
Copyright ã1994 Christopher J. Kane. Version 1.0.

Notes on the Miscdaemon routines

Module Description

The Miscdaemon C module provides some basic facilities useful to nearly any daemon or daemon-like 
application.    These facilities include: global variables for static and interesting values, memory 
allocation checking functions, message logging, daemon assertions, and, perhaps most importantly, a 
mechanism to transform a process into a daemon.    The function and variable descriptions give the 
details needed to use the routines; understanding how they work should only be necessary if you want 
to do something fancy (or tricky).



You'll note that this is not a class, nor a category, nor anything Objective-C, but just pure C code.    To 
me, at least, it seems to be a tricky problem thinking about how this functionality (and code) should be 
integrated into the Objective-C class hierarchy.    A daemon doesn't seem to be an object in its own 
right, such as is a tree or a chair, but rather it is a "flavor" of process.    The best place would seem to be 
a category of Application.    A method call such as

[NXApp log:LOG_INFO message:"opening file %s", filename];
seems quite natural.    But what if a program doesn't link with the AppKit, and uses the Listener -run 
method, or one of the NXConnection -run methods instead?    So, perhaps a subclass of Object...but 
this doesn't fit well into the class hierarchy either, as I mentioned earlier.

So I have opted to not "classify" the functionality provided by these routines, and leave them as C code. 
A developer should be able to simply drop the two files Miscdaemon.h and Miscdaemon.c into a 
project, and gain the utility.    But, additionally, the debug flag should also be defined somewhere in a 
project.    If you don't want to use it, add a line to the top of Miscdaemon.c declaring it there.    And a 
call to daemonize() should be added to the project's main() routine, as one of the first things it does.

A typical call to daemonize(), the most complex of the functions, might look like this:
daemonize("myDaemon", "/usr/adm/myDaemon.log", LOG_DAEMON,



"/", "/usr/adm/", NULL, SIGHUP, NULL);
The safe_dir need not be a directory that the daemon can write it, it's just the directory that should be 
the daemon's current working directory.    Since "/" always exists, it is a typical choice.    The lock file, 
which in this example will be "/usr/adm/myDaemon.pid", prevents more than one copy of the daemon 
from running at a time.    The ignfds and ignsigs are typically NULL to provide default behavior; since 
daemonize() will usually happen as (nearly) the first thing done in a program, there won't usually be 
file descriptors that you wish to protect (except perhaps the stdio descriptors).

Imported Variables

debug
int debug

This is a global variable which must be defined outside this module.    It is used to modify the behavior 
of the code in the module, depending on whether or not debugging behavior is desired.    Note that this 



debugging of the application, not this module.    Note also that this flag can be set and unset at runtime 
to dynamically switch between debugging and non-debugging modes.    See the descriptions of the 
individual functions for the behavioral differences when debugging is on or off.
The use of an external flag/variable for this functionality shows questionable judgement.

Exported Variables

daemon_host
char *daemon_host

Points to, after the call to daemonize(), the string name of the local host.

daemon_name
char *daemon_name



Points to, after the call to daemonize(), the string name of the daemon, as given to daemonize() as its 
first parameter.

daemon_pid
int daemon_pid

Contains, after the call to daemonize(), the numerical ID of the daemon process.

Exported Functions

daemonize
void daemonize(char *prog_name, /* name for the daemon to be used in the log */

char *log_fn, /* file name for the log file, or special string */
int log_facility, /* syslog facility constant */
char *safe_dir, /* directory where the daemon can put a core file */



char *lockf_dir, /* directory in which to put the lock file */
fd_set *ignfds, /* an fd_set indicating file descriptors to ignore */
int loghup_sig, /* a signal constant */
int *ignsigs); /* pointer to array of signal constants to ignore */

Transforms the process into a typical daemon, returning nothing.    Because of its actions, this function 
should be one of the first things called in a daemon's main() routine, and it may only be called once.    
prog_name may be empty or NULL; if NULL, the default name "daemon" is used.    If safe_dir is 
NULL, the daemon's current directory isn't changed.

The value of log_fn indicates the type of message logging that is desired.    There are four options:
1. No logging (pass log_fn==NULL)
2. Log to syslog (pass log_fn=="syslog")
3. Log to stderr (pass log_fn=="stderr")
4. Log to a file (pass log_fn==any other string)

In the case of option 4, the string is interpreted as the path and name for the log file.    The log file will 
be created if necessary, and appended to.    Note that, if log_fn is NULL but the debug flag is set when 
this function is called, then the log file will be stderr.



The lockf_dir parameter specifies the directory in which to store the daemon's lock file. The lock file is 
given the name "%s.pid", where the string passed in prog_name is substituted for "%s". The process id 
of the daemon is written to the lock file.    If lockf_dir is NULL, or the debug flag is set, no lock file is 
created.    If the lock file already exists or cannot be created, the daemon exits.

Normally, daemonize() closes all file descriptors except stdin, stdout, and stderr (and possibly a file 
descriptor for the log file). stdin and stdout are pointed at /dev/null.    If stderr is not the log file, it is 
also pointed at /dev/null, the process is placed in its own process group, and it is disconnected from its 
controlling TTY.    The daemon's file creation mask is set to 033.

This behavior can be modified with the ignfds fd_set.    File descriptors for which the corresponding 
element of ignfds is set are ignored±files that are open remain open, files that are closed remain closed. 
The elements for the stdin, stdout, and stderr files may also be set to leave them alone.    If the log_fn 
parameter is "stderr", stderr is automatically ignored; you do not need to set its element in the fd_set.    
A NULL ignfds parameter will provide the default behavior.

Finally, some signal handlers are set, and some signals are explicitly set to be ignored by the daemon.    



Generally, if there is already a (non-default) signal handler set for a signal, it is left unmolested.    There 
exception to this is SIGTERM.    SIGTERM is always set to an internal signal handler that cleans up 
and shuts the daemon down (via daemon_exit()).    The loghup_sig specifies the signal which will 
activate another internal signal handler that closes and reopens the log file, if the log file is an ordinary 
file, so that the file may be trimmed.    This parameter may be zero if this functionality is not desired.    
Also, if no handler has been set before the call to daemonize(), SIGCHLD is set to a handler that reaps 
the children of the daemon that have terminated.

Signals may be set to be ignored with the ignsigs parameter.    If it is NULL, a default set of signals 
(SIGINT, SIGPIPE, SIGALRM, SIGTSTP, SIGTTIN, SIGTTOU, SIGVTALRM, SIGPROF, 
SIGUSR1, and SIGUSR2) are ignored, unless the debug flag is set when this function is called.    
Otherwise, the parameter is assumed to be a variable-length array of signal constants, with the last 
element having the sentinel value zero, which are then ignored if no handler has already been set.

daemon_alloc
void *daemon_alloc(int size)



This function, along with daemon_free(), provide a simple dynamic memory allocation checking 
facility to a daemon.    size is the number of bytes to allocate, and a pointer to the allocated, zeroed 
block (of at least size bytes) is returned.    If the allocation fails, the program is aborted with logged 
messages.    When the debug flag is set, a message is logged to the daemon log noting the allocation 
and the size, returned pointer value, and the source file and line where the allocation occurred.    When 
used with the output from daemon_free() (with debug set), this information can be used to track down 
memory leaks.

daemon_exit
void daemon_exit(int exit_val)

Does whatever cleanup is necessary, and terminates the daemon.    exit_val is the exit value for the 
daemon, which, unless the debug flag was set when daemonize() was called, is inaccessible to other 
processes (due to the "disconnection" that daemonize does).    In the current implementation, a message 
is logged to the daemon log, the lock file (if it was created) is deleted, the syslog file is closed, and 
exit() called.



daemon_free
void *daemon_free(void *block)

This function, along with daemon_alloc(), provide a simple dynamic memory allocation checking 
facility to a daemon.    block is a pointer to a block of memory previously allocated with 
daemon_alloc().    The function always returns NULL.    When the debug flag is set, a message is 
logged to the daemon log noting the deallocation, pointer value, and the source file and line where the 
deallocation occurred.    When used with the output from daemon_alloc() (with debug set), this 
information can be used to track down memory leaks.

daemon_log
void daemon_log(int prio, char *msg, ...)

Provides a message logging facility to a daemon.    prio is one of the syslog priority constants (such as 
LOG_ERR, LOG_INFO, etc.), msg is a printf()-style format string, and a variable number of 
arguments supply the values for the message string.    Messages with priority LOG_DEBUG are not 



logged if the debug flag is not set.    Messages with a priority lower than LOG_DEBUG (greater 
integer value) are never logged.    Because daemonize() sets up the log file, this function is not 
guaranteed to work until after daemonize() has been called.    Note, too, that no newline should be 
included at the end of the message format string; that is taken care of in the function.

The length limit on the message, after "format string expansion", is about 4K.    If this limit is exceeded, 
some memory has probably been clobbered, and the daemon will (probably) terminate.    Termination is 
not guaranteed, however, since the most likely bits to get clobbered in the current implementation are 
this function's call stack area, and the stack area of vsprintf() (called to do the "expansion").    
However, 4K should be ample for every need.

Exported Macros

daemon_assert
void daemon_assert(EXPR)



A debugging assert macro for daemons.    EXPR is the expression to evaluate; no value is returned.    If 
the expression evaluates to false, a message is logged to the daemon log and the daemon exits.    Note 
that the code of this macro is always compiled into an executable, but the expression is only evaluated 
if the debug flag is set.    This allows debugging assertions to be turned on and off at runtime.


