
/* MiscSwapView_ByObject.m
 *
 * This is a MiscSwapView category. It can handle swapping of different
 * contentViews (controlled by MiscSwapContentsController's) into ourself by
 * comparing trigger objects or tags (trigger tags and controller tags).
 * More in depth information can be found here in the source-code.
 *
 * Written by: Thomas Engel
 * Created: 24.01.1994 (Copyleft)
 * Last modified: 25.09.1994

 My changes and comments are in bold black.
 */

#import "MiscSwapView.h"
#import "MiscSwapContentsController.h"
//#import <misckit/misckit.h> // since for MiscKit the headers were moved by Don

@implementation MiscSwapView(ByObject)

- trigger
{

return trigger;
}

- swapContentView:sender
{

// This is the method that has to be triggered by each trigger for a nice
// swap. It incorporates the delegate and the new&previous viewCtrl.
// Our delegate gets informed before the viewControllers are.
// The new controller will get willSwapIn which should cause a revert or
// any other method causing the contoller to update/init its view. It's
// the last chance before it will be displayed.

// We could check wether the controller has really changed or not but
// this might cause a problem when using a inspector because the same
// inspector might show different data.
// Maybe we could and a switch here...right now I'll leave it this way.
// It should work fine.
// Be sure that whenever you send the message you really have some changes
// to show. Otherwise it might be not that perfect.
//
// Anyway. The same view will never swap in twice! SwapView take care of
// that inside setContentView. So you don't have the overhead of a doubled
// drawing time.

id oldController;

trigger = sender;

if([delegate respondsTo:@selector(viewWillSwap:)])

[delegate viewWillSwap:self];

oldController = currentController;
currentController = [self findControllerForTrigger: sender];

[oldController willSwapOut];
[currentController willSwapIn];

[self setContentView:[currentController view]];

if([delegate respondsTo:@selector(viewDidSwap:)])
[delegate viewDidSwap:self];

[oldController didSwapOut];
[currentController didSwapIn];

return self;

}

- addController:sender
{

// Adding a viewController has to ensure that there is only one controller
// for one trigger. The controller added last will be the only known
// controller after adding has finished!
// To find interferring controllers we use our findController method.
// This needs the trigger to check and the right tagComparison setting.
// If you change the tagComparison setting later the results might not be
// correct!
// You are now allowed to add a controller that does not have a trigger
// since you can rely totally on tag comparisons. A controller with a
// trigger of nil will for sure not match any other trigger, but could
// match by tag.

// Since I changed findController to findControllerForTrigger:, you don't

// have to save the trigger then restore it.
// id oldTrigger;

id oldController;

// oldTrigger = trigger;
// trigger = [sender trigger];

// If there already is someone...remove him.!

// Also do not want the same controller registering more than once. The
// old way, if a controller changed it's trigger, it would get by
// findControllerForTrigger: and would be added again.
[self removeController: sender];

oldController = [self findControllerForTrigger: [sender trigger]];
if(oldController) [self removeController:oldController];

[controllers addObject:sender];

// trigger = oldTrigger;

return self;
}

- removeController:sender
{

// Here we remove aViewController from the subviewControllers list.
 // ATTENTION: This does not cause the view to disappear when it is the
 // current swapView contents!

[controllers removeObject:sender];
return self;

}

- removeAllControllers
{

[controllers empty];
return self;

}

- controllers
{

return controllers;
}

- contentsController
{

return currentController;
}

- setTagComparison:(BOOL)flag

{
// Should we compare the tags first...and then the objects ?

tagComparison = flag;
return self;

}

- (BOOL)doesTagComparison
{

return tagComparison;
}

- findControllerForTrigger: aTrigger
{
 // This is the basic comparison center. Subclasses of this class should

// implement only the new findControllerByTag(Object) methods and leave
// this method untouched. Sometime there is a way of finding a more

// 'useable' trigger even inside the swapAction method.
// Using this method from addController: to see if there is already a
// a controller for that trigger only works when using triggers as the
// comparison. It does not for tags, since we don't care if someone
// registers all the controllers for the same tag..

id newController;

newController = nil;

// Used to also check that trigger responded to tag, but that did not
// work when the trigger was nil and we wanted a comparison by tag only.

if([self doesTagComparison])
newController = [self findControllerByTag:[aTrigger tag]];
if(!newController) newController = [self findControllerByObject: aTrigger];

return newController;
}

- findControllerByTag:(int)aTag
{

// Here we try to find the right controller by comparing the tags.
// Really simple. Well...the trigger has to have a tag different from
// zero.

id aViewController;
int i;

if(aTag == 0) return nil;

aViewController = nil;

// Ok now lets find out what viewController refers to this tag.

for(i=0; i<[controllers count]; i++)
{

if(aTag == [[controllers objectAt:i] triggerTag])
{

aViewController = [controllers objectAt:i];
break;

};
}
return aViewController;

}

- findControllerByObject:aTrigger
{

// Here we simple compare the objects. They have to be the SAME...not only
// similar!!!

id aViewController;
int i;

aViewController = nil;

// Now that we allow nil triggers we must check for them.
if (aTrigger == nil)

return nil;

for(i=0; i<[controllers count]; i++)
{

if(aTrigger == [[controllers objectAt:i] trigger])
{

aViewController = [controllers objectAt:i];
break;

};
}

return aViewController;
}

@end

/*
 * History: 24.02.94 Made it a MiscswapView Category.
 *
 * 24.01.94 Made it a subclass of MiscSwapView
 *
 * 08.01.94 Switched to tagComparison for better reading.
 * choosesByTagFirst was not that nice.
 *
 * 21.12.93 Code transferred from the old swapPopManager and
 * some viewController methods added plus the trigger object
 * which now stores the object triggering our swap.
 *

 * 20.12.93 Enlightened the controller to check the tags if they are
 * set. This helps to localize apps.
 *
 * 04.12.93 Added a delegate to this class the enable better
 * command-key handling.
 *
 * 04.11.93 First steps to a general-purpose swapPopManager.
 *
 *
 * Bugs: - I'm not sure about what to free....
 */

