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Abstract: 
 
The modelling of a measurement is an essential part of the evaluation of the measurement 
uncertainty in accordance with The Guide to the Expression of Uncertainty in Measurement 
(GUM) [1] requires the modelling of the measurement as a basis for uncertainty propagation 
calculus. The modelling process establishes mathematically the relationship between the input 
quantities and the measurand. Input quantities are those which may influence the measure-
ment result and contribute to the combined uncertainty. The modelling is the most difficult 
part and the first step in uncertainty evaluation.  
 
This paper explains the recommendations of the GUM as step-wise procedure. Emphasis is 
given to a basic step, the mathematical formulation of the so-called model. A straightforward 
and widely applicable modelling concept has been developed. It is based on the measuring 
chain [2] and the mathematical formulation of the method of measurement, i. e. the logical 
sequence and relationship of the operations used in the performance of the measurement. It 
admits a modular formulation of the model equation as well as its completion or partial re-
formulation. The other steps are fare-less difficult. 
 
The applicability of this modelling concept is demonstrated by examples of the methods of 
measurement used in various of metrology. 
 
1 Introduction 
 
In the last ten years, the Guide to the Expression of Uncertainty in Measurement (GUM) has 
become a world–wide recognized standard for the evaluation of the measurement uncertainty 
at least at national metrology institutes and in calibration laboratories. For practical use, the 
GUM excels in  
 

providing a consistent procedure for evaluating and expressing the measurement uncer-
tainty 

• 

• offering an easy way to implement computer–aided uncertainty budgeting. 
 
In industry, a realistic evaluation of safety measurement uncertainty based on the GUM offers 
the chance of achieving clear–cut decisions in the fields and increase in efficiency as regards 
production by 
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using measuring and test equipment tailored for specific tasks; • 

• 
• 

• 

• 

• 

• 

exhausting product tolerances and process specifications, and 
achieving mutual recognition of calibration and test results (one–stop testing). 

 
The basic steps of the GUM procedure for evaluating and expressing uncertainty are 
 

modelling of the measurement in order to establish mathematically the relationship be-
tween the measurand and all relevant input quantities, and 
quantitative description of the existing knowledge of these input quantities by means of 
probability distributions. 

 
Both steps require first to collect and gain knowledge in order to “convert” it to useful infor-
mation. The GUM sets clear-cut rules for the evaluation both of statistical and of non–
statistical information. 
 
But the GUM does not provide any guidance for the modelling process. To practitioners, 
however, modelling appears to be the most difficult problem of uncertainty evaluation in ac-
cordance with the GUM. Therefore, this part of the procedure has often impeded wider appli-
cation of the GUM. 
 
In order to overcome this problem, this paper describes a straightforward and widely applica-
ble modelling concept.  This concept allows a modular formulation of the model equation and, 
at any time, its completion or partial reformulation. This concept was successfully presented 
in training courses attended by more than 250 technicians, engineers and physicists.  
 
 
2 GUM procedure for evaluating uncertainty [1] 
 
The GUM procedure for evaluating the uncertainty is based on the knowledge of the measur-
ing process and the input quantities which influence the measurement result. Consequently, 
the subjects of the two initial steps of the procedure are the modelling of the measurement and 
the evaluation of the relevant input quantities: 
 

Describing and modelling the measurement: 
 
Initially, a description the measuring process is required. It must identify both the meas-
urand and the method of measurement used. Based on the useful information taken from 
this description, the modelling of the measurement establishes mathematically the rela-
tionship between the measurand Y and the input quantities Xi which Y depends on: 
 
   Y = f(X1, X2, . . . , XN)        (2.1) 

 
The function f should contain all quantities, including all corrections and correction factors, 
likely to contribute to the result for the measurand [1]. This relationship is also called model 
equation. The model equation provides the information needed for the algorithm of uncer-
tainty propagation. 
 

Collecting knowledge and describing the input quantities in quantitative terms: 
 
The aim of the quantitative description of the input quantities is to assign an estimated 
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value xi and an associated uncertainty u(xi) to each input quantity Xi. The GUM distin-
guishes between two types of evaluation: 
 
- type-A evaluation based on a statistical analysis of series of observations, and 
- type-B evaluation based on other means. 
 
Both types of evaluation use probability distributions to describe the knowledge of the 
input quantities. 
 
The estimated value xi of the input quantity Xi is the expectation value 
 
  xi = E[Xi],         (2.2) 
 
and the associated standard uncertainty is defined by 
 
  u(xi) = iar XV    .        (2.3) 

 
The probability distributions provide the information on the reliability of the values asso-
ciated with the input quantities. This information is given for all input quantities by their 
respective the expectation value and the associated standard uncertainty. 
 

The following steps are fare-less difficult: 
 

Determining the (expectation) value of the measurand and its combined standard uncer-
tainty: 
 

• 

The model equation (see equation (2.1)) together with the estimated values xi and their 
associated standard uncertainties u(xi) serve as the basis for the determination of the (ex-
pectation) value of the measurand, 
 
  y = f (x1, x2, . . . , xN)        (2.4) 
 
and of the associated combined standard uncertainty 
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where 
 
y - expectation value of Y, 
xi and xj - expectation values of Xi and Xj (see equation (2.2)), and  
u(xi, xj) - estimated covariance associated with xi and xj. 
 
Determining the expanded uncertainty of measurement: 
  

 The expanded uncertainty of measurement U is the half–width of an interval IY that may 
be expected to encompass a large fraction, e.g. 95 % of values that could reasonably be attrib-
uted to the measurand Y: 
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   IY = [y-U; y+U],        (2.6) 
 

The expanded uncertainty of measurement is obtained by multiplying the combined stan-
dard uncertainty uc(y) by a coverage factor kp: 

 
   U = kp ⋅ uc(y)         (2.7) 
 

The half-width interval IY (see equation (2.6)) depends on the coverage probability (usu-
ally 95%) and on the probability distribution which is associated with the measurand 
characterized by its value y and its combined standard uncertainty uc(y). 

 
• 

• 

Reporting the result: 
 
 The result of a measurement should be reported as 
 
   Y = y ± U         (2.8) 
 

Evaluating the uncertainty budget and taking measures. 
 
The above described procedure makes clear that the last four steps –with the exception of tak-
ing measures- can be carried out stringently by the mathematical procedure prescribed by the 
GUM. Therefore, a computer–aided calculation is possible. 
 
 
Only the performance of the two initial steps requires expert knowledge. This paper is stress-
ing the first and most difficult step of the procedure. 
 
 
3 Concept of the measuring chain [2] and its elements 
 
3.1 Basic relationships 
 
Usually, in metrology the cause-and-effect relationship of a measuring process is represented 
by a measuring chain [2] [3] that constitutes the path of the measurement signal from the in-
put to the output. The measuring system or –in more general terms– the measuring process is 
regarded as a series of non-reactive functional elements or a sequence of operational steps to 
carry out the measurement. Afterwards, both the functional elements and the operational steps 
are denoted by elements. These elements may be assigned to both targeted functions or opera-
tions of the measuring process, e.g. the amplification of a measurement signal, and unwanted 
effects, e.g. a mismatching connection of two devices [3]. 
 
In the steady-state, the intrinsic cause-and-effect relationship of an observed element k may be 
expressed by the functional relationship of the respective input and output quantities (see also 
Fig. 1): 
 
  XkOUT = hk (XkIN; Zk)        (3.1) 
 
where 
 
XkIN - (random) quantity acting on the input of the observed element k; 
XkOUT      - (random) output quantity of the element k; 
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Zk - parameter vector that is composed of the internal and external parameters of the ele-
ment k, e.g. the    
   time-dependent offset and the operational temperature. 

 
Note: In control engineering, the vector Zk is also denoted by disturbance vector that is com-
posed of the distur- 
bing quantities having an impact on the quantity XkOUT . 
 

kINX ( )( )+0k kG Z Zδ
kOUTX

0 .kZ const=

0kOUTX

DkZδ kSZδ

 
Fig.1 :  Cause-and-effect relationship of a single element of a measuring chain. symbols see 
equation (3.1) 
 
The non-reactive chaining of adjacent elements may be expressed by the following equation: 
 
  Xk IN  = Xk-1 OUT        (3.2) 
 
The first element of the measuring chain must be supplied by a measurable parameter XM. The 
indication or the record is considered to be the output quantity XIND (Fig. 2). In the case of a 
linear (non-branched) chain, the parameter XM is equal to the measurand. 
 

( )1 1 ; 1INh X Z

1Z

( )2 2 ; 2INh X Z
2 3OUT INX X= 3OUT INDX X=

( )3 3 ; 3INh X Z
1M INX X=

2Z 3Z

1 2OUT INX X=

 
 
Fig.2 :  Linear and non-reactive chaining of three elements 
 
3.2 Concept of the ideal element  
 
Due to its multiple dependencies, the relationship (3.1) is not suitable for practically and com-
prehensibly expressing steady-state characteristics of elements of the measuring chain. 
 
In metrological practice, however, the above mathematical approach to the description of 
measuring systems and processes can be simplified on the following assumptions: 
 

The great majority of measuring systems and devices can be regarded to have linear char-
acteristics or, at least in narrow ranges, a linear characteristic may be assumed.  
 

• 

• In practice, the steady-state characteristic of a measuring system is related to well-adjusted 
and known operating conditions described by a vector Zk0. Consequently, on these condi-
tions, the parameter vector Zk may be regarded as invariable, i.e. Zk = Zk0 
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On the above assumption, equation (3.1) becomes 
 
  XkOUT = hk (XkIN; Zk0)       (3.1a) 
 
where 
 

Zk0 - vector that is composed of the internal and external parameters of the element 
k under  
   adjusted operating conditions having well-defined values; Zk0 = const. 

 
On the above assumption of linearity and well-adjusted operating conditions, the functional 
relationship can be expressed by 
 
  XkOUT = XkOUT0  + XkIN ⋅ Gk(Zk0)      (3.3) 
 
where 
 
XkOUT0 - output quantity at the adjusted operating conditions. 
Gk(Zk0) - transmission factor of the element k which demands on the values of the vector Zk  
 
Equation (3.3) expresses a linear combination which does not contain any term representing 
influences, disturbances, instabilities or imperfect knowledge. 
 
When stringently following this line, equation (3.3) mathematically describes a fictitious ideal 
element of the measuring chain. It characterizes a perfectly-known cause-and-effect relation-
ship with infinite-precisely known parameters and disturbances. 
 
This means that neither the transmission factor Gk(Zk0) nor the vector Zk0 would contribute to 
the uncertainty of measurement. In mathematical terms this reads 
 

Gk = E[Gk]   and u(E[Gk]) = 0 
 

• 

• Zk0 = E[Zk0] and u(E[Zk0]) = 0 
 
According to this concept, the output quantity XkOUT depends only on the input quantity XkIN 
and on an infinite-precisely known transmission factor Gk and the vector Zk0. Therefore, the 
uncertainty of measurement that is associated with the expectation value of the output quantity 
would be given by the following relationship: 
 
  u(xkOUT) = u(xkIN) ⋅ Gk. 
 
Fig. 3 illustrates the cause-and-effect relationship of the fictitious ideal element. 
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kINX ( )0k kG Z
kOUTX

0 .kZ const=

0kOUTX

 
Fig.3 :  Illustration of the concept of the ideal element. symbols see equation 3.3 
 
 
The above concept of the ideal element forms the basis of both the mathematical treatment of 
real elements of the measuring chain (cf. 3.2) and of the modelling concept presented below 
(cf. 4). 
 
3.3 Disturbed elements of a measuring process 
 
To face facts, the ideal element of a measuring system or process is only a theoretical concept 
that serves as an aid to understand and mathematically simplify the descriptions of measure-
ments. In the real world of measurements, both the internal and the external parameters of a 
element of the measuring chain will be neither well-adjusted and constant nor precisely 
known. Therefore, one can be sure that almost all components Zkl of the(real) disturbance 
vector Zk will (slightly) deviate from the (ideal) adjusted operating point represented by Zk0:  
 
  Zk = Zk0 - δZk                   (3.4) 
 
where 
 
δZk  -  deviation vector,  δZk  =  (δZk1 ; δZk2 ; … ;δZkM ), that is composed of the deviations 

of the individual internal and external parameters of the observed element, δZkl  =  Zk0l 
– Zkl, l = 1, 2, ….  
 

It should be noted that the above defined deviations are not caused by errors in measurement 
but are rather a consequence of the concept of the ideal element of a measuring system or 
process. The term deviation is more appropriate than error for what is described and, there-
fore, being used here. 
 
Consequently, elements of a real measuring system or process may be described not only by 
means of the functional relationship (3.1) or by similar expressions but also by disturbed ideal 
elements. 
 
Starting from equation (3.3), two types of deviations may be distinguished. Superimposing 
deviations produce an (additive) offset of the (values of the) output quantity. Deforming de-
viations result in a change of the transmission factor Gk(Zk0): 
 

XkOUT  =  XkOUT0(Zk0) + δZkS  + XkIN ⋅ [Gk(Zk0) + δZkD]   (3.5) 
 
where 
 
δZkS  -  vector that is composed of the superimposing deviations, δZkS = (δZkS1; δZkS2; … ; 

δZkSm),    m = 1, 2, … 
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δZkD   -  vector that is composed of the deforming deviations, δZkD  =  (δZkD1; δZkD2; … ; 

δZkDn)   n = 1, 2, … 
 
Assuming that even real, disturbed measuring systems or processes operate close to their ad-
justed operating points, both types of deviations may be expected to be predominantly small. 
Therefore, the impact of the individual deviations may be estimated by a first-order Taylor 
series around the adjusted (ideal) operating point that is described by the vector Zk0. This rea-
sonable assumption is utilized in both uncertainty propagation (cf. 2) and modelling meas-
urements (cf. 4). 
 
Fig. 4 illustrates the concept of the disturbed ideal element of a measuring system or process. 
 
 

kINX ( )( )+0k kG Z Zδ
kOUTX

0 .kZ const=

0kOUTX

kDZδ kSZδ

 
Fig. 4:  Illustration of the concept of the disturbed ideal element. symbols see equation (3.5) 
 
 
In contrast to the mathematical formulation of measurements by analytical expressions with 
complex functional dependencies according to equations (3.1) and (3.4), the use of disturbed 
ideal systems makes modular formulations as well as partial reformulations of model equa-
tions possible. Therefore, this concept is used here for modelling measurements (cf. 4). 
 
 
4 Modelling concept 
 
4.1 Starting points 
 
The modelling concept is based on the principles of the measuring chain that is composed of 
the disturbed ideal elements as described in 3.3 and on the method of measurement [2] used. 
First formulations of this concept have been made by Bachmaier [4], Kessel [5] and by a 
common working group of the Physikalisch–Technische Bundesanstalt (PTB) and the 
Deutsches Institut fuer Normung (DIN) [6]. 
 
The modelling procedure (cf.4.3) uses graphical schemes (signal flow charts) that, in turn, are 
used to mathematically formulate the cause-and-effect relationships. 
 
4.2 Components used 
 
The careful consideration of the concept of the disturbed ideal element (cf. 3.3) leads to the 
conclusion that almost all signal transformations, disturbances, and changes may be described 
by such an element. This applies both to targeted tasks of the measuring process and un-
wanted effects, disturbances etc. 
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The most important exceptions are given by the needed parameter sources and indicat-
ing/recording units. 
 
Consequently, for the modelling of cause-and-effect relationships of measurements the fol-
lowing components are employed: 
 
•   Parameter source (SRC): 

The parameter source is designed along the concept of the disturbed ideal element: It sup-
plies or reproduces a precisely known and adjusted parameter which is disturbed by real ef-
fects, e.g. time-dependent drift, external influences, ranges of ambiguity of parameters etc. 
The disturbed parameter source supplies always a measurable random quantity on which, 
prior to other involved quantities, the indication(s) is/are affected. 
 
Fig. 5 shows the graphical scheme of the parameter source. The following deviations are 
assigned to this component. 
 

deviations due to the imperfect knowledge of generated quantity (range and systematic 
deviations of the quantity); 

• 

• deviations due to the susceptibility of the source to external conditions. 
 
The following restriction is made: Disturbances are expressed by superimposing deviations 
only. 
 
A parameter source may stand for devices, material measures, substances, processes, hu-
man or animal bodies. 

SRC 0X
SRCX

CSZδ

( )PSZ Pδ

SRC

 
Fig. 5:  Graphical scheme of a parameter source. 

XSRC0 – undisturbed quantity generated by the source; XSRC – disturbed quantity 
delivered by the source; δZCS – superimposing deviations due to the imperfect 
knowledge of XSRC0; δZPS(P) – superimposing deviation due to the susceptibility of the 
source to external conditions P 

 
 
•  Indicating / recording unit (INDU): 

The indicating / recording unit serves to indicate or to record its input quantity. Distur-
bances are given by the limited resolution of the unit, real internal effects, e.g. time-
dependent drift, external influences, ranges of ambiguity of parameters etc. Instrumental 
errors are also assigned to indicating / recording units. 
 
Fig. 6 shows the graphical scheme of the transforming unit. The following deviations are 
assigned to this component: 
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deviations of the transmission factor due to its instability or an imperfect knowledge of 
its value; 

• 

• 
• 

deviations due to the susceptibility of the unit to external conditions; 
deviation due to the imperfect coupling of the output to the adjacent unit. 

 
The following restriction is made: Disturbances are expressed by superimposing deviations 
only. 
 
An indicating / recording unit may stand for a measuring instrument, an indicating device 
or a recorder. 
 

INDX

INSTRZ∆

( )PIZ Pδ

INDU
PINX

INDXδ

 
Fig. 6: Graphical scheme of the indicating/recording unit. 

 ∆ZINSTR – instrumental error of the unit; δXIND – deviation due to the limited 
resolution; δZPI(P) – deviation due to the susceptibility of the unit to external 
conditions P 

 
 
•   Transforming unit (TRANS): 

The transforming unit may be recognized to be equal to the disturbed ideal element that is 
described in 3.3.  

 
Fig. 7 shows the graphical scheme of the indicating / recording unit. The following devia-
tions are assigned to this component: 
 

the instrumental error, • 
• 
• 

deviation due to the limited resolution and 
deviations due to the susceptibility of the unit to external conditions. 

 
A transforming unit may stand for a measuring transducer, an amplifier, a transmission or 
communication path, a measuring bridge as well as for signal matching, interfaces, real 
coupling / linking effects etc. 
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TOUTX

CPLTZδ( )PTZ Pδ

TRANS

( )kT GTG Zδ+

kTG GTZδ

TINX

 
 

Fig. 7:  Graphical scheme of a transforming unit. 
GkT – transmission factor; δZGT – deforming deviations (deviations of GkT ); δZPT(P) – 
superimposing deviation due to the susceptibility of the transforming unit to external 
conditions P;  

 δZCPLT – deviation due to the imperfect coupling of the output to the adjacent unit 
 
 
It is assumed that the components are chained non-reactively (see equation (3.2)). 
 
4.3   Modelling procedure 

 
The modelling procedure consists of four elementary steps (cf.4.3): 
 
•   description of the measurement, identification of the measurand and of the method used; 
•   formulation of the cause-and-effect relationship of the ideal measurement; 
•   consideration (mathematical) of all disturbances characterizing the real measurement (cf. 
3.3); 
•   conversion of the cause-and-effect relationship of the real measurement into the model 
equation.  
 
First of all, a clear description of the measurement is necessary, along with the definition of 
the measurand and the identification of the method of measurement employed. 
 

Example 1: The aim of the measurement is to determine the electrical resistance  RX0 of a 
resistor. The resistor is supplied by a constant current. The voltage over the resistor is 
measured by means of a digital voltmeter (see Fig. 8). The resistance is considered to be 
the measurand. The method of measurement may be described by direct measurement. 

 

INDVXV

Voltmeter

INR

Resistor

0XR

.I const=

 
Fig. 8:  Example: Measurement of the electrical resistance RX0  of a resistor. 
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The next step is to establish the cause–and–effect relationship of the ideal measurement. It 
describes the relationship between the measurable quantity considered to be the main cause of 
an indication and the effect, i.e. the indication or record. The ideal measurement can be as-
sumed as a fictitious measuring process that is consisting of ideal elements only (cf. 3.2). This 
would mean that the parameters of the measuring system or process are  completely defined 
by the operating points of its components which are given by their parameter vectors {Zk}. 
The measurement is assumed to be undisturbed. Therefore, it may be concluded that the indi-
cation depends only on the measurand and on infinite–precisely known parameters of the pro-
cess, e.g. a amplifying factor. 
 
Firstly, the block diagram of the ideal measurement should be drawn up that employs the 
above elements. 
 

Example 2: With the above elements being employed, Fig. 9 shows the block diagram of 
the ideal measurement which is described by Example 1. It is assumed that the current I 
is infinite–precisely known and the voltage over the resistor VX is equal to the indicated 
voltage VIND. 
 
From this diagram, the mathematical formulation of the cause–and–effect relationship of 
the “ideal measurement” can easily be obtained: 
 
VIND = V = VX =R X ⋅ I 

 

cause - and - effect direction

INDV
0XR

0XR
( )0XR I⋅

INDUTRANSSRC

.I const=

IND X XV V V R I= = = ⋅

 
Fig. 9: Cause-and effect relationship of the ideal measurement according to Example 2 

 
 
The third step is to introduce all relevant disturbing quantities as well as the corrections and 
relevant imperfections of the real measuring process. In accordance with the concept of the 
disturbed ideal element, they are represented and being introduced in terms of deviations (cf. 
3.3). The exclusive use of deviations creates a stringent and comprehensive description of the 
necessary cause-and-effect relationship. 
 

Example 3: The following influences and imperfections are being introduced into the Ex-
ample 2: 
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 temperature deviations δt which affect the resistor, • 

• 

• 
• 
• 
• 

thermal voltage δVth due to different temperatures of the connecting points of the re-
sistor, 
deviation δI of the current from its nominal value, 
ratio RX / RIN = r >> 0, affecting  the measured voltage, 
instrumental error ∆VINSTR assigned to the voltmeter, and 
unknown deviation δVIND due to digital resolution. 

 
Fig. 10 illustrates this expanded measurement task including all influences and imperfec-
tions, and Fig. 11 shows the resulting block diagram of the real measurement. 

 
 

INDV

XV

Voltmeter

INR

( )XR t

I Iδ+

V
tδ

thVδ INSTRVδ

INDVδ
0X

IN

R
R

≈

 
Fig. 10:   Example: Measurement of the resistance RX(t) of a resistor according to 

Example 3 (including disturbing influences and imperfections of the measuring 
system). symbols see Example 3 

0XR

tβ δ⋅
thVδ

( )XR t

( )XR I Iδ+

I Iδ+

XV V=

INSTRV∆

cause - and - effect direction

SRC TRANS INDU

 
 

Fig. 11:   Cause-and-effect relationship of the real measurement according to Example 3. 
symbols see Example 3 
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The expression in mathematical terms of the cause-and-effect relationship can directly be 
taken from Fig. 11. In the case of more complex systems, it is advisable to carry out this 
procedure step-by-step and separately for each component. 
 
 
 

RX(t) = RX0 + δt⋅ β                    for the parameter source • 
• 
• 
• 

• 
• 
• 
• 

VX = RX(t )⋅ ( I + δI)                   for the transforming unit 
V = VX + δVth                                              
VIND = V + ∆VINSTR + δVIND             for the indicating unit 

 
 

Example 3 illustrates the advantage of expressing all disturbances in terms of deviations. Su-
perimposing deviations can simply be added when going ahead in the cause-and-effect direc-
tion. This originates in the definition of the deviation as the value minus its reference value 
[2] or, when applied to the modelling process, disturbed quantity minus its undisturbed quan-
tity. 
 
The last step requires the established cause-and-effect relationship of the real measuring proc-
ess being converted into the model equation. The model equation gives an explicit expression 
for the measurand. 
 

Example 4: From the cause-and-effect relationship that has been established in Example 
3, one obtains the following model equation(s) for the resistance RX0: 
 

RX0 = RX(t) - δt⋅β 
RX(t) = VX⋅ (I + δI)-1 
VX = V - δVth 
V = VIND - δVIND - ∆VINSTR 

 
 
4.3   Role of the method of measurement 
 
The structure and the chaining sequence of the cause-and-effect relationship are determined 
by the method of measurement used. 
 
Direct measurements result in a linear (un-branched) chain of the components used (see Fig. 
11). A generic structure of the cause-and-effect relationship of a direct measurement is shown 
in Fig.12. The following relationship is obtained: 
 

 XIND =  h(XSRC; GT; ∆ZINSTR; P)       (4.1) 
 
where 
 
XSRC        -  measurand; 
GT        -  transmission factor of the transforming unit; 
δZINSTR -  instrumental error of the indicating unit; 
P          -  vector describing external parameters; 
XIND      -  indicated quantity. 
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( );SRC SX Z Pδ INDX( );T TG Z Pδ ( );INSTR IZ Z Pδ∆

INDUTRANSSRC

 
Fig. 12: Generic structure of the cause-and-effect relationship of a direct measurement. 

symbols: see text 
 
 
Other methods are used to achieve high accuracies and to ensure traceability of calibration 
results. These methods often result in branched cause-and-effect relationships. Examples are 
given by the direct comparison of indicating measuring instruments and by the substitution 
method for the comparison of material measures. 
 
Fig.13 and 14 show the generic structures of the cause-and-effect relationship of the two 
methods. It should be noted that the calibration of a measuring instrument usually does not 
aim at a measurable quantity but the instrumental error [2] of the instrument under test. Con-
sequently, the uncertainty associated with the result of the calibration is to be determined, i.e. 
the uncertainty associated with the expectation value of the instrumental error. 
 

( );SRC SX Z Pδ

SRC

( );TX TXG Z Pδ

( );TS TSG Z Pδ

TRANSX

TRANSS

( );I IZ Z Pδ∆

INDUX

INDXX

( );IINSTR IZ Z Pδ∆

INDUS

INDSX

E
va

lu
at

io
n

 
 
 
Fig. 13: Generic structure of the cause-and-effect relationship of a direct comparison of 

indicating measuring instruments. symbols: TRANSX – transforming unit X-path; 
TRANSS – reference transforming unit; INDUX – instrument under test; INDUS – 
indicating standard; other symbols see text 

 
 
In order to establish the mathematical expression of a cause-and-effect relationship having a 
branched structure, for each branch a separate (partial) relationship must be set up.  
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( );SRCX SXX Z Pδ

SRCX

( );SRCS SSX Z Pδ

SRCS

( );TX TXG Z Pδ

TRANSX

( );IINSTR IZ Z Pδ∆

INDU
INDXX

INDSX

E
va

lu
at
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n

( );TS TSG Z Pδ

TRANSS

 
Fig. 14: Generic structure of the cause-and-effect relationship of a measurement using 

substitution. symbol: SRCX – material measure under test; SRCS – standard 
(material measure); TRANSX – transforming unit X-path; TRANSS – transforming 
unit S-path; other symbols see text 

 
In the case of a direct comparison  (see Fig. 13), the following relationships are obtained: 
 

 XINDX = hX(XSRC; GTX; δZINSTRX; P)                                                             (4.2a) 
 XINDS = hS(XSRC; GTS; δZINSTRS; P)                                                              (4.2b) 
where 
 
δZINSTRX    -   measurand (instrumental error of the instrument under test); 
δZINSTRS    -   instrumental error of the standard; 
XINDX         -   quantity indicated by the instrument under test; 
XINDS         -   quantity indicated by the standard; 
XSRC         -    measurable quantity;  
GTX          -    transmission factor of the transforming unit of the X-path; 
GTS          -    transmission factor of the transforming unit of the S-path; 
P             -     vector describing external parameters and disturbances. 
 
As XSRC appears both in equation (4.2a) and in equation (4.2b), it may be concluded that this 
quantity does not disturb the measurement whereas the  measurand will be influenced by al-
most all other quantities involved. 
 

Example 5: Calibration of a thermometer: 
 
(1) It is the aim of the measurement to determine the instrumental error of a mercury-in-
glass thermometer at about 20°C. Together with a standard thermometer  which is also a 
mercury-in-glass thermometer, the instrument to be tested is immersed into a thermostat-
ted and stirred water bath (see Fig. 15). The method of measurement may be considered 
a direct comparison of two temperatures. 
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Fig. 15: Example: Calibration of a mercury-in-glass thermometer 
 

(2) Fig. 16 shows the block diagram of the cause-and-effect relationship for the ideal 
measurement. 

 

Bath

SRC

INDUX

INDXt

INDSt

INDUS

Xt∆

Batht

 
Fig. 16:   Cause-and-effect relationship of the ideal measurement according to Example 5. 

 SRC – thermostatted bath; INDUX – thermometer to be calibrated; INDUS – 
standard thermometer: other symbols see Example 5 

 
 

From this block diagram the following relationship may be derived mathematically: 
 
For the X-path:     For the S-path: 
 
•     tINDX = tBath + ∆tX    •     tINDS = tBath 
 
 
where 
 
tBath  – temperature of the bath 
tINDX – temperature indicated by the instrument to be calibrated 
tINDS – temperature indicated by the standard 
∆tX   – measurand (instrumental error of the instrument to be calibrated). 
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(3) Fig. 17 shows the cause-and-effect relationship of the real measurement. The follow-
ing imperfections and disturbances have been introduced: 
 
∆tCS     – instrumental error of the standard (known and unknown contributions) 
δtBathX – deviation of the temperature of the instrument to be calibrated from the 

temperature tBath that is assumed to be equal to the temperature of the standard 
δtINDX – deviation due to imperfect readings of the thermometer  
δtINDS – deviation due to imperfect readings of the standard. 
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Fig. 17:   Cause-and-effect relationship of the real measurement according to Example 5. 
 SRC – thermostatted bath; TRANS – temperature gradient in the bath; INDUX 

– thermometer to be calibrated; INDUS – standard thermometer; other symbols 
see Example 5 

 
 

The following relationships are obtained: 
 
X-path:       S-path: 
 
•     tINDX = tBath + δtBathX + ∆tX + δtINDX   •     tINDS = tBath + ∆tCS + δtINDS 
 
(3) From the above cause-and-effect relationship, one obtains the following model equa-
tion: 
 
•     ∆tX = tINDX – tINDS + ∆tCS - δtBathX - δtINDX + δtINDS 

 
tINDX, tINDS, δtINSX, and δtINDS may be estimated from series of observations. The knowl-
edge of ∆tCS should be taken from the calibration certificate of the standard. δtINDS may 
be estimated from the manufacturer’s information on the bath. 

 
In the case of substitution  (see Fig. 14), the following generic relationships are obtained: 
 
        XINDX = h(XSRCX; GTX; ∆ZINSTR; P)                                                                        (4.3a) 
  
        XINDS = h(XSRCS; GTS; ∆ZINSTR; P)                                                                        (4.3b) 
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where 
 
XINDX       - indicated quantity for the X-path; 
XINDS       -  indicated quantity for the S-path; 
 
XSRCX         - measurand; 
XSRCS      - quantity represented by a standard; 
GT           - transmission factor of the transforming unit; 
∆ZINSTR    - instrumental error of the indicating unit (comparator); 
P             - vector describing external parameters and disturbances. 
 
It may be recognized that both equation (4.3a) and equation (4.3b) contain the same relevant 
quantities ∆ZINSTR, and P. Therefore, in most cases, their influence can be neglected when the 
substitution method is used. 
 
 

Example 6: Calibration of a weight 
 
(1) It is the aim of the measurement to determine the instrumental error of a 10 kg-weight 
of the class F1 by means of the substitution method a 12 kg-mass comparator. A cali-
brated 10 kg-weight of the accuracy class E2 serves as a standard using the method of 
measurement is illustrated by Fig. 18. The weighings are to be carried out in the follow-
ing sequence: standard-test weight-test weight-standard. 

 
 
 

XWSW 
 
 
 
 
 

INDX

INDS

W
W

 
 
 
 
 
 

Fig. 18: Example: Calibration of a weight by using the substitution method 
 
 

(2) Fig. 19 shows the block diagram of the ideal measurement. 
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Fig. 19:   Graphical illustration of the cause-and-effect relationship of the ideal 

measurement according to Example 6.  SRCX – weight to be calibrated; SRCS 
– standard weight;  INDU – mass comparator; other symbols see Example 6 

 
 

The following relationships can be derived: 
 
X-path:    S-path: 
 
•     WINDX = WX   •     WINDS = WS 
 
where 
 
WX   – actual value of the weight to be calibrated 
WS   – weighing value of the standard used 
WINDX  – indication for the weight to be calibrated 
WINDS   – indication for the standard 
 
Note: The measurand ∆WX is to be calculated from the below relationship by: 
 
∆WX = WNom - WX 
 
where 
 
∆WX  – measurand (“instrumental error” of weight to be calibrated) 
WNomX  – nominal value (10 kg) of the weight to be calibrated 
WX   – actual value of the weight to be calibrated 
 
(3) Fig. 20 shows the cause-and-effect relationship of the real measurement. The follow-
ing imperfections and disturbances have been introduced: 
 
δWCPLX   - deviation due to imperfect “coupling” of the weight to be calibrated with the 

mass comparator; causes are given by convection, air buoyancy, magnetic 
susceptibility etc. 

δWCPLS     - deviation due to imperfect “coupling” of the standard weight with the mass 
comparator; causes: see δWCPLX 
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∆WINSTR   - instrumental error of the masse comparator 
 

∆WC (P)   - deviation due to the susceptibility of the mass comparator to environmental 
conditions and incomplete knowledge of the actual operating conditions when 
standard is measured. 

δWINDX,   - deviations due to the imperfect readings of the comparator. 
δWINDS 
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Fig. 20:   Graphical illustration of the cause-and-effect relationship of the real 
measurement according to Example 6. SRCX – weight to be calibraed; SRCS – 
standard weight;  INDU – mass comparator; other symbols see Example 6 

 
 

The following relationships are obtained: 
 
X-path: 
 
WINDX = WS + δWCPLX + δWC (P) + ∆WINSTR + δWINDX 
 
S-path: 
 
WINDS = WS + δWCPLS + δWC (P) + ∆WINSTR + δWINDS 

 

With δWS = WNomS – WS for the “instrumental error” of the standard used, one obtains 
the following model equation: 
 
∆WX = ∆WS – (WINDX – WINDS) + δWCPLX - δWCPLS + δWINDX - δWINDS 
 
The knowledge on ∆WS can be taken from the calibration certificate of the standard. the 
differences  
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(WINDX – WINDS) are delivered by the mass comperator. The remaining deviations can be 
estimated from the actual measuring process. It should be noted that the performance of 
the mass comperator does not appear in the above model equation but in the cause-and-
effect relationships. 
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