
Blitter

Paul Manias

Blitter ii

COLLABORATORS

TITLE :

Blitter

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Manias June 4, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Blitter iii

Contents

1 Blitter 1

1.1 Blitter.GPI . 1

1.2 Blitter.GPI Functions . 1

1.3 games.library/AllocBlitter . 2

1.4 games.library/FreeBlitter . 2

1.5 games.library/InitBOB . 3

1.6 games.library/FreeBOB . 7

1.7 games.library/ClearBOB . 7

1.8 games.library/DrawBOB . 8

1.9 games.library/DrawBOBList . 9

1.10 games.library/ClrScreen . 10

1.11 games.library/CopyBuffer . 10

1.12 games.library/InitRestore . 11

1.13 games.library/FreeRestore . 12

1.14 games.library/ResetRestore . 12

1.15 games.library/Restore . 12

1.16 games.library/DrawPixel . 13

1.17 games.library/DrawUCPixel . 14

1.18 games.library/DrawPixelList . 14

1.19 games.library/DrawUCPixelList . 16

1.20 games.library/ReadPixel . 17

1.21 games.library/ReadPixelList . 18

1.22 games.library/DrawLine . 18

1.23 games.library/DrawUCLine . 19

1.24 games.library/AllocBlitMem . 20

Blitter 1 / 20

Chapter 1

Blitter

1.1 Blitter.GPI

Name: BLITTER.GPI AUTODOC
Version: 0.5 Beta.
Date: 15 February 1997
Author: Paul Manias
Copyright: DreamWorld Productions, 1996-1997. All rights reserved.
Notes: This document is still being written and will contain errors

in a number of places. The information within cannot be
treated as official until this autodoc reaches version 1.0.

1.2 Blitter.GPI Functions

BLITTER.GPI
AllocBlitter()
AllocBlitMem()
ClearBOB()
ClrScreen()
CopyBuffer()
DrawBOB()
DrawBOBList()
DrawLine()
DrawUCLine()
FreeBlitter()
FreeBOB()
InitBOB()

Pixel Functions
DrawPixel()
DrawUCPixel()
DrawPixelList()
DrawUCPixelList()
ReadPixel()
ReadPixelList()

RestoreList Functions
InitRestore()

Blitter 2 / 20

FreeRestore()
CleanUpRestore()
ResetRestore()
Restore()

Map/Tile Functions
InitMap()
FreeMap()
DrawMap()
DrawMapArea()
DrawMapEdge()

1.3 games.library/AllocBlitter

games.library/AllocBlitter

NAME AllocBlitter -- Allocate the blitter so that we may use it.

SYNOPSIS
ErrorCode = AllocBlitter()

d0

ULONG AllocBlitter(void)

FUNCTION
Allocates the blitter, and if necessary allows exclusive access for
your task only. This function may also perform other tasks to get
the best blitter performance possible, eg it may set up a blitter
interrupt.

You must call this function before using any other blitter related
functions, and then call FreeBlitter() before your program exits.

RESULT ErrorCode - Returns NULL if successful.

SEE ALSO
FreeBlitter

1.4 games.library/FreeBlitter

games.library/FreeBlitter

NAME FreeBlitter -- Free the blitter from our use.

SYNOPSIS
FreeBlitter()

void FreeBlitter(void)

FUNCTION
Frees the blitter if you successfully allocated it earlier on in
your program.

Blitter 3 / 20

You must call this function before your program exits if
AllocBlitter() was successful.

SEE ALSO
AllocBlitter

1.5 games.library/InitBOB

games.library/InitBOB

NAME InitBOB -- Initialise a Blitter OBject structure ready for blitting.

SYNOPSIS
ErrorCode = InitBOB(GameScreen, BOB)

a0 a1

ULONG InitBOB(struct GameScreen *, APTR BOB)

FUNCTION
Initialises a Blitter OBject. All blitter structures are supported
by this function, so you may pass it BB (standard BOB) or MB
(multiple BOB) structure types. This function is fully supportive
of LIST and OLST types, just pass it a standard LIST or OLST rather
than a BOB structure.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
BOB - Pointer to a BOB/MBOB structure or a LIST/OLST.

Here follows a description of all fields related to BOB and MBOB
structures:

BOB_VERSION (BB/MB)
The version of the structure, currently BBV1 for standard bobs or
MBV1 for multiple BOBs.

