
ACTIVEREPORTS' EXPORT FILTERS
ActiveReports gives you the option to export in different formats by providing modular COM DLLs.    The
ActiveReports export filters include an Excel export filter, a RTF export filter, a PDF export filter, and a text
export filter.    You can use any of these filters to export your reports to Excel file format, Rich Text Format
(RTF), Portable Document Format (PDF) and to a delimited text file.    There are four steps to using the
export filters in your project.

1. Reference the filter in your project using the Project/References dialog box.

2. Create the export object.

3. Set the export filename.

4. Pass an ActiveReports pages collection to the export object’s Export method.

Using the Export Filters

Example 1

In this example, this code is placed in the ReportEnd Event of an ActiveReports Designer, use it
anywhere you can pass the Export method a valid ActiveReports pages collection.

Private Sub ActiveReport_ReportEnd()

 Dim myExportObject As ActiveReportsExcelExport.ARExportExcel

 Set myExportObject =
CreateObject("ActiveReportsExcelExport.ARExportExcel")

 myExportObject.FileName = App.Path & "\XLReport.xls"

 myExportObject.Export Me.Pages

 Set myExportObject = Nothing

End Sub

Example 2

In this example, we have added a reference to the "ActiveReports Excel Export Filter" library through
VB’s References Command under the Project menu.

Private Sub ActiveReport_ReportEnd()

 Dim myExportObject As ActiveReportsExcelExport.ARExportExcel

 Set myExportObject = New ActiveReportsExcelExport.ARExportExcel

 myExportObject.FileName = App.Path & "\XLReport.xls"

 myExportObject.Export Me.Pages

 Set myExportObject = Nothing

End Sub

It’s easy to make the mistake of passing an empty pages collection to the export.    Make sure that you
run your report before you try to export from it.

The ActiveReports pages collection has a native file format called RDF.    It’s often useful to save pages,
also called canvases, to this format, and export them later.

Private Sub ActiveReport_ReportEnd()

 ' save the pages collection

 Me.Pages.Save App.Path & "\RDFReport.RDF"

End Sub

You can use an ActiveReports Viewer control placed on a form to load and export the report.rdf file.

Private Sub cmdARVExport_Click()

 Dim myExportObject As ActiveReportsPDFExport.ARExportPDF

 Set myExportObject = New ActiveReportsPDFExport.ARExportPDF

 ARViewer21.Pages.Load App.Path & "\RDFReport.RDF"

 myExportObject.FileName = App.Path & "\PDFReport.PDF"

 myExportObject.Export ARViewer21.Pages

 Set myExportObject = Nothing

End Sub

Distributing Export Filters

When using any of the export filters in your project, you should include the associated DLL files in your
application distribution.

PDFEXPT.DLL Portable Document Format (PDF) Export Filter

RTFEXPT.DLL Rich Text Format (RTF) Export Filter

TEXTEXPT.DLL Text Export Filter

EXCLEXPT.DLL Microsoft Excel Export Filter

HTMLEXPT.DLL Hyper Text Markup Language (HTML) Export Filter

TIFFEXPT.DLL TIFF Export Filter

These files are COM components and must be registered on the target system when installing your
application.

EXCEL EXPORT FILTER
What is the ActiveReports Excel Export Filter?

How Does the Excel Export Filter Work?

What are the Excel Export Filter's Features?

Registering the Excel Export Library

Adding the Excel Export Filter to your Project

Using the Excel Export Filter

Using the SpreadBuilder API

Creating a SpreadBuilder Object

What is the ActiveReports Excel Export Filter?

The ActiveReports Excel Export Filter is a DLL based library that exports an ActiveReports pages
collection to Microsoft Excel.    The export filter can generate single or multiple sheet workbooks, with
control over generation of white space to match the printable report.    The export has support for
ActiveReports borders, lines and pictures, and will attempt to map ActiveReports border and line styles to
excel styles intelligently depending on Excel output version. The export automatically generates number
formats and has the option of generating horizontal page breaks.

How does the Excel Export Filter work?

ActiveReports Excel Export Filter exports pre-rendered pages from an ActiveReports pages
collection.    Rendered pages are also called canvases.    The export converts from a "forms" model where
fields can overlap and stack, to a grid model where only text elements can overlap, and fields share
horizontal and vertical boundaries with all other fields on the sheet.

What are the Excel Export Filter's Features?

ActiveReports Excel Export Filter provides two features, the Export Filter, and the Spreadbuilder API.

1. The Export Filter exports a rendered ActiveReports report or pages collection to an excel document.

2. Spreadbuilder’s API COM Interfaces allows the creation of--but not loading of--Excel worksheets and
workbooks.

The Spreadbuilder API, also in the exclexpt.dll, allows you to build custom spreadsheets cell by cell with
fantastic ease of use.    The API allows fine control over sheet and workbook layout, with elegantly
degrading features across Excel versions 2.1 through Excel 2000.    The API allows pictures, styled lines
with arrowheads and borders to be added to a virtual sheet, which can be saved multiple times in different
versions.    The API does not allow the loading of workbooks or sheets.

Registering the Excel Export Library

The ActiveReports Excel Export Filter must be registered on your machine before you can use the filter in
a Visual Basic project.

You can use the command line to register the .dll library via the following steps:

1. Place the exclexpt.dll file on your machine where you want it in your directory structure.

2. Open the command line by choosing Run from the Start menu.

3. Type the following in the Open box where [filepath] represents the path through the directory structure
on your machine to where you have placed the .dll library:

1. regsvr32 [filepath]/exclexpt.dll

4. A message box indicates that the registration has succeeded.

Adding the Excel Export Filter to your Project

1. Choose References from the Project menu.

2. Select ActiveReports Excel Export Filter 2.0 from the References list and click OK.

Using the Excel Export Filter

The code example below follows these steps to export an ActiveReports’ Pages Collection to Excel using
the ActiveReportsExcelExport object’s Export method.

1. Create a new ActiveReportsExcelExport.ARExportExcel object.

Dim xls As New ActiveReportsExcelExport.ARExportExcel

Set xls = New ActiveReportsExcelExport.ARExportExcel

2. Determine where you want to store the exported information as a .xls document and set the
ActiveReportsExcelExport object’s FileName property equal to the path and name of that file.

sFile = "c:\activereports\vbexport\test1.xls"

xls.FileName = sFile

3. Set any other ActiveReportsExcelExport properties you want to specify.

4. Call the ActiveReportsExcelExport object’s Export method, passing as a parameter the name of the
ActiveReports Pages Collection for export.

xls.Export arv.Pages

Example:
Private Sub mEExpt_Click()

Dim xls As New ActiveReportsExcelExport.ARExportExcel
Dim sFile As String
Dim bSave As Boolean

Set xls = New ActiveReportsExcelExport.ARExportExcel
sFile = "c:\activereports\vbexport\test1.xls"

 xls.FileName = sFile
 If arv.Pages.Count > 0 Then
 xls.Export arv.Pages
 End If
End Sub

Using the SpreadBuilder API

The SpreadBuilder API allows you to customize the appearance of the Excel files you create.    Rather
than creating individual sheets or cells, you create a new spreadbuilder object, which represents a
workbook containing a collection of sheets. Cells in each sheet are accessed by their row/column address
(index is 0-based).    You can access individual sheets, rows, columns and cells through the spreadbuilder
object. At each level you can access different properties and methods for each object.

Creating a SpreadBuilder Object

1. Set an object variable equal to a new Spreadbuilder object.

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

2. By default, the workbook is created with one sheet.    This translates into a spreadbuilder object
containing a Sheets collection consisting of one Sheet.

3. The Sheets collection is zero based.    To access the default sheet, use the index number:

sb.Sheets(0)

4. You can access sheet properties by setting a sheet to an object variable.

Dim mysheet as ActiveReportExcelExport.DDSheet

Set mysheet = sb.Sheets(0)

5. You can rename the worksheet using the Sheet Name property.

sb.Sheets(0).Name = "Address Book"

mysheet.Name = "Address Book"

6. You can add new sheets to the collection using the Sheets Add property.

sb.Sheets.Add "AddressBook"

7. You can access sheets in the collection by their string name.

Set mysheet = sb.Sheets("Sheet1")

Example:

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

sb.Sheets.Add "AddressBook2"

End Sub

Working with SpreadBuilder sheets

When you have created a spreadbuilder object with sheets, you can begin to customize the design of
individual sheets.    You can set properties for rows, columns, and cells and designate page breaks.

Accessing the Sheets Collection

Setting Row Properties in SpreadBuilder

Setting Column Properties in SpreadBuilder

Setting Cell Properties in SpreadBuilder

Designating Page Breaks

Adding Pictures

Adding Lines

Accessing the Sheets Collection

Access the Sheets collection through the spreadbuilder object.    From the Sheets Collection object you
can access individual sheets.    The Sheets Collection object exposes six methods.

· Add

· Count

· Item

· Move

· Remove

· Select

Note: See DDSheets Methods for full documentation.

Example:

sb.Sheets.Add "AddressBook2"

Setting Row Properties in SpreadBuilder

To access a row in a spreadbuilder object, open the Sheets collection of the spreadbuilder object to the
sheet and the row you need.    The Row object exposes two properties:

· Autosize

· Height

Note: See DDRow Properties for full documentation.

You cannot use these two properties together in the same Row.    Setting the Height property
automatically sets the Autosize property to FALSE.

Example:

sb.Sheets(0).Rows(0).AutoSize = True

Setting Column Properties in SpreadBuilder

To access a column in a spreadbuilder object, open the Sheets collection of the spreadbuilder object to
the sheet and the column you need.    The Column object exposes one property:

· Width

Note: See DDColumn Properties for full documentation

Example:

sb.Sheets(0).Columns(0).Width = 800

Setting Cell Properties in SpreadBuilder

To access a cell in a spreadbuilder object, open the Sheets collection of the spreadbuilder object to the
coordinates of the cell you need.    The Cell object exposes 24 properties:

· Alignment

· BorderBottomColor

· BorderBottomStyle

· BorderDiagonalColor

· BorderDiagonalEnum

· BorderDiagonalStyle

· BorderLeftColor

· BorderLeftStyle

· BorderRightColor

· BorderRightStyle

· BorderTopColor

· BorderTopStyle

· FillColor

· FontBold

· FontItalic

· FontName

· FontSize

· FontUnderlineStyle

· ForeColor

· NumberFormat

· TextAngle

· Type

· Value

· VertAlignment

Note: See DDCell Properties for full documentation.

When using Cell properties to build a sheet, the FontSize property sets the Row Height property to the
height of the font when the font height is greater than the row height.

Example:

sb.Sheets(0).Cell(0,0).Value = "Name"

sb.Sheets(0).Cell(0,0).FontBold = True

Designating Page Breaks

To create a pagebreak in an exported Excel document, use the AddHorizontalPageBreak method or the
AddVertPageBreak method.

1. Access the sheet in which you need to create pagebreaks through the Sheets Collection in the
spreadbuilder object.

2. Call AddHorizontalPageBreak to insert a break for a report that runs horizontally across the page, or
call AddVertPage break to add a break in a report that runs vertically down the page.

3. The AddHorizontalPageBreak method has three arguments.    The last two arguments are written to
BIFF8 (Excel 97) files only, so in other cases these values may be ignored.

· The first argument, Row as Integer is the only critical argument.    Since this number is zero
based, to break before Excel row 25, pass the value 24.

· The next two zero based numbers define the starting and ending columns for the pagebreak.

· If you don’t want to define different pagebreaks at different columns, use
AddHorizonalPageBreak (xxx,0,255) to specify all columns.

4. The AddVerticalPageBreak method is complementary to the AddHorizontalPageBreak method.

· The first argument designates the column for the break.

· The second and third arguments are the range of rows for the vertical pagebreak.

· To specify all rows, use AddVerticalPageBreak (xxx,0,65535).

5. View the results in Excel by selecting PageBreak Preview under the view menu.

Example:

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

sb.Sheets(0).AddHorizontalPageBreak (10,0,255)

sb.Save "C:\AddressBook.xls"

End Sub

Adding Pictures

Use the AddPicture method to add a picture to your sheet.    The AddPicture method takes 15 parameters:

AddPicture(pic As StdPicture,

colL As Integer,

dxL As Integer,

rwT As Integer,

dyT As Integer,

colR As Integer,

dxR As Integer,

rwB As Integer,

dyB As Integer,

[BorderLineWeight],

 [BorderLineStyle],

[BorderColor As OLE_COLOR],

 [FillBackground],

[BackColor As OLE_COLOR],

[MoveType As SBFloatingMoveType])

Note: See the AddPicture method in the Object Model for definitions of the parameters.

Example:

Dim spread As New SpreadBuilder

Dim sheet As DDSheet

Set sheet = spread.Sheets(0)

‘GetPic is an object typed function.

