
Release 1.2    Copyright ã1993 by Don Yacktman.    All Rights Reserved.

DAYString

Inherits From: Object

Conforms To: NXTransport

Declared In: DAYString.h

Class Description

A DAYString object contains a simple text string and provides methods for it's manipulation, encompassing all the functions
available in <strings.h>.    The DAYString object automatically handles the freeing and copying of character strings.   
Although it simplifies string operations, it does not yet incorporate the benefits of the NXAtom type, which you may wish to
use instead.    Certain tradeoffs have been made between speed and robustness, typically in favor of robustness.    If there is
enough demand, a DAYFastString class may someday appear.    Another free string class, RCString, is also available (under
the GNU General Public License) which incorporates regular expression matching, reference counting, and other useful
functions, some of these features will probably eventually appear in the DAYString class to a certain degree.    Depending on
your needs, you may find the RCString class to better suit your needs.    There are also now commercial string classes
available from several sources, which you may want to consider.    This particular class is free and may be used in
commercial applications, so the price is very attractive.

A DAYString is created through the normal process of ±alloc and ±init.    It may be set to a specific string by means of the
±setStringValue: and ±takeStringValue: methods.    As a shortcut, +newWithString: is also available.    To copy an
existing DAYString, use the ±copy and ±copyFromZone: methods.    To copy a portion of a string, use the
±subStringLeft:, ±subStringRight:, ±left:..., ±midFrom:..., and ±right...: methods.    Use the ±concatenate:... and ±cat:...
methods to concatenate another string onto the end of the string in the buffer.    If the current buffer is too small, it is
enlarged.    To tokenize or create copies of substrings, use the ±extractPart:..., ±fileName..., ±pathName...,
±subStringLeft, and ±subStringRight methods.    Using ±encrypt: creates a DAYString encrypted by the crypt(3)
function.    Use ±free to free a DAYString and it's buffer or ±freeString to free just the buffer.

Inserting characters or strings into a DAYString may be performed via any of the    ±insert:at:, ±insertChar:at:,
±insertString:at:, and ±addChar: methods.    Deleting a portion of the DAYString is performed by the ±trimLeadSpaces,
±trimTailSpaces, ±trimSpaces, and ±squashSpaces, and ±removeFrom:... methods.    A whole series of ±replace...
methods provide flexible substring and character replacement options.

The ±length method returns the length of the string currently in the buffer and ±stringValue returns a pointer to the string

itself.    The ±index:... methods return a pointer to the nth    occurence in the buffer of a specific character and ±rindex:...

return a pointer to the nth occurence from the end (right to left).    The ±spotOf:... and ±rspotOf: methods work similarly,
but return an integer which gives the character number of the occurence.

You may compare strings to each other by means of the various ±isEqual:..., ±cmp:..., ± casecmp:..., ±endcmp:..., ±
endcasecmp:..., ±compareTo:..., and ±endCompareTo:... methods.    The ±isEqual:..., ±compareTo:..., and
±compareTo:... methods are preferred, since they use NXStringOrderTables to make the comparison and are therefore more
accurate with respect to international, accented, and ligature characters.    If you need to use a table different from the
default, use the ±setStringOrderTable: method.

Use the ±numWords method to count words in the DAYString, and ±wordNum: to create a new DAYString containing a
specific word.    Note that these methods do more than tokenizing via spaces; all whitespaces (space, tab, return, linefeed; as
recognized by NXIsSpace()) delimit the words.    Consecutive whitespace characters are treated as a simgle delimiter.

Use the ±toUpper and ±toLower methods to change all characters in the DAYString to upper or lower case.    Note that the
NX...() functions are used to perform this conversion, so it should work even with international character sets.    Use

±reverse to reverse all the characters in the DAYString's buffer.    The ±charAt: method returns a single character from a
given location in the DAYString's buffer.

A DAYString my be archived by means of the ±read: and ±write: methods.    (Call NXReadObject() and
NXWrite[Root]Object() functions and not the ±read: and ±write: methods directly.)

Two conventions with char * buffers are followed by the DAYString class.    First, any method which has an argument of
type ªconst char *º will either make a copy of the argument or discard the pointer upon exit of the method, so it is safe for
you to free it any time afterward.    Second, any pointer returned as a ªconst char *º by a method could be freed at any time
by the DAYString object, so you ought to copy it yourself if you intend to keep it around for any length of time.    When a
DAYString object gives out such a pointer, it assumes that it won't be cached by the caller.    If you violate this assumption,
you will most definitely create mysterious crashing bugs when you start accessing freed pointers and such.    The compiler's
-Wall flag will catch most mistakes of this nature for you.

Although not included below, the DAYString object also implements ±getIBImage and ± getInspectorClassName
messages to support Interface Builder palettes.    A palette is included in this distribution which allows you to save a
DAYString in your .nib files with it pre-initialized to an arbitrary string value.

Disclaimer and other notes:    If you have any problems with the DAYString class or wish to suggest improvements, the
author may be contacted via e-mail to Don_Yacktman@byu.edu.    Since this object is free, please understand that the author
cannot be held responsible for any problems this code may cause.    You use it at your own risk.    (The author himself uses
this code, too, if that's any consolation.)    Also remember that the author's ability to support this software is highly
dependent upon free time available, which is often quite scarce.    If you wish to use this, but for some reason require support
and some sort of ªcommercialº standing for this class, contact the author; support can be bought if you need it.    (Why you'd
need or want to pay for support for such a simple object is beyond me, though!)    Many thanks are due to Carl Lindberg who
has contributed many of the methods that were not available in versions before version 1.1.    You may find it worth noting
some of the comments in the source file DAYString.m; several trade-offs have been made, typically in favor of making the
code more maintainable and robust, but at the expense of speed.

