OOP Class Script - DGM - Version 12

This is my script for the ViewGraphs. If you run across a set
of square brackets, you can choose one of the two phrases
based on the group you are talking to. For example a
presentation to an academic audience might use courseware
and to a fortune 500 company might use productivity
solutions.

The Software Crisis

| would like to talk to you about a crisis. A Crisis that has
been going on in the software industry for the last several
years. A crisis so severe that it has been called an
epidemic. It occurred because software developers have
been continually adding features to old programs until they
become impossible to manage efficiently. Every time they
want to add a new feature they introduce two new bugs, and
fixing those bugs creates new bugs.

Falling Productivity

So what we see is a dramatic drop in productivity as you add
new features to existing systems. If you look closer, we will
find that the software was originally created in an
environment appropriate for small projects but inappropriate
for large systems. The old tools simply do not cut in when
solving problems of a new magnitude.

OOP Class Script - DGM - Version 12

The NeXT Solution

At NeXT, we feel we have found a solution. A seamlessly
integrated development environment based on the principles
of object oriented programming. And because we started
from scratch we don’t have the constraints of some of the
other mainstream computer vendors who must support
programs and software environments based on software
technology developed in the 70s. Our goal is straight
forward: make people an order of magnitude more
productive creating whatever Applications they need to solve
their specific problems. And this does not apply only to
programmers. Even people who don’t know how to do
anything more then point and click should have access to the
same tools that until now only programmers could use.

OOP Class Script - DGM - Version 12

NextStep

We call our solution NextStep. It consists of the middle four
layers shown here. It gains additional power by leveraging
off of the advanced multi-tasking Mach operating system
developed at Carnegie Mellon with complete UNIX [
Berkeley 4.3 compatibility. It has an extremely flexible
graphics capabilities because it relies on Display Postscript
based window server. Most of our time today will involve a
discussion of the next two levels. First we will be discussing
the structure of the Application Kit, which is a toolbox of
objects we will use to create a complete Application. The we
will be demonstrating the Interface Builder. It is used much
as one would use a graphics editor to "draw" the layout of
the human interface of an application and then connect the
objects together. On top of that sits the Workspace. This is
the part of NextStep that allows users to do all the
manipulation of files without ever having to open a manual.
It makes UNIX accessible to even mere mortals. So your
applications will be easy to use and consistent with most
other applications running in the NextStep environment.

Capabilities Seminar

This class is an overview of NextStep. Since we don’t have
time to cover all the details, we will stick to trying to explain
the "Big Picture" concepts. We would like you to leave here
today with an understanding of the capabilities of the
system, and what potential it has assisting you at rapidly
creating your own [courseware | applications | . So you can
see my goal here is to excite and inspire you to create you
own custom solutions for your specific tasks.

OOP Class Script - DGM - Version 12

Seminar Format

Because of the broad background of people who are
interested in the NeXT computer, we have partitioned the
class into three segments. The first is targeted at a very
general audience. We want to appeal to people that have
only had a very small exposure to creating their own
applications. The second part is for novice programmers,
people that might have had some exposure to BASIC or
other beginning languages. The third section is targeted at
more experienced programmers. Although we have set
aside time for short questions during the first sections, | will
also be around after the last session for people with detailed
questions such as programming in LISP or using the Digital
Signal Processor.

The Big Picture

Our task for the first hour will be to build up a foundation for
the examples we will be using later on. We will start by
defining the scope of our topic and discuss its general
advantages. We then go onto a discussion of the more
general techniques.

OOP Class Script - DGM - Version 12

What is an Object?

So what is an "Object" and how do you build a software
development environment around it? | am going to double
click on the word Object and then use the "Define in
Webster" option of the Request menu. The first definition we
see is:

something material that may be perceived by the senses

For example a dictionary is an object. If we had a real
dictionary here we could see it and touch it. On the NeXT
we have a dictionary "Object" which serves the same
purpose of a paper dictionary. But itis, in a sense an
abstraction of a traditional dictionary. Object oriented
programming the process of creating abstractions of these
things. OOP is a process of creating computer based
analogs of real word objects. It is a process that is different
from the traditional process of software construction,
because you always start your design with the highest level
of abstraction. You then partition the problem into lower
levels of abstractions. You will get to a point where their are
already existing objects for you to use to model your problem
or the problem will be clear enough that you can create your
own objects. Once you partition your problem you carefully
control how the objects communicate. This helps you
preserve this decomposition.

OOP Class Script - DGM - Version 12

Plant Example

For example, say we had the problem of modeling plants.
The object oriented programmer might first partition the plant
into structures such as leaves, stems and flowers. These
objects would then also be analyzed further until the
problems could be represented by lower level data
structures.

OOP Class Script - DGM - Version 12

Low Level Data Structures

In contrast, many other design methods start by using these
lower level structures and keep assembling them until they
start simulating the higher level structures. They have a
collection of data structures and a collection of algorithms
and they build programs by combining them it whatever way
best matches their problem.

OOP Class Script - DGM - Version 12

Benefits of OOP

What are some of the advantages of Object Oriented
Programming? Of of the most important is that if you do
partition your problem correctly you can re-use other objects.
These can be objects that you have developed previously,
your colleges have developed, they can be public domain
objects available via the Internet, they can be objects
provided by a third party software developer, or they can be
objects that are provided as part of the operating system on
the computer system you use.

Another advantage is that you minimize the amount of work
that has to be re-done if your partitioning does not work out.
This is because people often spend a great deal of time
doing low level detailed work that must be thrown out after
they get to a high level and realize they have to re-partition
their model.

One of the hidden benefits of the clear partitioning of the
problem into objects is that the structure of the code tends to
be much more self documenting. If all the code to
manipulate an object is together, you know why that code is
there and what its function is. So if you are looking at other
peoples objects, you can expect to spend a lot less time
looking through documentation.

OOP Class Script - DGM - Version 12

Another big win is a very crisp division of user interface
objects form the core routine objects. As we will see later,
this is very evident with NextStep, where all the user
interface routines are available on a pallet.

Many people assume that the objects in a single program
must all be created with the same language. But as we will
see later all objects communicate in a language independent
manner. This means that you can easily mix objects written
in C, LISP, FORTRAN and DSP assembly language all
together in the same binary file. So if you have a problem
that requires a great deal of numerical analysis, you can use
a language that can easily be vectorized like FORTRAN. If
you have a problem that is symbolic in nature, LISP might be
the correct choice for you. If you have a problems that
requires data acquisition and analysis, we include a large
library of objects that are written in DSP assembly language.
The point is that you should always solve a problem using
the language that most efficiently solves the problem, and
OOP allows you to easily do that.

This last general point is that careful partitioning of your
problem allows you to do distributed computing. For
example in the BreakApp program, every time the ball hits
the wall you hear sound like a plucked string vibrating. This
is actually a being done by a the DSP. You might also notice
that Mathematica has a preferences menu that allow you to
run the kernel on another processor. So you can run your
programs on the main 68030, the DSP, on processors that
are later added using the current three empty NextBus slots,
on a compute server down the hall, or on a file sever a
thousand miles away.

OOP Class Script - DGM - Version 12

Four OOP Techniques

We are now going to start covering the four basic techniques
used in Object Oriented Programming that make these
benefits possible.

Encapsulation

Encapsulation has various names. Computer scientists
often refer to it as information hiding or data abstraction.
But in general all these terms mean grouping your data and
the procedures to access that data together in the same unit.
We call this unit an object. We also set down some rules
about how you access the data in the object. One rule is
that if you develop and object, you only let people see or
change your internal data using the procedures you provide
with that object. What that means is that the creator has all
control of how others access this object and therefore the
creater is responsible for their completeness and
correctness.

When you create a mental image of the objects, you might
find it helpful to create a mental image of a box with a thick
brick wall around it. Inside the box we have the data
structures such as integers, floating point numbers, strings,
and other more complicated structures such as linked lists.
We call these the instance variables. We use the word
instance because there is a different group of these
variables associated with each instance of the object. The
only way to read or write the values of these variables is to
use one of the access methods provided with each object.

10

OOP Class Script - DGM - Version 12

Benefits of Encapsulation

Once you start encapsulating your data you will find that you
can quickly control the data types of that are passed to your
objects. Since the NextStep Objective C compiler has type
checking built into its messaging you will always be able to
catch data type mismatches at early in the design process
where it is much easier to isolate. This will dramatically cut
down your time spent with the debugger and greatly
enhance you programms final reliability.

Once you define the set of messages that an object can
receive you are then fixing the interface to that object. If at a
later time you find another more efficient data structure you
would like to use inside the object you can change it
internally and not effect the interface to that object. This
means that you can make updates without effecting other
parts of your system.

Once you have an object that performs some specific
function, you can then create a symbolic abstraction of that
object using a "view" of it on the screen. The connections to
this can then be done with NextSteps connection based
programming tools.

11

OOP Class Script - DGM - Version 12

Views of Subroutine Libraries

By creating these views, a user now can manipulate the
views of your object and integrate it with other objects.
When they make a connection to one of your objects,
NextStep will ask them which of the access methods they
would like to use. What this means is that non-programmers
can start using tools that were previously only accessible to
a very small group of experienced people. And since it is up
to the createors of the objects to validate the correctness of
the access methods, a much larger group of people will be
able to use the objects without the traditional debugging
efforts.

Imagine what the world would be like it the only people who
could drive a car were the people who could assemble an
internal combustion engine. We certianly wouldn’t have the
traffic problems we have today. But what we have for cars is
a simplified user interface, a steering wheel, a break and a
gas peddle. OOP gives us this same easy to interface to
traditional subroutine libraries. So we will see that the
number of people that are creating applications whith these
tools will grow exponentially for the next several years.

So before we had to use a manual to find out all the
arguments to a subroutine, declare all the arguments with
the correct data types, pass these in the correct order to
subroutines and then if you get any of them wrong, start a
learning how to use the debugger. Now we will just point
and click.

12

OOP Class Script - DGM - Version 12

Inheritance

Before we discuss inheritance, | want to make the distinction
between a instance of an object and a class of objects. The
characteristics of class of objects, like a Ford Truck, is
determined by the factory which creates the trucks. If 1 had a
Ford Truck, | would have an instance of the truck. Similarly
we have class of objects which create new instances of
objects. And these are naturally called factory objects.

Our second technique is Inheritance. Whenever we create a
new class of objects, we always create it relative to other
objects classes. These classes then fit together into a "tree"
of object classes.

Sample Inheritence Tree

The structure is very similar to an evolutionary tree. The
most general class is at the top, and each class that has a
group of common characteristics would be a lower class. An
important point here is that you can create an instance from
any level in the tree. And when you think of the difference
between an instance of an object and a class of object,
remember that are as different as a car and a factory that
produces cars. This can be diffacult for beginners using
Interface Builder because both classes and instances are
represented by small windows that are very close together.

When say that Humans are a super-class of Students and
that Humans are a sub-class of mammals.

13

OOP Class Script - DGM - Version 12

Inheritence (continued)

When we create a new class, we inherit all the instance
variables as well as methods defined in its super-class.

To be continued.... - Dan

14

