
Release 1.0    Copyright 1992 by Don Yacktman.    All Rights Reserved.

This is still fairly accurate.    Basically, GameActors are sprites, and 
that's what you need to know.    Much more to come later¼

GameActor 

INHERITS FROM Object

DECLARED IN GameActor.h

CLASS DESCRIPTION

A GameActor is an abstract class designed to handle a moving object for an animation program.    A particular subclass 
would then have certain methods overridden so as to allow it to move about and render itself in it's own unique way.    
However, since all subclasses inherit the basic movement and rendering methods, it doesn't matter to which type of 
GameActor you send a message...to the caller, they all appear to just be actors.

The framework provided requires the subclass to implement the -move: and -renderAt::move: methods in order to 
create a GameActor that actually does something.    The -move: method sets up instance variables px and py so that the 
GameActor knows which way to move for the next frame.    The -renderAt::move: method renders the GameActor 
inside some subclass of View.    You must -lockFocus on the View subclass before attempting to render the GameActor.

To use the GameActor subclass, you instantiate it and then send it messages when you want it to move or render itself. 
Typically, you will call -move: to set up movement for all the GameActors and then call -renderAt::move: to draw 
them all inside of the main game screen.    Note that -move: doesn't actually cause the GameActor's coordinates to 
change±it only decides how they will change.    This way, all GameActors that decide how to move based upon 
locations of other GameActors won't cause wierd bugs due to some GameActors moving before other GameActors.    To 
make the GameActor actually move, you must call -moveOneFrame.    (Note that -renderAt::move: will do this if you 
specify a value of YES for moveOk.)



At times the controller or another GameActor will need to know where the GameActor is located or was last drawn.    
These coordinates are available via the -xpos, -ypos, -lastAt::, and -at:: methods.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in GameActor int myX, myY;
int lastx, lasty;
int px, py;
id gameView;

myX, myY Current location of the GameActor.

lastx, lasty Where the GameActor was last rendered.

px, py Deltas specifying how the GameActor will move in the next frame.

gameView A GameView subclass.    Not actually used by this abstract object, but it is 
provided because subclasses will often need a connection to a parent 
GameView subclass for some reason or another.

METHOD TYPES

Initialization - init 
- gameView
- setGameView:

Moving and Animation - move:
- moveOneFrame

Displaying - renderAt::move:

Current Location - at::
- lastAt::
- xpos 
- ypos 



INSTANCE METHODS

at::
- at:(float *)xx :(float *)yy

Returns by reference the current location of the GameActor.    Returns self.

See also:    ± lastAt::, ±xpos, and ±ypos

init
- init

Designated initializer for the GameActor.    Clear all the coordinates and deltas.    Returns self.

See also:    ± setGameView:and ±gameView

gameView
- gameView

Returns the current value of the instance variable gameView.

See also:    ± setGameView:

lastAt::
- lastAt:(float *)xx :(float *)yy

Returns by reference the last location where the GameActor was rendered.    Returns self.

See also:    ± at::, ±xpos, and ±ypos

move:
- move:sender

Sets the deltas (px, py) which tell the GameActor where to move for the next frame of animation.    Subclasses of 
GameActor are expected to implement this method; in the generic GameActor, it does nothing.    Returns self.

See also:    ± moveOneFrame, and ±renderAt::move:



moveOneFrame
- moveOneFrame

Actually causes the GameActor to change coordinates.    Usually called by ±renderAt::move:.    If overridden, the 
subclass must call the super method at some point.    Returns self.

See also:    ± moveOneFrame, and ±renderAt::move:

renderAt::move:
- renderAt:(int)posx :(int)posy move:(BOOL)moveOk

Renders the GameActor.    This method assume that you have first locked focus on some View or subclass of View.    
Subclasses of GameActor are expected to implement this method.    (A subclass should call the super method first, 
before implementing subclass-specific code.)

The coordinates posx and posy are offsets into the View subclass which currently is focused; this allows the actual game 
screen to have borders, etc.; the GameActor assumes that the coordinates (0,0) are the lower left corner of the view; 
setting posx and posy non±zero allows you to change this.

The moveOk flag tells the GameActor whether or not it needs to move itself before rendering.    See the description 
above for why movement is delayed until rendering.    Note that if moveOk is set to NO, then you can re-render a game 
screen without moving the GameActor.

Returns self.

See also:    ± move: and ±moveOneFrame

setGameView:
- setGameView:newGameView

Sets the instance variable gameView to newGameView.    Returns self.

See also:    ± gameView

xpos



- (int)xpos

Returns the current x-coordinate of the GameActor.

See also:    ± at::, ±lastAt::, and ±ypos

ypos
- (int)ypos

Returns the current y-coordinate of the GameActor.

See also:    ± at::, ±lastAt::, and ±xpos


