
MiscKit Release 1.2.3, MiscString Version 1.9    Copyright ã1993, 1994 by Don Yacktman.    All Rights Reserved.

MiscString

Inherits From: Object

Conforms To: NXTransport

Declared In: misckit/MiscString.h

Class Description

A MiscString object contains a simple text string and provides methods for its manipulation, encompassing all the functions
available in <strings.h>.    The MiscString object automatically handles the freeing and copying of character strings.   
Although it simplifies string operations, it does not yet incorporate the benefits of the NXAtom type, which you may wish to
use instead.    Certain tradeoffs have been made between speed and robustness, typically in favor of robustness.    If there is
enough demand, a MiscFastString class may someday appear.    Another free string class, RCString, is also available (under
the GNU General Public License) which incorporates regular expression matching, reference counting, and other useful
functions.    Some of these features will probably eventually appear in the MiscString class to a certain degree.    Depending
on your needs, you may find the RCString class to better suit your needs.    Another free string class is the MOString by

Mike Ferris, which is a part of the MOKit.    There are also now commercial string classes available from several sources,
which you may want to consider.    This particular class is free and may be used in commercial applications, so the price is
very attractive.

A MiscString is created through the normal process of ±alloc and ±init.    It may be set to a specific string by means of the
±setStringValue: and ±takeStringValue: methods.    As a shortcut, +newWithString: is also available.    To copy an
existing MiscString, use the ±copy and ±copyFromZone: methods.    To copy a portion of a string, use the
±subStringLeft:, ±subStringRight:, ±left:..., ±midFrom:..., and ±right...: methods.    Use the ±concatenate:... and ±cat:...
methods to concatenate another string (or many strings) onto the end of the string in the buffer.    If the current buffer is too
small, it is enlarged.    To tokenize or create copies of substrings, use the ±extractPart:..., ±fileName..., ±pathName...,
±subStringLeft, and ±subStringRight methods.    Using ±encrypt: creates a MiscString encrypted by the crypt(3) function.
You can use ±reverse to reverse the MiscString's contents.    Use ±free to free a MiscString and it's buffer or ±freeString to
free just the buffer.

Inserting characters or strings into a MiscString may be performed via any of the    ±insert:at:, ±insertChar:at:,
±insertString:at:, and ±addChar: methods.    Deleting a portion of the MiscString is performed by the ±trimLeadSpaces,
±trimTailSpaces, ±trimSpaces, and ±squashSpaces, and ±removeFrom:... methods.    A whole series of ±replace...
methods provide flexible substring and character replacement options.

The ±length method returns the length of the string currently in the buffer and ±stringValue returns a pointer to the string
itself.    The ±emptyString method returns YES if the MiscString is empty, which would correspond to a string of zero

length or a NULL pointer in C.    The ±index:... methods return a pointer to the nth    occurrence in the buffer of a specific

character and ±rindex:... return a pointer to the nth occurrence from the end (right to left).    The ±spotOf:... and ±rspotOf:
methods work similarly, but return an integer which gives the character number of the occurrence.

You may compare strings to each other by means of the various ±isEqual:..., ±cmp:..., ± casecmp:..., ±endcmp:..., ±
endcasecmp:..., ±compareTo:..., and ±endCompareTo:... methods.    The ±isEqual:..., ±compareTo:..., and
±compareTo:... methods are preferred, since they use NXStringOrderTables to make the comparison and are therefore more
accurate with respect to international, accented, and ligature characters.    If you need to use a table different from the

default, use the ±setStringOrderTable: method.

Use the ±numWords method to count words in the MiscString, and ±wordNum: to create a new MiscString containing a
specific word.    Note that these methods do more than tokenizing via spaces; all whitespaces (space, tab, return, linefeed; as
recognized by NXIsSpace()) delimit the words.    Consecutive whitespace characters are treated as a single delimiter.

Use the ±toUpper and ±toLower methods to change all characters in the MiscString to upper or lower case.    Note that the
NX...() functions are used to perform this conversion, so it should work even with international character sets.    Use
±reverse to reverse all the characters in the MiscString's buffer.    The ±charAt: method returns a single character from a
given location in the MiscString's buffer.

A MiscString my be archived by means of the ±read: and ±write: methods.    (Call NXReadObject() and
NXWrite[Root]Object() functions and not the ±read: and ±write: methods directly.)

There are several methods which are designed to handle regular expression searching, matching, and so on.    To determine if
a MiscString matches a regular expression, use the ±grep:... or ±grepString:... methods; you can use
±grep...before:middle:after: variants to split up a MiscString into the matched section and the parts before and after the
match.    To replace a section of a MiscString which matches a regular expression, simply use one of the ±replaceRegex...
and ±replaceEveryOccurenceOfRegex... methods.    The only difference between the ±replacePattern methods is whether
the arguments are objects or character pointers.    You can find out if a MiscString matches a regular expression with
±matchesRegex:... and find the number of individual matches with the ±numOfRegex:... methods.    You can find where
regular expression matches occur with ±spotOfRegex:... and ±rspotOfRegex... as well.

Two conventions with char * buffers are followed by the MiscString class.    First, any method which has an argument of
type ªconst char *º will either make a copy of the argument or discard the pointer upon exit of the method, so it is safe for
you to free it any time afterward.    Second, any pointer returned as a ªconst char *º by a method could be freed at any time
by the MiscString object, so you ought to copy it yourself if you intend to keep it around for any length of time.    When a
MiscString object gives out such a pointer, it assumes that it won't be cached by the caller.    If you violate this assumption,
you will most definitely create mysterious crashing bugs when you start accessing freed pointers and such.    The compiler's
-Wall flag will catch most mistakes of this nature for you.

Although not included below, the MiscString object also implements ±getIBImage and ± getInspectorClassName
messages to support Interface Builder palettes.    A palette is included in this distribution which allows you to save a
MiscString in your .nib files with it pre-initialized to an arbitrary string value.

Disclaimer and other notes:    If you have any problems with the MiscString class or wish to suggest improvements, the
author may be contacted via e-mail to Don_Yacktman@byu.edu.    Since this object is free, please understand that the author
cannot be held responsible for any problems this code may cause.    You use it at your own risk.    (The author himself uses
this code, too, if that's any consolation.)    Also remember that the author's ability to support this software is highly
dependent upon free time available, which is often quite scarce.    If you wish to use this, but for some reason require support
and some sort of ªcommercialº standing for this class, contact the author; support can be bought if you need it.    (Why you'd
need or want to pay for support for such a simple object is beyond me, though!)    Many thanks are due to Carl Lindberg who
has contributed many of the methods that were not available in versions before version 1.1., as well as every one else who
has taken the time to send in feedback. You may find it worth noting some of the comments in the source file MiscString.m;
several trade-offs have been made, typically in favor of making the code more maintainable and robust, but at the expense of
speed.    One important thing to note is that any method which takes an object as an argument (even if the description claims
it should be a MiscString) will work for any object which responds to ±stringValue messages, but will work faster for
MiscString objects.    This can be very useful when working with NeXT's AppKit, since many of those objects respond to
±stringValue.

If you are not careful, you can get memory leaks with the MiscString class.    If you nest a method that returns a new
MiscString instance inside of a method that does not return self, you will leak memory.    The most common occurrence of
this, by far, is to call a method that creates a MiscString and follow it with a ±stringValue message.    (For example,    the
message [[aString pathName] stringValue] will leak memory.)    The current workaround for this is to use the
±stringValueAndFree method.    Thus, the example message ought to be [[aString pathName] stringValueAndFree] to avoid
the memory leak.    Unfortunately, you must know when to use this method.    To help you remember which methods might
cause you trouble, here is a list of methods which return new MiscString instances: ±encrypt:,
±extractPart:useAsDelimiter:, ±extractPart:useAsDelimiter:caseSensitive:,
±extractPart:useAsDelimiter:caseSensitive:fromZone:, ±extractPart:useAsDelimiter:fromZone:, ±fileName,

±fileNameFromZone:, ±left:, ±left:fromZone:,    ±midFrom:length: ±midFrom:to:, ±midFrom:to:fromZone:,
±pathName, ±pathNameFromZone:, ±wordNum:, ±wordNum:fromZone:, ±right:, ±right:fromZone:,
±subStringLeft:, and ±subStringRight:.

Although this class description is quite extensive, there are a few methods of the MiscString which are not yet documented.
A list of these methods is at the end of this document.    If any of these methods sound interesting to you, feel free to look at
the implementation in the source code which should give you a good idea of how they work.

Instance Variables

int length;
int _length;
char *buffer;

length Length of string currently in storage

_length Length in bytes of allocated buffer

buffer Stored character string

Method Types

Initializing and freeing a MiscString ± init
± initString:
± allocateBuffer:

± allocateBuffer:fromZone:
± free
± freeString
+ initialize
+ new
+ newWithString:

Copying a MiscString ± copyFromZone:
± extractPart:useAsDelimiter:
± extractPart:useAsDelimiter:caseSensitive:
± extractPart:useAsDelimiter:caseSensitive:fromZone:
± extractPart:useAsDelimiter:fromZone:
± fileName
± fileNameFromZone:
± left:
± left:fromZone:
± right:
± right:fromZone:
± midFrom:to:
± midFrom:to:fromZone:
± midFrom:length:
± midFrom:length:fromZone:
± pathName
± pathNameFromZone:
± subStringLeft:
± subStringRight:
± wordNum:

Manipulating a MiscString ± addChar:
± capitalizeEachWord
± cat:
± cat:n:
± cat:fromZone:
± cat:n:fromZone:
± catStrings:
± concatenate:
± concatenate:n:
± concatenate:fromZone:
± concatenate:n:fromZone:
± concatenateStrings:
± insert:
± insert:at:
± insertChar:
± insertChar:at:
± insertString:
± insertString:at:
± invertCases
± removeFrom:length:
± removeFrom:to:
± replace:with:
± replace:withString:
± replaceCharAt:with:
± replaceEveryOccurrenceOfChar:with:
± replaceEveryOccurrenceOfChar:with:caseSensitive:
± replaceEveryOccurrenceOfChar:withChar:

± replaceEveryOccurrenceOfChar:withChar:caseSensitive:
± replaceEveryOccurrenceOfChar:withString:
± replaceEveryOccurrenceOfChar:withString:caseSensitive:
± replaceEveryOccurrenceOfChars:with:
± replaceEveryOccurrenceOfChars:with:caseSensitive:
± replaceEveryOccurrenceOfChars:withChar:
± replaceEveryOccurrenceOfChars:withChar:caseSensitive:
± replaceEveryOccurrenceOfChars:withString:
± replaceEveryOccurrenceOfChars:withString:caseSensitive:
± replaceEveryOccurrenceOfRegex:with:
± replaceEveryOccurrenceOfRegex:with:caseSensitive:
± replaceEveryOccurrenceOfRegex:withChar:
± replaceEveryOccurrenceOfRegex:withChar:caseSensitive:
± replaceEveryOccurrenceOfRegex:withString:
± replaceEveryOccurrenceOfRegex:withString:caseSensitive:
± replaceFrom:length:with:
± replaceFrom:length:withChar:
± replaceFrom:length:withString:
± replaceFrom:to:with:
± replaceFrom:to:withChar:
± replaceFrom:to:withString:
± replaceHomeWithTilde

± replaceRegex:with:
± replaceRegex:with:caseSensitive:
± replaceRegex:with:occurrenceNum:
± replaceRegex:with:occurrenceNum:caseSensitive:
± replaceRegex:withChar:
± replaceRegex:withChar:caseSensitive:

± replaceRegex:withChar:occurrenceNum:
± replaceRegex:withChar:occurrenceNum:caseSensitive:
± replaceRegex:withString:
± replaceRegex:withString:caseSensitive:
± replaceRegex:withString:occurrenceNum:
± replaceRegex:withString:occurrenceNum:caseSensitive:

± replaceTildeWithHome
± setStringValue:
± setStringValue:fromZone:
± squashSpaces
± takeStringValue:
± takeStringValue:fromZone:
± toLower
± toUpper
± trimLeadSpaces
± trimSpaces
± trimTailSpaces

Querying attributes ± charAt:
± cmp:
± cmp:n:
± casecmp:
± casecmp:n:
± compareTo:
± compareTo:n:
± compareTo:caseSensitive:
± compareTo:n:caseSensitive:
± emptyString

± endcasecmp:
± endcasecmp:n:
± endcmp:
± endcmp:n:
± endCompareTo:
± endCompareTo:caseSensitive:
± endCompareTo:n:
± endCompareTo:n:caseSensitive:
± grep:
± grep:caseSensitive:
± grep:occurrenceNum:
± grep:occurrenceNum:caseSensitive:
± grep:before:middle:after:
± grep:caseSensitive:before:middle:after:
± grep:occurrenceNum:before:middle:after:
± grep:occurrenceNum:caseSensitive: before:middle:after:
± index:
± index:caseSensitive:
± index:occurrenceNum:
± index:occurrenceNum:caseSensitive:
± indexOfChars:
± indexOfChars:caseSensitive:
± indexOfChars:occurrenceNum:
± indexOfChars:occurrenceNum:caseSensitive:
± isEqual:
± length
- matchesRegex:
- matchesRegex: caseSensitive:

± numOfChar:
± numOfChar:caseSensitive:
± numOfChars:
± numOfChars:caseSensitive:
- numOfRegex:
- numOfRegex: caseSensitive:
± numWords
± rindex:
± rindex:caseSensitive:
± rindex:occurrenceNum:
± rindex:occurrenceNum:caseSensitive:
± rindexOfChars:
± rindexOfChars:caseSensitive:
± rindexOfChars:occurrenceNum:
± rindexOfChars:occurrenceNum:caseSensitive:
± rspotOf:
± rspotOf:caseSensitive:
± rspotOf:occurrenceNum:
± rspotOf:occurrenceNum:caseSensitive:
± rspotOfChars:
± rspotOfChars:caseSensitive:
± rspotOfChars:occurrenceNum:
± rspotOfChars:occurrenceNum:caseSensitive:

- rspotOfRegex:
- rspotOfRegex:caseSensitive:
- rspotOfRegex:occurrenceNum:
- rspotOfRegex:occurrenceNum:caseSensitive:
- rspotOfRegex:length:

- rspotOfRegex:caseSensitive:length:
- rspotOfRegex:occurrenceNum:length:
- rspotOfRegex:occurrenceNum:caseSensitive:length:

± setStringOrderTable:
± spotOf:
± spotOf:caseSensitive:
± spotOf:occurrenceNum:
± spotOf:occurrenceNum:caseSensitive:
± spotOfChars:
± spotOfChars:caseSensitive:
± spotOfChars:occurrenceNum:
± spotOfChars:occurrenceNum:caseSensitive:

- spotOfRegex:
- spotOfRegex: caseSensitive:
- spotOfRegex: occurrenceNum:
- spotOfRegex: occurrenceNum: caseSensitive:
- spotOfRegex: length:
- spotOfRegex: caseSensitive: length:
- spotOfRegex: occurrenceNum: length:
- spotOfRegex: occurrenceNum: caseSensitive: length:

± stringOrderTable
± stringValue
± strstr:

Archiving ± read:
± write:

Class Methods

extensionSeparator
+ (char)extensionSeparator

Returns the character currently being used by all MiscStrings to separate a file's name from its extension.

See also:    -pathSeparator, -setExtensionSeparator:, and -setPathSeparator:

initialize
+ initialize

Initializes the MiscString class.    Returns self.

new
+ new

Returns a new, empty MiscString object.    Same as [[MiscString alloc] init].

newWithString:
+ newWithString:(char *)aString

Returns a new MiscString object containing aString.

pathSeparator
+ (char)pathSeparator

Returns the character currently being used by all MiscStrings to separate path elements.

See also:    -extensionSeparator, -setExtensionSeparator:, and -setPathSeparator:

setExtensionSeparator:
+ setExtensionSeparator:(char)c

Changes the character used to separate separate a file's name from its extension by all MiscString.    By default, MiscString
assumes `.' is between a filename and the extension.    Returns self.

See also:    -extensionSeparator, -pathSeparator, and -setPathSeparator:

setPathSeparator:
+ setPathSeparator:(char)c

Changes the character used to separate path elements by all MiscString.    By default, MiscString assumes `/' separates path
elements.    Returns self.

See also:    -extensionSeparator, -pathSeparator, and -setExtensionSeparator:

Instance Methods

addChar:

- addChar:(char)aChar

Appends aChar to the end of buffer.    Returns self.

addExtensionIfNeeded:
-    addExtensionIfNeeded:(const char *)aString

Adds the extension aString if it is not already present on the end of the receiving string.    Returns self.

See also:    -x

allocateBuffer:
- allocateBuffer:(int)size

If the current buffer is less than size bytes, then it is freed and a new buffer is allocated from the receiver's zone to be size
bytes in length.    Returns self.

See also:    -allocateBuffer:fromZone:

allocateBuffer:fromZone:
- allocateBuffer:(int)count fromZone:(NXZone *)zone

If the current buffer is less than size bytes, then it is freed and a new buffer is allocated from zone to be size bytes in length.
Returns self.    You do not need to directly call this method, since the ±copyFromZone: and other methods do this
automatically.    However, you may wish to call this method after calling ±init for MiscString objects which will
dynamically change in size often.    By allocating a buffer which is as least as large as you expect the MiscString to grow to

during it's lifetime, your application may run faster.    This is because the MiscString object won't have to dynamically grow
as often, an operation which can slow things down.

See also:    -allocateBuffer:, -copyFromZone:, and    -setStringValue:fromZone:

buildInstanceImageIn:
-    buildInstanceImageIn:(char *)buf

Places a string into buf which gives information about the MiscString:    length, capacity, string buffer address, and contents.
Returns self.

See also:    -printForDebugger:, and ± printToStdErr:

capacity
-    (unsigned)capacity

Returns the capacity of the currently allocated buffer, which will always be at least one greater than the length of the actual
string.

See also:    -x

capitalizeEachWord
- capitalizeEachWord

Capitalizes the first character of every word in buffer.    Words are recognized in the same way as in ±numWords and
-wordNum.    Returns self.

casecmp:
- (int)cmp:(const char *)aString

Calls strcasecmp() to perform a case insensitive comparison of buffer and aString.    Return values follow the same rules as
strcasecmp().    This method is provided for those cases in which MiscString objects are not in use, and therefore only a char
pointer is available.    It is also useful with constant strings.    The ±compareTo: methods are preferred for use whenever
possible, since they work with objects and use the current string ordering table.

See also:    - casecmp:n:, - cmp:, - cmp:n:, - compareTo:, - compareTo:caseSensitive:, - compareTo:n:, and    -
compareTo:n:caseSensitive:

casecmp:n:
- (int)cmp:(const char *)aString n:(int)n

Calls strncasecmp() to perform a case insensitive comparison of at most the first n characters buffer and aString.    Return
values follow the same rules as strncasecmp().    This method is provided for those cases in which MiscString objects are
not in use, and therefore only a char pointer is available.    It is also useful with constant strings.    The ±compareTo:
methods should be used whenever possible, since they work with objects and use the current string ordering table.

See also:    -casecmp:, -casecmp:n:, -cmp:n:, -compareTo:, -compareTo:caseSensitive:, -compareTo:n: and   
-compareTo:n:caseSensitive:

catFromFormat:
-    catFromFormat:(const char *)format, ...

This method is like a combination of sprintf() followed by strcat().    It uses format and the arguments which follow to create
a string according to the user's specification.    Then it concatenates this string to the end of the current string.    Returns self.

See also:    -x

catFromFormat:valist:
-    catFromFormat:(const char *)format

valist:(va_list)param_list

This method has the same function as ±catFromFormat: but with different argument types.

See also:    -x

cat:
- cat:(const char *)aString

Calls strcat() to concatenate buffer and aString.    If the current size of buffer is not large enough to fit the concatenation of
the two strings, then a new, larger buffer is allocated from the MiscString's zone.    Returns self.    This method is provided
for those cases in which MiscString objects are not in use, and therefore only a char pointer is available.    It is also useful
with constant strings.    The ±concatenate: methods are preferred for use whenever possible, mainly because they work with
objects.

See also:    -cat:fromZone:, -cat:n:, -cat:n:fromZone:, -catStrings:, -concatenate:, -concatenate:fromZone:,
-concatenate:n:,    -concatenate:n:fromZone:, and    -concatenateStrings:

cat:fromZone:

- cat:(const char *)aString fromZone:(NXZone *)zone

Calls strcat() to concatenate buffer and aString.    If the current size of buffer is not large enough to fit the concatenation of
the two strings, then a new, larger buffer is allocated from zone.    Returns self.    This method is provided for those cases in
which MiscString objects are not in use, and therefore only a char pointer is available.    It is also useful with constant
strings.    The ±concatenate: methods are preferred for use whenever possible, mainly because they work with objects.

See also:    -cat:,    -cat:n:, -cat:n:fromZone:, -catStrings:, -concatenate:, -concatenate:fromZone:, -concatenate:n:,   
-concatenate:n:fromZone:, and    -concatenateStrings:

cat:n:
- cat:(const char *)aString n:(int)n

Calls strncat() to concatenate buffer and up to the first n bytes of aString.    If the current size of buffer is not large enough
to fit the concatenation of the two strings, then a new, larger buffer is allocated from the MiscString's zone.    Returns self.   
This method is provided for those cases in which MiscString objects are not in use, and therefore only a char pointer is
available.    It is also useful with constant strings.    The ±concatenate: methods are preferred for use whenever possible,
mainly because they work with objects.

See also:    -cat:,    -cat:fromZone:, -cat:n:fromZone:, -catStrings:, -concatenate:, -concatenate:fromZone:,
-concatenate:n:,    -concatenate:n:fromZone:, and    -concatenateStrings:

cat:n:fromZone:
- cat:(const char *)aString n:(int)n fromZone:(NXZone *)zone

Calls strncat() to concatenate buffer and up to the first n bytes of aString.    If the current size of buffer is not large enough
to fit the concatenation of the two strings, then a new, larger buffer is allocated zone.    Returns nil.    This method is provided

for those cases in which MiscString objects are not in use, and therefore only a char pointer is available.    It is also useful
with constant strings.    The ±concatenate: methods are preferred for use whenever possible, mainly because they work with
objects.

See also:    -cat:,    -cat:fromZone:, -cat:n:, -catStrings:, -concatenate:, -concatenate:fromZone:, -concatenate:n:,   
-concatenate:n:fromZone:, and    -concatenateStrings:

catStrings:
- catStrings:(const char *)aString, ¼

Works like ±cat: but accepts many string pointers as an argument.    They are added to the end of buffer in the same order as
they are encountered in the argument list.    The last argument in the list must be NULL or unpredictable results (such as
segmentation faults) will occur.    Returns self.

See also:    -cat:,    -cat:fromZone:, -cat:n:, -cat:n:fromZone:, -concatenate:, -concatenate:fromZone:, -concatenate:n:,
-concatenate:n:fromZone:, and    -concatenateStrings:

catStrings:valist:
-    catStrings:(const char *)strings

valist:(va_list)ptr

This method has the same function as ±catStrings: but with different argument types.

See also:    -x

charAt:

- (char)charAt:(int)index

Returns the indexth character of buffer.    Returns 0 if index is out of range.

cmp:
- (int)cmp:(const char *)aString

Calls strcmp() to compare buffer and aString.    Return values follow the same rules as strcmp().    This method is provided
for those cases in which MiscString objects are not in use, and therefore only a char pointer is available.    It is also useful
with constant strings.    The ±compareTo: methods are preferred for use whenever possible, mainly because they work with
objects and use the current string ordering table.