BOB_Stats (BB/MB)
Private, expects to be zero on initialisation.

BOB_GfxData, BOB_MaskData (BB/MB)
Contain pointers to the BOB’s graphics and mask origins, which are
used to calculate the graphic and mask pointers for each frame.
These pointers serve as the offset for X/Y values in the BOB’s
FrameList (See BOB_FrameList for more information). You do not
need to supply these values if you have specified the DIRECT flag
in BOB_Attrib.

BOB_Frame (BB)
The frame number of your bob, this field is ignored in the
initialisation procedure but is used for the DrawBOB() functions.
The values for this field range from 0 to the maximum frame in your
FrameList (below). The main use of this field is to allow you to
give animation properties to a BOB.

This field is only available for BOB structures. For MBOB’s, the

Blitter 4 / 20

frame number is set in the frame list.

BOB_AmtEntries (MB)
Specifies the amount of images to be blitted when you call a
drawing function. The value can be set dynamically and does not
require initialisation by InitBOB().

This field is only available for MBOB structures.

BOB_FrameList (BB/MB)
Points to a framelist that can contain a list of X and Y
coordinates based on the GfxData and MaskData fields, or direct
address pointers to the graphic and mask sources for each frame.

The X/Y format is the default. Note that the X values must be
presented in offsets of 16, and that negative values are
disallowed. The array for this format looks like this:

dc.w <GfxX>,<GfxY>,<MaskX>,<MaskY>
dc.w ...
dc.w <Termination>

An example:

Frames:
dc.w 0,10,16,10
dc.w 0,26,16,26
dc.w -1

The direct graphics format is activated if you specify the DIRECT
flag in BOB_Attrib. This array looks like this:

dc.l <Graphic>,<Mask>
dc.l ...
dc.l <Termination>

An example:

Frames:
dc.l GFX_Sparkie+00,MSK_Sparkie+00
dc.l GFX_Sparkie+20,MSK_Sparkie+20
dc.l GFX_Sparkie+40,MSK_Sparkie+40
dc.l GFX_Sparkie+60,MSK_Sparkie+60
dc.l -1

The very first set of X/Y values / address pointers are considered
to be frame 0, then next are frame 1, and so on.

If you are using the default X/Y standard, then your X/Y values
will be destroyed after initalisation and replaced with the direct
format. This is done to cut down on memory usage, and on the
likely-hood that you only need to initialise a BOB once.

Note: If you specify the GENMASK (Generate Mask) flag as an
attribute, all values entered in the Mask sections of the array are
ignored and replaced with pointers to the allocated mask areas.

Blitter 5 / 20

BOB_SrcWidth (BB/MB)
The byte width of the BOB’s page area. This value is important for
correctly pre-calculating the BOB’s modulo for the DrawBOB()
functions. If the BOB was cut out of a picture (eg as a brush),
this value will probably be the same as the one in BOB_Width. If
you are blitting the BOB directly from a picture, this value will
be identical to that pictures byte width.

BOB_Width (BB/MB)
The width of the BOB in pixels. This field can be used to
initialise the BOB_ByteWidth field, otherwise it is completely
ignored by the other functions. There is no need to align this
field to increments of 16. You may want to use it for making your
collision detection routines as precise as possible.

BOB_ByteWidth (BB/MB)
The width of the BOB in bytes. You are not allowed to use uneven
byte values in this field, eg 1, 3, 5... only values of 2, 4, 6...
The maximum width currently supported by this field is 128 bytes.

Note: The value given here is used in precalculations, so you
cannot make dynamic changes to this field after initialisation.

BOB_Height (BB/MB)
The height of the BOB in pixels. Permission is given to make
dynamic changes to your BOB’s height.

BOB_XCoord, BOB_YCoord (BB)
The X and Y positions of the sprite in relation to the screen’s
picture buffer. You are allowed to exceed the boundaries of your
clip region, but only if you have specified the CLIP flag in
BOB_Attrib (in which case the BOB will be clipped appropriately).

If you omit the CLIP flag and then place the BOB at the screen
borders, you will risk blitting the BOB to unknown video ram areas.

This field is only available for BOB structures.

BOB_EntryList (MB)
If you are using multiple BOB’s, you will point to your list of
images to be blitted here. Each entry is made up of type struct
BOBEntry, as <XCoord>,<YCoord>,<Frame>. There is no termination
necessary for your list, but the BOB_AmtEntries field must be
specified correctly.

