
Sound

Paul Manias

Sound ii

COLLABORATORS

TITLE :

Sound

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Manias June 4, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sound iii

Contents

1 Sound 1

1.1 Sound.GPI . 1

1.2 Sound.GPI Functions . 1

1.3 games.library/AllocAudio . 2

1.4 games.library/FreeAudio . 2

1.5 games.library/InitSound . 2

1.6 games.library/FreeSound . 4

1.7 games.library/CheckChannel . 5

1.8 games.library/PlaySound . 5

1.9 games.library/PlaySoundDACx . 6

1.10 games.library/PlaySoundPriDACx . 6

1.11 games.library/PlaySoundPri . 7

1.12 games.library/AllocSoundMem . 8

Sound 1 / 8

Chapter 1

Sound

1.1 Sound.GPI

Name: SOUND.GPI AUTODOC
Version: 0.5 Beta.
Date: 15 February 1997
Author: Paul Manias
Copyright: DreamWorld Productions, 1996-1997. All rights reserved.
Notes: This document is still being written and will contain errors

in a number of places. The information within cannot be
treated as official until this autodoc reaches version 1.0.

1.2 Sound.GPI Functions

SOUND.GPI
AllocAudio()
AllocSoundMem()
FreeAudio()
InitSound()
FreeSound()
CheckChannel()
PlaySound()
PlaySoundDAC1()
PlaySoundDAC2()
PlaySoundDAC3()
PlaySoundDAC4()
PlaySoundPri()
PlaySoundPriDAC1()
PlaySoundPriDAC2()
PlaySoundPriDAC3()
PlaySoundPriDAC4()
SetVolume()
FadeVolume()
InitPlayer()
PlayMOD()
StopPlayer()

Sound 2 / 8

1.3 games.library/AllocAudio

games.library/AllocAudio

NAME AllocAudio -- Attempt to allocate the audio channels.

SYNOPSIS
ErrorCode = AllocAudio()

d0

ULONG AllocAudio(void)

FUNCTION
Attempts to allocate all the audio channels for your own use. If
the function cannot get the channels, it will return with an
errorcode of ERR_INUSE. If the call is successful (NULL) then you
can safely use all the sound functions within the games.library.

This function should be called at the start of your program, and if
successful you must call FreeAudio() before your program exits.

RESULT ErrorCode - NULL if successful or ERR_INUSE if unsuccessful.

SEE ALSO
FreeAudio

1.4 games.library/FreeAudio

games.library/FreeAudio

NAME FreeAudio -- Free the audio channels for system use.

SYNOPSIS
FreeAudio()

void FreeAudio(void)

FUNCTION
Frees the audio channels so that the system can use them again.
You cannot make use of any of the audio channels after calling this
function.

SEE ALSO
AllocAudio

1.5 games.library/InitSound

games.library/InitSound

NAME InitSound -- Initialise a sound structure for the play routines.

SYNOPSIS

Sound 3 / 8

ErrorCode = InitSound(Sound)
d0 a0

ULONG InitSound(struct Sound *)

FUNCTION
This function will initialise a sound for use in the play routines.
Its main job is to load and assess the sound header, and fill in
any missing fields. It can also unpack sounds in some cases.

If the following fields in the Sound structure are detected as
being NULL, InitSound() will fill them in for you:

SAM_Data
SAM_Length
SAM_Period
SAM_Volume

If you don’t want some or all of these fields written too, simply
fill them in before-hand. This is imperative if the sound is in
RAW format, for obvious reasons.

Lists are fully supported by this function, just pass a pointer to
a standard "LIST" structure instead of a Sound. (See Lists).

NOTE If the sound is in RAW format, then this function will have little
effect, so you should set most of the fields yourself.

INPUTS Sound - Pointer to a single sound structure, or for multiple
initialisations, a list of Sound’s.

