
readme

Allan Savage

readme ii

COLLABORATORS

TITLE :

readme

ACTION NAME DATE SIGNATURE

WRITTEN BY Allan Savage June 4, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

readme iii

Contents

1 readme 1

1.1 Prog_Bar v1.1 Link Library . 1

1.2 Introduction . 1

1.3 Installation and Usage . 2

1.4 C Installation . 3

1.5 Using Prog_Bar from C . 4

1.6 Assembler Installation . 4

1.7 Using Prog_Bar from Assembler . 5

1.8 Modula-2 Installation . 6

1.9 Using Prog_Bar from Modula-2 . 6

1.10 Demonstration Programs . 7

1.11 Distribution . 7

1.12 Acknowledgements . 8

1.13 How to contact me . 8

1.14 Program History . 8

readme 1 / 9

Chapter 1

readme

1.1 Prog_Bar v1.1 Link Library

Prog_Bar.Lib

A progress bar link library for Amiga Programmers

Written by Allan Savage © 1996

Contents

Introduction
Installation and Usage
Function List
Demonstration Programs

Distribution
Acknowledgements

How to contact the author

Program History

1.2 Introduction

Introduction

Prog_Bar.lib is a progress bar link library designed to make it easy to
create, manage and delete progress bars within most programming languages.
It has been tested using Dice C, Devpac 3 Assember, SAS/C and Turbo
Modula-2.

The library is easy to use and provides a large range of options for your
progress bars. It has been designed to operate in a similar way to the
GadTools functions for managing gadgets, so the ideas involved should not be
new to anyone who might be using them (except possibly assembly programmers.

readme 2 / 9

See Usage for more details).

The library is capable of producing many different types of progress bars
using a simple set of parameters. These allow the programmer to completely
customise a progress bar by changing its border, colours, size, location,
dimensions, direction and text.

To give you an idea of what is possible using this system I have included a
few demonstration programs complete with source code so that you can learn
from the techniques used to control a progress bar.

1.3 Installation and Usage

Installation

How to install and use the library really depends on which environment you
want to use it in. I will provide a general outline of the various stages
and a more detailed description of how I installed it with each system. In
each case you may be using a different system, but if you follow the general
guidelines you should not have much difficulty.

I will also show the commands I used to compile and link the demo programs
for each system.

C Programmers Assembly Programmers Modula-2 Programmers
--------------- ---------------------- ----------------------

Installation Installation Installation
Usage Usage Usage

The documentation includes an Amigaguide file called prog_bar.guide. This
contains a detailed description of each function and can be copied to your
compiler’s document directory, or can be linked into the Autodocs
documentation if you have it installed. A plain text version of this file
is also supplied. It is called prog_bar.doc.

Usage

General Description

Using the system should now be (almost) as simple as using any of the
operating system libraries. When you write a program which needs a progress
bar just include the relevant definition file at the top of your source and
remember to link your object file to prog_bar.lib.

To actually create and handle a progress bar within your program you will
need to follow the rough guide given below. However, every situation is
different so you might need to vary your approach. All the available
functions are documented in the function list.

N.B. Because all of the necessary functions will be linked into your final

readme 3 / 9

executable it is completely unnecessary to open the library at runtime.

Step 1.

Work out what size your bar has to be. Note that the size is the value
represented by the full bar. It is not related to the bar’s actual
dimensions.

How you do this will depend on what you are using the bar for. For example,
if you want to represent a percentage the size would be 100. If you wanted
to use a progress bar while printing the size might be the number of lines
to be printed.

Step 2.

Create a suitable progress bar using CreateProgBarA() or CreateProgBar().

Step 3.

Every time your program completes one unit of whatever it is doing, you
should use UpdateProgBar() to display the new position. For the examples
above this would mean updating the bar after one percent, or after printing
each line.

If the value of the bar is decreasing and you have the text function
activated, it will probably be necessary to call ClearText() immediately
before updating the bar. This is not necessary if the text is centred
within the bar, or if the length of the text never decreases.

Step 4.

When you have finished you should delete the progress bar and release the
memory used by calling FreeProgBar().

Step 5.

When your window needs refreshed you should call RefreshProgBar().

1.4 C Installation

The C system is comprised of two files, "prog_bar.h" and "prog_bar.lib".

"prog_bar.h" should be copied to anywhere on your compiler’s include file
search path. Just make sure you know where you put it because you will need
to #include it any time you want to use prog_bar.

For Dice I created a directory called "DINCLUDE:library" and copied it to
there.

