
Overview
ActiveReports Professional Edition includes three components that allow you to provide custom reporting solutions to
your end users. These reporting solutions can range from a built-in customized report designer to a complete
reporting and information delivery server in Internet or intranet settings.

The components include:

· Runtime Designer Control
· WebCache Service and ISAPI DLL
· Property List Control

Runtime Designer Control
· Introduction
· Using Runtime Designer Control

Introduction
The runtime designer control allows you to host the ActiveReports designer your application and provide end-user
report editing capabilities. The control's methods and properties provides easy access to save and load report
layouts, monitor and control the design environment and customize the look and feel to the needs of your end users.

Persistence API
The designer control's Report property provides access to the layout elements of the report, its sections and controls.
The persistence API allows you to save and load the report layout.    It includes the following properties and methods.

LoadFromObject loads the report layout from an existing report object into the designer.

SaveToObject, apply the new layout to an existing report object.

NewLayout clears the current layout, including sections, controls and starts a new report layout. All property settings
are returned to default values.

IsDirty, this property returns whether the report has been modified since the last save or load operation. It can be
used to enable/disable a save button.

User Interface Customization
API's for User Interface customization have the goal of providing hooks into the designer that will let developers
attach their own custom menus, toolbars, field/database browsers, script editors, alert dialogs and property sheets.

Toolbars and Menus
You can replace built-in menus and toolbars by first setting the ToolbarsVisible, ToolbarsAccessible properties on the
designer control to hide the built-in UI.

All menu and toolbar commands are called actions. There are over 50 actions that are defined in the designer control.

If you are using a pull method to update your toolbar and menu states using idle-time processing, you can use the
QueryStatus method to check if a certain action (such as Edit/Cut) is enabled/disabled, checked/unchecked.

In addition, the designer control fires StatusChange event when the status of the tools change allowing you to update
the UI to reflect these changes.

ExecuteAction method provides the ability to perform most of the designer functions with a single call.      Alternatively,
actions that are not supported by ExecuteAction (ones that require a parameter such as color, style and font settings)
can be executed by setting the control or section properties directly using the Report property.

Designer Surface
The grid settings can be modified using the following properties

· GridX and GridY determine the number of grid points in each ruler unit.
· GridVisible determines whether the grid is visible of not.
· GridSnap specifies whether the controls should snap to the visible grid points.
· RulerUnits allows you to select ruler units from either US or metric units.

Property Sheets
The runtime designer control allows you to replace the built-in property toolbox and provide your own selection editing
UI.    The SelChange event fires when the user changes the current selected object in the designer. You can retrieve a
list of the selected object using the SelectedObjects collection.

ActiveReports Professional includes a property listbox ActiveX called "Data Dynamics Property ListBox" that can be
used to create customized design environments based on your users needs.

Script Editor
The built-in syntax-highlighting script editor is invoked using the ExecuteAction method and the action code
ddActionViewCodeEditor. To replace it with your own editor, create your own toolbar/menu item and use the
ActiveReport.Script, Section.Script properties to get/set the script. The scripting language is can be set using the
ActiveReport.ScriptLanguage property.

Controls Toolbox
The toolbox contains the controls that can be placed on a section. You can create your own toolbox toolbar and use
the following properties and methods to interface with the designer:

ToolboxItem property: Setting the ToolboxItem property initiates the control-add mode using the ProgID set to the
property.    The user will use the rubber-band to select the area of the control and once the area is selected the
designer will add the control specified by ProgID and end the add mode by setting ToolboxItem to an empty string.

ValidateChange Event: This event fires after any changes that are made to the report layout.    It allows you to control
what the use can or cannot do in the designer control.    Within the event code your can cancel the layout change and
revert it back to it's original state.

LayoutChanged Event: After the layout change (control addition, deletion is validated this event will fire with
changeType=ddLCControlAdd to notify the application that a new control has been added.

Alerts and Error Messages
ActiveReports runtime designer allows you to intercept runtime errors and alert messages and present the user with
custom notification UI.    For each error or alert message ActiveReport Designer control fires an Error or Alert event
with the message id and string and gives you the option to cancel the internal display when you handle the
messages.

Using Runtime Designer Control
· Adding Runtime Designer to Visual Basic
· Adding Runtime Designer to your Project
· Working with the Designer at Runtime
· Saving and Loading Report Layouts
· Using the Designer Events
· Using Scripting
· Custom Toolbars and Menus
· Deployment and Distribution

Adding Runtime Designer to Visual Basic
The end-user designer is an ActiveX control; the following steps describe how to include it in the Visual Basic IDE:

1. Start Visual Basic.

2. Choose Project > Components (Ctrl-T).

3. Choose Data Dynamics ActiveReports Runtime Designer.

Note: If the runtime designer entry does not appear in the list, make sure that “Selected Items Only” is not checked.
If it still does not appear, make sure ARdespro2.dll is registered by running regsvr32 on ARdespro2.dll.

4. Click OK to close the dialog box.

5. The runtime designer icon should appear in the toolbox.

Adding Runtime Designer to your Project
1. Click on the runtime designer icon in the toolbox.

2. Place the control on the form (shown below) and size it accordingly.

The runtime designer’s appearance is the same as the ActiveReports ActiveX designer but the end user will not have
direct access to the reporting events in Visual Basic.    Instead, the user will use VBScript or JScript to handle the
reporting events as needed.    The runtime designer includes a syntax-highlighting editor for both languages.

The following sample demonstrates adding the runtime designer to a Visual Basic project and using ActiveReport’s
viewer control to view reports designed at runtime.

1. Start a new Visual Basic standard EXE project.

2. Select the following components from Visual Basic’s components list:

Data Dynamics ActiveReports Runtime Designer

Data Dynamics ActiveReports Viewer 2.0

Microsoft Tabbed Dialog Control

3. Add the following references from Visual Basic’s reference list:
Data Dynamics ActiveReports 2.0

4. Select Form1 and set its properties as follows:

Name frmMain
Caption Simple Designer Project
Height 9465
Width 11295

5. Add a SSTab control to frmMain and set its properties as follows:

Height 9015
Left 0
Tabs 2
Top 0
Width 11175

6. Right-click on SSTab1 and select properties.

7. Set the TabCaption for Tab0 to Runtime Designer.

8. Set the TabCaption for Tab1 to Report Preview and select OK to close the tab control’s property page.

9. Add the runtime designer to Tab0 and set its properties as follow:

Name ard
Height 8415
Left 120
Top 480
Width 10935

10. Add the viewer control to Tab1 and set its properties as follows:

Name arv
Height 8535
Left 120
Top 360
Width 10935

11. frmMain should look like this:

12. Add the following code to the Form_Load event:

Dim rpt As DDActiveReports2.ActiveReport

Private Sub Form_Load()
'Set active Tab to the designer
SSTab1.Tab = 0
Set rpt = New ActiveReport
'Activate all the toolbars
ard.ToolbarsVisible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard

ard.ToolbarsAccessible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard

End Sub

Note: When working with the designer, the toolbars cannot be customizing. The only available options are
ToolbarsVisible and ToolbarsAccessible. If the project requires custom toolbars, a third party toolbar control will need
to be substituted for the runtime designer’s toolbars.

13. Add the following code to the SSTab1_Click event:

Private Sub SSTab1_Click(PreviousTab As Integer)
Select Case PreviousTab
Case Is = 0
prepPreview

Case Is = 1
prepDesigner

End Select

End Sub

14. Add the following code to prepare the viewer control and designer when its tab is selected:

Private Sub prepPreview()
On Error GoTo errHndl
'Must be used to writes the designer's layout
'to the report so it can be previewed.
ard.SaveToObject rpt
rpt.Restart
'Run the new report
rpt.Run False
'Add the report to the veiwer
Set arv.ReportSource = rpt
Exit Sub

errHndl:
MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description

End Sub

Private Sub prepDesigner()
On Error GoTo errHndl

If Not arv.ReportSource Is Nothing Then
arv.ReportSource.Cancel
Set arv.ReportSource = Nothing

End If

Exit Sub
errHndl:
MsgBox "Error in Design Preview: " & Err.Number & " " & Err.Description

End Sub

Note: SaveToObject must be used to save the changes made in the runtime designer to an ActiveReport report
object. You should always use that object to run and preview the report, do NOT use the designer’s Report property
to run and preview the report.

15. Save and run the project.

While the project is running, continue on to the next sample for a demonstration on using the designer at runtime.

Working with the Designer at Runtime

Working with the Designer at Runtime
This sample demonstrates the fundamentals of using the runtime designer at runtime. The simple report created in
this sample will be used to demonstrate more advanced features later on in the manual.    At runtime the designer
functions similarly to the ActiveX designer but does not allow access to the report events or code.

1. Start by running the sample project created above.

2. Place an ADO data control in the designer’s detail section.

3. Connect to Nwind.mdb (see chapter 3 in the standard edition user’s guide).

Note: The samples in this manual use the NorthWind database included with Microsoft Visual Basic.

4. Set the DataControl’s source property to the following SQL statement:

SELECT * FROM customers order by country

5. Right-click on the designer and select insert to add a new GroupHeader/Footer.

6. Click on the new section “GroupHeader1” to select it.

7. Modify the section’s properties as follows:

Name ghOrderGroup
DataField Country
Height 750

8. Click on the new section “GroupFooter1” to select it.

9. Modify the section’s properties as follows:

Name gfOrderGroup
Height 270

10. Add a Field control to the ghOrderGroup section and set its properties as follows:

Name txtGroupCountry
DataField Country
Height 360
Left 0
Top 0
Width 4230
Font.Size 12
Font.Bold True

11. Place 4 labels in the ghOrderGroup section and set their properties as follows:

Name lblCustomer lblCity lblCountry lblPostalCode
Caption Customer City Country PostalCode
Height 270 270 270 270
Left 0 2970 5490 7380
Top 450 450 450 450
Width 2880 2430 1800 1800

12. Click and drag the following fields from the fields list into the detail section: CompanyName, City, Country and
PostalCode

13. Set the field’s properties as follows:

Name txtCustomer txtCity txtCountry txtPostalCode
DataField CompanyName City Country PostalCode
Height 270 270 270 270
Left 0 2970 5490 7380
Top 0 0 0 0
Width 2880 2430 1800 1800
Alignment 0-Left 0-Left 0-Left 1-Right

14. Set the detail sections height to 285.

15. The designer should look like this:

16. Click on the Report Preview tab to run and show the report.

Switch back to the Runtime Designer tab and follow the next sample to see how the designer’s layout can be saved.

Saving and Loading Report Layouts
Reports can be saved and loaded into the designer by a variety of different methods. The easiest method is to use
the File menu on the designer to Save or Open RPX files (ActiveReport’s standard XML formatted report files).

Open/Save From File Menu

To save the report created in the previous sample:

1. Select the File menu.

2. Select the Save menu option.

3. Select the project’s directory, set the File name to sample report.rpx and select save.

Stop the project and restart is so the designer will return to the default setting. To load the previously created report
back into the designer:
1. Select the File menu.

2. Select the Open menu option.

3. Select the sample report.rpx file from the project’s directory and select Open.

When the RPX file is loaded, the designer will display the previously created report.
Open/Save Through Code
A designer’s layout can be saved and loaded through code by using the following methods:
Saving:
To save a designer layout in code use the designer’s SaveToObject method to save the layout to a report object.
Once the layout is saved to the report object, the report object’s SaveLayout method can be used to save the layout
to an RPX file, or byte array. Add the following code to the sample project to save the designer layout whenever the
Report Preview tab is selected.
Private Sub prepPreview()
On Error GoTo errHndl
'Writes the designer's layout
'to the report so it can be previewed.
ard.SaveToObject rpt
'Saves the report object to the specified style
rpt.SaveLayout App.Path & "\sample report.rpx", ddSOFile
'Resets report

rpt.Restart
'Run the new report
rpt.Run False
'Add the report to the veiwer
Set arv.ReportSource = rpt
Exit Sub

errHndl:
MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description

End Sub

Save these changes.

Loading:

To load a designer layout in code use the report object’s Load method to load a specified RPX file and the designer’s
LoadFromObject to read the layout into the designer.    Add the following code to the project to load the report
designer when the project starts, and whenever the Runtime Designer tab is selected.

Private Sub Form_Load()
'Set active Tab to the designer
SSTab1.Tab = 0
Set rpt = New ActiveReport
'Activate all the toolbars
ard.ToolbarsVisible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard

ard.ToolbarsAccessible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard
'Load the saved RPX file into a report object
rpt.LoadLayout App.Path & "\sample report.rpx"
'Load the report object into the designer
ard.LoadFromObject rpt

End Sub

Private Sub prepDesigner()
On Error GoTo errHndl

If Not arv.ReportSource Is Nothing Then
arv.ReportSource.Cancel
Set arv.ReportSource = Nothing
End If

'Load the saved RPX file into a report object
rpt.LoadLayout App.Path & "\sample report.rpx"
'Load the report object into the designer
ard.LoadFromObject rpt

Exit Sub
errHndl:
MsgBox "Error in Design Preview: " & Err.Number & " " & Err.Description

End Sub

Save these changes.

Loading DSR (ActiveX Designer) Files

The runtime designer can also load ActiveReport’s ActiveX Designers included within the project. To demonstrate this
capability:

1. Add an ActiveReport ActiveX Designer to the project and set its properties as follows.

Name rptSample

2. From the designer’s File menu, open the previously saved sample report.rpx file. When the RPX file is opened
the ActiveX designer will have the same report that was developed with the runtime designer.

3. Modify frmMain’s Form_Load event to load rptSample instead by adding the following code:

Private Sub Form_Load()
 'Set active Tab to the designer
 SSTab1.Tab = 0

 Set rpt = New ActiveReport
 'Activate all the toolbars
 ard.ToolbarsVisible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
 ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard

 ard.ToolbarsAccessible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
 ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard

 'Load the ActiveX designer into the runtime designer
 ard.LoadFromObject rptSample

End Sub

Do not save these changes.

Using the Designer Events

The runtime designer uses four main events to control the actions performed by the end user. These events are
LayoutChanged, SelChange, StatusChange and ValidateChange.

LayoutChanged

LayoutChanged fires when the designer’s layout is changed. The event can be used to monitor changes made to the
report layout and update any dependent data such as SQL queries or custom user interfaces. The following list gives
a description for the different layout changes.

Setting Description
ddLCControlMove 0 – A control’s position has changed.
ddLCControlSize 1 – A control’s size has changed.
ddLCControlDelete 2 – A control has been deleted.
ddLCSectionSize 3 – A section’s size has changed.
ddLCSectionDelete 4 – A section is deleted.
ddLCSectionMove 5 – A section is moved.
ddLCReportSize 6 – The report’s size is changed.
ddLCControlAdd 7 – A new control has been added to the report.

SelChange

SelChange fires when an item in the designer is selected. The event can be used to identify the selected item by
accessing the designer’s SelectedObjects property.

StatusChange

StatusChange fires for each change in the status of the designer action.    Designer actions represent the commands
typically invoked from UI elements such as toolbars or menus.    The following list gives a description for all of the
actions:

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionEInsertReportHF 10 - Edit: Insert Report Header/Footer.
ddActionEInsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionEInsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionEInsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterInSec 29 - Format: Align: Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.

ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpaceIncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpaceIncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoStyle 42 - Format: Style.
ddActionFoFontName 43 - Format: Font name.
ddActionFoFontSize 44 - Format: Font size.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontItalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFoIndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Underline.

Note: The ExecuteAction method can be used to execute most of the actions above. The items that cannot be
executed with this method are items requiring parameters, such as color, font, size and style.

ValidateChange

ValidateChange fires before an item is moved, sized or deleted. This event can be used to control the end user’s
actions. For instance, this event can be used to prevent the user from removing or moving an important control.

These events can be demonstrated by adding the following to the sample project.

1. Select the following components from Visual Basic’s components list:

Microsoft Windows Common Controls 6.0

Microsoft Common Dialog Control 6.0

2. Add a status bar to the bottom of frmMain and change its name to sb.

3. Add a second panel to the status bar and set its AutoSize property to 1-sbrSpring.

4. Add a common dialog control to frmMain and set its name to cmDLG.

5. Add the following main menu item to Visual Basic’s menu editor:

Caption &File

Name mFile

6. Add the following submenu item to the File menu:

Caption &Exit

Name mExit

7. Add the following second main menu item to the menu editor:

Caption &Edit

Name mEdit

8. Add the following submenu item to the Edit menu:

Caption &Font

Name mFont

9. Modify the projects code to handle the added menu items:

Private Sub mExit_Click()
Unload Me

End Sub

Private Sub mFont_Click()
'Show the font dialog box
cmDLG.Flags = cdlCFBoth
cmDLG.ShowFont

'Updated the selected item(s) with the new font specs
For x = 0 To ard.SelectedObjects.Count - 1
ard.SelectedObjects(x).Font.Name = cmDLG.FontName
ard.SelectedObjects(x).Font.Size = cmDLG.FontSize
ard.SelectedObjects(x).Font.Underline = cmDLG.FontUnderline
ard.SelectedObjects(x).Font.Italic = cmDLG.FontItalic

Next x
End Sub

10. Modify the prepPreview and prepDeisgner subs to handle the menu items:

Private Sub prepPreview()
On Error GoTo errHndl
'Writes the designer's layout
'to the report so it can be previewed.
ard.SaveToObject rpt
'Saves the report object to the specified style
rpt.Save App.Path & "\sample report.rpx", ddSOFile
'Resets report
rpt.Restart
'Run the new report
rpt.Run False
'Add the report to the veiwer
Set arv.ReportSource = rpt

'Disable menu items in preview mode
mFile.Enabled = False
mEdit.Enabled = False

Exit Sub

errHndl:
MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description

End Sub

Private Sub prepDesigner()
On Error GoTo errHndl

If Not arv.ReportSource Is Nothing Then
arv.ReportSource.Cancel
Set arv.ReportSource = Nothing

End If

'Load the saved RPX file into a report object
rpt.Load App.Path & "\sample report.rpx"
'Load the report object into the designer
ard.LoadFromObject rpt

'Enable the menu items in design mode
mFile.Enabled = True
mEdit.Enabled = True

Exit Sub
errHndl:
MsgBox "Error in Design Preview: " & Err.Number & " " & Err.Description

End Sub

11. Add the following code to the project to handle each of the above events:

Private Sub ard_LayoutChanged(ByVal changedObject As Object, ByVal changeType As
DDActiveReportsDesignerCtl.LayoutChangeTypes)
Dim cnv As DDActiveReports2.Canvas
Dim w As Long, h As Long
Dim sLCaption As String

'The following code checks to see if a lable has been added
'If a label is added, it will prompt the user for a caption
'And set the lable's width and height to fit the caption

'Check if a label as been added
If TypeOf changedObject Is DDActiveReports2.Label And changeType = ddLCControlAdd Then
'Get a caption for the label
sLCaption = InputBox("Enter a Caption for the Label", "Enter Caption")

'If no caption is given, use the added object's name
If sLCaption = "" Then sLCaption = changedObject.Name

'Set the added label's caption to the given caption
changedObject.Caption = sLCaption

'Use the canvas object to get a width and height for the caption
Set cnv = New DDActiveReports2.Canvas

'makes sure the canvas is measures with the same font size
cnv.Font = changedObject.Font
cnv.MeasureText sLCaption, w, h

'Change the added controls width and height
changedObject.Width = w
changedObject.Height = h

'unload the canvas
Set cnv = Nothing

End If

End Sub

Private Sub ard_SelChange()
Dim sControl As String
'Following code displays the selected label or field's name,
'Top, left, height and width
If ard.SelectedObjects.Count = 1 Then
If TypeOf ard.SelectedObjects(X) Is DDActiveReports2.Field Or _
TypeOf ard.SelectedObjects(X) Is DDActiveReports2.Label Then
sControl = ard.SelectedObjects(X).Name
sControl = sControl & " Top:" & ard.SelectedObjects(X).Top
sControl = sControl & " Left:" & ard.SelectedObjects(X).Left
sControl = sControl & " " & ard.SelectedObjects(X).Height & _

 " twips X "
sControl = sControl & ard.SelectedObjects(X).Width & " twips"

End If
Else
sControl = ""

End If
sb.Panels(2).Text = sControl

End Sub

Private Sub ard_StatusChange(ByVal action As DDActiveReportsDesignerCtl.DesignerActionTypes)
Select Case action
Case ddActionFoFontName
'Enable/Disable the font menu option
mFont.Enabled = ard.QueryStatus(ddActionFoFontName)

End Select
End Sub

Private Sub ard_ValidateChange(ByVal changedObject As Object, ByVal changeType As
DDActiveReportsDesignerCtl.LayoutChangeTypes, Cancel As Boolean)

'The following code prevents the end user from deleting the
'Data control
If TypeName(changedObject) = "DataControl" Then
If changeType = ddLCControlDelete Then
MsgBox "You are not allowed to delete the report's data control", _
 vbCritical, "Cannot Remove Control"

Cancel = True
End If

End If
End Sub
12. Save and run the project.

Using Scripting
When working with RPX files, all necessary report code must be included with the RPX file in the form of a script
because any Visual Basic code used to create the report in not saved into the RPX file. Also, the end user will need to
use an ActiveScripting language to make any type of programmatic changes to a report.

Note:    For a more detailed explanation of scripting examine chapter 14 in the standard edition user’s guide.

ActiveReports provides two different methods to help make scripting easier and more versatile with Visual Basic. The
report object’s AddCode method allows code to be added, in the form of a string, at runtime and the AddNamedItem
method adds functions and subs contained inside the Visual Basic code to the scripting name space. Continuing with
the designer sample we will use both methods to demonstrate how each item is setup. Because RPX files are not
secure files, it is highly suggested that all sensitive information be left out of the RPX file. Since the project is currently
using a data control, with the connection string specified, the connection sting will be visible in the RPX file. It is highly
recommended to use AddNamedItem to allow the Visual Basic project to retrieve the Recordset and pass this to the
DataControl. The following demonstrates how to convert the sample project to take advantage of the AddNamedItem
method.

Using AddNamedItem

1. Add a class module to the project and set its name to clsFunctions.

Note: When working with AddNameItem, the subs and functions must be wrapped within a class.

2. In Visual Basic’s references list, select the newest Microsoft ActiveX Data Objects Library.

3. Add the following function to clsFunctions:

Public Function getRSet() As ADODB.Recordset
Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection
Dim cnnString As String
On Error GoTo errHndl

Set cn = New ADODB.Connection
Set rs = New ADODB.Recordset

'Connect to DB and get recordset
cnnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program Files\Microsoft Visual
Studio\VB98\NWIND.MDB;Persist Security Info=False"
cn.Open cnnString
rs.Open "Select * from customers order by country", cn
Set getRSet = rs

Set rs = Nothing
Set cn = Nothing

Exit Function

errHndl:
MsgBox "Unable to get recordset: " & Err.Number & ": " & Err.Description
Set rs = Nothing
Set cn = Nothing

End Function

4. Make the following modifications to the prepViewer sub to make the report object and script aware of the added
class:

Private Sub prepPreview()
On Error GoTo errHndl
'Writes the designer's layout
'to the report so it can be previewed.
ard.SaveToObject rpt
'Saves the report object to the specified style
rpt.Save App.Path & "\sample report.rpx", ddSOFile
'Resets report

'Activeate the Script debugger and refresh the script
rpt.ScriptDebuggerEnabled = True

rpt.ResetScripts

' Use AddNamedItem to add the function to the scripting name space
rpt.AddNamedItem "vbCode", New clsFunctions

rpt.Restart
'Run the new report
rpt.Run False
'Add the report to the veiwer
Set arv.ReportSource = rpt

'Disable menu items in preview mode
mFile.Enabled = False
mEdit.Enabled = False

Exit Sub

errHndl:
MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description

End Sub

5. Save and run the project.

6. Select DataControl1 on the designer and clear out the ConnectionString and Source string.

7. Select the Script icon and add the following code to the ActiveReport Document OnDataInitialize sub:

Sub OnDataInitialize
set rpt.datacontrol1.recordset = vbcode.getrset

End Sub

8. Select the Report Preview tab to use the new function.

Using AddCode

1. Add the following code to clsFunctions:

Public Function IIf(Expression, TruePart, FalsePart)
IIf = VBA.IIf(Expression, TruePart, FalsePart)

End Function

Public Function Format(Expression, sFormat)
Format = VBA.Format(Expression, sFormat)

End Function

2. Add the following code to frmMain:

Private Function HelperCode() As String
Dim sCode As String
sCode = ""
sCode = sCode & _
"Public Function IIf(expr, exprTrue, exprFalse)" & vbCrLf & _
"If expr Then IIf = exprTrue Else IIf = exprFalse" & vbCrLf & _
"End Function"

sCode = sCode & _
"Public Function Format(expr, fmt)" & vbCrLf & _
"Format = vbCode.Format(expr, fmt)" & vbCrLf & _
"End Function"

End Function

3. Add the following code to prepPreview to use the AddCode method:

Private Sub prepPreview()
On Error GoTo errHndl
'Writes the designer's layout
'to the report so it can be previewed.
ard.SaveToObject rpt
'Saves the report object to the specified style
rpt.Save App.Path & "\sample report.rpx", ddSOFile
'Resets report

'Activeate the Script debugger and refresh the script
rpt.ScriptDebuggerEnabled = True

rpt.ResetScripts

' Add IIf helper code
rpt.AddCode HelperCode()

' Use AddNamedItem to add the function to the scripting name space
rpt.AddNamedItem "vbCode", New clsFunctions

rpt.Restart
'Run the new report
rpt.Run False
'Add the report to the veiwer
Set arv.ReportSource = rpt

'Disable menu items in preview mode
mFile.Enabled = False
mEdit.Enabled = False

Exit Sub

errHndl:
MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description

End Sub

4. Save and run the project.

Note: The samples contained in this section are designed to demonstrate the fundamental for using the end user
designer. More advanced samples can be found in the sample directory and in Data Dynamics’ online
knowledgebase at http://www.datadynamics.com/kb.

Custom Toolbars and Menus
The runtime designer toolbars and menus cannot be customized during development.    You can control the visibility
and accessibility of individual toolbars using ToolbarsVisible and ToolbarsAccessible properties.    You cannot remove
any of the tools from the toolbars.

If you need to present your end users with a different user interface elements you should disable and hide all the
toolbars by setting ToolbarsVisible and ToolbarsAccessible to 0 and create your own toolbars and menus.

StatusChange event and ExecuteAction and QueryStatus methods provide complete control over the current state of
available UI options.    In addition, you can customize the alerts and error messages by handling the Alert event.

In addition, you can create your own custom or localized object context menus in the ContextMenuOpen event.

The "Diamond Reports" sample included in your samples directory provides a comprehensive example for creating
custom toolbars and menus.

Included Sample Projects
The ActiveReports Pro installation includes a few specialized sample projects to demonstrate the different techniques
and capabilities available with the professional edition of ActiveReports.

The code behind the sample projects demonstrates many techniques available with the professional edition.    Use
these samples along with the following tutorial to help you understand the use of the various ActiveReports
Professional components.

Following is a listing of these sample projects and the features they demonstrate:

Name Description
1 Diamond Reports An advanced project demonstrating the full possibilities of the runtime

designer.    Includes custom toolbars and menus that implement the
functionality of the built-in counterparts.

2 Property List Demonstrates using the property list box.
3 Simple Designer Demonstrates using the runtime designer, property list box and

preview form.

Deployment and Distribution

You need to include the following files on all clients when distributing the ActiveReports pro.
File Name Description
Arpro2.DLL The Reporting Engine.
ARVIEW2.ocx Only if you are using our ActiveX Viewer.
ARdespro2.dll Only if you are using the end-user designer.
PDFExpt.DLL PDF Export Filter (when using PDF exporting).
RTFExpt.DLL RTF Export Filter (when using RTF exporting).
ExclExpt.DLL Excel Export Filter (when using Excel exporting).
TextExpt.DLL Text Export Filter (when using Text exporting).
HTMLExpt.DLL HTML Export Filter (when using HTML exporting).
TiffExpt.dll Tiff Export Filter (when using Tiff exporting).
WebCache.dll Only if you are using the WebCache service.

Web Server Distribution
To serve reports to clients in a web environment, your web server should have arview2.cab if the project uses the
ActiveReports Viewer Control and arpro2.cab if the project uses the end user designer control. You should also copy
and register any export DLLs as needed.

WebCache Service and ISAPI DLL
· Introduction
· Installation
· Deployment
· Using the WebCache Service

Introduction
The WebCache service and ISAPI DLL are used to manage report output on web servers running Microsoft® Internet
Information Servers. The caching service is a COM component that runs as service on the web server and caches
the report's output.    The ISAPI DLL receives requests for cache items, retrieves the items from the caching service
and delivers them to the client browsers.

Installation
The setup program will automatically install WebCache.dll and WebCacheService.exe to your machine. The service
defaults will be set to use the system account and automatic startup.

Deployment
To deploy the WebCacheService, you can add the WebCacheService.exe file to your setup project as a service or
manually register the service using:

WebCacheService.exe -RegServer –Service
To uninstall, stop the service using the Control Panel / Administrative Tools / Services tool and then use

WebCacheService.exe -UnregServer

Note: If you are using Wise InstallMaster, don’t use the service installation feature, instead add the following
commands to your install script:

Execute Program %OCXPATH%\WebCacheService.exe -RegisterServer -Service
Add “Execute path: %OCXPATH%\WebCacheService.exe –UnregServer” to INSTALL.LOG

To configure the number of threads that the WebCacheService creates on startup set the Start Parameters
/Threads=NumberOfThreads on the general property page of the service (Control Panel / Services).

Using the WebCache Service
The WebCache service can be utilized using either of the following methods

1. CacheContent method allows you to cache any type of content including report output (RDF files) and export
filters byte array output.    The CacheContent method specifies the content type and the ISAPI filter would serve
the cached items with the content and header specified in this method.

2. Excel and PDF Export Filters expose an ExportWebCache method that allows a direct export into the WebCache
service objects and returns the proper cache item ids to redirect the client browser.

Developers Reference
· ActiveReports Runtime Designer
· WebCache Service Objects
· Property List Objects

ActiveReports Runtime Designer
· ARDesigner Control
· Selection Object

ARDesigner
Name Type Description
GridSnap Property Determines whether the controls should be snapped to the grid

points.
GridVisible Property Determines whether the drawing grid should be visible.
GridX Property Determines how coarse the designer grid should be.
GridY Property Determines how coarse the designer grid should be.
IsDirty Property Returns whether report has been modified since last layout was

loaded or initialized.
Locked Property Specifies whether the controls are locked in place.
Report Property Returns a reference to the designer's report object.
RulerUnits Property Sets or returns ruler units (Inches, Centimeters).
SelectedObjects Property Returns collection of selected objects.
ToolbarsAccessible Property Bit flags for each toolbar to determine whether a toolbars is

accessible by the end user.
ToolbarsVisible Property Bit flags for each toolbar to determine whether a toolbar is visible.
ToolboxItem Property Sets or returns PROGID of active toolbox item.
ExecuteAction Method Executes a specified designer command.

object.ExecuteAction(action As DesignerActionTypes)
LoadFromObject Method Reads the layout from a report object into designer control.

object.LoadFromObject(Report As IActiveReport)
NewLayout Method Discards the current report layout and creates a new blank layout.

object.NewLayout()
QueryStatus Method Queries the designer for the status of one or more commands.

object.QueryStatus(action As DesignerActionTypes)
SaveToObject Method Write the layout from the designer to a report object.

object.SaveToObject(Report As IActiveReport)
Alert Event Fires when an alert requesting user intervention is about to be

displayed.
ContextMenuOpen Event Fires before a context menu is opened.
Error Event Fires when an error occurs in the designer component.
LayoutChanged Event Fires when the report layout is changed.
SelChange Event Fires when selection changes.
StatusChange Event Fires for each change in the status of the designer actions.
ValidateChange Event Fires before an item is moved, sized or deleted.

GridSnap
Determines whether the controls should be snapped to the grid points.

Syntax
object.GridSnap [= value]
The GridSnap property syntax has the following parts

Part Description
object A valid ARDesigner object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Default - The controls are snapped to the grid points.
False The controls can be sized and positioned freely.

Data Type
Boolean

Remarks
Default value = True

GridVisible
Determines whether the drawing grid should be visible.

Syntax
object.GridVisible [= value]
The GridVisible property syntax has the following parts

Part Description
object A valid ARDesigner object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Shows the grid in the designer.
False Hides the grid in the designer.

Data Type
Boolean

Remarks
Default value = True

GridX
Determines how coarse the designer grid should be.

Syntax
object.GridX [= value]
The GridX property syntax has the following parts

Part Description
object A valid ARDesigner object
value An Integer value that represents the number of horizontal grid points

per ruler unit.

Data Type
Integer

Remarks
Default value = 16

GridY
Determines how coarse the designer grid should be.

Syntax
object.GridY [= value]
The GridY property syntax has the following parts

Part Description
object A valid ARDesigner object
value An Integer value that represents the number of vertical grid points per

ruler unit.

Data Type
Integer

Remarks
Default value = 16

IsDirty
Returns whether report has been modified since last layout was loaded or initialized.

Syntax
object.IsDirty [= value]
The IsDirty property syntax has the following parts

Part Description
object A valid ARDesigner object
value A Boolean value.

Settings
The settings for value are

Setting Description
True The report layout has been modified.
False The report layout has not been modified.

Data Type
Boolean

Example
Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
 If ARDesigner1.IsDirty Then
 ' Ask if report should be saved
 Dim iSave As Integer
 iSave = MsgBox("Save changes to the report?", _
 vbYesNoCancel, "Save")
 Select Case iSave
 Case vbYes
 ' Save the Report
 FileSave
 Cancel = 0
 Case vbNo
 ' Continue without saving
 Cancel = 0
 Case vbCancel
 ' Cancel Unload
 Cancel = 1
 End Select
 End If
End Sub

Locked
Specifies whether the controls are locked in place.

Syntax
object.Locked [= value]
The Locked property syntax has the following parts

Part Description
object A valid ARDesigner object
value A Boolean value.

Settings
The settings for value are

Setting Description
True The controls cannot be moved or sized.
False The controls can be moved or sized.

Data Type
Boolean

Example
' If the controls are locked mark the menu item as checked
mnuLocked.Checked = ARDesigner1.Locked

Remarks
Default value = False

Report
Returns a reference to the designer's report object.

Syntax
object.Report [= value]
The Report property syntax has the following parts

Part Description
object A valid ARDesigner object
value An ActiveReport reference.

Data Type
IActiveReport

Example
' Add a data control to the designer using the Report object
 Dim ctl As DataControl
 With ARDesigner.Report.Sections("Detail").Controls
 Set ctl = .Add("DDActiveReports2.DataControl")
 ctl.Name = "dc"
 ctl.Top = 0: ctl.Left = 0
 ctl.Tag = ""
 End With

Remarks
This report object is used to gain access to the layout and controls properties. Do not use it to run the report and
preview it. Use a separate ActiveReport variable and save the layout to it using the SaveToObject method.

RulerUnits
Sets or returns ruler units (Inches, Centimeters).

Syntax
object.RulerUnits [= value]
The RulerUnits property syntax has the following parts

Part Description
object A valid ARDesigner object
value A valid ddRulerUnits setting.

Settings
The settings for value are

Setting Description
ddRulerUS 0 - Inches.
ddRulerMetric 1 - Centimeters.

Data Type
ddRulerUnits

Remarks
Default value = 0 - US Setting.

SelectedObjects
Returns collection of selected objects.

Syntax
Set value = object.SelectedObjects
The SelectedObjects property syntax has the following parts

Part Description
object A valid ARDesigner object
value A Selection object.

Data Type
Selection

Example

Private Sub ARDEsigner1_SelChange()
 Dim lSel As Long
 Dim arrSel()
 ' plist is a custom PropertyList control
 plist.Clear

 ' When selection changes, add selected objects to the custom
 ' property list
 If ARDesigner1.SelectedObjects.Count > 0 Then
 ReDim arrSel(ARDesigner1.SelectedObjects.Count - 1)
 For lSel = 0 To ARDesigner1.SelectedObjects.Count - 1
 Set arrSel(lSel) = ARDesigner1.SelectedObjects(lSel)
 Next
 plist.SelectObjects arrSel
 End If
End Sub

ToolbarsAccessible
Bit flags for each toolbar to determine whether a toolbars is accessible by the end user. One additional flag for the
context menus or a property to enable or disable the context menus.

Syntax
object.ToolbarsAccessible [= value]
The ToolbarsAccessible property syntax has the following parts

Part Description
object A valid ARDesigner object
value A ToolbarIdentifiers setting.

Settings
The settings for value are

Setting Description
ddTBMenu 1 - Main menu toolbar.
ddTBToolBox 2 - Controls toolbox.
ddTBStandard 4 - Standard toolbar.
ddTBAlignment 8 - Alignment toolbar.
ddTBFormat 16 - Format toolbar.
ddTBExplorer 32 - Report explorer toolbar.
ddTBFields 64 - Fields list toolbar.
ddTBPropertyToolbox 128 - Property toolbox.

Data Type
ToolbarIdentifiers

Example
Private Sub Form_Load()
 ' Disable and hide the built in toolbars
 ARDesigner1.ToolbarsAccessible = 0
 ARDesigner1.ToolbarsVisible = 0
End Sub

Remarks
The customization option for the toolbars is available only when all toolbars are accessible.    If any of the toolbars is
not accessible the built-in customization will be disabled.

ToolbarsVisible
Bit flags for each toolbar to determine whether a toolbar is visible. The end user can show/hide the toolbars from the
toolbar's context menu.

Syntax
object.ToolbarsVisible [= value]
The ToolbarsVisible property syntax has the following parts

Part Description
object A valid ARDesigner object
value A ToolbarIdentifiers setting.

Settings
The settings for value are

Setting Description
ddTBMenu 1 - Main menu toolbar.
ddTBToolBox 2 - Controls toolbox.
ddTBStandard 4 - Standard toolbar.
ddTBAlignment 8 - Alignment toolbar.
ddTBFormat 16 - Format toolbar.
ddTBExplorer 32 - Report explorer toolbar.
ddTBFields 64 - Fields list toolbar.
ddTBPropertyToolbox 128 - Property toolbox.

Data Type
ToolbarIdentifiers

Example
Private Sub Form_Load()
 ' Disable and hide the built in toolbars
 ARDesigner1.ToolbarsAccessible = 0
 ARDesigner1.ToolbarsVisible = 0
End Sub

ToolboxItem
Sets or returns PROGID of active toolbox item. Set to empty to end control mode.

Syntax
object.ToolBoxItem [= value]
The ToolboxItem property syntax has the following parts

Part Description
object A valid ARDesigner object
value A String value.

Data Type
String

Example
Private Sub tbToolbox_ButtonClick(ByVal Button As MSComctlLib.Button)
 Select Case Button.key
 Case "tbxSelect": ARDesigner1.ToolBoxItem = ""
 Case "tbxLabel": ARDesigner1.ToolBoxItem = "DDActiveReports2.Label"
 Case "tbxField": ARDesigner1.ToolBoxItem = "DDActiveReports2.Field"
 Case "tbxCheckbox": ARDesigner1.ToolBoxItem = "DDActiveReports2.Checkbox"
 Case "tbxImage": ARDesigner1.ToolBoxItem = "DDActiveReports2.Image"
 Case "tbxLine": ARDesigner1.ToolBoxItem = "DDActiveReports2.Line"
 Case "tbxShape": ARDesigner1.ToolBoxItem = "DDActiveReports2.Shape"
 Case "tbxRichedit": ARDesigner1.ToolBoxItem = "DDActiveReports2.RichEdit"
 Case "tbxFrame": ARDesigner1.ToolBoxItem = "DDActiveReports2.Frame"
 Case "tbxSubreport": ARDesigner1.ToolBoxItem = "DDActiveReports2.Subreport"
 Case "tbxPageBreak": ARDesigner1.ToolBoxItem = "DDActiveReports2.PageBreak"
 Case "tbxOLE": ARDesigner1.ToolBoxItem = "DDActiveReports2.OLE"
 Case "tbxBarcode": ARDesigner1.ToolBoxItem = "DDActiveReports2.Barcode"
 End Select
End Sub

Remarks
This property is used to implement a custom toolbox toolbar.

ExecuteAction
Executes a specified designer command. You can use this method when implementing a custom toolbar or menu,
this method will perform the report actions in response to the toolbar or menu items.

Syntax
object.ExecuteAction(action As DesignerActionTypes)
The ExecuteAction method syntax has the following parts

Part Description
object An expression evaluating to an object of type ARDesigner.
action DesignerActionTypes - A valid action setting.

Settings
The settings for action are

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionEInsertReportHF 10 - Edit: Insert Report Header/Footer.
ddActionEInsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionEInsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionEInsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterInSec 29 - Format: Align : Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpaceIncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpaceIncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontItalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.

ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFoIndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline.

Note: Only the DesignerActionTypes contained in the above list can be used with ExcuteAction. Calling any of the
others will result in an error.

Example
' Edit > Cut menu item Private Sub miECut_Click()
 ARDesigner1.ExecuteAction ddActionECut
End Sub

Remarks
Font and color actions are not supported in the ExecuteAction method.    In order to set font and color properties you
should directly access the selected object and set those properties.

GetSectionFromPoint
Returns the section name at a specified point and converts the point coordinates to section relative coordinates.
Returns empty when the specified point is not within a section area.

Syntax
[sectionName =]object.GetSectionFromPoint(x As Single, y As Single)
The GetSectionFromPoint method syntax has the following parts

Part Description
object A valid ARDesigner object.
x, y Single - Specifies the point coordinates of which to retrieve the

section name. The values are converted to section relative
coordinates on return from the method.

sectionName String - Returns the section name that is at the specified point
coordinates.

Return
String

Example
Private deltax As Single, deltay As Single
' This code implements a label Drag Drop on the designer control.
' It adds a new control at the dropped location.
Private Sub ard_DragDrop(Source As Control, X As Single, Y As Single)
Dim sSec As String
Dim secTarget As Object
Dim ctl As Object

 X = X - deltax
 Y = Y - deltay

 sSec = ard.GetSectionFromPoint(X, Y)
 If sSec <> "" Then
 Set secTarget = ard.Report.Sections(sSec)
 Set ctl = secTarget.Controls.Add("DDActiveReports2.Label")
 ctl.Left = X
 ctl.Top = Y
 ctl.Width = lblDrag.Width
 ctl.Height = lblDrag.Height
 ctl.BackStyle = 1
 ctl.BackColor = &HC0C0FF
 If (ctl.Left + ctl.Width) > ard.Report.PrintWidth Then
 ard.Report.PrintWidth = ctl.Left + ctl.Width
 End If
 If (ctl.Top + ctl.Height) > secTarget.Height Then
 secTarget.Height = ctl.Top + ctl.Height
 End If
 End If
End Sub

Private Sub ard_DragOver(Source As Control, X As Single, Y As Single, State As Integer)
Dim sSec As String
X = X - deltax
Y = Y - deltay

sSec = ard.GetSectionFromPoint(X, Y)
lstState.AddItem sSec & " : " & Str$(X) & "," & Str$(Y)
End Sub

Remarks
This method is used when adding controls into specific sections using drag and drop events.

LoadFromObject
Reads the layout from a report object into designer control.

Syntax
object.LoadFromObject(Report As IActiveReport)
The LoadFromObject method syntax has the following parts

Part Description
object An expression evaluating to an object of type ARDesigner.
Report IActiveReport

Example
' Load a report layout file into an activereport instance
' then load it into the designer control.
' Alternatively, you can use the Load method of the deisgner's Report property
Dim rpt As ActiveReport
Set rpt = New ActiveReport
rpt.Load App.Path & "\test.rpx"
ARDesigner1.LoadFromObject(rpt)

NewLayout
Discards the current report layout and creates a new blank layout.

Syntax
object.NewLayout()
The NewLayout method syntax has the following parts

Part Description
object An expression evaluating to an object of type ARDesigner.

Example
' File > New, Menu Item
Private Sub miFNew_Click()
 ARDesigner1.NewLayout
End Sub

QueryStatus
Queries the object for the status of one or more commands.

Syntax
object.QueryStatus(action As DesignerActionTypes)
The QueryStatus method syntax has the following parts

Part Description
object An expression evaluating to an object of type ARDesigner.
action DesignerActionTypes

Settings
The settings for action are

Return
DesignerActionStatus

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionEInsertReportHF 10 - Edit: Insert Report Header/Footer.
ddActionEInsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionEInsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionEInsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterInSec 29 - Format: Align : Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpaceIncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpaceIncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoStyle 42 - Format: Style.
ddActionFoFontName 43 - Format: Font name.

ddActionFoFontSize 44 - Format: Font size.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontItalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFoIndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline.

Example
' Update edit menu items on status change.
Private Sub ARDesigner1_StatusChange(ByVal action As
DDActiveReportsDesignerCtl.DesignerActionTypes)
 Select Case action
 Case ddActionECopy
 miECopy.Enabled = ((ARDesigner1.QueryStatus(ddActionECopy) And ddStatEnabled) =
ddStatEnabled)
 miECopy.Checked = ((ARDesigner1.QueryStatus(ddActionECopy) And ddStatChecked) =
ddStatChecked)
 ' Case
 End Select
End Sub

SaveToObject
Write the layout from the designer to a report object.

Syntax
object.SaveToObject(Report As IActiveReport)
The SaveToObject method syntax has the following parts

Part Description
object An expression evaluating to an object of type ARDesigner.
Report IActiveReport

Example
' module variable
Dim rpt As DDActiveReports2.ActiveReport

Private Sub PreviewReport()
 On Error GoTo ehPreviewReport
 ard.SaveToObject rpt
 rpt.Restart
 rpt.Run False
 Set arv.ReportSource = rpt
 Exit Sub

ehPreviewReport:
 MsgBox Str(Err.Number) & " - " & Err.Description, vbOKOnly, "Error: PreviewReport"
End Sub

Remarks
You must use the SaveToObject to save the report designer to an ActiveReport instance before running the report.

Alert
Fires when before an alert message box that requires user intervention is displayed.    You can use this event to
replace the built-in message boxes with your own.

Syntax
Sub object_Alert(id As Integer, prompt As String, buttons As Long, result)
The Alert event syntax has the following parts

Part Description
id Integer - Specifies the alert message id.
prompt String - Specifies the message string to be displayed.
buttons Long - Specifies the number and style of buttons to be displayed.
result Long - used to set the return value of the event when the alert is

handled by the event.

Settings
The id parameter has the following settings

ddARAlertControlNotRegistered 1 - Report contains a control that is not registered on the
client machine.

ddARAlertDataSource 2 - Data source returned error when updating property
sheet.

ddARAlertDAOSettings 3 - DAO data control settings are incorrect.
ddARAlertDAO 4 - DAO returned error when opening the connection or

recordset.
ddARAlertFieldList 5 - A database error occurred when attempting to refresh the

field list window.
ddARAlertInvalidSectionForDataControl 6 - A data control cannot be added to a non-detail section.
ddARAlertDataControlAlreadyExists 7 - User tried to drop more than one data control into the

detail section.
ddARAlertControlCreateFailed 8 - The ActiveX control can't be hosted in ActiveReports
ddARAlertAB2DLLMissing 9 - AB2DLL.DLL toolbars library is missing.
ddARAlertCantUndoDelete 10 - The edit/delete operation can't be undone
ddARAlertDeleteFailed 11 - The edit/delete operation failed.
ddARAlertEditCutFailed 12 - The edit/cut operation failed.
ddARAlertEditCopyFailed 13 - The edit/copy operation failed.
ddARAlertDuplicateStyleName 14 - User tried to create a style that already exists.
ddAlertCantDeleteStyle 15 - User tried to delete the normal style.
ddAlertRTF 16 - RTF control alert.
ddARAlertRTFDeleteField 17 - Confirm deleting an RTF merge field.
ddARAlertCantDeleteDetailSection 18 - Detail section cannot be deleted.
ddARAlertDeleteSectionPrompt 19 - Confirm deleting a section.
ddARAlertSaveLayoutFailed 20 - Unable to save the report layout.

Example
Private Sub ard_Alert(ByVal id As Integer, ByVal prompt As String, ByVal buttons As Long, result
As Variant)
 If id = ddARAlertControlNotRegistered Then
 MsgBox "Report contains an unregistered control." & _"
 "Contact 999-999-9999 with the following information " & _
 vbCrlf & Str(id) & " - " & prompt
 result = 0
 End If
End Sub

ContextMenuOpen
Fires before a context menu is opened.

Syntax
object_ContextMenuOpen(sourceObject As Object,
menuType As ContextMenuTypes,
Cancel As Boolean)

The ContextMenuOpen event syntax has the following parts

Part Description
sourceObject Object - A reference to the object that is opening the menu.
menuType ContextMenuTypes - Specifies the type of menu that will be opened

for this sourceObject.
Cancel Boolean - determines whether the default menu handler should be

cancelled. This parameter should be set to True to disable or replace
built in context menus.

Settings
The settings for menuType are

Setting Description
ddCMSection 0 - Section context menu.
ddCMControl 1 - Control context menu.
ddCMReport 2 - Report object context menu.
ddCMRTFEditMode 3 - RichEdit context menu.

Example
' Example implementation of the ContextMenuOpen event
' The mnuReport, mnuControl, mnuSection and mnuRichEdit
' are menu items created using VB's Menu editor
' You can use the sourceObject properties to enable/disable
' your custom menu options
Private Sub ARDesigner1_ContextMenuOpen(ByVal sourceObject As Object, ByVal menuType As
DDActiveReportsDesignerCtl.ContextMenuTypes, Cancel As Boolean)
 Select Case menuType
 Case ddCMControl
 PopupMenu mnuControl
 Case ddCMReport
 PopupMenu mnuReport
 Case ddCMSection
 PopupMenu mnuSection
 Case ddCMRichedit
 PopupMenu mnuRichEdit
 End Select
 Cancel = True
End Sub

Error
Fires when an error occurs in the designer component. This event allows you to create your own error handler and
display localized error message boxes.

Syntax
object_Error((Number As Integer, Description As String, Scode As Long, Source As String, HelpFile
As String, HelpContext As Long, CancelDisplay As Boolean))
The Error event syntax has the following parts

Part Description
object An expression evaluating to an object of type ARDesigner.
Number Integer - Error number
Description String - Error description.
Scode Long - Result code.
Source String - Source of the error if applicable.
HelpFile String - Help file
HelpContext Long - Error context id, in the help file.
CancelDisplay Boolean - Set CancelDisplay = True to cancel the built in error dialog

and replace it with your own.

Example
Private Sub ARDesigner1_Error(ByVal Number As Integer, Description As String, _
ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As String, _
ByVal HelpContext As Long, CancelDisplay As Boolean)

 App.LogEvent Format(Now, "mm/dd/yyyy Hh:Nn") & Str(Number) & " - " & Description
 CancelDisplay = True
End Sub

LayoutChanged
Fires when the layout is changed. You can use this event to monitor changes to the report layout and update any
dependent data such as SQL queries or custom user interfaces (report explorers, group sections dialog, etc..)

Syntax
object_LayoutChanged(changedObject As Object, changeType As LayoutChangeTypes)
The LayoutChanged event syntax has the following parts

Part Description
object An expression evaluating to an object of type ARDesigner.
changedObject Object - a reference to the control or object that caused the layout

change.
changeType LayoutChangeTypes - specifies the type of change.

Settings
The settings for changeType are

Setting Description
ddLCControlMove 0 - A control's position has changed.
ddLCControlSize 1 - A control's size has changed.
ddLCControlDelete 2 - A control is deleted.
ddLCSectionSize 3 - A section's size has changed.
ddLCSectionDelete 4 - A section is deleted.
ddLCSectionMove 5 - A section is moved.
ddLCReportSize 6 - The report's size is changed.
ddLCControlAdd 7 - A new control is added to the report.

Example
Private Sub ARDesigner1_LayoutChanged(changedObject As Object, _
changeType As LayoutChangeTypes)

 ' If a group section was added or removed then display a grouping dialog
 If changeType = ddLCSectionAdd Then
 If changedObject.Type = ddSTGroupHeader Then
 frmGroups.Show
 End If
 End If
End Sub

SelChange
Fires when selection changes. You can use the SelectedObjects property to inspect the current selection.

Syntax
object_SelChange()

Example
' SelChange event handler
Private Sub ARDesigner1_SelChange()
 If ARDesigner1.SelectedObjects.Count = 1 Then
 StatusBar1.Panels(1).Text = ARDesigner1.SelectedObjects(0).Name
 Else
 StatusBar1.Panels(1).Text = ""
 End If
End Sub

Remarks
This event can be used to update UI elements such as a property toolbox or status bar in your custom report
designer

StatusChange
This event fires for each change in the status of the designer actions. Designer actions represent the commands that
are typically invoked from UI elements such as a toolbar or a menu. You can use the QueryStatus method to check
the status of the changed action and update your custom UI elements.

Syntax
object_StatusChange(action As DesignerActionTypes)

The StatusChange event syntax has the following parts

Part Description
action DesignerActionTypes - Specifies the action that caused the change

as one of the actions listed below.

Settings
The settings for action are

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionEInsertReportHF 10 - Edit: Insert Report Header/Footer.
ddActionEInsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionEInsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionEInsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterInSec 29 - Format: Align : Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpaceIncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpaceIncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoStyle 42 - Format: Style.
ddActionFoFontName 43 - Format: Font name.
ddActionFoFontSize 44 - Format: Font size.

ddActionFoFontBold 45 - Format: bold.
ddActionFoFontItalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFoIndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline

Example
' Update edit menu items on status change.
Private Sub ARDesigner1_StatusChange(ByVal action As
DDActiveReportsDesignerCtl.DesignerActionTypes)
 Select Case action
 Case ddActionECopy
 miECopy.Enabled = ((ARDesigner1.QueryStatus(ddActionECopy) And _
 ddStatEnabled) = ddStatEnabled)
 miECopy.Checked = ((ARDesigner1.QueryStatus(ddActionECopy) And _
 ddStatChecked) = ddStatChecked)
 End Select
End Sub

ValidateChange
This event is fired before an item is moved, sized or deleted. You can use this event to control the end user's actions.
For example, you can prevent the user from deleting the report's data control or moving a predefined set of controls
that are part of a standard report template.

Syntax
object_ValidateChange(control As Object, changeType As LayoutChangeTypes, Cancel As Boolean)

Parameters
The ValidateChange event syntax has the following parts

Part Description
object An expression evaluating to an object of type ARDesigner.
control Object
changeType LayoutChangeTypes
Cancel Boolean

Settings
The settings for changeType are

Setting Description
ddLCControlMove 0 - A control's position has changed.
ddLCControlSize 1 - A control's size has changed.
ddLCControlDelete 2 - A control is deleted.
ddLCSectionSize 3 - A section's size has changed.
ddLCSectionDelete 4 - A section is deleted.
ddLCSectionMove 5 - A section is moved.
ddLCReportSize 6 - The report's size is changed.
ddLCControlAdd 7 - A new control is added to the report.

Example
Private Sub ARDesigner1_ValidateChange(ByVal control As Object, _
 ByVal changeType As DDActiveReportsDesignerCtl.LayoutChangeTypes, _
 Cancel As Boolean)
 If changeType = ddLCControlDelete Then
 If control.Name = "DataControl1" Then
 MsgBox "You cannot delete the reports data source."
 Cancel = True
 End If
 End If
End Sub

Selection
Name Type Description
Count Method Returns the number of selection objects in the collection.

object.Count
Item Method Returns the object at the selected index.

object.Item(index)

Count
Returns the number of selected objects in the collection.

Syntax
object.Count()

Example
' SelChange event handler
Private Sub ARDesigner1_SelChange()
 If ARDesigner1.SelectedObjects.Count = 1 Then
 StatusBar1.Panels(1).Text = ARDesigner1.SelectedObjects(0).Name
 Else
 StatusBar1.Panels(1).Text = ""
 End If
End Sub

Item
Returns the selection item at the specified index.

Syntax
object.Item((index As Long))
The Item method syntax has the following parts

Part Description
object An expression evaluating to an object of type Selection.
index Long

Example
' SelChange event handler
Private Sub ARDesigner1_SelChange()
 If ARDesigner1.SelectedObjects.Count = 1 Then
 StatusBar1.Panels(1).Text = ARDesigner1.SelectedObjects.Item(0).Name
 Else
 StatusBar1.Panels(1).Text = ""
 End If
End Sub

WebCache Service Objects
· WebCache
· WebCacheItem
· WebCacheWorkerThread
· WebCacheWorkerThreads

WebCache
Name Type Description
CacheContent Method Adds an item to the WebCache collection.
CacheItem Method Adds an item to the WebCache collection.
IsCached Method Determines whether a specific item is cached.
Item Method Returns the cached item at the specified index.
Remove Method Removes the cached item at the specified index.
RemoveAll Method Removes all cached items from the service.
Count Property Returns the number of cached item in the service.

CacheContent
Adds an item to the WebCache collection.

Note: CacheContent is the most commonly used method to add items to the WebCache collection.

The CacheItem Method should only be used when    additional header information other than content type needs to
be written into the header of the cached item.

Syntax
object.CacheContent(ContentType As String, Data As Variant)
The CacheContent method syntax has the following parts

Part Description
object An expression evaluating to an object of type WebCache.
ContentType String
Data Variant

Example 1
'The following example performs the following
'
'1)Loads an ActiveReport from a presaved XML file
'2)Runs the report
'3)Exports the report to a byte array in PDF format
'4)Adds the byte array to ActiveReports WebCache so
'that it may be streamed directly to the browser
'
'The example code is placed in a user defined function.
'A typical scenario would be for this function to be placed
'in a COM object and called from an ASP page.
'You could then do an ASP response.redirect to the
'url where the pdf export was cached.
Public Function ExportReport() as long

Dim rpt As ActiveReport
Dim aWebCache As WebCache
Dim pdfExpt As ActiveReportsPDFExport.ARExportPDF
Dim PDFByteArray As Variant

Set rpt = New ActiveReport
Set aWebCache = New WebCache
set pdfExpt = New ActiveReportsPDFExport.ARExportPDF

rpt.Load "c:\testing.rpx"

rpt.run

Call pdfExpt.ExportStream(rpt.Pages, PDFByteArray)

lWebCacheID = aWebCache.CacheContent("Application/PDF", PDFByteArray)

ExportReport = lWebCacheID 'lWebCacheID can now be used to access the cached pdf file
'
'i.e.
'ASP Code calling the above function
'
' dim vWebCacheID
' vWebCacheID = arptserver.ExportReport()
' Response.Redirect "mywebsite/webcache.dll?" & vWebCacheID & "?"
End Function

CacheItem
Adds an item to the WebCache collection.

Note: CacheContent is the most commonly used method to add items to the WebCache collection.

The CacheItem Method should only be used when additional header information other than content type needs to be
written into the header of the cached item.

Syntax
object.CacheItem(Header As String, Data As Variant)
The CacheItem method syntax has the following parts

Part Description
object An expression evaluating to an object of type WebCache.
Header String - A valid header string to send to the browser client.
Data Variant - cache content.

Example
'===
'The following example performs the following
'
'1)Loads an ActiveReport from a presaved XML file
'2)Runs the report
'3)Exports the report to a byte array in PDF format
'4)Adds the byte array to ActiveReports WebCache so
'that it may be streamed directly to the browser
'
'The example code is placed in a user defined function.
'A typical scenario would be for this function to be placed
'in a COM object and called from an ASP page.
'You could then do an ASP response.redirect to the
'url where the pdf export was cached.
'===
Public Function ExportReport() as long
Dim rpt As ActiveReport
Dim aWebCache As WebCache
Dim pdfExpt As ActiveReportsPDFExport.ARExportPDF
Dim PDFByteArray As Variant

Set rpt = New ActiveReport
Set aWebCache = New WebCache
Set pdfExpt = New ActiveReportsPDFExport.ARExportPDF

rpt.Load "c:\testing.rpx"

rpt.run

Call pdfExpt.ExportStream(rpt.Pages, PDFByteArray)

lWebCacheID = aWebCache.CacheItem("Content-type: Application/PDF", PDFByteArray)

ExportReport = lWebCacheID 'lWebCacheID can now be used to access the cached pdf file
'
'i.e.
'ASP Code calling the above function
'
' dim vWebCacheID
' vWebCacheID = arptserver.ExportReport()
' Response.Redirect "mywebsite/webcache.dll?" & vWebCacheID & "?"
End Function

IsCached
Returns a Boolean value telling the developer if a specific item is still cached or not

Syntax
object.IsCached(Id As String)
The IsCached method syntax has the following parts

Part Description
object An expression evaluating to an object of type WebCache.
Id String

Example
' Checking to see if a webcache id is still cached
Dim blnIsCached As Boolean
Dim aWebCache As WebCache

Set aWebCache = New WebCache
blnIsCached=aWebCache.IsCached("1")

Item
Allows random access to individual nodes within the WebCache collection

Syntax
object.Item((Index As Variant))
The Item method syntax has the following parts

Part Description
object An expression evaluating to an object of type WebCache.
Index Variant

Example
'===
'The example code demonstrates how to loop
'through all of the items in the
'webcache collection and
'print out each items timeout value
'
'Please Note that I am not using For EACH in the example.
'The _NewEnum property of the webcache collection
'is not supported at this time so you cannot use For Each.
'===

Dim x As Integer
For x = 0 To aWebCache.Count - 1
 Debug.Print "awebcache.item(" & x & ").timeout = " & aWebCache.Item(x).TimeOut
Next

Remove
Removes an element from the WebCache collection using the index of the cached item.

Syntax
object.Remove(Index As Variant)
The Remove method syntax has the following parts

Part Description
object An expression evaluating to an object of type WebCache.
Index Variant

Example
'In this example aWebCache represents a declared instance of the webcache class
'containing cached items

'removes the first cached item in the webcache collection

aWebCache.remove(0)

RemoveAll
Removes all cached items from the WebCache Collection

Syntax
object.RemoveAll()
The RemoveAll method syntax has the following parts

Part Description
object An expression evaluating to an object of type WebCache.

Example
'In this example aWebCache represents a declared instance of the webcache class
'containing cached items

'removes all cached item in the webcache collection

aWebCache.removeall

Count
Returns the current number of Cached Items in the WebCache Collection - Read Only

Syntax
[value=]object.Count
The Count property syntax has the following parts

Part Description
object A valid WebCache object
value A Integer value.

Data Type
Integer

Example
'In this example aWebCache represents a declared instance of the webcache class
'containing cached items
dim icount as integer
icount= aWebCache.count

WebCacheItem
Name Type Description
Data Property Returns the data of the cached item.
Header Property Returns the header of the cached item.
Id Property Returns the cached items Id that is used by the ISAPI filter.
Persistence Property Determines when the cached item will be destroyed.
Timeout Property Determines the time in minutes that a cached item will remain in the

cache.

Data
Returns the data of the cached item - Read Only

Syntax
[value =]object.Data
The Data property syntax has the following parts

Part Description
object A valid WebCacheItem object
value A Variant value.

Data Type
Variant

Example
'This example demonstrates how to use the
'Data property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem

Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)
debug.print aWebCacheItem.data

Header
Returns the header of the cached item Read Only

Syntax
[value =]object.Header
The Header property syntax has the following parts

Part Description
object A valid WebCacheItem object
value A String value.

Data Type
String

Example
'This example demonstrates how to use the
'header property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem

Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)

debug.print aWebCacheItem.header

Id
Returns the cached items Id that is used by the ISAPI filter - Read Only

Syntax
[value =]object.Id
The Id property syntax has the following parts

Part Description
object A valid WebCacheItem object
value A String value.

Data Type
String

Example
'This example demonstrates how to use the
'Id property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem

Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)

debug.print aWebCacheItem.Id

Persistence
Determines when the cached item will be destroyed - Read/Write

Syntax
object.Persistence [= value]
The Persistence property syntax has the following parts

Part Description
object A valid WebCacheItem object
value A PersistenceTypes value.

Settings
The settings for value are

Setting Description
ddPermanent 1 - Cached item will stay alive forever. The item has to be destroyed

using an explicit WebCache.Remove call.
ddTimeout 2 - Cached item will remain in the cache for a time period specified by

the end user via the WebCacheItem's Timeout property. A possible
usage scenario is setting the Timeout property to the SessionTimeout
value under IIS.

ddAccessedOnce 3 - Cached item is destroyed immediately after the client accesses the
data one time

Data Type
PersistenceTypes

Example
'This example demonstrates how to use the
'Persistence property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem

Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)

aWebCacheItem.Persistence = 2

Remarks
Default value = ddAccessedOnce

TimeOut
Determines the time in minutes that a cached item will remain in the cache - Read/Write.

Note: The Timeout property is only used if the persistence property of the WebCacheItem is set to 2 - ddTimeout

Syntax
object.TimeOut [= value]
The TimeOut property syntax has the following parts

Part Description
object A valid WebCacheItem object
value A Long value.

Data Type
Long

Example
'This example demonstrates how to use the
'Timeout property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem

Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)

aWebCacheItem.Timeout = 2

Remarks
Default value = 0

WebCacheWorkerThread
Name Type Description
AveragePerRequest Property Returns the average number of milliseconds per request.
NumberOfRequest Property Returns the number of requests that the thread has

serviced.
ThreadId Property Returns the id of the WebCacheWorkerThread.
TotalTimeServicingRequest Property Returns the total time used servicing a request in

milliseconds.

AveragePerRequest
Returns the average number of milliseconds per request - Read Only

Syntax
[value=] object.AveragePerRequest
The AveragePerRequest property syntax has the following parts

Part Description
object A valid WebCacheWorkerThread object
value An Integer value.

Data Type
Integer

Example
'===
'This example prints out several properties
'for all of the workerthreads in the workerthreads
'collection. The sample adds the following properties to a
'standard vb listView control called lstThreads.
'ThreadId,AveragePerRequest,and NumberofRequest.
'==

Dim aItem As ListItem
Dim aThread As WebCacheWorkerThread
Dim aThreads As New WebCacheWorkerThreads
Dim nSize As Integer
Dim nIndex As Integer

nSize = aThreads.Count

For nIndex = 0 To nSize - 1
 Set aThread = aThreads.Item(nIndex)
 Set aItem = lstThreads.ListItems.Add(, , CStr(aThread.ThreadID))
 aItem.SubItems(1) = CStr(aThread.AveragePerRequest)
 aItem.SubItems(2) = CStr(aThread.NumberOfRequest)
Next nIndex

NumberOfRequest
Returns the number of requests that the thread has serviced - Read Only

Syntax

[value=] object.NumberOfRequest
The NumberOfRequest property syntax has the following parts

Part Description
object A valid WebCacheWorkerThread object
value A Long value.

Data Type
Long

Example
'===
'This example prints out several properties
'for all of the workerthreads in the workerthreads
'collection. The sample adds the following properties to a
'standard vb listView control called lstThreads.
'ThreadId,AveragePerRequest,and NumberofRequest.
'==

Dim aItem As ListItem
Dim aThread As WebCacheWorkerThread
Dim aThreads As New WebCacheWorkerThreads
Dim nSize As Integer
Dim nIndex As Integer

nSize = aThreads.Count

For nIndex = 0 To nSize - 1
 Set aThread = aThreads.Item(nIndex)
 Set aItem = lstThreads.ListItems.Add(, , CStr(aThread.ThreadID))
 aItem.SubItems(1) = CStr(aThread.AveragePerRequest)
 aItem.SubItems(2) = CStr(aThread.NumberOfRequest)
Next nIndex

ThreadId
Returns the id of the WebCacheWorkerThread - Read Only

Syntax
[value=] object.ThreadId
The ThreadId property syntax has the following parts

Part Description
object A valid WebCacheWorkerThread object
value An Integer value.

Data Type
Integer

Example
'===
'This example prints out several properties
'for all of the workerthreads in the workerthreads
'collection. The sample adds the following properties to a
'standard vb listView control called lstThreads.
'ThreadId,AveragePerRequest,and NumberofRequest.
'==

Dim aItem As ListItem
Dim aThread As WebCacheWorkerThread
Dim aThreads As New WebCacheWorkerThreads
Dim nSize As Integer
Dim nIndex As Integer

nSize = aThreads.Count

For nIndex = 0 To nSize - 1
 Set aThread = aThreads.Item(nIndex)
 Set aItem = lstThreads.ListItems.Add(, , CStr(aThread.ThreadID))
 aItem.SubItems(1) = CStr(aThread.AveragePerRequest)
 aItem.SubItems(2) = CStr(aThread.NumberOfRequest)
Next nIndex

TotalTimeServicingRequest
Returns the total time used servicing a request in milliseconds. The time waiting for a request is not included. Read
Only

Syntax
[value=] object.TotalTimeServicingRequest
The TotalTimeServicingRequest property syntax has the following parts

Part Description
object A valid WebCacheWorkerThread object
value A Long value.

Data Type
Long

Example
Dim numThreads As New WebCacheWorkerThreads
Dim aThread As New WebCacheWorkerThread

Set aThread = numThreads.Item(0)

Debug.Print aThread.ThreadID
Debug.Print aThread.TotalTimeServicingRequest

WebCacheWorkerThreads
Name Type Description
Item Method Returns the Thread object at the specified index.
Count Property Returns the number of WebCacheWorkerThreads in the collection.

Item
Allows random access to individual nodes within the WebCacheWorkerThreads collection

Syntax
object.Item((Index As Variant))
The Item method syntax has the following parts

Part Description
object An expression evaluating to an object of type

WebCacheWorkerThreads.
Index Variant

Example
Dim numThreads As New WebCacheWorkerThreads
Dim aThread as New WebCacheWorkerThread

Set aThread = numThreads.Item(0)

Debug.Print aThread.Id

Count
Returns the current number of WebCacheWorkerThreads

Syntax
[value=] object.count
The Count property syntax has the following parts

Part Description
object A valid WebCacheWorkerThreads object
value A Integer value.

Data Type
Integer

Example
Dim numThreads As WebCacheWorkerThreads
Set numThreads = New WebCacheWorkerThreads

Debug.Print "workerthread count = " & numThreads.Count

Property List Objects
· PropList Control Object
· PropNode Object
· PropNodes Collection

PropList
Name Type Description
AllowColumnResize Property Specifies whether the user is allowed to resize the property list

columns.
Backcolor Property Specifies the background color of the property list control.
BorderStyle Property Specifies the border style of the control.
Categorized Property Sets/returns if property list nodes are categorized or

alphabetical.
Enabled Property Determines whether the property list control is enabled or

disabled.
Font Property Specifies the font used to render text in the property list

control.
ForeColor Property Specifies the foreground color of the property list.
hWnd Property Returns the property list window handle.
Properties Property Returns property nodes collection.
ShowDescription Property Sets/returns if property description pane is visible.
ShowObjectCombobox Property Sets/returns if object combobox is visible.
ShowReadOnlyProp Property Sets/returns weather readonly properties are shown.
ShowToolbar Property Sets/returns if toolbar is visible.
Sorted Property Determines whether the properties are sorted alphabetically in

the list.
Clear Method Removes all nodes from the property list.
Refresh Method Updates the propertylistbox with new values.
SelectObjects Method Sets the current selection. object can be a single COM object

or an array of COM objects
Error Event Fires when an internal error occurs in the property list control.
FetchData Event Fires when enum combobox dropdown is pressed.
FetchDataDescription Event Fires when combobox is updating its text or listbox.
ObjectChanged Event Fired when user selected a new object from the object

combobox
PropertyChanged Event Fires when property value has been changed
PropertyValidate Event Fired before a value is stored in the property node when user

makes a change to the value

AllowColumnResize
Specifies whether the user is allowed to resize the property list columns.

Syntax
object.AllowColumnResize [= value]
The AllowColumnResize property syntax has the following parts

Part Description
object A valid PropList object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Allows user to resize the property list columns.
False Does not allow the user to size the columns.

Data Type
Boolean

Remarks
Default value = True

BackColor
Specifies the background color of the property list control.

Syntax
object.BackColor [= value]
The BackColor property syntax has the following parts

Part Description
object A valid PropList object
value A valid color value.

Data Type
OLE_COLOR

Remarks
Default value = vbWindowBackColor

BorderStyle
Specifies the border style of the control.

Syntax
object.BorderStyle [= value]
The BorderStyle property syntax has the following parts

Part Description
object A valid PropList object
value A ddPLBorderStyle setting.

Settings
The settings for value are

Setting Description
ddPLNone 0 - No border.
ddPLSunken 1 - Sunken border.

Data Type
ddPLBorderStyle

Remarks
Default value = ddPLSunken

Categorized
Sets/returns if property list nodes are categorized or alphabetical.

Syntax
object.Categorized [= value]
The Categorized property syntax has the following parts

Part Description
object A valid PropList object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Property list nodes are categorized in a treeview.
False Property list nodes are listed alphabetically.

Data Type
Boolean

Remarks
Default value = True

Enabled
Determines whether the property list control is enabled or disabled.

Syntax
object.Enabled [= value]

The Enabled property syntax has the following parts

Part Description
object A valid PropList object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Property list control is enabled.
False Property list control is disabled.

Data Type
Boolean

Remarks
Default value = True

Font
Specifies the font used to render text in the property list control.

Syntax
object.Font [= value]
The Font property syntax has the following parts

Part Description
object A valid PropList object
value A valid Font object.

Data Type
Font

ForeColor
Specifies the foreground color of the property list.

Syntax
object.ForeColor [= value]
The ForeColor property syntax has the following parts

Part Description
object A valid PropList object.
value A valid OLE_COLOR value.

Data Type
OLE_COLOR

Remarks
Default value = vbWindowText

hWnd
Returns the property list window handle.

Syntax
value = object.hWnd

The hWnd property syntax has the following parts

Part Description
object A valid PropList object.
value Returns the property list window handle.
Data Type

OLE_HANDLE

Properties
Returns property nodes collection.

Syntax
Set value = object.Properties

The Properties property syntax has the following parts

Part Description
object A valid PropList object
value A valid PropNodes collection.

Data Type
IPropNodes

ShowDescription
Sets/returns if property description pane is visible.

Syntax
object.ShowDescription [= value]
The ShowDescription property syntax has the following parts

Part Description
object A valid PropList object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Description pane is visible.
False Description pane is not visible.

Data Type
Boolean

Remarks
Default value = True

ShowObjectCombobox
Sets/returns if object combobox is visible.

Syntax
object.ShowObjectCombobox [= value]
The ShowObjectCombobox property syntax has the following parts

Part Description
object A valid PropList object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Displays the objects combobox.
False Hides the objects combobox.

Data Type
Boolean

Remarks
Default value = True

ShowReadOnlyProp
Sets/returns weather readonly properties are shown.

Syntax
object.ShowReadOnlyProp [= value]
The ShowReadOnlyProp property syntax has the following parts

Part Description
object A valid PropList object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Displays the readonly properties.
False Hides the readonly properties.

Data Type
Boolean

Remarks
Default value = True

ShowToolbar
Sets/returns if toolbar is visible.

Syntax
object.ShowToolbar [= value]
The ShowToolbar property syntax has the following parts

Part Description
object A valid PropList object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Displays the toolbar.
False Hides the toolbar.

Data Type
Boolean

Remarks
Default value = True

Sorted
Determines whether the properties are sorted alphabetically in the list.

Syntax
object.Sorted [= value]
The Sorted property syntax has the following parts

Part Description
object A valid PropList object
value A Boolean value.

Settings
The settings for value are

Setting Description
True Properties are sorted alphabetically..
False Properties are listed in the order they were added.

Data Type
Boolean

Remarks
Default value = True

AddObject
Adds an object reference to the property listbox and updated the combobox list

Syntax
object_AddObject(newObject As Object)
The AddObject method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.
newObject Object

Example
' Add an object to the property list
plist.AddObject Text1
plist.AddObject Text2

Clear
Removes all nodes from the property list.

Syntax
object_Clear()
The Clear method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.

Refresh
Updates the propertylistbox with new values.

Syntax
object_Refresh()
The Refresh method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.

SelectObjects
Sets the current selection. object can be a single COM object or an array of COM objects

Syntax
object_SelectObjects(selObject As Variant)
The SelectObjects method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.
selObject Variant - a single object or an array of objects.

Example
' Select a single object to the property list
plist.SelectObjects Text1

' Select multiple objects (property list would
' aggregate common properties).
plist.SelectObjects Array(Text1, Text2, Text3)

ButtonClick
Fires when a button on ddPLButton property is clicked

Syntax
object_ButtonClick(property As IPropNode)
The ButtonClick event syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.
property IPropNode

Example
' Handle the border property with a custom dialog
Private Sub PropertyList1_ButtonClick(property as IPropNode)
 If property.Name = "Border" Then
 frmBorders.Show vbModal
 End If
End Sub

Error
Fires when an internal error occurs in the property list control.

Syntax
object_Error((Number As Integer, Description As ReturnString, Scode As Long,
 Source As String, HelpFile As String, HelpContext As Long,
 CancelDisplay As ReturnBool))
The Error event syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.
Number Integer - Error number.
Description ReturnString - Brief description of the error.
Scode Long - Result code.
Source String - Error source.
HelpFile String - Help file.
HelpContext Long - Help context id.
CancelDisplay ReturnBool - Boolean variable, used to suspend the built-in error

message box.

Example
' Handle PropertyList errors
Private Sub PropertyList1_Error(Number As Integer, Description As ReturnString,
 SCode As Long, Source As String,
 HelpFile As String, HelpContext As Long,
 CancelDisplay As Boolean)

 ' Display the error number and description to a form's status bar instead
 ' of an error message box
 statusbar1.Panels(1).Text = "Error: " & Str(Number) & " - " & Description
 CancelDisplay = True
End Sub

FetchData
Fires when enum combobox dropdown is pressed. You can change the items in the combobox by using
node.ClearEnums and node.AddEnum methods

Syntax
object_FetchData((property As IPropNode))
The FetchData event syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.
property IPropNode

Example
Private Sub pl_FetchData(ByVal property As DDPropertyListCtl.IPropNode)
 Select Case property.Name
 Case "State"
 property.ClearEnums
 property.AddEnum "AL", "Alabama"
 property.AddEnum "CA", "California"
 property.AddEnum "OH", "Ohio"
 property.AddEnum "NC", "North Carolina"
 End Select
End Sub

FetchDataDescription
Fires when comobox is updating its text or listbox. You can use this event to provide alternate description string for
each enum value.

Syntax
object_FetchDataDescription((property As IPropNode, Value As Variant, Description As Variant))
The FetchDataDescription event syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.
property PropNode
Value Variant
Description Variant

Example
' This example modifies the descriptions of all boolean properties to German
Private Sub PropList1_FetchDataDescription(ByVal property As DDPropertyListCtl.IPropNode, _
 ByVal Value As Variant, Description As Variant)
 If property.Type = ddPLBoolean Then
 If (Value = True) Then
 Description = "Ja"
 Else
 Description = "Nein"
 End If
 End If
End Sub

ObjectChanged
Fired when user selected a new object from the object combobox

Syntax

object_ObjectChanged((newObject As Object))
The ObjectChanged event syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.
newObject Object - a reference to the new selected object.

PropertyChanged
Fires when property value has been changed

Syntax
object_PropertyChanged((property As IPropNode))
The PropertyChanged event syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.
property PropNode - a reference to the changed property nodes.

PropertyValidate
Fired before a value is stored in the property node when user makes a change to the value. Used to validate an entry

Syntax
object_PropertyValidate((property As IPropNode, newValue As Variant, Cancel As Boolean))
The PropertyValidate event syntax has the following parts

Part Description
object An expression evaluating to an object of type PropList.
property PropNode - a reference to the current property.
newValue Variant - new property value.
Cancel Boolean - by ref parameter, allows you to cancel the change.

PropNode
Name Type Description
AddEnum Method Adds a new enumeration value to the property
ClearEnums Method Clear all enumeration values for property
Category Property Sets/returns optional property category name.
Children Property Returns child property collection.
Description Property Sets/returns description for property.
Name Property Sets/returns property name.
Type Property Sets/returns UI type for property.
Value Property Sets/returns value of property

AddEnum
Adds a new enumeration value to the property

Syntax
object.AddEnum(Value As Variant, Description As Variant)
The AddEnum method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropNode.
Value Variant - value of the enum.
Description Variant - description of the enum.

Example
Private Sub pl_FetchData(ByVal property As DDPropertyListCtl.IPropNode)
 Select Case property.Name
 Case "State"
 property.ClearEnums
 property.AddEnum "AL", "Alabama"
 property.AddEnum "CA", "California"
 property.AddEnum "OH", "Ohio"
 property.AddEnum "NC", "North Carolina"
 End Select
End Sub

ClearEnums
Clear all enumeration values for property

Syntax
object.ClearEnums()
The ClearEnums method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropNode.

Example
Private Sub pl_FetchData(ByVal property As DDPropertyListCtl.IPropNode)
 Select Case property.Name
 Case "State"
 property.ClearEnums
 property.AddEnum "AL", "Alabama"
 property.AddEnum "CA", "California"
 property.AddEnum "OH", "Ohio"
 property.AddEnum "NC", "North Carolina"
 End Select
End Sub

Category
Sets/returns optional property category name.

Syntax
object.Category [= value]
The Category property syntax has the following parts

Part Description
object A valid PropNode object
value A String value.

Data Type
String

Children
Returns child property collection.

Syntax
object.Children [= value]
The Children property syntax has the following parts

Part Description
object A valid PropNode object
value A PropNodes Collection.

Data Type
IPropNodes

Example

' Create a complex property Address with child nodes.
 Set nod = New PropNode
 nod.Category = "Address"
 nod.Name = "Telephone"
 nod.Type = ddPLLabel
 Set subNod = New PropNode
 subNod.Category = "Address"
 subNod.Name = "Home"
 subNod.Type = ddPLString
 nod.Children.Add subNod
 Set subNod = New PropNode
 subNod.Category = "Address"
 subNod.Name = "Business"
 subNod.Type = ddPLString
 nod.Children.Add subNod
 pl.Properties.Add nod

Description
Sets/returns description for property.

Syntax
object.Description [= value]
The Description property syntax has the following parts

Part Description
object A valid PropNode object
value A String value.

Data Type
String

Name
Sets/returns property name.

Syntax
object.Name [= value]

Values
The Name property syntax has the following parts

Part Description
object A valid PropNode object
value A String value.

Data Type
String

Type
Sets/returns UI type for property.

Syntax
object.Type [= value]
The Type property syntax has the following parts

Part Description
object A valid PropNode object
value A ddPLNodeType setting.

Settings
The settings for value are

Setting Description
ddPLString 0 -A string property.
ddPLLabel 1 - A static label.
ddPLEnum 2 - An enumerated property editor.
ddPLBoolean 3 - A Boolean property editor.
ddPLColor 4 - A color property editor.
ddPLStringCombo 5 - A string editor with a combobox.
ddPLPicture 6 - A picture property editor.
ddPLFont 7 - A font property editor.
ddPLButton 16 - Adds a custom button to the property editor, can be combined

with any of the other types.

Data Type
ddPLNodeType

Value
Sets/returns value of property. Call the refresh method to update the property listbox with the new value

Syntax
object.Value [= value]

Values
The Value property syntax has the following parts

Part Description
object A valid PropNode object
value A Variant value.

Data Type
Variant

PropNodes
Name Type Description
Add Method Adds the specified node object to the collection.
Count Method Returns the number of property nodes in the collection.
Item Method Returns the property node object at the specified index.
Remove Method Removes a node from the collection at the specified index

Add
Adds the specified node object to the collection.

Syntax
object.Add(property As PropNode)
The Add method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropNodes.
property PropNode object to be added.

Example
 Set nod = New PropNode
 nod.Category = "Address"
 nod.Name = "State"
 nod.Type = ddPLEnum
 pl.Properties.Add nod

Count
Returns the number of property nodes in the collection.

Syntax
object.Count()
The Count method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropNodes.

Item
Returns the property node object at the specified index.

Syntax
object.Item(Index As Variant)
The Item method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropNodes.
Index Variant

Remove
Removes a node from the collection at the specified index.

Syntax
object.Remove(Index As Variant)
The Remove method syntax has the following parts

Part Description
object An expression evaluating to an object of type PropNodes.
Index Variant - Index of the node to be removed from the collection.

