
Copyright ã1994 Christopher J. Kane. Version 1.0.

MiscSocket

Inherits From: Object

Declared In: MiscSocket.h

Class Description

This is an abstract class which encapsulates some basic operations on sockets, and provides a 
framework for subclasses which manage a particular domain or type of socket.



A socket is a potential end point for network or process communication, and has two important 
properties with which it is created: its domain and its type.    The domain specifies where the 
communication is to be done.    Most often, this is either the UNIX or the Internet domain.    Sockets in 
the UNIX domain are used for inter-process communication.    Sockets in the Internet domain are used 
for communication between hosts on the Internet.

The type of a socket is the type of transport service that the socket will provide.    There are three 
common types of transport service: raw, datagram, and stream.    Raw service provides no special 
handling of the data read from or written to a socket.    Datagram service packages data written to a 
socket into an independent message, which is then read as an individual message at the other end.²    In 
the current implementation, datagram service is provided via the User Datagram Protocol.    UDP does 
not provide reliable transport, so messages may be lost, duplicated, delivered in a different order from 
which they were sent, or modified in transport.    Reliability, if desired, must be provided by the 
application; the programmer must handle lost, duplicated, or out of order messages³.    The third type of 
service, stream service, provides a stream of data to and from the socket, similar to the UNIX file 
paradigm as a stream of bytes.    Stream service is provided via the Transmission Control Protocol, TCP, 
which, unlike UDP, provides reliable data transmission.    The remote end of a connection will read the 



exact sequence of bytes written to the local end of the connection (in the absence of network or host 
failures).    However, unlike UDP, there are no message boundaries, but rather a continuous stream of 
data.

Instances of the class are reusable, in that they may be sent multiple initialization messages.    This may 
allow an application to avoid some memory allocation and deallocation in some cases.    Note however 
that the initialization method initDomain:type: frees the instance on error.

Methods implemented in this class generally return self on success and nil upon failure.    When nil is 
returned, the value of the errno global variable can be examined for the cause; values that this variable 
may take on are described in the header file <sys/errno.h> and the UNIX manual page intro(2).    If the 
method is successful, the previous value of errno is preserved.

² There are system- and network-imposed limits on the size of datagrams.    Applications limiting 
datagram size to IP_MSS - sizeof(struct udpiphdr), or 548, bytes should have no problem with this.

³ Each UDP message has a header, which contains a checksum.    If the checksum check, when a 
message arrives at the UDP software layer of a host, fails, the message is dropped.    The application 



will never see a UDP message which has a bad checksum (i.e., has been modified in transport).

Instance Variables

int sock Socket descriptor
int domain Socket's domain
int type Socket type

Method Types

Initializing instances - close
- init
- initDomain:type:

Copying instances - copyFromZone:



Freeing instances - free

Accessing properties - domain
- isClosed
- socket
- type

Instance Methods

close
- close

Places the receiver in the closed state.    This method is a synonym for init, and can be used when close 
better describes what is desired than init.    Returns self.



copyFromZone:
- copyFromZone:(NXZone *)zone

Returns a copy of the receiver.    If the socket is not closed, the copy gets a duplicate socket descriptor 
as well.    Thus, the copy can be closed or freed without interfering with the original object.    Note, 
however, that the socket descriptors of both objects refer to the same structures in the kernel, the same 
connection end point; only one of the objects will read a particular chunk of data from the 
connection±the data is not duplicated for each descriptor.    Care should be taken that the two objects do 
not interfere with one another.    If the socket descriptor cannot be duplicated, the copy is freed and nil 
is returned.    The global errno may contain the following value: EMFILE (the process is out of 
descriptors).

domain
- (int)domain

Returns the domain identifier of the socket if it is not closed, or -1 if it is.    The domain identifier is one 



of the constants PF_INET, PF_UNIX, etc. defined in the header file <sys/socket.h>.

free
- free

Closes the socket if it is open and frees the instance.    Returns nil.

init
- init

Places the instance in the closed (initialized) state, and returns self.    This method may be applied 
multiple times to an instance, so that instances may be reused.    This method is the designated 
initializer of MiscSocket instances.    Subclasses should implement their own version of this method 
(beginning with [super init]) to initialize its instance variables.    To maintain the multiple-initialization 
property, the method should check the value of instance variables and free allocated objects and 
memory as part of the initialization, and extended init- methods (initDomain:type:, for example) in 



the class should call [self init] first thing in the method.

initDomain:type:
- initDomain:(int)aDomain type:(int)aType

Initializes the instance to the closed state, then "opens" it by creating a new socket for the instance, in 
the domain and of the type specified.    The socket is "open", but is not usable for communication 
activity.    The parameter aDomain is one of the domain (protocol family) constants from the header file 
<sys/socket.h>, typically PF_UNIX or PF_INET.    aType is one of the type constants defined in this 
class's header file: MiscSOCK_RAW, MiscSOCK_DGRAM, or MiscSOCK_STREAM.    
MiscSOCK_RAW specifies no special transport handling for the connection; only the superuser can 
create raw sockets.    MiscSOCK_DGRAM specifies datagram-oriented transport, and 
MiscSOCK_STREAM specifies stream-oriented transport.    In the current implementation, datagram 
and stream service is provided via UDP and TCP, respectively.    Returns self on success.    If the socket 
cannot be created, the instance is freed and nil is returned.    The global errno may contain the 
following values: EPROTONOSUPPORT (domain/type combination not supported), 



ESOCKTNOSUPPORT (invalid type value), EMFILE (the process is out of descriptors), ENFILE (the 
system descriptor table is full), EACCES (permission is denied), ENOBUFS (system lacks resources).

isClosed
- (BOOL)isClosed

Returns YES if the socket is in the closed state, NO otherwise.

socket
- (int)socket

Returns the socket descriptor for the socket, or -1 if the receiver is closed.

type
- (int)type



Returns the type of the socket if it is not closed, or -1 if it is.    The type is one of the constants 
MiscSOCK_RAW, MiscSOCK_DGRAM, or MiscSOCK_STREAM defined in the header file for this 
class.


