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Abstract:  Least squares best-fit Line calculations have become a routine measurement tool.  
Unfortunately, although of great importance, the evaluation of uncertainty consistent with the 
Guide to the Expression of Uncertainty in Measurement (Guide) for parameters of the line, has 
not been routine.  All too often, the estimation of uncertainty has simply involved the product of 
a coverage factor and the calculated standard deviation, with little consideration for the level of 
confidence.  This paper presents simple formulas in worksheet format that enables the 
calculation of uncertainty for best-fit line parameters.  Covered are uncertainties for the slope of 
the line, the data points of the line, the interpolated points, and the line as a whole.  The 
uncertainty calculations are consistent with the (Guide), in that they have both an interval of 
confidence and level of confidence as in traditional Type A measurement uncertainty 
evaluations.  In addition, examples are provided which are suitable for use as models.  
 
1 Preface 
 
This paper is based on the guidance provided by the uncopyrighted, public domain, National 
Institute of Standards and Technology Handbook 91, "Experimental Statistics", by Mary 
Gibbons Natrella, originally published in 1963 and reprinted in 1966, with corrections.  What 
follows is a compilation of verbatim, adapted quotations or paraphrases of Handbook 91, and 
original material provided by this paper's author.  The arrangement and type of material in 
Handbook 91 is of practical value to evaluator's of measurement uncertainty.  Sections from the 
Handbook have therefore been left essentially intact except for certain editorial modifications 
required for NCSLI publication.       

 
2 Introduction 
 
In many situations it is desirable to know something about the relationships between two 
characteristics of a material, product, or process.  In some cases, it may be known from 
theoretical considerations that two properties are functionally related, and the problem is to find 
out more about the structure of this relationship.  In other cases, there is interest in investigating 
whether there exists a degree of association between two properties, which could be used to 
advantage.  For example, in specifying methods of test for a material, there may be two tests 
available, both of which reflect performance, but one of which is cheaper, simpler, or quicker to 
run.  If a high degree of association exists between the two tests, we might wish to run regularly 
only the simpler test. 
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In this paper, we deal only with linear relationships.  It is worth noting that many nonlinear 
relationships may be expressed in linear form by a suitable transformation (change of variable). 
For example, if the relationship is of the form Y = aXb, then log Y = log a + b log X.  Putting YT 
= log Y, b0 = log a, b1 = b, XT = log X, we have the linear expression XT = b0 + b1XT in terms of 
the new (transformed) variables XT and YT.  A number of common linearizing transformations are 
summarized in Table 1-4 and are discussed in Paragraph 1-4.4. 
 
3 Plotting the Data 
 
Where only two characteristics are involved, the natural first step in handling the experimental 
results is to plot the points on graph paper.  Conventionally, the independent variable X is plotted 
on the horizontal scale and the dependent variable Y is plotted on the vertical scale.  There is no 
substitute for a plot of the data to give some idea of the general spread and shape of the results.   
A pictorial indication of the probable form and sharpness of the relationship, if any, is 
indispensable and sometimes may save needless computing.  When investigating a structural 
relationship, the plotted data will show whether a hypothetical linear relationship is borne out; if 
not, we must consider whether there is any theoretical basis for fitting a curve of higher degree.  
When looking for an empirical association of two characteristics, a glance at the plot will reveal 
whether such association is likely or whether there is only a patternless scatter of points. 
 
In some cases, a plot will reveal unsuspected difficulties in the experimental setup which must be 
ironed out before fitting any kind of relationship.  An example of this occurred in measuring the 
time required for a drop of dye to travel between marked distances along a water channel.  The 
channel was marked with distance markers spaced at equal distances, and an observer recorded 
the time at which the dye passed each marker.  The device used for re cording time consisted of 
two clocks hooked up so that when one was stopped, the other started: Clock 1 recorded the 
times for Distance Markers 1, 3, 5, etc.; and Clock 2 recorded times for the even-numbered 
distance markers.  When the elapsed times were plotted, they looked somewhat as shown in 
Figure 1.  It is obvious that there was a systematic time difference between odd and even markers 
(presumably a lag in the circuit connecting the two clocks).  One could easily have fitted a 
straight line to the odd-numbered distances and a different line to the even-numbered distances, 
with approximately constant difference between the two lines.  The effect was so consistent, 
however, that the experimenter quite properly decided to find a better means of recording travel 
times before fitting any line at all.   
 
If no obvious difficulties are revealed by the plot, and the relationship appears to be linear, then a 
line Y = bo + b1X ordinarily should be fitted to the data, according to the procedures given in this 
course.  Fitting by eye usually is inadequate for the following reasons: 
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(a)  No two people would fit exactly the same line, and, therefore, the procedure is not objective; 
 

(b)  We always need some measure of how well the line does fit the data, and of the uncertainties 
inherent in the fitted line as a representation of the true underlying relationship — and these can 
be obtained only when a formal, well-defined mathematical procedure of fitting is employed. 
 

 

 
Figure 1.  Time required for a drop of dye to travel between distance markers. 
 
4   Two Important Systems of Linear Relationships 
 
Before giving the detailed procedure for fitting a straight line, we discuss different physical 
situations, which can be described by a linear relationship between two variables.  The methods 
of description and prediction may be different, depending upon the underlying system.  In 
general, we recognize two different and important systems, which we call Statistical and 
Functional.  It is not possible to decide which is the appropriate system from looking at the data.   
The distinction must be made before fitting the line— indeed, before taking the measurements. 
 
4.1   Functional Relationships 
 
In the case of a Functional Relationship, there exists an exact mathematical formula (Y as a 
function of x) relating the two variables, and the only reason that the observations do not fit this 
equation exactly is because of disturbances or errors of measurement in the observed values of 
one or both variables.  We discuss two cases of this type: 
 
FI—Errors of measurement affect only one variable (Y).  (See Fig. 2). 
FII—Both variables (X and Y) are subject to errors of measurement. (See Fig. 3). 
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Common situations that may be described by Functional Relationships include calibration lines, 
comparisons of analytical procedures, and relationships in which time is the X variable. 
 
For instance, we may regard Figure 2 as portraying the calibration of a straight-faced spring 
balance in terms of a series of weights whose masses are accurately known.  
By Hooke's Law, the extension of the spring, and hence the position y of the scale pointer, 
should be determined exactly by the mass x upon the pan through a linear functional 
relationship1 y = b0 + b1 x.  In practice, however, if a weight of mass x1 is placed upon the pan 
repeatedly and the position of the pointer is read in each instance, it usually is found that the 
readings Y1 are not identical, due to variations in the performance of the spring and to reading 
errors.  Thus, corresponding to the mass x1 there is a distribution of pointer readings Y1; 
corresponding to mass x2, a distribution of pointer readings Y2; and so forth—as indicated in 
Figure 2.  It is customary to assume that these distributions are normal (or, at least symmetrical 
and all of the same form) and that the mean of the distribution of Yi's coincides with the true 
value y = b0 + b1 xi. 
 
If, instead of calibrating the spring balance in terms of a series of accurately known weights, we 
were to calibrate it in terms of another spring balance by recording the corresponding pointer 
positions when a series of weights are placed first on the pan of one balance and then on the pan 
of the other, the resulting readings (X and Y) would be related by a linear structural relationship 
FII, as shown in Figure 3, inasmuch as both X and Y are affected by errors of measurement.  In 
this case, corresponding to the repeated weighings of a single weight w1 (whose true mass need 
not be known), there is a joint distribution of the pointer readings (X1 and Y1) on the two 
balances, represented by the little transparent mountain centered over the true point (x1, y1) in 
Figure 3; similarly at points (x2, y2) and (x3, y3), corresponding to repeated weighings of other 
weights w2 and w3, respectively. 
 
Finally, it should be noticed that this FII model is more general than the FI model in that it does 
not require linearity of response of each instrument to the independent variable w, but merely 
that the response curves of the two instruments be linearly related, that is, that X = a + b∗ f(w) 
and Y = c + d∗ f(w), where f(w) may be linear, quadratic, exponential, logarithmic, or whatever. 
 
Table 1 provides a concise characterization of FI and FII relationships.  
 
Detailed problems and procedures with numerical examples for FI relationships are given in 
Paragraphs 4.1 and 4.2, and for FII relationships in Paragraph 4.3. 

                       
1 Note on Notation for Functional Relationships: 
We have used x and y to denote the true or accurately known values of the variables and X and Y to denote their 
values measured with error.  In the FI Relationship, the independent variable is always without error and therefore in 
our discussions of the FI case and in the paragraph headings we always use x.  In the Worksheet, and Procedures and 
Examples for the FI case, however we use X and Y because of the computational similarity to other cases discussed 
in this Chapter (i.e., the computations for the Statistical Relationships).  In the FII case, both variables are subject to 
error, and clearly we use X and Y everywhere for the observed values. 
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Figure 2.  Linear functional relationship of Type FI (only Y affected by measurement errors). 
 
 
 

 
 
Figure 3.  Linear functional relationship of Type FII (X and Y affected by measurement  
                 errors). 
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4.2   Statistical Relationships 
 
In the case of a Statistical Relationship, there is no exact mathematical relationship between X 
and Y; there is only a statistical association between the two variables as characteristics of 
individual items from some particular population.  
 
If this statistical association is of bivariate normal type as shown in Figure 4, then the average 
value of the Y's associated with a particular value of X, say YX, is found to depend linearly on X, 
i.e., Yx = b0 + b1 X; similarly, the average value of the X's associated with a particular value of Y, 
say, XY depends linearly on Y (Fig. 4) i.e.,  XY =  + Y; but — and this is important! — the 

two lines are not the same, i.e., 

'
0β '

1β

1
'

1 1 ββ ≠ and 1ββ − 0β'
0 ≠ .2 

 
 
Figure 4.  A normal bivariate frequency surface. 
 

                       
2 Strictly, we should write mY∗X = +  X, and mX∗Y = +  Y, to conform to our notation of using m to 
signify a population mean, but this more exact notation tends to conceal the parallelism of the curve-fitting 
processes in the FI and SI situations. Consequently, to preserve appearances here and in the sequel, we use 

0β 1β '
0β '

1β

YX  in 
place of mY∗X and X Y in place of mX∗Y — and it should be remembered that these signify population means. 
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If a random sample of items is drawn from the population, and the two characteristics X and Y 
are measured on each item, then typically it is found that errors of measurement are negligible in 
comparison with the variation of each characteristic over the individual items.  This general case 
is designated SI.  A special case (involving pre-selection or restriction of the range of one of the 
variables) is denoted by SII. 
 
 
SI Relationships.   
 
In this case, a random sample of items is drawn from some definite population (material, 
product, process, or people), and two characteristics are measured on each item. 
A classic example of this type is the relationship between height and weight of men.  Any 
observant person knows that weight tends to vary with height, but also that individuals of the 
same height might vary widely in weight.  It is obvious that the errors made in measuring height 
or weight are very small compared to this inherent variation between individuals.  We surely 
would not expect to predict the exact weight of one individual from his height, but we might 
expect to be able to estimate the average weight of all individuals of a given height. 
 
The height-weight example is given as one that is universally familiar.  Such examples also exist 
in the physical and engineering sciences, particularly in cases involving the interrelation of two 
test methods.  In many cases there may be two tests that, strictly speaking, measure two basically 
different properties of a material, product, or process, but these properties are statistically related 
to each other in some complicated way and both are related to some performance characteristic 
of particular interest, one usually more directly than the other.  Their interrelationship may be 
obscured by inherent variations among sample units (due to varying density, for example).  We 
would be very interested in knowing whether the relationship between the two is sufficient to 
enable us to predict with reasonable accuracy, from a value given by one test, the average value 
to be expected for the other —particularly if one test is considerably simpler or cheaper than the 
other. 
 
The choice of which variable to call X and which variable to call Y is arbitrary—actually there 
are two regression lines.  If a statistical association is found, ordinarily the variable that is easier 
to measure is called X.  Note well that this is the only case of linear relationship in which it may 
be appropriate to fit two different lines, one for predicting Y from X and a different one for 
predicting X from Y, and the only case in which the sample correlation coefficient r is 
meaningful as an estimate of the degree of association of X and Y in the population as measured 
by the population coefficient of correlation '

11ββρ = .  The six sets of contour ellipses shown 
in Figure 5 indicate the manner in which the location, shape, and orientation of the normal 
bivariate distribution varies with changes of the population means (mX and mY) and standard 
deviations (σX and σY) of X and Y and their coefficient of correlation in the population (ρXY). 
 
If ρ = ±1, all the points lie on a line and Y , and  coincide.  X'1

'
0 ββ += YX '

1
'
0 ββ +=

 
If ρ  = +1, the slope is positive, and if ρ  = -1, the slope is negative.  If ρ = 0, then X and Y are 
said to be uncorrelated. 

2002 NCSL International Workshop and Symposium 





 
Figure 5.  Contour ellipses for normal bivariate distributions having different values of the five parameters mx, 
                 my, ox, ay, Pxy. 
 
 
SII Relationships 
 
The general case described above (SI) is the most familiar example of a statistical relationship, but we also need 
to consider a common case of Statistical Relationship (SII) that must be treated a bit differently.  In SII, one of 
the two variables, although a random variable in the population, is sampled only within a limited range (or at 
selected pre-assigned values).  In the height-weight example, suppose that the group of men included only those 
whose heights were between 5’4” and 5’8”.  We now are able to fit a line predicting weight from height, but are 
unable to determine the correct line for predicting height from weight.  A correlation coefficient computed from 
such data is not a measure of the true correlation among height and weight in the (unrestricted) population.
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The restriction of the range of X, when it is considered as the independent variable, does not spoil the estimates 
of Yx when we fit the line Yx = b0 + b1 X;.  The restriction of the range of the dependent variable (i.e., of Y in 
fitting the foregoing line, or of X in fitting the line,  
XY = b  + Y ), however, gives a seriously distorted estimate of the true relationship.  '

0
'
1b

 

 
 
 
Figure 6.  Diagram showing effect of restrictions of X or Y on the regression of Y on X. 

 



This is evident from Figure 6, in which the contour ellipses of the top diagram serve to represent 
the bivariate distribution of X and Y in the unrestricted population, and the “true” regression lines 
of XY  on X and YX  on Y are indicated.  The central diagram portrays the situation when 
consideration is restricted to items in the population for which a < X < b.  It is clear that for any 

particular X in this interval, the distribution and hence the mean 
'
XY of the corresponding Y's is 

the same as in the unrestricted case (top diagram).  Consequently, a line of the form 
XbbY X 10 +=  fitted to data involving either a random or selected set of values of X between X = 

a and X = b, but with no selection or restrictions on the corresponding Y's, will furnish an 
unbiased estimate of the true regression line XbbY X 10 += in the population at large.  
In contrast, if consideration is restricted to items for which c < Y < d, as indicated in the bottom 

diagram, then it is clear that the mean value, say 
'
XY , of the (restricted) Y's associated with any 

particular value of X > mX will be less than the corresponding mean value YX in the population as 

a whole.  Likewise, if X < mX, then the mean 
'
XY  of the corresponding (restricted) Y's will be 

greater than 
'
XY  in the population as a whole.  Consequently, a line of the form 

'
XY = b0 + b1X 

fitted to data involving selection or restriction of Y's will not furnish an unbiased estimate of the 

true regression line 
'
XY = b0 + b1X in the population as a whole, and the distortion may be 

serious.  In other words, introducing a restriction with regard to X does not bias inferences wit h 
regard to Y, when Y is considered as the dependent variable, but restricting Y will distort the 

dependence of 
'
XY  on X so that the relationship observed will not be representative of the true 

underlying relationship in the population as a whole.  Obviously, there is an equivalent statement 
in which the roles of X and Y are reversed.  
 
As an engineering example of SII, consider a study of watches to investigate whether there was a 
relationship between the cost of a stopwatch and its temperature coefficient.  It was suggested 
that a correlation coefficient be computed.  This was not possible because the watches had not 
been selected at random from the total watch production, but a deliberate effort had been made to 
obtain a fixed number of low-priced, medium-priced, and high-priced stopwatches. 
 
In any given case, consider carefully whether one is measuring samples as they come (and 
thereby accepting the values of both properties that come with the sample) which is an SI 
Relationship, or whether one selects samples which are known to have a limited range of values 
of X problems and procedures with numerical exam (which is an SII Relationship).   
 
Table 5 gives a brief summary characterization of SI and SII Relationships.  Detailed problems 
and procedures with numerical examples are given for SI relationships in Paragraph 5-5.1 and 
for SII relationships in Paragraph 5-5.2 of Handbook 91. 
 
 

 



Table 1.  Summary of Four Cases of Linear Relationships 
 
 Functional (F)                           Statistical (S) 
 FI FII SI                 SII 
Distinctive 
Features and 
Example 

x and y are linearly related by a 
mathematical formula,  
y = β0+ β 1 x, or x = y, which is 
not observed exactly because of 
disturbances or errors in one or 
both variables. 

'
1β

Example:  Determination of elastic 
constant of a spring which obeys 
Hooke’s law:   
x = accurately known weight 
applied, Y = measured value of 
corresponding elongation y. 

X = Height 
Y = Weight 
Both measured on 
a random sample 
of individuals.  X 
is not selected but 
“comes with” 
sample unit. 

X = Height 
(pre-selected value)  
Y = Weight of  
individuals of pre- 
selected height X is  
measured beforehand;  
only selected values  
of X are used at which  
to measure Y. 

Errors of 
Measurement 

Measurement 
error affects Y 
only. 

X and Y both 
subject to error. 

Ordinarily 
negligible 
compared to 
variation among 
individuals. 

Same as in SI. 

Form of Line 
Fitted 

XbbY 10 +=  See paragraph 
5-4.3 of 
Handbook 91. 

XbbY X 10 +=  

YbbX Y
'
1

'
0 +=  

XbbY X 10 +=   
only. 

Procedure for 
Fitting 
 

See Paragraphs 
5.1, 5.2, and 
basic worksheet. 

Procedure 
depends on 
what 
assumptions can 
be made.  See 
Paragraph 5-4.3 
of Handbook 
91. 

See Paragraph 5-
5.1 and basic 
worksheet of  
Handbook 91. 

See Paragraph  
5-5.2 and basic  
worksheet of  
Handbook 91. 

Correlation 
Coefficient 

Not applicable Not applicable Sample estimate 
is 

SyySxx
Sxy

=γ  

See Paragraph  
5-5.1.5 of 
Handbook 91. 
 

Correlation may exist  
in the population, but  
r computed from such  
an experiment would  
provide a distorted  
estimate of the  
correlation. 

 
 

 



Basic Worksheet for all Types of Linear Relationships 
 
X  denotes ______________________________ Y denotes ______________________________  

∑ X = _________________________________ ∑Y = ___________________________________  

X = ___________________________________ Y = _____________________________________ 

Number of points: n = ______________________  (2) ( )( )∑∑ YX  = _________________________ 

Step (1) = _________________________ (3) S =  YX∑ XY Step (1) – Step (2) 

(4) ∑ = _____________________________ (7) ∑2X 2Y  = __________________________ 

 (5) 
( )

n
X 2∑  = __________________________  (8) 

( )
n
Y 2∑ = __________________________ 

 (6) S =  XX Step (4) − Step (5)    (9) S  =  YY Step (7) − Step (8) 

(10) 
XX

XY

S
S

=1b  =  Step (3) ÷ Step (4)    (14) ( )
XX

XY

S
S 2

 = __________________________ 

 (11) Y = __________________________   (15) ( ) 22 YSn −  =  Step (9) − Step (14)  

(12) X1b  = __________________________  (16) S  2
Y  =  Step (15) ÷ (n − 2) 

 (13) XbY 10 −=b  =  Step (11) − Step (12)          = __________________________ YS

Equation of the line: Xbb 10 +=Y     Estimated variance of the slope: 

____________________________________ 
XX

Y
b S

SS
2

2
1

=  =  Step (16) ÷ Step (6) 

0bS  = ________________________________ Estimated variance of intercept: 

1bS  =  ________________________________ 











+=

XX
Yb S

Y
n

SS
2

22 1
0

 = ________________________ 

Note:  The following are algebraically identical: 

( )∑ −=
2

XXSXX ; ( )∑ −=
2

YYYYS ; ( )( )∑ −−= YYXXXYS  

 

Ordinarily, in hand computation, it is preferable to compute as shown in the steps above.  
Carry all decimal places obtainable—i.e., if data are recorded to two decimal places, carry four places in Steps 
(1) through (9) in order to avoid losing significant figures in subtraction. 

 



5.   Problems and Procedures for Functional Relationships 
 
5.1  FI Relationships (General Case) 
 
There is an underlying mathematical (functional) relationship between the two variables, of the 
form xy 10 ββ += .  The variable x can be measured relatively accurately.  Measurements Y of 
the value of y corresponding to a given x follow a normal distribution with mean x10 ββ +  and 

variance  which is independent of the value of x.  Furthermore, we shall assume that the 
deviations or errors of a series of observed Y 's, corresponding to the same or different x 's, all are 
mutually independent.  See Paragraph 4.1 and Table 1.  The general case is discussed here, and 
the special case where it is known that 

2
xyσ

00 =β  (i.e., a line known to pass through the origin) is 
discussed in Paragraph 5-4.2 of Handbook 91.  The procedure discussed here also will be valid if 
in fact 00 =β  even though this fact is not known beforehand.  However, when it is known that 

00 =β , the procedures of Paragraph 5-4.2 of Handbook 91 should be followed because they are 
simpler and somewhat more efficient.  It will be noted that SII, Paragraph 5-5.2 of Handbook 91, 
is handled computationally in exactly the same manner as FI, but both the underlying 
assumptions and the interpretation of the end results are different. 
 
Data Sample 5.1—Young’s Modulus vs. Temperature for Sapphire Rods 
 
Observed values (Y) of Young's modulus (y) for sapphire rods measured at different temperatures 
(x) are given in the following table.  There is assumed to be a linear functional relationship 
between the two variables x and y.  For computation purposes, the observed Y values were coded 
by subtracting 4000 from each.  To express the line in terms of the original units, add 4000 to the 
computed intercept; the slope will not be affected.  The observed data are plotted in Figure 7. 
 

x = Temperature 
°C 

Y = Young’s 
Modulus 

Coded Y = Young’s Modulus Minus 
4000 

30 
100 
200 
300 
400 
500 
600 
700 
800 
900 
1000 
1100 
1200 
1300 
1400 
1500 

4642 
4612 
4565 
4513 
4476 
4433 
4389 
4347 
4303 
4251 
4201 
4140 
4100 
4073 
4024 
3999 

642 
612 
565 
513 
476 
433 
389 
347 
303 
251 
201 
140 
100 
73 
24 
-1 

 



 
Figure 7.  Young’s modulus of sapphire rods as a function of temperature—an FI relationship 
 
 
5.1.1 What is the Best Line to be Used for Estimating Y From Given Values of X? 
 

Procedure3 
 
Using Worksheet (See worksheet 5.1), compute the line xbby 10 += .  This is an estimate of the 
true equation xy 10 ββ +=

4654=

1

.  The method of fitting a line given here is a particular application of 
the general method of least squares.  From Data Sample 5.1, the equation of the fitted line (in 
original units) is:  Y .  The equation in original units is obtained by 
adding 4000 to the computed intercept .  Since the Y's were coded by subtracting a constant, 
the computed slope b  was not affected.  In Figure 5-8, the line is drawn and confidence limits 
for the line (computed as described in Paragraph 5.1.2.1) also is shown. 

x44985482.09846. −

0b

 
 
 

                       
3 CAUTION: Extrapolation, i.e., use of the equation of the line for prediction outside the range of data from which 
the line was computed, may lead to highly erroneous conclusions. 

 



Worksheet 5.1 
Example of FI Relationship 

Young's Modulus as Function of Temperature 
 

 
X  denotes               Temperature, °C   Y denotes ____ Young's Modulus − 4,000__  

∑ X = __________12,030__________________ ∑Y = _____________5,068_____________  

X = ____________     751.875_______________ Y = ________________316.75___________ 

Number of points: n = __16_________________  (2) ( )( )∑∑ YX  = ____3,810,502.5__         _ 

Step (1) = __YX∑ ___2,300,860     _________ (3) S = XY  Step (1) – Step (2) = −1,509,642.5                     

(4) ∑ = _______2X _12,400,900____________ (7) ∑ 2Y  = ______2,285,614_   _______ 

 (5) 
( )

n
X 2∑  = ______9,045,056.25__________  (8) 

( )
n
Y 2∑ = ________1,605,289___          __ 

 (6) S =  XX Step (4) − Step (5) = 3,355,843.75      (9) S  =  YY Step (7) − Step (8) = 680,325              

(10) 
XX

XY

S
S

=1b  =  Step (3) ÷ Step (4) = −0.44985482 (14) ( )
XX

XY

S
S 2

 = _679l,119.9614______ 

 (11) Y = ______316.75       ___________    (15) ( ) 22 YSn −  =  Step (9) − Step (14) = 1,205.0386   

(12) X1b  = _  _−338.2345959_________    (16) S  =  Step (15) ÷ (n − 2) = 86.07418908 2
Y  

 (13) XbY 10 −=b  =  Step (11) − Step (12) = 654.9846   = _YS _9.277618___________ 

         b  (in original units) = 4654.9846 0

Equation of the line: Y     Estimated variance of the slope: Xbb 10 +=

___= 4654.9846 − 0.44985482 x___   
XX

Y
b S

SS
2

2
1

=  =  Step (16) ÷ Step (6) = 0.000025649046 

1bS  = ___ 0.005064__________          ___  Estimated variance of intercept: 

0bS  =  ___4.458638__________________  











+=

XX
Yb S

X
n

SS
2

22 1
0

 = ____19.879453           ______ 

Note:  The following are algebraically identical: 

( )∑ −=
2

XXSXX ; ( )∑ −=
2

YYYYS ; ( )( )∑ −−= YYXXXYS  

 



 
Figure 8.  Young's modulus of sapphire rods as a function of temperature—showing computed 
                regression line and confidence interval for the line. 

 
 

Using the Regression Equation for Prediction. 
 
The fitted regression equation may be used for two kinds of predictions: 
(a)  To estimate the true value of the y associated with a particular value of x, e.g., given x = x' to 
       estimate the value of y' = β0 + β 1x'; or, 
(b)  To predict a single new observed value Y corresponding to a particular value of x, e.g., given 
       x = x' to predict the value of a single measurement of y'. 
 
Which prediction should be made?  In some cases, it is sufficient to say that the true value of y 
(for given x) lies in a certain interval, and in other cases we may need to know how large (or how 
small) an individual observed Y value is likely to be associated with a particular value of x.  The 
question of what to predict is similar to the question of what to specify (e.g., whether to specify 
average tensile strength or to specify minimum tensile strength) and can be answered only with 
respect to a particular situation.  The difference is that here we are concerned with relationships 
between two variables and therefore must always talk about the value of y, or Y, for fixed x. 
 
The predicted y' or Y' value is obtained by substituting the chosen value (x') of x in the fitted 
equation.  For a particular value of x, either type of prediction ((a) or (b)) gives the same 
numerical answer for y' or Y'.  The uncertainty associated with the prediction, however, does 
depend on whether we are estimating the true value of y', or predicting the value Y' of an 
individual measurement of y'.  If the experiment could be repeated many times, each time 
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obtaining n pairs of (x, Y) values, consider the range of Y values, which would be obtained for a 
given x.  Surely the individual Y values in all the sets will spread over a larger range than will the 
collection consisting of the average Y's (one from each set). 
 
To estimate the true value of y associated with the value x', use the equation 
 

'
10

' xbbyc +=  
 
The variance of  as an estimate of the true value  is yc

' '
10

' xy ββ +=
 

Var ( )










 −
++=

xx
Yc S

XX
n

sy
2'

2' 1  

 
This variance is the variance of estimate of a point on the fitted line. 
 
For example, using the equation relating Young's modulus to temperature, we predict a value for 
y at x = 1200: 
 

( )120044985482.09846.4654' −=cy  

16.4115' =cy  
 

Var ( )










 −
++=

75.3355843
875.7511200

16
1074.86

2
'
cy  

   = 86.074 (0.0625 + 0.0598) 
   = 86.074 (0.1223) 
 
Var = 10.53 '

cy
 
To predict a single observed value of Y corresponding to a given value (x') of x, use the same 
equation 
 

'
10

' xbbYc +=   
 
The variance of Y  as an estimate of a single new (additional, future) measurement of y' is '

c

 

Var ( )
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The equation for our example is 
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xY 44985482.09846.4654 −=  
 
To predict the value of a single determination of Young's modulus at x = 750, substitute in this 
equation and obtain: 
 

(75044985482.09846.4654' −=cY )         
     = 4317.59 
 

Var ( )










 −
++=

xx
Yc S

XX
n

sy
2'

2' 11  

 

   ( )










 −
++

75.3355843
875.751750

16
11074.

2

= 86  

 
   = 86.074 (1.0625) 
   = 91.45  
 
 
5.1.2 What are the Confidence Interval Estimates for:  the Line as a Whole; a Point on 
 the Line; a Future Value of Y Corresponding to a Given Value of X? 
 
Once we have fitted the line, we want to make predictions from it, and we want to know how 
good our predictions are.  Often, these predictions will be given in the form of an interval 
together with a confidence coefficient associated with the interval—i.e., confidence interval 
estimates.  Several kinds of confidence interval estimates may be made: 

(a) A confidence band for the line as a whole. 
(b) A confidence interval for a point on the line—i.e., a confidence interval for y' (the true 

value of y and the mean value of Y) corresponding to a single value of x = x'. 
 
If the fitted line is, say, a calibration line that will be used over and over again, we will want to 
make the interval estimate described in (a).  In other cases, the line as such may not be so 
important.  The line may have been fitted only to investigate or check the structure of the 
relationship, and the interest of the experimenter may be centered at one or two values of the 
variables. 
 
Another kind of interval estimate sometimes is required: 

(c) A single observed value (Y') of Y corresponding to a new value of x = x'. 
 
These three kinds of confidence interval statements have somewhat different interpretations.  
The confidence interval for (b) is interpreted as follows: 
 
Suppose that we repeated our experiment a large number of times.  Each time, we obtain n pairs 
of values (xi, YI), fit the line, and compute a confidence interval estimate for , the '

10 xy ββ +=
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value of y corresponding to the particular value x = x'.  Such interval estimates of y' are expected 
to be correct (i.e., include the true value of y') a proportion ( )α−1  of the time.  If we were to 
make an interval estimate of y” corresponding to another value of x = x", these interval estimates 
also would be expected to include y” the same proportion ( )α−1  of the time.  However, taken 
together, these intervals do not constitute a joint confidence statement about y' and y" which 
would be expected to be correct exactly a proportion ( )α−1  of the time; nor is the effective level 

of confidence , because the two statements are not independent but are correlated in a 
manner intimately dependent on the values x' and x” for which the predictions are to be made. 

( 21 α−

)α−1

)

−α
α

.9=y

0

s

α−1 14,2,95. =F

)

 
The confidence band for the whole line (a) implies the same sort of repetition of the experiment 
except that our confidence statements are not now limited to one x at a time, but we can talk 
about any number of x values simultaneously—about the whole line.  Our confidence statement 
applies to the line as a whole, and therefore the confidence intervals for y corresponding to all the 
chosen x values will simultaneously be correct a proportion (  of the time.  It will be noted 
that the intervals in (a) are larger than the intervals in (b) by the ratio tF2 .  This wider 
interval is the "price" we pay for making joint statements about y for any number of, or for all of, 
the x values, rather than the y for a single x. 
 
Another caution is in order.  We cannot use the same computed line in (b) and (c) to make a 
large number of predictions, and claim that 100 ( α−1 % of the predictions will be correct.  The 
estimated line may be very close to the true line, in which case nearly all of the interval 
predictions may be correct; or the line may be considerably different from the true line, in which 
case very few may be correct.  In practice, provided our situation is in control, we should always 
revise our estimate of the line to include additional information in the way of new points. 
 
 
5.1.2.1 What is the ( )α−1  Confidence Band for the line as a Whole? 
 
Procedure      Example 
 
(1) Choose the desired confidence level, ( )α−1 . (1) Let: 1 95.0=  
    05.0=  

 
(2) Obtain sy from Worksheet 5.1. (2) 277617    
 
(3) Look up F for (2, n-2) degrees of freedom. (3) 74.3   

  
(4) Choose a number of values of X (within the  (4) Let: X = 30   

range of the data) at which to compute points       X = 400 
for drawing the confidence band.      X = 800  

   X = 1200 
   X = 1500, for example 
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(5) At each selected value of X, compute: (5) See Table 2 for a convenient  
 ( )XXbYYc −+= 1   computational arrangement and the  
 and  example calculations. 

 ( ) 5.02'

1
12











 −
+=

xx
Y S

XX
n

FsW  

 
(6) A ( )α−1  confidence band for the whole line  (6) See Table 2. 
 is determined by 1WYc ±=  

 
(7) To draw the line and its confidence band,  (7) See Figure 8. 
 plot Yc at two of the extreme selected values  
 of X.  Connect the two points by a straight  
 line.  At each selected value of X, also plot  
 Yc +W1 and Yc −W1.  Connect the upper series  
 of points, and the lower series of points, by  
 smooth curves. 
 
If more  points are needed for drawing the curves  For example: W1 (but not Yc) has the same  
for the band, note that, because of symmetry, the  value at X = 400 (i.e., X  as at X = 1103.75  
calculation of W1 at n values of X actually gives  (i.e., X  + 351.875). 
W1 at 2n values of X. 
 
 
Table 2.  Computational Arrangement for Procedure 5.1.2.1 
 

X  ( )XX −  Yc 
S

XX

n xx

)(1

2
−

+  
2

cYs  
cYs  W1 1WYc +  1WYc −   

30 -721.875 4641.49 .21778 18.7452 4.3296 11.84 4653.33 4629.65
400 -351.875 4475.04 .09940 8.5558 2.9250 8.00 4483.04 4467.04
800 48.125 4295.10 .06319 5.4390 2.3322 6.38 4301.48 4288.72

1200 448.125 4115.16 .12234 10.5303 3.2450 8.88 4124.04 4106.28
1500 748.125 3980.20 .22928 19.7351 4.4424 12.15 3992.35 3968.05

 
 
 
X  = 751.875  coded Y  = 316.75 Y  (original units) = 4316.75  07418908.862 =Ys

n
1  = 0.0625  b1 = −0.44985482  Sxx = 3,355,843.75  F2  = 2.735  

( )XXbYYc −+= 1  ( )







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
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++=
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2' 1      W1 = 2.735 
cYs   
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5.1.2.2 Give a ( )α−1  Confidence Interval Estimate for a Single Point on the Line (i.e., the 
 Mean Value of Y Corresponding to a Chosen Value of x = x') 
 
Procedure 
 
(1)  Choose the desired confidence level, ( )α−1 . (1) Let: 1 95.0=−α  
   0 05.=α  
 
(2)  Obtain sy from Worksheet 5.1. (2) 277617.9=ys    
 
(3)  Look up t for (n-2) degrees of freedom. (3) 2/1 α− 145.214,975.0 =t   
  
(4)  Choose X', the value of X at which we want  (4) Let: X' = 1200 
       to make an interval estimate of the mean  
       value of Y.    
        
(5)  Compute  (5)         

 ( ) 5.02'

2/12
1











 −
+= −

xx
Y S

XX
n

stW α   
( )

96.6
2451.3145.22

=
=W

 

      and        
  4115 16.=cY   

      ( )XXbYc −+= 1Y      
 
(6) A ( )α−1  confidence interval estimate for the  (6) A 95% confidence interval estimate for  
 mean value of Y corresponding to 'XX =  is  the mean value of Y corresponding to  
 given by Y = .  1Wc ± 1200=X  is   

     96.616.4115 ±  

 

Note:  An interval estimate of the intercept of the line ( )0β  is obtained by setting  in the 
above procedure. 

0'=X

 
 
5.1.2.3 Give a ( )α−1  Confidence Interval Estimate for a Single (Future) Value (Y’) of Y 

Corresponding to a Chosen Value of (x’) of x. 
 
Procedure 
 
(1)  Choose the desired confidence level, ( )α−1 . (1) Let: 1 95.0=−α  
   0 05.=α  
 
(2)  Obtain sy from Worksheet 5.1. (2) 277617.9=ys    
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(3)  Look up t for (n-2) degrees of freedom. (3) 2/1 α− 145.214,975.0 =t   
  
(4)  Choose 'X , the value of X at which we want  (4) Let: X' = 1200 
       to make an interval estimate of the mean  
       value of Y.    
        
(5)  Compute  (5)         

 ( ) 5.02

2/12
'11











 −
++= −

xx
Y S

XX
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stW α   
( )

08.21
8288.9145.22

=
=W

 

      and        
  4115 16.=cY   

      ( )XXbYYc −+= 1      
   
 (6)  A ( )α−1  confidence interval estimate for   (6) A 95% confidence interval estimate for  
 'Y  (the single value of Y corresponding to   a single value of Y corresponding to  
 'X  is  1200=X  is  
 .  2141153WYc ±= 08.16. ±  

    

 

5.1.2.4 What is the Confidence Interval Estimate for  β1, the Slope of the True Line 
y = β0 + β1x? 

 
Procedure 
 
(1)  Choose the desired confidence level, ( )α−1 . (1) Let: 1 95.0=−α  
   0 05.=α  
 
(2)  Look up 21 α−t for (n-2) degrees of freedom. (2) 145.214,975.0 =t   
  
(3)  Obtain from Worksheet 5.1. (3) 

1bs 005064.0
1

=bs    
 
(4)  Compute  (4)         

 
1214 bstW α−=   

( )
010862.0

005064.0145.24

=
=W

 

 
(5) A ( )α−1  confidence interval estimate for   (5) 449855.01 =b   
  is  1b 010862.04 =W   
   A 95% confidence interval for 41 Wb ± 1β  is the 
    interval 010862.0449855.0 ±−  
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5.2.  Additional Considerations of FI Relationships Treated in Handbook 91 
 
Handbook 91 treats additional FI relationships, as well as limited treatment of FII, and a 
somewhat fuller treatment of SI and SII relationships, which will not be considered here.  
Sufficient material has been presented to illustrate the salient features of best-fit line confidence 
interval estimation to suit the limited scope of this paper.  The balance of this paper is devoted to 
relevance of the proceeding FI treatment to measurement uncertainty evaluation. 
 
 
6. Measurement Uncertainty 
 
6.1 The Relationship of a Best-Fit Line Confidence Interval to its Best-Fit Line 

Uncertainty 
 
A measurement uncertainty evaluation process involves the determination of an interval and an 
associated confidence level4, which can be considered synonymous to a confidence interval.  The 
significance of that for the purpose of this paper is that determining a confidence interval for a 
best-fit line is equivalent to determining its measurement uncertainty.   
 
As was shown previously, confidence intervals were determined for the best-fit line as a whole, a 
measured point on the best-fit line, an additional or future value of a point on the best-fit line, 
and the slope of the best-fit line, in sections 5.1.2.1, 5.1.2.2, 5.1.2.3 and 5.1.2.4, respectively.   
 
It is worth noting that the confidence intervals and therefore the uncertainty bounds are 
hyperbolic in nature, which are smallest at the center of the best-fit line, and largest at the ends. 
 
The treatment described in this paper is limited to the FI type, which assumes error in Y only.  
That assumption is not generally true, although is approximately true if X values are accurately 
determined relative to the Y values.  If that is the case, the FI treatment is sound.  If not, other 
more accurate methods must be employed.  One complete discussion of a case in which both X 
and Y have significant errors can be found in F. S. Acton, Analysis of Straight-Line Data, John 
Wiley & Sons, Inc., New York, N.Y., 1959. 
 
 
7. Summary 
 
A method for the estimation of confidence intervals about best-fit lines was described.  Four 
parameters were investigated including the best-fit line as a whole, a measured point on the best-
fit line, an additional or future value of a point on the best-fit line, and the slope of the best-fit 
line.  Worksheets were provided for calculator use or to serve as a basis for a computer 
application tool.  The link between the best-fit line hyperbolic confidence interval and 
measurement uncertainty was made and was shown to be equivalent.  A reference was provided 
for the evaluation of uncertainty where both X and Y have significant errors. 

 
4 Confidence level is used here for consistency with Handbook 91, contrary to the convention of the Guide 
to the Expression of Uncertainty in Measurement, which uses level of confidence. 


