
Release 1.0    Copyright ã1994 by Don Yacktman.    All Rights Reserved.

MiscColor

Inherits From: Object

Conforms To: NXTransport

Declared In: misckit/MiscColor.h

Class Description

This documentation is not yet completed; many of the methods are not yet detailed.    Sorry.

The MiscColor class is primarily an object oriented wrapper around the NeXT-supplied functions which deal with color and 
the NXColor structure.    It does, however, add a few useful twists.    You create a MiscColor using any of the +newColor:, 
+newFromPasteboard:, or +alloc methods.    If you use +alloc, then you have the choice of initializing the MiscColor with 
any of the ± init, ± initColor:, ± initFromPasteBoard:, or ±initColorFromPixel: methods.    You can check to see if there 
is a color on a particular pasteboard with the +canInitFromPasteboard: method.

To change the color of a MiscColor object, use ±setColor:, ±setColorFromPixel:, or ±setColorFromObject:.    The 
MiscColor object considers itself to represent a ªbaseº color, set by the above methods, which may actually be rendered 
differently depending upon environmental conditions.    There are two mechanisms by which the environment can alter a 
MiscColor.    First, a delegate object can alter a MiscColor before it is sent to the window server.    This allows the delegate 
to alter the color to handle things such as spot or process color separations.    (For example, when doing a spot color 



separation of the color green, the delegate can turn all greens into shades of gray and all other colors to white.)    Once the 
delegate has altered the color, the MiscColor instance runs the color through its own filter function, implemented in the 
±filterColor: method, to further modify the color.    This allows, for example, the MiscHalftoneColor class to track a base 
color and a halftone value, halftoning the color returned by the delegate in an appropriate manner.      Because of this system, 
the base color stored in the MiscColor is accessed directly via the ±actualColor method while the true color it represents 
(the base color run through the filter) is returned by the ±color method.    In other words, there is an internal representation 
which is different from the default displayed/printed color, converted from the internal representation to an actual Postscript 
color by the ±filterColor: method.    All this confusion allows the MiscColor to handle color separations in a flexible and 
elegant manner.    By not implementing the ±filterColor: method and not connecting up a delegate, a developer can disable 
both mechanisms and ignore them completely, if the application does not require color separations.    (Note that by designing 
an application with the MiscColor, color separations may be easily added at a later date with much less effort expended.)

The delegate object can only affect a MiscColor when it is about to be sent to the window server, via the ±setColor method. 
The ±setColor method sends the ±willSendColorToPS:shouldPrint: message before sending anything to the server.    The 
delegate can return a new color, which supercedes the base color and may or may not be derived from the base color, or the 
delegate can return the color sent to it unchanged.    This allows the delegate to make whatever changes are necessary to 
support color separations.    After the modified and filtered color has been sent to the window server, the actual color that 
was sent to the window server is forwarded to the delegate via the ±didSendColorToPS: method.    The delegate may be 
accessed via the ±delegate and ±setDelegate: methods.

MiscColors can be passed around via the Pasteboard class, archiving to a typed stream, or bycopy in distributed objects.    
On the pasteboard, MiscColors currently place an NXColor, and not the whole object.    In future implementations, both 
MiscColors and their subclasses will be able to place various archived, richer, versions of themselves on a Pasteboard for 
more flexibility.    (This will also facilitate communication between applications which use the MiscColor.)    Pasteboard 
support is provided via the ±readFromPasteBoard:, ±writeToPasteBoard:, and +newFromPasteboard: methods.    Use 
+canInitFromPasteboard: to see if the Pasteboard contains a color representation which can be converted into a 
MiscColor.

There are three different methods which may be used to compare MiscColors:    ±isEqualColor:, ±isEqualToColor:, and 
±isEqual:.    The ±isEqualColor: method returns YES when the object passed to it has the same base color as the receiver.    
(It first checks ±actualColor, if it can.    If that method isn't implemented by the passed object, then it checks ±color against 
the filtered base color.)    The ±isEqualToColor: method returns YES when an NXColor is the same as the filtered base 
color, and the ±isEqual: method returns YES only when the passed object is both the same class as the receiver and would 



return YES for ±isEqualColor:.

There is a plethora of NXname() functions which access color components (red, green, blue, hue, saturation, brightness, 
cyan, magenta, yellow, black, gray, and alpha).    The MiscColor class has counterparts to all of them which follow similar 
naming conventions.    All these methods operate upon the base color and not the filtered color of the MiscColor.    First, you 
can obtain the value of any color component via the appropriate ±nameComponent method, where name is the name of a 
color component.    You can get all the components of a color space at once via ±getRed:green:blue:alpha:, 
±getCyan:magenta:yellow:black:alpha:, ±getHue:saturation:brightness:alpha:, ±getGray:alpha:, or the couterparts 
without the alpha: on the end.    By changing get to set you can convert from a colorspace to a MiscColor.    You can also set 
a single component via the ±setNameComponent series of methods.

