
Technical gabble
126476_PixelRule.tiff ¬

 
This section contains more technical details.    You can ignore everything 
that follows, and remain a happy Convert PICT user!    If you continue, note 
that I'm assuming you know at least a little bit about PICT and PS file 
details (Inside Mac V p. 96-105 is a good place to look for more info about 
PICT).

The quick overview of how this application works is as follows: When 
given a PICT file, Convert PICT will start reading in opcodes and their 
parameters one at a time.    In general this data undergoes essentially no 
alteration, but is simply written out in an equivalent form in the PS file.    
Thus:

300010001000FF00FF

becomes



16 16 255 255 frameRect

While it has undergone a bit of improvement in legibility, you'll see that the 
fundamental information remains unchanged.    Of course, this isn't 
universally true.    The four (or eight if you count the PICT II versions as 
distinct from the PICT I versions) bitmap opcodes all end up mapping to 
two PS routines, so a certain amount of data alteration is done there.    And 
the data describing a region, if it's more than just a rectangle, is extremely 
different from it's PICT form.    But, these are exceptions to the general 
rules.

The Convert PICT app, then, mainly serves to do these conversions into PS 
form.    It then writes all these instructions out with a decent sized prolog 
with definitions for all the calls made (e.g. the frameRect call above).    
When this PS file is run, it then generates an image that should look nearly 
identical to the original PICT image.

There are a couple things worth noting about the above process.    The first 



point is that those collections of PS code mentioned elsewhere (commented 
and uncommented ones) contain the definitions of the routines as 
mentioned above.

The more important point, though, is that the Convert PICT application 
doesn't do all the conversion internally.    It converts the binary data to calls 
to equivalent routines in PS, and deals with the special cases like the 
bitmaps and regions.    Because of this, a large amount of the work is done 
by the PS routines in thr prolog that is written out.    This means it is easy 
for you to modify the behavior of the converted images.    Do you think a 
routine is running too slowly? (this would not be a surprise.    I've put no 
effort into optimization)    If so, you can change the PS code files that this 
app uses when it writes out files.    Convert PICT also tries to write out 
meaningful data, even for the `ignored' opcodes.    So, if you wanted to 
provide support for the text drawing modes (which the default PS routines 
ignore), or pict comments, or whatever, you can make those changes right 
in the PS code this relies on.



When the converter generates an eps file, it doesn't write the entire contents 
of one of those PS code collections.    Instead, it only writes the parts that 
are needed (i.e. if lines were used in the picture, but rectangles weren't, then 
only the file containing line routines is written to the converted eps file).    
This explains why there are several files in each PS code collection.

The two collections of code are the `CommentedPSCode' and 
`UncommentedPSCode' directories.    The Commented set is, essentially, 
the master set.    That directory contains a script (`makeUncommented') 
which will copy all these commented files to the UncommentedPSCode 
directory while stripping comments out.

I hope this provides a decent overview of how the processing is done, and 
what you can do to modify it.    I think the commented set of PS code will 
provide adequate details about what's being done to implement the various 
instructions.    If the info is inadequate, please don't hesitate to contact me!


