
Q:    I've made connections in InterfaceBuilder like I have a zillion times before.    So, why are all of my outlets nil 
when I run my program?

A:    In earlier releases, you had to provide a method to set each outlet that you declared in a new class.    For 
example, if your subclass had an outlet named myOutlet, the source code for your subclass had to declare and 
implement this method:

- setMyOutlet:anObject
{

myOutlet = anObject;
 return self;
}

In InterfaceBuilder, the Unparse command in the Classes window's pop-up list would create these "set" methods 
automatically. 

These outlet initialization methods are no longer required.    However, for backward compatibility, if an object 
responds to such a message, the runtime system uses them to initialize outlets.    Basically, the runtime system 
does this:

if ([yourObject respondsTo:@selector(setMyOutlet:)])
setMyOutlet:anObject

All is hunky dory, if you remember the days when these methods were required.    Now that InterfaceBuilder does 
not generate them automatically, it is not obvious that these method names have special meaning.    So, if you 
have a method name setMyOutlet you must set the outlet within that method.    If you don't initialize the outlet, 



then myOutlet is nil at runtime.

Overall it is best to avoid setMyOutlet style method names altogether, unless you are consciously taking 
advantage of this "feature," and are doing additional initialization within the "set" method.    Care must be taken, 
as the order in which outlets and other objects are    initialized is neither guaranteed nor predictable.

QA772

Valid for 1.0, 2.0, 3.0