‘The critical line calls LoadPicture

‘Set GetPic = LoadPicture(“MyPictureName”)

Dim a, b

b = countPics()

For a = 1 To b

 sheet.Cell(a * 5, 0) = "pic " & a

‘output our list of pictures at every 5th cell

‘put the left edge at column c (2) , right edge at column f (5)

‘the picture will be 4 cells tall, 3 cells wide

‘will have solid red borders, with a weight of 2.

‘we are using this with a transparent gif,

‘so a blue background will be visible

‘the image will move but not re-size when cells bounds

‘are moved in excel

 sheet.AddPicture GetPic(a), 2, 0, a * 5, 0, 5, 0, a * 5 + 4, 0, 2, 0,

vbRed, 1, vbBlue, SBMoveNoSize

Next a

sheet.Name = "Version " & spread.Version

spread.Save "c:\test.xls"

Adding Lines

Use the AddLine method to add a line to your sheet.    The AddLine method takes 10 parameters:

sb.Sheets(0).AddLine(

 colL As Integer,

 dxL As Integer,

 rwT As Integer,

 dyT As Integer,

 colR As Integer,

 dxR As Integer,

 rwB As Integer,

 dyB As Integer,

 iQu As SBLineDirection,

 [Weight As Long],

 [Style As Long],

 [Color As OLE_COLOR],

 [fAuto As Boolean],

 [MoveType As SBFloatingMoveType],

 [StartAHStyle As Long],

 [StartAHWidth As Long],

[StartAHLength As Long],

 [EndAHStyle As Long],

 [EndAHWidth As Long],

 [EndAHLength As Long])

Note: See the AddLine method in the Object Model for definitions of the parameters.

TroubleShooting The Excel Export Filter and SpreadBuilder

Using the Cell to build a sheet but all values are converted to zero.

1. First determine what the cell Type is when you set the number.
Use
? sheet.Cell(0,0).type

or
? cell.type

to retrieve the enumerated type from the immediate window.

2. The default cell Type is SBBlank, which promotes only to SBLabel.    This means that if you set a cell
to a certain type and then change the type to Number, Spreadbuilder will not attempt to convert the
number String to Number format.    Rather, the Number cell is initialized to zero.

Lines are not aligning

Using lines to delimit columns can result in improper looking Excel files. Using borders for the edges of
elements will solve the problem, as borders will be placed on columns in the same manner that data fields
are. Lines are better used to bound pictures, because Excel floats both lines and pictures above the
sheet.

Lines don't align with other lines.

This is an unfortunate result of how the export tries to preserve text at the expense of correct positioning
when using the TrimEmptySpace property. This problem could be resolved by changing TrimEmptySpace
to False, by using borders rather than lines, and by changing MinRowHeight. If these methods are not an
option, try moving the Report elements so that the lines do not cross a line boundary of overlapping
elements.

Rectangles, Rounded Rectangles and Ellipses aren't showing up.

The Excel Export Filter does not support these shapes.

Row size will not increase when TrimEmptySpace is True.

When TrimEmptySpace is True, the height of the row is always the height of the largest control on the row
plus the value of the BorderSpace property.    This may default to 59 twips if the largest element on a line
is a textbox or label.

Numbers appear as "XXXXXX"

This occurs when there is not enough space in a column to display the number as formatted and is a
result of the export filter incorrectly sizing the column.

To increase the size of the column, which is too small for the number field, try any of the following:

· Set DoubleBoundaries to True if there is no left aligned control overlapping the number field.

· Increase MinColumnWidth.

· Reposition elements in the report so that no elements overlap the number field's
boundaries.

· Place unseen elements such as empty textboxes with a white border or background to give
the export "hints" on where to place column boundaries. You must set a custom border, as
empty textboxes without backgrounds or borders are removed by the export.    The export is
sensitive to the number of "hints."

ACTIVEREPORTS RTF EXPORT FILTER
What is the ActiveReports RTF Export Filter?

Registering the RTF Export Library

What is the ActiveReports RTF Export Filter?

The ActiveReports RTF Export Filter is a dll-based library that exports an ActiveReports report to Rich
Text Format.

Registering the RTF Export Library

The ActiveReports RTF Export Filter must be registered on your machine before you can use the filter in a
Visual Basic project.

You can use the command line to register the .dll library via the following steps:

1. Place the rtfexpt.dll file on your machine where you want it in your directory structure.

2. Open the command line by choosing Run from the Start menu.

3. Type the following in the Open box where [filepath] represents the path through the directory structure
on your machine to where you have placed the .dll library:

regsvr32 [filepath]/rtfexpt.dll

4. A message box indicates that the registration has succeeded.

ACTIVEREPORTS PDF EXPORT FILTER
What is the ActiveReports PDF Export Filter?

Registering the PDF Export Library

What is the ActiveReports PDF Export Filter?

The ActiveReports PDF Export Filter is a dll-based library that exports an ActiveReports report to Portable
Document Format.

Registering the PDF Export Library

The ActiveReports PDF Export Filter must be registered on your machine before you can use the filter in
a Visual Basic project.

You can use the command line to register the .dll library via the following steps:

1. Place the pdfexpt.dll file on your machine where you want it in your directory structure.

2. Open the command line by choosing Run from the Start menu.

3. Type the following in the Open box where [filepath] represents the path through the directory structure
on your machine to where you have placed the .dll library:

regsvr32 [filepath]/pdfexpt.dll

4. A message box indicates that the registration has succeeded.

ACTIVEREPORTS TEXT EXPORT FILTER
What is the ActiveReports Text Export Filter?

Registering the Text Export Library

What is the ActiveReports Text Export Filter?

The ActiveReports Text Export Filter is a dll-based library that exports an ActiveReports report to a text
file.      This export supports both Unicode and ANSI formats and can be used to export all text in the
report into a delimited data file or an approximated text layout.

Registering the Text Export Library

The ActiveReports Text Export Filter must be registered on your machine before you can use the filter in a
Visual Basic project.

You can use the command line to register the .dll library via the following steps:

1. Place the textexpt.dll file on your machine where you want it in your directory structure.

2. Open the command line by choosing Run from the Start menu.

3. Type the following in the Open box where [filepath] represents the path through the directory structure
on your machine to where you have placed the .dll library:

regsvr32 [filepath]/textexpt.dll

4. A message box indicates that the registration has succeeded.

ACTIVEREPORTS TIFF EXPORT FILTER
What is the ActiveReports TIFF Export Filter?

Registering the TIFF Export Library

What is the ActiveReports TIFF Export Filter?

The ActiveReports TIFF Export Filter is a dll-based library that exports an ActiveReports report to TIFF
file. This can be used to send reports as faxes.

Registering the TIFF Export Library

The ActiveReports TIFF Export Filter must be registered on your machine before you can use the filter in
a Visual Basic project.

You can use the command line to register the .dll library via the following steps:

1. Place the tiffexpt.dll file on your machine where you want it in your directory structure.

2. Open the command line by choosing Run from the Start menu.

3. Type the following in the Open box where [filepath] represents the path through the directory structure
on your machine to where you have placed the .dll library:

regsvr32 [filepath]/tiffexpt.dll

4. A message box indicates that the registration has succeeded.

ACTIVEREPORTS' HTML EXPORT FILTER
What is the ActiveReports' HTML Export Filter?

Registering the HTML Export Library

What is the ActiveReports' HTML Export Filter

The ActiveReports HTMLExport Filter is a dll-based library that exports an ActiveReports report to HTML
format.

Note: Lines are not exported to HTML

Registering the HTML Export Library

The ActiveReports HTML Export Filter must be registered on your machine before you can use the filter in
a Visual Basic project.

You can use the command line to register the .dll library via the following steps:

5. Place the htmlexpt.dll file on your machine where you want it in your directory structure.

6. Open the command line by choosing Run from the Start menu.

7. Type the following in the Open box where [filepath] represents the path through the directory structure
on your machine to where you have placed the .dll library:

regsvr32 [filepath]/htmlexpt.dll

8. A message box indicates that the registration has succeeded.

Common Properties

Property Data Type Description

FileName String Specifies the name of the file to which
the report will export.

FileName

Description

Specifies the name of the file to which the report will export.

Syntax

ExcelExportObject.FileName [= Value]

Data Type

String

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

Common Methods

Method Description

Export Exports a report’s pages collection to the
document indicated by the Filename property.
Sub Export(pagesColl as Unknown)

ExportStream Exports a report’s pages collection to a byte array.
Sub ExportStream(ActiveReportsPagesCollection as Unknown,
OutputParamter)

Export

Discription

Exports a pages collection to the specified document format. The file is determined by the Filename
property. The Export method requires a pages collection, which is created after a report, is run. You can
call the Export method directly from the report object or from the viewer's pages collection.

Return Type

None

Syntax
Sub Export(pagesColl as Unknown)

Parameters

Parameters

Name Type Description

pagesColl Unknown The report’s pages collection.

Example

Private Sub mEExpt_Click()

Dim xls As New ActiveReportsExcelExport.ARExportExcel

Dim sFile As String

Dim bSave As Boolean

 sFile = "c:\activereports\vbexport\test1.xls"

 xls.FileName = sFile

 If arv.Pages.Count > 0 Then

 xls.Export arv.Pages

 End If

End Sub

ExportStream

Description

Exports the report’s pages collection to a byte array.

Return Type

None

Syntax

Sub ExportStream(pagesColl as Unknown, OutputParameter)

Parameters

Name Type Description

pagesColl Variant A report’s pages collection.

OutputParamter Variant Variant or byte variable to use.

Example

Private Function WebCacheExport() As Long

Dim myBArray As Variant

Dim myPDFExport As ActiveReportsPDFExport.ARExportPDF

Set myPDFExport = New ActiveReportsPDFExport.ARExportPDF

 myPDFExport.AcrobatVersion = DDACR40

 myPDFExport.FileName = App.Path & "\PDFReport.PDF"

 myPDFExport.JPGQuality = 100

 myPDFExport.OutputTOCAsBookmarks = True

 myPDFExport.SemiDelimitedNeverEmbedFonts = ""

 myPDFExport.ShowBookmarksInAcrobat = True

 myPDFExport.ExportStream rptInvoice.Page, myBArray

End Function

Common Events

Event Description

OnProgress This event allows the export filter’s progress to be
tracked.
Sub OnProgress(ByVal PageNumber As Long)

OnProgress

Description

This event allows the export filter’s progress to be tracked. In order to gain access to this event in each
export filter “WithEvents” must be used when dimming the variable.

Syntax
Sub OnProgress(ByVal PageNumber as Long)

Parameters

Name Description

PageNumber The page the export filter is currently exporting

Example
Dim WithEvents myExportObject As ActiveReportExcelExport.ARExportExcel

Private sub myExportFilter_OnProgress(ByVal PageNumber As Long)
FrmMain.lblexpcnt.caption = = " Exporting Page " & PageNumber & " of " &

rpt.Pages.Count
End Sub

Excel Export Properties

Property Data Type Description

AutoRowHeight Boolean When set to true, Excel will correct for
the size of the line by resizing the line to
the largest object on the line.

BorderSpace Integer Defines in twips the height added to a
cell to prevent vertical cell borders from
overlapping characters.

DoubleBoundaries Boolean Use the double boundaries property
when text strings force the export to
place columns on both the left and right
sides of a field.

FileName String Specifies the name of the file to which
the report will export.

GenPageBreaks Boolean Determines if the Export method will
generate page breaks automatically in
the exported file.

MinColumnWidth Long Specifies in twips how small columns can
be in the Excel document.    Larger
values reduce number of columns in a
sheet.

MinRowHeight Long Specifies in twips how small rows can be
in the exported file.    Larger values force
the export to place more controls on a
single line.

Multisheet Boolean Determines if the report will be generated
as a single Excel sheet, or as a multiple
sheet workbook.

ShowMarginSpace Boolean Specifies whether the space between the
report elements and the margin will
display.    Default is False.

TrimEmptySpace Boolean Determines if the exported report outputs
runs of vertical empty spaces, or if they
are eliminated.

Version Integer Sets the Excel version of the exported
file.

AutoRowHeight

Description

When set to true, Excel will correct for the size of the line by resizing the line to the largest object on the
line.

Syntax

ExcelExportObject.AutoRowHeight [= Value]

Data Type

Boolean

Settings

Value Description

True Row heights for all sheets are
automatically corrected by Excel.

False Row heights Excel will not correct row
heights calculated by the export.

Example
Private Sub RunReport()

Dim xls as New ARExportExcel
Dim rpt As New ActiveReport1

xls.AutoRowHeight = True
xls.BorderSpace = 0
xls.DoubleBoundaries = True
xls.FileName = "C:\Report1.XLS"
xls.GenPageBreaks = True
xls.minColumnwidth = 2000
xls.MinRowheight = 26
xls.Multisheet = False
xls.ShowMarginSpace = True
xls.TrimEmptySpace = True

rpt.Run False
xls.Export rpt.Pages

Set rpt = Nothing
Set xls = Nothing

End Sub

BorderSpace Property

Description

Defines in twips the height added to a cell to prevent vertical cell borders from overlapping characters.    If
set to zero, you will get more accurate placement of fields, but you may experience ugly output as Excel
draws bottom borders over character descenders.    That is, Excel may visually clip the bottom of 'g’, 'j’, or
'q’ characters.    The default value will work for most reports.

Syntax

ExcelExportObject.BorderSpace [= Value]

Data Type

Integer (in twips) Default = 59 twips.

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

DoubleBoundaries Property

Description

Use the double boundaries property when text strings force the export to place columns on both the left
and right sides of a field. This issue doesn't occur in most reports.

Syntax

ExcelExportObject.DoubleBoundaries [= Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Right aligned elements replace left
aligned elements in the same column.

False Right aligned elements do not replace
left aligned elements.

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

GenPageBreaks

Description

Determines if the Export method will generate page breaks automatically in the exported file.

Syntax

ExcelExportObject.DoubleBoundaries [= Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Export automatically places horizontal
page breaks below the bottom-most
element on each report page.

False Will not create automatic page breaks.

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

MinColumnWidth

Description

Specifies in twips how small columns can be in the Excel document.    Larger values reduce number of
columns in a sheet.

Note: This is typically the single important variable to tweak when exporting a pages collection.

Syntax

ExcelExportObject.MinColumnWidth [= Value]

Data Type

Long (in twips)

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

MinRowHeight

Description

Specifies in twips how small rows can be in the exported file.    Larger values force the export to place
more controls on a single line.

Syntax

ExcelExportObject.MinRowHeight [= Value]

Data Type

Long (in twips) Default = 128 twips.

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

MultiSheet

Description

Determines if the report will be generated as a single Excel sheet, or as a multiple sheet workbook.   
Each page in the report will be placed on its own Excel sheet.

Syntax

ExcelExportObject.MultiSheet [= Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Each report page will result in a separate
sheet in the Excel workbook.

False Pages in the report will be formatted to
the same Excel sheet.    The first page in
the report will start at row 1, and
subsequent pages will be placed below.

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

ShowMarginSpace

Description

Specifies whether the space between the report elements and the margin will display.    Default is False.   
If set to True, the space between elements and the margin will be shown when TrimEmptySpace is False.

Syntax

ExcelExportObject.ShowMarginSpace [= Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True The space between the report elements
and the margin displays if the
TrimEmptySpace property is False.

False The space between the report elements
and the margin will not display.

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

TrimEmptySpace

Description

Determines if the exported report outputs runs of vertical empty spaces, or if they are eliminated.

Syntax

ExcelExportObject.TrimEmptySpace [= Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Vertical empty spaces are removed from
the exported report.

False Vertical empty spaces remain in the
exported report

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

Version

Description

Sets the Excel version of the exported file. Versions 2,3,4,5,7 and 8 are supported.

Syntax

ExcelExportObject.Version [= Value]

Data Type

Integer (Default = 8)

Example

Private Sub RunReport()

Dim xls as New ARExportExcel

Dim rpt As New ActiveReport1

xls.AutoRowHeight = True

xls.BorderSpace = 0

xls.DoubleBoundaries = True

xls.FileName = "C:\Report1.XLS"

xls.GenPageBreaks = True

xls.minColumnwidth = 2000

xls.MinRowheight = 26

xls.Multisheet = False

xls.ShowMarginSpace = True

xls.TrimEmptySpace = True

xls.Version = 8

rpt.Run False

xls.Export rpt.Pages

Set rpt = Nothing

Set xls = Nothing

End Sub

Excel Export Methods

Method Description

Export Exports a pages collection to Excel document
determined by the Filename property.
Sub Export(pagesColl as Unknown)

ExportWebCache Exports a pages collection to an Excel document
stored in the WebCache.
Function ExportWebCache(pagesColl as Unknown) As Long

ExportWebCache

Description

Exports a pages collection to an Excel document stored as a byte array. The method returns the ID for the
new item added to the webcache. The ExportWebCache method requires a pages collection, which is
created after a report, is run. You can call the ExportWebCache method directly from the report object or
from the viewer's pages collection.

Return Type

Long

Syntax
Function ExportWebCache(pagesColl as Unknown) As Long

Parameters

Parameters

Name Type Description

pagesColl Unknown The report’s pages collection.

Example

Function WebCacheExport() As Long

 Dim myExportObject As ActiveReportsExcelExport.ARExportExcel

 Set myExportojbect = New ActiveReportsExcelExport.ARExportExcel

 WebCacheExport = myExportObject.ExportWebCache(rptInvoice.pages)

End Function

SpreadBuilder API Constants
SBCellType

Value Mnemonic Description

0 SBBlank Blank Cell

1 SBLabel Label Cell

2 SBNumber Number Cell

3 SBBoolean Boolean Cell

SBFloatingMoveType Constant

Value Mnemonic Description

0 SBMoveNoSize Lines and Pictures move but do
not size with cells.

1 SBMoveSize Lines and Pictures move and
size with cells.

2 SBNoMoveNoSize Lines and Pictures do not move
or size with cells.

SBHorizAlign Constant

Value Mnemonic Description

0 SBAlignGeneral No specific alignment setting.

1 SBAlignLeft Align left.

2 SBAlignCenter Align center.

3 SBAlignRight Align right.

4 SBAlignFill Fill the space.

5 SBAlignJustify Justify.

6 SBAlignCenterAcrossSelection Center across selection

SBLineDirection Constant

Value Mnemonic Description

0 LowerRightToUpperLeft

1 LowerLeftToUpperRight

2 UpperLeftToLowerRight

3 UpperRightToLowerLeft

SBUnderlineStyle Constant

Value Mnemonic Description

0 SBNone

1 SBSingle

2 SBDouble

22 SBDoubleAcc

33 SBSingleAcc

SBVertAlignment Constant

Value Mnemonic Description

0 SBVertAlignTop Align top.

1 SBVertAlignCenter Align center.

2 SBVertAlignBottom Align bottom.

3 SBVertJustify Justify.

SpreadBuilder API Properties

Property Data Type Description

ProtectWorkbookSt
ructure

Boolean Sets an Excel option to protect workbook
structure.

ProtectWorkbookWi
ndows

Boolean Sets an Excel option to protect the
document window from being moved.

Sheets Sheets
collection

Accesses the sheets collection.    The
property is read only.

Version Integer Sets the Excel version of the exported
file.

ProtectWorkbookStructure

Description

Sets an Excel option to protect workbook structure.    If this property is set to true, Excel will not let the
user add, delete, reorder, or rename sheets in the workbook.

Syntax

SpreadBuilder.ProtectWorkbookStructure [= Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Workbook structure is protected.

False Workbook structure is not protected.

Example

Private Sub CreateExcelFile()

Dim sb As New SpreadBuilder

sb.ProtectWorkbookStructure = False

sb.ProtectWorkbookWindows = False

sb.Sheets(0).Name = "Address Book"

' Headers

sb.Sheets(0).Cell(0,0).Value = "Name"

sb.Sheets(0).Cell(0,0).FontBold = True

sb.Sheets(0).Cell(0,1).Value = "Telephone"

sb.Sheets(0).Cell(0,1).FontBold = True

sb.Sheets(0).Cell(0,1).FontItalic = True

' Record 1

sb.Sheets(0).Cell(1,0).Value = "Joy Rosen"

sb.Sheets(0).Cell (1,1).Value = "(212) 890-9876"

sb.Save App.Path & "\AddressBook.xls"

set sb = Nothing

End Sub

ProtectWorkbookWindows

Description

Sets an Excel option to protect the document window from being moved.    If this property is set to true,
Excel will not let the user directly move, resize, make hidden, make unhidden, or close the document
window.

Syntax

SpreadBuilder.ProtectWorkbookWindows [= Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Workbook structure is protected.

False Workbook structure is not protected.

Example

Private Sub CreateExcelFile()

Dim sb As New SpreadBuilder

sb.ProtectWorkbookStructure = False

sb.ProtectWorkbookWindows = False

sb.Sheets(0).Name = "Address Book"

' Headers

sb.Sheets(0).Cell(0,0).Value = "Name"

sb.Sheets(0).Cell(0,0).FontBold = True

sb.Sheets(0).Cell(0,1).Value = "Telephone"

sb.Sheets(0).Cell(0,1).FontBold = True

sb.Sheets(0).Cell(0,1).FontItalic = True

' Record 1

sb.Sheets(0).Cell(1,0).Value = "Joy Rosen"

sb.Sheets(0).Cell (1,1).Value = "(212) 890-9876"

sb.Save App.Path & "\AddressBook.xls"

set sb = Nothing

End Sub

Sheets

Description

Accesses the sheets collection.    The property is read only.

Syntax

SpreadBuilder.Sheets

Data Type

Sheets collection

Example

Private Sub CreateExcelFile()

Dim sb As New SpreadBuilder

sb.ProtectWorkbookStructure = False

sb.ProtectWorkbookWindows = False

sb.Sheets(0).Name = "Address Book"

' Headers

sb.Sheets(0).Cell(0,0).Value = "Name"

sb.Sheets(0).Cell(0,0).FontBold = True

sb.Sheets(0).Cell(0,1).Value = "Telephone"

sb.Sheets(0).Cell(0,1).FontBold = True

sb.Sheets(0).Cell(0,1).FontItalic = True

' Record 1

sb.Sheets(0).Cell(1,0).Value = "Joy Rosen"

sb.Sheets(0).Cell (1,1).Value = "(212) 890-9876"

sb.Save App.Path & "\AddressBook.xls"

set sb = Nothing

End Sub

Version

Description

Sets the Excel version for SpreadBuilder to use. Versions 2,3,4,5,7 and 8 are supported.

Syntax

SpreadBuilder.Version [= Value]

Data Type

Integer (Default = 8)

Example

Private Sub CreateExcelFile()

Dim sb As New SpreadBuilder

sb.ProtectWorkbookStructure = False

sb.ProtectWorkbookWindows = False

sb.Sheets(0).Name = "Address Book"

' Headers

sb.Sheets(0).Cell(0,0).Value = "Name"

sb.Sheets(0).Cell(0,0).FontBold = True

sb.Sheets(0).Cell(0,1).Value = "Telephone"

sb.Sheets(0).Cell(0,1).FontBold = True

sb.Sheets(0).Cell(0,1).FontItalic = True

' Record 1

sb.Sheets(0).Cell(1,0).Value = "Joy Rosen"

sb.Sheets(0).Cell (1,1).Value = "(212) 890-9876"

sb.Version = 8

sb.Save App.Path & "\AddressBook.xls"

set sb = Nothing

End Sub

SpreadBuilder API Methods

Method Description

Clear The Clear method deletes all data and sheets
created, resetting the Spreadbuilder object to its
default state.
Sub Clear()

GetSaveCaps The return value is set with a bitmapped
description of potential errors for saving the sheet.
Function GetSaveCaps() As Long

Save Saves spreadsheet content to an Excel document.
Sub Save(FileName As String)

Clear

Description

The Clear method deletes all data and sheets created, resetting the Spreadbuilder object to its default
state.

Syntax

Sub Clear()

Parameters

None

Example

Private Sub CreateExcelFile()

Dim sb As New SpreadBuilder

sb.ProtectWorkbookStructure = False

sb.ProtectWorkbookWindows = False

sb.Sheets(0).Name = "Address Book"

' Headers

sb.Sheets(0).Cell(0,0).Value = "Name"

sb.Sheets(0).Cell(0,0).FontBold = True

sb.Sheets(0).Cell(0,1).Value = "Telephone"

sb.Sheets(0).Cell(0,1).FontBold = True

sb.Sheets(0).Cell(0,1).FontItalic = True

' Record 1

sb.Sheets(0).Cell(1,0).Value = "Joy Rosen"

sb.Sheets(0).Cell (1,1).Value = "(212) 890-9876"

sb.Save App.Path & "\AddressBook.xls"

sb.Clear

set sb = Nothing

End Sub

GetSaveCaps

Description

The return value is set with a bitmapped description of potential errors for saving the sheet. Because all
Spreadbuilder features are not compatible with all versions of Excel documents,    the GetSaveCaps
method allows you to test for an error or unsupported condition before saving.    It is not necessary to call
GetSaveCaps.    Sheets can always be saved in any version, although styles and properties may be
mapped to the best available in the current version.

Return Type

Long

Return Settings

bit 0 - Specifies if errors are version related.

bit 1 - Specifies the number of sheets that can be saved properly.

bit 2 - Specifies if the XF records can be saved properly.

bit 3 - Specifies if the font records can be saved properly.
bit 4 -Specifies if the number of colors will be decreased in writing the file.