Instance Variables

int length;
int _length;
char *buffer;

length Length of string currently in storage

_length Length in bytes of allocated buffer

buffer Stored character string

Method Types

Initializing and freeing a DAYString ± init
± initString:
± allocateBuffer:
± allocateBuffer:fromZone:
± free
± freeString
+ newWithString:

Copying a DAYString ± copyFromZone:
± extractPart:useAsDelimiter:
± extractPart:useAsDelimiter:caseSensitive:
± extractPart:useAsDelimiter:caseSensitive:fromZone:
± extractPart:useAsDelimiter:fromZone:

± fileName
± fileNameFromZone:
± left:
± left:fromZone:
± right:
± right:fromZone:
± midFrom:to:
± midFrom:to:fromZone:
± midFrom:length:
± midFrom:length:fromZone:
± pathName
± pathNameFromZone:
± subStringLeft:
± subStringRight:
± wordNum:

Manipulating a DAYString ± addChar:
± cat:
± cat:n:
± cat:fromZone:
± cat:n:fromZone:
± concatenate:
± concatenate:n:
± concatenate:fromZone:
± concatenate:n:fromZone:
± insert:at:
± insertChar:at:
± insertString:at:
± removeFrom:length:
± removeFrom:to:

± replace:with:
± replace:withString:
± replaceCharAt:with:
± replaceFrom:length:with:
± replaceFrom:length:withChar:
± replaceFrom:length:withString:
± replaceFrom:to:with:
± replaceFrom:to:withChar:
± replaceFrom:to:withString:
± setStringValue:
± setStringValue:fromZone:
± squashSpaces
± takeStringValue:
± takeStringValue:fromZone:
± toLower
± toUpper
± trimLeadSpaces
± trimSpaces
± trimTailSpaces

Querying attributes ± charAt:
± cmp:
± cmp:n:
± casecmp:
± casecmp:n:
± compareTo:
± compareTo:n:
± compareTo:caseSensitive:
± compareTo:n:caseSensitive:
± endcasecmp:

± endcasecmp:n:
± endcmp:
± endcmp:n:
± endCompareTo:
± endCompareTo:caseSensitive:
± endCompareTo:n:
± endCompareTo:n:caseSensitive:
± index:
± index:caseSensitive:
± index:occurenceNum:
± index:occurenceNum:caseSensitive:
± isEqual:
± length
± numWords
± rindex:
± rindex:caseSensitive:
± rindex:occurenceNum:
± rindex:occurenceNum:caseSensitive:
± rspotOf:
± rspotOf:caseSensitive:
± rspotOf:occurenceNum:
± rspotOf:occurenceNum:caseSensitive:
± setStringOrderTable:
± spotOf:
± spotOf:caseSensitive:
± spotOf:occurenceNum:
± spotOf:occurenceNum:caseSensitive:
± stringOrderTable
± stringValue
± strstr:

Archiving ± read:
± write:

Instance Methods

addChar:
- addChar:(char)aChar

Appends aChar to the end of buffer.    Returns self.

allocateBuffer:
- allocateBuffer:(int)size

If the current buffer is less than size bytes, then it is freed and a new buffer is allocated from the receiver's zone to be size
bytes in length.    Returns self.

See also:    -allocateBuffer:fromZone:

allocateBuffer:fromZone:
- allocateBuffer:(int)count fromZone:(NXZone *)zone

If the current buffer is less than size bytes, then it is freed and a new buffer is allocated from zone to be size bytes in length.
Returns self.    You do not need to directly call this method, since the ±copyFromZone: and other methods do this
automatically.    However, you may wish to call this method after calling ±init for DAYString objects which will
dynamically change in size often.    By allocating a buffer which is as least as large as you expect the DAYString to grow to
during it's lifetime, your application may run faster.    This is because the DAYString object won't have to dynamically grow

as often, an operation which can slow things down.

See also:    -allocateBuffer:, -copyFromZone:, and    -setStringValue:fromZone:

casecmp:
- (int)cmp:(const char *)aString

Calls strcasecmp() to perform a case insensitive comparison of buffer and aString.    Return values follow the same rules as
strcasecmp().    This method is provided for those cases in which DAYString objects are not in use, and therefore only a
char pointer is available.    It is also useful with constant strings.    The ±compareTo: methods are preferred for use whenever
possible, since they work with objects and use the current string ordering table.

See also:    - casecmp:n:, - cmp:, - cmp:n:, - compareTo:, - compareTo:caseSensitive:, - compareTo:n:, and    -
compareTo:n:caseSensitive:

casecmp:n:
- (int)cmp:(const char *)aString n:(int)n

Calls strncasecmp() to perform a case insensitive comparison of at most the first n characters buffer and aString.    Return
values follow the same rules as strncasecmp().    This method is provided for those cases in which DAYString objects are
not in use, and therefore only a char pointer is available.    It is also useful with constant strings.    The ±compareTo:
methods should be used whenever possible, since they work with objects and use the current string ordering table.

See also:    -casecmp:, -casecmp:n:, -cmp:n:, -compareTo:, -compareTo:caseSensitive:, -compareTo:n: and   
-compareTo:n:caseSensitive:

cat:
- cat:(const char *)aString

Calls strcat() to concatenate buffer and aString.    If the current size of buffer is not large enough to fit the concatenation of
the two strings, then a new, larger buffer is allocated from the DAYString's zone.    Returns self.    This method is provided
for those cases in which DAYString objects are not in use, and therefore only a char pointer is available.    It is also useful
with constant strings.    The ±concatenate: methods are preferred for use whenever possible, mainly because they work with
objects.

