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Abstract 

 
The ISO Guide to the Expression of Uncertainty in Measurement (GUM) was published in 1993. 
This document describes how to express measurement uncertainty, and offers some examples for 
actual uncertainty calculations. However, there is no example of uncertainty propagation for 
complex numbers such as electrical impedance. 
 
At CPEM 1992*, our Agilent Technologies Japan Measurement Standards Center presented the 
theory of impedance calibration, and the paper was later published by IEEE I&M in 1993. Since 
1992, our standards center has been calibrating four-terminal-pair (4TP) AC resistance standards at 
high frequencies up to 13 MHz, based on the 4TP capacitance standard. The uncertainty was 
calculated by the computer simulation method.  
 
The authors have now re-calculated the uncertainty in 2001, using sensitivity coefficients in 
accordance with the ISO GUM. This calculation uses a novel new approach to sensitivity 
coefficients of complex numbers, so as to apply the ISO GUM, instead of the former simulation 
method. The paper concludes with a presentation of an example of uncertainty calculation for 
complex numbers, such as electrical impedance.  
 
*CPEM : Conference on Precision Electromagnetic Measurements 
 

Introduction 
 
Agilent Technologies Japan Measurement Standards Center has been calibrating R (resistance) and 
X (reactance) or B (susceptance) of four-terminal-pair (4TP) AC resistance standards at high 
frequencies up to 13 MHz, in accordance with the method given in [1] since 1992. The uncertainty 
of this calibration was calculated by computer simulation because the mathematical model is 
complicated and the ISO GUM had not yet been published. We then determined to extend the 
uncertainty calculation in accordance with the GUM. However, we had to consider how to deal 
with complex numbers so as to apply it consistent with the intent of the GUM. 
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The objective of this paper is to suggest a rigorous method to deal with complex numbers when 
calculating the uncertainty in accordance with the ISO GUM for 4TP AC resistance calibration.  
 
The following two key techniques lead to an easy calculation method for the uncertainty.  
1. Adoption of the cross ratio for the mathematical model 

This helps to derive partial derivatives for calculating sensitivity coefficients 
2. Use of complex numbers for a sensitivity coefficient 

This enables us to realize uncertainty for the major part of the capacitance effect for the major 
part of resistance. 

These techniques help us to calculate the magnitude of the calibration uncertainty.  
 
Using this method, we confirmed that uncertainty of complex numbers such as electrical 
impedance (R, X) can be realistically calculated in accordance with the ISO GUM instead of 
computer simulation method. 
 

Summarized calibration method for 4TP AC resistance 
 
The paper given in [1] describes 4TP AC resistance calibration theory for frequencies up to about 
10 MHz. This section describes the calibration method briefly. This calibration uses a commercial 
4TP LCR meter and the LCR meter is considered as an ideal LCR meter with error adapter. See 
Figure 1. The error adapter is a mathematical tool for expressing the reciprocal and linear errors of 
the 4TP calibration system. The theory applies error-correction equations to this calibration as the 
well-known OPEN/SHORT/LOAD technique for a one-port impedance meter at high frequencies.  
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Figure 1.  Concept of 4TP AC resistance calibration theory 
 
 
The basic equation is expressed as follows:  
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where, ZDUT : Calculated impedance value of DUT 4TP resistance 
 ZMDUT : Measured impedance value of the DUT 4TP resistance 
 ZMsht : Measured impedance value of 4TP SHORT 
 ZMopn : Measured impedance value of 4TP OPEN 
 ZMSTD : Measured impedance value of STD 4TP capacitance 
 ZSTD : Calibrated impedance value of the STD 4TP capacitance 
 It is assumed that Zsht=0 and Zopn= ∞. 
 
This method uses an ideal 4TP open termination (Zopn= ∞), an ideal 4TP short termination (Zsht=0) 
and a 4TP air dielectric capacitor as the LOAD standard (ZSTD). It then transforms from capacitance 
value to resistance value using right angle of the LCR meter. See Figure 2. The capacitor is 
calibrated by using the method given in [2]. 
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Figure 2.  Transform from Capacitance to Resistance 

 
Our standards center has been calibrating resistors ranging from 10 Ω to 100 kΩ impedance. In this 
paper, we will demonstrate a method to calculate uncertainty of 10 Ω at 1 MHz and 10 MHz. We 
selected a 1000 pF air capacitor as the standard for 10 Ω because the impedance values of the 1000 
pF capacitor at 1 MHz and 10 MHz are 160 Ω and 16 Ω, respectively.  
 

Uncertainty Calculation 
 
Figure 2 shows that the uncertainty of the capacitance (Imaginary part) affects the uncertainty of 
the resistance (Real part) geometrically. The following process demonstrates it mathematically, 
using complex numbers for sensitivity coefficients. 
 
 
#1. Mathematical model 
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Equation (1) is a mathematical model, based on the assumption that Zsht=0 and Zopn= ∞. If each 
device has a specific value, then equation (1) becomes  
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Using the cross ratio K, the mathematical model (1a) is transformed to equation (2).  
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For a sensitivity coefficient of OPEN unit, equation (2) is transformed to (2a) using Yopn instead of 
Zopn because Zopn = ∞.  
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From equation (2) and (2a), the sensitivity coefficients are calculated by partial derivatives. 
 
#2. Sensitivity coefficient 
The uncertainty is expressed using Yopn instead of Zopn because Zopn= ∞. 
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From partial derivatives of equation (2) and (2a), each sensitivity coefficient is expressed by 
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Substituting Zsht=0, Zopn=∞ and Yopn=0 in equation (4), (5) and (6), then 
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The sensitivity coefficients are calculated using typical values of ZSTD and ZDUT. The capacitance 
calibration certificate gives C (capacitance) and D (dissipation factor) values, after which their 
values are transformed to the impedance expression (R+jX) using the equation (10). The equation 
(1) gives R and X values of the DUT. Table 1 shows the typical values and the transformed values. 
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Table 1.  Typical values of ZSTD and ZDUT 

 ZSTD ZDUT 
 C D R X R X 
1 MHz 1000.16 pF 0.00003 0.004774 Ω -159.129 Ω 10.010 Ω 0.162 Ω 
10 MHz 1026.6 pF 0.00091 0.014108 Ω -15.5031 Ω 10.029 Ω 1.574 Ω 

 
Each sensitivity coefficient is calculated using equations (7), (8), (9) and the values in table 1. An 
example of calculating cSTD at 1 MHz as follows:  
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The calculation results of all sensitivity coefficients are shown in Table 2. 
 

Table 2.  Sensitivity coefficients 
1 MHz 10 MHz Sensitivity  

Coefficient Re Im Re Im 
cSTD -0.001 j0.0629 -0.101 j0.647 
csht 1.001 -j0.0629 1.101 -j0.647 
copn -74.35 Ω2 -j1596 Ω2 -73.56 Ω2 -j187 Ω2 

 
Table 2 shows the sensitivity coefficients of Im (imaginary part) are more influential than them of 
Re (real part) regarding the capacitance standard and the open. In case of the short (csht), it is to the 
contrary.   
 
#3 Example of each standard uncertainty, u(ZSTD) 
The u(Zsht) and u(Yopn) evaluation process is not described here because they are not important for 
the objective of this paper. Only the calibration uncertainty u(ZSTD_cal) of u(ZSTD) is shown here.  
The calibration certificate gives us the expanded uncertainty for capacitance C and dissipation 
factor D, and states that it was obtained using a coverage factor of k=2. The standard uncertainty is 
U/k. For example, the 1000 pF standard uncertainties (k=1) are given in Table 3.  

Table 3.  1000 pF calibration uncertainty, u(ZSTD_cal) 
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u(ZSTD_cal) 1 MHz 10 MHz 
C  32 ppm 0.095 % 
D 0.000015 0.00029 

 
The C and D expressions of u(ZSTD_cal) are transformed to an impedance expression (R+jX). Since 
the value of D is sufficiently small compared to the C value, the standard uncertainties of C and D 
are assumed to be independent. That means the change of C (∆C) affects the X value and the change 
of D (∆D) affects the R value. This validity is shown by the following calculation example at 1 
MHz.  
 
From the equation (10),  
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Then, each contribution is shown by 
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Table 1 gives a C value of 1000.16 pF, and Table 3 gives the ∆C value of 32 ppm. Then, ∆X is 
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This term can be neglected. Then, ∆R is 
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Table 3 gives a ∆D value of 0.000015. Therefore, 
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The transformed uncertainties (k=1) are shown in Table 4. 
 

Table 4.  1000 pF calibration uncertainty, u(ZSTD_cal) 
 1 MHz 10 MHz 
R 0.002387 Ω 0.004496 Ω 
X 0.005092 Ω 0.014333 Ω 

 
The u(ZSTD_cal) and the other uncertainties of u(ZSTD) are combined, and the u(ZSTD) at 1 MHz and 
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10 MHz are (0.0247+j0.0158) Ω and (0.0116+j0.0222) Ω, respectively. See uncertainty budget 
sheet in the Appendix for detail. 
 
#4 Multiplication of the sensitivity coefficient and the standard uncertainty  
The combined standard uncertainty is the positive square root of the combined variance. Combined 
variance is calculated by summing a square of each standard uncertainty multiplied by a sensitivity 
coefficient. In this case, if we calculate the multiplication arithmetically, a minus term appears 
because the sensitivity coefficient and the standard uncertainty are both complex numbers (j2=-1). 
For example, if a standard uncertainty is denoted by (a+jb) and a sensitivity coefficient is denoted 
by (c+jd), the multiplication becomes (ac-bd)+j(ad+bc). Then, the following calculation process is 
adopted as an additional rule. The absolute value of the each term is used. That means real part 
becomes ac+|-bd|=ac+bd and imaginary part becomes ad+bc. 
 
For example, uncertainty of the capacitance standard at 1 MHz is u(ZSTD)=a+jb=(0.0247+j0.0158) 
Ω and the sensitivity coefficient is cSTD =c+jd=(0.001+j0.0629). See table 2. 
cSTD× u(ZSTD) =(ac+bd)+j(ad+bc) 

= ((0.0247×0.001+0.0158×0.0629) + j(0.0247×0.0629+0.0158×0.001)) Ω  
=(0.00102+j0.00157) Ω  

From this calculation, we realized a contribution of the real and imaginary part of u(ZSTD) to the 
resistance uncertainty. The results of the calculation are shown in Table 5. Refer to the budget sheet 
for detail. 
 

Table 5. Standard uncertainty multiplied by sensitivity coefficient 
 1 MHz 10 MHz 
 R X R X 
u1(ZSTD) 1.02×10-3 Ω 1.57×10-3 Ω 1.55×10-2 Ω 9.73×10-3 Ω 

 
#5 Combined standard uncertainty, Expanded uncertainty and Reporting uncertainty 
The combined standard uncertainty is the positive square root of the combined variance. Table 6 
shows all standard uncertainties multiplied by sensitivity coefficients for each. 
 

Table 6. Standard uncertainty components 
 1 MHz 10 MHz 
 R X R X 
u1(ZSTD) 1.02×10-3 Ω 1.57×10-3 Ω 1.55×10-2 Ω 9.73×10-3 Ω 
u2(Zsht) 2.99×10-5 Ω 2.82×10-5 Ω 5.30×10-5 Ω 5.07×10-5 Ω 
u3(Yopn) 4.02×10-5 Ω 5.19×10-5 Ω 7.55×10-6 Ω 7.46×10-6 Ω 
u4(Zreproduc) 8.88×10-4 Ω 7.40×10-4 Ω 1.11×10-3 Ω 1.26×10-3 Ω 

  
A combined example of the real part at 1 MHz is shown by 

( ) ( ) ( ) ( ) 324252523 1035.11088.81002.41099.21002.1 −−−−− ×=×+×+×+×  Ω. 
 
The combined standard uncertainty, expanded uncertainty and reporting uncertainty are shown in 
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Table 7. Refer to the uncertainty budget sheet in detail. 
 

Table 7. Combined standard uncertainty, Expanded uncertainty and Reporting uncertainty 
  1 MHz 10 MHz 

R 1.35×10-3 Ω 1.56×10-2 Ω Combined  
Standard uncertainty X 1.74×10-3 Ω 9.81×10-3 Ω 

R 0.00271 Ω 
0.0271 % 

0.0311 Ω 
0.311 % 

Expanded uncertainty 
(k=2) 

X 0.0035 Ω 0.020 Ω 
R 0.03 % 0.4 % Reporting uncertainty 
X 0.004 Ω 0.020 Ω 

 
Conclusion  

 
The uncertainty of impedance was calculated in accordance with the ISO GUM and the authors 
confirmed that the capacitance uncertainty (Imaginary part) affects resistance uncertainty (Real 
part) using sensitivity coefficients containing complex numbers. However, we adopted absolute 
values for each term in the multiplication of sensitivity coefficient and the standard uncertainty 
because both of them are complex numbers. This approach should be discussed in the impedance 
field.   
We also applied the ISO GUM to uncertainty calculation of an electrical impedance (R+jX) 
calibration using a novel new approach. The approach uses:  
1. the cross ratio for the mathematical model 
2. complex numbers for a sensitivity coefficient. 
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Appendix 
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