"prog_bar.lib" should be copied to anywhere on your compiler’s library

readme 4 / 9

search path. Alternatively you could put it anywhere and then specify its
full pathname when linking.

In Dice I copied it to "DCC:dlib/"

Using Prog_Bar in C

1.5 Using Prog_Bar from C

When writing your source you will need to include the file "prog_bar.h"
before you use any of the functions, otherwise the compiler will complain
about undefined structures, etc.

In Dice I use the line "#include <library/prog_bar.h>".

When compiling you will then need to tell the compiler to include the code
for the prog_bar functions. This is done by linking your code to
"prog_bar.lib". In some compilers, or with large multi-module programs, it
will be necessary to compile your source to *.o files, and then link these
and prog_bar.lib together to produce the executable. If your program is a
single source file then you might be able to compile it and link to
prog_bar.lib in one instruction. Your compiler documentation will contain
more detailed information about this.

To compile the demo with Dice I was able to compile the source and perform
the link in one operation. The command line to do this was "dcc -2.0 -//
-Tt: -o Demo Demo.c prog_bar.lib".

Calling the prog_bar functions uses exactly the same notation as any other C
function, e.g. "ClearProgBar(PBar);".

1.6 Assembler Installation

The Assembler system is comprised of two files, "prog_bar.i" and
"prog_bar.lib".

"prog_bar.i" should be copied to anywhere on your assembler’s include file
search path. Just make sure you know where you put it because you will need
to include it any time you want to use prog_bar.

For Devpac I copied it to the "Devpac/include/libraries" directory.

"prog_bar.lib" should be copied to anywhere on your assembler’s library
search path. Alternatively you could put it anywhere and then specify its
full pathname when linking.

In Devpac I copied it to "Devpac/lib/"

Using Prog_Bar in Assembler

readme 5 / 9

1.7 Using Prog_Bar from Assembler

When writing your source you will need to include the file "prog_bar.i"
before you use any of the functions, otherwise the assembler will complain
about undefined symbols, etc.

In Devpac I use the line "include libraries/prog_bar.i".

To produce your final executable you will need to assemble your source as a
linkable file. The resulting *.o file will then need to be linked with
Prog_Bar.

To create the demo program with Devpac I created my source in a directory
called "Devpac/Progs". From here the command to link the executable was
"BLINK demo.o TO demo LIB /lib/prog_bar.lib".

Your assembler documentation will contain more detailed information about
assembling and linking programs.

Calling the prog_bar functions is different from all the operating system
functions. The reason is because the library has been written to be used
from C with the minimum of fuss, and as such each function expects its
parameters to be placed on the stack, NOT in the registers.

Before calling a prog_bar function you must place its parameters on the
stack in the reverse order, i.e. right to left. Each value you place on
the stack MUST be a longword value, even if the parameter type is a word or
byte value.

To actually call the function you just use a JSR instruction. The target of
the jump will be the function name preceded by an underscore, e.g. to call
CreateProgBar() you use the instruction "JSR _CreateProgBar".

When the function returns you are responsible for removing its parameters
from the stack. Any return values will be in the register D0.

An example from the demo program is this small piece of code which calls
CreateProgBarA() and stores the result in PBar_ptr.

bar = CreateProgBarA (Wnd, Left, Top, Width, Height, Size, taglist)

* create the progress bar
pea.l pbar_tags ; taglist
move.l max_size,-(sp) ; Size
move.l #30,-(sp) ; Height
move.l #300,-(sp) ; Width
move.l #65,-(sp) ; Top
move.l #100,-(sp) ; Left
move.l windowptr,-(sp) ; Wnd
jsr _CreateProgBarA ; Call CreateProgBarA()
move.l d0,PBar_ptr ; bar
lea 28(sp),sp ; remove parameters from stack

readme 6 / 9

; 7 parameters * 4 bytes each = 28

pbar_tags
dc.l PB_BorderType,PBBT_RIDGE
dc.l PB_TextMode,PBTM_PERCENT
dc.l PB_TextPosition,PBTP_CENTRE
dc.l TAG_DONE

windowptr dc.l 0
max_size dc.l 200
PBar_ptr dc.l 0

1.8 Modula-2 Installation

The Modula-2 system is comprised of three files, "prog_bar.def",
"prog_bar.sym" and "prog_bar.lib".

"prog_bar.def" should be copied to anywhere on your compiler’s include file
search path. Just make sure you know where you put it because you will need
to import it any time you want to use prog_bar.

For Turbo Modula-2 I copied it into the "Modula_2/amiga/" directory.

"prog_bar.sym" should be copied to your compiler’s symbol file directory.
If the "prog_bar.sym" file is not of the correct format for your compiler
you will need to recreate it. This is done by compiling "prog_bar.def".

For Turbo Modula-2 I copied it into the "Modula_2/sym/" directory.

"prog_bar.lib" should be copied to anywhere on your compiler’s library
search path. Alternatively you could put it anywhere and then specify its
full pathname when linking.

For Turbo Modula-2 I copied it into the "Modula_2/lib/" directory.

N.B. I have my copy of Turbo Modula-2 installed in the "Modula_2"
directory.

Using Prog_Bar in Modula-2

1.9 Using Prog_Bar from Modula-2

When writing your source you will need to import the file "prog_bar.def"
before you use any of the functions, otherwise the compiler will complain
about undefined structures, etc.

In Turbo Modula-2 I use the line "IMPORT P := prog_bar".

When compiling you will then need to tell the compiler to include the code
for the prog_bar functions. This is done by linking your code to
"prog_bar.lib". Your compiler documentation will contain more detailed

readme 7 / 9

information about this.

To compile the demo with Turbo Modula-2 I just added "prog_bar.lib" to the
end of my compile command. The resulting command line to achieve this was
"m2b Demo prog_bar.lib".

Calling the prog_bar functions uses exactly the same notation as any other
Modula-2 function, e.g. "P.ClearProgBar(PBar);".

1.10 Demonstration Programs

The Library can currently be used from Modula-2, C and Assembly Language. I
have included small example programs in each language so that you can test
the library with your compiler before writing anything of your own.

All Programmers

The demo program written in C is by far the largest of the demo programs. C
is my preferred language so I used this program as a complete demonstration
of everything the library can do. As such it is probably worth looking at
even if you do not normally program in C.

Demo Program Source

Assembly Programmers

This is a small program which creates a progress bar and then slowly fills
it. When full, the bar is reset and the process repeats. Just click on the
Window’s Close gadget to end the program.

Demo Program Source

Modula-2 Programmers

This is also a small program. It fills a progress bar in steps of 1, then
changes the direction, border and text mode of the bar, and then fills it
again in steps of 5. You just have to wait until it has finished.

Demo Program Source

1.11 Distribution

Prog_Bar is Copyright © Allan Savage 1996.
All Rights Reserved.

Prog_Bar is freely distributable, providing that no commercial gain is made
from its distribution, and no modification is made to the original archive.

readme 8 / 9

Anyone wishing to include Prog_Bar on a magazine coverdisk or other similar
collection, or use it in any application, commercial or otherwise, have my
full permission. All I ask in return is to be acknowledged somewhere in the
documentation and to be told about it (preferably by e-mail).

DISCLAIMER

This software is provided "AS IS" without warranty of any kind, either
expressed or implied, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The author does
not guarantee the use of, or the results of the use of, this software in
any way. In no way will the author be held liable for direct, indirect,
incidental, or consequential damages to data or equipment resulting from the
use of this software.

1.12 Acknowledgements

Acknowledgements

The Demonstration program was also compiled using DICE v2.07.56 R and its
interface was designed using GadToolsBox v37.300. Thanks to Matthew Dillon
and Jan van den Baard for these excellant programs.

Many thanks also to Roberto Bizzarri for his assistance in testing Prog_Bar
v1.1 with SAS/C.

1.13 How to contact me

If you have any suggestions for improving Prog_Bar, bugs to report or
queries about the program, please send them to me at one of the addresses
below.

E-Mail : asavage@bitsmart.com (preferred option)
asavage@enterprise.net

Post : Mr. Allan Savage
2 Navar Drive
Gransha Road
Bangor
N. Ireland
BT19 7SW

1.14 Program History

Program History

V1.0 13/12/96 - Initial Release. (Only worked with Dice)

readme 9 / 9

V1.1 11/01/96 - Rewritten in Assembly language. Now works with all
compilers (hopefully).

- Added definiton files for Assembler and Modula-2.
- Added Demo programs for Assembler and Modula-2.

	readme
	Prog_Bar v1.1 Link Library
	Introduction
	Installation and Usage
	C Installation
	Using Prog_Bar from C
	Assembler Installation
	Using Prog_Bar from Assembler
	Modula-2 Installation
	Using Prog_Bar from Modula-2
	Demonstration Programs
	Distribution
	Acknowledgements
	How to contact me
	Program History