See also:    -cat:fromZone:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and   
-concatenate:n:fromZone:

cat:fromZone:
- cat:(const char *)aString fromZone:(NXZone *)zone

Calls strcat() to concatenate buffer and aString.    If the current size of buffer is not large enough to fit the concatenation of
the two strings, then a new, larger buffer is allocated from zone.    Returns self.    This method is provided for those cases in
which DAYString objects are not in use, and therefore only a char pointer is available.    It is also useful with constant
strings.    The ±concatenate: methods are preferred for use whenever possible, mainly because they work with objects.

See also:    -cat:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and   
-concatenate:n:fromZone:

cat:n:
- cat:(const char *)aString n:(int)n

Calls strncat() to concatenate buffer and up to the first n bytes of aString.    If the current size of buffer is not large enough
to fit the concatenation of the two strings, then a new, larger buffer is allocated from the DAYString's zone.    Returns self.   
This method is provided for those cases in which DAYString objects are not in use, and therefore only a char pointer is
available.    It is also useful with constant strings.    The ±concatenate: methods are preferred for use whenever possible,
mainly because they work with objects.

See also:    -cat:, -cat:fromZone:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and   
-concatenate:n:fromZone:

cat:n:fromZone:
- cat:(const char *)aString n:(int)n fromZone:(NXZone *)zone

Calls strncat() to concatenate buffer and up to the first n bytes of aString.    If the current size of buffer is not large enough
to fit the concatenation of the two strings, then a new, larger buffer is allocated zone.    Returns nil.    This method is provided
for those cases in which DAYString objects are not in use, and therefore only a char pointer is available.    It is also useful
with constant strings.    The ±concatenate: methods are preferred for use whenever possible, mainly because they work with
objects.

See also:    -cat:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and   
-concatenate:n:fromZone:

charAt:
- (char)charAt:(int)index

Returns the indexth character of buffer.    Returns 0 if index is out of range.

cmp:
- (int)cmp:(const char *)aString

Calls strcmp() to compare buffer and aString.    Return values follow the same rules as strcmp().    This method is provided
for those cases in which DAYString objects are not in use, and therefore only a char pointer is available.    It is also useful
with constant strings.    The ±compareTo: methods are preferred for use whenever possible, mainly because they work with
objects and use the current string ordering table.

See also:    -casecmp:, -casecmp:n:, -cmp:n:, -compareTo:, -compareTo:caseSensitive:, -compareTo:n: and   
-compareTo:n:caseSensitive:

cmp:n:
- (int)cmp:(const char *)aString n:(int)n

Calls strncmp() to compare at most the first n characters buffer and aString.    Return values follow the same rules as
strncmp().    This method is provided for those cases in which DAYString objects are not in use, and therefore only a char
pointer is available.    It is also useful with constant strings.    The ±compareTo: methods are preferred for use whenever
possible, since they work with objects and use the current string ordering table.

See also:    - casecmp:, - casecmp:n:, - cmp:, - compareTo:, - compareTo:caseSensitive:, - compareTo:n:,    and    -
compareTo:n:caseSensitive:

compareTo:
- (int)compareTo:(id)sender

Identical to calling the ±compareTo:caseSensitive: method with a YES as the value of sense.

See also:    - compareTo:caseSensitive:, - compareTo:n: and    - compareTo:n:caseSensitive:

compareTo:caseSensitive:
- (int)compareTo:(id)sender caseSensitive:(BOOL)sense

Identical to the ±compareTo:n:caseSensitive: method, but the entire length of the shortest string is used to make the
comparison.    This is like calling ±compareTo:n:caseSensitive: with n set to -1.

See also:    - compareTo:, - compareTo:n: and    - compareTo:n:caseSensitive:

compareTo:n:
- (int)compareTo:(id)sender n:(int)n

Identical to calling the ±compareTo:n:caseSensitive: method with a YES as the value of sense.

See also:    - compareTo:, - compareTo:caseSensitive: and    - compareTo:n:caseSensitive:

compareTo:n:caseSensitive:
- (int)compareTo:(id)sender n:(int)n caseSensitive:(BOOL)sense

Compares the string in buffer to the ±stringValue of sender.    No more than the first n characters are used to make the
comparison.    If n is -1, it is as if the method were called with n set to the length of the shorter of the two strings.    If sense is
YES, then the comparison is case sensitive.    If sense is NO, then the comparison ignores case.    The value returned is zero
if the strings are equal, -1 if the receiver is less than sender, and 1 otherwise.    The current string ordering table is used to
make the comparison.    This method is basically a cover for NXOrderStrings().

See also:    - compareTo:, - compareTo:caseSensitive:, and - compareTo:n:

concatenate:
- concatenate:(id)sender

Adds the DAYString sender to the end of the string in buffer.    If the current size of buffer is not large enough to fit the
concatenation of the two strings, then a new, larger buffer is allocated from the DAYString's zone.    Returns self.

See also:    -cat:fromZone:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and   
-concatenate:n:fromZone:

concatenate:fromZone:
- concatenate:(id)sender fromZone:(NXZone *)zone

Adds the DAYString sender to the end of the string in buffer.    If the current size of buffer is not large enough to fit the
concatenation of the two strings, then a new, larger buffer is allocated from zone.    Returns self.

See also:    -cat:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and   
-concatenate:n:fromZone:

concatenate:n:
- concatenate:(id)sender n:(int)n

Adds up to the first n bytes of the DAYString sender to the end of the string in buffer.    If the current size of buffer is not
large enough to fit the concatenation of the two strings, then a new, larger buffer is allocated from the DAYString's zone.   
Returns self.