If you specify SKIPIMAGE in an X Coordinate then that particular
image will not be drawn to screen.

This field is only available for MBOB structures.

BOB_ClipLX, BOB_ClipTY, BOB_ClipRX, BOB_ClipBY (BB/MB)
These fields set the clipping area for your BOB. The values that
you specify must be within the borders of your GameScreen’s picture
border, which means no negative values or values that exceed the
Height and Width of the destination picture. X values must be
specified in increments of 16 pixels.

Blitter 6 / 20

Dynamic changes to these fields are not permitted.

BOB_FPlane (BB/MB)
Specifies the first plane that is going to be blitted to. Relevant
for planar screen types only.

BOB_Planes (BB/MB)
The amount of planes used by this bob. This field will be
initialised to the amount of planes in the GameScreen if set at
zero.

BOB_PlaneSize (BB/MB)
The page size for this BOB, calculated by PageWidth*PageHeight.
this field is only relevant for planar BOB’s with more than 1 plane
to be blitted.

BOB_Picture (BB/MB)
If this BOB originates from a Picture structure, you may point to
it here and InitBOB() will use it to initialise certain areas of
the BOB structure. If the following fields are zero, they will be
initialised to the equivalent Picture values:

BOB_GfxData, BOB_MaskData, BOB_SrcWidth, BOB_Planes, BOB_PlaneSize.

BOB_EntrySize (MB)
Here you must specify the byte size that is taken up by each entry
in your entrylist. This allows you to create mutant entry
structures, which you can use to store extra data for each image in
your entrylist. For more information see mutant structure types.

As a default this field should be set to BE_SIZEOF.

This field is only available for MBOB structures.

BOB_Attrib (BB/MB)
The attributes used in the blitting of this BOB, as well as some
special flags that define the way the BOB will be initialised. The
current flags are:

CLIP - Allow clipping for this BOB, to the regions given in
ClipTX, ClipTY, ClipRX and ClipBY. Note that clipping
does slow down the drawing procedure so omit this flag
if possible.

MASK - Allow masking for this BOB.

GENMASKS - Creates a mask for every graphic found in the FrameList
of your BOB.

FILLMASK - Fills any "empty holes" in the mask, so that no
background graphics can show through the middle of the
BOB. This can be useful in certain situations, eg the
Reko.GPI uses it so that only one mask is needed for all
the cards.

RESTORE - Specified if this BOB is to be added to the RestoreList
each time it is drawn. This allows automatic background

Blitter 7 / 20

restoring on the BOB when the buffer returns from the
display. For more information see InitRestore().

CLEAR - Specified if this BOB is to be added to the RestoreList
each time it is drawn. This allows automatic background
clearing on the BOB when the buffer returns from the
display. For more information see InitRestore().

CLRMASK - A mask will be used if you clear this BOB.

CLRNOMASK- No mask will be used if you clear this BOB (default).

RESULT ErrorCode - Returns NULL if successful.

SEE ALSO
FreeBOB, games/games.i

1.6 games.library/FreeBOB

games.library/FreeBOB

NAME FreeBOB -- Deallocate a BOB structure.

SYNOPSIS
FreeBOB(BOB)

a1

void FreeBOB(APTR BOB)

FUNCTION
Frees all the allocations made for an initialised BOB/MBOB
structure. You need to call this function for every BOB that you
have initialised before your program exits.

To free more than one BOB, send this function a standard LIST
containing a pointer to each BOB that you want to free.

INPUTS BOB - Pointer to an initialised BOB structure.

SEE ALSO
InitBOB, Lists

1.7 games.library/ClearBOB

games.library/ClearBOB

NAME ClearBOB -- Clears a BOB image from a screen display.

SYNOPSIS
ClearBOB(GameScreen, BOB, Buffer)

a0 a1 d0

Blitter 8 / 20

ClearBOB(struct GameScreen *, APTR BOB, UWORD Buffer)

FUNCTION
Clears a BOB image/s from the screen. This is a fast way for
clearing a BOB as it is written for optimum blitter usage. It can
handle MBOB’s, but for clearing many BOB objects from screen you
probably should be using a RestoreList.

Note that there is no need to set the CLEAR flag to use this
function. If you need to clear with the BOB’s mask, set CLRMASK,
otherwise set CLRNOMASK.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
BOB - Pointer to an initialised BOB/MBOB structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.

SEE ALSO
DrawBOB

1.8 games.library/DrawBOB

games.library/DrawBOB

NAME DrawBOB -- Draws a Blitter OBject directly to a screen buffer.

SYNOPSIS
DrawBOB(GameScreen, BOB, RestoreList, Buffer)

a0 a1 a2 d0

void DrawBOB(struct GameScreen *, APTR BOB, struct RestoreList *,
UWORD Buffer)

FUNCTION
Draws a BOB to screen according to the values in the BOB/MBOB
structure. If the draw operation specifies for the BOB to be
CLEARed or RESTOREd, then you must supply a pointer to a
RestoreList. If not, this parameter will be ignored.

The methods used to draw the BOB will remain unknown to you: the
blitter, CPU, or both devices may be used to get the image on
screen. Keep in mind that the primary objective of this function
is simply to get the image on screen as quickly as possible with
whatever means available.

FEATURES
The blitter functions have some special features that you should be
aware of, if you are interested in obtaining maximum drawing speed.
Where possible, the CPU will be used to draw until the blitter is
available. This parallel drawing gains considerable speed-up for
68020 machines and upwards.

Blitting images at alignments of 16 pixels will be sped up due to
the fact that no shifting is required. If you keep this in mind
you can use this to your advantage in certain situations. One
example is a horizontal shoot’em-up, where you could align the

Blitter 9 / 20

bullets of your ship to 16 pixels. This would give you a good
speed advantage when blitting many of such objects.

More obvious features, such as blitting and clearing without masks
will also give a natural speed up. You can often use the CLEAR
mode if you know that the background is empty. Use MBOB’s whenever
possible, and always use RestoreList’s as a fast way to redraw or
clear your backgrounds.

NOTE You must have initialised your BOB before calling this function.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
BOB - Pointer to an initialised BOB/MBOB structure.
RestoreList - Pointer to a RestoreList if the BOB requires it.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.

SEE ALSO
DrawBOBList, InitBOB

1.9 games.library/DrawBOBList

games.library/DrawBOBList

NAME DrawBOBList -- Draws a LIST of Blitter OBjects.

SYNOPSIS
DrawBOBList(GameScreen, BOBList, RestoreList, Buffer)

a0 a1 a2 d0

void DrawBOBList(struct GameScreen *, LONG *BOBList[],
struct RestoreList *, UWORD Buffer)

FUNCTION
This is a mass-drawing function that allows you to blit many BOBs
from a list onto a screen. It handles all BOB structure types and
is the fastest way to process the drawing of many BOBs at any one
time.

If any of the drawing operations specify for a BOB to be CLEARed or
RESTOREd, then you must supply a pointer to a RestoreList. If not,
this field will be ignored.

The methods used to draw the BOB will remain unknown to you: the
blitter, CPU, or both devices may be used to get the image on
screen. Keep in mind that the primary objective of this function
is simply to get the image on screen as quickly as possible with
whatever means available.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
BOBList - Pointer to a LIST of BOB structures to draw. Must be

terminated by a LISTEND.
RestoreList - Pointer to a RestoreList if any of the BOBs require it.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.

SEE ALSO

Blitter 10 / 20

DrawBOB, InitBOB

1.10 games.library/ClrScreen

games.library/ClrScreen

NAME ClrScreen -- Clear a GameScreen’s picture buffer.

SYNOPSIS
ClrScreen(GameScreen, Buffer)

a0 d0

void ClrScreen(struct GameScreen *, UWORD Buffer)

FUNCTION
Clears all of the data contained in a specific GameScreen’s picture
buffer. The method used to do this is largely dependent on the
selection made from GMSPrefs, at the moment there are three
available clear methods:

Clear with Blitter.
Clear with CPU.
Clear with Blitter and CPU.

The default is the Bliter and CPU method, which is the most
efficient of the three.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.

SEE ALSO
ClrArea

1.11 games.library/CopyBuffer

games.library/CopyBuffer

NAME CopyBuffer - Copy the contents of one buffer to another.

SYNOPSIS
CopyBuffer(GameScreen, SrcBuffer, DestBuffer)

a0 d0 d1

void CopyBuffer(struct GameScreen *, UWORD SrcBuffer,
UWORD DestBuffer)

FUNCTION
Copies the contents from one screen buffer to another. Note that
this copy can only be performed within the same GameScreen
structure.

It will use the CPU and blitter to perform this action as quickly

Blitter 11 / 20

as possible.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
SrcBuffer - The buffer source ID, eg BUFFER1.
DestBuffer - The buffer destination ID, eg BUFFER2.

1.12 games.library/InitRestore

games.library/InitRestore

NAME InitRestore -- Initialise a RestoreList for buffered clearing.

SYNOPSIS
RestoreList = InitRestore(AmtBuffers, AmtEntries)

d0 d0 d1

struct RestoreList * InitRestore(UWORD AmtBuffers,
UWORD AmtEntries)

FUNCTION
Initialises a restorelist, necessary for restoring the backgrounds
of screen areas that have been blitted over by BOBs.

A RestoreList is required whenever you specify the CLEAR or RESTORE
flags in a BOB structure. This list can be used universally, so
you do not need to allocate a RestoreList for each BOB that you
want to blit.

RestoreList’s are vital in double or triple buffered environments
as it can be very difficult to keep track of the background areas
that need to be replaced. By using a RestoreList and the CLEAR and
RESTORE flags, you will eliminate this problem completely.

Each RestoreList Entry currently takes up 28 bytes of memory. How
many entries you require is dependent on the type of game you are
writing, but 50 entries will be more than sufficient in most cases.

There is a significant speed difference between restoring and
clearing which you should be aware of. CLEARing is fast because
the blitter is using fewer channels and the CPU can be used more
effectively. RESTOREing is slower as the blitter has to move data
between two different areas, plus it has to perform this action
twice (once to save the background, and once to return the
background). Use the CLEAR option whenever possible (if background
is black) otherwise you will probably have to use RESTORE.

NOTE If you were to overload your AmtEntries limit by blitting more
images than what was specified, you will certainly corrupt system
memory. In any case, you should always tend to allocate more
entries than you require for absolute security.

INPUTS AmtBuffers - The amount of buffers in the destination screen.
AmtEntries - The maximum amount of images that will be blitted to

the screen at any point in time.

Blitter 12 / 20

RESULT RestoreList - Pointer to the allocated RestoreList; this is a
private structure and you may not touch its contents.

SEE ALSO
FreeRestore, Restore

1.13 games.library/FreeRestore

games.library/FreeRestore

NAME FreeRestore -- Deallocates and removes a RestoreList from memory.

SYNOPSIS
FreeRestore(RestoreList)

d0

void FreeRestore(struct RestoreList *)

FUNCTION
Deallocates all memory associated with a RestoreList. You may not
continue use of this RestoreList after it has been freed.

INPUTS RestoreList - Pointer to a previously allocated RestoreList.

SEE ALSO
InitRestore

1.14 games.library/ResetRestore

games.library/ResetRestore

NAME ResetRestore -- Resets a RestoreList by clearing old image history.

SYNOPSIS
ResetRestore(RestoreList)

a1

void ResetRestore(struct RestoreList *)

FUNCTION
Resets a RestoreList’s image history so that any currently buffered
images are no longer waiting to be restored. This is useful in
circumstances such as completely changing the background imagery
and no longer blitting the previous set of images.

INPUTS RestoreList -- Pointer to an initialised RestoreList;

SEE ALSO
CleanUpRestore

1.15 games.library/Restore

Blitter 13 / 20

games.library/Restore

NAME Restore -- Restores all buffered images by clearing or replacing
their backgrounds.

SYNOPSIS
Restore(GameScreen, RestoreList)

a0 a1

void Restore(struct GameScreen *, struct RestoreList *)

FUNCTION
This function will restore all the backgrounds that have been
blitted over by BOBs containing the RESTORE and CLEAR flags. The
positioning of this function is quite important - it should go
BEFORE any Draw() functions to be effective, otherwise you may get
graphical glitches or a system crash.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
RestoreList - Pointer to an initialised RestoreList structure.

SEE ALSO
InitRestore, ResetRestore, CleanUpRestore

1.16 games.library/DrawPixel

games.library/DrawPixel

NAME DrawPixel -- Draw a single pixel to a GameScreen.

SYNOPSIS
DrawPixel(GameScreen, Buffer, XCoord, YCoord, Colour)

a0 d0 d1 d2 d3

void DrawPixel(struct GameScreen *, UWORD Buffer, WORD XCoord,
WORD YCoord, ULONG Colour)

FUNCTION
Draws a pixel to coordinates XCoord, YCoord on a GameScreen. This
function will check the given coordinates to make sure that the
pixel is on screen, otherwise it is not drawn. If you do not
require clipping, use DrawUCPixel().

