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Abstract 
The US Navy has a policy of presenting the capability and accuracy of test equipment in terms of 
engineering tolerances and measurement reliability.  Industry tends to discuss these same 
characteristics in terms of measurement uncertainty and confidence levels.  The concepts are 
closely related and these relationships are described mathematically.  Risk probabilities are key 
to assessing the meaning of capability and accuracy measures.  In addition to discussing 
calibration risks, risks to the end item are also discussed. 
 
Introduction 
For the non-statistician, discussions of measurement uncertainty can sometimes be bewildering.  
For US Navy metrology engineers, there are also the additional concepts of engineering 
tolerances and measurement reliability to deal with.  And somehow, all of these things relate to 
the usefulness of test equipment in testing real systems like radars and radios. 
 
In this paper, we will discuss the exact meanings of these concepts, and show how they relate 
mathematically.  In addition, we will look at two key bottom line concepts: 
 

• Calibration risk – What is the probability that a given calibration process will result in 
an out of tolerance test instrument? 
 

• System risk – What is the probability that a test instrument that belongs to a given 
calibration chain will incorrectly test the system it was designed for? 

 
The research in this paper was a further development from the research presented in References 
[1] and [2]. 
  
What is a Calibration? 
Calibration of a piece of measurement test equipment is performed by comparing the 
measurement values from a UUT (Unit Under Test) with the measurement values from a 
calibrator.  This comparison is given mathematically by: 
 
 Comparison = UUT Measurement – Calibrator Measurement (1)  
 
This description applies to situations where the calibrator and the UUT take measurements on an 
artifact.  The same description can be applied to a situation where the UUT takes measurements 
on a calibration standard which outputs an indicated value.  The comparison is then given by: 
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 Comparison = UUT Measurement – Calibrator Indicated Value (2)  
 
Similarly, if the UUT is outputting an indicated value which is measured by a calibrator, the 
comparison is given by: 
 
 Comparison = UUT Indicated Value – Calibrator Measurement (3)  
 
To determine whether a UUT is in tolerance, the calibration comparison is compared with 
engineering tolerances.  A UUT is considered in tolerance if: 
 
 Lower Tolerance < Comparison < Upper Tolerance (4)  
 
Test equipment that are Out of Tolerance (OOT) are adjusted using the comparison between the 
calibrator and the UUT.  If the test equipment is in tolerance, it may be either adjusted or not 
adjusted depending on the policy of the calibration program.  The U.S. Navy has the policy of 
not adjusting test equipment that are in tolerance. 
 
Calibration Intervals 
The test equipment is recalled to the calibration lab after a prescribed amount of time to be 
calibrated.  This prescribed amount of time is called the calibration interval.  Calibration 
intervals are determined in such a way as to assure that the test equipment is in tolerance. 
 
One would prefer, of course, that the test equipment always be in tolerance.  However, errors in 
measurement exhibit random behavior which makes it virtually impossible to guarantee this.  It 
is only possible to ensure a given (lower than 100%) probability of in tolerance. 
 
The probability that a piece of test equipment is in tolerance is called its measurement reliability.  
Mathematically this is written as: 
 
              Measurement Reliability = Pr(In Tolerance) (5)  

 
                                                      = Pr(Lower Tolerance < Comparison < Upper Tolerance) (6)  
 
Measurement reliability tends to decrease with time since calibration.  Therefore, we will write 
measurement reliability as a function of time or: 
 
 R(t) = Pr(In Tolerance at time t after calibration) (7)  
 
An example of a measurement reliability function is given in Figure 1. 
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Figure 1.  Measurement Reliability 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given a minimum acceptable or target measurement reliability, the calibration interval is 
determined by finding the amount of time until this target reliability is reached.  In the example 
in Figure 1, an 85% target reliability is represented by a horizontal dashed line.  This horizontal 
line reaches the Measurement Reliability curve at 18 months.  Therefore, the appropriate 
calibration interval in this example would be 18 months.  Such a calibration interval would 
ensure that there was at least an 85% probability that the test equipment was in tolerance during 
the entire calibration interval. 
 
Mathematically, the calibration interval is found by solving the reliability function for the 
amount of time since calibration to reach the reliability target.  If we define the calibration 
interval as I, and the reliability target as RT, the calibration interval is found by solving the 
following equation: 
 
 R(I) = RT (8)  
 
The solution to this equation is represented by: 
 
 I = R-1(RT) (9) 
 
Measurement Error Model 
The measurement model, shown in Figure 2, relates the value of the quantity being measured, 
referred to as the measurand, to the value obtained as a result of measurement.  The difference 
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between the two values is called the measurement error.  This will be expressed in mathematical 
form as: 
 
 Measurement = True Value + Error (10) 
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Figure 2.  Measurement Model
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rtainty is a way of characterizing the range of values that the measurement 
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Figure 3.  Distribution of Measurements 

 the true value to the dashed lines characterizes how big a measurement error 
led the uncertainty.  Note that the uncertainty is not a specific measurement 
lps to establish a range of values for the error.  So we could say that 

Measurement Range = True Value ± Uncertainty (11) 

True Value Range = Measurement ± Uncertainty (12) 

 uncertainty to a measurement indicates that we don’t know the true value 
e know a range of values for it. 
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Estimates of uncertainty are derived from the statistical concept of the standard deviation.  The 
standard deviation is a characteristic or number that describes the amount of variability of a 
distribution of measurements. 
 
For measurements that can be described using the normal, or bell-shaped, distribution the true 
value plus or minus a single standard deviation contains approximately 68% of the 
measurements that would result.  Two standard deviations contain approximately 95% of the 
population of measurements, and three standard deviations contain approximately 99.7%.  It is 
very common to express uncertainty as two standard deviations. 
 