See also:    -casecmp:, -casecmp:n:, -cmp:n:, -compareTo:, -compareTo:caseSensitive:, -compareTo:n: and   
-compareTo:n:caseSensitive:

cmp:n:
- (int)cmp:(const char *)aString n:(int)n

Calls strncmp() to compare at most the first n characters buffer and aString.    Return values follow the same rules as
strncmp().    This method is provided for those cases in which MiscString objects are not in use, and therefore only a char
pointer is available.    It is also useful with constant strings.    The ±compareTo: methods are preferred for use whenever
possible, since they work with objects and use the current string ordering table.

See also:    - casecmp:, - casecmp:n:, - cmp:, - compareTo:, - compareTo:caseSensitive:, - compareTo:n:,    and    -
compareTo:n:caseSensitive:

compareTo:
- (int)compareTo:(id)sender

Identical to calling the ±compareTo:caseSensitive: method with a YES as the value of sense.

See also:    - compareTo:caseSensitive:, - compareTo:n: and    - compareTo:n:caseSensitive:

compareTo:caseSensitive:
- (int)compareTo:(id)sender caseSensitive:(BOOL)sense

Identical to the ±compareTo:n:caseSensitive: method, but the entire length of the shortest string is used to make the
comparison.    This is like calling ±compareTo:n:caseSensitive: with n set to -1.

See also:    - compareTo:, - compareTo:n: and    - compareTo:n:caseSensitive:

compareTo:n:
- (int)compareTo:(id)sender n:(int)n

Identical to calling the ±compareTo:n:caseSensitive: method with a YES as the value of sense.

See also:    - compareTo:, - compareTo:caseSensitive: and    - compareTo:n:caseSensitive:

compareTo:n:caseSensitive:
- (int)compareTo:(id)sender n:(int)n caseSensitive:(BOOL)sense

Compares the string in buffer to the ±stringValue of sender.    No more than the first n characters are used to make the
comparison.    If n is -1, it is as if the method were called with n set to the length of the shorter of the two strings.    If sense is

YES, then the comparison is case sensitive.    If sense is NO, then the comparison ignores case.    The value returned is zero
if the strings are equal, -1 if the receiver is less than sender, and 1 otherwise.    The current string ordering table is used to
make the comparison.    This method is basically a cover for NXOrderStrings().

See also:    - compareTo:, - compareTo:caseSensitive:, and - compareTo:n:

concatenate:
- concatenate:(id)sender

Adds the MiscString sender to the end of the string in buffer.    If the current size of buffer is not large enough to fit the
concatenation of the two strings, then a new, larger buffer is allocated from the MiscString's zone.    Returns self.

See also:    -cat:fromZone:, -cat:, -cat:n:, -cat:n:fromZone:, -catStrings:, -concatenate:fromZone:, -concatenate:n:,   
-concatenate:n:fromZone:, and    -concatenateStrings:

concatenate:fromZone:
- concatenate:(id)sender fromZone:(NXZone *)zone

Adds the MiscString sender to the end of the string in buffer.    If the current size of buffer is not large enough to fit the
concatenation of the two strings, then a new, larger buffer is allocated from zone.    Returns self.

See also:    -cat:fromZone:, -cat:, -cat:n:, -cat:n:fromZone:, -catStrings:, -concatenate:, -concatenate:n:,   
-concatenate:n:fromZone:, and    -concatenateStrings:

concatenate:n:
- concatenate:(id)sender n:(int)n

Adds up to the first n bytes of the MiscString sender to the end of the string in buffer.    If the current size of buffer is not
large enough to fit the concatenation of the two strings, then a new, larger buffer is allocated from the MiscString's zone.   
Returns self.

See also:    -cat:fromZone:, -cat:, -cat:n:, -cat:n:fromZone:, -catStrings:, -concatenate:, -concatenate:fromZone:,
-concatenate:n:fromZone:, and    -concatenateStrings:

concatenate:n:fromZone:
- concatenate:(id)sender n:(int)n fromZone:(NXZone *)zone

Adds up to the first n bytes of the MiscString sender to the end of the string in buffer.    If the current size of buffer is not
large enough to fit the concatenation of the two strings, then a new, larger buffer is allocated zone.    Returns self.

See also:    -cat:fromZone:, -cat:, -cat:n:, -cat:n:fromZone:, -catStrings:, -concatenate:, -concatenate:fromZone:,
-concatenate:n:,    and    -concatenateStrings:

concatenateStrings:
- concatenateStrings:(id)sender, ¼

Works like ±concatenate: but accepts many MiscString objects as an argument.    They are added to the end of buffer in the
same order as they are encountered in the argument list.    The last argument in the list must be nil or unpredictable results
(such as segmentation faults) will occur.    Returns self.

See also:    -cat:fromZone:, -cat:, -cat:n:, -cat:n:fromZone:, -catStrings:, -concatenate:, -concatenate:fromZone:,
-concatenate:n:, and    -concatenate:n:fromZone:

convertToCaseInsensitiveSearchString
-    convertToCaseInsensitiveSearchString

Converts the MiscString into a Sybase-compatible case-insensitive search string.    Returns self.

See also:    -x

convertUnixWildcardsToSybase
-    convertUnixWildcardsToSybase

Converts the MiscString into a Sybase-compatible search string with any standard UNIX wildcard symbols converted to
their Sybase counterparts.    Returns self.

See also:    -x

copyFromZone:
- copyFromZone:(NXZone *)zone

Returns a new MiscString.    Memory for the new MiscString is allocated from zone.    The string stored in buffer is copied.

doesExistInFileSystem
-    (BOOL)doesExistInFileSystem

Returns YES is the receiver contains the path to a file which exists in the current file system.    Returns NO otherwise.

See also:    -x

doubleValue
-    (double)doubleValue

Returns the double precision floating point value of the receiver, if the receiving string begins with a properly formed
floating point number.    Any trailing non-numeric characters are ignored.    If the receiving string doesn't begin with a
number, a zero is returned.

See also:    -x

emptyString
- (BOOL)emptyString

Returns YES if the MiscString is empty and NO otherwise.

See also:    -length

encrypt:
-    encrypt:salt

Encrypts the receiving string using the UNIX password encryption algorithm with salt as the ªsalt.º    The ªsaltº argument
should be an object that responds to ±stringValue and the receiving string should be no longer than eight characters in
length.    (If it is longer, the extra characters are ignored.)    Returns self.

See also:    -x

endcasecmp:
- endcasecmp:(const char *)aString

Performs a case insensitive comparison of    aString with the end of    buffer.    Return values follow those of the
-compareTo: methods.    This is like calling -endcasecmp:n: with n set to -1.

See also:    -endcasecmp:n, -endcmp:, -endcmp:n:, -endCompareTo:, -endCompareTo:caseSensitive:,
-endCompareTo:n:, and    -endCompareTo:n:caseSensitive:

endcasecmp:n:
- endcasecmp:(const char *)aString n:(int)n

Performs a case insensitive comparison of    the last n characters of buffer with the last n characters of    aString.    If n is -1 or
n is greater than the length of either string, n is set to the length of the shorter string.    Return values follow those of the
-compareTo: methods.

See also:    -endcasecmp:, -endcmp:, -endcmp:n:, -endCompareTo:, -endCompareTo:caseSensitive:,
-endCompareTo:n:, and    -endCompareTo:n:caseSensitive:

endcmp:
- endcmp:(const char *)aString

Performs a case sensitive comparison of    aString with the end of    buffer.    Return values follow those of the -compareTo:
methods.    This is like calling -endcmp:n: with n set to -1.

See also:    -endcmp:n, -endcasecmp:, -endcasecmp:n:, -endCompareTo:, -endCompareTo:caseSensitive:,
-endCompareTo:n:, and    -endCompareTo:n:caseSensitive:

endcmp:n:
- endcmp:(const char *)aString n:(int)n

Performs a case sensitive comparison of    the last n characters of buffer with the last n characters of    aString.    If n is -1 or n
is greater than the length of either string, n is set to the length of the shorter string.    Return values follow those of the
-compareTo: methods.

See also:    -endcmp:, -endcasecmp:, -endcasecmp:n:, -endCompareTo:, -endCompareTo:caseSensitive:,
-endCompareTo:n:, and    -endCompareTo:n:caseSensitive:

endCompareTo:
- endCompareTo:(id)sender

Performs a case sensitive comparison of the -stringValue of sender with the end of buffer.    Return values follow those of
the -compareTo: methods.    This is like calling the -endCompareTo:n:caseSensitive: with n set to -1 and sense set to YES.

See also:    -endCompareTo:caseSensitive:, -endCompareTo:n:,    -endCompareTo:n:caseSensitive:, -endcmp:,
-endcmp:n:, -endcasecmp:, and -endcasecmp:n:

endCompareTo:caseSensitive:
- endCompareTo:(id)sender caseSensitive:(BOOL)sense

Compares the last n characters of sender's -stringValue with the last n characters of buffer.    If sense is NO, the comparison
is case insensitive.    Return values follow those of the -compareTo: methods.    This is like calling the -endCompareTo:n:
caseSensitive: method with n set to -1.

See also:    -endCompareTo:, -endCompareTo:n:,    -endCompareTo:n:caseSensitive:, -endcmp:, -endcmp:n:,
-endcasecmp:, and -endcasecmp:n:

endCompareTo:n:
- endCompareTo:(id)sender n:(int)n

Performs a case sensitive comparison of the last n characters of sender's -stringValue with the last n characters of buffer.    If
n is -1 or n is greater than the length of either string, n is set to the length of the shorter string.    Return values follow those
of the -compareTo: methods.    This is like calling the -endCompareTo:n:caseSensitive: method with sense set to YES.

See also:    -endCompareTo:, -endCompareTo:caseSensitive:,    -endCompareTo:n:caseSensitive:, -endcmp:,
-endcmp:n:, -endcasecmp:, and -endcasecmp:n:

endCompareTo:n:caseSensitive:
- endCompareTo:(id)sender n:(int)n caseSensitive:(BOOL)sense

Compares the last n characters of sender's -stringValue with the last n characters of buffer.    If n is -1 or n is greater than the
length of either string, n is set to the length of the shorter string.    If sense is NO, the comparison is case insensitive.    Return
values follow those of the -compareTo: methods.

See also:    -endCompareTo:, -endCompareTo:caseSensitive:, -endCompareTo:n:, -endcmp:, -endcmp:n:,
-endcasecmp:, and -endcasecmp:n:

extractPart:useAsDelimiter:
- extractPart:(int)n useAsDelimiter:(char)c

Same as ±extractPart:useAsDelimiter:caseSensitive:fromZone: using the same zone as the MiscString which received
the message and with sense set to YES.

See also:    -extractPart:useAsDelimiter:caseSensitive:, -extractPart:useAsDelimiter:caseSensitive:fromZone:,
-extractPart:useAsDelimiter:fromZone:, -fileName, -fileNameFromZone:, -pathName,
-pathNameFromZone:, and -wordNum:

extractPart:useAsDelimiter:caseSensitive:
- extractPart:(int)n useAsDelimiter:(char)c caseSensitive:(BOOL)sense

Same as ±extractPart:useAsDelimiter:caseSensitive:fromZone: using the same zone as the MiscString which received
the message.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:fromZone:,
-extractPart:useAsDelimiter:fromZone:, -fileName, -fileNameFromZone:, -pathName,
-pathNameFromZone:, and -wordNum:

extractPart:useAsDelimiter:caseSensitive:fromZone:
- extractPart:(int)n useAsDelimiter:(char)c caseSensitive:(BOOL)sense fromZone:(NXZone *)zone

This method allows you to extract substring from strings which have fields delimited by a particular character.    This is
useful for getting at tab-delimited fields, entries from files like /etc/passwd (delimited by ª:º) and parts of UNIX paths.    The
first field is part number one; you can also use the constants MISC_STRING_FIRST and MISC_STRING_LAST to specify
the first and last fields, respectively.    The character used to delimit fields is specified by c.    By setting sense to YES or NO,
you can control whether or not the delimiter is case sensitive.    A new MiscString is returned, allocated from zone.    If the
field specified does not exist (i.e. you specified field 7 when there are only 6 fields, etc.) then nil is returned.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
-extractPart:useAsDelimiter:fromZone:, -fileName, -fileNameFromZone:, -pathName,
-pathNameFromZone:, and -wordNum:

extractPart:useAsDelimiter:fromZone:
- extractPart:(int)n useAsDelimiter:(char)c fromZone:(NXZone *)zone

Same as ±extractPart:useAsDelimiter:caseSensitive:fromZone: with sense set to YES.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
-extractPart:useAsDelimiter:caseSensitive:fromZone:, -fileName, -fileNameFromZone:, -pathName,
-pathNameFromZone:, and -wordNum:

fileBasename
-    fileBasename

Returns a new MiscString which is the basename of the file represented by the receiver.    All path elements and the last
extension are stripped off, as determined by the current path and extension separators.    The new MiscString is allocated
from the receiver's zone.

See also:    -x

fileBasenameFromZone:
-    fileBasenameFromZone:(NXZone *)zone

Returns a new MiscString which is the basename of the file represented by the receiver.    All path elements and the last

extension are stripped off, as determined by the current path and extension separators.    The new MiscString is allocated
from zone.

See also:    -x

fileExtension
-    fileExtension

Returns a new MiscString which is the last extension of the file represented by the receiver.    All path elements, the base
name, and the all but the last extension are stripped off, as determined by the current path and extension separators.    The
new MiscString is allocated from the receiver's zone.

See also:    -x

fileExtensionFromZone:
-    fileExtensionFromZone:(NXZone *)zone

Returns a new MiscString which is the last extension of the file represented by the receiver.    All path elements, the base
name, and the all but the last extension are stripped off, as determined by the current path and extension separators.    The
new MiscString is allocated from zone.

See also:    -x

fileName
- fileName

Same as the ±fileNameFromZone: method.    The new MiscString is in the same zone as the receiver.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
±extractPart:useAsDelimiter:caseSensitive:fromZone:, -extractPart:useAsDelimiter:fromZone:,
-fileNameFromZone:, -pathName, -pathNameFromZone:, and -wordNum:

fileNameFromZone:
- fileNameFromZone:(NXZone *)zone

Assuming that the receiving MiscString contains a UNIX path name of some sort, this method returns a new MiscString
instance which contains the filename portion of a path name.    This amounts to the part of the receiver from the character
after the last ª/º to the end of the string.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
±extractPart:useAsDelimiter:caseSensitive:fromZone:, -extractPart:useAsDelimiter:fromZone:, -fileName,
-pathName, -pathNameFromZone:, and -wordNum:

fixStringLength
-    fixStringLength

Truncates the string buffer to the length of the string stored in the MiscString.    Returns self.

See also:    -x

fixStringLengthAt:
-    fixStringLengthAt:(unsigned)index

Truncates the string buffer to index; if the MiscString contains a string longer than index, then it is truncated accordingly.   
Returns self.

See also:    -x

floatValue
-    (float)floatValue

Returns the floating point value of the receiver, if the receiving string begins with a properly formed floating point number.
Any trailing non-numeric characters are ignored.    If the receiving string doesn't begin with a number, a zero is returned.

See also:    -x

free
- free

Deallocates the MiscString and the contents of buffer.

freeString
- freeString

Frees the contents of buffer and sets the length of the MiscString to zero.

getCopyInto:

-    (char *)getCopyInto:(char *)buf

Copies the receiver's string buffer into the buffer buf.    It is up to the programmer to be sure that buf is large enough to
contain the complete contents of the receiver; if not, a memory violation will occur.    Returns buf.    If buf is NULL, a new
buffer of the proper size will be created and returned instead of buf with the receiver's contents copied into it.

See also:    -x

getIBImage
-    (NXImage *)getIBImage

This method is used by InterfaceBuilder to obtain the image to display in the objects window when the MiscString has been
dragged off of a palette.    If the proper image is available, it is returned; otherwise nil is returned.

See also:    -x

getInspectorClassName
-    (const char *)getInspectorClassName

This method is used by InterfaceBuilder and returns the name of the MiscSting's inspector class when it has been dragged
off of an InterfaceBuilder palette.

See also:    -x

grep:
grep:caseSensitive:

grep:occurrenceNum:
grep:occurrenceNum:caseSensitive:
grep:before:middle:after:
grep:caseSensitive:before:middle:after:
grep:occurrenceNum:before:middle:after:
grep:occurrenceNum:caseSensitive:before:middle:after:

-    (int)grep:(const char *)pattern
-    (int)grep:(const char *)pattern caseSensitive:(BOOL)sense
-    (int)grep:(const char *)pattern occurrenceNum:(int)n
-    (int)grep:(const char *)pattern occurrenceNum:(int)n caseSensitive:(BOOL)sense
-    (int)grep:(const char *)pattern before:bstring middle:mstring after:astring
-    (int)grep:(const char *)pattern caseSensitive:(BOOL)sense before:bstring middle:mstring after:astring
-    (int)grep:(const char *)pattern occurrenceNum:(int)n before:bstring middle:mstring after:astring
-    (int)grep:(const char *)pattern occurrenceNum:(int)n caseSensitive:(BOOL)sense before:bstring middle:mstring

after:astring

Returns 1 if the nth occurrence of the regular expression pattern is found in buffer, returns 0 if not, and returns -1 if pattern
is not a legal regular expression.    If sense is NO, then the search ignores case.    The receiver is split into three strings, the
part before the match, the part that matched, and the part after the match.    Each part is placed into bstring, mstring, and
astring respectively, each of which should be an object which responds to -setStringValue:.    If any of bstring, mstring, or
astring are nil, then that portion is ignored.    You may use the constants MISC_STRING_FIRST and
MISC_STRING_LAST for n to specify the first and last matches, respectively.    Usage of MISC_STRING_LAST may take
a little longer because it calls -rspotOfRegex: to find the last part.    This method leaves the receiving MiscString
unchanged.    In the degenerate methods, sense defaults to YES, n defaults to 0 (the first occurrence), and bstring, mstring,
and astring all default to nil.

See also:    -matchesRegex:...

grepString:
-    (int)grepString:pattern

Returns 1 if the receiver matches the regular expression pattern, stored in a MiscString, returns 0 if not, and returns -1 if
pattern is not a legal regular expression.    The matching is case sensitive.

See also:    -grep:...

grepString:caseSensitive:
-    (int)grepString:pattern

caseSensitive:(BOOL)caseSens

Returns 1 if the receiver matches the regular expression pattern, stored in a MiscString, returns 0 if not, and returns -1 if
pattern is not a legal regular expression.    If caseSens is true, then the match is case sensitive; if false then the match is not
case sensitive.

See also:    -grep:...

grepString:caseSensitive:before:middle:after:
-    (int)grepString:pattern

caseSensitive:(BOOL)caseSens
before:bstring
middle:mstring
after:astring

Returns 1 if a portion of the receiver matches the regular expression pattern, stored in a MiscString, returns 0 if not, and

returns -1 if pattern is not a legal regular expression.    If caseSens is true, then the match is case sensitive; if false then the
match is not case sensitive.    The receiver is split into three strings, the part before the match, the part that matched, and the
part after the match.    Each part is placed into bstring, mstring, and astring respectively, each of which should be a
MiscString (or subclass).    If any of bstring, mstring, or astring are nil, then that portion is ignored.    This method leaves the
receiving MiscString unchanged.

See also:    -grep:...

hash
-    (unsigned int)hash

Returns a hash value for the string contained by the MiscString, as determined by the NXStrHash() function.

See also:    -x

index:
- (const char *)index:(char)aChar

Returns a pointer to the leftmost occurrence of aChar in buffer.    The search is case sensitive.    Returns NULL if aChar is
not found.

See also:    -index:... and -rindex:...

index:caseSensitive:
- (const char *)index:(char)aChar caseSensitive:(BOOL)sense

Returns a pointer to the leftmost occurrence of aChar in buffer.    If sense is NO, then the search ignores case.    Returns
NULL if aChar is not found.

See also:    -index:... and -rindex:...

index:occurrenceNum:
- (const char *)index:(char)aChar occurrenceNum:(int)n

Returns a pointer to the nth occurrence of aChar in buffer going from left to right.    The search is case sensitive.    Returns
NULL if the nth occurrence of aChar is not found.    Occurences start numbering at zero, not one.

See also:    -index:... and -rindex:...

index:occurrenceNum:caseSensitive:
- (const char *)index:(char)aChar occurrenceNum:(int)n caseSensitive:(BOOL)sense

Returns a pointer to the nth occurrence of aChar in buffer going from left to right.    If sense is NO, then the search ignores
case.    Returns NULL if the nth occurrence of aChar is not found.    Occurences start numbering at zero, not one.

See also:    -index:... and -rindex:...

indexOfChars:
- (const char *)indexOfChars:(const char *)aString

Returns a char pointer to the leftmost occurrence in buffer of any of the characters in aString.    The search is case sensitive.
Returns -1 if aChar is not found.

See also:    -indexOfChars:..., -rindexOfChars:..., -spotOfChars:..., -rspotOfChars:..., -index:..., -rindex:..., -spotOf:...,
and -rspotOf:...

indexOfChars:caseSensitive:
- (const char *)indexOfChars:(const char *)aString caseSensitive:(BOOL)sense

Returns a char pointer to the leftmost occurrence in buffer of any of the characters in aString.    If sense is NO, then the
search ignores case.    Returns -1 if aChar is not found.

See also:    -indexOfChars:..., -rindexOfChars:..., -spotOfChars:..., -rspotOfChars:..., -index:..., -rindex:..., -spotOf:...,
and -rspotOf:...

indexOfChars:occurrenceNum:
- (const char *)indexOfChars:(const char *)aString occurrenceNum:(int)n

Returns a char pointer to the nth occurrence in buffer of any of the characters in aString going from left to right.    Use n=0
for the first occurrence.    The search is case sensitive.    Returns -1 if the nth occurrence of aChar is not found.    Occurences
start numbering at zero, not one.

See also:    -indexOfChars:..., -rindexOfChars:..., -spotOfChars:..., -rspotOfChars:..., -index:..., -rindex:..., -spotOf:...,
and -rspotOf:...

indexOfChars:occurrenceNum:caseSensitive:
- (const char *)indexOfChars:(const char *)aString occurrenceNum:(int)n caseSensitive:(BOOL)sense

Returns a char pointer to the nth occurrence in buffer of any of the characters in aString going from left to right.    Use n=0
for the first occurrence.    If sense is NO, then the search ignores case.    Returns -1 if the nth occurrence is not found.   
Occurences start numbering at zero, not one.

See also:    -indexOfChars:..., -rindexOfChars:..., -spotOfChars:..., -rspotOfChars:..., -index:..., -rindex:..., -spotOf:...,
and -rspotOf:...

init
- init

Initializes a new MiscString instance.    Returns self.

See also:    ±initString:

initCapacity:
-    initCapacity:(int)capacity

Initializes the receiver with a buffer of size capacity, taken from the same zone as the receiver.

See also:    -x

initCapacity:fromZone:
-    initCapacity:(int)capacity

fromZone:(NXZone *)zone

Initializes the receiver with a buffer of size capacity, taken from the zone zone.

See also:    -x

initDirectory:file:
-    initDirectory:(const char *)dir

file:(const char *)file

Initializes a new MiscString instance to represent the complete path to the file specified by dir and file.

See also:    -x

initFromFormat:
-    initFromFormat:(const char *)formatStr, ...

Initializes the receiver and sets it to the string generated from evaluating the format formatStr and subsequent arguments.   
Returns self.

See also:    -x

initString:
- initString:(const char *)aString

This method calls the ±init method and then calls the ±setStringValue method with aString as the argument.

See also:    ±init, -setStringValue:

insert:
- insert:(const char *)aString

Inserts aString at the beginning of buffer.    Returns self.

See also:    ±insert:at:, -insertChar:at:, -insertString: and -insertString:at:

insert:at:
- insert:(const char *)aString at:index

Inserts aString into buffer at position index.    Returns self.

See also:    ±insert:, -insertChar:at:, -insertString: and -insertString:at:

insertAt:fromFormat:
-    insertAt:(int)index

fromFormat:(const char *)format, ...

Creates a new string using format and the subsequent arguments and inserts it intot he receiver at index.    Returns self.

See also:    -x

insertAt:fromFormat:valist:
-    insertAt:(int)index

fromFormat:(const char *)format
valist:(va_list)param_list

Same a ±insertAt:fromFormat: except that the argument types are different.    Returns self.

See also:    -x

insertChar:
- insertChar:(char)aChar

Inserts aChar at the beginning of buffer.    Returns self.

See also:    ±insertChar:at:, ±insert:, -insert:at:, -insertString: and -insertString:at:

insertChar:at:
- insertChar:(char)aChar at:index

Inserts aChar into buffer at position index. aChar can not be 0 (null character); if this is the case, nothing happens.   
Returns self.

See also:    ±insert:, -insert:at:, -insertString: and -insertString:at:

insertFromFormat:
-    insertFromFormat:(const char *)format, ...

Same as calling ±insertAt:FromFormat: with 0 for index.

See also:    -x

insertString:
- insertString:(id)sender

Inserts the ±stringValue of sender at the beginning of buffer.    Returns self.

See also:    ±insert:, -insert:at:, ±insertChar:at:, and -insertString:at:

insertString:at:
- insertString:(id)sender at:index

Inserts the ±stringValue of sender into buffer at position index.    Returns self.

See also:    ±insert:, -insert:at:, ±insertChar:at:, and -insertString:

intValue
-    (int)intValue

Returns the integer value of the string; if the string is non-numeric or doesn't begin with a number, then a zero is returned.   
Any non-numeric characters following the number at the start of the string are ignored.

See also:    -x

invertCases:
- invertCases

Inverts the case of every character in buffer.    Returns self.

See also:    ±toLower, -toUpper

isAbsolutePath
-    (BOOL)isAbsolutePath

If the receiving MiscString begins with the path element separator, then it is considered to be an absolute path and YES is
returned.    Otherwise a NO is returned.

See also:    -x

isEqual:
- (BOOL)isEqual:(id)anObject

Returns YES if the string value of anObject is the same as the string value of the receiver.

isFileOfType:
-    (BOOL)isFileOfType:(MiscFileType)fileType

Returns YES if the MiscString contains the path to an existing file which is of type fileType.    See Types and Constants for a
listing of valid file types.

See also:    -x

isRelativePath

-    (BOOL)isRelativePath

If the receiving MiscString doesn't begin with the path element separator, then it is considered to be a relative path and YES
is returned.    Otherwise a NO is returned.

See also:    -x

left:
- left:(int)count

Returns a new MiscString object which is composed of the first count characters of buffer.    The new object is allocated
from the receiver's zone.

See also:    -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, -midFrom:to:fromZone:,
-right: and    -right:fromZone:

left:fromZone:
- left:(int)count fromZone:(NXZone *)zone

Returns a new MiscString object which is composed of the first count characters of buffer.    The new object is allocated
from zone.

See also:    -left:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, -midFrom:to:fromZone:, -right:, and
-right:fromZone:

length

- (int)length

Returns the length of the string in buffer.

See also:    -emptyString

makeCaseInsensitiveSearchString
-    makeCaseInsensitiveSearchString

Creates a new MiscString and converts it into a Sybase-compatible case-insensitive search string.    Returns self.

See also:    -x

matchesRegex:
matchesRegex:caseSensitive:

-    (int)matchesRegex:(const char *)pattern
-    (int)matchesRegex:(const char *)pattern caseSensitive:(BOOL)sense

Checks to see if buffer matches up directly with the regular expression pattern.    Returns 0 if it does not match, otherwise,
returns the length of the matched portion.    An error, such as an illegal regular expression, also returns 0.    This makes it
possible to use this method as if it returned a BOOL.    In the degenerate method, sense defaults to YES.

See also: -grep:...    and    -spotOfRegex:...

midFrom:length:
- midFrom:(int)start length:(int)len

Returns a new MiscString object which is composed of len characters of buffer starting with the startth character.    The new
object is allocated from the receiver's zone.

See also:    -left:, -left:fromZone:, -midFrom:length:fromZone:, -midFrom:to:, -midFrom:to:fromZone:, -right:, and
-right:fromZone:

midFrom:length:fromZone:
- midFrom:(int)start length:(int)len fromZone:(NXZone *)zone

Returns a new MiscString object which is composed of len characters of buffer starting with the startth character.    The new
object is allocated from zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:to:, -midFrom:to:fromZone:, -right:, and
-right:fromZone:

midFrom:to:
- midFrom:(int)start to:(int)end

Returns a new MiscString object which is composed of the characters of buffer from the startth character to the endth
character inclusive.    The new object is allocated from the receiver's zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:fromZone:, -right:,
and -right:fromZone:

midFrom:to:fromZone:

- midFrom:(int)start to:(int)end fromZone:(NXZone *)zone

Returns a new MiscString object which is composed of the characters of buffer from the startth character to the endth
character inclusive.    The new object is allocated from zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:, -right:, and
-right:fromZone:

new
- new

Returns a new, empty MiscString object of the same class as the receiver.

nthQuotedField
-    nthQuotedField:(int)fieldNumber

Returns a new MiscString which contains the contents of the fieldNumberth quoted section.    Nested quotes will confuse the
parsing since deciding whether or not a section of the string is quoted is determined by whether the opening quotation mark
is the nth quotation mark where n is odd.    Numbering starts at zero.

See also:    -x

numberOfPathComponents
-    (int)numberOfPathComponents

Returns the number of path components in the MiscString, assuming that is contains a filename and path, using the current

path component separators.

See also:    -x

numOfChar:
- (int)numOfChar:(char)aChar

Identical to calling the ±numOfChar:caseSensitive: method with a YES as the value of sense.

See also:    -numOfChar:caseSensitive:, -numOfChars:, and -numOfChar:caseSensitive:

numOfChar:caseSensitive:
- (int)numOfChar:(char)aChar caseSensitive:(BOOL)sense

Returns the number of times the given character occurs in buffer.    If sense is NO, then the search ignores case.

See also:    -numOfChar:, -numOfChars:, and -numOfChar:caseSensitive:

numOfChars:
- (int)numOfChars:(const char *)aString

Identical to calling the ±numOfChars:caseSensitive: method with a YES as the value of sense.

See also:    -numOfChars:caseSensitive:, -numOfChar:, and -numOfChar:caseSensitive:

numOfChars:caseSensitive:
- (int)numOfChars:(const char *)aString caseSensitive:(BOOL)sense

Returns the number of times any character in aString occurs in buffer.    If sense is NO, then the search ignores case.

See also:    -numOfChars:, -numOfChar:, and -numOfChar:caseSensitive:

numOfRegex:
numOfRegex:caseSensitive:

-    (int)numOfRegex:(const char *)pattern
-    (int)numOfRegex:(const char *)pattern caseSensitive:(BOOL)sense

Returns the number of times the regular expression pattern is matched in buffer.    Returns -1 if some kind of error occurred,
such as an illegal regular expression.    In the degenerate method, sense defaults to YES.

See also:    -replaceEveryOccurrenceOfRegex:...    and -grep:...

numWords
- (int)numWords

Returns the number of words in buffer.    Words are separated by any number of spaces, carriage returns, newlines, vertical
tabs, or formfeeds (not punctuation characters).

pathComponentAt:
-    pathComponentAt:(int)index

Returns a MiscString containing the indexth path component; the first component is number zero.

See also:    -x

pathName
- pathName

Same as the ±pathNameFromZone: method with the returned MiscString coming from the receiver's zone.

See also:    -extractPart:..., -fileName, -fileNameFromZone:, -pathNameFromZone:, and -wordNum:

pathNameFromZone:
- pathNameFromZone:(NXZone *)zone

Assuming that the receiving MiscString contains a UNIX path name of some sort, this method returns a new MiscString
instance which contains the path portion of a path name.    This amounts to the part of the receiver from the start of the string
up to, but not including, the last ª/º.

See also:    -extractPart:useAsDelimiter:, -extractPart:useAsDelimiter:caseSensitive:,
±extractPart:useAsDelimiter:caseSensitive:fromZone:, -extractPart:useAsDelimiter:fromZone:, -fileName,
-fileNameFromZone:, -pathName, and -wordNum:

printForDebugger:
-    printForDebugger:(NXStream *)stream

Prints information about the receiver onto stream.    The data printed is identical in content and format to that produced by

±buildInstanceImageIn:.

See also:    -buildInstanceImageIn:, and ± printToStdErr:

printToStdErr:
-    printToStdErr:(const char *)label

Prints a line of information about the receiver to stderr with the label label and the class and id of the receiver prepended to
the output.    The data printed is identical in content and format to that produced by ±buildInstanceImageIn:.

See also:    ±buildInstanceImageIn, and -printForDebugger:

read:
- read:(NXTypedStream *)stream

Reads the MiscString from the typed stream stream.    Returns self.

See also:    - write:

recalcLength
- recalcLength

Recalculates the length of the string contained by the MiscString.    Under normal circumstances, this should be unnecessary
as any message sent to the MiscString which alters the length of the string will update the cached string length.    Returns
self.

See also:    -fixlength, and ±fixLengthAt:

removeFrom:length:
- removeFrom:(int)start length:(int)len

Removes len characters from buffer starting with the startth character.    Will not take any action if len is zero or if start is out
of range.    Returns self.

See also:    - removeFrom:to:

removeFrom:to:
- removeFrom:(int)start to:(int)end

Removes all the characters of buffer from the startth character to the endth character inclusive.    Will not take any action if
start or end is out of range.    Returns self.

See also:    - removeFrom:length:

replace:with:
- replace:(const char *)subString with:(const char *)newString

Searches buffer for subString and, if found, replaces it with newString.    Returns self.

See also:    - replace:withString:

replace:withString:

- replace:(const char *)subString withString:(id)sender

Searches buffer for subString and, if found, replaces it with the ±stringValue of sender.    Returns self.

See also:    - replace:with:

replaceCharAt:withChar:
- replaceCharAt:(int)index withChar:(char)aChar

Replaces the indexth character of    buffer with aChar.    aChar can not be 0 (null character); if this is the case, nothing
happens.    Returns self.

replaceEveryOccurrenceOfChar:with:
- replaceEveryOccurrenceOfChar:(char)aChar with:(const char *)aString

Identical to calling the -replaceEveryOccurrenceOfChar:with:caseSensitive: method with a YES as the value of sense.

See also: -replaceEveryOccurrenceOfChar:...

replaceEveryOccurrenceOfChar:with:caseSensitive:
- replaceEveryOccurrenceOfChar:(char)aChar with:(const char *)aString caseSensitive:(BOOL)sense

Replaces each occurrence of aChar within buffer with the given string.    A NULL argument is allowed for aString; this in
effect will just remove all occurrences of aChar.    If sense is NO, the search will ignore case--all upper and lower case
versions of aChar will be replaced.    Returns self.

See also:    -replaceEveryOccurrenceOfChar:...

replaceEveryOccurrenceOfChar:withChar:
- replaceEveryOccurrenceOfChar:(char)aChar withChar:(char)replaceChar

Identical to calling the -replaceEveryOccurrenceOfChar:withChar:caseSensitive: method with a YES as the value of
sense.

See also:    -replaceEveryOccurrenceOfChar:...

replaceEveryOccurrenceOfChar:withChar:caseSensitive:
- replaceEveryOccurrenceOfChar:(char)aChar withChar:(char)replaceChar caseSensitive:(BOOL)sense

Replaces each occurrence of aChar within buffer with replaceChar.    Returns nil if replaceChar is the NULL character.    If
sense is NO, the search will ignore case--all upper and lower case versions of aChar will be replaced.    Returns self.

See also:    -replaceEveryOccurrenceOfChar:...

replaceEveryOccurrenceOfChar:withString:
- replaceEveryOccurrenceOfChar:(char)aChar withString:(id)sender

Identical to calling the -replaceEveryOccurrenceOfChar:withString:caseSensitive: method with a YES as the value of
sense.

See also:    -replaceEveryOccurrenceOfChar:...

replaceEveryOccurrenceOfChar:withString:caseSensitive:
- replaceEveryOccurrenceOfChar:(char)aChar withString:(id)sender caseSensitive:(BOOL)sense

Replaces each occurrence of aChar within buffer with the ±stringValue of sender.    If sense is NO, the search will ignore
case--all upper and lower case versions of aChar will be replaced.    Returns self.

See also:    -replaceEveryOccurrenceOfChar:...

replaceEveryOccurrenceOfChars:with:
- replaceEveryOccurrenceOfChars:(const char *)aString with:(const char *)replaceString

Identical to calling the -replaceEveryOccurrenceOfChars:with:caseSensitive: method with a YES as the value of sense.

See also: -replaceEveryOccurrenceOfChars:...

replaceEveryOccurrenceOfChars:with:caseSensitive:
- replaceEveryOccurrenceOfChars:(const char *)aString with:(const char *)replaceString caseSensitive:

(BOOL)sense

Replaces each occurrence of any character in aString within buffer with replaceString.    A NULL argument is allowed for
replaceString; this in effect will just remove all occurrences of matched characters.    If sense is NO, the search will ignore
case--all upper and lower case versions of characters in aString will be replaced.    Returns self.

See also:    -replaceEveryOccurrenceOfChars:...

replaceEveryOccurrenceOfChars:withChar:

- replaceEveryOccurrenceOfChars:(const char *)aString withChar:(char)replaceChar

Identical to calling the -replaceEveryOccurrenceOfChars:withChar:caseSensitive: method with a YES as the value of
sense.

See also:    -replaceEveryOccurrenceOfChars:...

replaceEveryOccurrenceOfChars:withChar:caseSensitive:
- replaceEveryOccurrenceOfChars:(const char *)aString withChar:(char)replaceChar caseSensitive:(BOOL)sense

Replaces each occurrence of any character in aString within buffer with replaceChar.    Returns nil if replaceChar is the
NULL character.    If sense is NO, the search will ignore case--all upper and lower case versions of characters in aString will
be replaced.    Returns self.

See also:    -replaceEveryOccurrenceOfChars:...

replaceEveryOccurrenceOfChars:withString:
- replaceEveryOccurrenceOfChars:(const char *)aString withString:(id)sender

Identical to calling the -replaceEveryOccurrenceOfChars:withString:caseSensitive: method with a YES as the value of
sense.

See also:    -replaceEveryOccurrenceOfChars:...

replaceEveryOccurrenceOfChars:withString:caseSensitive:
- replaceEveryOccurrenceOfChars:(const char *)aString withString:(id)sender caseSensitive:(BOOL)sense

Replaces each occurrence of any character in aString within buffer with the ±stringValue of sender.    If sense is NO, the
search will ignore case--all upper and lower case versions of characters in aString will be replaced.    Returns self.

See also:    -replaceEveryOccurrenceOfChars:...

replaceEveryOccurrenceOfRegex:with:
replaceEveryOccurrenceOfRegex:with:caseSensitive:

-    (int)replaceEveryOccurrenceOfRegex:(const char *)pattern with:(const char *)replacement
-    (int)replaceEveryOccurrenceOfRegex:(const char *)pattern with:(const char *)replacement caseSensitive:

(BOOL)sense

Replaces every occurrence of the regular expression pattern with replacement.    If sense is NO, the search ignores case.    If
it is an illegal regular expression, then nothing happens and -1 gets returned.    Otherwise, returns the number of times a
match was replaced.    In the degenerate method, sense defaults to YES.

See also:    -replaceRegex:... and -grep:...

replaceEveryOccurrenceOfRegex:withChar:
replaceEveryOccurrenceOfRegex:withChar:caseSensitive:

-    (int)replaceEveryOccurrenceOfRegex:(const char *)pattern withChar:(char)aChar
-    (int)replaceEveryOccurrenceOfRegex:(const char *)pattern withChar:(char)aChar caseSensitive:(BOOL)sense

Identical to -replaceEveryOccurrenceOfRegex:with:caseSensitive: except that the regular expression gets replaced with
the character aChar.

See also:    -replaceRegex:...    and -grep:...

replaceEveryOccurrenceOfRegex:withString:
replaceEveryOccurrenceOfRegex:withString:caseSensitive:

-    (int)replaceEveryOccurrenceOfRegex:(const char *)pattern withString:(id)sender
-    (int)replaceEveryOccurrenceOfRegex:(const char *)pattern withString:(id)sender caseSensitive:(BOOL)sense

Identical to -replaceEveryOccurrenceOfRegex:with:caseSensitive: except that the regular expression gets replaced with
the -stringValue of sender.

See also:    -replaceRegex:...    and -grep:...

replaceFrom:length:with:
- replaceFrom:(int)start length:(int)len with:(const char *)aString

Replaces len characters from buffer, starting with the startth character, with aString.    Returns self.    Will not take any action
if len is zero or if start is out of range.

See also:    - replaceFrom:length:withString:, - replaceFrom:to:with:, and - replaceFrom:to:withString:

replaceFrom:length:withChar:
- replaceFrom:(int)start length:(int)len withChar:(char)aChar

Replaces len characters from buffer, starting with the startth character, with aChar.    Returns self.    Will not take any action
if len is zero or if start is out of range.

See also:    - replaceFrom:length:withString:, - replaceFrom:to:with:, and - replaceFrom:to:withString:

replaceFrom:length:withString:
- removeFrom:(int)start length:(int)end withString:(id)sender

Replaces len characters from buffer, starting with the startth character, with the ±stringValue of sender.    Returns self.    Will
not take any action if len is zero or if start is out of range.

See also:    - replaceFrom:length:with:, - replaceFrom:to:with:, and - replaceFrom:to:withString:

replaceFrom:to:with:
- replaceFrom:(int)start to:(int)end with:(const char *)aString

Replaces all the characters of buffer, from the startth character to the endth character inclusive, with aString.    Returns self.   
Will not take any action if start or end is out of range.

See also:    - replaceFrom:length:with:, - replaceFrom:length:withString:, and - replaceFrom:to:withString:

replaceFrom:to:withChar:
- replaceFrom:(int)start to:(int)end withChar:(char)achar

Replaces all the characters of buffer, from the startth character to the endth character inclusive, with aChar.    Returns self.   
Will not take any action if start or end is out of range.

See also:    - replaceFrom:length:with:, - replaceFrom:length:withString:, and - replaceFrom:to:withString:

replaceFrom:to:withString:

- removeFrom:(int)start to:(int)end withString:(id)sender

Replaces all the characters of buffer, from the startth character to the endth character inclusive, with the ±stringValue of
sender.    Returns self.    Will not take any action if start or end is out of range.

See also:    - replaceFrom:length:with:, - replaceFrom:length:withString:, and - replaceFrom:to:with:

replaceHomeWithTilde
- replaceHomeWithTilde

If the beginning of buffer matches the string returned by NXHomeDirectory(), that portion of the string is replaced with the
character '~'.    Returns self.

See also:    -replaceTildeWithHome

replacePattern:caseSensitive:globally:with:
-    (int)replacePattern:(const char *)pattern

caseSensitive:(BOOL)caseSens
globally:(BOOL)glob
with:(const char *)replacement

Searches the MiscString for segments which match the regular expression pattern and replaces them with replacement.    The
search is case sensitive if caseSens is true, otherwise it is not case sensitive.    If glob is true, then all matches will be
replaced; if glob is false, then only the first match will be replaced.    This method is now considered obsolete.    You should
use a ±replaceRegex: variant instead.

See also:    -x

replacePattern:caseSensitive:globally:withString:
-    (int)replacePattern:(const char *)pattern

caseSensitive:(BOOL)caseSens
globally:(BOOL)glob
withString:replacement

Searches the MiscString for segments which match the regular expression pattern and replaces them with the MiscString
replacement.    The search is case sensitive if caseSens is true, otherwise it is not case sensitive.    If glob is true, then all
matches will be replaced; if glob is false, then only the first match will be replaced.    This method is now considered
obsolete.    You should use a ±replaceRegex: variant instead.

See also:    -x

replacePatternString:caseSensitive:globally:with:
-    (int)replacePatternString:patternL

caseSensitive:(BOOL)caseSens
globally:(BOOL)glob
with:(const char *)replacement

Searches the MiscString for segments which match the regular expression in the MiscString pattern and replaces them with
replacement.    The search is case sensitive if caseSens is true, otherwise it is not case sensitive.    If glob is true, then all
matches will be replaced; if glob is false, then only the first match will be replaced.    This method is now considered
obsolete.    You should use a ±replaceRegex: variant instead.

See also:    -x

replacePatternString:caseSensitive:globally:withString:
-    (int)replacePatternString:pattern

caseSensitive:(BOOL)caseSens
globally:(BOOL)glob
withString:replacementô

Searches the MiscString for segments which match the regular expression in the MiscString pattern and replaces them with
the MiscString replacement.    The search is case sensitive if caseSens is true, otherwise it is not case sensitive.    If glob is
true, then all matches will be replaced; if glob is false, then only the first match will be replaced.    This method is now
considered obsolete.    You should use a ±replaceRegex: variant instead.

See also:    -x

replaceRegex:with:
replaceRegex:with:caseSensitive:
replaceRegex:with:occurrenceNum:
replaceRegex:with:occurrenceNum:caseSensitive:

-    replaceRegex:(const char *)pattern with:(const char *)replacement
-    replaceRegex:(const char *)pattern with:(const char *)replacement caseSensitive:(BOOL)sense
-    replaceRegex:(const char *)pattern with:(const char *)replacement occurrenceNum:(int)n
-    replaceRegex:(const char *)pattern with:(const char *)replacement occurrenceNum:(int)n caseSensitive:

(BOOL)sense

Replaces the nth occurrence of the regular expression pattern with replacement.    If sense is NO, the search ignores case.    If
the nth occurrence of pattern is not found, then nothing happens.    Returns self.    In the degenerate methods, sense defaults
to YES and n defaults to 0 (the first occurrence).

See also:    -replaceEveryOccurrenceOfRegex:... and -grep:...

replaceRegex:withChar:
replaceRegex:caseSensitive:withChar:
replaceRegex:occurrenceNum:withChar:
replaceRegex:occurrenceNum:caseSensitive:withChar:

-    replaceRegex:(const char *)pattern withChar:(const)aChar
-    replaceRegex:(const char *)pattern caseSensitive:(BOOL)sense withChar:(const)aChar
-    replaceRegex:(const char *)pattern occurrenceNum:(int)n withChar:(char)aChar
-    replaceRegex:(const char *)pattern occurrenceNum:(int)n caseSensitive:(BOOL)sense withChar:(char)aChar

Identical to -replaceRegex:occurrenceNum:caseSensitive:with: except that the regular expression gets replaced with the
character aChar.

See also:    -replaceEveryOccurrenceOfRegex:... and -grep:...

replaceRegex:withString:
replaceRegex:caseSensitive:withString:
replaceRegex:occurrenceNum:withString:
replaceRegex:occurrenceNum:caseSensitive:withString:

-    replaceRegex:(const char *)pattern withString:(id)sender
-    replaceRegex:(const char *)pattern caseSensitive:(BOOL)sense withString:(id)sender
-    replaceRegex:(const char *)pattern occurrenceNum:(int)n withString:(id)sender
-    replaceRegex:(const char *)pattern occurrenceNum:(int)n caseSensitive:(BOOL)sense withString:(id)sender

Identical to -replaceRegex:occurrenceNum:caseSensitive:with: except that the regular expression gets replaced with the

-stringValue of sender.

See also:    -replaceEveryOccurrenceOfRegex:..., -grep:...

replaceTildeWithHome
- replaceTildeWithHome

If the first character of buffer is '~', it is replaced by the string returned by NXHomeDirectory().    Returns self.

See also:    -replaceHomeWithTilde

reverse
- reverse

Reverses the characters in buffer.    Returns self.

right:
- right:(int)count

Returns a new MiscString object which is composed of the last count characters of buffer.    The new object is allocated from
the receiver's zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:,
-midFrom:to:fromZone:, and    -right:fromZone:

right:fromZone:
- right:(int)count fromZone:(NXZone *)zone

Returns a new MiscString object which is composed of the last count characters of buffer.    The new object is allocated from
zone.

See also:    -left:, -left:fromZone:, -midFrom:length:, -midFrom:length:fromZone:, -midFrom:to:,
-midFrom:to:fromZone:, and -right:

rindex:
- (const char *)rindex:(char)aChar

Returns a pointer to the rightmost occurrence of aChar in buffer.    The search is case sensitive.    Returns NULL if aChar is
not found.

See also:    -index:... and -rindex:...

rindex:caseSensitive:
- (const char *)rindex:(char)aChar caseSensitive:(BOOL)sense

Returns a pointer to the rightmost occurrence of aChar in buffer.    If sense is NO, then the search ignores case.    Returns
NULL if aChar is not found.

See also:    -index:... and -rindex:...

rindex:occurrenceNum:

- (const char *)rindex:(char)aChar occurrenceNum:(int)n

Returns a pointer to the nth occurrence of aChar in buffer going from right to left.    The search is case sensitive.    Returns
NULL if the nth occurrence of aChar is not found.    Occurences start numbering at zero, not one.

See also:    -index:... and -rindex:...

rindex:occurrenceNum:caseSensitive:
- (const char *)rindex:(char)aChar occurrenceNum:(int)n caseSensitive:(BOOL)sense

Returns a pointer to the nth occurrence of aChar in buffer going from right to left.    If sense is NO, then the search ignores
case.    Returns NULL if the nth occurrence of aChar is not found.    Occurences start numbering at zero, not one.

See also:    -index:... and -rindex:...

rindexOfChars:
- (const char *)rindexOfChars:(const char *)aString

Returns a char pointer to the rightmost occurrence in buffer of any of the characters in aString.    The search is case sensitive.
Returns -1 if aChar is not found.

See also:    -rindexOfChars:..., -indexOfChars:..., -spotOfChars:..., -rspotOfChars:..., -index:..., -rindex:..., -spotOf:...,
and -rspotOf:...

rindexOfChars:caseSensitive:
- (const char *)rindexOfChars:(const char *)aString caseSensitive:(BOOL)sense

Returns a char pointer to the rightmost occurrence in buffer of any of the characters in aString.    If sense is NO, then the
search ignores case.    Returns -1 if aChar is not found.

See also:    -rindexOfChars:..., -indexOfChars:..., -spotOfChars:..., -rspotOfChars:..., -index:..., -rindex:..., -spotOf:...,
and -rspotOf:...

rindexOfChars:occurrenceNum:
- (const char *)rindexOfChars:(const char *)aString occurrenceNum:(int)n

Returns a char pointer to the nth occurrence in buffer of any of the characters in aString going from right to left.    Use n=0
for the first occurrence.    The search is case sensitive.    Returns -1 if the nth occurrence of aChar is not found.    Occurences
start numbering at zero, not one.

See also:    -rindexOfChars:..., -indexOfChars:..., -spotOfChars:..., -rspotOfChars:..., -index:..., -rindex:..., -spotOf:...,
and -rspotOf:...

rindexOfChars:occurrenceNum:caseSensitive:
- (const char *)rindexOfChars:(const char *)aString occurrenceNum:(int)n caseSensitive:(BOOL)sense

Returns a char pointer to the nth occurrence in buffer of any of the characters in aString going from right to left.    Use n=0
for the first occurrence.    If sense is NO, then the search ignores case.    Returns -1 if the nth occurrence is not found.   
Occurences start numbering at zero, not one.

See also:    -rindexOfChars:..., -indexOfChars:..., -spotOfChars:..., -rspotOfChars:..., -index:..., -rindex:..., -spotOf:...,
and -rspotOf:...

rspotOf:
- (int)rspotOf:(char)aChar

Returns the position number of the rightmost occurrence of aChar in buffer.    The search is case sensitive.    Returns -1 if
aChar is not found.

See also:    -spotOf:... and -rspotOf:...

rspotOf:caseSensitive
- (int)rspotOf:(char)aChar caseSensitive:(BOOL)sense

Returns the position number of the rightmost occurrence of aChar in buffer.    If sense is NO, then the search ignores case.   
Returns -1 if the nth occurrence is not found.

See also:    -spotOf:... and -rspotOf:...

rspotOf:occurrenceNum:
- (int)rspotOf:(char)aChar occurrenceNum:(int)n

Returns the position number of the nth occurrence of aChar in buffer going from right to left.    The search is case sensitive.
Returns -1 if the nth occurrence of aChar is not found.    Occurences start numbering at zero, not one.

See also:    -spotOf:... and -rspotOf:...

rspotOf:occurrenceNum:caseSensitive:
- (int)rspotOf:(char)aChar occurrenceNum:(int)n caseSensitive:(BOOL)sense

Returns the position number of the nth occurrence of aChar in buffer going from right to left.    If sense is NO, then the
search ignores case.    Returns -1 if the nth occurrence of aChar is not found.    Occurences start numbering at zero, not one.

See also:    -spotOf:... and -rspotOf:...

rspotOfChars:
- (int)rspotOfChars:(const char *)aString

Returns the position number of the rightmost occurrence in buffer of any of the characters in aString.    The search is case
sensitive.    Returns -1 if aChar is not found.

See also:    -spotOfChars:... and -rspotOfChars:...

rspotOfChars:caseSensitive:
- (int)rspotOfChars:(const char *)aString caseSensitive:(BOOL)sense

Returns the position number of the rightmost occurrence in buffer of any of the characters in aString.    If sense is NO, then
the search ignores case.    Returns -1 if aChar is not found.

See also:    -spotOfChars:... and -rspotOfChars:...

rspotOfChars:occurrenceNum:
- (int)rspotOfChars:(const char *)aString occurrenceNum:(int)n

Returns the position number of the nth occurrence in buffer of any of the characters in aString going from right to left.    Use
n=0 for the first occurrence.    The search is case sensitive.    Returns -1 if the nth occurrence of aChar is not found.   

Occurences start numbering at zero, not one.

See also:    -spotOfChars:... and -rspotOfChars:...

rspotOfChars:occurrenceNum:caseSensitive:
- (int)rspotOfChars:(const char *)aString occurrenceNum:(int)n caseSensitive:(BOOL)sense

Returns the position number of the nth occurrence in buffer of any of the characters in aString going from right to left.    Use
n=0 for the first occurrence.    If sense is NO, then the search ignores case.    Returns -1 if the nth occurrence is not found.   
Occurences start numbering at zero, not one.

See also:    -spotOfChars:..., and -rspotOfChars:...

rspotOfRegex:
rspotOfRegex:caseSensitive:
rspotOfRegex:occurrenceNum:
rspotOfRegex:occurrenceNum:caseSensitive:
rspotOfRegex:length:
rspotOfRegex:caseSensitive:length:
rspotOfRegex:occurrenceNum:length:
rspotOfRegex:occurrenceNum:caseSensitive:length:

-    (int)rspotOfRegex:(const char *)pattern
-    (int)rspotOfRegex:(const char *)pattern caseSensitive:(BOOL)sense
-    (int)rspotOfRegex:(const char *)pattern occurrenceNum:(int)n
-    (int)rspotOfRegex:(const char *)pattern occurrenceNum:(int)n caseSensitive:(BOOL)sense
-    (int)rspotOfRegex:(const char *)pattern length:(int *)matchlen

-    (int)rspotOfRegex:(const char *)pattern caseSensitive:(BOOL)sense length:(int *)matchlen
-    (int)rspotOfRegex:(const char *)pattern occurrenceNum:(int)n length:(int *)matchlen
-    (int)rspotOfRegex:(const char *)pattern occurrenceNum:(int)n caseSensitive:(BOOL)sense

length:(int *)matchlen

Returns the position number of the nth occurrence of the regular expression pattern in buffer going from right to left.    This
method works by first calling -numOfRegex: to find out how many times pattern occurs, then uses -spotOfRegex: to pluck
out the correct part.    The primary advantage of this is that it is symmetrical with -spotOfRegex: -- the last part able to be
plucked out by that method will be the first part returned with this method.    However, this also means that this method is
slower, since it must make an extra pass through the string.    Use n=0 for the first occurrence.    If sense is NO, then the
search ignores case.    Returns -1 if the nth occurrence is not found, and -2 on an illegal regular expression.    If not NULL,
the integer pointed to by matchlen gets set to the length of the matched portion.    In the degenerate methods, sense defaults
to YES, n defaults to 0, and matchlen defaults to NULL.

See also:    -grep:... and -matchesRegex:...

setCapacity:
-    setCapacity:(unsigned)newCapacity

Enlarges the buffer capacity of the receiver to newCapacity if necessary.    Returns self.

See also:    -x

setDirectory:file:
-    setDirectory:(const char *)dir

file:(const char *)file

Sets the string value of the receiver to a full path name consisting of the path dir and file name file.    Returns self.

See also:    -x

setDoubleValue:
-    setDoubleValue:(double)val

Sets the receiver to be the string which represents the double precision floating point number val.    Returns self.

See also:    -x

setFloatValue:
-    setFloatValue:(float)val

Sets the receiver to be the string which represents the floating point number val.    Returns self.

See also:    -x

setFromFormat:
-    setFromFormat:(const char *)formatStr, ...

The same as the ANSI sprintf(), sets the receiver's string buffer using the format specified in formatStr and subsequent
arguments.    Returns self.

See also:    -x

setIntValue:
-    setIntValue:(int)val

Sets the receiver to be the string which represents the integer val.    Returns self.

See also:    -x

setStringOrderTable:
- setStringOrderTable:(NXStringOrderTable *)table

Sets the NXStringOrderTable used by the ±compareTo: methods.    Returns self.    If not programmatically set using this
method, an instance of MiscString will use the default system string table.

See also:    -stringOrderTable: and -compareTo:n:caseSensitive:

setStringValue:
- setStringValue:(const char *)aString

Copies aString into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is allocated from the
receiver's zone.    Returns self.

See also:    -setStringValue:fromZone:, -takeStringValue:, and ±takeStringValue:fromZone:

setStringValue:fromZone:
- setStringValue:(const char *)aString fromZone:(NXZone *)zone

Copies aString into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is allocated from zone.   

Returns self.

See also:    -setStringValue:, -takeStringValueFrom:, and -takeStringValueFrom:fromZone:

setStringValue:n:
-    setStringValue:(const char *)aString

n:(int)n

Sets the receiver's string value to be the first n characters of aString.    If the receiver's capacity needs to be expanded to fit
the new string value, then the receiver's zone is used to allocate the needed memory.

See also:    -x

setStringValue:n:fromZone:
-    setStringValue:(const char *)aString

n:(int)n
fromZone:(NXZone *)zone

Sets the receiver's string value to be the first n characters of aString.    If the receiver's capacity needs to be expanded to fit
the new string value, then zone is used to allocate the needed memory.

See also:    -x

sprintf:
-    sprintf:(const char *)formatStr, ...

Uses format and subsequent arguments to create a new string, as specified by format following the ANSI spec for formats.   
Replaces any previous string value.    Returns self.

See also:    -x

spotOf:
- (int)spotOf:(char)aChar

Returns the position number of the leftmost occurrence of aChar in buffer.    The search is case sensitive.    Returns -1 if
aChar is not found.

See also:    -spotOf:... and -rspotOf:...

spotOf:caseSensitive:
- (int)spotOf:(char)aChar caseSensitive:(BOOL)sense

Returns the position number of the leftmost occurrence of aChar in buffer.    If sense is NO, then the search ignores case.   
Returns -1 if aChar is not found.

See also:    -spotOf:... and -rspotOf:...

spotOf:occurrenceNum:
- (int)spotOf:(char)aChar occurrenceNum:(int)n

Returns the position number of the nth occurrence of aChar in buffer going from left to right.    The search is case sensitive.
Returns -1 if the nth occurrence of aChar is not found.    Occurences start numbering at zero, not one.

See also:    -spotOf:... and -rspotOf:...

spotOf:occurrenceNum:caseSensitive:
- (int)spotOf:(char)aChar occurrenceNum:(int)n caseSensitive:(BOOL)sense

Returns the position number of the nth occurrence of aChar in buffer going from left to right.    If sense is NO, then the
search ignores case.    Returns -1 if the nth occurrence is not found.    Occurences start numbering at zero, not one.

See also:    -spotOf:..., and -rspotOf:...

spotOfChars:
- (int)spotOfChars:(const char *)aString

Returns the position number of the leftmost occurrence in buffer of any of the characters in aString.    The search is case
sensitive.    Returns -1 if aChar is not found.

See also:    -spotOfChars:... and -rspotOfChars:...

spotOfChars:caseSensitive:
- (int)spotOfChars:(const char *)aString caseSensitive:(BOOL)sense

Returns the position number of the leftmost occurrence in buffer of any of the characters in aString.    If sense is NO, then
the search ignores case.    Returns -1 if aChar is not found.

See also:    -spotOfChars:... and -rspotOfChars:...

spotOfChars:occurrenceNum:
- (int)spotOfChars:(const char *)aString occurrenceNum:(int)n

Returns the position number of the nth occurrence in buffer of any of the characters in aString going from left to right.    Use
n=0 for the first occurrence.    The search is case sensitive.    Returns -1 if the nth occurrence of aChar is not found.   
Occurences start numbering at zero, not one.

See also:    -spotOfChars:... and -rspotOfChars:...

spotOfChars:occurrenceNum:caseSensitive:
- (int)spotOfChars:(const char *)aString occurrenceNum:(int)n caseSensitive:(BOOL)sense

Returns the position number of the nth occurrence in buffer of any of the characters in aString going from left to right.    Use
n=0 for the first occurrence.    If sense is NO, then the search ignores case.    Returns -1 if the nth occurrence is not found.   
Occurences start numbering at zero, not one.

See also:    -spotOfChars:... and -rspotOfChars:...

spotOfRegex:
spotOfRegex:caseSensitive:
spotOfRegex:occurrenceNum:
spotOfRegex:occurrenceNum:caseSensitive:
spotOfRegex:length:
spotOfRegex:caseSensitive:length:
spotOfRegex:occurrenceNum:length:
spotOfRegex:occurrenceNum:caseSensitive:length:

-    (int)spotOfRegex:(const char *)pattern

-    (int)spotOfRegex:(const char *)pattern caseSensitive:(BOOL)sense
-    (int)spotOfRegex:(const char *)pattern occurrenceNum:(int)n
-    (int)spotOfRegex:(const char *)pattern occurrenceNum:(int)n caseSensitive:(BOOL)sense
-    (int)spotOfRegex:(const char *)pattern length:(int *)matchlen
-    (int)spotOfRegex:(const char *)pattern caseSensitive:(BOOL)sense length:(int *)matchlen
-    (int)spotOfRegex:(const char *)pattern occurrenceNum:(int)n length:(int *)matchlen
-    (int)spotOfRegex:(const char *)pattern occurrenceNum:(int)n caseSensitive:(BOOL)sense

length:(int *)matchlen

Returns the position number of the nth occurrence of the regular expression pattern in buffer going from left to right.    Use
n=0 for the first occurrence.    If sense is NO, then the search ignores case.    Returns -1 if the nth occurrence is not found,
and -2 on an illegal regular expression.    If not NULL, the integer pointed to by matchlen gets set to the length of the
matched portion.    In the degenerate methods, sense defaults to YES, n defaults to 0, and matchlen defaults to NULL.

See also:    -grep:... and -matchesRegex:...

squashSpaces
- squashSpaces

This method will remove any redundant spaces in buffer.      It first calls -trimSpaces, and then goes through buffer and
leaves at most one space between words, except following a period or colon, in which case two spaces will be left.    Note
that this method only checks for spaces, so a sequence such as space-tab-space will be left as is.    Returns self.

See also:    -trimSpaces, -trimWhiteSpaces, ±trimLeadSpaces, ±trimLeadWhiteSpaces, ±trimTailSpaces, and
±trimTailWhiteSpaces

stringOrderTable
- (NXStringOrderTable *)stringOrderTable

Returns the NXStringOrderTable used to make comparisons between strings.

See also:    -compareTo:n:caseSensitive: and ±setStringOrderTable:

stringValue
- (const char *)stringValue

Returns buffer, a pointer to the string value.

stringValueAndFree
-    (const char *)stringValueAndFree

Returns the string value of the receiver, just like ±stringValue, and then frees the receiver.    The returned buffer will remain
valid only until the next time this method is called.

See also:    -stringValue

strstr:
- (const char *)strstr:(const char *)subString

Returns a pointer to the start of the first occurrence of subString in the string.    Note that this pointer points into the internal
buffer of the string object and should therefore not be freed.    If you wish to manipulate it, you should create a new
MiscString object.    For example:

newString = [[MiscString alloc] initString:[origString strstr:aSubString]];

See also:    -subStringLeft: and ±subStringRight:

subStringLeft:
- subStringLeft:subString

Returns a new MiscString object which is created from the receiving MiscString object's string from it's start up to the start
of subString.    Note that subString could be any object with a ±stringValue.    (For example, if a MiscString object with the
value ªThis is a string.º is sent the message subStringLeft:key, where key is an object for which a ±stringValue message
returns ªaº, then it would return a new MiscString object with the value ªThis is º)    Returns nil if subString doesn't respond
to ±stringValue.

See also:    -strstr: and ±subStringRight:

subStringRight:
- subStringRight:subString

Returns a new MiscString object which is created from the receiving MiscString object, starting with subString and
continuing up to the end of the receiving string.    Note that subString could be any object with a ±stringValue.    (For
example, if a MiscString object with the value ªThis is a string.º is sent the message subStringRight:key, where key is an
object for which a ±stringValue message returns ªaº, then it would return a new MiscString object with the value ªa string.º)
Returns nil if subString doesn't respond to ±stringValue.

See also:    -strstr: and ±subStringLeft:

takeDoubleValueFrom:
-    takeDoubleValueFrom:sender

Sets the string to the double precision floating point value of sender.    By convention, sender must respond to the
±doubleValue message.    Returns self.

See also:    -x

takeFloatValueFrom:
-    takeFloatValueFrom:senderÕ,

Sets the string to the floating point value of sender.    By convention, sender must respond to the ±floatValue message.   
Returns self.

See also:    -x

takeIntValueFrom:
-    takeIntValueFrom:senderÌ¤

Sets the string to the integer value of sender.    By convention, sender must respond to the ±intValue message.    Returns self.

See also:    -x

takeStringValueFrom:
- takeStringValue:(id)sender

Copies the string value of sender into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is
allocated from the receiver's zone.    Returns self.

See also:    -setStringValue:, -setStringValue:fromZone:, and -takeStringValue:fromZone:

takeStringValueFrom:fromZone:
- takeStringValue:(id)sender fromZone:(NXZone *)zone

Copies the string value of sender into buffer.    If buffer is not large enough, the old buffer is freed and a new buffer is
allocated from zone.    Returns self.

See also:    -setStringValue:, -setStringValue:fromZone:, and -takeStringValue:

tokenize:into:
-    tokenize:(const char *)breakChars

into:aList

Uses strtok() to break the receving string up into a series of MiscStrings, one string for each field as delimited by
breakChars.    The new MiscStrings are placed into aList in the order that they are created (from start of the receiving string
to end) and aList is returned.    If aList is NULL, then a new List object is created and is returned.    It is your responsibility
to free the tokenized MiscStrings returned in the List.

See also:    -extractPart:...

toLower
- toLower

Converts every uppercase character in buffer to lowercase.    Returns self.

See also:    -toUpper

toUpper
- toUpper

Converts every lowercase character in buffer to uppercase.    Returns self.

See also:    -toLower

trimLeadSpaces
- trimLeadSpaces

Removes any leading spaces from buffer.    Returns self.    Note that this method will only remove spaces (not tabs, linefeeds,
etc).

See also:    -trimSpaces, -trimWhiteSpaces, ±trimLeadWhiteSpaces, ±trimTailSpaces, ±trimTailWhiteSpaces, and
±squashSpaces

trimLeadWhiteSpaces
- trimLeadWhiteSpaces

Removes any leading white spaces (space, tab, carriage return) from buffer.    Returns self.

See also:    -trimSpaces, -trimWhiteSpaces, ±trimLeadSpaces, ±trimTailSpaces, ±trimTailWhiteSpaces, and
±squashSpaces

trimSpaces
- trimSpaces

Removes all leading and trailing spaces from buffer.    Returns self.    Note that this method will only remove spaces (not
tabs, linefeeds, etc).

See also:    -trimWhiteSpaces, ±trimLeadSpaces, ±trimLeadWhiteSpaces, ±trimTailSpaces, ±trimTailWhiteSpaces,
and ±squashSpaces

trimTailSpaces
- trimTailSpaces

Removes any trailing spaces from buffer.    Returns self.    Note that this method will only remove spaces (not tabs, linefeeds,
etc).

See also:    -trimSpaces, -trimWhiteSpaces, ±trimLeadSpaces, ±trimLeadWhiteSpaces, ±trimTailWhiteSpaces, and
±squashSpaces

trimTailWhiteSpaces
- trimTailWhiteSpaces

Removes any trailing white spaces (space, tab, carriage return) from buffer.    Returns self.

See also:    -trimSpaces, -trimWhiteSpaces, ±trimLeadSpaces, ±trimLeadWhiteSpaces, ±trimTailSpaces, and
±squashSpaces

trimWhiteSpaces
- trimWhiteSpaces

Removes all leading and trailingwhite spaces (space, tab, carriage return) from buffer.    Returns self.

See also:    -trimSpaces, ±trimLeadSpaces, ±trimLeadWhiteSpaces, ±trimTailSpaces, ±trimTailWhiteSpaces, and
±squashSpaces

uniqueStringValue
-    (NXAtom)uniqueStringValue

Returns a pointer to a unique string which is identical to the receiver's string buffer, as determined by the NXUniqueString()
function.

See also:    -x

wordNum:
- wordNum:(int)num

Same as wordNum:FromZone: with the zone argument the same as the recieving MiscString's zone.

See also:    -wordNum:FromZone:

wordNum:fromZone:
- wordNum:(int)num fromZone:(NXZone *)zone

Returns a new MiscString object wich contains the numth word of buffer.    Words are separated by any number of spaces,
carriage returns, newlines, vertical tabs, or formfeeds (not punctuation characters).    The first word is word number ªzeroº,
following typical C conventions.    Returns nil if the numth word does not exist in buffer.

See also:    -wordNum:

write:
- write:(NXTypedStream *)stream

Writes the MiscString to the typed stream stream.    Returns self.

See also:    - read:

Left to do in the documentation:
Update introduction section to talk about more of the available methods.
Re-do Method-types section so that it is more useful and is more complete.
Finish writing and check all ªsee alsoº references to be sure that they are complete.
Proofread all sections.
A spelling check.

