
Q:    I have libraries compiled for NeXT 3.0 machines that I need to use on
NEXTSTEP for Intel Processors.    What should I do to make them work?

Q:    I wrote an application under 3.1 on an Intel NEXTSTEP platform that uses a
library I wrote under 3.0, but it won't link properlyÐwhy?

Q:    How do I make my 3.0 libraries accessible in a multi-architecture form to 3.1
applications?

A:    Libraries that were compiled under NEXTSTEP 3.0 and earlier should work fine
under 3.1Ðfor NeXT hardware.    Some extra work is required to make them work
properly under NEXTSTEP 3.1 for Intel Processors.    Because the m68k architecture
and the i386 architectures are radically different, it is necessary for NEXTSTEP to
have access to a binary for both architectures in order to provide an executable that
runs on both machines.    Libraries, being binary files containing machine
instructions, are no different from any application in this respect.    Building multi-
architecture applications is easy, since the Project Builder application takes care of

the details of building Multi-Architecture Binary files (MAB files) when requested.   
But Project Builder doesn't manage libraries, so an application that you have
compiled may fail to link properly because of the lack of a library matching the
architecture type of the machine you are compiling for.

3.1 provides a new utility, libtool, for generating multi-architecture (or "fat")
libraries.    libtool is intended to replace both the ar and ranlib utilities.   
Traditionally, the construction of a library is managed by a Makefile, which usually
does roughly the following:

1) Compiles the .c and .m (source) files into .o (object) files, using the compiler
(cc).

2) Archives the resulting .o files into a .a (library) file, using the archiver (ar).
3) Generates a table of contents file in the archive, using the ranlib utility.

A simple sequence to generate a linkable library starting from just two C files might
be:

/bin/cc -c -o first.o first.c
/bin/cc -c -o second.o second.c
/bin/ar ruv libsilly.a first.o second.o
/bin/ranlib libsilly.a

Under 3.1, however, steps 2 and 3 above are combined into one libtool call, so that
the equivalent sequence would be:

/bin/cc -c -o first.o first.c
/bin/cc -c -o second.o second.c
/bin/libtool -o libsilly.a first.o second.o

Notice that the call to ar, with the r, u, and v switches on, has been replaced with a
call to libtool, and that calling ranlib is no longer necessary.    The r, u, and v
switches allowed ar to update only the objects that were newer than the ones in the
archive; the libtool call doesn't have this capability, but is much faster than ar, and in
addition, it is capable of archiving fat objects, which ar cannot do.

So where do multiple-architecture objects come in?    So-called "fat" objects are
generated when the compiler is told to generate objects of more than one architecture
type, using the -arch flag.    If you look at the compile text field in Project Builder,
you should notice that it uses this flag whenever it is asked to generate something for
both the m68k and i386 architectures.    The change needed to the above sequence is:

/bin/cc -arch m68k -arch i386 -c -o first.o first.c
/bin/cc -arch m68k -arch i386 -c -o second.o second.c
/bin/libtool -o libsilly.a first.o second.o

And that's all there is to it.    The gains to library-building using libtool are the ability
to make fat libraries, and the elimination of the need to use ranlib.    The loss is the
ability to update only those files in the archive that have timestamps older than the
input filesÐin general, the amount of time lost in moving from ar and ranlib to
libtool should be minimal, if any.

For the Makefile minded, here's a simple example of what needs to be changed.    The
first file is the original, which compiles into a single-architecture library, and the
second file will generate the multi-architecture library:

CC = /bin/cc
RANLIB = /bin/ranlib
AR = /bin/ar
ARFLAGS = ruv

CFLAGS = -g -O2 -arch m68k -arch i386

SRCS = first.c second.c

OBJS = $(SRCS:.c=.o)

.c.o: ; $(CC) $(CFLAGS) -c -o $@ $<

all: libsilly.a

libsilly.a: $(OBJS)
$(AR) $(ARFLAGS) $@ $(OBJS)
$(RANLIB) $@

clean: ; /bin/rm -f *.o *.a *~

CC = /bin/cc
LIBTOOL = /bin/libtool

CFLAGS = -g -O2 -arch m68k -arch i386

SRCS = first.c second.c

OBJS = $(SRCS:.c=.o)

.c.o: ; $(CC) $(CFLAGS) -c -o $@ $<

all: libsilly.a

libsilly.a: $(OBJS)
$(LIBTOOL) -o $@ $(OBJS)

clean: ; /bin/rm -f *.o *.a *~

See Also:

Man Pages:    lipo(1), libtool(1), ar(1), ranlib(1).
Release Notes:    Compiler.rtf, FatFiles.rtf, ProjectBuilder.rtf

QA883

Valid for 3.1