 Uncertainty = 2 * Standard Deviation (13) 
 
Statistically, the uncertainty of a measurement is the same as the uncertainty of the measurement 
error.  If we use the notation u(x) to indicate the standard uncertainty (or standard deviation) of x, 
this would be expressed as: 
 
 Standard Uncertainty = u(Measurement) = u(Error) (14) 
 
Measurement Uncertainty and Measurement Reliability 
Measurement uncertainty and measurement reliability would seem to be related concepts.  They 
both have related probability statements.  The measurement uncertainty is related to a confidence 
level expressed by: 
 
              Confidence Level = Pr(-Uncertainty < UUT Measurement – True Value 
                                                                          < +Uncertainty) (15)  
 
The measurement reliability is related to the engineering tolerances that are used during 
calibration.  This probability is expressed by: 
 
 Measurement Reliability = Pr(Lower Tolerance < UUT Measurement – Calibrator Measurement 
                                                                             < Upper Tolerance) (16)  
 
Both probabilities are meant to place bounds on the location of the UUT Measurement with 
respect to the True Value.  However, the measurement reliability uses the Calibrator 
Measurement in place of the True Value. 
 
If the Calibrator Measurement is very close to the True Value, then Measurement Reliability and 
the uncertainty Confidence Level are very close to the same thing.  This means that the 
engineering tolerance is a form of uncertainty with the Measurement Reliability being the 
approximate Confidence Level.  The mathematical relationship between uncertainty, 
measurement reliability, and the engineering tolerances will be further discussed in subsequent 
sections. 
  
Estimating Uncertainty Using Calibration Results 
For two-sided symmetric tolerance limits we could express the observed measurement reliability 
as: 
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              Ro(UUT) =  Pr(-Tolerance Limit < Comparison < +Tolerance Limit) 
 

                              = 1
)(

−







Comparisonu

imitToleranceLF2   (17)  

 
where: 
 

Ro(UUT) = The observed measurement reliability at the end of the calibration 
interval for the UUT. 

F(z) = The Standard Normal distribution function 
 
In all calibration scenarios, the calibrator measurement (or indicated value) is compared with the 
UUT measurement (or indicated value).  The squared standard uncertainty due to this 
comparison is: 
 
 u2(Comparison) = u2(UUT) + u2(Calibrator) (18) 
 
This means that equation (17) can be solved for the Tolerance Limit (see the Appendix for 
further details) by: 
 
 Tolerance Limit = )()( 22
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where: 
 

Zp = The pth percentile of the Standard Normal distribution. 
 
Solving this equation for the uncertainty of the UUT gives: 
 

 u2(UUT) = 
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The expression in (20) assumes that there is a known measurement uncertainty for the calibrator.  
This would be true if the calibrator came from an uncertainty testing calibration process (report 
of calibration).  Unfortunately, if the calibrator comes from a tolerance testing process, its 
uncertainty will be a function of the calibrator’s calibrator.  This relationship will continue until 
there is a known uncertainty from an uncertainty testing calibration process.  This is pictured in 
Figure 4. 
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measurement uncertainty. 
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up from the UUT in the Traceability Chain. 
 
Uncertainty Estimation Example 
Consider a traceability chain consisting of a set of four test instruments each measuring 10 volts 
as shown in Table 1. 
 

Level 
Unc 
(95% 
EOP) 

EOP    
Std Unc

Engineering 
Tolerance Obs Rel

1 2.806 1.403    
2 11.225 5.613 6.250 0.7200
3 45.541 22.771 25.000 0.7200
4 182.006 91.003 100.000 0.7200

 
Table 1.  Uncertainty Estimation Using Calibration Results 

 
The test instruments in the second, third, and fourth levels are part of a tolerance testing 
calibration process.  The test tolerances (two sided) are 6.25 ppm, 25 ppm, and 100 ppm, 
respectively. 
 
The test instrument at the first level is a part of an uncertainty testing process.  The uncertainty, 
given as 2.806 ppm, is assumed to be 2 standard deviations.  This means that the standard 
uncertainty is 1.403 ppm. 
 
The standard uncertainties for the test instruments were calculated using the traceability 
uncertainty mathematics shown in equation (21).  For a 72% End of Period reliability target, a 
tolerance of 100 ppm corresponds to a 95% uncertainty of 182.006 ppm. 
 
Approximate Uncertainty Estimates Using The TAR and the Measurement Reliability 
The Test Accuracy Ratio, or TAR, is defined as the ratio of the UUT engineering tolerance to the 
calibrator engineering tolerance, or: 
 

 TAR = 
ceng Toleran EngineeriCalibrator

ranceering ToleUUT Engine  

 
For example, if a voltmeter was tested to be within ± 0.01 volts of the calibration standard, and 
the calibration standard being used to test the voltmeter had tolerances of ± 0.0025, the Test 
Accuracy Ratio would be: 
 

 TAR = 
0.0025

0.01  = 4 

 
Generally, this is expressed as “4:1”.  4:1 is the usual minimum US Navy technical requirement. 
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When the traceability chain has a consistent TAR, and the observed reliability is the same at 
every level, a close approximation for the standard uncertainty is given by: 
 

 u(UUT) ≅ 
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This equation can be solved to find the multiplier of the UUT uncertainty which gives the 
tolerance limit.  The multiplier is given by: 
 

 Uncertainty Multiplier ≅ 
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With a 4:1 TAR, the approximate uncertainty multiplier is 1.099 if the observed reliability target 
is 72% (General Purpose Test Equipment or GPTE).  The approximate uncertainty multiplier for 
Special Purpose Test Equipment (SPTE) with the same TAR and an observed reliability target of 
85% is 1.484. 
 