STRUCTURE Sound,0
ULONG SAM_VERSION ;"SMV1"
APTR SAM_Stats ;Reserved.
UWORD SAM_Channel ;Channel
WORD SAM_Priority ;Priority
APTR SAM_Header ;Sample info header, if any.
APTR SAM_Data ;Address of sample data.
ULONG SAM_Length ;Length of sample data in WORDS.
UWORD SAM_Octave ;Octave/Note setting.
UWORD SAM_Volume ;Volume of sample (1 - 100).
ULONG SAM_Attrib ;Sound attributes.
APTR SAM_File ;The file for the sound.
LABEL SAM_SIZEOF

SAM_VERSION
The version of the structure, currently "SMV1".

SAM_Channel
The channel that you want to play through. Acceptable channel
numbers are 0, 1, 2 and 3 (a total of 4 available channels).

SAM_Priority
The priority of your sound goes here. This field is used by the
PlaySoundPri() function to determine if your sound should be played
when the channel is busy. Naturally, higher values are played over
samples with lower values.

Sound 4 / 8

SAM_Header
Points to the very start of the sample, which in most cases will be
the something like an IFF 8SVX header. If the sample data is RAW
then simply point to the start of the data here.

SAM_Data
This field points to the actual data that is going to be played.
InitSound() will fill this field in for you if you initialise it
to 0.

SAM_Length
The length of the sample data in words. This field will be filled
in for you if the sound has a recognised header (eg IFF).

SAM_Octave
The octave at which to play this sample. The highest pitched value
is OCT_G0S, the lowest is OCT_A7S. There are about 94 available
settings, see games/sound.i to look at the complete list.

SAM_Volume
The volume of the sound, which lies in the range 0 - 100. A volume
of zero will not be heard, a volume of 100 is the loudest.

SAM_Attrib
Specifies the attributes for the sound.

SBIT8 - Sound data is 8 bit (only set this if raw).

SBIT16 - Sound data is 16 bit (only set this if raw).

SMODVOL - Modulates the volume with the next channel.

SMODPER - Modulate the sound’s period with the next channel.

SREPEAT - Repeats the sample forever.

SAM_File
If your sound is contained on disk, place a pointer to the filename
here. This will cause InitSound() to load the sound data in for
you (via a call to SmartLoad()) and fill in the Header and Data
fields. The rest of the initialisation procedure will then be
carried out.

SEE ALSO
FreeSound

1.6 games.library/FreeSound

games.library/FreeSound

NAME FreeSound -- Free any allocations made in an initialised sound.

SYNOPSIS
FreeSound(Sound)

Sound 5 / 8

a0

void FreeSound(struct Sound *)

FUNCTION
Frees any allocations made in the initialisation of a Sound
structure. You have to call this function at some point for every
initialised Sound, otherwise resources may be withheld on the exit
of your program.

This function is fully supportive of LIST’s.

INPUTS Sound - Pointer to an intialised sound structure.

SEE ALSO
InitSound

1.7 games.library/CheckChannel

games.library/CheckChannel

NAME CheckChannel -- Checks the current activity of a sound channel.

SYNOPSIS
Status = CheckChannel(Channel)

d0 d0.w

UWORD CheckChannel(UWORD Channel)

FUNCTION
Checks the specified channel to see if it has any data playing
through it.

INPUTS Channel - Either 1, 2, 3 or 4.

RESULT Status - The current status of the channel, a result of NULL
indicates that the channel is free. A result of 1 indicates that
the channel is busy.

1.8 games.library/PlaySound

games.library/PlaySound

NAME PlaySound -- Play a sound through an audio channel.

SYNOPSIS
PlaySound(Sound)

a0

void PlaySound(struct Sound *)

FUNCTION

Sound 6 / 8

Plays a sound according to the settings in the sound structure.
This function executes immediately, and ignores all channel/sound
priorities.

You must have initialised the sound structure before calling this
function.

INPUTS Sound - Pointer to a valid sound structure.

SEE ALSO
PlaySoundDACx, PlaySoundPri, PlaySoundPriDACx

1.9 games.library/PlaySoundDACx

games.library/PlaySoundDACx

NAME PlaySoundDACx -- Play a sound with ignorance to channel priorities.