Syntax
Function GetSaveCaps() As Long

Parameters
None

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

Dim lSaveCaps As Long

Dim messageboxresult

messageboxresult = vbOK

Dim sMsg As String

 sb.Sheets(0).Name = "AddressBook"

 With sb.Sheets(0)

 ' Headers

 .Cell(0,0).Value = "Name"

 .Cell(0,0).FontBold = True

 .Cell(0,1).Value = "Telephone"

 .Cell(0,1).FontBold = True

 ' Record 1

 .Cell(1,0).Value = "Joy Rosen"

 .Cell (1,1).Value = "(212) 890-9876"

 End With

lSaveCaps = sb.GetSaveCaps()

If lSaveCaps <> 0 Then

sMsg = "Unable to save file: " & vbCrLf

 sMsg = sMsg & IIf((lSaveCaps Or &H1) = &H1, _

 “You may lose style and formatting information if you save in
this version" & vbCrLF, _

"")

 sMsg = sMsg & IIf((lSaveCaps Or &H2) = &H2, _

 "Can’t save all sheets" & vbCrLF, _

"")

 sMsg = sMsg & IIf((lSaveCaps Or &H4) = &H4, _

"Can’t save all cell styles" & vbCrLF, _

"")

 sMsg = sMsg & IIf((lSaveCaps Or &H8) = &H8, _

"Can’t save all font styles" & vbCrLF, _

"")

 sMsg = sMsg & IIf((lSaveCaps Or &H10) = &H10, _

"Number of colors will be decreased" & vbCrLF, _

"")

SMsg = sMsg & “Would you like to save anyway?”

messageboxresult = MsgBox (sMsg, vbOKCancel)

End If

If vbOk = messageboxresult Then sb.Save "C:\AddressBook.xls"

End Sub

Save

Description
Saves spreadsheet content to an Excel document.

Return Type

Long

Syntax
Sub Save(FileName As String)

Parameters

Name Type Description

FileName String Path and filename for the file to be saved
as.

Example

Private Sub CreateExcelFile()

Dim sb As New SpreadBuilder

sb.ProtectWorkbookStructure = False

sb.ProtectWorkbookWindows = False

sb.Sheets(0).Name = "Address Book"

' Headers

sb.Sheets(0).Cell(0,0).Value = "Name"

sb.Sheets(0).Cell(0,0).FontBold = True

sb.Sheets(0).Cell(0,1).Value = "Telephone"

sb.Sheets(0).Cell(0,1).FontBold = True

sb.Sheets(0).Cell(0,1).FontItalic = True

' Record 1

sb.Sheets(0).Cell(1,0).Value = "Joy Rosen"

sb.Sheets(0).Cell (1,1).Value = "(212) 890-9876"

sb.Save App.Path & "\AddressBook.xls"

set sb = Nothing

End Sub

SpreadBuilder DDCell Properties

Property Data Type Description

Alignment SBHorzAlig
nment

Sets alignment within the cell.

BorderBottomColor OLE_Color Sets the color of the bottom border of the
cell.

BorderBottomStyle Integer Sets the style of the bottom border of the
cell.

BorderDiagonalColor OLE_Color Sets the color of the diagonal of the cell.

BorderDiagonalEnum Integer Describes the existence of either
diagonal through an enumerated value.

BorderDiagonalStyle Integer Sets the style of both cell diagonals.

BorderLeftColor OLE_Color Sets the color of the left border of the
cell.

BorderLeftStyle Integer Sets the style of the left border of the
cell.

BorderRightColor OLE_Color Sets the color of the right border of the
cell.

BorderRightStyle Integer Sets the style of the left border of the
cell.

BorderTopColor OLE_Color Sets the color of the top border of the
cell.

BorderTopStyle Integer Sets the color of the top border of the
cell.

ForeColor OLE_Color Sets the text color of the cell.

FillColor OLE_Color Sets the background fill color of the cell.

ForeBold Bolean Specifies whether or not the font appears
bold.

FontItalic Boolean Specifies whether or not the font appears
italicized.

FontName String Specifies the name of the font to use.

FontSize Integer Specifies the size of the font in ten-
thousandth of a point.

FontUnderlineStyle SBUnderlin
eStyle

Specifies the style of text underlining.

Hyperlink String Specifies a hyperlink.

NumberFormat String Sets the format of the numbers.

TextAngle Integer Angle in degrees of the Cell’s contents.

Type SBCellType Sets the data type for the cell.

Value Variant Specifies the data contained within the
cell.

VertAlignment SBVertAlign
ment

Sets the vertical alignment within the cell.

Alignment

Description

Sets alignment within the cell.    Uses SBHorzAlignment constants.

Syntax

SpreadBuilder.Sheets(index).DDCell.Alignment=[Value]

Data Type

SBHorzAlignment

Settings

Value Mnemonic Description

0 SBAlignGeneral No specific alignment setting.

1 SBAlignLeft Align left.

2 SBAlignCenter Align center.

3 SBAlignRight Align right.

4 SBAlignFill Fill the space.

5 SBAlignJustify Justify.

6 SBAlignCenterAcrossSelection Center across selection

Example

' Prepare sb As a spreadbuilder object

' ..

With sb.Sheets(0)

.Cell(0,0).Alignment = SBAlignLeft

.Cell(0,0).VertAlignment = SBVertAlignTop

End with

BorderBottomColor, BorderTopColor, BorderLeftColor,
BorderRightColor

Description

Sets the color of the bottom, top, left or right border of the cell.

Syntax

SpreadBuilder.Sheets(index).DDCell.BorderBottomColor=[Value]

Data Type

OLE_Color

Settings

None

Example

' prepare sb As a spread builder object

' ..

With sb.Sheets(0)

.Cell(0,0).Alignment = SBAlignLeft

.Cell(0,0).BorderBottomColor = vbBlack

.Cell(0,0).BorderBottomStyle = 2

.Cell(0,0).BorderDiagonalColor = vbBlack

.Cell(0,0).BorderDiagonalEnum = 1

.Cell(0,0).BorderDiagonalStyle = 2

End with

BorderBottomStyle, BorderTopStyle, BorderLeftStyle,
BorderRightStyle, BorderDiagonalStyle

Description

Sets the style of the bottom, top, left or right border of the cell.

Syntax

SpreadBuilder.Sheets(index).DDCell.BorderBottomStyle=[Value]

Data Type

Integer

Settings

Effect for Microsoft Excel 97 file format. (BIFF8)

0 None

1 Single width solid

2 Double width solid

3 Single width, closely spaced dashes.

4 Single width, small closely spaced dashes

5 Triple width solid

6 Single width solid double line

7          Single width dotted

8          Double width dashed

9          Single width dash dot

10      Double width dash dot

11      Single width dash dot dot

12      Double width dash dot dot

13      Double width slanted dash dot

Effect for versions 3, 4, 5, and 7.    Version 2 does not support lines.

0 None

1 Single width solid

2 Double width solid

3 Single width, closely spaced dashes.

4 Single width, small closely spaced dashes

5 Triple width solid

6 Single width solid double line

7        Single width dotted

Example

' prepare sb As a spread builder object

' ..

With sb.Sheets(0)

.Cell(0,0).Alignment = SBAlignLeft

.Cell(0,0).BorderBottomColor = vbBlack

.Cell(0,0).BorderBottomStyle = 2

.Cell(0,0).BorderDiagonalColor = vbBlack

.Cell(0,0).BorderDiagonalEnum = 1

.Cell(0,0).BorderDiagonalStyle = 2

End with

BorderDiagonalColor

Description

Sets the color of the diagonal of the cell.

Syntax

SpreadBuilder.Sheets(index).DDCell.BorderDiagonalColor=[Value]

Data Type

OLE_Color

Settings

None

Example

' prepare sb As a spread builder object

' ..

With sb.Sheets(0)

.Cell(0,0).Alignment = SBAlignLeft

.Cell(0,0).BorderBottomColor = vbBlack

.Cell(0,0).BorderBottomStyle = 2

.Cell(0,0).BorderDiagonalColor = vbBlack

.Cell(0,0).BorderDiagonalEnum = 1

.Cell(0,0).BorderDiagonalStyle = 2

End with

BorderDiagonalEnum

Description

Describes the existence of either diagonal through an enumerated value.

Syntax

SpreadBuilder.Sheets(index).DDCell.BorderDiagonalEnum=[Value]

Data Type

Integer

Settings

0 No diagonals.

1 Diagonal down.

2 Diagonal up.

3 Diagonal up and diagonal down.

Example

' prepare sb As a spread builder object

' ..

With sb.Sheets(0)

.Cell(0,0).Alignment = SBAlignLeft

.Cell(0,0).BorderBottomColor = vbBlack

.Cell(0,0).BorderBottomStyle = 2

.Cell(0,0).BorderDiagonalColor = vbBlack

.Cell(0,0).BorderDiagonalEnum = 1

.Cell(0,0).BorderDiagonalStyle = 2

End with

ForeColor

Description

Sets the text color of the cell.

Syntax

SpreadBuilder.Sheets(index).DDCell.ForeColor=[Value]

Data Type

OLE_Color

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).ForeColor = vbRed

FillColor

Description

Sets the background fill color of the cell.

Syntax

SpreadBuilder.Sheets(index).DDCell.FillColor=[Value]

Data Type

OLE_Color

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).FillColor = vbRed

FontBold

Description

Specifies whether or not the font appears bold.

Syntax

SpreadBuilder.Sheets(index).DDCell.FontBold=[Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Font appears bold.

False Font does not appear bold.

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).FontBold = True

FontItalic

Description

Specifies whether or not the font appears italicized.

Syntax

SpreadBuilder.Sheets(index).DDCell.FontItalic=[Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Font appears italicized.

False Font does not appear italicized.

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).FontItalic = True

FontName

Description

Specifies the name of the font to use.

Syntax

SpreadBuilder.Sheets(index).DDCell.FontName=[Value]

Data Type

String

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).Name = "Arial"

FontSize

Description

Specifies the size of the font in ten-thousandth of a point.

Syntax

SpreadBuilder.Sheets(index).DDCell.FontSize=[Value]

Data Type

Integer

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).FontSize = 10.00 * 10000

FontUnderlineStyle

Description

Specifies the style of text underlining using the SBUnderlineStyle constants.

Syntax

SpreadBuilder.Sheets(index).DDCell.FontUnderlineStyle=[Value]

Data Type

SBUnderlineStyle

Settings

Value Mnemonic Description

0 SBNone

1 SBSingle

2 SBDouble

22 SBDoubleAcc

33 SBSingleAcc

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).FontUnderlineStyle = SBDoubleAcc

HyperLink

Description

Sets a hyperlink string.

Syntax

.Sheets(index).DDCell.Hyperlink =[Value]

Data Type

String

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).Hyperlink = "http://www.datadynamics.com"

NumberFormat

Description

Sets the format of the numbers.

Syntax

.Sheets(index).DDCell.NumberFormat =[Value]

Data Type

String

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).NumberFormat = "???,??0.00"

TextAngle

Description

Angle in degrees of the Cell’s contents

Syntax

SpreadBuilder.Sheets(index).DDCell.TextAngle=[Value]

Data Type

Integer

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).TextAngle = 30

Type

Description

Sets the data type for the cell

Syntax

SpreadBuilder.Sheets(index).DDCell.Type=[Value]

Data Type

SBCellType

Settings

Value Mnemonic Description

0 SBBlank Blank Cell

1 SBLabel Label Cell

2 SBNumber Number Cell

3 SBBoolean Boolean Cell

Example

Private sub MeExpt_onClick()

sb1.Sheets(0).Cell(0,0).Type = SBBoolean

End Sub

Value

Description

Specifies the data contained within the cell

Syntax

SpreadBuilder.Sheets(index).DDCell.Value=[Value]

Data Type

Variant

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Cell(0,0).Value = "John Smith"

VertAlignmentProperty

Description

Sets the vertical alignment within the cell.

Syntax

SpreadBuilder.Sheets(index).DDCell.VertAlignment=[Value]

Data Type

SBVertAlignment

Settings

Value Mnemonic Description

0 SBVertAlignTop Align top.

1 SBVertAlignCenter Align center.

2 SBVertAlignBottom Align bottom.

3 SBVertJustify Justify.

Example

' Prepare sb As a spreadbuilder object

' ..

With sb.Sheets(0)

.cell(0,0).Alignment = SBAlignLeft

.cell(0,0).VertAlignment = SBVertAlignTop

End with

SpreadBuilder DDColumn Properties

Property Data Type Description

Width Long Specifies the width of a column

Width

Description

Specifies the width of a column.

Syntax

SpreadBuilder.Sheets(index).DDColumn.Width=[Value]

Data Type

Long

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Columns(1).Width = 50

SpreadBuilder DDRow Properties

Property Data Type Description

AutoSize Boolean Specifies whether or not a row’s height is
auto sized to fit the contents.

Height Integer Specifies the height of the row.

AutoSize

Description

Specifies whether or not a row’s height is auto sized to fit the content.

Syntax

SpreadBuilder.Sheets(index).DDRow.AutoSize=[Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True A row’s height is auto sized to fit the
content.

False A row’s height is not auto sized to fit the
content.

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Rows(3).AutoSize = True

Height

Description

Specifies the height of the row.

Syntax

SpreadBuilder.Sheets(index).DDRow.Height=[Value]

Data Type

Integer (in twips) Default = 255.

Settings

None

Example

' Prepare sb As a spreadbuilder object

' ..

sb.Sheets(0).Rows(4).Height = 300

SpreadBuilder DDSheet Properties

Property Data Type Description

Name String Specifies the name of the sheet.

Name

Description

Specifies the name of the sheet.

Syntax

SpreadBuilder.Sheets(index).Name=[Value]

Data Type

String

Settings

None

Example

Private sub MeExpt_onClick()

sb1.Sheets(0).Name = "Report 1"

End sub

SpreadBuilder DDSheet Methods

Method Description

AddHorizontalPageBreak Adds a horizontal page break.
Sub AddHorizontalPageBreak(row As Integer, columnstart As
Integer, columnend As Integer)

AddLine Adds a horizontal page break.
Sub AddLine(colL As Integer, dxL As Integer, rwT As Integer, dyT
As Integer, colR As Integer, dxR As Integer, rwB As Integer, dyB As
Integer, rwB As Integer, dyB As Integer, iQu As SBLineDirection,
[weight As Long], [Style As Long], [Color As OLE_Color], [fAuto As
Boolean], [MoveType As SBFloatingMoveType], [StartAHStyle As
Long], [StartAHWidth As Long], [StartAHLength As Long],
[EndAHStyle As Long], [EndAHWidth As Long], [EndAHLength As
Long])

AddLinkPicture Add a picture with hyperlink to the sheet.
Sub AddLinkPicture(pic As StdPicture, colL As Integer, dxL As
Integer, rwT As Integer, dyT As Integer, colR As Integer, dxR As
Integer, rwB As Integer, dyB As Integer, hyperlinkstring As String,
[BorderLineWeight], [BorderLineStyle],[BorderColor As
OLE_Color], [FillBackground], [BackColor As OLE_Color],
[MoveType As SBFloatingMoveType])

AddPicture Adds a picture to a sheet.
Sub AddLinkPicture(pic As StdPicture, colL As Integer, dxL As
Integer, rwT As Integer, dyT As Integer, colR As Integer, dxR As
Integer, rwB As Integer, dyB As Integer, [BorderLineWeight],
[BorderLineStyle],[BorderColor As OLE_Color], [FillBackground],
[BackColor As OLE_Color], [MoveType As SBFloatingMoveType])

AddVerticalPage Adds a vertical page break.
Sub AddVerticallPageBreak(col As Integer, rowstart As Integer,
rowend As Integer)

Cell Returns a cell object at the specified coordinates.
Sub Cell(row As Long, col As Long)

Clear Deletes all properties and content, creating a blank
sheet.
Sub Clear()

Columns Returns a column object from the specified
location.
Sub Columns(col As Long)

Rows Returns a row object from the specified location.
Sub Rows(row As Long)

AddhorizontalPageBreak

Description
Adds a horizontal page break.

Return Type

None

Syntax

Sub AddHorizontalPageBreak(row As Integer, columnstart As Integer, columnend
As Integer)

Parameters

The AddHorizontalPageBreak method has three arguments.    The last two arguments are written to
BIFF8 (Excel 97 and later) files only, so in other cases these values may be ignored.    The first argument,
Row as Integer is the only critical argument.

· Since this number is zero based, to break before Excel row 25, pass the value 24.

· The next two zero based numbers define the starting and ending columns for the pagebreak.

· If you don’t want to define different pagebreaks at different columns, use
AddHorizonalPageBreak (xxx,0,255) to specify all columns.

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook" With sb.Sheets(0)

' Headers

With sb.Sheets(0)

 .Cell(0,0).Value = "Name"

 .Cell(0,0).FontBold = True

 .Cell(0,1).Value = "Telephone"

 .Cell(0,1).FontBold = True

 'Record 1

 .Cell(1,0).Value = "Joy Rosen"

 .Cell (1,1).Value = "(212) 890-9876"

End With

sb.Sheets(0).AddHorizontalPageBreak (10, 0, 255)

sb.Save "C:\AddressBook.xls"

sb.Clear

End Sub

AddLine

Description
Adds one line with specified coordinates and properties.

Return Type

None

Syntax

Sub AddLine(colL As Integer, dxL As Integer, rwT As Integer, dyT As Integer,
colR As Integer, dxR As Integer, rwB As Integer, dyB As Integer, rwB As
Integer, dyB As Integer, iQu As SBLineDirection, [weight As Long], [Style As
Long], [Color As OLE_Color], [fAuto As Boolean], [MoveType As
SBFloatingMoveType], [StartAHStyle As Long], [StartAHWidth As Long],
[StartAHLength As Long], [EndAHStyle As Long], [EndAHWidth As Long],
[EndAHLength As Long])

Parameters

Name Type Description

ColL Integer Left extent column.

rwT Integer Top extent row.

ColR Integer Right extent column

RwB Integer Bottom extent row

Note: Passing zero will have the left edge of the line show in column 1 in excel.

The remaining four required parameters are the endpoints of the line as cell height ratios and cell width
ratios.

· dxL is 1024 times the ratio of the placement of the left extent of the line and the right border
of the cell.    Passing dxL as zero would correspond to the left edge of the cell, and 1023
would correspond to the far right. Passing 511 would put the left extent of the line roughly in
the horizontal middle of the cell.

· dxR is 1024 times the ratio of the placement of the right extent of the line and the right
border of the cell.

· dyT is 256 times the ratio of the placement of the top extent of the line and the bottom border
of the cell.    Passing dyT as zero would correspond to the top edge of the cell, and 255 would
correspond to the very bottom.    Passing 127 would put the top extent of the line roughly in
the vertical middle of the cell.

· dyB is 256 times the ratio of the placement of the bottom extent of the line and the bottom
border of the cell.    Passing dyB as zero would correspond to the bottom edge of the cell.

iQu
Use SBLineDirection constants to define line direction.

0 LowerRight to UpperLeft

1 LowerLefttoUpperRight

2 UpperLefttoLowerRight

3 UpperRighttoLowerLeft

The optional parameters are defined as follows:

Weight
Set to one of the Excel enumerated line weight values.

Effect for Microsoft Excel 97 file format. (BIFF8)

Parameter will generate line with weight parameter as points.

Effect for versions 3, 4, 5, and 7.    Version 2 does not support lines.

0 Hairline 0 points

1 Single .75 points

2 Double 1.35 points

3 Thick 1.95 points

Style
Set to one of the Excel enumerated line style values.

Effect for Microsoft Excel 97 file format. (BIFF8)

0 Solid

1 Small Dash (No Equivalent Menu for Excel 2000)

2 Square Dot

3 Small Dash, Square Dot (No Equivalent Menu for Excel 2000)

4 Small Dash, Square Dot, Square Dot (No Equivalent Menu for Excel 2000)

5 Loosely spaced Square Dot (No Equivalent Menu for Excel 2000)

6 Dash

7 Long Dash

8 Dash Dot

9 Long Dash Dot

10 Long Dash Dot Dot

11 Round Dot

Effect for versions 3, 4, 5, and 7.    Version 2 does not support lines.

0 Solid

1 Long Dash

2 Dash

3 Long Dash Dot

4 Long Dash Dot Dot

5 Pattern 50% Solid (No Equivalent Menu for Excel 2000)

6 Pattern 75% Solid (No Equivalent Menu for Excel 2000)

7 Pattern 25% Solid (No Equivalent Menu for Excel 2000)

15 Transparent (No Line)

Color
OLE_Color

fAuto
Set fAuto to 1 if you want the Excel automatic border option turned on.

MoveType
Set to one of the SBFloatingMoveType constants

0 SBMoveNoSize Lines and Pictures move but do not size with cells.

1 SBMoveSize Lines and Pictures move and size with cells.

2 SBNoMoveNoSize Lines and Pictures do not move or size with cells.

AHStyle

Set ahstyle to the Excel enumerated type for arrowhead styles.

0 None

1 Open

2 Filled

3 Double-ended open

4 Double-ended filled

AHWidth
Set ahwidth to the Excel enumerated type for arrowhead width.

0 Narrow

1 Medium

2 Wide

AHLength
Set ahlength to the Excel enumerated type for arrowhead length.

0 Short

1 Medium

2 Long

Example

AddLinkPicture

Description
Adds a picture and hyperlink with specified coordinates and properties to a sheet object.

Return Type

None

Syntax

Sub AddLinkPicture(pic As StdPicture, colL As Integer, dxL As Integer, rwT As
Integer, dyT As Integer, colR As Integer, dxR As Integer, rwB As Integer, dyB
As Integer, hyperlinkstring As String, [BorderLineWeight], [BorderLineStyle],
[BorderColor As OLE_Color], [FillBackground], [BackColor As OLE_Color],
[MoveType As SBFloatingMoveType])

Parameters

Name Type Description

Pic StdPicture Path and filename of the image.
LoadPicture(“Logo.gif”)

ColL Integer Left extent column.

rwT Integer Top extent row.

ColR Integer Right extent column

RwB Integer Bottom extent row

Hyperlinkstring String String hyperlink expression.

Note: Passing zero will have the left edge of the line show in column 1 in excel.

The remaining four required parameters are the endpoints of the line as cell height ratios and cell width
ratios.

· dxL is 1024 times the ratio of the placement of the left extent of the line and the right border
of the cell.    Passing dxL as zero would correspond to the left edge of the cell, and 1023
would correspond to the far right. Passing 511 would put the left extent of the line roughly in
the horizontal middle of the cell.

· dxR is 1024 times the ratio of the placement of the right extent of the line and the right
border of the cell.

· dyT is 256 times the ratio of the placement of the top extent of the line and the bottom border
of the cell.    Passing dyT as zero would correspond to the top edge of the cell, and 255 would
correspond to the very bottom.    Passing 127 would put the top extent of the line roughly in
the vertical middle of the cell.

· dyB is 256 times the ratio of the placement of the bottom extent of the line and the bottom
border of the cell.    Passing dyB as zero would correspond to the bottom edge of the cell.

BorderLineWeight

Set to one of the Excel enumerated line weight values.

Effect for Microsoft Excel 97 file format (BIFF8)
Set BorderLineWeight to the desired picture border line weight in points.

Effect for versions 3, 4, 5, and 7.    Version 2 does not support Pictures.

0 Hairline 0 points

1 Single .75 points

2 Double 1.35 points

3 Thick 1.95 points

BorderLineStyle

Effect for Microsoft Excel 97 file format (BIFF8)

0 Solid

1 Small Dash (No Equivalent Menu for Excel 2000)

2 Square Dot

3 Small Dash, Square Dot (No Equivalent Menu for Excel 2000)

4 Small Dash, Square Dot, Square Dot (No Equivalent Menu for Excel 2000)

5 Loosely spaced Square Dot (No Equivalent Menu for Excel 2000)

6 Dash

7 Long Dash

8 Dash Dot

9 Long Dash Dot

10 Long Dash Dot Dot

11 Round Dot

12 Transparent (No Line)

Effect for versions 3, 4, 5 and 7.    Version 2 does not support Pictures.

0 Solid

1 Long Dash

2 Dash

3 Long Dash Dot

4 Long Dash Dot Dot

5 Pattern 50% Solid (No Equivalent Menu for Excel 2000)

6 Pattern 75% Solid (No Equivalent Menu for Excel 2000)

7 Pattern 25% Solid (No Equivalent Menu for Excel 2000)

15 Transparent (No Line)

BorderColor

OLE_Color

Use the RGB function to generate an OLE_COLOR.

FillBackground

Set fls to True for a solid background fill pattern for your picture.

BackColor

OLE_Color

Use the RGB function to generate an OLE_COLOR.

MoveType

Set to one of the SBFloatingMoveType constants

0 SBMoveNoSize Lines and Pictures move but do not size with cells.

1 SBMoveSize Lines and Pictures move and size with cells.

2 SBNoMoveNoSize Lines and Pictures do not move or size with cells.

Example

Dim spread As New SpreadBuilder

Dim sheet As DDSheet

Set sheet = spread.Sheets(0)

‘GetPic is an object typed function.

‘The critical line calls LoadPicture

‘Set GetPic = LoadPicture(“MyPictureName”)

Dim a, b

b = countPics()

For a = 1 To b

 sheet.Cell(a * 5, 0) = "pic " & a

‘output our list of pictures at every 5th cell

‘put the left edge at column c (2) , right edge at column f (5)

‘the picture will be 4 cells tall, 3 cells wide

‘will have solid red borders, with a weight of 2.

‘we are using this with a transparent gif,

‘so a blue background will be visible

‘the image will move but not re-size when cells bounds

‘are moved in excel

 sheet.AddLinkPicture GetPic(a), 2, 0, a * 5, 0, 5, 0, a * 5 + 4,0,
"http://www.datadynamics.com", 2, 0, vbRed, 1, vbBlue, SBMoveNoSize

Next a

sheet.Name = "Version " & spread.Version

spread.Save "c:\test.xls"

AddPicture

Description
Adds a picture with specified coordinates and properties to a sheet object.

Return Type

None

Syntax

Sub AddPicture(pic As StdPicture, colL As Integer, dxL As Integer, rwT As
Integer, dyT As Integer, colR As Integer, dxR As Integer, rwB As Integer, dyB
As Integer, [BorderLineWeight], [BorderLineStyle],[BorderColor As OLE_Color],
[FillBackground], [BackColor As OLE_Color], [MoveType As SBFloatingMoveType])

Parameters

Name Type Description

Pic StdPicture Path and filename of the image.
LoadPicture(“Logo.gif”)

ColL Integer Left extent column.

rwT Integer Top extent row.

ColR Integer Right extent column

RwB Integer Bottom extent row

Note: Passing zero will have the left edge of the picture show in column 1 in excel.

The remaining four required parameters are the endpoints of the line as cell height ratios and cell width
ratios.

· dxL is 1024 times the ratio of the placement of the left extent of the line and the right border
of the cell.    Passing dxL as zero would correspond to the left edge of the cell, and 1023
would correspond to the far right. Passing 511 would put the left extent of the line roughly in
the horizontal middle of the cell.

· dxR is 1024 times the ratio of the placement of the right extent of the line and the right
border of the cell.

· dyT is 256 times the ratio of the placement of the top extent of the line and the bottom border
of the cell.    Passing dyT as zero would correspond to the top edge of the cell, and 255 would
correspond to the very bottom.    Passing 127 would put the top extent of the line roughly in
the vertical middle of the cell.

· dyB is 256 times the ratio of the placement of the bottom extent of the line and the bottom
border of the cell.    Passing dyB as zero would correspond to the bottom edge of the cell.

BorderLineWeight

Set to one of the Excel enumerated line weight values.

Effect for Microsoft Excel 97 file format (BIFF8)
Set BorderLineWeight to the desired picture border line weight in points.

Effect for versions 3, 4, 5, and 7.    Version 2 does not support Pictures.

0 Hairline 0 points

1 Single .75 points

2 Double 1.35 points

3 Thick 1.95 points

BorderLineStyle

Effect for Microsoft Excel 97 file format (BIFF8)

0 Solid

1 Small Dash (No Equivalent Menu for Excel 2000)

2 Square Dot

3 Small Dash, Square Dot (No Equivalent Menu for Excel 2000)

4 Small Dash, Square Dot, Square Dot (No Equivalent Menu for Excel 2000)

5 Loosely spaced Square Dot (No Equivalent Menu for Excel 2000)

6 Dash

7 Long Dash

8 Dash Dot

9 Long Dash Dot

10 Long Dash Dot Dot

11 Round Dot

12 Transparent (No Line)

Effect for versions 3, 4, 5 and 7.    Version 2 does not support Pictures.

0 Solid

1 Long Dash

2 Dash

3 Long Dash Dot

4 Long Dash Dot Dot

5 Pattern 50% Solid (No Equivalent Menu for Excel 2000)

6 Pattern 75% Solid (No Equivalent Menu for Excel 2000)

7 Pattern 25% Solid (No Equivalent Menu for Excel 2000)

15 Transparent (No Line)

BorderColor

OLE_Color

Use the RGB function to generate an OLE_COLOR.

FillBackground

Set fls to True for a solid background fill pattern for your picture.

BackColor

OLE_Color

Use the RGB function to generate an OLE_COLOR.

MoveType

Set to one of the SBFloatingMoveType constants

0 SBMoveNoSize Lines and Pictures move but do not size with cells.

1 SBMoveSize Lines and Pictures move and size with cells.

2 SBNoMoveNoSize Lines and Pictures do not move or size with cells.

Example

Dim spread As New SpreadBuilder

Dim sheet As DDSheet

Set sheet = spread.Sheets(0)

‘GetPic is an object typed function.

‘The critical line calls LoadPicture

‘Set GetPic = LoadPicture(“MyPictureName”)

Dim a, b

b = countPics()

For a = 1 To b

 sheet.Cell(a * 5, 0) = "pic " & a

‘output our list of pictures at every 5th cell

‘put the left edge at column c (2) , right edge at column f (5)

‘the picture will be 4 cells tall, 3 cells wide

‘will have solid red borders, with a weight of 2.

‘we are using this with a transparent gif,

‘so a blue background will be visible

‘the image will move but not re-size when cells bounds

‘are moved in excel

 sheet.AddPicture GetPic(a), 2, 0, a * 5, 0, 5, 0, a * 5 + 4,0, 2, 0,
vbRed, 1, vbBlue, SBMoveNoSize

Next a

sheet.Name = "Version " & spread.Version

spread.Save "c:\test.xls"

AddVerticalPageBreak

Description
Adds a vertical pagebreak to the page at the specified location.

Return Type

None

Syntax

Sub AddVerticalPageBreak(row As Integer, rowstart As Integer, rowend As
Integer)

Parameters

The AddVerticalPageBreak method is complementary to the AddHorizontalPageBreak method.

· The first argument designates the column for the break.

· The second and third arguments are the range of rows for the vertical pagebreak.

· To specify all rows, use AddVerticalPageBreak (xxx,0,65535).

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook" With sb.Sheets(0)

' Headers

With sb.Sheets(0)

 .Cell(0,0).Value = "Name"

 .Cell(0,0).FontBold = True

 .Cell(0,1).Value = "Telephone"

 .Cell(0,1).FontBold = True

 ' Record 1

 .Cell(1,0).Value = "Joy Rosen"

 .Cell (1,1).Value = "(212) 890-9876"

End With

sb.Sheets(0).AddVerticalPageBreak (15, 0, 65535)

sb.Save "C:\AddressBook.xls"

sb.Clear

End Sub

Cell

Description
Returns a cell object at the specified coordinates.

Return Type

None

Syntax

Sub Cell(row As Long, column As Long)

Parameters

Name Type Description

Row Long The row number.

Column Long The column number.

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook" With sb.Sheets(0)

'Headers

With sb.Sheets(0)

 .Cell(0,0).Value = "Name"

 .Cell(0,0).FontBold = True

 .Cell(0,1).Value = "Telephone"

 .Cell(0,1).FontBold = True

 'Record 1

 .Cell(1,0).Value = "Joy Rosen"

 .Cell (1,1).Value = "(212) 890-9876"

End With

sb.Save "C:\AddressBook.xls"

End Sub

Clear

Description
Deletes all properties and content, creating a blank sheet.

Return Type

None

Syntax

Sub Clear()

Parameters
None

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook" With sb.Sheets(0)

' Headers

With sb.Sheets(0)

 .Cell(0,0).Value = "Name"

 .Cell(0,0).FontBold = True

 .Cell(0,1).Value = "Telephone"

 .Cell(0,1).FontBold = True

 ' Record 1

 .Cell(1,0).Value = "Joy Rosen"

 .Cell (1,1).Value = "(212) 890-9876"

End With

sb.Sheets(0).AddHorizontalPageBreak (10, 0, 255)

sb.Save "C:\AddressBook.xls"

sb.Sheets(0).Clear

End Sub

Columns

Description
Returns a column object from the specified location.

Return Type

None

Syntax

Sub Columns(column As Long)

Parameters

Name Type Description

Column Long The column number.

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

sb.Sheets(0).Columns(0).Width = 255

End Sub

Rows

Description
Returns a row object from the specified location.

Return Type

None

Syntax

Sub Rows(Row As Long)

Parameters

Name Type Description

Row Long The row number.

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

sb.Sheets(0).Rows(0).Height = 255

End Sub

SpreadBuilder DDSheets Methods

Method Description

Add Adds a sheet object to the sheets collection.
Fucntion Add(Name As String, [insertAt]) As DDSheet

Count Returns a count of the sheet objects in the sheets
collection.
Function Count() As Integer

Item Retrieves the sheet object indicated by the index.
Function Item(index) As DDSheet

Move Moves a sheet to a new location in the workbook.
Sub Move(Index, NewPostion As Integer)

Remove Removes a sheet from the sheets collections.
Sub Remove(index)

Select Sets the selected sheet.
Sub Select(index)

Add

Description
Adds a sheet to the Sheets collection.

Return Type

DDSheet

Syntax

Function Add(Name As String, [insertAt]) As DDSheet

Parameters

Name Type Description

Name String Name for the sheet.

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

sb.Sheets.Add = "AddressBook2"

End Sub

Count

Description

Returns an integer representing the total number of objects in the 0 based Sheets collection.

Return Type

Integer

Syntax

Function Count() As Integer

Parameters
None

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

sb.Sheets(0).Column(0).Width = 255

MsgBox sb.Sheets.Count

End Sub

Item

Description
Accesses a particular member of the Sheets collection by index number.

Return Type

DDSheet

Syntax

Function Item(index) As DDSheet

Parameters

Name Type Description

Index Variant Index number for the sheet.

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

sb.Sheets(0).Column(0).Width = 255

if isEmpty(sb.Sheets.Item(1)) then

sb.Clear

End if

End Sub

Move

Description
Repositions a particular member of the Sheets collection.

Return Type

None

Syntax

Sub Move(index, NewPosition As Integer)

Parameters

Name Type Description

Index Variant Index number for the sheet.

NewPostion Integer Position in the sheets collection to move
the sheet to.

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

 sb.Sheets(0).Column(0).Width = 255

 sb.Sheets.Move (3, 0)

End Sub

Remove

Description
Removes a specified object from the Sheets collection.

Return Type

None

Syntax

Sub Remove(index)

Parameters

Name Type Description

Index Variant Index number for the sheet.

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

sb.Sheets(0).Column(0).Width = 255

Sb.Sheets.Remove (0)

End Sub

Select

Description
Set a sheet in a Workbook to a selected state.

Return Type

None

Syntax

Sub Select(index)

Parameters

Name Type Description

Index Variant Index number for the sheet.

Example

Private Sub MeExpt_Click()

Dim sb as New ActiveReportsExcelExport.SpreadBuilder

sb.Sheets(0).Name = "AddressBook"

 sb.Sheets(0).Column(0).Width = 255

 sb.Sheets.Select(0)

End Sub

RTF Export Properties

Property Data Type Description

FileName String Specifies the name of the file to which
the report will export.

RTF Export Methods

Method Description

Export Exports a report’s pages collection to the
document indicated by the Filename property.
Sub Export(pagesColl as Unknown)

ExportStream Exports a report’s pages collection to a byte array.
Sub ExportStream(ActiveReportsPagesCollection as Unknown,
OutputParamter)

PDF Export Properties

Property Data Type Description

AcrobatVersion DDACRVer
sion

Controls which version of acrobat will
load the export filter. If enumerated value
DDACR21 (0) is use, compression will
be disabled.

FileName String Specifies the name of the file to which
the report will export.

JPGQuality Long Sets the quality of images exported to
PDF. Range 1-100

OutputTOCAsBookM
arks

Boolean Determines whether or not the TOC
pages will be included in the exported
PDF file.

SemiDelimitedNeverE
mbedFonts

String List of fonts which will never be
embedded into the PDF document.

ShowBookmarksInAc
robat

Boolean Determines if Acrobat’s Bookmarks
Toolwindow is displayed when the PDF
file is opened.

AcrobatVersion

Description

Sets the version of the Acrobat file exported.

Syntax

pdfExportObject.AcrobatVersion=[Value]

Data Type

DDACRVersion

Settings

Value Mnemonic Description

0 DDACR21 Adobe Acrobat Reader 2.1,
without compression.

1 DDACR30 Adobe Acrobat Reader 3.0, with
compression.

2 DDACR40 Adobe Acrobat Reader 4.0, with
compression.

Example

Private Sub PDFExport()

Dim myPDFExport As ActiveReportsPDFExport.ARExportPDF

Set myPDFExport = New ActiveReportsPDFExport.ARExportPDF

myPDFExport.AcrobatVersion = DDACR40

myPDFExport.FileName = App.Path & "\PDFReport.PDF"

myPDFExport.JPGQuality = 100

myPDFExport.OutputTOCAsBookmarks = True

myPDFExport.SemiDelimitedNeverEmbedFonts = ""

myPDFExport.ShowBookmarksInAcrobat = True

myPDFExport.Export rptInvoice.pages

End Sub

JPGQuality

Description

Sets the quality of images exported to PDF. Range: 0-100

Note: the PDF Export will not export high-resolution images unless the image file is a metafile.    In order
to preserve the image’s resolution, all high-resolution images should be converted to metafiles.

Syntax

pdfExportObject.JPGQuality=[Value]

Data Type

Long

Settings

None

Example

Private Sub PDFExport()

Dim myPDFExport As ActiveReportsPDFExport.ARExportPDF

Set myPDFExport = New ActiveReportsPDFExport.ARExportPDF

myPDFExport.AcrobatVersion = DDACR40

myPDFExport.FileName = App.Path & "\PDFReport.PDF"

myPDFExport.JPGQuality = 100

myPDFExport.OutputTOCAsBookmarks = True

myPDFExport.SemiDelimitedNeverEmbedFonts = ""

myPDFExport.ShowBookmarksInAcrobat = True

myPDFExport.Export rptInvoice.pages

End Sub

OutputTOCAsBookmarks

Description

Determines whether or not the report’s TOC will be exported as PDF bookmarks. Setting the property to
false will prevent the TOC items from being exported.

Syntax

pdfExportObject.OutputTOCAsBookmarks=[Value]

Data Type

Boolean (Default = True)

Settings

Value Description

True Export the TOC.

False Do not export the TOC.

Example

Private Sub PDFExport()

Dim myPDFExport As ActiveReportsPDFExport.ARExportPDF

Set myPDFExport = New ActiveReportsPDFExport.ARExportPDF

myPDFExport.AcrobatVersion = DDACR40

myPDFExport.FileName = App.Path & "\PDFReport.PDF"

myPDFExport.JPGQuality = 100

myPDFExport.OutputTOCAsBookmarks = True

myPDFExport.SemiDelimitedNeverEmbedFonts = ""

myPDFExport.ShowBookmarksInAcrobat = True

myPDFExport.Export rptInvoice.pages

End Sub

SemiDelimitedNeverEmbedFonts

Description

List of fonts that will never be embedded into the PDF document. Fonts are listed as a semicolon
delimited string. Do not use spaces except between words of the font name. Use an empty string to
export all fonts.    A PDF containing embedded fonts have a significantly larger file size than a PDF which
does not contain embedded fonts.

Syntax

pdfExportObject.SemiDelimitedNeverEmbedFonts=[Value]

Data Type

String

Default Setting

"Courier New;Times New Roman;Arial"

Example

Private Sub PDFExport()

Dim myPDFExport As ActiveReportsPDFExport.ARExportPDF

Set myPDFExport = New ActiveReportsPDFExport.ARExportPDF

myPDFExport.AcrobatVersion = DDACR40

myPDFExport.FileName = App.Path & "\PDFReport.PDF"

myPDFExport.JPGQuality = 100

myPDFExport.OutputTOCAsBookmarks = True

myPDFExport.SemiDelimitedNeverEmbedFonts = ""

myPDFExport.ShowBookmarksInAcrobat = True

myPDFExport.Export rptInvoice.pages

End Sub

ShowBookMarksInAcrobat

Description

When the exported file is loaded into Acrobat, this property controls whether the Bookmarks tool window
will either be displayed, or have default visibility.

Syntax

pdfExportObject.ShowBookmarksInAcrobat=[Value]

Data Type

Boolean (Default = True)

Settings

Value Description

True Shows the bookmarks tool window.

False Does not show the bookmarks tool
window.

Example

Private Sub PDFExport()

Dim myPDFExport As ActiveReportsPDFExport.ARExportPDF

Set myPDFExport = New ActiveReportsPDFExport.ARExportPDF

myPDFExport.AcrobatVersion = DDACR40

myPDFExport.FileName = App.Path & "\PDFReport.PDF"

myPDFExport.JPGQuality = 100

myPDFExport.OutputTOCAsBookmarks = True

myPDFExport.SemiDelimitedNeverEmbedFonts = ""

myPDFExport.ShowBookmarksInAcrobat = True

myPDFExport.Export rptInvoice.pages

End Sub

PDF Export Methods

Method Description

Export Exports a report’s pages collection to the
document indicated by the Filename property.
Sub Export(pagesColl as Unknown)

ExportStream Exports a report’s pages collection to a byte array.
Sub ExportStream(ActiveReportsPagesCollection As Unknown,
OutputParamter)

ExportWebCache Exports the pages collection to the web cache
service.
Function ExportWebCache(pagesColl As Unknown) As Long

ExportWebCache

Description
Exports the pages collection to the web cache service. When the pages are exported the web cache
returns the ID for the item.

Return Type

Long

Syntax

Function ExportWebCache(pagesColl as Unknown) As Long

Parameters

Name Type Description

pagesColl Variant A report’s pages collection.

Example

Private Function WebCacheExport() As Long

Dim myPDFExport As ActiveReportsPDFExport.ARExportPDF

Set myPDFExport = New ActiveReportsPDFExport.ARExportPDF

 myPDFExport.AcrobatVersion = DDACR40

 myPDFExport.FileName = App.Path & "\PDFReport.PDF"

 myPDFExport.JPGQuality = 100

 myPDFExport.OutputTOCAsBookmarks = True

 myPDFExport.SemiDelimitedNeverEmbedFonts = ""

 myPDFExport.ShowBookmarksInAcrobat = True

 myPDFExport.Export rptInvoice.pages

 WebCacheExport = myPDFExport.ExportWebCache(rptInvoice.pages)

End Function

Text Export Properties

Property Data Type Description

ByteOrderMark Boolean For unicode text, the export will place a
byte order mark at the beginning of the
file if true.

FileName String Specifies the name of the file to which
the report will export.

PageDelimiter String Specifies the text inserted between each
page.

SuppressEmptyLines Boolean Determines whether empty lines will be
inserted for layout purposes.

TextDelimiter String Specifies the text delimiter to separate
field items.

Unicode Boolean Determines whether the text will be
saved as a UNICODE text file.

ByteOrderMark

Description

For unicode text, the export will place a byte order mark at the beginning of the file if true.

There is one spe0cial unicode code point, which identifies a unicode text file.    This code point, is
readable in iso-8859-1 is not part of the readable document. Text Export always outputs unicode in little-
endian format.    Always prefix a Unicode plain text file with a byte-order mark. Because Unicode plain text
is a sequence of 16-bit code values, it is sensitive to the byte ordering used when the text was written. A
byte-order mark is not a control character that selects the byte order of the text; it simply informs an
application receiving the file that the file is byte ordered.

Ideally, all Unicode text would follow only one set of byte-ordering rules. This is not possible, however,
because microprocessors differ in the placement of the least significant byte: IntelR and MIPSR
processors position the least significant byte first, whereas Motorola processors (and all byte-reversed
Unicode files) position it last. With only a single set of byte-ordering rules, users of one type of
microprocessor would be forced to swap the byte order every time a plain text file is read from or written
to, even if the file is never transferred to another system based on a different microprocessor. The
preferred place to specify byte order is in a file header, but text files do not have headers. Therefore,
Unicode has defined a character (0xFEFF) and a noncharacter (0xFFFE) as byte-order marks. They are
mirror byte-images of each other. Since the sequence 0xFEFF is exceedingly rare at the outset of regular
non-Unicode text files, it can serve as an implicit marker or signature to identify the file as a Unicode file.

Applications that read both Unicode and non-Unicode text files should use the presence of this sequence
as an indicator that the file is most likely a Unicode file. (Compare this technique to using the MS-DOS
EOF marker to terminate text files.) When an application finds 0xFEFF at the beginning of a text file, it
typically processes the file as though it were a Unicode file, although it may also perform further heuristic
checks to verify that this is true. Such a check could be as simple as testing whether the variation in the
low-order bytes is much higher than the variation in the high-order bytes.

For example, if ASCII text is converted to Unicode text, every second byte is zero. Also, checking both for
the linefeed and carriage-return characters (0x000A and 0x000D) and for even or odd file size can
provide a strong indicator of the nature of the file. When an application finds 0xFFFE at the beginning of a
text file, it interprets it to mean the file is a byte-reversed Unicode file. The application can either swap the
order of the bytes or alert the user that an error has occurred. The Unicode byte-order mark character is
not found in any code page, so it disappears if data is converted to ANSI. Unlike other Unicode
characters, it is not replaced by a default character when it is converted. If a byte-order mark is found in
the middle of a file, it is not interpreted as a Unicode character and has no effect on text output. The
Unicode value 0xFFFF is illegal in plain text files and cannot be passed between Win32 functions. The
value 0xFFFF is reserved for an application's private use.

DataType

Boolean

Settings

None

Example

Private Sub TextExport()

Dim myTXTExport As ActiveReportsTextExport.ARExportText

Set myTXTExport = New ActiveReportsTextExport.ARExportText

 MyTXTExport.ByteOrderMark = True

 myTXTExport.PageDelimiter = ":"

 myTXTExport.TextDelimiter = ";"

 myTXTExport.Unicode = True

 myTXTExport.SuppressEmptyLines = False

 myTXTExport.FileName = App.Path & "\TXTReport.txt"

 myTXTExport.Export rptInvoice.pages

End Sub

PageDelimiter

Description

Sets or returns a text string used as a page delimiter.

Syntax

textExportObject.PageDelimiter=[Value]

Data Type

String

Settings

None

Example

Private Sub TextExport()

Dim myTXTExport As ActiveReportsTextExport.ARExportText

Set myTXTExport = New ActiveReportsTextExport.ARExportText

 myTXTExport.PageDelimiter = ":"

 myTXTExport.TextDelimiter = ";"

 myTXTExport.Unicode = True

 myTXTExport.SuppressEmptyLines = False

 myTXTExport.FileName = App.Path & "\TXTReport.txt"

 myTXTExport.Export rptInvoice.pages

End Sub

SuppressEmptyLines

Description

Determines whether or not the exported file contains empty lines.

Syntax

textExportObject.SupressEmptyLines=[Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True The export filter will not output any empty
lines to the report.

False The export filter will output empty lines to
the report.

Example

Private Sub TextExport()

Dim myTXTExport As ActiveReportsTextExport.ARExportText

Set myTXTExport = New ActiveReportsTextExport.ARExportText

 myTXTExport.PageDelimiter = ":"

 myTXTExport.TextDelimiter = ";"

 myTXTExport.Unicode = True

 myTXTExport.SuppressEmptyLines = False

 myTXTExport.FileName = App.Path & "\TXTReport.txt"

 myTXTExport.Export rptInvoice.pages

End Sub

TextDelimiter

Description

Sets or returns a text string used to separate text fields in the filter output. The default setting for the
TextDelimiter property is a tab character.

Note: Multi-line text may appear on separate lines in the exported text file. When dealing with multi-line
layouts, an empty-string will help improve the exported results.

Syntax

textExportObject. TextDelimiter=[Value]

Data Type

String

Settings

None

Example

Private Sub TextExport()

Dim myTXTExport As ActiveReportsTextExport.ARExportText

Set myTXTExport = New ActiveReportsTextExport.ARExportText

 myTXTExport.PageDelimiter = ":"

 myTXTExport.TextDelimiter = ";"

 myTXTExport.Unicode = True

 myTXTExport.SuppressEmptyLines = False

 myTXTExport.FileName = App.Path & "\TXTReport.txt"

 myTXTExport.Export rptInvoice.pages

End Sub

Unicode

Description

Specifies whether the text output will be in Unicode format as opposed to ASCII.

Syntax

textExportObject. Unicode=[Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True The report will output in Unicode format.

False The report will output in ASCII format

Example

Private Sub TextExport()

Dim myTXTExport As ActiveReportsTextExport.ARExportText

Set myTXTExport = New ActiveReportsTextExport.ARExportText

 myTXTExport.PageDelimiter = ":"

 myTXTExport.TextDelimiter = ";"

 myTXTExport.Unicode = True

 myTXTExport.SuppressEmptyLines = False

 myTXTExport.FileName = App.Path & "\TXTReport.txt"

 myTXTExport.Export rptInvoice.pages

End Sub

Text Export Methods

Method Description

Export Exports a report’s pages collection to the
document indicated by the Filename property.
Sub Export(pagesColl as Unknown)

ExportStream Exports a report’s pages collection to a byte array.
Sub ExportStream(ActiveReportsPagesCollection As Unknown,
OutputParamter)

TIFF Export Properties

Property Data Type Description

FileName String Specifies the name of the file to which
the report will export.

TIFF Export Methods

Method Description

Export Exports a report’s pages collection to the
document indicated by the Filename property.
Sub Export(pagesColl as Unknown)

FaxExport Exports each page of the pages collection to an
RFC 1314 TIFF image file.
Sub FaxExport(pagesColl As Unknown, Threshold As Long)

Export

Description

Exports a pages collection to a TIFF file. The file is determined by the Filename property. The Export
method requires a pages collection, which is created after a report, is run. You can call the Export method
directly from the report object or from the viewer's pages collection. The TIFF file outputs images at 96 dpi
with 8 bits of color depth for the 3 color channels.    Any graphics or text visible in the margin area will be
removed from the image.    To calculate the TIFF width in pixels use the following for each canvas:

Dim Tiffwidth, leftmargintwips, rightmargintwips

Tiffwidth = (Canvas.Width – leftmargintwips – rightmargintwips) * 96 / 1440

Syntax
Sub Export(pagesColl as Unknown)

Parameters

Parameters

Name Type Description

pagesColl IDispatch The report’s pages collection.

Example

Private Sub TextExport()

Dim myTXTExport As ActiveReportsTextExport.ARExportText

Set myTXTExport = New ActiveReportsTextExport.ARExportText

 myTXTExport.PageDelimiter = ":"

 myTXTExport.TextDelimiter = ";"

 myTXTExport.Unicode = True

 myTXTExport.SuppressEmptyLines = False

 myTXTExport.FileName = App.Path & "\TXTReport.txt"

 myTXTExport.Fax rptInvoice.pages

End Sub

FaxExport

Description
Exports the pages collection to a TIFF file, with the option of exporting a black and white image with
halftone dithering or a black and white image where the white value corresponds to the threshold
parameter.    As the canvas is converted to monochrome, the sums of the colors’ values are compared to
the threshold value.    If the sum of the colors is less than the threshold value, a black pixel will result. A
threshold value of 766 would result in a totally black image.

Standard height for a fax compatible tiff is 1782 pixels by 2376 pixels. The export first checks to see if a
page is landscape, then the export does a zoom calculation and attempts to keep the aspect ratio
constant while scaling the canvas into the compatible tiff.    The image width must be a multiple of 32.

Syntax

Sub FaxExport(pagesColl as Unknown, Threshold As Long)

Parameters

Name Type Description

pagesColl IDispatch A report’s pages collection.

Threshold Long Sets the white value for black and white
exports.

Example

Private Sub TextExport()

Dim myTIFFExport As ActiveReportsTIFFExport.TIFFExport

Set myTIFFExport = New ActiveReportsTIFFExport.TIFFExport

myTIFFExport.FileName = app.path & "\TIFFExport.TIFF"

myTIFFExport.FaxExport rptInvoice.pages ‘Use halftone dithering

End Sub

HTML Export Properties

Property Data Type Description

AuxOutputPath String Destination path for images.

CharacterSet String Sets the destination character set.

CreateCSSFile Boolean Determines whether or not a .css file will
be created when the report is exported.

CreateFramesetPage Boolean Determines if framesets will be created.

FilenamePrefix String Prefix for the output file’s filename.

HTMLOutputPath String Sets the destination path for the exported
HTML and MHT files.

HTMLVersion DDHTMLVe
rsion

Sets the HTML format version.

JPEGQuality Long Sets the JPEG compression quality as
percent.

MHTOutput Boolean Determines if pages will be exported as
MHT archives.

MultiPageOutput Boolean Determines whether or not the exported
pages will be all on one HTML/MHT
page.

TableOfContents DDTableOf
Contents

Determines the type of style to use when
exporting the table of contents.

Title String Sets the web page’s title.

AuxOutputPath

Description

Destination path for images. Path is relative to the HTMLOutputPath.
Ex.
 HTMLOutputPath = "C:\"
 AuxOutputPath = "images"

Then images will be saved to "C:\images\" directory.

Syntax

htmlExportObject.AuxOutputPath=[Value]

Data Type

String

CharacterSet

Description

Sets the destination character set.

Syntax

htmlExportObject.CharacterSet=[Value]

Data Type

String

Supported Character Sets:

"UTF-8"
"UTF-7"
"UTF-7MIME" a different encoding of UTF-7 which outputs mail safe characters
"KOI8-r"
"KSC5601""
"shift-jis"
"iso-2022-jp"
"iso-2022-kr"
"euc-jp"
"big5"
"HZ-GB-2312"
"IBM850"
"iso-8859-1"
"iso-8859-2"
"iso-8859-5"
"iso-8859-6"

Three character sets have more than one alias. The first name is DDCharset name,
the second is the Internet Explorer preferred name.

"cp1250" "x-cp1250" windows-1250 central european
"cp1251" "x-cp1251" windows-1251 cyrillic
"cp1252

CreateCSSFile

Description

Determines if a .css file will be created and exported to the HTMLOutputPath when the report is exported.

Syntax

htmlExportObject.CreateCSSFile=[Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Create a .css file.

False Does not create a .css file.

CreateFramesetPage

Description

Determines if a frameset and TOC frame will be generated. By default, no frameset and TOC frame will
be generated. If CreateFramesetPage = True then the HTML file will be created as _.htm
and the frameset will be .htm.

Syntax

htmlExportObject.CreateFramesetPage=[Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Create a HTML frameset page.

False Does not create a HTML frameset page.

Example

'Creating a HTML Export Object

Dim Report as oYourReport
Dim oHTML As HTMLExport

Set Report = New oYourReport
Set oHTML= NewHTMLExport

'Set the FileNamePrefix equal to the String you want all HTML export file to
start with

'FileNamePrefix + HTMLOutPut are the only properties that are NOT option
oHTML.FileNamePrefix = "HTMLTest"
oHTML.HTMLOutPut Path = "C:\"

'Setting HTMLVersion
oHTML.HTMLVersion = ddHVDHTML

'Setting CreateFramesPage property to True
oHTML.CreateFramesetPage = True

'Setting TablefContents property to one of the Enum values
oHTML.TableOfContents = ddTOCSimpleHTML

'Running Report
Report.run false

'Exporting Pages of Report to HTML output file

Report.Export oHTML

FileNamePrefix

Description

Sets the prefix for the output filename. The output filename will be combined with a page number if
MultiPageOutput is True. Exporting with HTMLOutputPath = "C:\" and FileNamePrefix = "MyFile" will
create C:\myname.htm.

Syntax

htmlExportObject.FileNamePrefix=[Value]

Data Type

String

Example

'Export the pages collection of a ARViewer Control

Dim oHTML As HTMLExport
Set oHTML = New HTMLExport

'Set the FileNamePrefix equal to the String you want all HTML files to start
with

oHTML.FileNamePrefix = "HTMLTest"
oHTML.HTMLOutPut Path = "C:\"

'FileNamePrefix + HTMLOutputPath are the only properties that are NOT
optional
'Exporting Viewer Pages to HTML output file

oHTML.export Arviewer.pages

HTMLOutputPath

Description

Sets the destination path for the HTML and MHT files. Exporting with HTMLOutputPath = "C:\"
and FileNamePrefix = "MyFile" will create C:\myname.htm.

Syntax

htmlExportObject.HTMLOutputPath=[Value]

Data Type

String

Example

'Export the pages collection of a ARViewer Control

Dim oHTML As HTMLExport
Set oHTML = New HTMLExport

'Set the FileNamePrefix equal to the String you want all HTML files to start
with

oHTML.FileNamePrefix = "HTMLTest"
oHTML.HTMLOutPut Path = "C:\"

'FileNamePrefix + HTMLOutputPath are the only properties that are NOT
optional
'Exporting Viewer Pages to HTML output file

oHTML.export Arviewer.pages

HTMLVersion

Description

HTML format as DDHTMLVersion Enum

Syntax

htmlExportObject.HTMLVersion=[Value]

Data Type

DDHTMLVersion

Settings

Value Mnemonic Description

0 ddHVHTML32 Export HTML 3.2.

1 ddHVDHTML Export HTML for CSS1 compliant
browsers.

JPEGQuality

Description

Sets the JPEG compression quality as percent. Range 1-100.

Syntax

htmlExportObject.JPEGQuality=[Value]

Data Type

Long(Default = 100)

MHTOutput

Description

Determines if the pages will be exported as a MHT archive

Syntax

htmlExportObject.MHTOutput=[Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True Pages will be exported to a MHT archive.

False Pages will not be exported to a MHT
archive.

Example

'Creating a MHT Archive as multiple pages linked with a TOC page.
Dim oHTML As New HTMLExport

oHTML.FileNamePrefix = "HTMLTest"
oHTML.HTMLOutPut Path = "C:\"

'Set MHTOutput to True so HTML Export will ouput a .MHT archive file
oHTML.MHTOutput = True

'Set JPEGQuality must be 1-100%
oHTML.JPEGQuality = 90

'Set MultiPageOutput to True so HTML Export Exports Each Page of the Report
to a seperate HTML file
oHTML.MultiPageOutput = True

'Set the Title Property of the HTML file
oHTML.Title = "Web Page"

'Exporting Report Pages 1-3 & 5 & 10 using ExportRange
oHTML.ExportRange Report.pages, "1-3,5,10"

MultiPageOutput

Description

Determines if the pages will be exported to one or multiple html pages.

Syntax

htmlExportObject.MultiPageOutput=[Value]

Data Type

Boolean (Default = False)

Settings

Value Description

True The export will create multiple pages.

False The export will not create multiple pages.

Example

'Creating a MHT Archive as multiple pages linked with a TOC page.
Dim oHTML As New HTMLExport

oHTML.FileNamePrefix = "HTMLTest"
oHTML.HTMLOutPut Path = "C:\"

'Set MHTOutput to True so HTML Export will ouput a .MHT archive file
oHTML.MHTOutput = True

'Set JPEGQuality must be 1-100%
oHTML.JPEGQuality = 90

'Set MultiPageOutput to True so HTML Export Exports Each Page of the Report
to a seperate HTML file
oHTML.MultiPageOutput = True

'Set the Title Property of the HTML file
oHTML.Title = "Web Page"

'Exporting Report Pages 1-3 & 5 & 10 using ExportRange
oHTML.ExportRange Report.pages, "1-3,5,10"

TableOfContents

Description

Determines if and how the table of contents will be exported. By default, no table of contents will be
written.

Syntax

htmlExportObject.TableOfContents=[Value]

Data Type

DDTableOfContents

Settings

Value Mnemonic Description

0 ddTOCNone The TOC will not be exported.

1 ddTOCSimpleHTML Uses <DL> tag to display the
TOC.

2 ddTOCDHTML Outputs the TOC as a
expandable DHTML tree.

Example

'Exporting to HTML with a Table of Contents navigation page.

Dim Report as oYourReport
Dim oHTML As HTMLExport

Set Report = New oYourReport
Set oHTML= NewHTMLExport

'Set the FileNamePrefix equal to the String you want all HTML export file to
start with

'FileNamePrefix + HTMLOutPut are the only properties that are NOT option
oHTML.FileNamePrefix = "HTMLTest"
oHTML.HTMLOutPut Path = "C:\"

'Setting HTMLVersion
oHTML.HTMLVersion = ddHVDHTML

'Setting CreateFramesPage property to True
oHTML.CreateFramesetPage = True

'Setting TablefContents property to one of the Enum values
oHTML.TableOfContents = ddTOCSimpleHTML

'Running Report
Report.run false

'Exporting Pages of Report to HTML output file

Report.Export oHTML

Title

Description

Web page title.

Syntax

htmlExportObject.Title=[Value]

Data Type

String

HTML Export Methods

Method Description

Export Exports a report’s pages collection to the
document indicated by the Filename property.
Sub Export(pagesColl as Unknown)

ExportRange Expors a range of pages from the pages collection.
Sub ExportRange(pagesColl As UnKnown, [pagesRange],
[bStripHeaders As Boolean])

ExportStream Exports a report’s pages collection to a byte array.
Sub ExportStream(ActiveReportsPagesCollection As Unknown,
OutputParamter)

ExportRange

Description

Exports a range of pages from the pages collection. The pagesRange parameter indicates which pages to
export.    “1,2,3-9,14”

Return Type

None

Syntax

Sub ExportRange(pagesColl as Unknown, [pagesRange], [bStripHeaders])

Parameters

Name Type Description

pagesColl Variant A report’s pages collection.

PagesRange Variant Indicates the page ranges to export.

bStripHeaders Boolean Strips the page header/footer from the
exported report.

Example

Dim Report as oYourReport
Dim oHTML As ActiveReportsHTMLExport.HTMLexport

Set Report = New oYourReport
Set oHTML = New ActiveReportsHTMLExport.HTMLexport

'Set the FileNamePrefix property equal to the string you want all HTML files
to start with

oHTML.FileNamePrefix = "HTMLTest"
oHTML.HTMLOutPut Path = "C:\"

'Set the Title Property of the HTML file
oHTML.Title = "Web Page"

'Exporting Report Pages 1-3 & 5 & 10 using ExportRange
oHTML.ExportRange Report.Pages, "1-3,5,10"

HTML Export Events

Event Description

ExportPageEnd This event fires before the end of a page’s
processing.
Sub ExportPageEnd(IcurrentPage As Long, AddHTML As BSTR)

ExportPageStart This event fires before the start of a page’s
processing.
Sub ExportPageStart(IcurrentPage As Long, AddHTML As BSTR)

ExportPageEnd

Description

This event fires before the end of a page’s processing

Syntax
Sub ExportPageEnd (IcurrentPage as long, AddHTML As BSTR)

Parameters

Name Description

ICurrentPage The page currently being exported.

AddHTML HTML String to add to the page being exported.

Example
Dim WithEvents myHTMLExport As ActiveReportsHTMLExport.HTMLexport

Private Sub myHTMLExport_ExportPageEnd(ByVal ICurrentPage As Long, AddHTML As
String)
 AddHTML = "
Exported on " & Format(Date, "MM/DD/YYYY") & "
"
End Sub

ExportPageStart

Description

This event fires before the start of a page’s processing.

Syntax
Sub ExportPageStart (IcurrentPage as long, AddHTML As BSTR)

Parameters

Name Description

ICurrentPage The page currently being exported.

AddHTML HTML String to add to the page being exported.

Example
Dim WithEvents myHTMLExport As ActiveReportsHTMLExport.HTMLexport

Private Sub myHTMLExport_ExportPageStart(ByVal ICurrentPage As Long, AddHTML
As String)
 AddHTML = "
Exported on " & Format(Date, "MM/DD/YYYY") & "
"
End Sub