See also:    -cat:, -cat:fromZone:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and   
-concatenate:n:fromZone:

concatenate:n:fromZone:
- concatenate:(id)sender n:(int)n fromZone:(NXZone *)zone

Adds up to the first n bytes of the DAYString sender to the end of the string in buffer.    If the current size of buffer is not
large enough to fit the concatenation of the two strings, then a new, larger buffer is allocated zone.    Returns self.

See also:    -cat:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n: and   
-concatenate:n:fromZone:

copyFromZone:
- copyFromZone:(NXZone *)zone

Returns a new DAYString.    Memory for the new DAYString is allocated from zone.    The string stored in buffer is copied.

endcasecmp:
- endcasecmp:(const char *)aString

Performs a case insensitive comparison of    aString with the end of    buffer.    Return values follow those of the
-compareTo: methods.    This is like calling -endcasecmp:n: with n set to -1.

See also:    -endcasecmp:n, -endcmp:, -endcmp:n:, -endCompareTo:, -endCompareTo:caseSensitive:,
-endCompareTo:n:, and    -endCompareTo:n:caseSensitive:

endcasecmp:n:
- endcasecmp:(const char *)aString n:(int)n

Performs a case insensitive comparison of    the last n characters of buffer with the last n characters of    aString.    If n is -1 or
n is greater than the length of either string, n is set to the length of the shorter string.    Return values follow those of the
-compareTo: methods.

See also:    -endcasecmp:, -endcmp:, -endcmp:n:, -endCompareTo:, -endCompareTo:caseSensitive:,
-endCompareTo:n:, and    -endCompareTo:n:caseSensitive:

endcmp:
- endcmp:(const char *)aString

Performs a case sensitive comparison of    aString with the end of    buffer.    Return values follow those of the -compareTo:

methods.    This is like calling -endcmp:n: with n set to -1.

See also:    -endcmp:n, -endcasecmp:, -endcasecmp:n:, -endCompareTo:, -endCompareTo:caseSensitive:,
-endCompareTo:n:, and    -endCompareTo:n:caseSensitive:

endcmp:n:
- endcmp:(const char *)aString n:(int)n

Performs a case sensitive comparison of    the last n characters of buffer with the last n characters of    aString.    If n is -1 or n
is greater than the length of either string, n is set to the length of the shorter string.    Return values follow those of the
-compareTo: methods.

See also:    -endcmp:, -endcasecmp:, -endcasecmp:n:, -endCompareTo:, -endCompareTo:caseSensitive:,
-endCompareTo:n:, and    -endCompareTo:n:caseSensitive:

endCompareTo:
- endCompareTo:(id)sender

Performs a case sensitive comparison of the -stringValue of sender with the end of buffer.    Return values follow those of
the -compareTo: methods.    This is like calling the -endCompareTo:n:caseSensitive: with n set to -1 and sense set to YES.

See also:    -endCompareTo:caseSensitive:, -endCompareTo:n:,    -endCompareTo:n:caseSensitive:, -endcmp:,
-endcmp:n:, -endcasecmp:, and -endcasecmp:n:

endCompareTo:caseSensitive:
- endCompareTo:(id)sender caseSensitive:(BOOL)sense

Compares the last n characters of sender's -stringValue with the last n characters of buffer.    If sense is NO, the comparison

is case insensitive.    Return values follow those of the -compareTo: methods.    This is like calling the -endCompareTo:n:
caseSensitive: method with n set to -1.

See also:    -endCompareTo:, -endCompareTo:n:,    -endCompareTo:n:caseSensitive:, -endcmp:, -endcmp:n:,
-endcasecmp:, and -endcasecmp:n:

endCompareTo:n:
- endCompareTo:(id)sender n:(int)n

Performs a case sensitive comparison of the last n characters of sender's -stringValue with the last n characters of buffer.    If
n is -1 or n is greater than the length of either string, n is set to the length of the shorter string.    Return values follow those
of the -compareTo: methods.    This is like calling the -endCompareTo:n:caseSensitive: method with sense set to YES.

See also:    -endCompareTo:, -endCompareTo:caseSensitive:,    -endCompareTo:n:caseSensitive:, -endcmp:,
-endcmp:n:, -endcasecmp:, and -endcasecmp:n:

endCompareTo:n:caseSensitive:
- endCompareTo:(id)sender n:(int)n caseSensitive:(BOOL)sense

Compares the last n characters of sender's -stringValue with the last n characters of buffer.    If n is -1 or n is greater than the
length of either string, n is set to the length of the shorter string.    If sense is NO, the comparison is case insensitive.    Return
values follow those of the -compareTo: methods.

See also:    -endCompareTo:, -endCompareTo:caseSensitive:, -endCompareTo:n:, -endcmp:, -endcmp:n:,
-endcasecmp:, and -endcasecmp:n:

extractPart:useAsDelimiter:
- extractPart:(int)n useAsDelimiter:(char)c

Same as ±extractPart:useAsDelimiter:caseSensitive:fromZone: using the same zone as the DAYString which received
the message and with sense set to YES.

See also:    -extractPart:useAsDelimiter:caseSensitive:, -extractPart:useAsDelimiter:caseSensitive:fromZone:,
-extractPart:useAsDelimiter:fromZone:, -fileName, -fileNameFromZone:, -pathName,
-pathNameFromZone:, and -wordNum:

extractPart:useAsDelimiter:caseSensitive:
- extractPart:(int)n useAsDelimiter:(char)c caseSensitive:(BOOL)sense

Same as ±extractPart:useAsDelimiter:caseSensitive:fromZone: using the same zone as the DAYString which received
the message.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:fromZone:,
-extractPart:useAsDelimiter:fromZone:, -fileName, -fileNameFromZone:, -pathName,
-pathNameFromZone:, and -wordNum:

extractPart:useAsDelimiter:caseSensitive:fromZone:
- extractPart:(int)n useAsDelimiter:(char)c caseSensitive:(BOOL)sense fromZone:(NXZone *)zone

This method allows you to extract substring from strings which have fields delimited by a particular character.    This is
useful for getting at tab-delimited fields, entries from files like /etc/passwd (delimited by ª:º) and parts of UNIX paths.    The
first field is part number one; you can also use the constants DAY_FIRST and DAY_LAST to specify the first and last
fields, respectively.    The character used to delimit fields is specified by c.    By setting sense to YES or NO, you can control
whether or not the delimiter is case sensitive.    A new DAYString is returned, allocated from zone.    If the field specified
does not exist (i.e. you specified field 7 when there are only 6, etc.) then nil is returned.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
-extractPart:useAsDelimiter:fromZone:, -fileName, -fileNameFromZone:, -pathName,

-pathNameFromZone:, and -wordNum:

extractPart:useAsDelimiter:fromZone:
- extractPart:(int)n useAsDelimiter:(char)c fromZone:(NXZone *)zone

Same as ±extractPart:useAsDelimiter:caseSensitive:fromZone: with sense set to YES.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
-extractPart:useAsDelimiter:caseSensitive:fromZone:, -fileName, -fileNameFromZone:, -pathName,
-pathNameFromZone:, and -wordNum:

fileName
- fileName

Same as the ±fileNameFromZone: method.    The new DAYString is in the same zone as the receiver.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
±extractPart:useAsDelimiter:caseSensitive:fromZone:, -extractPart:useAsDelimiter:fromZone:,
-fileNameFromZone:, -pathName, -pathNameFromZone:, and -wordNum:

fileNameFromZone:
- fileNameFromZone:(NXZone *)zone

Assuming that the receiving DAYString contains a UNIX path name of some sort, this method returns a new DAYString
instance which contains the filename portion of a path name.    This amounts to the part of the receiver from the character
after the last ª/º to the end of the string.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,

±extractPart:useAsDelimiter:caseSensitive:fromZone:, -extractPart:useAsDelimiter:fromZone:, -fileName,
-pathName, -pathNameFromZone:, and -wordNum:

free
- free

Deallocates the DAYString and the contents of buffer.

freeString
- freeString

Frees the contents of buffer and sets the length of the DAYString to zero.

index:
- (const char *)index:(char)aChar

Returns a pointer to the leftmost occurence of aChar in buffer.    The search is case sensitive.    Returns NULL if aChar is not
found.

See also: -index:caseSensitive:, -index:occurenceNum:, -index:caseSensitive:occurenceNum:, -rindex:,
-rindex:caseSensitive:, -rindex:occurenceNum:, and -rindex:caseSensitive:occurenceNum:

index:caseSensitive:
- (const char *)index:(char)aChar caseSensitive:(BOOL)sense

Returns a pointer to the leftmost occurence of aChar in buffer.    If sense is NO, then the search ignores case.    Returns
NULL if aChar is not found.

See also:    -index, -index:occurenceNum:, -index:caseSensitive:occurenceNum:, -rindex:, -rindex:caseSensitive:,
-rindex:occurenceNum:, and -rindex:caseSensitive:occurenceNum:

index:occurenceNum:
- (const char *)index:(char)aChar occurenceNum:(int)n

Returns a pointer to the nth occurence of aChar in buffer going from left to right.    The search is case sensitive.    Returns
NULL if the nth occurence of aChar is not found.

See also:    -index, -index:caseSensitive:, -index:caseSensitive:occurenceNum:, -rindex:, -rindex:caseSensitive:,
-rindex:occurenceNum:, and -rindex:caseSensitive:occurenceNum:

index:occurenceNum:caseSensitive:
- (const char *)index:(char)aChar occurenceNum:(int)n caseSensitive:(BOOL)sense

Returns a pointer to the nth occurence of aChar in buffer going from left to right.    If sense is NO, then the search ignores
case.    Returns NULL if the nth occurence of aChar is not found.

See also:    -index, -index:caseSensitive:, -index:occurenceNum:, -rindex:, -rindex:caseSensitive:,
-rindex:occurenceNum:, and -rindex:caseSensitive:occurenceNum:

init
- init

Initializes a new DAYString instance.    Returns self.

See also:    ±initString:

initString:
- initString:(const char *)aString

This method calls the ±init method and then calls the ±setStringValue method with aString as the argument.

See also:    ±init, -setStringValue:

insert:at:
- insert:(const char *)aString at:index

Inserts aString into buffer at position index.    Returns self.

See also:    -insertChar:at: and -insertString:at:

insertChar:at:
- insertChar:(char)aChar at:index

Inserts aChar into buffer at position index. aChar can not be 0 (null character); if this is the case, nothing happens.   
Returns self.

See also:    -insert:at: and insertString:at:

insertString:at:
- insertString:(id)sender at:index

Inserts the ±stringValue of sender into buffer at position index.    Returns self.

See also:    -insert:at: and insertChar:at:

isEqual:
- (BOOL)isEqual:(id)anObject

Returns YES if the string value of anObject is the same as the string value of the receiver.

left:
- left:(int)count

Returns a new DAYString object which is composed of the first count characters of buffer.    The new object is allocated
from the receiver's zone.

See also:    -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, -midFrom:to:fromZone:,
-right: and    -right:fromZone:

left:fromZone:
- left:(int)count fromZone:(NXZone *)zone

Returns a new DAYString object which is composed of the first count characters of buffer.    The new object is allocated
from zone.

See also:    -left:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, -midFrom:to:fromZone:, -right:, and
-right:fromZone:

length
- (int)length

Returns the length of the string in buffer.

midFrom:length:
- midFrom:(int)start length:(int)len

Returns a new DAYString object which is composed of len characters of buffer starting with the startth character.    The new
object is allocated from the receiver's zone.

See also:    -left:, -left:fromZone:, -midFrom:length:fromZone:, -midFrom:to:, -midFrom:to:fromZone:, -right:, and
-right:fromZone:

midFrom:length:fromZone:
- midFrom:(int)start length:(int)len fromZone:(NXZone *)zone

Returns a new DAYString object which is composed of len characters of buffer starting with the startth character.    The new
object is allocated from zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:to:, -midFrom:to:fromZone:, -right:, and
-right:fromZone:

midFrom:to:
- midFrom:(int)start to:(int)end

Returns a new DAYString object which is composed of the characters of buffer from the startth character to the endth
character inclusive.    The new object is allocated from the receiver's zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:fromZone:, -right:,

and -right:fromZone:

midFrom:to:fromZone:
- midFrom:(int)start to:(int)end fromZone:(NXZone *)zone

Returns a new DAYString object which is composed of the characters of buffer from the startth character to the endth
character inclusive.    The new object is allocated from zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, -right:, and
-right:fromZone:

newWithString:
+ newWithString:(char *)aString

Returns a new DAYString object containing aString.

numWords
- (int)numWords

Returns the number of words in buffer.    Words are separated by any number of spaces, carriage returns, newlines, vertical
tabs, or formfeeds (not punctuation characters).

pathName
- pathName

Same as the ±pathNameFromZone: method with the returned DAYString coming from the receiver's zone.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
±extractPart:useAsDelimiter:caseSensitive:fromZone:, -extractPart:useAsDelimiter:fromZone:, -fileName,
-fileNameFromZone:, -pathNameFromZone:, and -wordNum:

pathNameFromZone:
- pathNameFromZone:(NXZone *)zone

Assuming that the receiving DAYString contains a UNIX path name of some sort, this method returns a new DAYString
instance which contains the path portion of a path name.    This amounts to the part of the receiver from the start of the string
up to, but not including, the last ª/º.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
±extractPart:useAsDelimiter:caseSensitive:fromZone:, -extractPart:useAsDelimiter:fromZone:, -fileName,
-fileNameFromZone:, -pathName, and -wordNum:

read:
- read:(NXTypedStream *)stream

Reads the DAYString from the typed stream stream.    Returns self.

See also:    - write:

removeFrom:length:
- removeFrom:(int)start length:(int)len

Removes len characters from buffer starting with the startth character.    Will not take any action if len is zero or if start is out
of range.    Returns self.

See also:    - removeFrom:to:

removeFrom:to:
- removeFrom:(int)start to:(int)end

Removes all the characters of buffer from the startth character to the endth character inclusive.    Will not take any action if
start or end is out of range.    Returns self.

See also:    - removeFrom:length:

replace:with:
- replace:(const char *)subString with:(const char *)newString

Searches buffer for subString and, if found, replaces it with newString.    Returns self.

See also:    - replace:withString:

replace:withString:
- replace:(const char *)subString withString:(id)sender

Searches buffer for subString and, if found, replaces it with the ±stringValue of sender.    Returns self.

See also:    - replace:with:

replaceCharAt:with:
- replaceCharAt:(int)index with:(char)aChar

Replaces the indexth character of    buffer with aChar.    aChar can not be 0 (null character); if this is the case, nothing
happens.    Returns self.

replaceFrom:length:with:
- replaceFrom:(int)start length:(int)len with:(const char *)aString

Replaces len characters from buffer, starting with the startth character, with aString.    Returns self.    Will not take any action
if len is zero or if start is out of range.

See also:    - replaceFrom:length:withString:, - replaceFrom:to:with:, and - replaceFrom:to:withString:

replaceFrom:length:withChar:
- replaceFrom:(int)start length:(int)len withChar:(char)aChar

Replaces len characters from buffer, starting with the startth character, with aChar.    Returns self.    Will not take any action
if len is zero or if start is out of range.

See also:    - replaceFrom:length:withString:, - replaceFrom:to:with:, and - replaceFrom:to:withString:

replaceFrom:length:withString:
- removeFrom:(int)start length:(int)end withString:(id)sender

Replaces len characters from buffer, starting with the startth character, with the ±stringValue of sender.    Returns self.    Will
not take any action if len is zero or if start is out of range.

See also:    - replaceFrom:length:with:, - replaceFrom:to:with:, and - replaceFrom:to:withString:

replaceFrom:to:with:
- replaceFrom:(int)start to:(int)end with:(const char *)aString

Replaces all the characters of buffer, from the startth character to the endth character inclusive, with aString.    Returns self.   
Will not take any action if start or end is out of range.

See also:    - replaceFrom:length:with:, - replaceFrom:length:withString:, and - replaceFrom:to:withString:

replaceFrom:to:withChar:
- replaceFrom:(int)start to:(int)end withChar:(char)achar

Replaces all the characters of buffer, from the startth character to the endth character inclusive, with aChar.    Returns self.   
Will not take any action if start or end is out of range.

See also:    - replaceFrom:length:with:, - replaceFrom:length:withString:, and - replaceFrom:to:withString:

replaceFrom:to:withString:
- removeFrom:(int)start to:(int)end withString:(id)sender

Replaces all the characters of buffer, from the startth character to the endth character inclusive, with the ±stringValue of
sender.    Returns self.    Will not take any action if start or end is out of range.

See also:    - replaceFrom:length:with:, - replaceFrom:length:withString:, and - replaceFrom:to:with:

reverse
- reverse

Reverses the characters in buffer.    Returns self.

right:
- right:(int)count

Returns a new DAYString object which is composed of the last count characters of buffer.    The new object is allocated from
the receiver's zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:,
-midFrom:to:fromZone:, and    -right:fromZone:

right:fromZone:
- right:(int)count fromZone:(NXZone *)zone

Returns a new DAYString object which is composed of the last count characters of buffer.    The new object is allocated from
zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:,
-midFrom:to:fromZone:, and -right:

rindex:
- (const char *)index:(char)aChar

Returns a pointer to the rightmost occurence of aChar in buffer.    The search is case sensitive.    Returns NULL if aChar is
not found.

See also: -rindex:caseSensitive:, -rindex:occurenceNum:, -rindex:caseSensitive:occurenceNum:, -index:,
-index:caseSensitive:, -index:occurenceNum:, and -index:caseSensitive:occurenceNum:

rindex:caseSensitive:
- (const char *)index:(char)aChar caseSensitive:(BOOL)sense

Returns a pointer to the rightmost occurence of aChar in buffer.    If sense is NO, then the search ignores case.    Returns
NULL if aChar is not found.

See also:    -rindex:, -rindex:occurenceNum:, -rindex:caseSensitive:occurenceNum:, -index:, -index:caseSensitive:,
-index:occurenceNum:, and -index:caseSensitive:occurenceNum:

rindex:occurenceNum:
- (const char *)index:(char)aChar occurenceNum:(int)n

Returns a pointer to the nth occurence of aChar in buffer going from right to left.    The search is case sensitive.    Returns
NULL if the nth occurence of aChar is not found.

See also:    -rindex:, -rindex:caseSensitive:, -rindex:caseSensitive:occurenceNum:, -index:, -index:caseSensitive:,
-index:occurenceNum:, and -index:caseSensitive:occurenceNum:

rindex:occurenceNum:caseSensitive:
- (const char *)index:(char)aChar occurenceNum:(int)n caseSensitive:(BOOL)sense

Returns a pointer to the nth occurence of aChar in buffer going from right to left.    If sense is NO, then the search ignores
case.    Returns NULL if the nth occurence of aChar is not found.

See also:    -rindex:, -rindex:caseSensitive:, -rindex:occurenceNum:, -index:, -index:caseSensitive:,
-index:occurenceNum:, and -index:caseSensitive:occurenceNum:

rspotOf:
- (int)rspotOf:(char)aChar

Returns the position number of the rightmost occurrence of aChar in buffer.    The search is case sensitive.    Returns -1 if
aChar is not found.

See also: -rspotOf:caseSensitive:, -rspotOf:occurenceNum:, -rspotOf:occurenceNum:caseSensitive:, -spotOf,
-spotOf:caseSensitive:, -spotOf:occurenceNum:, and -spotOf:occurenceNum:caseSensitive:,

rspotOf:caseSensitive
- (int)rspotOf:(char)aChar caseSensitive:(BOOL)sense

Returns the position number of the rightmost occurrence of aChar in buffer.    If sense is NO, then the search ignores case.   
Returns -1 if the nth occurrence is not found.

See also:    -rspotOf, -rspotOf:occurenceNum:, -rspotOf:occurenceNum:caseSensitive:, -spotOf,
-spotOf:caseSensitive:, -spotOf:occurenceNum:, and -spotOf:occurenceNum:caseSensitive:,

rspotOf:occurenceNum:
- (int)rspotOf:(char)aChar occurenceNum:(int)n

Returns the position number of the nth occurrence of aChar in buffer going from right to left.    The search is case sensitive.
Returns -1 if the nth occurrence of aChar is not found.

See also:    -rspotOf, -rspotOf:caseSensitive:, -rspotOf:occurenceNum:caseSensitive:, -spotOf, -spotOf:caseSensitive:,
-spotOf:occurenceNum:, and -spotOf:occurenceNum:caseSensitive:,

rspotOf:occurenceNum:caseSensitive:
- (int)rspotOf:(char)aChar occurenceNum:(int)n caseSensitive:(BOOL)sense

Returns the position number of the nth occurrence of aChar in buffer going from right to left.    If sense is NO, then the
search ignores case.    Returns -1 if the nth occurrence of aChar is not found.

See also:    -rspotOf, -rspotOf:caseSensitive:, -rspotOf:occurenceNum:, -spotOf, -spotOf:caseSensitive:,
-spotOf:occurenceNum:, and -spotOf:occurenceNum:caseSensitive:,

setStringOrderTable:
- setStringOrderTable:(NXStringOrderTable *)table

Sets the NXStringOrderTable used by the ±compareTo: methods.    Returns self.    If not programmatically set using this
method, an instance of DAYString will use the default system string table.

See also:    -stringOrderTable: and -compareTo:n:caseSensitive:

setStringValue:
- setStringValue:(const char *)aString

Copies aString into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is allocated from the
receiver's zone.    Returns self.

See also:    -setStringValue:fromZone:, -takeStringValue:, and ±takeStringValue:fromZone:

setStringValue:fromZone:
- setStringValue:(const char *)aString fromZone:(NXZone *)zone

Copies aString into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is allocated from zone.   
Returns self.

See also:    -setStringValue:, -takeStringValue:, and -takeStringValue:fromZone:

spotOf:
- (int)spotOf:(char)aChar

Returns the position number of the leftmost occurrence of aChar in buffer.    The search is case sensitive.    Returns -1 if
aChar is not found.