SYNOPSIS
PlaySoundDACx(Sound)

a0

void PlaySoundDACx(struct Sound *)

Where ’x’ is either 1, 2, 3 or 4, which is a direct reference to
the channel number.

FUNCTION
DAC stands for Direct Access to Channel. This is the fastest way
to play a sound as it goes directly to that channel’s sound
routine, but it is not very easy to work with. This function
exists for intelligently changing from full channel access for
sound effects, to one channel access while music is playing.

When setting up your sounds you should make sure that you use all
four channels in your structures. If the music is off, use the
normal PlaySoundPri() function. If the music is on, and if it uses
all but one of the channels, use this function to re-route all the
sound effects through the spare channel.

NOTE This function ignores sound priorities, and will play the sound
regardless of wether the channel is busy or not.

INPUTS Sound - Pointer to a valid sound structure.

SEE ALSO
PlaySound, PlaySoundPri, PlaySoundPriDACx, games/games.i

1.10 games.library/PlaySoundPriDACx

games.library/PlaySoundPriDACx

Sound 7 / 8

NAME PlaySoundPriDACx -- Play a sound ignoring the setting in SAM_Channel.

SYNOPSIS
PlaySoundPriDACx(Sound)

a0

void PlaySoundPriDACx(struct Sound *)

Where ’x’ is either 1, 2, 3 or 4, which is a direct reference to
the channel number.

FUNCTION
DAC stands for Direct Access to Channel. This is the fastest way
to play a prioritised sound as it goes directly to that channel’s
sound routine, but it is not very easy to work with. This function
exists for intelligently changing from full channel access for
sound effects, to one channel access while music is playing.

When setting up your sounds you should make sure that you use all
four channels in your structures. If the music is off, use the
normal PlaySoundPri() function. If the music is on, and if it uses
all but one of the channels, use this function to re-route all the
sound effects through the spare channel.

This function supports prioritisation of sound effects.

INPUTS Sound - Pointer to a valid sound structure.

SEE ALSO
PlaySoundDACx, PlaySound, PlaySoundPri, games/games.i

1.11 games.library/PlaySoundPri

games.library/PlaySoundPri

NAME PlaySoundPri -- Play a sound if it can equal or better a channel’s
priority.

SYNOPSIS
PlaySoundPri(Sound)

a0

void PlaySoundPri(struct Sound *)

FUNCTION
Plays a sound according to the settings in the sound structure, IF
it equals or betters the channel’s current priority setting.

Prioritisation of sounds allows you to play sound effects according
to their importance. Make sure that you take care in ordering your
sounds so that they play effectively!

It is recommended that you use CHANNEL_ALL in the SAM_Channel field
so that your game makes maximum use of all the available sound
channels.

Sound 8 / 8

INPUTS Sound - Pointer to a valid sound structure.

SEE ALSO
PlaySound, PlaySoundPriDACx, PlaySoundDACx, games/games.i

1.12 games.library/AllocSoundMem

games.library/AllocSoundMem

NAME AllocSoundMem -- Allocate memory for sample playback.

SYNOPSIS
Memory = AllocSoundMem(Size)

d0 d0

APTR AllocSoundMem(ULONG Size)

FUNCTION
Allocates a block of memory suitable for playing sound samples.

INPUTS Size - The Size of the memory to allocate.

RESULT Memory - Pointer to the allocated memory. All audio memory is
formatted with 0’s when allocated. Returns NULL if error.

SEE ALSO
FreeMemBlock

	Sound
	Sound.GPI
	Sound.GPI Functions
	games.library/AllocAudio
	games.library/FreeAudio
	games.library/InitSound
	games.library/FreeSound
	games.library/CheckChannel
	games.library/PlaySound
	games.library/PlaySoundDACx
	games.library/PlaySoundPriDACx
	games.library/PlaySoundPri
	games.library/AllocSoundMem

