
SwapItDemo
by Greg Burd

Overview

This example is provided because I believe this to be the best way to learn, and I am a
fanatic on support.    The code for SwapView does not in itself do an inspector, as used in
many applications, by itself.    The swap view only does the actual swapping of views
(hence the name :-).    So I felt an apt example would be something that finishes out the
'inspector' functionality.

Important classes within SwapItDemo

AppDelegate class
This is the Application delegate (connected as such in IB), and as such responds to the -
appDidInit:sender method.    There it loads the info panel and inspector panel.    I wait to
alloc, and init the InspectorController until absolutely necessary.    That way memory and
processor time is only used when requested.    Someone might not ever use the inspector so
why alloc it.    This has a -free method because all objects should clean up properly, there is
no need to do so in this object, but it is the thought that counts.
** new in 2.0 **

I have added a menu for command keys.    This finishes out the basic functionality of an
inspector.    To do this I had to add one method to the AppDelegate.    This -
showInspector:sender method will get the title of the title in the menu and pass that to the
InspectorController (later I talk about the new method in there to handle the other end of
this).

InspectorController class
** new in 2.0 **
I put all the separate inspector panels in one .nib so as to make it extremely easy to use in
your code (and easier for me to make, and to leave something for you to do).    This class
needs very little modification to make it do all that other 'large' applications do.    The one
area that is left to you is the separate inspector panels are included in this .nib,    this should
be changed so each panel has its own .nib, and the FilesOwner will load the nib section and
control everything.    This is also useful    for having one inspector, a content inspector, that
can inspect    different things such as text, images, files, etc.    Have all the related panels for
the content inspector selection in one nib, and then    simply return the correct id for the
situation.    There is one other small element to finish out the separation of the inspector
panels.    In the - whatPanel call which the delegate will answer (here it is the
InspectorController) you should have outlets for the controlling classes of the separated nib
sections    which contain the inspectors.    So what panel will determine which inspector has
been requested, and then checks to see if it is NULL, and then askes that    object to return
the id of the inspector panel to be swapped in.

Example: (in the delegate to the SwapView)
- whatPanel
{

if(theTitle) {

...

if (!strcmp(theTitle,"Info..."))
/* see if the infoController is NULL */
if(!infoController) {

/* if not then create it now */
infoController = [[Info-Inspector alloc] init]];

/* and ask it to return the correct panel id */
return [infoController whatPanel];

if (!strcmp(theTitle,"First Inspector"))
/* see if the firstController is NULL */
if(!firstController) {

/* if not then create it now */
firstController = [[First-Inspector alloc] init]];

/* and ask it to return the correct panel id */
return [firstController whatPanel];

...

This allows you to    load the nib when the user moves to that inspector.    The first time that
particular inspector is selected it will be slightly slower, then from then on out there should
be no slow down.    This means that    you will only use the memory to hold the inspector
panels that the user has been using and not waste memory that the user never needs.    This
maintains a PopUp which has its target as self, and action as popUp.    When we get a pop
up call the matrix of the pop up is still visible, and there are two methods of discovering the
chosen string.    By looking at the matrix's selected cell and its stringValue, or waiting for
the pop up button to return and then look at the button title.    I choose the former for
reasons of speed (this is changed from 1.0). The real meat of this class is in the delegate
method -whatPanel.    When this is called, I look at pointer to a string, and switch
accordingly.    For all the work seen on the screen there is very little to do in this class.   
Most of the work is in SwapView.
When the user requests an inspector via command keys, the AppController gets the action
and in turn sends a call to InspectorController to      -inspectName:(char *)str.    At that point
InspectorController sets up its pointer to a string and then swaps out the views.

Interesting Stuff

AppController
How to wait to load nib sections until it is necessary.

InspectorView
How to set up the target action of a pop up.    How to deal with the pop up and the
fact that the matrix will remain on screen until the action method returns.    How
to properly answer the delegate method -whatPanel.

Greg Burd
gburd@nmsu.edu

-greg

