/* MiscSwapView_ByObject.m

%

* This is a MiscSwapView category. It can handle swapping of different

* contentViews (controlled by MiscSwapContentsController's) into ourself by
* comparing trigger objects or tags (trigger tags and controller tags).

* More in depth information can be found here in the source-code.
E S

* Written by: Thomas Engel
* Created: 24.01.1994 (Copyleft)
* Last modified: 25.09.1994

My changes and comments are in bold black.
*/

#import "MiscSwapView.h"
#import "MiscSwapContentsController.h"
/f#import <misckit/misckit.h> // since for MiscKit the headers were moved by Don

@implementation MiscSwapView(ByObject)

- trigger
{

}

return trigger;

- swapContentView:sender
{
// This is the method that has to be triggered by each trigger for a nice
// swap. It incorporates the delegate and the new&previous viewCtrl.
/I Our delegate gets informed before the viewControllers are.
/I ' The new controller will get willSwapIn which should cause a revert or
// any other method causing the contoller to update/init its view. It's
// the last chance before it will be displayed.

/' We could check wether the controller has really changed or not but

// this might cause a problem when using a inspector because the same

// inspector might show different data.

// Maybe we could and a switch here...right now I'll leave it this way.

// Tt should work fine.

// Be sure that whenever you send the message you really have some changes
// to show. Otherwise it might be not that perfect.

/

/I Anyway. The same view will never swap in twice! SwapView take care of
// that inside setContentView. So you don't have the overhead of a doubled
// drawing time.

id oldController;
trigger = sender;

if([delegate respondsTo:@selector(viewWillSwap:)])

[delegate viewWillSwap:self];

oldController = currentController;
currentController = [self findControllerForTrigger: sender];

[oldController willSwapOut];
[currentController willSwapln];

[self setContentView:[currentController view]];

if([delegate respondsTo:@selector(viewDidSwap:)])
[delegate viewDidSwap:self];

[oldController didSwapOut];
[currentController didSwaplIn];

return self;

}

- addController:sender

{

/I Adding a viewController has to ensure that there is only one controller
// for one trigger. The controller added last will be the only known

// controller after adding has finished!

// To find interferring controllers we use our findController method.

// 'This needs the trigger to check and the right tagComparison setting.

// If you change the tagComparison setting later the results might not be
// correct!

// You are now allowed to add a controller that does not have a trigger
// since you can rely totally on tag comparisons. A controller with a
/I trigger of nil will for sure not match any other trigger, but could

// match by tag.

// Since I changed findController to findControllerForTrigger:, you don't

1"

/
1"

// have to save the trigger then restore it.
id oldTrigger;
id oldController;

oldTrigger = trigger;
trigger = [sender trigger];

/1 1f there already is someone...remove him.!

// Also do not want the same controller registering more than once. The
// old way, if a controller changed it's trigger, it would get by

// findControllerForTrigger: and would be added again.

[self removeController: sender];

oldController = [self findControllerForTrigger: [sender trigger] 1;
if(oldController) [self removeController:oldController];

[controllers addObject:sender];
/Il trigger = oldTrigger;

return self;

}

- removeController:sender

{
// Here we remove aViewController from the subviewControllers list.
// ATTENTION: This does not cause the view to disappear when it is the
// current swap View contents!

[controllers removeObject:sender];
return self;

- removeAllControllers

{
[controllers empty];
return self;
}
- controllers
{
return controllers;
}
- contentsController
{
return currentController;
}

- setTagComparison:(BOOL)flag

// Should we compare the tags first...and then the objects ?

tagComparison = flag;
return self;

}
- (BOOL)doesTagComparison
{
return tagComparison;
}

- findControllerForTrigger: aTrigger

{
// This is the basic comparison center. Subclasses of this class should
// implement only the new findControllerByTag(Object) methods and leave
// this method untouched. Sometime there is a way of finding a more

// 'useable' trigger even inside the swapAction method.

// Using this method from addController: to see if there is already a
// a controller for that trigger only works when using triggers as the
// comparison. It does not for tags, since we don't care if someone

// registers all the controllers for the same tag..

id newController;
newController = nil;

// Used to also check that trigger responded to tag, but that did not
// work when the trigger was nil and we wanted a comparison by tag only.

if([self doesTagComparison])
newController = [self findControllerByTag:[aTrigger tagl];
if('InewController) newController = [self findControllerByObject: aTrigger];

return newController;

}

- findControllerByTag:(int)aTag

{
// Here we try to find the right controller by comparing the tags.
// Really simple. Well...the trigger has to have a tag different from

// zero.
id aViewController;
int i

if(aTag == 0) return nil;
aViewController = nil;

// Ok now lets find out what viewController refers to this tag.

for(i=0; i<[controllers count]; i++)

{
if(aTag == [[controllers objectAt:i] triggerTag])
{
aViewController = [controllers objectAt:i];
break;
b
}

return aViewController;

}

- findControllerByObject:aTrigger
{

/I Here we simple compare the objects. They have to be the SAME...not only
// similar!!!

id aViewController;
int i;

aViewController = nil;

// Now that we allow nil triggers we must check for them.
if (aTrigger == nil)
return nil;

for(i=0; i<[controllers count]; i++)
{
if(aTrigger == [[controllers objectAt:i] trigger])
{
aViewController = [controllers objectAt:i];
break;

b

return aViewController;

}
@end

/*
* History: 24.02.94 Made it a Miscswap View Category.

*

24.01.94 Made it a subclass of MiscSwapView

08.01.94 Switched to tagComparison for better reading.
choosesByTagFirst was not that nice.

21.12.93 Code transferred from the old swapPopManager and
some viewController methods added plus the trigger object
which now stores the object triggering our swap.

*¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

20.12.93 Enlightened the controller to check the tags if they are
set. This helps to localize apps.

04.12.93 Added a delegate to this class the enable better
command-key handling.

04.11.93 First steps to a general-purpose swapPopManager.

*¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ %

Bugs: - I'm not sure about what to free....
*/

