
//Release 0.7    Copyright ã1993 by Kjell Nilsson, OOPS - ObjectWareHouse.    All Rights Reserved.

OOPSTimer

Inherits From: Object

Declared In: OOPSTimer.h

Class Description

OOPSTimer encapsulates the DPS functionality for setting a ªtimed entryº. This involves a mechanism that's called
repeatedly at a given time interval.    A time interval determines the number of seconds between calls to the timed entry.   
Whenever an application based on the Application Kit attempts to retrieve events from the event queue, it also checks
(depending on priority) to determine whether the timed entries are due to be called.

Target objects and action methods provide the mechanism by which timer's interact with other objects in an application.    A
target is an object that a OOPSTimer has effect over.    The target class defines an action method to enable its instances to
respond to timed event;    an action method takes only one argument: the id of the timer that invokes it.    When it receives an
action message, a target can use the id to send a message requesting additional information from the timer about its status. It
has also the ability to handle a stop action which will be called if the timer stops by itself. The OOPSTimer is not a control
but behaves almost like one, but it has not the ability to continue sending the action up through the target chain.

To distinguish different timer object's there is a tag which can be set and asked for.

The timer can be controlled by controls with the action messages startTimer: , stopTimer: , takeRepeatTimeIntervalFrom: ,
takeNumberOfRepeatsFrom:.

Note: The time interval set is not guarantied, many things can slow the timed entry calls down but the OOPSTimer is doing
its best. So please do not use on the timer as a clock.

Instance Variables

float repeatTimeInterval;
int numberOfRepeats;
int numberOfRepeatsLeft;
int priority;
int tag;
int _auto;
id _target;
SEL _action;
SEL _stopAction;
DPSTimedEntry _timer;

repeatTimeInterval The time elapsing between repeats.

numberOfRepeats Number of repeats until timer stops.

numberOfRepeatsLeft Number of repeats leftuntil timer stops.

priority The priority used , measured against application's priority threshold.

tag An integer used to identify the timer.

_auto Flag for autostart timer when awake. Private.

_paused Flag for paused timer. Private.

_target The object that is sent the timer's action. Private.

_action The message that the timer sends to its target. Private.

_stopAction The message that the timer sends to its target when it reaches the last repeat. Private.

_timer The timer's DPSTimedEntry. A unique identifier. Private.

Method Types

Initializing and freeing a String ± init
± initWithRepeatTimeInterval:

± free
-awake

Configuring a OOPSTimer ± setPriority:
± setRepeatTimeInterval:
± setNumberOfRepeats:

Querying attributes and state ± priority
± repeatTimeInterval
± numberOfRepeats

± numberOfRepeatsLeft
± isRunning
- autoStart

Manipulating the OOPSTimer - startTimer:
- pauseTimer:
- stopTimer:
- setAutoStart:

Target and action - setAction:
- action
- setStopAction:
- stopAction
- setTarget:
- target

Interacting with Controls - takeRepeatTimeIntervalFrom:
- takeNumberOfRepeatsFrom:

Assigning a tag - setTag:
- tag

Archiving ± read:
± write:

Instance Methods

action
- (SEL)action

Returns the timer's action method.

See also:    - setAction:, - target, - stopAction

autoStart
- (BOOL)autoStart

Returns a BOOL    indicating whether the autostart mechanism is on or off.

See also:    - setAutoStart

awake
- awake

Starts the timer if    autoStart is on.    You should never invoke this method directly.

free
- free

Deallocates the timer and kills the timed entry.

init
- init

Initializes a new timer.    The OOPSTimer is set to repeat every 1.0 second and do this forever with priority

NX_BASETRESHOLD. Starting the OOPSTimer must be handled explicitly with startTimer:. Returns self.

See also:    -initWithRepeatTimeInterval:. -initWithRepeatTimeInterval:target:action:

initWithRepeatTimeInterval:
- initWithRepeatTimeInterval:(float)someTime

Initializes a new timer and sets the timer's repeatTimeInterval to someTime.    Starting must be done explicitly with
startTimer:. Returns self.

See also:    - init, -initWithRepeatTimeInterval:target:action:

initWithRepeatTimeInterval:target:action:
- initWithRepeatTimeInterval:(float)someTime target:aTarget action:(SEL)aSelector

Same as initWithRepeatTimeInterval but with the ability to set the target and action. Returns self.

See also:    - init, -initWithRepeatTimeInterval:

isRunning
- (BOOL)isRunning

Returns YES if the timer is running, eg. has not reached the number of repeats assigned. If the timer is    paused or stoped it
returns NO.

See also:    - numberOfRepeatsLeft, - pauseTimer:, - stopTimer:

numberOfRepeats
- (int)numberOfRepeats

Returns the number of    repeats until the timer stops by itself. If the timer is set to continue forever the method will return
zero (0). If the timer is started this is the number of repeats the timer will commit.

See also:    - setNumberOfRepeats:, -numberOfRepeatsLeft

numberOfRepeatsLeft
- (int)numberOfRepeatsLeft

Returns the number of    repeats left until the timer stops by itself. If the timer is set to continue forever the method will
return the number of    repeats done but negative.

See also:    - setNumberOfRepeats:, -numberOfRepeats

pauseTimer:
- pauseTimer:sender

Restarts the timer if it is paused or pauses it if it is running. When restarting it continues at numberOfRepeatsLeft. Returns
self.

See also:    - startTimer:, - stopTimer:

priority
- (int)priority

Returns the priority set to the timer.

See also:    - setPriority:

read:
- read:(NXTypedStream *)stream

Reads the String from the typed stream stream.    Returns self.

See also:    - write:

repeatTimeInterval
- (float)repeatTimeInterval;

Returns a float representing the time interval in which the timer activates itself and its target.

See also:    - setRepeatTimeInterval:

setAction:
- setAction:(SEL)aSelector

Sets the timer's action method to aSelector.      Returns self.

See also:    - action, - setTarget:, setStopAction:

setAutoStart:
- setAutoStart:(BOOL)flag

Sets the timer's autoStart mechanism on or off. The autostart mechanism starts the timer as soon as the object awakes.     
Returns self.

See also:    - autoStart

setNumberOfRepeats
- (int)setNumberOfRepeats:(int)someNumber

Set the timer's number of repeats until it stops by itself to someNumber. If set to    0 or less it continues forever but still
counting numberOfRepeatsLeft down. This could be handy if    it is set to continue forever and there is a need for counting
the number of repeats done. The method numberOfRepeatsLeft will then return the number of    repeats done but negative.
Returns self.

See also:    - numberOfRepeats:

setPriority:
- setPriority:(int)aPriority

An application's priority threshold can be set explicitly as an integer from 0 to 31 through a call to DSPGetEvent() or
DPSPeekEvent().    It's against this threshold that priority is measured (note that priority can be no greater than 30Ðthe
additional threshold level, 31, is provided to disallow all inter-event function calls).    However, if you're using the
Application Kit, you should access the event queue through Application class methods such as getNextEvent:.    Although
some of these methods let you set the priority threshold explicitly, you typically invoke the methods that set it automatically.
Such methods use only three priority levels:

Constant Meaning
NX_BASETHRESHOLD Normal execution
NX_RUNMODALTHRESHOLD An attention panel is being run
NX_MODALRESPTHRESHOLD A modal event loop is being run

When applicable, you should use these constants as the value for priority.    For example, if you want handler to be called
during normal execution, but not if an attention panel or a modal loop is running, then you would set priority to

NX_BASETHRESHOLD.    Returns self.

See also:    - priority

setRepeatTimeInterval:
- setRepeatTimeInterval:(float)someTime;

Set the timer's repeattime interval to someTime .    Returns self.

See also:    - repeatTimeInterval

setTag:
- setTag:(int)anInt

Sets the timer's tag to anInt.    The tag can be used to identify the timer in an Application that contains multiple timer's.   
Returns self.

See also:    - tag

setTarget:
- setTarget:anObject

Sets the timer's target to anObject.    This is the object that is sent the timer's action method.    Returns self.

See also:    - target, - setAction:

startTimer:
- startTimer:sender

Starts the timer. Returns self.

See also:    - stopTimer:, pauseTimer:

stopAction
- (SEL)stopAction

Returns the timer's action method which is invoked when the timer has reached no more repeats left.

See also:    - setStopAction:, - target, - action

stopTimer
- stopTimer:sender

Stops the timer. Returns self.

See also:    - startTimer:, pauseTimer:

tag
- (int)tag

Returns the timer's tag.    The tag can be used to identify the timer in an Application that contains multiple timer's.

See also:    - setTag:

takeNumberOfRepeatsFrom:
- (int)takeNumberOfRepeatsFrom:sender

Interacts with controls for automatic change of the timer's number of repeats until it stops by itself. Takes the senders

intValue and uses it to set its number of repeats. Returns self.

See also:    - takeRepeatTimeIntervalFrom:,    setNumberOfRepeats

takeRepeatTimeIntervalFrom:
- (int)takeRepeatTimeIntervalFrom:sender

Interacts with controls for automatic change of the timer's repeatTimeInterval. Takes the senders floatValue and uses it to set
its repeat time interval. Returns self.

See also:    - takeNumberOfRepeatsFrom:, setRepeatTimeInterval:

target
- target

Returns the timer's target, the object that is sent the timer's action method.

See also:    - setTarget:, - action, - stopAction,

write:
- write:(NXTypedStream *)stream

Writes the String to the typed stream stream.    Returns self.

See also:    - read:

