
Screens

Paul Manias

Screens ii

COLLABORATORS

TITLE :

Screens

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Manias June 4, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Screens iii

Contents

1 Screens 1

1.1 Screens.GPI . 1

1.2 Screens.GPI Functions . 1

1.3 games.library/AddScreen . 2

1.4 games.library/DeleteScreen . 6

1.5 games.library/ShowScreen . 6

1.6 games.library/HideDisplay . 7

1.7 games.library/Switch . 7

1.8 games.library/AutoSwitch . 8

1.9 games.library/SwapBuffers . 9

1.10 games.library/RemakeScreen . 9

1.11 games.library/MovePicture . 10

1.12 games.library/ResetPicture . 11

1.13 games.library/ColourMorph . 11

1.14 games.library/ColourToPalette . 12

1.15 games.library/PaletteMorph . 13

1.16 games.library/PaletteToColour . 14

1.17 games.library/ChangeColours . 15

1.18 games.library/BlankColours . 15

1.19 games.library/UpdatePalette . 15

1.20 games.library/UpdateRGB12 . 16

1.21 games.library/UpdateRGB24 . 16

1.22 games.library/InitRasterList . 17

1.23 games.library/UpdateRasterList . 19

1.24 games.library/UpdateRasterLines . 20

1.25 games.library/UpdateRasterCommand . 20

1.26 games.library/UpdateRasterCommands . 21

1.27 games.library/RemoveRasterList . 21

1.28 games.library/HideRasterList . 22

1.29 games.library/ShowRasterList . 22

Screens iv

1.30 games.library/InitSprite . 23

1.31 games.library/UpdateSprite . 25

1.32 games.library/MoveSprite . 25

1.33 games.library/HideSprite . 26

1.34 games.library/UpdateSpriteList . 26

1.35 games.library/HideSpriteList . 27

1.36 games.library/RemoveAllSprites . 27

1.37 games.library/ReturnAllSprites . 28

1.38 games.library/AllocVideoMem . 28

1.39 games.library/WaitVBL . 29

1.40 games.library/WaitSVBL . 29

1.41 games.library/WaitRastLine . 30

Screens 1 / 30

Chapter 1

Screens

1.1 Screens.GPI

Name: SCREENS.GPI AUTODOC
Version: 0.5 Beta.
Date: 15 February 1997
Author: Paul Manias
Copyright: DreamWorld Productions, 1996-1997. All rights reserved.
Notes: This document is still being written and will contain errors

in a number of places. The information within cannot be
treated as official until this autodoc reaches version 1.0.

1.2 Screens.GPI Functions

SCREENS.GPI
AddScreen()
AllocVideoMem()
AutoSwitch()
DeleteScreen()
HideDisplay()
MovePicture()
RemakeScreen()
ResetPicture()
Switch()
ShowScreen()
SwapBuffers()
WaitVBL()
WaitSVBL()
WaitRastLine()

Colour Functions
BlankColours()
ChangeColours()
ColourMorph()
ColourToPalette()
PaletteToColour()
PaletteMorph()
UpdatePalette()

Screens 2 / 30

UpdateRGB12()
UpdateRGB24()

RasterList Functions
InitRasterList()
HideRasterList()
RemoveRasterList()
ShowRasterList()
UpdateRasterList()
UpdateRasterLines()
UpdateRasterCommand()
UpdateRasterCommands()

Sprite Functions
InitSprite()
FreeSprite()
HideSprite()
HideSpriteList()
MoveSprite()
RemoveAllSprites()
ReturnAllSprites()
UpdateSprite()
UpdateSpriteList()

1.3 games.library/AddScreen

games.library/AddScreen

NAME AddScreen -- Sets up a screen from given parameters.

SYNOPSIS
ErrorCode = AddScreen(GameScreen)

d0 a0

ErrorCode = AddScreen(TagList)
d0 a0

ULONG AddScreen(struct GameScreen *)

ULONG AddScreenTags(unsigned long ...)

FUNCTION
Initialises a GameScreen structure by allocating the screen memory
and making the copperlist. A little more complex than it sounds...

This function is fully supportive of GMS TagLists, see TAGS for
more information.

After calling this function you need to call ShowScreen() to get
the screen on the display.

INPUTS GameScreen - Pointer to a valid GameScreen structure or Taglist.

Here follows a description of each GameScreen field:

Screens 3 / 30

GS_VERSION
The version of the structure. Currently this is GSV1. In the
future as the structure grows, you will be able to use other
structure versions, but for now this is what you’re stuck with.

GS_MemPtr1, GS_MemPtr2, GS_MemPtr3
These fields point to the screen display data. They should be NULL
if you want this function to allocate the memory for you (highly
recommended). Otherwise AddScreen() will assume that the values
are valid pointers to video memory and will use them as such.

GS_ScreenLink
If you want to set up a second screen at a different position in
the viewport, or create an extra (double) playfield, point to the
next GameScreen structure here.

GS_Palette
Points to the palette for this screen, or NULL if you want to
install a clear palette (all colours black). By default your
palette structure must be in 24 bit colours, unless you set the
COL12BIT flag in GS_ScrAttrib.

GS_RasterList
Points to a valid rasterlist structure, or NULL. RasterLists are
made up of instructions that are executed as the monitor beam
travels down the screen. See InitRasterList() for more
information on rasterlists.

GS_AmtColours
The amount of colours in the screen palette, as pointed to by
GS_Palette. If you set this value to NULL then AddScreen() will
fill it in for you, via a check to GS_Planes. This parameter
exists so that you can set colours that can’t be accessed by the
screen’s bitmap. For example, if your screen is 16 colours but you
want to set the colours for the sprites, then you can use a 32
colour palette.

GS_ScrWidth, GS_ScrHeight
Defines the screen height and width. This is the "window" that the
picture data is displayed through. The width of the screen must be
divisible by 16.

These fields will inherit the values specified by the user if they
are set at zero.

GS_PicWidth, GS_PicByteWidth, GS_PicHeight
Defines the picture height and width. The picture is the display
data that shows through onto screen. It can be larger than the
screen area, but must never be smaller than the screen area. The
pixel width must be divisible by 16. If you omit the GS_ScrType
field (further down) then you are not expected to set the
PicByteWidth value. In most circumstances setting PicByteWidth is
unnecessary as it will be initialised from the PicWidth value.

These fields will inherit the values from GS_ScrWidth and
GS_ScrHeight if they are set at zero.

Screens 4 / 30

GS_Planes
Specifies the amount of bitplanes that will be used by this screen.
The amount of colours you can use is completely dependent on this
value. For interleaved or planar screens you can calculate the
amount of colours you get with the formula 2^n, where n is the
amount of planes. If you are going to set up a 256 colour chunky
screen, you must specify only 1 plane here.

GS_ScrXOffset, GS_SrcYOffset
Specifies the hardware offset for the screen, in lo-res pixels only
(even if the screen itself is in hi-res). These two values are
added to the user’s screen offset in GMSPrefs. A setting of 0,0
should be sufficient, unless you are going to create an extra large
screen (eg overscan). Negative values are permissable.

GS_PicXOffset, GS_PicYOffset
These two fields set the offsets for the picture "behind" the
screen. If you want to do any sort of hardware scrolling, you will
want to use these values in conjunction with MovePicture(). It is
perfectly legal to preset these values before you call
ShowScreen().

GS_ScrAttrib
Defines the special attributes for the screen. Current available
are:

DBLBUFFER - Allocates an extra screen buffer which is placed in
GS_MemPtr2. See the SwapBuffers() function for more
information on double buffering.

TPLBUFFER - Allocates two extra buffers which are placed in
GS_MemPtr2 and GS_MemPtr3. See the SwapBuffers() for
more information on triple buffering.

Note: Never set the DBLBUFFER flag in conjunction
with the TPLBUFFER flag.

PLAYFIELD - Must be set if this screen forms part of a playfield.

HSCROLL - Set if you want to use horizontal picture scrolling.

VSCROLL - Set if you want to use vertical picture scrolling.

SBUFFER - Allocates extra space to allow you to horizontally
scroll up to 50 screens in both X directions.

SPRITES - Set if you intend to use sprites with this screen.

BLKBDR - Turns all colours outside of the display window to
black. Works on AGA only.

NOSCRBDR - Allows sprites and other displayable objects to
appear outside of the viewport. Works on AGA only.

CENTRE - Centres the screen by calculating the correct offsets
for GS_ScrXOffset and GS_ScrYOffset for any screen
mode. The new settings will over-write any previous

Screens 5 / 30

values in these fields.

GETSCRMODE - Obtains the preferred user screen mode and writes it
to GS_ScrMode.

GS_ScrMode
Defines the display mode for the screen. If you do not fill in
this field, you will get the default of Lo-Res, Planar, and 24Bit
colours. NB: If you require compatibility for NTSC, ScrMode will
not help you. Instead you must set ScrHeight to 200.

LORES - Specifies a low resolution screen. This is the
default, so you do not have to specify it if you don’t
want to.

HIRES - Specifies a high resolution screen (1/2 lores).

SHIRES - Specifies a super-high resolution screen (1/4 lores).

LACED - Creates an interlaced display (1/2 pixel height).

HAM - HAM mode. The amount of colours you get is dependant
on the amount of planes in the screen.

COL12BIT - Inform GMS that we will be using 12 bit colours with
this screen.

COL24BIT - Inform GMS that we will be using 24 bit colours with
this screen (default).

If the user has selected mode promotion in GMSPrefs, then the
display frequencies will be altered accordingly. You cannot force
mode promotion from inside your program.

GS_ScrType
The display data type - either PLANAR, INTERLEAVED or CHUNKY8.
Descriptions of these display types are out of the scope of this
autodoc, so if you require further information perhaps you should
try the RKM’s. Note that for planar screens the bitplanes are
stored sequentially, one after the other. There is no scattering
of planar bitplane memory.

If you set this field to NULL then AddScreen() will initialise it
to the preferred user screen type. This is exceptionally useful as
some screen types are faster than others for certain effects.
ScreenType independence is strongly encouraged because of this
reason.

RESULT ErrorCode - NULL if successful.

BUGS If you set up your screen structure incorrectly or try to do
something this routine doesn’t, you will run into trouble. Not all
features are working even though the flags are present, but it
shouldn’t be too long before this function is finished.

SEE ALSO

Screens 6 / 30

DeleteScreen, ShowScreen

1.4 games.library/DeleteScreen

games.library/DeleteScreen

NAME DeleteScreen -- Deactivates a screen, returns memory, etc.

SYNOPSIS
DeleteScreen(GameScreen)

a0

void DeleteScreen(struct GameScreen *);

FUNCTION
This function will deallocate everything that was initialised when
you called AddScreen().

If the screen you delete is currently active when you call this
function, intution will be given back the display. If you want to
get around this, initialise and display your next screen and then
delete the old one.

This function will clear MemPtr1, MemPtr2 and MemPtr3 in the
GameScreen structure, if those fields were allocated by
AddScreen().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
AddScreen, HideDisplay, ShowScreen

1.5 games.library/ShowScreen

games.library/ShowScreen

NAME ShowScreen -- Displays an initialised game screen.

SYNOPSIS
ShowScreen(GameScreen)

a0

void ShowScreen(struct GameScreen *)

FUNCTION
Displays an initialised GameScreen. A GameScreen is incompatible
with intuition screens, so calling this function will result in a
complete take-over of the viewport.

This function makes a call to AddInputHandler() to prevent input
falling through to intuition screens.

Screens 7 / 30

It is perfectly admissable to call this function when another
GameScreen is already being displayed.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
AddScreen, HideDisplay, DeleteScreen

1.6 games.library/HideDisplay

games.library/HideDisplay

NAME HideDisplay -- Hides the GMS display from view.

SYNOPSIS
GameScreen = HideDisplay()

d0

struct GameScreen * HideDisplay(void)

FUNCTION
Hides the currently displayed screen from view. This will cause
the OS viewport to be returned, but your task will still be running
"in the background".

If no GameScreen is present then this function does nothing, and
returns a NULL value.

On its own this is not good for screen-switching - use functions
like AutoSwitch() for that.

RESULT GameScreen - Points to the structure of the GameScreen that has
been hidden by this function. Otherwise NULL if no
GameScreen was active.

SEE ALSO
ShowScreen, Switch, {"AutoSwitch" LINK "AutoSwitch()"}

1.7 games.library/Switch

games.library/Switch

NAME Switch -- Stops your task and resumes execution of the next primary
task in the queue.

SYNOPSIS
Switch()

void Switch(void)

FUNCTION
Switches your task over to the next task in the queue. This

Screens 8 / 30

function will not return until the user reactivates your task, so
your tasks execution is effectively stopped. Any secondary
processes and interrupts that you have spawned will continue to
execute, so multi-tasking can still be effective.

If the next task is screen-based, then your screen display will be
removed and the new screen will be displayed. If you have any
secondary tasks running, then take note: You must not allow them
to use the drawing/blitter operations as your display memory may be
temporarily moved to free up video memory. Blitting to an
invisible display is also considered to be bad practice as most GMS
tasks require all available blitter time. We also ask you to
refrain from using the audio functions as the next task will
probably be needing all available channels.

If there are no more GMS tasks in the queue, then the screen
display will return to intuition. GMS supports two methods of
screen switching to intuition, Switch-To-Window and Switch-To-
Screen. The method used depends on the setting in the GMSPrefs
utility.

Switch-To-Window drops out to workbench and places a window on the
screen. It will wait until the close gadget is pressed, whereupon
your game will continue where it left off.

Switch-To-Screen opens an intution screen and busy-waits until that
screen comes to the front. At that point the intuition screen will
be closed and your game will resume execution.

SEE ALSO
AutoSwitch, HideDisplay, WaitSVBL

1.8 games.library/AutoSwitch

games.library/AutoSwitch

NAME
AutoSwitch -- Returns the screen display to intuition if the

Left-Amiga + M key combination was pressed.

SYNOPSIS
AutoSwitch()

void AutoSwitch(void)

FUNCTION
Returns the screen display to intuition if the user pressed the
Left-Amiga+M key combination. Your game’s execution will be halted
until the user brings your screen back.

GMS supports two methods of screen switching, Switch-To-Window and
Switch-To-Screen. The method used depends on the setting in the
GMSPrefs utility.

Switch-To-Window drops out to workbench and places a window on the

Screens 9 / 30

screen. It will wait until the close gadget is pressed, whereupon
your game will continue where it left off.

Switch-To-Screen opens an intution screen and busy-waits until that
screen comes to the front. At that point the intuition screen will
be closed and your game will resume execution.

SEE ALSO
Switch, HideDisplay, WaitSVBL

1.9 games.library/SwapBuffers

games.library/SwapBuffers

NAME SwapBuffers -- Switch the screen display buffers.

SYNOPSIS
SwapBuffers(GameScreen)

a0

void SwapBuffers(struct GameScreen *)

FUNCTION
Swaps GS_MemPtr1 and GS_MemPtr2 and activates the new bitmap for
the display. If triple buffered, then all three MemPtr’s are
switched. Visually:

BEFORE AFTER
MemPtr1 MemPtr2
MemPtr2 ----> MemPtr3
MemPtr3 MemPtr1

You can get the addresses contained in these values, but you must
never physically change these pointers yourself.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

1.10 games.library/RemakeScreen

games.library/RemakeScreen

NAME RemakeScreen -- Remakes the screen display according to its size,
width, and position on the monitor.

SYNOPSIS
RemakeScreen(GameScreen)

a0

void RemakeScreen(struct GameScreen *)

FUNCTION
Remakes the GameScreen’s display window as quickly as possible.

Screens 10 / 30

Extreme or invalid values are not checked for, so it is your
responsibility to ensure all values are within their limits.

If the GameScreen is hidden then the changes will show up the next
time you call ShowScreen().

You cannot change the display mode, screen type or amount of screen
colours with this function.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

1.11 games.library/MovePicture

games.library/MovePicture

NAME MovePicture -- Moves the screen to specified X/Y values.

SYNOPSIS
MovePicture(GameScreen)

a0

void MovePicture(struct GameScreen *)

FUNCTION
This routine has two uses: Moving the picture to any position on
the display, and for Hardware Scrolling.

It will take the values from PicXOffset and PicYOffset in the
GameScreen structure and use them to set the new picture position.
This function will execute at the same speed for all offset values.

You must have set the HSCROLL bit for horizontal scrolling and the
VSCROLL bit for vertical scrolling if you wish to use this
function. If you set the HBUFFER flag in ScrAttrib then you can
also use this function to legally hardware-scroll up to 50 screens
in either X direction. Do not draw graphics beyond these
boundaries or your program may crash.

NOTES If the graphics hardware does not support hardware scrolling, this
routine will probably blit the entire picture to the new position.
This is very slow but is the only other option.

The execution time for this function on ECS/AGA is 2/3rds of a
single rasterline on my A1200+Fast.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
The PicXOffset and PicYOffset values will be used to set the
picture’s new on-screen position.

SEE ALSO
ResetPicture

Screens 11 / 30

1.12 games.library/ResetPicture

games.library/ResetPicture

NAME ResetPicture -- Resets the picture position to position 0X, 0Y.

SYNOPSIS
ResetPicture(GameScreen)

a0

void ResetPicture(struct GameScreen *)

FUNCTION
Resets the picture position to 0X, 0Y. This method is faster than
clearing the PicXOffset and PicYOffset fields and then calling
MovePicture().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

RESULT PicXOffset and PicYOffset in the GameScreen will be cleared.

SEE ALSO
MovePicture

1.13 games.library/ColourMorph

games.library/ColourMorph

NAME ColourMorph -- Fades a of set of colours into one colour value.

SYNOPSIS
FadeState = ColourMorph(GameScreen, FadeState, Speed, StartColour,

d0 a0 d0 d1 d3
AmtColours, SrcColour, DestColour)

d4 d2 d5

UWORD ColourMorph(struct GameScreen *, UWORD FadeState, UWORD Speed,
ULONG StartColour, ULONG AmtColours,
ULONG SrcColour, ULONG DestColour)

FUNCTION
Fades the screen from one colour into another colour. Once you
call this function, you have to keep on calling it until it gives
you a result of NULL. This allows you to put this function in a
loop and do other things while the fade is active.

This function uses proportional fading for 24 bit colours, and
additive fading for 12 bit colours.

NOTE All fading functions ignore the colour values that are kept
internally. This will cause problems for you if you do not know
what your current palette looks like when using these functions.

EXAMPLE FadeState = NULL;

Screens 12 / 30

do {
WaitSVBL();

FadeState = ColourMorph(GameScreen,FadeState,1,0,32,0xFF00AA,0xA7BC30);
}

while (FadeState != NULL)

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.
Speed - The required speed for the fade.
SrcColour - The colour that you are fading from, 0xRRGGBB format.
DestColour - The colour that you are fading to, 0xRRGGBB format.
StartColour - The colour to start fading from (0 ... AmtColours-1).
AmtColours - The amount of colours to fade (1 ... MaximumColours).

You must never use a value of 0 here.

RESULT FadeState - Returns NULL if the fade has finished.

SEE ALSO
PaletteToColour, PaletteMorph, ColourToPalette

1.14 games.library/ColourToPalette

games.library/ColourToPalette

NAME ColourToPalette -- Fades a set of colours into a range of values.

SYNOPSIS
FadeState = ColourToPalette(GameScreen, FadeState, Speed,

d0 a0 d0 d1
StartColour, AmtColours, Palette,

d3 d4 a1
Colour)

d2

UWORD ColourToPalette(struct GameScreen *, UWORD FadeState,
UWORD Speed, UWORD StartColour,
UWORD AmtColours, APTR Palette,
ULONG Colour);

FUNCTION
Fades a set of colours of the same value, into a range of colours
specified in Palette. Once you call this function, you have to
keep on calling it until it gives you a result of NULL. This
allows you to put this function in a loop and do other things while
the fade is active.

This function uses proportional fading for 24 bit colours, and
additive fading for 12 bit colours.

NOTE All fading functions ignore the colour values that are kept
internally. This will cause problems for you if you do not know
what your current palette looks like when using these functions.
Keep track of your current palette values to help you with
functions like PaletteMorph().

Screens 13 / 30

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.
Speed - The required speed for the fade.
Palette - Pointer to the palette used as the source.
Colour - The colour that you are fading from, 0xRRGGBB format.
StartColour - The colour to start fading from (0 ... AmtColours-1).
AmtColours - The amount of colours to fade (1 ... MaximumColours).

You must never use a value of 0 here.

RESULT FadeState - Returns NULL if the fade has finished.

SEE ALSO
PaletteMorph, ColourToPalette, ColourMorph

1.15 games.library/PaletteMorph

games.library/PaletteMorph

NAME PaletteMorph -- Fades a set of colours into a new set of values.

SYNOPSIS
FadeState = PaletteMorph(GameScreen, FadeState, Speed, StartColour

d0 a0 d0 d1 d3
AmtColours, SrcPalette, DestPalette)

d4 a1 a2

UWORD PaletteMorph(struct GameScreen *, UWORD FadeState,
UWORD Speed, UWORD StartColour,
UWORD AmtColours, APTR SrcPalette,
APTR DestPalette)

FUNCTION
This function will take the palette in SrcPalette, and use it to
fade a colour set into the palette given in DestPalette. Once you
call this function, you have to keep on calling it until it gives
you a result of NULL. This allows you to put this function in a
loop and do other things while the fade is active.

This function uses proportional fading for 24 bit colours, and
additive fading for 12 bit colours.

NOTE All fading functions ignore the colour values that are kept
internally. This will cause problems for you if you do not know
what your current palette looks like when using these functions.
Keep track of your palette’s values and point to them in SrcPalette
if you find that this problem is occurring for you.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.
Speed - The required speed for the fade.
SrcPalette - Pointer to the palette used as the source.
Destpalette - Pointer to the palette that you want to fade to.

Screens 14 / 30

StartColour - The colour to start fading from (0 ... AmtColours-1).
AmtColours - The amount of colours to fade (1 ... MaximumColours).

You must never use a value of 0 here.

RESULT FadeState - Returns NULL if the fade has finished.

SEE ALSO
ColourToPalette, PaletteToColour, ColourMorph

1.16 games.library/PaletteToColour

games.library/PaletteToColour

NAME PaletteToColour -- Fades a set of colours into a specific colour
value.

SYNOPSIS
FadeState = PaletteToColour(GameScreen, FadeState, Speed,

d0 a0 d0 d1
StartColour, AmtColours, Palette,

d3 d4 a1
Colour)

d2

UWORD PaletteToColour(struct GameScreen *, UWORD FadeState,
UWORD Speed, ULONG StartColour,

ULONG AmtColours, APTR Palette, ULONG Colour)

FUNCTION
This function will fade a set of various colour values into a
single colour value. This is useful for fading the screen to black
for example. Once you call this function, you have to keep on
calling it until it gives you a result of NULL. This allows you to
put this function in a loop and do other things while the fade is
active.

This function uses proportional fading for 24 bit colours, and
additive fading for 12 bit colours.

NOTE All fading functions ignore the colour values that are kept
internally. This will cause problems for you if you do not know
what your current palette looks like when using these functions.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
FadeState - Initialise to zero, then keep sending the returned

value back until you get a NULL in this field.
Speed - The required speed for the fade.
Palette - Pointer to the palette used as the source.
Colour - The colour you want to fade to, in 0xRRGGBB format.
StartColour - The colour to start fading from (0 ... AmtColours-1).
AmtColours - The amount of colours to fade (1 ... MaximumColours).

You must never use a value of 0 here.

RESULT FadeState - Returns NULL if the fade has finished.

Screens 15 / 30

SEE ALSO
PaletteMorph, PaletteToColour, ColourMorph

1.17 games.library/ChangeColours

games.library/ChangeColours

NAME ChangeColours -- Change a set of colours in a GameScreen’s internal
palette.

SYNOPSIS
ChangeColours(GameScreen, Colours, StartColour, AmtColours)

a0 a1 d0 d1

void ChangeColours(struct GameScreen *, APTR Colours,
ULONG StartColour, ULONG AmtColours).

FUNCTION
Changes all colours within the set range. Alterations will only be
made to the screen’s internal palette.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Colours - Pointer to a list of colours, either 12 bit or 24 bit

depending on screen type.
StartColour - The first colour to be affected by the change. NB:

The first colour is defined as 0.
AmtColours - The amount of colours to be affected by the change.

Must be at least 1.

1.18 games.library/BlankColours

games.library/BlankColours

NAME BlankColours -- Drives all screen colours to zero (black).

SYNOPSIS
BlankColours(GameScreen)

a0

void BlankColours(struct GameScreen *)

FUNCTION
Drives all the colours to zero, which should give a black screen.
You won’t be able to see any picture detail after calling this
routine.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

1.19 games.library/UpdatePalette

Screens 16 / 30

games.library/UpdatePalette

NAME UpdatePalette - Updates an entire GameScreen palette to new colour
values.

SYNOPSIS
UpdatePalette(GameScreen)

a0

void UpdatePalette(struct GameScreen *)

FUNCTION
Updates an entire GameScreen palette to new colour values as set in
GS_Palette. This function works for both 12 bit and 24 bit
GameScreen palettes.

Under current circumstances the changes will appear immediately
after the next vertical blank.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
UpdateRGB12, UpdateRGB24

1.20 games.library/UpdateRGB12

games.library/UpdateRGB12

NAME UpdateRGB12 -- Updates a 12 bit RGB colour value.

SYNOPSIS
UpdateRGB12(GameScreen, Colour, RGB)

a0 d0 d1

void UpdateRGB12(struct GameScreen *, UWORD Colour, UWORD RGB)

FUNCTION

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Colour - The colour number to update, range of 0-31.
RGB - Colour value in standard RGB format (eg $fff for white)

SEE ALSO
UpdateRGB24

1.21 games.library/UpdateRGB24

games.library/UpdateRGB24

NAME UpdateRGB24 -- Updates a 24 bit RRGGBB colour value.

Screens 17 / 30

SYNOPSIS
UpdateRGB24(GameScreen, Colour, RRGGBB)

a0 d0 d1

void UpdateRGB24(struct GameScreen *, ULONG Colour, UWORD RGB)

FUNCTION

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Colour - The colour number to update, range of 0-31.
RGB - Colour value in standard RRGGBB format.

SEE ALSO
UpdateRGB12

1.22 games.library/InitRasterList

games.library/InitRasterList

NAME InitRasterList -- Initialise a new rasterlist.

SYNOPSIS
ErrorCode = InitRasterList(GameScreen)

d0 a0

UWORD InitRasterList(struct GameScreen *)

FUNCTION
Initialises a new rasterlist in a GameScreen structure. A
rasterlist is a group of commands executed at specific areas of the
display. On current Amiga’s, rasterlists are executed by the
copper (copperlist’s) at preset lines on the screen. When you call
this function a copperlist will be set up according to the commands
you give in your rasterlist structure. In the past creating
copperlists was a major compatibility concern because you need to
pass the copper direct hardware addresses. Thankfully with the
Games.Library this is no longer such a problem.

There is still the issue of gfx boards not having a copper style
chip on them. Luckily many of these commands can in some way be
emulated, so all is not lost on that front.

Current valid commands are:

WAITLINE <Line>
Waits for the vertical beam to reach the specified screen position.
It is perfectly legal to enter numbers that go outside of your
screen’s vertical limits (ie negative numbers and numbers greater
than the screen height), but no more than a value of 10.

Note that the purpose of this command is to specify the screen
position at which the next command will be executed. All line
values must be specified in lo-res pixels, regardless of your
screen resolution.

Screens 18 / 30

COL12 <ColNum>,<RGB>
Changes a 12 bit colour value to another. Do not use this command
unless you have set the COL12BIT flag in GS_ScrAttrib.

COL24 <ColNum>,<RRGGBB>
Same as the COL12 command, but uses 24 bit colours. Do not use
this command unless you have set the COL24BIT flag in GS_ScrAttrib.

COL12LIST <Line>,<Skip>,<ColNum>,<RGB>
Allows you to generate the classic coloured lines used by games and
demos everywhere. This command is mostly useful for sky/background
effects, although you could probably use it for all sorts of
things. Do not use this command unless you have set the COL12BIT
flag in GS_ScrAttrib.

COL24LIST <Line>,<Skip>,<ColNum>,<RRGGBB>
Allows you to generate the classic coloured lines used by games and
demos everywhere. This command is mostly useful for sky/background
effects, although you could probably use it for all sorts of
things. Do not use this command unless you have set the COL24BIT
flag in GS_ScrAttrib.

SPRITE <SpriteStruct>
Re-activates a sprite bank at the specified line. This is commonly
known as sprite-splitting. This function is considered "dangerous"
and may simply do nothing on many gfx boards (although emulation is
a certain possibility).

REPOINT <Bitmap>
Repoints the screen bitmap to another area in chip ram, causing a
screen split at the point that this command is executed.

SCROLL <Offset>
Alters the scroll position of a bitplane to within 16 pixels. This
is really only useful for scrolling parallax landscapes.

FSCROLL <Offset1>,<Offset2>
Alters the scroll position of a bitplane to within 16 + 4 quarter
pixels. This is really only useful for scrolling parallax
landscapes.

FLOOD
A special effect that reverses the bitplane modulo, causing the
bitplane to repeat itself. This effect is used as a novel way of
"fading in" the screen.

MIRROR
Similar to Flood, but does a complete reversal of the modulo so
that the bitplane is "flipped over". See examples/AGAMirror.s to
see how this works.

RASTEND
You must terminate your rasterlist with this command.

[If you have any other ideas for commands, mail me. - Paul]

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

Screens 19 / 30

GS_RasterList in this structure must contain a pointer to a
standard rasterlist.

Look at the examples in this package to help you with designing
your rasterlists.

RESULT ErrorCode - Is NULL if the initialisation was successful. Otherwise
it will return one of the following values:

ERR_NOMEM = Not enough memory was available for one of the
allocations.

ERR_NOPTR = You didn’t put an address pointer in GS_RasterList.

ERR_INUSE = A rasterlist is still in use by this screen (remove
the old one).

SEE ALSO
UpdateRasterList, ShowRasterList, HideRasterList,
RemoveRasterList, games/games.i

1.23 games.library/UpdateRasterList

games.library/UpdateRasterList

NAME UpdateRasterList -- Update an existing rasterlist.

SYNOPSIS
UpdateRasterList(GameScreen)

a0

void UpdateRasterList(struct GameScreen *)

FUNCTION
Completely updates a rasterlist’s commands and waitline’s to
whatever values GS_RasterList may now hold. The length of time to
do this depends on how big your rasterlist is (generally, it will
do the update very fast though).

Make sure that any changes are within the limits of your original
values, for example you cannot make changes to the amount of
colours used in a NEWPALETTE command.

If you only want to update the lines or the command datas, then you
can call UpdateRastCommands() or UpdateRastLines(), which can be a
bit faster in certain situations.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
InitRasterList, ShowRasterList, HideRasterList,
RemoveRasterList, UpdateRastCommands, UpdateRastLines,
games/games.i

Screens 20 / 30

1.24 games.library/UpdateRasterLines

games.library/UpdateRasterLines

NAME UpdateRasterLines -- Updates all the WaitLine’s in an active
rasterlist.

SYNOPSIS
void UpdateRasterLines(GameScreen)

a0

void UpdateRasterLines(struct GameScreen *)

FUNCTION
Updates every occurance of a WAITLINE command in an active
rasterlist. This includes the update of waitline’s within commands
such as COL12LIST and COL24LIST. All other commands are excluded
from being updated by this function.

This function has been provided because for other functions it can
be unsafe to update single WAITLINE commands. Whenever you want
one or more raster line’s updated we insist that you use this or
the UpdateRasterList() routine.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
UpdateRasterCommand, UpdateRasterCommands, UpdateRasterList

1.25 games.library/UpdateRasterCommand

games.library/UpdateRasterCommand

NAME UpdateRasterCommand -- Update a single rasterlist command.

SYNOPSIS
UpdateRasterCommand(GameScreen, Command)

a0 a2

void UpdateRasterCommand(struct GameScreen *, APTR Command)

FUNCTION
Updates a single raster command. This is the fastest way to update
any single command in a rasterlist. For the update of multiple
commands, use UpdateRasterList() or UpdateRasterCommands().

You must never use this command to update changes in WAITLINE
commands. Doing so can have unpredictable effects on other
line related commands on screen.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Command - Points to the rasterlist command to be updated.

SEE ALSO

Screens 21 / 30

UpdateRasterCommands, UpdateRasterLines, UpdateRasterList

1.26 games.library/UpdateRasterCommands

games.library/UpdateRasterCommands

NAME UpdateRasterCommands -- Update a group of rasterlist commands’.

SYNOPSIS
UpdateRasterCommands(GameScreen, Command, Amount)

a0 a2 d0

FUNCTION
Updates a group of raster commands in a screen’s active rasterlist.
This is the fastest way to update a group of commands without
having to do a complete rasterlist update. If you only want to
update a single command, use UpdateRasterCommand(). For all the
commands, use UpdateRasterList().

You must never use this command to update changes in WAITLINE
commands. Doing so can have unpredictable effects on other
line related commands on screen.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Command - Points to the first rasterlist command to be updated.
Amount - The amount of commands to be updated.

SEE ALSO
UpdateRasterCommand, UpdateRasterLines, UpdateRasterList

1.27 games.library/RemoveRasterList

games.library/RemoveRasterList

NAME RemoveRasterList -- Hide and delete RasterList from memory.

SYNOPSIS
RemoveRasterList(GameScreen)

a0

void RemoveRasterList(struct GameScreen *)

FUNCTION
Removes the memory used by the rasterlist’s internal setup. If the
rasterlist is currently displayed then it will be hidden from the
view before the deletion.

Once this function is called the rasterlist is gone - if you want
to redisplay your rasterlist, you must reinitialise it with a call
to InitRasterList().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

Screens 22 / 30

SEE ALSO
InitRasterList, ShowRasterList, HideRasterList, RemoveRasterList,
games/games.i

1.28 games.library/HideRasterList

games.library/HideRasterList

NAME HideRasterList -- Hide a rasterlist from the display.

SYNOPSIS
HideRasterList(GameScreen)

a0

void HideRasterList(struct GameScreen *)

FUNCTION
Hides a rasterlist from the screen display. This function does not
delete the internal rasterlist or change the GameScreen structure
in any way. You can return the list to the display simply by
calling ShowRasterList().

NOTE There is a VBL delay in this function so that the rasterlist is not
removed while the beam is still executing its instructions.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
InitRasterList, RemoveRasterList, ShowRasterList, HideRasterList,
UpdateRasterList

1.29 games.library/ShowRasterList

games.library/ShowRasterList

NAME ShowRasterList -- Display a rasterlist on screen.

SYNOPSIS
ShowRasterList(GameScreen)

a0

void ShowRasterList(struct GameScreen *)

FUNCTION
Display a rasterlist on the screen. The pointer to the rasterlist
must lie in GS_RasterList, and must have been initialised by a call
to InitRasterList().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO

Screens 23 / 30

InitRasterList, HideRasterList, ShowRasterList, RemoveRasterList,
UpdateRasterList

1.30 games.library/InitSprite

games.library/InitSprite

NAME InitSprite -- Initialise a sprite structure.

SYNOPSIS
ErrorCode = InitSprite(GameScreen,Sprite)

d0 a0 a1

ULONG InitSprite(struct GameScreen *, struct Sprite *)

FUNCTION
Initialises a sprite ready for placement on the screen. After
calling this function you can use sprite functions such as
UpdateSprite(), MoveSprite() etc.

If it is impossible to show the sprite, then an error code will be
returned. In such a case it helps to have a blitter routine as
back up, so that you can instead display the sprite as a BOB on
screen.

Sprites are very much dependent on the machine hardware, so be
aware that the image may not show on some machines.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Sprite - Looks like this:

STRUCTURE SPR,0
ULONG SPR_VERSION ;Structure version, SPV1.
APTR SPR_Stats ;Reserved.
UWORD SPR_Number ;Sprite bank number.
APTR SPR_Data ;Pointer to Sprite graphic.
WORD SPR_XCoord ;X position (screen relative).
WORD SPR_YCoord ;Y position (screen relative).
UWORD SPR_Frame ;Current frame number.
UWORD SPR_Width ;Width in pixels.
UWORD SPR_Height ;Height in pixels.
UWORD SPR_AmtColours ;4/16
UWORD SPR_ColStart ;000/016/032/064/096/128/160/192/224
UWORD SPR_Planes ;Amt of planes per bank (2).
UWORD SPR_Resolution ;HIRES/LORES/SHIRES/XLONG
UWORD SPR_FieldPriority ;Playfield priority.
ULONG SPR_SpriteSize ;Reserved.
ULONG SPR_FrameSize ;Reserved.
LABEL SPV1_SIZEOF

Here follows a description of each field:

SPR_VERSION
The version of the structure. Currently this is "SPV1". In the
future as the structure grows, you will be able to use other

Screens 24 / 30

structure versions, but for now this is what you’re stuck with.

SPR_Number
The bank number that this sprite is going to use.

SPR_Data
Points to the beginning of the sprite data (starts with the two
control words).

SPR_XCoord
Defines the horizontal position of the sprite when displayed.
Negative or extreme values that put the sprite outside of the
screen are permitted.

SPR_YCoord
Defines the vertical position of the sprite when displayed.
Negative or extreme values that put the sprite outside of the
screen are permitted.

SPR_Frame
The number of the frame to display. The first frame is 0, the last
frame is defined by the amount of following graphics for the
sprite.

SPR_Width
The width of the sprite in pixels. Under OCS/ECS the only
available range is 16 pixels. Under AGA this is extended by
permission of values 32 and 64.

SPR_Height
The height of the sprite in pixels. A valid range is between 0 and
256.

SPR_AmtColours
The amount of colours used by this sprite. This will be either 4
colours or 16 colours if the sprite is to work on OCS/ECS/AGA.

SPR_ColStart
The colour bank at which the colours are going to start for this
sprite. This value goes up in increments of 16, eg 0,16,32,48...
Under OCS/ECS you must set this value to 16. For AGA the maximum
limit is 240. Note that under current hardware conditions, all
sprites must share the same colour bank. Do not attempt to set a
different colour bank for each individual sprite.

SPR_Planes
Specifies the amount of planes used per bank. Set this value to 2.

SPR_Resolution
Defines the display mode for the sprite. Possible flags are:

LORES - Puts the sprite in low resolution. (Default)

HIRES - Specifies a high resolution sprite.

SHIRES - Specifies a super-high resolution sprite.

Screens 25 / 30

XLONG - Use this flag if you want to join two sprites
together on the X axis. The second sprite’s data
must follow the first sprite and fit the same
attributes.

SPR_FieldPriority
Defines the position of the sprite in relation to the screen
playfields. If set to 0 then the sprite is at the very front, if
set to 1 then the sprite is one field behind, and so on.

SEE ALSO
MoveSprite, UpdateSprite, UpdateSpriteList, HideSpriteList,
games/games.i

1.31 games.library/UpdateSprite

games.library/UpdateSprite

NAME UpdateSprite -- Place a sprite on the screen.

SYNOPSIS
UpdateSprite(GameScreen, Sprite)

a0 a1

void UpdateSprite(struct GameScreen *, struct Sprite *)

FUNCTION
Updates the sprite co-ordinates (screen location) and recalculates
the sprite image pointers for animation.

This function cannot make sudden changes to the width, colours,
resolution, or height of the sprite.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Sprite - Pointer to an initialised Sprite structure.

SEE ALSO
InitSprite, MoveSprite

1.32 games.library/MoveSprite

games.library/MoveSprite

NAME MoveSprite -- Move a sprite to a new screen location.

SYNOPSIS
MoveSprite(GameScreen, Sprite)

a0 a1

void MoveSprite(struct GameScreen *, struct Sprite *)

FUNCTION

Screens 26 / 30

Moves a sprite to a new screen location according to the X and Y
co-ordinates found SPR_XCoord and SPR_YCoord in the Sprite
structure. This function does not act on any other Sprite fields
and is intended for use with non-animated sprites.

NOTES On graphics hardware where sprites are not supported, the sprite
may be drawn to screen as a BOB.

There is no list support as static sprites are a rarity in games.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Sprite - Pointer to an initialised Sprite structure.

SEE ALSO
InitSprite, UpdateSprite

1.33 games.library/HideSprite

games.library/HideSprite

NAME HideSprite -- Remove a sprite from the screen display.

SYNOPSIS
HideSprite(GameScreen, Sprite)

a0 a1

void HideSprite(struct GameScreen *, struct Sprite *)

FUNCTION
Hides a sprite from the screen display.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Sprite - Pointer to an initialised Sprite structure.

SEE ALSO
HideSpriteList

1.34 games.library/UpdateSpriteList

games.library/UpdateSpriteList

NAME UpdateSpriteList -- Update a list of initialised sprites.

SYNOPSIS
UpdateSpriteList(GameScreen, SpriteList)

a0 a1

void UpdateSpriteList(struct GameScreen *, APTR SpriteList)

FUNCTION
Update a series of initialised sprites according to a SpriteList.
This function is provided as an alternative to making constant

Screens 27 / 30

calls to UpdateSprite(), which can be quite time consuming.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
SpriteList - Pointer to a SpriteList containing a list of up to 8

initialised sprites. The list must be terminated by
a LISTEND, eg:

SpriteList:
dc.l "LIST"
dc.l Sprite1
dc.l Sprite2
dc.l Sprite3
dc.l Sprite4
dc.l LISTEND

SEE ALSO
UpdateSprite

1.35 games.library/HideSpriteList

games.library/HideSpriteList

NAME HideSpriteList -- Hide sprites as specified by a SpriteList.

SYNOPSIS
HideSpriteList(GameScreen, SpriteList)

a0 a1

void HideSpriteList(struct GameScreen *, APTR SpriteList)

FUNCTION
Hide a series of currently displayed sprites from the screen. This
function is provided as an alternative to making constant calls to
HideSprite(), which can be quite time consuming.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
SpriteList - Pointer to a SpriteList containing a list of up to 8

initialised sprites. The list must be terminated by
a LISTEND, eg:

SpriteList:
dc.l "LIST"
dc.l Sprite1
dc.l Sprite2
dc.l Sprite3
dc.l Sprite4
dc.l LISTEND

SEE ALSO
HideSprite

1.36 games.library/RemoveAllSprites

Screens 28 / 30

games.library/RemoveAllSprites

NAME RemoveAllSprites -- Remove all sprites from the display.

SYNOPSIS
RemoveAllSprites(GameScreen)

a0

void RemoveAllSprites(struct GameScreen *)

FUNCTION
Removes all displayed sprites from the screen simply by altering
the DMA Controller. This is the fastest way to remove all sprites
from the display quickly and easily.

NOTE After you have called this function you cannot see any visible
changes to sprites until you call ReturnAllSprites().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
ReturnAllSprites

1.37 games.library/ReturnAllSprites

games.library/ReturnAllSprites

NAME ReturnAllSprites -- Return all sprites to the display.

SYNOPSIS
ReturnAllSprites(GameScreen)

a0

void ReturnAllSprites(struct GameScreen *)

FUNCTION
Returns all sprites that were previously removed by RemoveAll-
Sprites().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.

SEE ALSO
RemoveAllSprites

1.38 games.library/AllocVideoMem

games.library/AllocVideoMem

NAME AllocVideoMem -- Allocate blitter memory.

SYNOPSIS

Screens 29 / 30

Memory = AllocVideoMem(Size)
d0 d0

APTR AllocVideoMem(ULONG Size)

FUNCTION
Allocates a block of memory suitable for the video display. This
type of memory is also compatible with the Blitter.GPI, and should
continue to do so for all hardware configurations.

The memory will be tracked as outlined in AllocMemBlock() if
resource tracking is turned on.

INPUTS Size - The Size of the memory to allocate.

RESULT Memory - Pointer to the allocated memory. All video memory is
formatted with 0’s when allocated. Returns NULL if error.

SEE ALSO
FreeMemBlock

1.39 games.library/WaitVBL

games.library/WaitVBL

NAME WaitVBL -- Waits for a vertical blank.

SYNOPSIS
WaitVBL()

void WaitVBL(void);

FUNCTION
Waits until the horizontal beam reaches the exact start of the VBL
(just after the screen data stops on the display). This is a
dynamic function, so even if you move your screen around using
RemakeScreen(), the wait line will move along with it, giving you
more (or less) VBL space.

NOTE Use WaitSVBL() if you want automatic screen switching checks.

SEE ALSO
WaitRastLine, WaitSVBL

1.40 games.library/WaitSVBL

games.library/WaitSVBL

NAME WaitSVBL -- Check for switch then wait for a vertical blank.

SYNOPSIS
WaitSVBL()

Screens 30 / 30

void WaitSVBL(void);

FUNCTION
Waits until the horizontal beam reaches the Vertical BLank area.
This routine will try and give you as much VBL space as possible,
usually by waiting for the exact point where the display stops. If
this is not possible, then it will wait for the beam to reach the
top of the monitor display.

This version has an implanted AutoSwitch() call to make screen
switching very easy to implement.

SEE ALSO
WaitRastLine, WaitVBL

1.41 games.library/WaitRastLine

games.library/WaitRastLine

NAME WaitRastLine -- Waits for the strobe to reach a specific line.

SYNOPSIS
WaitRastLine(LineNumber)

d0

void WaitRastLine(WORD LineNumber)

FUNCTION
Waits for the strobe to reach the scan-line specified in
LineNumber. The recognised range is dependent on the low
resolution height of your screen, eg 0-255 for a standard 320x256
screen. It is permissable to enter negative values and values that
exceed this range, but only do so if absolutely necessary.

This function has been specially written to avoid beam misses
caused by the untimely activation of interrupts.

INPUTS LineNumber - Vertical beam position to wait for.

BUGS If you enter a large value that is well beyond the range limit,
like #350, the strobe will never reach this line because line 350
doesn’t even exist. This will cause your program to lock up.
Please keep your values restricted to the height of your screen.

SEE ALSO
WaitSVBL, WaitVBL

	Screens
	Screens.GPI
	Screens.GPI Functions
	games.library/AddScreen
	games.library/DeleteScreen
	games.library/ShowScreen
	games.library/HideDisplay
	games.library/Switch
	games.library/AutoSwitch
	games.library/SwapBuffers
	games.library/RemakeScreen
	games.library/MovePicture
	games.library/ResetPicture
	games.library/ColourMorph
	games.library/ColourToPalette
	games.library/PaletteMorph
	games.library/PaletteToColour
	games.library/ChangeColours
	games.library/BlankColours
	games.library/UpdatePalette
	games.library/UpdateRGB12
	games.library/UpdateRGB24
	games.library/InitRasterList
	games.library/UpdateRasterList
	games.library/UpdateRasterLines
	games.library/UpdateRasterCommand
	games.library/UpdateRasterCommands
	games.library/RemoveRasterList
	games.library/HideRasterList
	games.library/ShowRasterList
	games.library/InitSprite
	games.library/UpdateSprite
	games.library/MoveSprite
	games.library/HideSprite
	games.library/UpdateSpriteList
	games.library/HideSpriteList
	games.library/RemoveAllSprites
	games.library/ReturnAllSprites
	games.library/AllocVideoMem
	games.library/WaitVBL
	games.library/WaitSVBL
	games.library/WaitRastLine

