Q: As I understand it, the MIDI timer and I/O is handled with the msg_receive call, which is a kind
of polling that happens whenever the application has time to poll. But if the application is busy with
other things, might not the polling interval become too great or too variable, which could have a
musically unacceptable effect?

A: It's true that your application must go into a msg_receive to receive MIDI. However, it's
possible to structure your application so that there is a separate Mach thread that does nothing or little
else than service this msg_receive. This should provide the response time you need. For example,
if you use the MusicKit (see ../NEXTSTEP_Developer/Other_Kits/music_software), there is a feature
that allows the MusicKit performance (and, hence, the MIDI msg_receive) to run in a separate thread
from the graphics event loop. (This feature is also useful for non-MIDI performances, such as those
using DSP synthesis.) Alternatively, if you don't use the MusicKit, you can fork your own thread to
handle the MIDI asynchronously to the event loop.



Running the Music Kit in a separate thread makes it unlikely that graphics will prevent you from
receiving your MIDI in a timely fashion. However, the MusicKit scheduler (just like the AppKit
event loop) is non-preemptiveDthere's no absolute limit to how much can be done before going back
to the msg_receive. Therefore, if you write your own Performer, Instrument, or NoteFilter subclass,
make it as efficient as possible, because you won't receive MIDI until you exit your code. In
principle, the way to get the fastest MIDI response is to have your own separate thread loop
processing the MIDI, without using the MusicKit. However, if that thread does much processing
other than receiving MIDI, using the MusicKit would probably be just as efficient (and easier to
program). The important thing is to get back to the msg_receive as quickly as possible, whether in the
MusicKit, the AppKit, or your own thread.

QA621



Valid for 1.0, 2.0, 3.0