Four Necessary Elements For The Expression of Measurement Uncertainty 
A description of measurement uncertainty requires at least four elements: 
 

1. The expanded uncertainty value usually expressed as ±Uncertainty 
2. The multiplier used to obtain the expanded uncertainty from the standard uncertainty 
3. The confidence associated with the uncertainty 
4. A time limit that tells how long the uncertainty is valid 

 
As an example, at the end of a 1 year calibration interval, the voltmeter at Level 4 in Table 1 has 
a standard uncertainty of 91.003 ppm.  A simple expanded uncertainty would be given by twice 
the projected measurement standard deviation.  Therefore, a correct and complete expression of 
the measurement uncertainty for this voltmeter would be: 
 

1. ± 182.006 ppm 
2. The expanded uncertainty is 2 times the standard uncertainty (91.003 * 2) 
3. 95% Confidence (Actually 95.45%, since 2 is an approximation) 
4. Valid for 1 year 

 
A Navy analyst could also express the measurement uncertainty in terms of engineering 
tolerances and measurement reliability.  This would be an approximation to the correct 
uncertainty values.  This approximate expression for the measurement uncertainty for this 
voltmeter would be given by: 
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1. ± 100 ppm 
2. The expanded uncertainty is 1.099 times the standard uncertainty (91.003 * 1.099) 
3. 72% Confidence (Actually 72.82%, since measurement reliability is an approximation) 
4. Valid for 1 year 

 
The coverage probability, or confidence, must be included for the measurement uncertainty to 
have any usefulness.  Without this figure, it is impossible to ascribe any meaning to the 
uncertainty value.  The coverage probability predicts the proportion of measurements that would 
be expected to be within the expanded uncertainty of the true measurand value.  For example, in 
the voltmeter above, a measurement would be within 182.006 ppm of the true voltage 95% of the 
time, or equivalently, within 100 ppm of the true voltage 72% of the time. 
 
An expression of measurement uncertainty that is only valid immediately after calibration is 
misleading, because it is almost immediately invalid.  For this reason, a time period must be 
associated with an uncertainty, and the uncertainty should apply to the end of the time period. 
 
Nearly all uncertainties degrade with time and usage.  It is for this very reason that periodic 
calibration is needed to maintain an acceptable level of uncertainty.  The time limit provides an 
assurance that the uncertainty has not grown to the point that the test instrument cannot be used 
for a given application. 
 
Calibration Risk Analysis 
Usually, we think of calibration as testing only the error of the UUT.  However, the comparison 
between the UUT and the calibrator contains error from both the UUT and the calibrator.  This 
can be seen by deriving an expression for the comparison in terms of the measurement errors. 
 
The measurement model for the Calibrator is: 
 
 Calibrator Measurement = True Value + Calibrator Error (24) 
 
The measurement model for the UUT is: 
 
 UUT Measurement = True Value + UUT Error (25) 
 
Using the measurement models from (24) and (25), it can be seen that the comparison is actually 
a comparison of the two errors: 
 
 Comparison = True Value + UUT Error –  
                                                                    (True Value + Calibrator Error) 
 
                                                                 = UUT Error – Calibrator Error (26) 
 
Several important facts can be directly derived from this: 
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• Tolerance testing does not directly test the error of the UUT, rather it makes a test on the 
difference between the UUT and the calibrator errors. 
 

• There is a risk that a UUT that is determined to be In Tolerance, will actually be Out of 
Tolerance.  This is called the Probability of a False Accept (PFA). 
 

• There is also a risk that a UUT that is determined to be Out of Tolerance, will actually be 
In Tolerance.  This is called the Probability of a False Reject (PFR). 
 

• Because there is a False Accept probability (PFA), and because the calibrator itself could 
be out of tolerance with respect to the UUT, there is a risk that the calibrated UUT could 
still be out of tolerance. 

 
A false accept decision is shown in Figure 5. 
 
 

True ValueLower Limit Upper Limit

UUT 
Error

Calibrator
Error

True ValueLower Limit Upper Limit

UUT 
Error

Calibrator
Error

 
Figure 5.  False Acceptance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In a false accept, the UUT really is Out of Tolerance, but the Calibrator Error brings it back In 
Tolerance.  The probability of a false accept (PFA) is given by: 
 
 PFA = Pr(UUT Out of Tolerance given Comparison In Tolerance) (27)  
 
The evaluation of this and the other risk probabilities discussed in this section requires the use of 
the Bivariate Normal distribution function which is discussed in the Appendix. 
 
A false reject decision is shown in Figure 6. 
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Figure 6.  False Rejection 

 
 
 
 
 
 
 
 
 
 
 
 
 
In a false reject, the UUT is really In Tolerance, but the Calibrator Error moves the comparison 
Out of Tolerance.  The probability of a false reject (PFR) is given by: 
 
 PFR = Pr(UUT In Tolerance given Comparison Out of Tolerance) (28)  
 
For Navy calibrations, the UUT is only adjusted when it is Out of Tolerance.  This means that 
false accepts will be released in an Out of Tolerance condition.  In addition, if the calibrator is 
Out of Tolerance with respect to the UUT tolerance limits, then the UUT will be Out of 
Tolerance after adjustment, as well.  The probability for an out of tolerance at the beginning of 
the use period (BOP) when the adjustment is only made when the UUT is out of tolerance 
(which corresponds to U.S. Navy policy) is given by: 
 
       BOPN  = Pr(UUT Out of Tolerance at BOP with Navy adjustment policy) 
 
                   =Pr( (UUT Out of Tolerance and Comparison In Tolerance) or 
 
                         (Calibrator Out of Tolerance and Comparison Out of Tolerance))  (29)  
 
Calibration Risk Example 
In Table 2, we expand the uncertainty results given in Table 1 to show calibration risks.  Table 2 
shows the same traceability chain consisting of a set of four test instruments each measuring 10 
volts.  The uncertainties are expressed in parts per million (ppm). 
 

Level 
Unc 
(95% 
EOP) 

AOP    
Std Unc 

EOP    
Std Unc

Engineering 
Tolerance TAR Obs Rel PFA PFR 

BOP 
Adj 

OOT
1 2.806 1.403 1.403            
2 11.225 4.125 5.613 6.250  0.7200 0.050 0.179 0.036
3 45.541 16.934 22.771 25.000 4.000 0.7200 0.039 0.127 0.028
4 182.006  91.003 100.000 4.000 0.7200 0.039 0.131 0.028

 
Table 2.  Tolerance Testing Calibration Chain Results 
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For a 4:1 test uncertainty ratio, the risks of false decisions are not negligible.  Of the 72% of the 
In Tolerance test results, approximately 3.9% will actually be Out Of Tolerance.  This is the PFA 
number, or Probability of False Accept.  For 100 tests, this would mean that 72 would be found 
In Tolerance (on the average), and approximately 3 (0.039 x 72 = 2.8) would actually be Out of 
Tolerance. 
 
The Probability of a False Reject (PFR) is even larger.  Of the 28% that would be found to be 
Out of Tolerance, approximately 13% would actually be In Tolerance.  Out of 100 tests, this 
would correspond to 28 Out of Tolerance decisions, of which approximately 4 (0.13 x 28 = 3.64) 
would actually be In Tolerance. 
 
The bottom line for the calibration customer would be his risk of having an Out of Tolerance 
instrument after the calibration process.  With a 4:1 Test Accuracy Ratio, and an observed 
reliability of 72%, the customer has an almost 3% (2.8%) risk that his test instrument will be 
initially (BOP, or Beginning of Period) Out of Tolerance.  This means that out of a 100 items 
returned to the customer, approximately 3 would be out of tolerance. 
 
Calibration Risk and TAR 
Calibration risk can be made appropriately small by ensuring that the Test Accuracy Ratio 
between the calibration standard and the test equipment is at least 4:1.  The relationship between 
TAR levels and risk for General Purpose Test Equipment (GPTE) is shown in Figures 7 and 8. 
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Figure 7.  Unnecessary Calibration Risk (GPTE) 
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Basics of In-Service Reliability 
A single test of a US Navy system does not assure that it will perform reliably forever.  If we 
define reliability as the probability that a system will perform its mission as designed, there is an 
unfortunate principle that seems to apply to almost all systems: 
 

Principle:  Reliability degrades over time. 
 

This is demonstrated graphically in Figure 9.  This shows a reliability curve for a system that 
starts with 95% reliability at the beginning of a deployment.  After 10 years, this reliability drops 
to 60%.  If this curve referred to missiles, this would mean that only 6 out of 10 missiles would 
perform their mission after 10 years. 
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Figure 9.  Example Reliability Curve For a 

Military System 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Periodic testing is used to cull the unreliable systems from the inventory.  This has the effect of 
returning the reliability to the 95% level in the example above.  If you don’t test periodically, 
you rapidly reach a condition where things just don’t work anymore.  “Things not working” can 
be inconvenient for folks at home, but it’s downright disastrous for personnel in combat. 
 
What Happens With Bad Test Decisions? 
It may come as a surprise that the reliability curve in Figure 9 did not start at 100%.  After all, 
when a system has just been tested, it has 100% reliability, right?  If we had perfect tests, that 
would be the case. 
 
Unfortunately, testing is dependent on measurements, and measurements generally contain error.  
For example, a voltmeter measuring an exact 10 volt source, might yield a measurement of 10.02 
volts.  This would mean that the error in the measurement was 0.02 volts. 
 
If this measurement were applied to a weapon system that was required to be between 9.99 and 
10.01 volts, we would come to the erroneous conclusion that the system was out of specification.  
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Our faulty measurement would mean that the weapon system would be sent in for repair 
needlessly. 
 
In a recent reliability study on STANDARD Missile, the results of testing were regularly found 
to be in question.  Failed sections from a MK 612 test were retested at the depot.  It was often 
found that the failure was not repeatable.  Such failures are costly necessitating the breakdown 
and rebuild of missile systems as well as needless transportation of sections to and from the 
depot.  False failures also mean fewer missiles are available for load out on ships to support US 
Navy missions. 
 
On the other hand, if this measurement were applied to a weapon system that was required to be 
between 10.01 and 10.03 volts, we would incorrectly pass the system.  This would mean that a 
faulty weapon system would be sent to the Fleet.  Such an error can result in loss of mission, or 
even loss of lives. 
 
Mistakenly sending bad items out to the Fleet is one of the causes of system reliability curves 
starting below 100% at the beginning of a deployment as shown in Figure 10.  With a perfect 
test, the initial reliability would indeed be 100%.  Unfortunately, weapon tests cannot test every 
feature.  For example, the warhead and the rocket motor are not tested on a missile test set for 
obvious reasons.  Since these items are not tested, this results in the partial test reliability curve 
which starts at 95%.  When you take into account that the reliability curve comes from a partial 
test that is done with uncertainty, the reliability curve is lowered even farther as shown by the 
“Partial Test w/ Uncertainty” reliability curve. 
 
This lower initial reliability has two big effects on the Fleet.  Combat and other systems have a 
required level of reliability shown by the horizontal blue line in Figure 10.  The place where the 
reliability curve meets the reliability requirement determines the maintenance cycle or 
certification interval for the system.  A lower initial reliability means that the system must be 
tested more often which dramatically increases program office budgets. 
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In addition, the lower initial reliability translates to a lower level of reliability for the stockpile of 
systems.  This means that the average reliability for deployed systems is lowered.  In combat 
situations, this translates to failed missions and fatalities:  Things just don’t work when you need 
them to. 
 
How Do You Ensure A Good Test? 
How do you make sure that things do work when you need them to?  One obvious answer is to 
make sure that testing does what it’s supposed to by correctly identifying systems that need to be 
repaired or maintained, and by not mistakenly flagging systems that don’t need to be.  This is the 
entire objective of the US Navy METCAL Program.  We do this by: 
 

• Helping to ensure that the correct functions are tested. 
• Providing for the correct equipment and measurement procedures. 
• Providing for the needed Test Accuracy Ratio (TAR). 
• Providing for periodic calibration of test equipment. 
• Providing for measurement traceability to national standards. 

 
The Test Accuracy Ratio for systems is defined as the ratio of the system specification tolerances 
to the test equipment tolerances, or: 
 

 TAR = 
ToleranceEquipment Test 

Tolerance System  

 
For example, if the voltage output for a characteristic of a weapon system was required to be 
within 0.01 volts of a nominal value, and the voltmeter being used to test the weapon system had 
tolerances of ± 0.0025, the Test Accuracy Ratio would be: 
 

 TAR = 
0.0025

0.01  = 4 

 
For system test accuracy ratios, 4:1 is the usual minimum US Navy technical requirement. 
 
System Risk Analysis 
The risk to a Navy system is found using the same mathematics as is used in finding the risk for 
a piece of test equipment.  The major difference is that the bottom level of the traceability chain 
is a Navy system rather than a piece of test equipment.  The mathematical details for risk 
calculation are described in the Appendix. 
 
For a false accept, the tested system is really Out of Tolerance, but the Test Equipment Error 
makes it look as though it is In Tolerance.  The probability of a false accept (PFA) is given by: 
  
 PFA = Pr(System Out of Tolerance given Comparison In Tolerance) (30)  
 
For a false reject, the system is really In Tolerance, but the Test Equipment Error makes it look 
as though it is Out of Tolerance.  The probability of a false reject (PFR) is given by: 
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 PFA = Pr(System In Tolerance given Comparison Out of Tolerance) (31)  
 
The BOPN term applies to calibrated test equipment that are only adjusted when they are Out of 
Tolerance.  This risk probability would apply to Navy systems that are adjusted using the test 
equipment only when they are found to be Out of Tolerance.  This probability is given by: 
 
       BOPN  = Pr( (System Out of Tolerance and Comparison In Tolerance) or 
 
                         (Test Equipment Out of Tolerance and Comparison Out of Tolerance))  (32)  
 
Some Navy systems are always adjusted using the test equipment regardless of the tolerance 
condition.  The probability that these adjusted systems will be Out of Tolerance at the beginning 
of their maintenance periods (BOP) is given by: 
 
 BOPA = Pr(Test Equipment Out of Tolerance)  (33) 
 
For many Navy systems, no adjustment is attempted and Out of Tolerance systems are removed 
from the inventory. The testing of most missile systems is an example of such a process.  The 
missile sections cannot be adjusted using the test equipment, so Out of Tolerance sections are 
sent to depots for repair.  The probability that there are Out of Tolerance systems at the 
Beginning of the Maintenance Period (BOP) when there is no adjustment and Out of Tolerance 
systems are removed from the inventory is given by: 
 
 BOPR = Pr(System Out of Tolerance given Comparison In Tolerance)   (34) 
 
An example of risk calculations for a Navy system is given in Table 3. 
 

Level 
Unc 
(95% 
EOP) 

AOP    
Std Unc 

EOP    
Std Unc

Engineering 
Tolerance TAR Obs Rel PFA PFR BOPR 

Std 0.02810 0.01405 0.01405            
Cal 0.11224 0.04125 0.05612 0.06250  0.7200 0.050 0.180  
TE 0.33740 0.13575 0.16870 0.25000 4.000 0.8500 0.024 0.216  
Sys 1.53681  0.76841 1.00000 4.000 0.8000 0.026 0.139 0.026

 
Table 3.  Navy System Risk Analysis When OOT’s Are Removed 

 
Table 3 could apply to a missile system which had a target reliability of 80% at the end of its 
certification interval.  Such a system would be tested using a Special Purpose Test Equipment 
(SPTE) which would have a target measurement reliability of 85% at the end of the calibration 
interval (EOP).  The calibrator for the test equipment would be a General Purpose Test 
Equipment (GPTE) which would have a 72% EOP measurement reliability target.  It is also 
assumed that 4:1 test accuracy ratios are obtained at every level of the traceability chain. 
 
With these assumptions, the missile system would begin its maintenance cycle with a risk of 
2.6% of being out of tolerance.  This roughly corresponds to a 97.4% initial reliability. 
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TAR and System Risk 
What does a specific Test Accuracy Ratio buy you?  The TAR can be related to the risk of 
making wrong decisions during system testing as shown in Figures 11 and 12.  These figures 
apply to systems that are observed to be approximately 80% reliable at the time of their periodic 
test.  They also assume the test equipment were Special Purpose (SPTE) which have an 85% 
EOP reliability target which themselves were calibrated by standards that have a 72% EOP 
reliability target. 
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With a 4:1 TAR, approximately 14% of the test failures will be due to the test equipment rather 
than the tested system.  This means that 14% of the repair and maintenance work done as a result 
of the testing will be unnecessary.  By increasing the TAR to 10:1, we can decrease the 
unnecessary rework to as little as 5%.  In cases where the TAR is 2:1 or lower, the percentage of 
unnecessary rework skyrockets to 31% and more. 
 
The cost for maintenance has a tremendous impact on Program Office budgets.  Low TARs not 
only increase unnecessary rework, they also decrease the observed reliability, which shortens the 
length of the maintenance cycle.  The METCAL program can have a large effect on minimizing 
unnecessary expenditures. 
 
Figure 12 shows the percentage of tested systems that will be returned to the Fleet in an Out-Of-
Tolerance (OOT), or faulty condition.  For a 4:1 TAR, 2.6% of the tested systems will still be out 
of specification.  A 2:1 TAR will increase the initial OOT rate to over 4%, while a 10:1 TAR 
decreases this rate to almost 1%.  This initial OOT rate translates directly to reduced reliability in 
deployed systems. 
 
Summary 
In summary, the concepts of measurement uncertainty and uncertainty confidence level are 
closely related to the US Navy concepts of engineering tolerances and measurement reliability.  
Though they are not interchangeable, this paper provides mathematical relationships between the 
two. 
 
Measurement reliability is a necessary concept for the development of calibration intervals.  And 
strictly speaking, calibration intervals give validity to expressions of measurement uncertainty.  
Because measurement uncertainty degrades with time, an expression of uncertainty should be 
projected to the end of a calibration interval.  This ensures that the uncertainty is valid during the 
entire interval period. 
 
The measurement uncertainties of the calibrator and a piece of test equipment provide the means 
to determine the risk that the test equipment is Out of Tolerance.  These uncertainties applied to 
the engineering tolerances for a US Navy system provide the means to determine risk that the 
system is Out of Tolerance.  The risk to the end system is probably the most important measure 
of the success of a calibration system. 
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Appendix:  Risk Theory and Derivations 
 
Introduction 
This appendix develops the theory for measurement traceability mathematics.  The notation used 
here is meant to be rigorous and a familiarity with mathematical statistics is assumed. 
 
The basis of the traceability mathematics is a measurement error model.  This is derived and 
assumptions are made concerning the relevant error sources.  Though many of the results are 
independent of distribution assumptions, the normal distribution is assumed in order to provide a 
framework for some of the results. 
 
Measurement Error Model 
The measurement model, shown in Figure A.1, relates the value of the quantity being measured, 
referred to as the measurand, to the value obtained as a result of measurement.  The difference 
between the two values is called the measurement error.  This will be expressed in mathematical 
form as: 
 
 y(t) = Y + e(t) (A.1) 
 
where: 
 

t = The time since calibration for the measurement equipment. 
Y = The (true) value of the measurand. 
y(t) = The result of the measurement on Y. 
e(t) = The measurement error.  

 

Test
Instrument Measurand

Measurement

 
Figure A.1.  Measurement Model 

 
 
 
 
 
 
 
 
 
Measurements in a Traceability Chain 
Calibration standards or measuring and test equipment (MTE) of each echelon in a measurement 
support hierarchy are submitted for test or calibration to the next highest echelon in the 
hierarchy.  Figure A.2 shows a traceability chain consisting of i test instruments. 
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…

Test Instrument i-2

Test Instrument i-1
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Figure A.2. Traceability Chain 

 
In a calibration scenario, there is a calibrator and a unit under test, or UUT.  The UUT will be 
given the subscript i, where i could take values from 1 to N.  The calibrator, being the next test 
instrument up in the chain will generally be given the subscript i-1.  The measurement model for 
the UUT will be given as: 
 
 yi(ti) = Y + ei(ti) (A.2) 
 
where: 
 

i = The ith level in the traceability chain (i = 0,1,2,…,N). 
ti = The time since calibration for the ith test instrument in the traceability 

chain. 
Y = The (true) value of the measurand. 
yi(ti) = The result of the measurement on Y by the ith test instrument in the 

traceability chain. 
ei(ti) = The measurement error for the ith test instrument in the traceability 

chain.  
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yi(ti)

Measurand
Value = Y

Measurement

 
Figure A.3.  Subscripted Measurement Model 

 
 
 
 
 
 
 
 
The result of a measurement on Y by the calibrator, shown in Figure A.4, is yi-1(ti-1) which is 
modeled by: 
 
 yi-1(ti-1) = Y + ei-1(ti-1) (A.3) 
 
where: 
 

ti-1 = The time since calibration for the i-1st test instrument in the traceability 
chain when calibrating the ith test instrument in the traceability chain. 

ti-2 = The time since calibration for the i-2nd test instrument in the traceability 
chain when calibrating the i-1st test instrument in the traceability chain. 

ti-k = The time since calibration for the i-kth test instrument in the traceability 
chain when calibrating the i-k+1st test instrument in the traceability 
chain. 

 
 

Calibrator
yi-1(ti-1)

Measurand
Value = Y

Measurement

 
Figure A.4.  Calibrator Measurement Model 

 
 
 
 
 
 
 
 
Statistical Assumptions 
Though many of the results developed in this paper will be general in nature, certain statistical 
assumptions will be useful for the development of probability and uncertainty results.  The errors 
will be assumed to follow the normal distribution.  The notation used to indicate that x follows 
the normal distribution with mean µ and variance σ2 is as follows: 
 
 x ~ N(µ,σ2) 
 
This means that the probability distribution function for x is given by the bell shaped curve or: 
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The error component of the measurement error model given in (A.2) is assumed to be distributed 
as: 
  
 ei(ti) ~ N(µi(ti),σi

2(ti)) (A.4) 
 
The standard uncertainty of the measurement is the same as the error standard deviation, σi(ti).  
For the test instrument at the ith level  in the traceability chain, the uncertainty will also be 
represented by: 
 
 ui(ti) = σi(ti) (A.5) 
 
The inclusion of µi(ti) in the measurement error distribution means that there can be a drift or 
bias from the true value in the measurement. 
 
It should be noted that the assumptions discussed in this section refer to the distribution of the 
errors in measurement rather than the distribution of the measurements themselves.  The reason 
for this is that the true value of the measurand, Y, is not a fixed value, generally.  During a given 
calibration session, the value of Y will probably fluctuate.  The conditional distribution of yi(ti) 
for a given value of Y (denoted by yi(ti) | Y) is given by: 
 
 yi(ti) | Y ~ N(Y + µi(ti),σi

2(ti)) (A.6) 
 
In most calibration setups, the actual value of Y is irrelevant, since it is lost in the difference 
between the calibrator and the UUT, or: 
 
 yi(ti) – yi-1(ti-1) = ei(ti) – ei-1(ti-1) (A.7) 
 
However, it should be realized that equation (A.7) is only valid if the UUT and calibrator 
measurements are approximately simultaneous.  Simultaneity is a feature of most calibration 
measurement scenarios, with the possible exception of an external unknown artifact. 
 
Tolerance Testing 
In a tolerance test, the difference between the calibrator and the UUT is compared with a set of 
tolerance limits. 
 
In general, the tolerance test should be performed on a single measurement, rather than a sample.  
The tolerances are meant to represent the uncertainty of the UUT, which includes the random 
error component.  Using a sample of measurements would artificially reduce the uncertainty of 
the UUT during the test, without reducing the actual uncertainty of the UUT. 
 
The comparison for a tolerance test is given by: 
 
 di = yi(ti) – yi-1(ti-1) (A.8) 
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The tolerance test that will be developed in the following sections will be the two-sided 
symmetric test.  In this scenario, a UUT is considered to be in tolerance if: 
 
 -Li < di < Li (A.9) 
 
Simple extensions to this development can be made to fit the single-sided tests. 
 
Uncertainty Based on Tolerance Testing Results 
Though the uncertainty of a UUT under a tolerance test is not established parametrically, the 
uncertainty can be found using the reliability objective and the calibration interval. Measurement 
reliability is defined as the probability that a test instrument is observed in tolerance.  This will 
be given by Ro,i(ti) which is expressed mathematically as: 
 
 Ro,i(ti) = Pr(-Li < di < Li) (A.10) 
 
If we expand the comparison variable di using the measurement model in (A.2), we have: 
 
 di = yi(ti) – yi-1(ti-1) = ei(ti) – ei-1(ti-1) (A.11) 
 
From the statistical assumptions in (A.4), 
 
 ei(t) ~ N(µi(ti),σi

2(ti)) (A.12) 
 
However, since there is very little parametric data recorded for tolerance testing, it will be very 
difficult to explicitly establish the expectation trend for µi(ti).  Without much loss of generality, 
we will assume for the tolerance testing scenario: 
 
 ei(ti) ~ N(0,σi

2(ti)) (A.13) 
 
This has the effect of assuming that the bias growth is entirely due to an increase in variability.  
Using this assumption, we have:   
 
 ei(ti) – ei-1(ti-1) ~ N(0, ) (A.14) )()( 1

2
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2
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Therefore, 
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where F(z) is the cumulative Standard Normal distribution function given by 
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Solving (A.15) for the variance of the UUT gives: 
 

 σi
2(ti) = )(

2
)(1 1

2
1

2

,1
−−

−

−


























 + ii
iio

i t
tR

F

L σ  (A.16) 

 
 
Traceability Results for Tolerance Testing 
If there is a direct estimate of , then (A.16) can be used to obtain the uncertainty for the 
UUT.  This would be the case if the i-1st level in the traceability chain uses an uncertainty testing 
calibration process. 

)( 1
2

1 −− ii tσ

 
Without expressing  as a specific function of ti-1, (A.16) cannot be solved.  However, it 
is possible to consider a slight modification of the measurement model for tolerance testing that 
will allow a solution that can apply to the traceability chain. 

)( 1
2

1 −− ii tσ

 
Rather than looking at the measurement errors at the end of the calibration interval for the 
tolerance testing calibrators in the traceability chain, we consider a measurement randomly 
chosen from the calibration interval.  Thus, rather than using the end-of-period (EOP) reliability 
target, Ro,i-k(ti-k), we use the average-over-period (AOP) reliability, Ro,i-k,aop given by 
 

 Ro,i-k,aop = 
( )

dt
I

tRkiI

ki

kio∫
−

−

−

0

,  (A.17) 

 
where: 
 

Ro,i-k(t) = The measurement reliability as a function of the time since calibration as 
give by either (A.15) or the reliability function used to determine the 
calibration interval. 

Ii-k = The calibration interval for the i-kth level tolerance testing test 
instrument. 
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 The following approximation can be used, if needed: 
 
 Ro,i-k,aop = eopkioR ,, −  (A.18) 
 
where: 
 

Ro,i-k,eop = The end of period, EOP, measurement reliability target. 
 
Applying (A.16) to the assumptions concerning prior testers: 
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where: 
 

2
ki−σ  = The variance of a measurement from the i-kth Test Instrument taken at a 

random point during the calibration interval. 
 
Equation (A.19) is a recursive relation and can be extended back to the first test instrument in the 
Traceability chain that is calibrated using the obtained measurement uncertainty methodology.  
Assuming that the first such test instrument is at the i-mth level, we obtain: 
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Approximate Relationship Between TAR and Uncertainty 
Using equation (A.20), one can determine the relationship between various test accuracy ratios 
(TAR’s) in the traceability chain, and the resulting UUT uncertainty.  A useful approximation to 
this relationship can be found assuming that all calibrations in the calibration chain have the 
same TAR value, A.  This assumption is expressed as: 
 
 Li / Li-1 = A (A.21)  
 
Using this assumption, and the geometric series, we have: 
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A two stage approximation is also valuable to allow a change in the TAR for the last calibration 
in the traceability chain.  This approximation assumes the following TAR values:  
 
 Li / Li-1 = A1 (A.23)  
 
 Li-k / Li-k-1 = A2    for k > 1 (A.24)  
 
Using these assumptions, and the geometric series, we have: 
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UUT Reliability for Tolerance Testing 
The observed measurement reliability, Ro,i(ti), of a UUT that is tolerance tested is not the 
probability that the UUT is in tolerance.  Rather, it is the probability that the comparison, ∆i, 
between the UUT and the calibrator is in tolerance.  This is an important difference because the 
uncertainty, or standard deviation, of the comparison is larger than the uncertainty of the UUT. 
 
The observed reliability was shown in (A.15) to be: 
 

Ro,i(ti) = Pr(-Li < ei(ti) – ei-1(ti-1) < Li) 
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The probability that the UUT is in tolerance, or UUT reliability, is given by: 
 
 Ri(ti) = Pr(Y - Li < yi(ti) < Y + Li) 
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Risk Associated with Tolerance Testing 
Since tolerance testing is performed using calibrators that have uncertainty, there is a chance that 
a tolerance test will result in a wrong decision.  The probability of a wrong decision is known as 
risk, and this risk is a key characteristic of tolerance testing policy. 
 
There are three major types of wrong decisions that can be made during a tolerance test, or as the 
result of a tolerance test: 
 

• False Accept – This means that the tolerance test finds the UUT to be in tolerance, when 
it is really out of tolerance. 

• False Reject – This means that the tolerance test finds the UUT to be out of tolerance, 
when it is really in tolerance. 

• Beginning of Period Out of Tolerance – This means that the UUT is still out of tolerance 
after the testing process at the beginning of the use period (BOP). 

 
Risk and The Bivariate Normal Distribution 
The expression of risk probabilities will be dependent on the use of the Bivariate Normal 
distribution function.  This is given by: 
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It should be noted here, that in order to obtain the opposite quadrant probabilities, the necessary 
Bivariate Normal probability relationships are given as follows: 
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The numerical computation of this integral was accomplished using 20 point Gaussian 
Quadrature and the following equality developed by Drezner and Wesolowsky (1990): 
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False Accept Risk 
The probability of a false accept for the ith test instrument in the traceability chain, or PFAi, is 
given by: 
 
                           PFAi = Pr(UUT Out Of Tolerance given the Comparison In Tolerance) 
 
                                    = Pr(|ei(ti)| > Li given -Li < di < Li) 
 
                                    = Pr(|ei(ti)| > Li given -Li < ei(ti) – ei-1(ti) < Li) 
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where: 
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 ρi = Cor(ei(ti), ei(ti) - ei-1(ti-1)) 
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False Reject Risk 
The probability of a false reject for the ith test instrument in the traceability chain, or PFRi, is 
given by: 
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                           PFRi = Pr(UUT In Tolerance given the Comparison Out Of Tolerance) 
 
                                    = Pr(-Li <  ei(ti) < Li given |di| > Li) 
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Beginning of Period Risk 
The probability that the UUT is still out of tolerance after the testing process depends on the 
adjustment policy.  The probability for an out of tolerance at the beginning of the use period 
(BOP) when the adjustment is only made when the UUT is out of tolerance (which corresponds 
to U.S. Navy policy) is given by: 
 
       BOPNi = Pr(UUT Out of Tolerance at BOP with Navy adjustment policy) 
 
                   =Pr( (UUT Out of Tolerance and Comparison In Tolerance) or 
 
                         (Calibrator Out of Tolerance and Comparison Out of Tolerance)) 
 
                    = Pr(|ei(ti)| > Li and |di| < Li) + 
 
                       Pr (|ei-1(ti-1)| > Li and |di| > Li) 
 

                    = 














 −−
−







 −
i

d

i

i

i
i

d

i

i

i LLGLLG ρ
σσ

ρ
σσ

,,,,2  + 

 

                        














 −
−







 −−
+







 −
−

−
−

−−
1

1
1

11

,,,, i
d

i

i

i
i

d

i

i

i

i

i LLGLLGLF ρ
σσ

ρ
σσσ

2  

 

 = PFAi (Ro,i(ti)) + 














 −
−







 −−
+







 −
−

−
−

−−
1

1
1

11

,,,,2 i
d

i

i

i
i

d

i

i

i

i

i LLGLLGLF ρ
σσ

ρ
σσσ

 (A.38) 

 

2002 NCSLI Workshop and Symposium 



 

where: 
 
                                                )( 1

2
1

2
1 −−− = iii tσσ

 

 = 

2

1

2
)(1

























 +− ioi

i

tRF

L - σi
2(ti) (A.39) 

 
 ρi-1 = Cor(ei-1(ti-1), ei(ti) - ei-1(ti-1)) 
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When the UUT is always adjusted after calibration, the probability that the UUT is out of 
tolerance at the beginning of the period of use (BOP) corresponds to the probability that the 
calibrator is out of tolerance with respect to the UUT’s engineering tolerances.  This should be a 
reasonably unlikely event when the uncertainty of the calibrator is much smaller than the UUT.  
The probability of an initial out of tolerance (at BOP) when the UUT is always adjusted is given 
by: 
 
 BOPAi = Pr(UUT Out of Tolerance at BOP after adjustment) 
 
                                        =Pr(Calibrator Out of Tolerance) 
 
                                         = Pr(|ei-1(ti-1)| > Li) 
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Use of the Risk Probabilities 
The difference between these four risk probabilities is as follows: 
 

• PFAi is the proportion of in tolerance test results that are false.  Here, the UUT is actually 
out of tolerance and bad equipment is being released. 
 

• PFRi is the proportion of out of tolerance test results that are false.  Here, the UUT is 
actually in tolerance and good test equipment is being rejected and processed. 
 

• BOPNi is the proportion of UUT’s that are released to customers in an out of tolerance 
condition when the adjustment policy is to adjust the UUT only when an out of tolerance 
is detected during calibration. 
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• BOPAi is the proportion of UUT’s that are released to customers in an out of tolerance 
condition when the adjustment policy is to adjust the UUT after every calibration. 

 
The BOP risk probabilities are probably the key measures of the quality of a metrology program.  
The entire reason for performing calibrations is to ensure that test equipment are in tolerance.  
The BOP risk probabilities indicate the extent to which the metrology program has succeeded in 
this endeavor. 
 
Risk Applied to Tested Systems 
Test equipment are used to test an end item or system.  The process used to test a system using a 
piece of test equipment is mathematically equivalent to that used to test a UUT using a 
calibrator.  As a result, the risk equations developed previously can be applied directly to the 
systems tested by test equipment where the ith subscript refers the tested system and the i-1st 
subscript refers to the test equipment.  Using these definitions, we have the following: 
 

• PFAi is the proportion of in tolerance test results that are false. 
 

• PFRi is the proportion of out of tolerance test results that are false.  Here, the system is 
actually in tolerance and a good system will be rejected and processed. 
 

• BOPNi is the proportion of systems that are released to customers in an out of tolerance 
condition when the adjustment policy is to adjust the system only when an out of 
tolerance is detected during the test. 
 

• BOPAi is the proportion of systems that are released to customers in an out of tolerance 
condition when the test equipment is used to adjust system. 

 
Quite often, systems are tested, but not adjusted, using test equipment.  The Out of Tolerance 
systems are removed from the inventory.  The risk that such a test will leave a system in an out 
of tolerance condition is given by: 

 
 BOPRi = Pr(System Out of Tolerance at BOP when OOT’s removed) 
 
                                  =Pr(System Out of Tolerance given Comparison In Tolerance) 
 
                                   = Pr(|ei(ti)| > Li given |di| < Li) 
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