There is rudimentary support of NeXT's ColorList object in the MiscColor object.    The name of the color list from which 
the base color stored in the MiscColor object was obtained is available through the ±colorListName method, and the name 
in that list is returned by ±colorName.    These methods are really only useful for colors with persistent names, such as 
PANTONETM colors.    You can create a new MiscColor instance from a named color in a ColorList via the 
+findColorNamed:inList: method. 

Instance Variables

NXColor theColor;
id delegate;

theColor The color stored in a MiscColor.

delegate The MiscColor's delegate.

Method Types



Initializing and freeing a MiscColor+ newColor:
± init
± initColor:
± initFromPasteBoard:
± initColorFromPixel:

Changing color components ± setRedComponent:
± setGreenComponent:
± setBlueComponent:
± setCyanComponent:
± setMagentaComponent:
± setYellowComponent:
± setBlackComponent:
± setHueComponent:
± setSaturationComponent:
± setBrightnessComponent:
± setGrayComponent:
± setAlphaComponent:
± setGray:
± setGray:alpha:
± setRed:green:blue:
± setRed:green:blue:alpha:
± setHue:saturation:brightness:
± setHue:saturation:brightness:alpha:
± setCyan:magenta:yellow:black:
± setCyan:magenta:yellow:black:alpha:

Changing the color ± setColor:
± setColorFromObject:
± setColorFromPixel:

Comparing colors ± isEqualColor:



± isEqualToColor:
± isEqual:

Delegate ± delegate
± setDelegate:

NXColorList support + findColorNamed:inList:
± colorName
± colorListName

Obtaining color ± color
± actualColor
± filterColor:

Obtaining color components ± redComponent
± greenComponent
± blueComponent
± cyanComponent
± magentaComponent
± yellowComponent
± blackComponent
± hueComponent
± saturationComponent
± brightnessComponent
± grayComponent
± alphaComponent
± getGray:
± getGray:alpha:
± getRed:green:blue:
± getRed:green:blue:alpha:
± getHue:saturation:brightness:
± getHue:saturation:brightness:alpha:
± getCyan:magenta:yellow:black:



± getCyan:magenta:yellow:black:alpha:

Pasteboard support + canInitFromPasteboard:
± readFromPasteBoard:
± setFromPasteBoard:
± writeToPasteBoard:

Setting current drawing color ± display
± setColor

Archiving ± read:
± write:

Sent to delegate ± willSendColorToPS:shouldPrint:
± didSendColorToPS:

Class Methods

canInitFromPasteboard:
+ (BOOL)canInitFromPasteboard:(Pasteboard *)pasteboard

Returns YES is pasteboard has available an NXColor data type, a MiscColor object, or a subclass of MiscColor.    Returns 
NO otherwise.

See also:    +newFromPasteboard: and ± initFromPasteboard:

findColorNamed:inList:
+ findColorNamed:(const char *)aName inList:(const char *)aListName

A cover for the NXFindColorNamed() function, which searches for a specific color in a list of named colors.    Returns a 
new instance of the class this message was sent to unless the color wasn't found, in which case nil is returned.



See also:    -colorName, -colorListName

newColor:
+ newColor:(NXColor)color

Returns a new instance of the receiving class initialized to color.

See also:    -initColor:

newFromPasteBoard:
+ newFromPasteBoard:(Pasteboard *)pasteboard

Returns a new MiscColor instance initialized from pasteboard.    If there is not a color on pasteboard, as determined by the 
+canInitFromPasteboard: method, then nil is returned.

See also:    +canInitFromPasteboard: and ± initFromPasteboard:

Instance Methods

delegate
- delegate

Returns the delegate of the receiving MiscColor instance.

See also:    -setDelegate:, -didSendColorToPS: (delegate), and -willSendColorToPS:shouldPrint: (delegate)

init



- init

Initializes a new instance of MiscColor and set its color to white.    Returns self.

See also:    -initColor:, ±initColorFromPixel:, and ±initFromPasteboard:

initColor:
- initColor:(NXColor)color

The designated initializer for the MiscColor class.    This method initializes a new MiscColor instance and sets it to be the 
color passed in color.    Returns self.

See also:    -init, ±initColorFromPixel:, and ±initFromPasteboard:

initColorFromPixel:
- initColorFromPixel:(NXPoint *)location

Initializes the receiver to be the same color as the screen pixel at location location.    The pixel must reside in the currently 
focused view and location is in the focused View's coordinate system.    Returns self.

See also:    -init, ±initColor:, and ±initFromPasteboard:

initFromPasteboard
- initFromPasteboard:(Pasteoard *)pasteboard

Attempts to initialize a new instance from pasteboard.    If a color of some sort is not found on pasteboard, then nil is 
returned; otherwise this method returns self.

