
Version 1.0, Copyright ã1992 by Doug McClure.    All Rights Reserved.

MiscSortedList

Inherits From: MiscList : List : Object

Declared In: MiscSortedList.h

Class Description

This class adds sorting capabilities to a normal List.    It implements the sorting by using two methods from the
MiscCompare protocol: compare: and compare:ignoreCase:.    Whatever objects that are placed in a MiscSortedList should
conform to the MiscCompare protocol, but the only method they need to implement is the compare: method.    If case
comparisons are going to be made (ie: between string objects), then the compare:ignoreCase: method also needs to be
implemented.    To improve speed of adding objects, this class just checks to see if an object conforms to the MiscCompare
protocol and does not test to see if it actually can respond to whatever method it needs.

Alternatively, if more complicated sorting behavior is wanted, this class can be subclassed and the compare:to:caseCheck:
method overridden.    This method is what is called for all methods in the class and is also the only place the MiscCompare
routines are called, thus isolating them from the rest of the class.

A number of object inserting methods from the List class are overridden so that they perform correctly accordingly with the
sorting capabilities of this class.    These methods will perform like the original methods when sorting is not enabled.    They
will also return the same values as the original methods.

Instance Variables

BOOL ignoreCase
int sortOrder

ignoreCase Flag to tell whether or not the sorting should ignore case.    This value can be interpreted
differently for different types of objects, but is mainly for objects which store strings.

sortOrder Value to determine whether sorting is ascending or descending.

Method Types

Initializing a new instance - initCount:

Copying a MiscSortedList - copyFromZone:

Manipulating objects by index - insertObject:at:
- replaceObjectAt:with:

Manipulating objects by id - addObject:
- addObjectIfAbsent:
± insertObjectBySort:
- replaceObject:with:
- indexOf:

Combining MiscSortedLists - appendList:

Checking the state of an instance - ignoreCase
- sorted
- sortEnabled
- sortOrder

Setting the state of an instance - setIgnoreCase:
- setSortEnabled:
- setSortOrder:

Methods for sorting - compare:to:caseCheck:
- sort

Archiving - read:
- write:

Class Methods

initialize
+ initialize

Initializes the class, setting the version number of the class.

Instance Methods

addObject:
- addObject:anObject

Performs the same as the List version except if sorting is enabled, it will put anObject in sorted order.

See also:    - insertObject:at:, - appendList:, - addObject: (List)

addObjectIfAbsent:
- addObjectIfAbsent:anObject

Performs the same as the List version except if sorting is enabled, it will put anObject in sorted order.

See also:    - insertObject:at:, - addObjectIfAbsent: (List)

appendList:
- appendList:(List *)otherList

Performs the same as the List version with a few additions.    It first checks to make sure that all object in otherList conform
to the MiscCompare protocol.    If they do not, nil is returned and no objects are added.    If they do conform, the list is
appended, and if sorting is enabled, sorted.

See also:    - addObject:, - appendList: (List)

compare:to:caseCheck:
- compare:objectA to:objectB caseCheck:(BOOL)flag

This is the actual comparison routine between two objects.    It will return -1, 0, or 1 depending if objectA is less than, greater
than, or equal to objectB respectively.    The flag parameter tells this routine that it is okay to have a case-sensitive
comparison.    This routine uses two methods from the MiscCompare protocol.    It uses compare: if flag is NO or if the
instance is not to ignore case.    It uses compare:ignoreCase: if both flag is YES and the instance is to ignore case.

See also:    - ignoreCase, ± compare: (MiscCompare), ± compare:ignoreCase (MiscCompare)

copyFromZone:
- copyFromZone:(NXZone *)zone

Returns a new MiscSortedList object with the same contents as the receiver.    The objects in the MiscSortedList aren't
copied; therefore, both MiscSortedList contain pointers to the same set of objects.    Memory for the new MiscSortedList is
allocated from zone.

See also:    - copy (Object)

ignoreCase
- (BOOL)ignoreCase

Returns whether or not sorting will ignore case when doing comparisons.

indexOf:
- (unsigned int)indexOf:anObject

Performs the same as the List version except if the list is sorted, it will perform a binary search on the list to find anObject as
quickly as possible.

See also:    - indexOf: (List)

initCount:
- initCount:(unsigned int)numSlots

Initializes the receiver, a new MiscSortedList object, by allocating enough memory for it to hold numSlots objects.    Returns
self.

This method is the designated initializer for the class.    It should be used immediately after memory for the MiscSortedList
has been allocated and before any objects have been assigned to it; it shouldn't be used to reinitialize a MiscSortedList that's
already in use.

See also:    - capacity (List)

insertObject:at:
- insertObject:anObject at:(unsigned int)index

Performs the same as the List version except it places anObject in sorted order if sorting is enabled and ignores index.

See also:    - count (List), - addObject:, - insertObject:at: (List)

insertObjectBySort:
- insertObjectBySort:anObject

This is the only method for inserting objects into a MiscSortedList.    All other inserting methods call this one to add objects
to the list.    Normally this method need not be used to add objects, but it is faster than the other methods when the list is to
be in sorted order since this method does not test to see if it should place an object in sorted order or not.

See also:    - count (List), - addObject:, - insertObject:at: (List)

read:
- read:(NXTypedStream *)stream

Reads the MiscSortedList and all the objects it contains from the typed stream stream.

See also:    - write:

replaceObject:with:
- replaceObject:anObject with:newObject

Performs the same as the List version except it places newObject in sorted order if sorting is enabled.

See also:    - replaceObjectAt:with:, - replaceObject:with: (List)

replaceObjectAt:with:
- replaceObjectAt:(unsigned int)index with:newObject

Performs the same as the List version except it places anObject in sorted order if sorting is enabled and ignores index.

See also:    - replaceObject:with:, - replaceObjectAt:with: (List)

setIgnoreCase:
- setIgnoreCase:(BOOL)flag

Sets the case comparison flag to flag and sorts the list if the value changed.

See also:    - count (List), - addObject:, - insertObject:at: (List)

setSortEnabled:
- setSortEnabled:(BOOL)flag

Sets sorting to be either on or off according to flag and sorts the list if it currently isn't sorted.

See also:    - count (List), - addObject:, - insertObject:at: (List)

setSortOrder:
- setSortOrder:(int)order

Sets the sort order according to order and reorders the list if the value changed.    This value should be Misc_ASCENDING
or Misc_DESCENDING.    If the list is currently sorted this method does not use the sort method to reorder the list, but just
moves the objects so that they are in reverse order.    Otherwise it will use the sort method.

See also:    - count (List), - addObject:, - insertObject:at: (List)

sort
- sort

Sorts the list if it isn't currently sorted    It uses a QuickSort with an Insertion Sort to handle small partitions.    This method
should perform well for all kinds of

See also:    - count (List), - addObject:, - insertObject:at: (List)

sorted
- (BOOL)sorted

Returns whether or not the Storage instance is sorted.

See also:    - count (Storage), - addElement:, - insertElement:at: (Storage)

sortEnabled
- (BOOL)sortEnabled

Returns whether sorting is enabled.

See also:    - count (Storage), - addElement:, - insertElement:at: (Storage)

sortOrder
- (int)sortOrder

Returns the order of how elements are going to be sorted.

See also:    - count (Storage), - addElement:, - insertElement:at: (Storage)

write:
- write:(NXTypedStream *)stream

Writes the MiscSortedList, including all the objects it contains, to the typed stream stream.

See also:    - read:

Constants and Defined Types
#define Misc_ASCENDING 1
#define Misc_DESCENDING -1

