
Q:    When a link is in progress, it seems to take over my machine.    It's sluggish to activate another 
application and do any other work.    Is there a cure for this? 

A:    From a scheduling point of view, there's not much you can do to convince the kernel to give 
fewer resources to the linker. The linker is designed as the kernel's Dream Program by asking for 
certain size blocks with a certain regular pattern.

However, the linker is I/O bound.    It's moving a lot of bits back and forth so anything you can do to 
make the travel time faster is a win:    faster hard disks, local access to files rather reading files all 
over NFS, etc.    Constructing the symbol table is a large resource hog; linking without symbols is 
much faster than with.    However, often you need the symbols for debugging while in development. 
You can use the ª-xº option to ld(1) to remove symbols from the sections of your code that you're not 
debugging currently, and then compile new sections with symbols so that only the parts you are 
working on have symbol information.    This is assuming you are concentrating your debugging 
efforts on only the changed parts. 

To do this, you need to do the following for each of your .o files:



localhost> ld -r -x foo.o
localhost> mv a.out foo.o

Then when you modify your sources, make(1) just recompiles the object file with full symbols if you 
have the ª-g ºflag on.

NeXT's software engineers use systems with the smallest supported memory configurations to ensure 
they are developing software that is usable on the base configuration.    We have implemented 
compile servers to minimize the impact of large compiles on these local machines.    The compile 
servers maintain the sources locally and all compiles take place there.

QA737

Valid for 1.0, 2.0, 3.0


