmInfo.CSTAT_DISK
	StmInfo.CSTAT_FEED
	StmInfo.CSTAT_LOCALFILE
	StmInfo.CSTAT_NETWORK
	StmInfo.CSTAT_ROLLING
	StmInfo.CSTAT_TAPE
	StmInfo.CSTAT_TERMINATED
	StmInfo.CSTAT_UNKNOWN

	StmInfo Data Members
	m_aspect
	m_asset
	m_bitrate
	m_bytes
	m_contStat
	m_contType
	m_createTime
	m_desc
	m_fps
	m_msecs
	m_name
	m_proto
	m_size
	m_url

	StmInfo Methods
	contStatToString()
	toString()

	StmOpts
	StmOpts Constants
	StmOpts.DEFAULT_VOL

	StmOpts Data Members
	m_autoStart
	m_img
	m_leftClick
	m_loop
	m_playFrom
	m_playTo
	m_popup
	m_volume

	StmOpts Methods
	StmOpts()

	StmPos
	StmPos Constants
	StmPos.POSFMT_BEGINNING
	StmPos.POSFMT_CURRENT
	StmPos.POSFMT_DEFAULT
	StmPos.POSFMT_END
	StmPos.POSFMT_FRAMES
	StmPos.POSFMT_TIME

	StmPos Data Members
	m_fmt
	m_val

	StmPos Methods
	StmPos()
	fromString()
	toString()

	StmStats
	StmStats Constants
	StmStats.STM_CONTROL
	StmStats.STM_ENDED
	StmStats.STM_IDLE
	StmStats.STM_PAUSED
	StmStats.STM_PLAYING
	StmStats.STM_STALLED

	StmStats Data Members
	m_bps
	m_cnsState
	m_curFrame
	m_curTime
	m_drops
	m_fBytes
	m_fps
	m_maxTime
	m_minTime
	m_pkts
	m_prdState
	m_rBytes

	StmStats Methods
	stateToString()
	toString()

	Oracle Video ActiveX Control Reference
	Methods
	Forward()
	GetInfo()
	GetPos()
	GetStats()
	GetVol()
	ImportFileAs()
	ImportStreamAs()
	Load()
	Pause()
	Play()
	Resume()
	Rewind()
	SetPos()
	SetVol()
	ShowInfoDialog()
	ShowStatsDialog()
	Stop()
	Unload()

	Properties
	AutoStart
	BorderStyle
	EnableLeftClick
	EnablePopup
	IsLoaded
	Loop
	Mediafile
	PlayFrom
	PlayTo
	ShowControls
	ShowPositionAndStatus
	State
	TimerFrequency

	Events
	Completed
	LeftClick
	PlayStarted
	Resumed
	RightClick
	Stopped

	<Object> Attributes and Parameters
	ClassID
	Height
	ID
	Width

	The Media File
	mediafile Syntax
	Logical Content Asset Cookies
	mediafile Examples

	Index

