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Abstract

An experimental method for determining the pressure distortion coefficient of piston-cylinder
assemblies of pressure balances based on piston fall rate and effective area measurements at
variable jacket pressures is modified to extend it to non-cylindrical piston cylinders and
compressible pressure-transmitting fluids and to accurately determine the analytical parameters
required by the method. Applicability of the simplifying assumptions made so far is investigated,
optimal parameters of a variable jacket pressure experiment are stated and procedures for the
evaluation of experimental data are suggested. The effect of input information such as elastic
properties of the assembly material and piston-cylinder gap profile on the uncertainty of the
distortion coefficient is discussed. The modified method is applied to a 1 GPa piston-cylinder
assembly and the results are compared with the those obtained by the finite element method.

1 Introduction

The accuracy of pressure measurements above approximately 50 MPa using pressure balances is
limited by the knowledge of their pressure distortion coefficient (λ) describing the change of the
effective area of the pressure balance (Ap) with pressure (p0). Numerical methods, with the Finite
Element Analysis (FEA) as the most efficient one, allow the radial elastic distortions, the
pressure distribution in the gap and, thus, λ to be calculated if the properties of the piston-
cylinder assembly and of the pressure-transmitting medium are known. The investigations of the
last few years realized within the scope of a EUROMET research project [1] have demonstrated
good agreement between the numerical methods of several European national metrology
institutes when these are applied to the same model of a pressure balance. A comparison with
experimental data such as dependence of the effective area on jacket pressure for assemblies
operating in the controlled clearance mode, difference between pressure distortion coefficients of
two assemblies determined in a cross-float experiment, and, finally, piston fall rates (vf) has
shown significant differences indicating that not all properties of the assemblies analyzed have
been adequately taken into account. A sensitivity analysis shows that a profile of the undistorted
piston-cylinder clearance, which usually is assumed constant but in reality is not, the boundary
conditions on the outer cylinder surface dealing with a behavior of sealing O-rings and the elastic
properties of piston-cylinder materials are the main factors influencing the result of numerical
modeling. The progress in dimensional metrology currently allows the shape of the piston and
cylinder bore to be determined and the data to be incorporated into the model [2]. The stresses
caused by the O-rings when a jacket pressure (pj) is applied can be analyzed and appropriately
taken into account [3]. The elastic properties of tungsten carbide materials, which high pressure
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piston-cylinders are usually made of, can be directly measured on the piston [4] but not always on
the cylinder if the latter is constructed from more than one material. In such cases, since the
elastic properties of tungsten carbide hard alloys can vary over a broad range, the elastic
distortion of the cylinder becomes the main contribution to the uncertainty budget for the
pressure distortion coefficient.

An alternative to the numerical methods is offered by so-called experimental methods which
allow the pressure distortion coefficient to be derived from experimentally determined
dependencies of piston fall rate and, in the case of assemblies operating in the controlled
clearance mode, of the effective area on the jacket pressure. Although these methods are called
experimental, in order to get a value of λ from the experimental data, specific models are
required and a series of simplifications and assumptions should be made which are valid only to a
limited extent. Performance of two different models, one developed by Dadson et al. [5] and the
other by Heydemann and Welch [6], applied to a 1 GPa controlled clearance assembly has been
analyzed by Schmidt et al. [7]. The former utilizes experimental piston fall rates and must know
the pressure distributions in the piston-cylinder interspace. A gap profile used in the
hydrodynamic calculation is found assuming that piston and cylinder radial distortions are linear
functions of the local pressure in the gap, the line pressure acting on the piston base and the
jacket pressure stressing the cylinder from outside. Proportionality coefficients can be determined
from elastic constants of the material and piston-cylinder dimensions using Lamé equations or
can be adjusted by a fit of the experimental fall rates. This model has been shown not to work
adequately as it leads to negative gap widths at pressures at which the assembly operates well.
The Heydemann-Welch model uses experimental dependencies of the effective area on jacket
pressure and, as an additional parameter, involves a critical jacket pressure at which the cylinder
bore surface would touch the piston. This critical jacket pressure cannot be directly determined
by experiment without the risk of damaging the assembly and, therefore, is found by
extrapolating the cubic root of the piston fall rate to zero over a broad range of the jacket
pressure. The uncertainty of this approach and the inappropriateness of the model which is
reflected by systematic differences between the experimental and model effective areas and fall
rates of a pressure balance studied in [7] at pressures up to 700 MPa have led to the conclusion
that neither the Heydemann-Welch nor the Dadson method allow the effective area to be
determined with a relative uncertainty smaller than 1.2⋅10-4, which is equivalent to an uncertainty
of 0.17⋅10-6 MPa-1 of the pressure distortion coefficient.

The third experimental method developed by Legras et al. [8] combines features of the two first
ones and has been applied at BNM-LNE to characterize primary pressure balances for the 200
MPa pressure range. In this method, the pressure dependent effective area is calculated from a
change of the effective area caused by a variation of the jacket pressure from pj1 to pj2 and the
piston fall rates measured at the first and second jacket pressures. The pressure distribution in the
piston-cylinder clearance, which should be known for both jacket pressures, is searched assuming
the profile of the distorted gap to be a linear or a quadratic function of the axial coordinate with
coefficients at which the calculated piston fall rates are equal to the experimental ones. Compared
with the original flow method by Dadson et al. [5], which implies use of one cylinder and two
pistons of slightly different diameters to change the piston-cylinder gap width, the present
method is more effective since the variation of the interspace between piston and cylinder here is
easily realized by variation of the jacket pressure. In addition, the problem of a collapsing gap at
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high pressures, which is predicted by the Lamé equations, does not occur here because the gap
profile determined at each pressure is in agreement with the experimental fall rate. Compared
with the Heydemann-Welch method, this approach has an important advantage as it does not
require the rather uncertain extrapolation of the fall rate dependencies on jacket pressure down to
zero. As was recently reported by Legras [9], the standard deviation of pressure distortion
coefficients of five nominally identical assemblies of the BNM-LNE for pressure measurement
up to 200 MPa determined by this experimental method is equal to 0.06⋅10-6 MPa-1; the
consistency of the pressure distortion coefficients of each pair of the assemblies checked in cross-
float experiments even lies within 0.01⋅10-6 MPa-1. At the same time the results presented in [9]
show that Ap(p0 = 200 MPa, pj = 0) evaluated from the experimental data measured at pj1 and pj2

changes in relative terms within ±4⋅10-5 when different pairs pj1 and pj2 are taken, which is
equivalent to a change of λ within ±0.2⋅10-6 MPa-1. Neither can this model thus perfectly describe
experimental data over the whole range of jacket pressure, so special evaluation procedures to
determine λ with a sufficient accuracy are required. This fact and also numerous assumptions
made in the method make it very difficult to estimate its uncertainty. In the following, the effect
of the assumptions is analyzed and the method is modified to more completely take into account
experimental data and to extend it to non-cylindrical piston-cylinder assemblies.

2 Theory

According to Legras et al. [8], the effective area of a controlled clearance piston-cylinder
assembly at pressure p0 and jacket pressure pj = 0, Ap0, is
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where r0 is the radius of the undistorted piston; E and µ are the Young modulus and the Poisson
ratio of the piston material, respectively; n is the jacket pressure distortion coefficient, n = -
∂Ap/∂pj / Ap0; and pj1 and pj1 are two jacket pressures at which piston fall rates vf1 and vf2 are
measured. I1 and I2 denote integrals
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calculated on the basis of fall rates vf1 and vf2, respectively, where x is the axial coordinate and
p = p(x) a pressure distribution in the gap. To obtain these formulae, the following assumptions
have to be made:
(1) Piston and cylinder bore are perfectly cylindrical. Their radii are derived from cross-float and

fall rate measurements carried out at sufficiently low pressures at which elastic distortions of
piston and cylinder are negligibly small.

(2) The radial distortion of the piston obeys the Lamé equations and is independent of the jacket
pressure.

(3) The pressure-transmitting medium is incompressible.
To define the pressure distribution p(x) from the fall rate only, additional assumptions concerning
the shape of the clearance between distorted piston and cylinder must be made:
(4) The radial distortion of the cylinder at the gap inlet, x = 0, complies with the Lamé equations

and allows the gap width there, h0, to be calculated.
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(5) The gap width hp is a linear or quadratic function of the axial coordinate, 
hp = h0[1+x/l (hl/h0-1)]         or  hp = h0[1+x2/l2⋅(hl/h0-1)], 

where l is the gap length, and, thus, is unambiguously defined by the gap width at the outlet,
hl = hp(l), which is adjusted to meet the experimental piston fall rate.

Although both functions are chosen rather arbitrarily and do not necessarily describe a real gap
profile, their use is justified by the argument that the errors caused by the choice of the function
are eliminated when calculating the ratio of the integrals in Eq. 1. However, from the results
presented in [9], it can be concluded that a change from the linear to the quadratic function
reduces λ by about 0.3⋅10-6 MPa-1.

Let us derive a formula for the effective area without assumptions (1) to (5).
Following Dadson et al. [5], the effective area of an axially symmetrical non-cylindrical piston-
cylinder assembly subject to measured and jacket pressures can be expressed as a function of
shape deviations of the distorted piston and cylinder and the pressure distribution in the clearance
of the assembly:
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where r(x) and R(x) are the radii of the non-cylindrical distorted piston and cylinder, respectively.
With r0 denoting the radius of the undistorted piston at x = 0, d and u – the radial distortion and
shape deviation of the piston, respectively, Eq. 3 can be rewritten as
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Using the relation between the volumetric fluid flow through the piston-cylinder gap and the
piston fall rate,
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where η and ρ are the pressure dependent viscosity and density of the fluid, the gap contribution
to the effective area can be defined as
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Differentiating the left and right sides of Eq. 4 over pj,
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expressing then 0rh  over 0
'

rh  and substituting it into Eq. 4, three equations for Ap0 can be
obtained:
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in which the terms of an order higher than h0/r0 are omitted. It can be shown that, among of the
three equations obtained, it is Eq. 9 which turns into Eq. 1 of Legras et al. [8] if the piston and
cylinder bore are taken as cylindrical (Sp = 0, Sp

’ = 0), the piston contribution is calculated
according to Lamé (Dp = (3µ-1)p0/E) and is independent of jacket pressure (Dp

’ = 0), and the
derivatives V’ and I’ are replaced by (V2-V1)/(pj2- pj1) and (I2-I1)/(pj2- pj1), respectively.

In Eqs. 7-9, r0, n, V and V’ are experimental quantities and Sp, Dp and I are calculated as functions
of the jacket pressure and are then differentiated by pj to find Sp

’, Dp
’ and I’. Whereas Sp, Dp are

unequivocal, the pressure distribution in the piston-cylinder gap required for the calculation of I
can be determined differently. Three methods to calculate p(x), which seemed to be the most
reliable ones, were investigated in this work.

The first one is an iterative approach described e.g. in [2] in which a calculation of the distorted
gap profile using the FEA, hp,FEA, and a calculation of the pressure distribution in the gap using
the model of a one-dimensional viscous flow, pFEA(x), are carried out alternately till convergence
is obtained. Basically, this method of pFEA(x) determination is equivalent to the Dadson approach
[5] but has as an important advantage that the gap does not close where the pressure in the gap
becomes low. The piston fall rates corresponding to the calculated pressure distribution can
conflict with the experimental ones.

In the second method, the gap profile obtained by the first method, hp,FEA, is additionally
corrected to h*

p,FEA according to
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where parameter ∆hl is the gap width correction at the outlet and is searched to obtain the
experimental piston fall rate, and then a corrected pressure distribution, p*

FEA(x), is calculated.
The choice of the function in Eq. 10 is based on the observation that a gap between distorted
piston and cylinder usually is of parabolic shape, with a rapid change of the width and the highest
curvature of the profile at the gap outlet. It should be noted that the correction in Eq. 10 is
substantially smaller than hp so that hp

* mostly describes the real gap profile plus distortions
furnished by the FEA.

In the third method, both V and I are determined from pFEA(x) and hp,FEA calculated by the FEA.
Thus, this method differs from method 1 by the use of the FEA-calculated fall rate instead of the
experimental one. In fact, this variant of the experimental method is closest to the FEA method
because all quantities are calculated and only the jacket pressure distortion coefficient is
experimental.

In the next but one section, these three methods and the performance of Eqs. 7-9 are tested when
applied to a 1 GPa piston-cylinder assembly which was investigated in detail by experiment and
by means of the FEA.

3 Experimental and FEA results

The piston-cylinder assembly under study is a 1 GPa assembly of 5 mm2 nominal effective area
manufactured produced by Desgranges et Huot (DH), France, and has the serial number 7594.
Normally, piston-cylinders of this type are used as a high pressure assembly in a DH commercial
1:10 multiplier  whose construction has been described in detail by Delajoud [10]. The assembly
is one of the three units of this type available at PTB and used for the realization of the pressure
scale in the pressure range up to 1 GPa. It is mounted in a modified Harwood twin pressure
balance where it can be loaded with a maximum weight of 500 kg and is operated in the
controlled clearance mode at a jacket pressure equal to 10 % of the measured pressure [11]. The
equipment allows also experiments with varying jacket pressure to be performed. Typical relative
standard deviations of the zero-pressure effective area obtained from cross-float experiments are
3⋅10-6 when comparing with the Ruska 8.4 mm2 assemblies operating at pressures up to 400 MPa,
and 6⋅10-6 when cross-floating against other 1 GPa units of the same type over the entire pressure
range of 1 GPa.

The results of piston fall rate and effective area measurements at variable jacket pressure are
presented in Figs. 1 and 2. The cubic roots of the experimental fall rates vs. jacket pressure are
not absolutely linear and require polynomials of the second degree to be well fitted. If these
dependencies were used to determine the effective area by the Heydemann-Welch method,
significant errors might occur when extrapolating the experimental data to zero fall rates. In
contrast to the fall rates, the dependencies of the effective area on jacket pressure do not show
any systematic deviation from a linear law and allow n to be determined with the combined
standard uncertainties, u(n), given in Table 1.
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The jacket pressure distortion coefficient was also determined by calibration of the assembly in
the free deformation and controlled clearance operation modes in a pressure range of
(40-400) MPa using a Ruska 400 MPa assembly as a standard. From the pressure distortion
coefficients in these two operation modes, λFD and λCC, n with its standard uncertainty was found
to be

n = p0/pj (λFD-λCC) = (3.39±0.18)⋅10-6 MPa-1

and thus agrees with the values obtained by the direct n measurements within the sum of the
uncertainties of the two results.
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Table 1. Experimental jacket pressure distortion coefficients

p0 / MPa n / (10-6 MPa-1) u(n) / (10-6 MPa-1)
131 3.55 0.24
189 3.55 0.11
248 3.55 0.09
330 3.59 0.08
399 3.61 0.06
534 3.72 0.13
636 4.02 0.12

The pressure distortion coefficients of the assembly were calculated applying the FEA. A
drawing of the cylinder and a model of the assembly used in the FEA are shown in Fig. 3.
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Figure 3.    Design of the cylinder (left) and the model of assembly used in FEA

In the analysis, section 4-5 was loaded with the jacket pressure and sections 6-7, 8-9 and 1-2 were
constrained. Alternatively, section 3-4 was also subjected to pj and section 1-2, which touches a
pressure-transmitting tube, was subjected to p0, to study the effect of the boundary conditions.
The piston and cylinder surfaces below the entrance to the gap were loaded with p0, and their
surfaces along the coupling length were loaded with a pressure distribution obtained by
hydrodynamic calculation. This was performed taking into account the pressure dependent
density and viscosity of di(2-ethylhexyl) sebacate, which is used in the pressure balance as a
working fluid, whose values were taken from the work by Vergne [12] and the report [13]. The
gap between undistorted piston and cylinder was on the one hand considered to be constant with
a width (0.32±0.03) µm as obtained from piston fall rate measurements at low pressures and on
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the other hand it was measured at the Geometrical Standards Section of the PTB (Fig. 4). In the
analysis, an axially symmetrical model was used and the half diameters measured at the same
height for different angular directions were averaged.
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Figure 4    Half diameters of piston and cylinder of unit DH 7594 measured in different
azimuthal directions

The elastic properties of the cylinder steel sleeve surrounding the core of tungsten carbide (WC)
are Est = (200±7) GPa and µst = 0.29±0.02. According to information from Desgranges et Huot,
the elastic constants of the hard alloy the assembly is made of are EWC,DH = 630 GPa and
µWC,DH = 0.22. As the uncertainty of these values was unknown and the material identical with
that of the assembly was not available, the elastic constants were measured directly on the piston
using strain gauges [4] with the results EWC,PTB = (543±7) GPa and µWC,PTB = (0.238±0.002). Due
to the construction of the cylinder, application of this method to the cylinder WC core is not
possible. For this reason, tangential strain measurements were carried out on the cylinder steel
part when the assembly was operating in the free deformation mode. The measured strains were
compared with those calculated at the same places using FEA, once assuming the elastic
properties of the WC core to be as measured at PTB on the piston, and once using the values
reported by Desgranges et Huot. A comparison has shown that the cylinder properties should be
close to the DH values rather than to the PTB values. Finally, the cylinder core material was
concluded to be different from that of the piston and to have elastic constants lying somewhere
between the DH and PTB values. With the two different materials of the cylinder core, FEA
yields two pressure distortion coefficients which differ by:

∆E,µ(λCC) = λCC, cyl. E,µ = pst. E,µ - λCC, cyl. E,µ from DH = 0.12⋅10-6 MPa-1.
The use of the constant and real shape gaps between the undistorted piston and cylinder results in
two distortion coefficients which differ by:

∆gap(λCC) = λCC, const. gap - λCC, real gap = -0.09⋅10-6 MPa-1.
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Compared with other uncertainty sources which altogether lead to a combined standard
uncertainty u(λCC) = 0.013⋅10-6 MPa-1, the elastic properties of the WC cylinder are clearly the
main contributions to the uncertainty of λCC. The FEA results for two different gaps demonstrates
that the pressure distortion coefficient can significantly deviate from a correct value if a non-
cylindrical assembly is treated as a cylindrical one. The results presented in Fig. 5 show that none
of the models used in the FEA can perfectly reproduce the experimental dependence of n on p0.

3.0E-07

3.2E-07

3.4E-07

3.6E-07

3.8E-07

4.0E-07

4.2E-07

0 100 200 300 400 500 600 700 800

p 0 / MPa

[λ
FD

- λ
C

C;
 n

/1
0]

* M
Pa

variable pj measurements
FEA, real gap
FEA, const gap
1s uncertainty range

λ FD - λ CC

Figure 5.    1/10th of jacket pressure distortion coefficient vs. pressure

Results by modified experimental method

Initially, to study the performance of the three Eqs. 7-9, all the terms including n and V, which
usually are obtained from an experiment, were calculated using FEA.

The contribution of the piston distortion to the effective area is practically independent of the
jacket pressure – Dp changes only by 10-8 at p0 = 330 MPa and by 5⋅10-7 at p0 = 636 MPa when pj
varies in the range (0 to 0.2)p0. The differences between the values calculated by the FEA and the
Lamé equation are even smaller than the Dp-variations. Thus, the assumption concerning the
piston distortion law is absolutely correct.

To find the derivatives V’, Sp
’ and I’, the jacket pressure dependencies of V, Sp and I were fitted by

polynomials of appropriate order and then differentiated. As was shown in the previous section, a
description of vf

1/3(pj) by polynomials of second order is sufficient. Dependencies Sp(pj) given in
Fig. 6 for two p0 show that a quadratic or even linear fit is enough. In dependence on p0 and pj, Sp

supplies a contribution of (0.08 to 0.2)⋅10-6 MPa-1 to the pressure distortion coefficient and,
therefore, would lead to a significant error, if the piston were treated as cylindrical.
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To describe I(pj), a polynomial at least of third order is required (Fig. 7). While I changes only by
about 5 %, its derivative I’ varies by a factor of 20. The ratio I/I’ spreads from 4000 MPa at
pj=0 MPa to 500 MPa at pj=65 MPa and is much higher than pj. For this reason, the uncertainty
of I is expected to play an important role especially in Eq. 7, which contains the difference
(pj - I/I’), and particularly at lower jacket pressures. In Eq. 8, term n(pj - V/V’) appears instead of
n(pj - I/I’). An uncertain V has a smaller effect on Ap0 than an uncertain I because V/V’ is nearly



2002 NCSL International Workshop and Symposium

constant and has the order of pj when the latter approaches 0.2p0. However, here too, a lower
accuracy of the method is expected at lower jacket pressures at which the ratio between pj and
V/V’ becomes unfavorable. The effect of uncertain I’ in the last brackets in Eq. 8 is moderate
because I’V is everywhere smaller than n by a factor 4. In Eq. 9, I’/I is significantly smaller than
V’/V at low jacket pressures and reaches ≈0.3V’/V at pj=0.2p0. As a result, 1/(V’/V + I’/I) ≈ V/V’ so
that the reasoning applied to Eq. 8 is also valid for Eq. 9. This analysis allows the conclusion to
be drawn that the experimental method should furnish more reliable results at higher jacket
pressures, which will be supported later by the results based on the experimental data.

Following this conclusion, vf and n values should be measured at as high jacket pressures as
possible. Since a maximum jacket pressure in an experiment is restricted for several reasons, one
could try to extrapolate V’/V  and I’/I to jacket pressures over the range in which measurements
are not possible. When the jacket pressure reaches a critical value at which vf becomes zero,
uncertainties of V and I no longer have an effect on Ap0 because term 1/(V’/V + I’/I) in Eq. 9 tends
to zero. It can easily be seen that under such conditions the actual experimental method changes
into the Heydemann-Welch method [6].
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Figure 8.    Relative deviations of Ap0 calculated by Eqs. 7-9 from Ap0 calculated by FEA
at p0 = 330 MPa

The results of the test Ap0 – calculation in which all required quantities are obtained from FEA
demonstrate that Eqs. 8 and 9 work better than Eq. 7 and yield the smallest deviation from the
effective area directly calculated by FEA at pj = 0 (Fig. 8). The values obtained by Eqs. 8 and 9
are almost the same and deviate from the FEA values by less than 5⋅10-6 in relative terms. In the
following analysis, only Eqs. 8 and 9 are used.

The dependence of Ap0 on p0 as obtained for five jacket pressures by the modified experimental
method referred to as method 1 (n, vf –experimental, p(x) – FEA-calculated) is presented together
with an FEA-based dependence in Fig. 9. As a reference effective area A0, the value calculated
from the dimensional data for the piston-cylinder bore was taken. This value was higher than the
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effective area determined from the cross-float experiments by only 7⋅10-6 in relative units. The
systematic deviation from a linear law, which is particularly strong at low jacket pressures, is due
to method inconsistency. The dependence obtained using the highest jacket pressure pj = 0.2p0 is
the most linear one and close to the FEA results.

Figure 10 shows how the elastic constants of the cylinder and the piston-cylinder gap geometry
affect the pressure dependent effective area determined by the FEA and the experimental method.
The results furnished by experimental method 1 are almost insensitive to the elastic properties of
the cylinder but strongly depend on the initial gap shape.

To obtain the pressure distortion coefficient from the experimental data shown in Fig. 9, three
fitting procedures were tested:

A0 – experimental; λFD – fitted: ( ) ( )[ ] min1,
0 j

2
0FD0j00 →+−∑∑

p p
p pAppA λ        (11)

A0 – experimental; λFD – fitted: ( ) ( )[ ] ( ) min1, 2
0j

2
0FD0j00

0 j

→+−∑∑ pppAppA
p p

p λ         (12)

        A0 and λFD – fitted: ( ) ( )[ ] ( ) min1, 2
0j

2
0FD0j00

0 j

→+−∑∑ pppAppA
p p

p λ         (13)

In Eq. 11, all experimental values are taken with the same weight, whereas in Eq. 12, they are
weighted by pj according to the conclusion drown before as regards the better performance of the
experimental method at higher jacket pressures. The values of λFD obtained by Eqs. 11 and 12 are
very close, but the standard deviations furnished by the non-weighted fit are significantly greater.
All λFD obtained by Eq. 13 are systematically greater than those from Eqs. 11 and 12 by about
(0.06 to 0.15)⋅10-6 MPa-1, have standard deviations of (0.08 to 0.15)⋅10-6 MPa-1 and thus
statistically agree with the results from Eqs. 11 and 12. Nevertheless, Eq. 13 has an important
advantage over Eqs. 11 and 12, as it furnishes results which do not depend on A0 and
consequently are less sensitive to dimensional piston-cylinder properties.
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distorted cylinder corrected by Eq. 10, all determined at p0 = 330 MPa and
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The difference between the gap profile determined by the FEA and used in method 1, and the gap
profile corrected by Eq. 10 and used in method 2 is shown in Fig. 11. The gap correction is much
smaller than the gap width calculated by the FEA and, finally, change λ by about 0.05⋅10-6 MPa-1.

In Table 2, the results obtained by the three variants of the modified experimental method and by
the FEA are compiled. The results obtained with the experimental methods are those furnished by
a fitting approach to the experimental data according to Eq. 12. All calculations were performed
for the elastic constants of the piston as measured at PTB (pst. E,µ) and the elastic constants of
the cylinder WC core reported by Desgranges et Huot (E,µ from DH). The uncertainty
contributions are: s(λ) – standard deviation due to model inconsistency; un(λ) – standard
uncertainty caused by the jacket pressure distortion coefficient in the experimental methods,
un(λ) = u(n)⋅maxpj-1/[V’/V+I’/I]; ∆E,µ(λ) = λ cyl. E,µ = pst. E,µ - λcyl. E,µ from DH – effect of the elastic
constants of the cylinder; ∆gap(λ) = λconst. gap - λreal gap – effect of undistorted gap profile;
max0.1n-(λFD-λCC) - maximum deviation from experimental jacket pressure distortion
coefficient.

Table 2. Pressure distortion coefficients and uncertainty contributions in the pressure range
(300-700) MPa calculated by the FEA and three modified experimental methods

Modified experimental methodsFEA
Method 1:

vf – experim.,
I – FEA

Method 2:
vf – experim.,

I – FEA + correction
to meet vf

Method 3:
vf – FEA,
I – FEA

λFD ⋅106 MPa 0.847 0.778 0.836 0.834
s(λFD) ⋅106 MPa 0.004 0.040 0.041 0.021
un(λFD) ⋅106 MPa 0 0.06 0.06 0.06
∆E,µ(λFD) ⋅106 MPa 0.18 -0.020 -0.071 -0.092
∆gap(λFD) ⋅106 MPa -0.08 -0.19 / +0.011 *) - -

λCC⋅106 MPa 0.460 0.397 0.455 0.453
s(λCC) ⋅106 MPa 0.008 0.035 0.036 0.013
un(λCC) ⋅106 MPa 0 0.05 0.05 0.05
∆E,µ(λCC) ⋅106 MPa 0.12 -0.020 -0.071 -0.092
∆gap(λCC) ⋅106 MPa -0.09 -0.20 / +0.011 *) - -

max0.1n-(λFD-λCC) ⋅106 MPa 0.027 0 0 0

*) Results obtained by the regression procedure according to Eq. 13

All the pressure distortion coefficients are consistent with one another within their standard
uncertainties. One significant uncertainty contribution of the experimental methods deals with the
methods themselves – they are not capable of adequately describing experimental n and vf over
entire ranges of p0 and pj. The standard deviation would even be greater by a factor of 3.5 if
pj - nonweighted fit (Eq. 11) were used. The main reason for this evidently is the experimental
piston fall rate, which, due to possible leak, temperature instability and piston-cylinder
eccentricity, is the most unsafe experimental parameter of the method. If the experimental fall
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rates are replaced by those calculated by the FEA (method 3), s(λ) decreases by the factor 2. All
three variants of the experimental method are less sensitive to the elastic properties of the
cylinder than the FEA method, for method 1 this dependence is extremely weak. This result
reflects that the information which in the FEA method is represented by the two parameters, E
and µ, is expressed in the experimental methods by three parameters, E, µ and n, the last of which
remains constant while E and µ change. It appears, however, to be unusual that the decrease in
the rigidity of the cylinder material, which should increase λ and does so in the FEA case,
reduces λ furnished by the experimental methods. An analysis performed for the model of the
perfectly cylindrical piston and cylinder by method 1 demonstrates that the experimental method
is very sensitive to the information on the gap profile if a fixed value of A0 is used in the
regression procedure (Eqs. 11 and 12). The changes of λFD and λCC, which are -0.19⋅10-6 MPa-1

and –0.20⋅10-6 MPa-1, are in conformity with the piston shape effect Sp estimated above and
supply up to 0.2⋅10-6 MPa-1 into the pressure distortion coefficient. In contrast to Eqs. 11 and 12,
Eq. 13 indicates a change of only +0.011⋅10-6 MPa-1 in both λFD and λCC. A comparison of the
uncertainties by the experimental methods shows that, in the sequence from method 1 to method
3, the consistency of the methods improves but the sensitivity to the elastic constants of the
cylinder increases. In the experimental methods, all uncertainty contributions with the exception
of the gap profile are smaller for λCC than for λFD. Finally, the pressure distortion coefficients
with their combined standard uncertainties are:

FEA Modified experimental methods
[λFD ± u(λFD)] ⋅106 MPa = 0.847 ± 0.10 0.816 ± 0.080
[λCC ± u(λCC)] ⋅106 MPa = 0.460 ± 0.071 0.435 ± 0.070

It should be noted that the uncertainty of the dimensional data of the gap is not included in the
uncertainties.

5 Conclusions

The experimental method considered above allows the uncertainty of the pressure distortion
coefficient caused by the elastic properties of the cylinder to be reduced compared with the FEA
method. Inconsistency of the model, unsafe piston fall rates, uncertainties of the jacket pressure
distortion coefficient and arbitrarily calculated pressure distribution in the piston-cylinder
interspace are the main uncertainty sources of the method. For the piston-cylinder assembly
DH 7594, which is used at PTB for the realization of the pressure scale up to 1 GPa, the pressure
distortion coefficients determined by the FEA and the modified experimental method in the
pressure range (300 to 700) MPa in the free deformation and controlled clearance operation
modes are in good agreement. The uncertainties of the distortion coefficient obtained by these
two methods for the controlled clearance mode are practically the same. If the elastic constants of
the cylinder were better known, the FEA would furnish smaller uncertainties than the
experimental method. Knowledge of the dimensional properties of the piston-cylinder gap is
important for the experimental as well as for the FEA method.
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