See also:    +canInitFromPasteboard:, -init, ±initColor:, and ±initColorFromPixel:



read:
- read:(NXTypedStream *)stream

Reads the instance variables for the receiving MiscColor from the typed stream stream.    Returns self.

See also:    -write:

setDelegate
- setDelegate:(x)x

Sets the delegate for the receiving MiscColor instance.    Returns self.

See also:    -delegate, -didSendColorToPS: (delegate), and -willSendColorToPS:shouldPrint: (delegate)

write
- write:(NXTypedStream *)stream

Writes the instance variables for the receiving MiscColor to the typed stream stream.    Returns self.

See also:    -read:

x
- x:(x)x

x.    Returns self.

See also:    -x:

x
- x:(x)x



x.    Returns self.

See also:    -x:

Methods to be Implemented by the Delegate

didSendColorToPS:
- didSendColorToPS:(NXColor)color

If a color ends up being sent to the Postscript server, then it is also forwarded to the delegate, which may then perform any 
additional tasks as necessary.    The color sent to the Postscript interpreter is passed in the color argument.    This method 
should return self.

See also:    -willSendColorToPS:shouldPrint: (delegate)

willSendColorToPS:shouldPrint:
- (NXColor)willSendColorToPS:(NXColor)color shouldPrint:(BOOL *)printOK

This method allows a delegate to alter a color before it is sent to the Postscript interpreter.    The color to be sent is passed to 
the delegate in color and the delegate should return that color or a new, filtered color.    The printOK boolean is set to YES 
before it is passed to the delegate.    If the delegate decides that this color should not be printed, then it can set this to NO and 
the MiscColor will not send the color.    A properly written delegate can use this method to generate print separations; both 
spot color and process color are possilbilities. 

See also:    ±filterColor:, ±setColor, and -didSendColorToPS: (delegate)



- writeToPasteBoard:(Pasteboard *)pasteboard;
- readFromPasteBoard:(Pasteboard *)pasteboard;
- setFromPasteBoard:(Pasteboard *)pasteboard;
- setRedComponent:(float)red;
- setGreenComponent:(float)green;
- setBlueComponent:(float)blue;
- setCyanComponent:(float)cyan;
- setMagentaComponent:(float)magenta;
- setYellowComponent:(float)yellow;
- setBlackComponent:(float)black;
- setHueComponent:(float)hue;
- setSaturationComponent:(float)saturation;
- setBrightnessComponent:(float)brightness;
- setGrayComponent:(float)gray;
- setAlphaComponent:(float)alpha;
- setColor:(NXColor)color;
- setColorFromObject:object;
- setColorFromPixel:(NXPoint *)location;
- (NXColor)color;
- (NXColor)actualColor;
- (NXColor)filterColor:(NXColor)input;
- display;
- (BOOL)setColor;
- getGray:(float *)gray;
- getGray:(float *)gray alpha:(float *)alpha;
- getRed:(float *)red green:(float *)green blue:(float *)blue;
- getRed:(float *)red green:(float *)green blue:(float *)blue alpha:(float *)alpha;
- getHue:(float *)hue saturation:(float *)saturation brightness:(float *)brightness;
- getHue:(float *)hue saturation:(float *)saturation brightness:(float *)brightness alpha:(float *)alpha;
- getCyan:(float *)cyan magenta:(float *)magenta yellow:(float *)yellow black:(float *)black;
- getCyan:(float *)cyan magenta:(float *)magenta yellow:(float *)yellow black:(float *)black alpha:(float *)alpha;
- setGray:(float)gray;
- setGray:(float)gray alpha:(float)alpha;
- setRed:(float)red green:(float)green blue:(float)blue;
- setRed:(float)red green:(float)green blue:(float)blue alpha:(float)alpha;
- setHue:(float)hue saturation:(float)saturation brightness:(float)brightness;
- setHue:(float)hue saturation:(float)saturation brightness:(float)brightness alpha:(float)alpha;



- setCyan:(float)cyan magenta:(float)magenta yellow:(float)yellow black:(float)black;
- setCyan:(float)cyan magenta:(float)magenta yellow:(float)yellow black:(float)black alpha:(float)alpha;
- (BOOL)isEqualColor:anObject;
- (BOOL)isEqualToColor:(NXColor)color;
- (BOOL)isEqual:anObject;
- (float)redComponent;
- (float)greenComponent;
- (float)blueComponent;
- (float)cyanComponent;
- (float)magentaComponent;
- (float)yellowComponent;
- (float)blackComponent;
- (float)hueComponent;
- (float)saturationComponent;
- (float)brightnessComponent;
- (float)grayComponent;
- (float)alphaComponent;
- (const char *)colorName;
- (const char *)colorListName;

x
- x:(x)x

x.    Returns self.

See also:    -x:

x
- x:(x)x

x.    Returns self.

See also:    -x:


