
Copyright ã1994 Christopher J. Kane. Version 1.0.

MiscINETSocket

Inherits From: MiscSocket : Object

Declared In: MiscINETSocket.h

Class Description

This class encapsulates sockets in the Internet domain, and offers operations specific to such sockets.   
See the documentation for the MiscSocket class for more information on sockets and socket types.

Sockets and Connections

The reader should keep in mind that the text which follows is generalization and simplification to make
it more useful as an introduction to Internet sockets.

A network connection (in the {TCP,UDP}/IP protocol model) is distinguished by four pieces of
information: the local address, the local port number, the remote address, and the remote port number.   
The addresses are each one of the addresses of the local and remote hosts involved in the connection
(the remote host may be the same host as the local host, but by convention the host to which a
connection is made is the remote host).    There are two general states in which a socket is useful for
network connections: bound and connected (a third state, closed, isn't very useful if you want to do
something with the socket).    To bind a socket is to assign a local address and local port number to the
socket, but no remote address or port.    To connect a socket means to form a connection between two
hosts, the remote address and port to which to connect are specified, and the system fills in a local
address and chooses a local port number.

A bound socket (often referred to as a passive socket in the literature) acts something like an electrical

outlet for network connections; a connection formed to a remote host must connect to a socket which
has been bound on that host, just as when you want some toast, you must plug your toaster into an
electrical outlet (plugging it into the sink doesn't get you toast).    This analogy doesn't go much further,
however; when an un-bound, un-connected socket forms a connection to a bound socket, a new socket
for the remote end of the connection is created on the remote host, a new socket which is in the
connected state.    The bound socket remains as before, waiting to accept new connections.    A socket
which is connected (referred to as an active socket) can participate in the transfer of data on the
connection.    Data can be read and written from the socket in much the same way as it can be read and
written from a file (with some limitations and differences; you can't seek on a socket, for instance).   
The system takes care of getting the data to and from the remote host, using whatever transfer method
you have specified: datagrams, streams, etc. (this is called the type of the socket in this documentation;
see the documentation for the MiscSocket class for more information).

Notes on this Class

Instances of the class are reusable, in that they may be sent multiple initialization messages.    This may
allow an application to avoid some memory allocation and deallocation in some cases.    The

initialization messages of this class are init, connectTo:port:type:, connectTo:service:type:,
openServerPort:type:, and openServerService:.    These last four, while not conforming to the init-
naming convention, are called initialization method because they behave just like an initialization
method and can be used as such.    Each of those last four methods calls the init method as one of the
first things it does±this closes the instance if it is open, and initializes it in preparation for forming a
connection or listening for connections.    Additionally, they free the instance if there is an error (and
return nil).

There are four class methods that send and receive datagrams, the "sendDgram:..." methods.    These
methods have been implemented to provide efficient datagram operations, when a small number of
datagrams need to be sent by an application.    If an application needs to send more than two datagrams
to the same destination in a short period of time, a forming a connection and sending on it would be
faster.

Methods implemented in this class generally return self on success and nil upon failure, or a small
integer if there is a timeout parameter.    When nil (or -1) is returned, the value of the errno global
variable can be examined for the cause; values that this variable may take on are described in the

header file <sys/errno.h> and the UNIX manual page intro(2).    The list of possible values in errno is
meant to be extensive, but not exhaustive.    Asynchronous errors on the socket, such as
ECONNRESET (remote host has forced the connection to be closed), may result at nearly any time,
and may not be related to the operation just attempted.    If a method is successful, the previous value of
errno is preserved.

Other references

Here are a few good references on sockets and network communication:
Comer, Douglas E. Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architecture.

Prentice-Hall, Englewood Cliffs, New Jersey. 1991.
Comer, Douglas E. and David L. Stevens. Internetworking with TCP/IP, Volume 3: Client-Server

Programming and Applications (BSD Socket edition). Prentice-Hall, Englewood Cliffs, New
Jersey. 1993.

Stevens, W. R. UNIX Network Programming. Prentice-Hall, Englewood Cliffs, New Jersey. 1990.

Instance Variables

MiscINETAddress *localAddress Local end point address of current connection
int localPortNum Local end point port number of current connection
MiscINETAddress *remoteAddress Remote end point address of current connection
int remotePortNum Remote end point port number of current connection

Method Types

Initializing instances - init

Initializing a connected socket - connectTo:port:type:
- connectTo:service:type:

Initializing a bound socket - openServerPort:type:
- openServerService:type:

Accepting connections - acceptNewConnection:timeout:

Copying instances - copyFromZone:

Sending/receiving data - receiveData:length:
- receiveData:length:timeout:from:port:
- receiveData:length:timeout:toNext:
- sendData:length:
+ sendDgram:length:to:port:
+ sendDgram:length:to:port:timeout:retries:withReply:length:
+ sendDgram:length:to:service:
+ sendDgram:length:to:service:timeout:retries:withReply:length:

Closing connection endpoints - shutdownLocalEnd
- shutdownRemoteEnd

Assessing accessibility + ping:timeout:useECHO:

Listening for connections + runServer:target:action:fork:loop:

Accessing socket options - debugEnabled
- delayEnabled
- enableDebug:
- enableDelay:
- enableKeepAlive:
- keepAliveEnabled
- lingerTime
- setLingerTime:

Information about a socket - dataAvailable
- localAddress
- localPortNum
- remoteAddress
- remotePortNum
- socketError

Class Methods

ping:timeout:useECHO:
+ ping:(MiscINETAddress *)addr

timeout:(unsigned int)ms
useECHO:(BOOL)aBool

Sends a message to the host specified by addr and waits for a reply.    The message can either be the
usual "ping" message, using the ICMP protocol, or it can be a datagram sent to the ECHO port on the
host addr.    Only the superuser can send ICMP messages, so aBool will most often be YES for user
programs.    The amount of time to wait in milliseconds can be specified with the ms parameter; a zero
value means no timeout (infinite wait).    Only one message is sent; the application is responsible for
trying again if desired.    Returns 1 on success (message sent and valid reply received), 0 on timeout, -1
on error (or invalid response).    On error, the global errno may contain the following values: 0
(response received was invalid), EMFILE (the process is out of descriptors), ENFILE (the system
descriptor table is full), ENOBUFS (system lacks resources), EDESTADDRREQ (addr was nil); for the

ICMP option only: EACCES (permission denied); for the ECHO option only: ENOENT (echo service
unknown).

runServer:target:action:fork:loop:
+ runServer:(id)sockets

target:(id)target
action:(SEL)action
fork:(BOOL)fFlag
loop:(BOOL)lFlag

This method implements a fairly generic and typical server "event loop".    Typically, a server initializes
some sockets to the ports to which it wants to listen, and goes into a loop, servicing requests for
service.    In the case of a stream socket bound to a port, this means accepting new connections from
that socket, and handling requests received from the new connection.    Bound datagram sockets are
simply listened to, and requests read directly from them.    This method encapsulates this activity,
allowing the author of a server to ignore many of these details for many typical servers.

The sockets parameter is either a socket instance to which to listen, or an instance of HashTable (or
subclass thereof) of socket instances, which are indexed by their socket descriptors.    The socket (or
sockets) are all listened to simultaneously (not in a busy wait).    When there is activity on one or more
sockets, the target is sent the action message with the socket instance in question as the only parameter.
In the case of a stream socket, the new connection is accepted and the newly created socket for this new
connection is passed as the parameter, and this instance is freed when the action method returns.   
There are no provisions for adding sockets dynamically (while this method is executing) to the list of
sockets monitored.    If lFlag is true, the server then goes back to listening for activity, looping forever
(or until an error occurs).    The fFlag parameter dictates whether or not the server forks a child to
handle the service request; this is desirable for stream-oriented servers where the connection will be
long-lived; after the fork, the child performs the action method (and exits when that method returns).   
If fFlag is false, no forking occurs (the action method could do the fork itself, depending on the type of
socket the activity occurred on, for instance).    There are also no provisions for timeout on the length of
the waiting for activity.

Does not return if lFlag is true and no error occur, otherwise returns self on success.    On error, nil is
returned, and the global errno may contain the following values: EINVAL(target does not respond to

action, or sockets is neither an instance of MiscSocket (or a subclass) or HashTable (or a subclass), or
the socket(s) are all closed), EBADF (one of the sockets specified has closed), ECONNABORTED
(one of the sockets is closing), EAGAIN (the fork failed).

sendDgram:length:to:port:
+ sendDgram:(void *)data

length:(int)dlen
to:(MiscINETAddress *)addr
port:(int)portNum

Sends a datagram containing data of length dlen starting at memory pointed to by data to the remote
host specified by addr and port specified by portNum.    Returns self on success, nil on error.    Since
datagrams do not guarantee reliable delivery in the current implementation, the success or failure of the
remote host to receive the message is not indicated (all errors are local host errors).    On error, the
global errno may contain the following values: EMFILE (the process is out of descriptors), ENFILE
(the system descriptor table is full), ENOBUFS (system lacks resources), EFAULT (invalid data

pointer), EMSGSIZE (message size too large), EDESTADDRREQ (addr was nil).

sendDgram:length:to:port:timeout:retries:withReply:length:
+ (int)sendDgram:(void *)data

length:(int)dlen
to:(MiscINETAddress *)addr
port:(int)portNum
timeout:(unsigned int)ms
retries:(int)retries
withReply:(void *)repl
length:(int *)rlen

Sends a datagram containing data of length dlen starting at memory pointed to by data to the remote
host specified by addr and port specified by portNum and waits for a reply.    The amount of time to
wait in milliseconds can be specified with the ms parameter; a zero value means no timeout (infinite
wait).    The method will make multiple attempts if retries is greater than zero.    Note that the timeout

value is for each attempt, not for all attempts cumulatively.    Returns 1 on success, 0 on timeout, and -1
on error.    Since datagrams do not guarantee reliable delivery in the current implementation, the success
or failure of the remote host to receive the message is not indicated (the remote host may have received
all attempts).    On error, the global errno may contain the following values: EMFILE (the process is
out of descriptors), ENFILE (the system descriptor table is full), ENOBUFS (system lacks resources),
EFAULT (invalid data pointer), EMSGSIZE (message size too large), EDESTADDRREQ (addr was
nil).

sendDgram:length:to:service:
+ sendDgram:(void *)data

length:(int)dlen
to:(MiscINETAddress *)addr
service:(const char *)service

Translates the service (which may be a service name or a port number) specified by service into a port
number, and calls sendDgram:length:to:port:.    In addition to the error conditions of that method, nil

is returned if service cannot be mapped into a port number.    Additionally, on error, the global errno
may contain the following value: ENOENT (service unknown).

sendDgram:length:to:service:timeout:retries:withReply:length:
+ (int)sendDgram:(void *)data

length:(int)dlen
to:(MiscINETAddress *)addr
service:(const char *)service
timeout:(unsigned int)ms
retries:(int)retries
withReply:(void *)repl
length:(int *)rlen

Translates the service (which may be a service name or a port number) specified by service into a port
number, and calls sendDgram:length:to:port:timeout:retries:withReply:length:.    In addition to the
error conditions of that method, -1 is returned if service cannot be mapped into a port number.   

Additionally, on error, the global errno may contain the following value: ENOENT (service unknown).

Instance Methods

acceptNewConnection:timeout:
- (int)acceptNewConnection:(MiscINETSocket **)newSocket timeout:(unsigned int)ms;

Waits for a connection request to arrive at the socket represented by the receiver.    The socket must be
of stream type that has been bound locally with the openServerPort:type: or
openServerService:type: methods.    When a new connection arrives, a new instance (of stream type)
representing the new connection is created and returned by reference in newSocket.    If the timeout
period expires or an error occurs, the value pointed to by newSocket is set to nil.    The receiver is not
modified.    The amount of time to wait in milliseconds can be specified with the ms parameter; a zero
value means no timeout (infinite wait).    Returns 1 on success, 0 on timeout, and -1 on error.    On error,
the global errno may contain the following values: EBADF (socket is closed), EINVAL (socket not of

stream type), ECONNABORTED (socket is closing).

connectTo:port:type:
- connectTo:(MiscINETAddress *)addr

port:(int)portNum
type:(int)aType

Closes the socket instance if it is currently open, and makes a connection to the host specified by addr
at the port indicated.    Returns self if successful.    The receiver is freed and nil is returned if aType is
not valid (for instance, a raw socket is requested and the process does not have the appropriate
permissions), portNum is less than zero, or a connection to the remote host and port could not be made.
On error, the global errno may contain the following values: ESOCKTNOSUPPORT (invalid type
value), EPROTONOSUPPORT (type not supported for Internet sockets), EMFILE (the process is out
of descriptors), ENFILE (the system descriptor table is full), EACCES (permission is denied),
ENOBUFS (system lacks resources), EADDRNOTAVAIL (local address/port not available),
EADDRINUSE (remote address/port already in use), ETIMEDOUT (connection attempt timed out),

ECONNREFUSED (remote end refused connection), ENETUNREACH (network is unreachable),
EHOSTUNREACH (host is unreachable), EDESTADDRREQ (addr was nil).

connectTo:service:type:
- connectTo:(MiscINETAddress *)addr

service:(const char *)service
type:(int)aType

Translates the service (which may be a service name or a port number) specified by service into a port
number, and calls connectTo:port:type:.    Returns self if successful.    In addition to the error
conditions of that method, the receiver is freed and nil is returned if service cannot be mapped into a
port number, or aType specifies a raw socket type.    Additionally, on error, the global errno may contain
the following values: ESOCKTNOSUPPORT (socket type is raw), ENOENT (service unknown),
EADDRNOTAVAIL (local service port not available), EADDRINUSE (remote service port already in
use).

copyFromZone:
- copyFromZone:(NXZone *)zone

Returns a copy of the receiver.    See the cautionary message in this class's superclass documentation of
this method for more information.

dataAvailable
- (BOOL)dataAvailable

Returns YES if there is data to be read from the socket, or NO if there isn't or the socket is closed.

debugEnabled
- (BOOL)debugEnabled

Returns YES if the delay option on the socket has been enabled, or NO if it has been disabled (the
default), or the socket is closed.

delayEnabled
- (BOOL)delayEnabled

Returns NO if the delay option on the socket has been disabled, or YES if it has been enabled (the
default), or the socket is closed.

enableDebug:
- enableDebug:(BOOL)aBool

Sets the state of the debug option on a socket, if the socket is not closed, and returns self.    This option
can be used to enable debugging in the underlying protocol layers and turn on the output of debugging
information from them.

enableDelay:
- enableDelay:(BOOL)aBool

Sets the state of the delay option on a stream socket, if the socket is not closed, and returns self.   
Stream connections usually transmit data when it is received from the application.    If this option is
enabled (which it is by default), whenever there is data that has been sent, but not yet acknowledged by
the other end of the connection, data that is received from the application is buffered (if the amounts are
small) to be sent when the acknowledgement arrives.    For a few clients or servers, this delay may be
unacceptable, and this option can be disabled.    If the socket is not of stream type, does nothing.

enableKeepAlive:
- enableKeepAlive:(BOOL)aBool

Sets the state of the keep-alive option on a stream socket, if the socket is not closed, and returns self.   
If this option is enabled, periodic messages will sent between the lower protocol levels on the local and
remote hosts to ensure that the connection remains active.    If the remote end of the connection does
not respond to the messages, the system considers the connection to be broken, and the process will
receive a SIGPIPE signal to notify it of this.    Note that the socket object is not closed automatically if
the connection fails; the application must attend to that itself.    By default, this option is disabled.    If

the socket is not of stream type, does nothing.

init
- init

Places the instance in the closed (initialized) state, and returns self.    This method may be applied
multiple times to an instance, so that instances may be reused.    This method is the designated
initializer of MiscINETSocket instances.    Subclasses should implement their own version of this
method (beginning with [super init]) to initialize its instance variables.    To maintain the multiple-
initialization property, the method should check the value of instance variables and free allocated
objects and memory as part of the initialization, and extended init- methods in the class should call
[self init] first thing in the method.

keepAliveEnabled
- (BOOL)keepAliveEnabled

Returns YES if the keep-alive option on the socket has been enabled, or NO if it has been disabled (the
default), or the socket is closed.

lingerTime
- (int)lingerTime

Returns the linger time as set by setLingerTime:, or 0 if linger has been disabled (the default), or the
socket is closed.

localAddress
- (MiscINETAddress *)localAddress

Returns the address of the local end of the socket, or nil if the socket is not open nor connected or
bound.    On error, the global errno may contain the following values: EBADF (socket is closed),
ENOBUFS (system lacks resources).

localPortNum
- (int)localPortNum

Returns the port number of the local end of the socket, or -1 if the socket is not open nor connected or
bound.    On error, the global errno may contain the following values: EBADF (socket is closed),
ENOBUFS (system lacks resources).

openServerPort:type:
- openServerPort:(int *)portNum

type:(int)aType

Closes the instance and reopens it, bound to the port specified.    portNum should have been initialized
to the desired port, or zero if any port is acceptable (one will be assigned by the system).    The port is
bound to all addresses of the local host.    Returns self if successful.    The instance is freed and nil is
returned if aType is not valid (for instance, a raw socket is requested and the process does not have the
appropriate permissions), the value pointed to by portNum is less than zero, or the socket could not be

bound to the local port (for instance, if it is already in use).    The global errno may contain the
following values: ESOCKTNOSUPPORT (invalid type value), EPROTONOSUPPORT (type not
supported for Internet sockets), EMFILE (the process is out of descriptors), ENFILE (the system
descriptor table is full), EACCES (permission is denied), ENOBUFS (system lacks resources),
EADDRNOTAVAIL (port not available), EADDRINUSE (port already in use).

openServerService:type:
- openServerService:(const char *)service

type:(int)aType

Translates the service (which may be a service name or a port number) specified by service into a port
number, and calls openServerPort:type:.    Returns self if successful.    In addition to the error
conditions of that method, the receiver is freed and nil is returned if service cannot be mapped into a
port number, or aType specifies a raw socket type.    Additionally, on error, the global errno may contain
the following values: ESOCKTNOSUPPORT (socket type is raw), ENOENT (service unknown),
EADDRNOTAVAIL (service port not available), EADDRINUSE (service port already in use).

receiveData:length:
- (int)receiveData:(void *)data

length:(int *)dlen

This method is a cover for receiveData:length:timeout:from:port: with an infinite timeout and which
ignores the remote address and port number from which the data was received.    Returns the same
values and has the same error conditions as that method.

receiveData:length:timeout:from:port:
- (int)receiveData:(void *)data

length:(int *)dlen
timeout:(unsigned int)ms
from:(MiscINETAddress *)addr
port:(int *)port

Waits for data to become available on the socket, then returns the data in the memory pointed to by

data.    The integer pointed to by dlen should have been initialized to the maximum amount of data
desired; on return, it contains the amount of data actually returned.    For datagram sockets, an entire
message is returned; if the maximum size specified is less than the size of the message, the excess (of
the message) is discarded by the system.    For stream sockets, whatever data is currently available (up
to the specified maximum) is returned; any data beyond the maximum desired amount will be received
on the next (and subsequent) receive(s).    The amount of time to wait in milliseconds can be specified
with the ms parameter; a zero value means no timeout (infinite wait).    If the caller does not desire to
know either (or both) of addr (the source address) or port (the source port), nil and NULL
(respectively) may be passed for these parameters; normally, they would only be of interest to servers
using datagram ports, where no connection is established.    The method returns -1 on error, 0 if the
timeout period expires before any data is received, and 1 if data is read.    On error, the global errno
may contain the following values: EBADF (socket is closed), EFAULT (invalid data pointer),
ENOTCONN (tried to receive from a bound stream socket), EPIPE (remote host has closed
connection).    Note that the socket object is closed if the connection fails (EPIPE).

receiveData:length:timeout:toNext:

- (int)receiveData:(void *)data
length:(int *)dlen
timeout:(unsigned int)ms
toNext:(unsigned char)sentinel

Waits for data to become available on the socket, then returns the data in the memory pointed to by
data.    The integer pointed to by dlen should have been initialized to the maximum amount of data
desired; on return, it contains the amount of data actually returned.    The data returned is the data that is
available, up to and including the character sentinel.    Note that no nul-terminator is written after the
data (i.e., it should not be immediately used as a string).    Available characters after sentinel will be
read on the next (and subsequent) receive(s).    The intent of this method is to provide a simple
message-boundary capability to stream sockets; it will not work on any other type of socket.    The
amount of time to wait in milliseconds can be specified with the ms parameter; a zero value means no
timeout (infinite wait).    Returns -1 on error, 0 if the timeout period expires before a sentinel character
is received, and 1 if data is read.    Note that on error or timeout, some data may have been read and
returned in data; the value at dlen should be checked.    On error, the global errno may contain the
following values: EBADF (socket is closed), EFAULT (invalid data pointer), ENOTCONN (tried to

receive from a bound stream socket), EPIPE (remote host has closed connection), EINVAL (socket not
of stream type).    Note that the socket object is closed if the connection fails (EPIPE).

remoteAddress
- (MiscINETAddress *)remoteAddress

Returns the address of the remote end of the socket, or nil if the socket is not open nor connected.    On
error, the global errno may contain the following values: EBADF (socket is closed), ENOTCONN
(socket not connected), ENOBUFS (system lacks resources).

remotePortNum
- (int)remotePortNum

Returns the port number of the remote end of the socket, or -1 if the socket is not open nor connected.   
On error, the global errno may contain the following values: EBADF (socket is closed), ENOTCONN
(socket not connected), ENOBUFS (system lacks resources).

sendData:length:
- sendData:(void *)data

length:(int)dlen

Sends dlen bytes starting at data to the remote host if the socket is open.    If the socket was opened for
datagram service and the amount of data is small enough, the data written will be one datagram; if the
amount of data is too large for one datagram, the system will break it into multiple datagrams.    The
datagram(s) may or may not arrive intact and unduplicated.    For stream sockets, the data is appended
to the stream of data at the remote end of the connection.    The remote process will not necessarily read
the data in the same chunks as it is presented to the system at the local end (there are no message
boundaries with stream sockets).    Returns self on success, or nil upon error.    On error, the global
errno may contain the following values: EBADF (socket is closed), ENOTCONN (send to a bound
stream socket), EDESTADDRREQ (send to a bound datagram socket), EPIPE (remote host has closed
connection), EMSGSIZE (message size too large), ESHUTDOWN (local end of socket has been
shutdown).    Note that the socket object is closed if the connection fails (EPIPE).

setLingerTime:
- setLingerTime:(int)secs

When a stream socket is closed, there may be unsent data in the local cache, waiting to be sent.    If a
positive timeout period in seconds has been set with this method and there is unsent data, closing the
socket will block the process (or thread) until all data is transmitted or the timeout period expires.    If
the parameter secs is non-positive, then linger is disabled; in this case, the close operation will be
performed so that the process continues as quickly as possible.    In either case, the (system internal)
stream connection is not actually closed until all data has been transmitted, or TCP gives up (say, due to
a network failure).    Linger is disabled by default.    If the socket is closed, this method does nothing.   
Returns self.

shutdownLocalEnd
- shutdownLocalEnd

Closes the local end of a connected socket.    Further sends on the socket will be disallowed, and the

remote end will not receive any more data (after the local send and remote receive buffers of the
systems have been emptied).    Returns self on success.    If the socket is not connected, nil is returned.   
On error, the global errno may contain the following values: EBADF (socket is closed), ENOTCONN
(socket not connected).    The inherited close method should be used to close a connection completely.

shutdownRemoteEnd
- shutdownRemoteEnd

Closes the remote end of a connected socket.    Further receives on the socket will be disallowed (after
current the local receive buffers have emptied), and the remote end will not be able to send any more
data.    Returns self on success.    If the socket is not connected, nil is returned.    On error, the global
errno may contain the following values: EBADF (socket is closed), ENOTCONN (socket not
connected).    The inherited close method should be used to close a connection completely.

socketError
- (int)socketError

Returns the value of the error status register of the socket, and clears the register.    Some errors on
sockets happen asynchronously with operations on the socket.    For example, when a socket is closed
the instance is reinitialzed, and the socket descriptor is freed.    But there may be data in buffers in the
lower protocol levels of the system which has not yet been sent.    For a stream socket, providing
reliable delivery, the system will continue to (try and) send this data before closing the connection.    If
after some timeout period the system gives up, the error condition is placed in the socket's error status
register, if the socket descriptor has not been freed.    (Ironically, in this example the error status is
cannot be accessed because the descriptor has been freed.)    If there is no error in the register, or the
socket is not open, zero is returned.