See also:    -spotOf:caseSensitive:, -spotOf:occurenceNum:, -spotOf:occurenceNum:caseSensitive:, -rspotOf,
-rspotOf:caseSensitive:, -rspotOf:occurenceNum:, and -rspotOf:occurenceNum:caseSensitive:,

spotOf:caseSensitive:
- (int)spotOf:(char)aChar caseSensitive:(BOOL)sense

Returns the position number of the leftmost occurrence of aChar in buffer.    If sense is NO, then the search ignores case.   
Returns -1 if aChar is not found.

See also:    -spotOf, -spotOf:occurenceNum:, -spotOf:occurenceNum:caseSensitive:, -rspotOf, -rspotOf:caseSensitive:,
-rspotOf:occurenceNum:, and -rspotOf:occurenceNum:caseSensitive:,

spotOf:occurenceNum:
- (int)spotOf:(char)aChar occurenceNum:(int)n

Returns the position number of the nth occurrence of aChar in buffer going from left to right.    The search is case sensitive.
Returns -1 if the nth occurrence of aChar is not found.

See also:    -spotOf, -spotOf:caseSensitive:, -spotOf:occurenceNum:caseSensitive:, -rspotOf, -rspotOf:caseSensitive:,
-rspotOf:occurenceNum:, and -rspotOf:occurenceNum:caseSensitive:,

spotOf:occurenceNum:caseSensitive:

- (int)spotOf:(char)aChar occurenceNum:(int)n caseSensitive:(BOOL)sense

Returns the position number of the nth occurrence of aChar in buffer going from left to right.    If sense is NO, then the
search ignores case.    Returns -1 if the nth occurrence is not found.

See also:    -spotOf, -spotOf:caseSensitive:, -spotOf:occurenceNum:, -rspotOf, -rspotOf:caseSensitive:,
-rspotOf:occurenceNum:, and -rspotOf:occurenceNum:caseSensitive:,

squashSpaces
- squashSpaces

This method will remove any redundant spaces in buffer.      It first calls -trimSpaces, and then goes through buffer and
leaves at most one space between words, except following a period or colon, in which case two spaces will be left.    Note
that this method only checks for spaces, so a sequence such as space-tab-space will be left as is.    Returns self.

See also:    -trimSpaces, -trimLeadSpaces, and ±trimTailSpaces:

stringOrderTable
- (NXStringOrderTable *)stringOrderTable

Returns the NXStringOrderTable used to make comparisons between strings.

See also:    -compareTo:n:caseSensitive: and ±setStringOrderTable:

stringValue
- (const char *)stringValue

Returns buffer, a pointer to the string value.

strstr:
- (const char *)strstr:(const char *)subString

Returns a pointer to the start of the first occurence of subString in the string.    Note that this pointer points into the internal
buffer of the string object and should therefore not be freed.    If you wish to manipulate it, you should create a new
DAYString object.    For example:

newString = [[DAYString alloc] initString:[origString strstr:aSubString]];

See also:    -subStringLeft: and ±subStringRight:

subStringLeft:
- subStringLeft:subString

Returns a new DAYString object which is created from the receiving DAYString object's string from it's start up to the start
of subString.    Note that subString could be any object with a ±stringValue.    (For example, if a DAYString object with the
value ªThis is a string.º is sent the message subStringLeft:key, where key is an object for which a ±stringValue message
returns ªaº, then it would return a new DAYString object with the value ªThis is º)    Returns an empty DAYString if
subString doesn't respond to ±stringValue.

See also:    -strstr: and ±subStringRight:

subStringRight:
- subStringRight:subString

Returns a new DAYString object which is created from the receiving DAYString object, starting with subString and
continuing up to the end of the receiving string.    Note that subString could be any object with a ±stringValue.    (For
example, if a DAYString object with the value ªThis is a string.º is sent the message subStringRight:key, where key is an

object for which a ±stringValue message returns ªaº, then it would return a new DAYString object with the value ªa string.º)
Returns nil if subString doesn't respond to ±stringValue.

See also:    -strstr: and ±subStringLeft:

takeStringValue:
- takeStringValue:(id)sender

Copies the string value of sender into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is
allocated from the receiver's zone.    Returns self.

See also:    -setStringValue:, -setStringValue:fromZone:, and -takeStringValue:fromZone:

takeStringValue:fromZone:
- takeStringValue:(id)sender fromZone:(NXZone *)zone

Copies the string value of sender into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is
allocated from zone.    Returns self.

See also:    -setStringValue:, -setStringValue:fromZone:, and -takeStringValue:

toLower
- toLower

Converts every uppercase character in buffer to lowercase.    Returns self.

See also:    -toUpper

toUpper
- toUpper

Converts every lowercase character in buffer to uppercase.    Returns self.

See also:    -toLower

trimLeadSpaces
- trimLeadSpaces

Removes any leading spaces from buffer.    Returns self.    Note that this method will only remove spaces (not tabs, linefeeds,
etc).

See also:    -trimSpaces, ±trimTailSpaces, and ±squashSpaces

trimSpaces
- trimSpaces

Removes any leading or trailing spaces from buffer.    Returns self.    Note that this method will only remove spaces (not tabs,
linefeeds, etc).

See also:    -trimLeadSpaces, ±trimTailSpaces, and ±squashSpaces

trimTailSpaces
- trimTailSpaces

Removes any trailing spaces from buffer.    Returns self.    Note that this method will only remove spaces (not tabs, linefeeds,
etc).

See also:    -trimSpaces, -trimLeadSpaces, and ±squashSpaces

wordNum:
- wordNum:(int)num

Returns a new DAYString object wich contains the numth word of buffer.    Words are separated by any number of spaces,
carriage returns, newlines, vertical tabs, or formfeeds (not punctuation characters).    Returns nil if the numth word does not
exist in buffer.

write:
- write:(NXTypedStream *)stream

Writes the DAYString to the typed stream stream.    Returns self.

See also:    - read:

