
Release 1.0    Copyright ã1991 by Ed Hill.    All Rights Reserved.

DynamicApplication

INHERITS FROM Application : Responder : Object

DECLARED IN DynamicApplication.h

CLASS DESCRIPTION

The DynamicApplication class provides added functionallity to applications that would like to dynamically load
Classes (eg. Palettes and Interface Builder).    Applications that inherit from DynamicApplication will be able to
dynamically load Classes and use those Classes in their running program.

The ability to dynamically load Classes has many advantages.    The programmer can write his/her application wide
open, so that the program is not limited to solely his/her thinking.    For instance Interface Builder supplies the user with
a wide viriety of objects to deal with, but it also allows the user to create his/her objects and link them into the running
version of Interface Builder (Palettes).    The creator of a graphics package could leave his/her program open to new file
types that haven't even been thought of yet.    He/She could supply objects that know how to interpret tiff, pict, eps,
etc.., but as the graphic formats change, the programmer would only need to write objects that know how to interpret an
new file type, and then the user could just load one of these classes into the existing version of the program.    The
original programmer would not have to constantly keep up with every graphic type in the world.    He can right a robust

program, and leave tweeking to the users.    To speculate on exactally what could be achived with this Class is beyond
the scope of this programmer 8-).

To use this object is fairly straightforward, but there are a few things that have to be done in order to load Classes.   
First, the classes that you are going to load have to be compiled.    This version of DynamicApplication only loads one
Class at a time so object (".o") files should only contain one class.      I have found that the following produces object
files that are compatible with DynamicApplication.

cc -g -c -Wall [SomeClassName].m -o [SomeClassName].o

Second, instances of the classes that are going to be loaded should implement the -name method.    This method is used
to name the Classes.    If the object does not implement the -name method, then DynamicApplication tries to name it
itself, and it can come up with rather bizarre names.

The last and most important thing to remember when loading Classes is that you are dealing with Classes, not Objects.
So in order to create instances you most send +new or +alloc messages to the Class that you just loaded.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Inherited from Application char *appName;
NXEvent currentEvent;
id windowList;

id keyWindow;
id mainWindow;
id delegate;
int *hiddenList;
int hiddenCount;
const char *hostName;
DPSContext context;
int contextNum;
id appListener;
id appSpeaker;
port_t replyPort;
NXSize screenSize;
short running;
struct __appFlags appFlags;

Declared in DynamicApplication id dynamicClasses;
int dynamicClassesNum;
struct _errorFlags {
        BOOL _errorOnLastLoad;
        BOOL _classLoaded;
        unsinged int _errorType;
} errorFlags;
struct _lastClassInfo {
        char *_className;
} lastClassInfo;

dynamicClasses A HashTable containing the names of classes as keys and the pointers to

associated Class structures as values.    This HashTable is initially empty and is
filled as new Classes are loaded into the running application.

dynamicClassesNum The number of Classes that have been loaded into the running application.

errorFlags._errorOnLastLoad Set to YES, if there were problems loading the last Class.

errorFlags._classLoaded Set to YES, if a Class was succesfully loaded by the most recent call to
-loadClass: or -loadClass: withName:.

errorFlags._errorType The type of the most recent error.

lastClassInfo._className The name of the Class that has most recently been loaded.

METHOD TYPES

Initializing the class + initialize

Creating and freeing instances + new
- free

Loaded new Classes - loadClass:
- loadClass:withName:

Accessing new Classes - classWithName:
- getClassNameList:
- classesNum

Handling Errors - errorOnLastLoad:

- errorType:
- classLoaded:

Removing Class references - removeClassWithName:

CLASS METHODS

initialize
+ initialize

Registers defaults used by the DynamicApplication class.    You never send this message directly; it's sent for you when
your application starts.    Returns self.

new
+ new

Creates a new DynamicApplication object and assigns it to the global variable NXApp.    A program can have only one
DynamicApplication    or Appliation object, so this method just returns NXApp if the an Application object already
exists.    This method also makes a connection to the Window Server, loads the PostScript procedures the
DynamicApplication needs, and completes other initialization.    Your program should generally invoke this method as
one of the first statements in main(); this is done for you if you create your application correctly with Interface Builder.
If you are using Interface Builder to create your Application, you will need to take the following steps to ensure that
DynamicApplication is being used correctly: 1) Include the DynamicApplication.[hm] files in your project. 2) Subclass
Application, and name that subclass "DynamicApplication" 3) Change the File's Owner from Application to
DynamicApplication (in Attributes). The DynamicApplication object is returned.

INSTANCE METHODS

classesNum
- (int)classesNum

Returns the number of classes that the Application has dynamically loaded since startup.

See also:    - getClassNameList:

classLoaded
- (BOOL)classLoaded

Returns YES, if the last call to -loadClass: or -loadClass:withName: succesfully loaded a Class description, otherwise
returns NO.

See also:    - loadClass, - loadClass:withName:

classWithName:
- classWithName:(char *)className

Returns the Class structure identified by the name className.    For this to return the expected value, the Class
associated with className would have to be a dynamically loaded Class that has already been loaded with either the
-loadClass: or -loadClass:withName: methods.    This method will not return structure of Classes that have not been
dynamically loaded into the running application.    For instance your application might know of the "Box" class when it
was compiled, but this method will not return a pointer to the Box Class, unless you dynamically load a different Class
structure that you call "Box".

See also:    - loadClass, - loadClass:withName:

errorOnLastLoad
- (BOOL)errorOnLastLoad

Returns YES, if    the last call to -loadClass: or -loadClass:withName: produced an error message, otherwise returns
NO.

See also: - loadClass, - loadClass:withName:

errorType
- (unsigned int)errorType

Returns an integer representing what type of error occured during the last call to -loadClass: or
-loadClass:withName:.    For a list of all known errors, see the end of this document.

See also: - errorOnLastLoad

free
- init

Closes all the DynamicApplication object's windows, breaks the connection to the Window Server, and frees the
DynamicApplication object.

getClassNameList:
- getClassNameList:(char **)classList

This methods places an array of strings in the memory pointed to by classList.    It is assumed that sufficent memory has
been allocate to classList before being passed into this method.    The array of strings placed into classList represent the
names of all the Classes that have been loaded into the current application.

See also: - classesNum

init
- init

Clears the instance variables of the DynamicApplication object.    Sets the number of    dynamically loaded Classes to 0,
and creates a new HashTable to hold the classes and their names.

lastClass
- lastClass

Return the Class description of the last Class that was successfully loaded by a call to -loadClass: or
-loadClass:withName:.

See also: - lastClassName

lastClassName
- (char *)lastClassName

Return the name of the last Class that was successfully loaded by a call to -loadClass: or -loadClass:withName:.

See also: - lastClass

loadClass:
- loadClass:(char *)classPath

Loads a class description from the object file classPath.    The string classPath has to be the filename of a ".o" file that

contains the object code describing a Class structure.    If a Class instance responds to -name then the Class is placed
into the Class HashTable based on the name of its instance.

See also:    - loadClass:withName:

loadClass:withName:
- loadClass:(char *)classPath withName:(char *)className

To be used if you don't know the name of the Class that you are going to load.    If the Class responds to -name then the
application will first assign it's true name to the loaded Class.    It will then make a second reference to the loaded Class.
So if you use this method to load a new Class, then you will be able to access the class by two names, both the Classes
"true" name, and className.

See also:    - loadClass:

removeClassWithName:
- removeClassWithName:(char *)className

Remove the Class with the name className from the application.    In this version of the class, className is just
removed from the HashTable, it is not actually removed from the application.    So any object that have been created by
Classes that you want to remove, will still function correctly after the Class has been removed.

