
/* MiscSwapContentsController.m
 *
 * A very simple class for controlling swapAble views. A subclass is a must
 * to easily work with the MiscSwapView classes.
 *
 * For more interface-info see the header file. In depth information
 * can be found here in the source-code.
 *
 * Written by: Thomas Engel
 * Created: 24.01.1994 (Copyleft)
 * Last Modified: 25.09.1994

Changes are in black bold.
 */

//#import "MiscSwapContentsController.h"
#import "MiscSwapView.h"
#import "MiscSwapContentsController.h"

//#import <misckit/misckit.h>

// Defined in order to do archiving and versioning properly, so
// if the archiving changes we will be able to read all versions.

#define MISC_SCC_VERSION 0
#define MISC_SCC_CLASSNAME "MiscSwapContentsController"

// Declarations of private methods that need not be in the
// header file.

@interface MiscSwapContentsController (PrivateMethods)

- _dispatchToDelegate: (SEL)message;
- _dispatchToDelegate: (SEL)message with: anObject;

@end

@implementation MiscSwapContentsController

+ initialize
{

// Sets the version of this class for archiving purposes.

if (self == [MiscSwapContentsController class])
[self setVersion: MISC_SCC_VERSION];

return self;
}

- init
{

[super init];

swapView = nil;
view = nil;
trigger = nil;
triggerTag = 0;
delegate = nil;

return self;
}

- setSwapView:aView
{

// Here we set our swapView. This objects is the right place to
// register ourselves for the swapping. But only if we have a trigger..
// otherwise we have to wait for a awakeFromNib message.
// Sorry we can only register for one swapView at a time. So if we had

// a swapView before..lets say good bye.

if(swapView) [swapView removeController:self];

swapView = aView;

// I removed the necessity that the trigger has to be set to something
// before adding ourselves to the swapview's list of controllers. The
// swapView class was also changed so it would treat controllers with
// no trigger in the correct way, since you can depend upon tags and
// not use any controllers.
// You also do not need awakeFromNib anymore.

[swapView addController: self];

return self;
}

- swapView
{

if (swapView != nil)
return swapView;

// If we aren't pointing to a swapview maybe our delegate
// knows something we don't. I don't really know why you
// would have the delegate know the swapView, but it is
// here for consistency.
return [self _dispatchToDelegate: @selector(swapView)];

}

- setView:aView
{

view = aView;

return self;
}

- view
{

if (view != nil)
return view;

// This way you can have views that are all in seperate nibs and
// have the delegate get them when they are needed.
return [self _dispatchToDelegate: @selector(view)];

}

- setTrigger:anObject
{

// The trigger is the object we are related to. By default we try to set
// the triggerTag according to that object.

// Activating the trigger object (or an object with this tag) will cause
// us to swap in.

trigger = anObject;

if([trigger respondsTo:@selector(tag)])
[self setTriggerTag:[trigger tag]];

else [self setTriggerTag:0];

return self;
}

- trigger
{

return trigger;
}

- setTriggerTag:(int)tag
{

// Sets the tag we will be activated for.
// Working with tags frees us from having to know what typ of object caused
// the action (TextCell,ButtonCell,Matrix or what ever..) as long as the
// tags are handled the right way.

triggerTag = tag;
return self;

}

- (int)triggerTag
{

return triggerTag;
}

// As an alternative to subclassing this controller to "control" the rest of

// the UI objects on the view, you can make it a seperate class and connect
// it to the delegate, so it knows when it will be swapped in and out.

- delegate
{

return delegate;
}

- setDelegate: aDelegate
{

delegate = aDelegate;
return self;

}

/*
 * These revert/ok msg are send to setup/save the contents of a view.

 * Only the revert msg is invoked by default. If you have to store some
 * data when swapping out implement a [self ok:self] msg iside willSwapOut.
 * Ok should be used to save the changes made and revert should init the
 * view to show the current settings.
 */

- ok:sender
{

[self _dispatchToDelegate: @selector(ok:) with: sender];
return self;

}

- revert:sender
{

[self _dispatchToDelegate: @selector(revert:) with: sender];
return self;

}

/*
 * These messages we will get from our swapView. ThatÂs how we can
 * recognize that maybe some things have to be written to the defaults
 * database or something has to be updated etc.
 * You should override them in you subclass.
 * They are no actionMethods because we always know who our swapCtrl. is.
 * So sender is not needed here.
 */

- willSwapIn
{

[self revert:self];
[self _dispatchToDelegate: @selector(willSwapViewIn:) with: self];
return self;

}

- willSwapOut
{

[self _dispatchToDelegate: @selector(willSwapViewOut:) with: self];
return self;

}

- didSwapIn
{

[self _dispatchToDelegate: @selector(didSwapViewIn:) with: self];
return self;

}

- didSwapOut
{

[self _dispatchToDelegate: @selector(didSwapViewOut:) with: self];
return self;

}

- read: (NXTypedStream *)stream
{
 int version;

[super read: stream];
version = NXTypedStreamClassVersion(stream, MISC_SCC_CLASSNAME);

switch (version)
{

case 0:
swapView = NXReadObject (stream);
view = NXReadObject (stream);
trigger = NXReadObject (stream);
delegate = NXReadObject (stream);

NXReadType (stream, "i", &triggerTag);
break;

default:
break;

 }

return self;

}

- write: (NXTypedStream *)stream
{

[super write: stream];
NXWriteObjectReference (stream, swapView);
NXWriteObjectReference (stream, view);
NXWriteObjectReference (stream, trigger);
NXWriteObjectReference (stream, delegate);
NXWriteType (stream, "i", &triggerTag);

return self;
}

@end

@implementation MiscSwapContentsController (PrivateMethods)

- _dispatchToDelegate: (SEL)message
{

if (delegate && [delegate respondsTo: message])
return [delegate perform: message];

// No delegate or doesn't respond to message.
return nil;

}

- _dispatchToDelegate: (SEL)message with: anObject
{

if (delegate && [delegate respondsTo: message])
return [delegate perform: message with: anObject];

return nil;
}

@end

/*
 * History: 25.09.94 Added archiving (read:, write:, +initialize).
 * Added a delegate so this class could be on a palette

 * and would not require subclassing. Also took away
 * the awakeFromNib method since you can now register a
 * controller without having a trigger set.
 *
 * 14.02.94 Changed the classes name to MiscSwapContentsController
 * from the MiscSwapSubviewController becauses it fits better
 * to what it really is.
 *
 * 24.01.94 Made it a Misc object and changed it to work with the
 * new Misc stuff.
 *
 * 09.01.94 Added the ok/revert stuff.
 *
 * 08.01.94 Derived from my old swapViewdelegate. The code+methods
 * were cleaned up a bit.
 *
 *

 * Bugs: - no read/write; (not anymore)
 *
 * - Maybe I should do more responds to or class checking.. hmm ??
 *
 * - Not a bug but: I don't love the double registry made by awakeFromNib
 * and setSwapView. It works but it's not elegant. (not anymore)
 */