NOTES Never supply a colour that is beyond the amount of colours for the
screen.

Chunky pixels are drawn many times faster than interleaved or
planar pixels, due to its more convenient display format.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.
XCoord - X coordinate for pixel.
YCoord - Y coordinate for pixel.
Colour - Colour to use for the pixel.

Blitter 14 / 20

SEE ALSO
DrawPixelList, DrawUCPixelList

1.17 games.library/DrawUCPixel

games.library/DrawUCPixel

NAME DrawUCPixel -- Draw a pixel to screen without any clipping checks.

SYNOPSIS
DrawUCPixel(GameScreen, Buffer, XCoord, YCoord, Colour)

a0 d0 d1 d2 d3

void DrawUCPixel(struct GameScreen *, UWORD Buffer, WORD XCoord,
WORD YCoord, ULONG Colour)

FUNCTION
Draws a pixel to coordinates XCoord, YCoord on a GameScreen. This
function does not perform clipping of any sort, and expects the
coordinates to be within the limits of the GameScreen. If you
require clipping, you will need to write the necessary routine
yourself.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.
XCoord - X coordinate for pixel.
YCoord - Y coordinate for pixel.
Colour - Colour to use for the pixel.

SEE ALSO
DrawPixel, DrawPixelList, DrawUCPixelList

1.18 games.library/DrawPixelList

games.library/DrawPixelList

NAME DrawPixelList -- Draw a list of pixels to a screen buffer.

SYNOPSIS
DrawPixelList(GameScreen, Buffer, PixelList)

a0 d0 a1

void DrawPixelList(struct GameScreen *, UWORD Buffer,
WORD PixelList[])

FUNCTION
Draws an entire list of pixels to screen, with border clipping
enabled.

This is the second fastest way to draw many pixels without making
multiple library calls. For even faster drawing, you may use

Blitter 15 / 20

DrawUCPixelList(), but be aware that that function has no active
clipping for the pixels.

The Pixel List is not the standard GMS "LIST" type. Instead it
looks like this:

dc.w <AmtEntries>,<EntrySize>
dc.w <XCoord>,<YCoord>
dc.l <Colour>
dc.w ...
dc.l ...

Example for blitting 3 pixels to a 4 colour screen of dimensions
320x256:

PixelList:
dc.w 3,PXL_SIZEOF
PIXEL 140,201,3
PIXEL 036,165,1
PIXEL 224,051,2

The PIXEL macro is used to help you fit the three fields on one
line. Here is the C version:

PIXELLIST(3) = {
3,sizeof(struct PixelEntry),
140,201,3
036,165,1
224,051,2

};

You are also allowed to mutate each PixelEntry so that you can
store extra data in the array. For example, if you are writing a
demo with flashing lights/pixels, then it would be most convenient
if you could store the on/off state of each pixel in the same
array. To do this you will need to increase the EntrySize field so
that GMS knows the true size of each image entry. Eg:

LightList:
dc.w 3,PXL_SIZEOF+2
PIXEL 140,201,3
dc.w 0
PIXEL 036,165,1
dc.w 1
PIXEL 224,051,2
dc.w 0

The equivalent mutant structure in C might look like this:

struct MutantEntry {
struct PixelEntry Data;
UWORD State;

};

You can also pull out the PixelEntry structure from the include
files and add extra fields to that if it is more convenient.

Blitter 16 / 20

A flag exists for conveniently skipping pixel entries. Specify
SKIPPIXEL in the X coordinate if you do not wish for a pixel to be
drawn from that entry.

NOTE Clipping is done to the screen borders and not to the picture
borders.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.
PixelList - Points to a list of pixels, explained above.

SEE ALSO
DrawUCPixelList, DrawPixel

1.19 games.library/DrawUCPixelList

games.library/DrawUCPixelList

NAME DrawUCPixelList -- Draw an unclipped list of pixels to a screen
buffer.

SYNOPSIS
DrawUCPixelList(GameScreen, Buffer, PixelList)

a0 d0 a1

void DrawUCPixelList(struct GameScreen *, UWORD Buffer,
struct PixelList *)

FUNCTION
Draws a list of unclipped pixels to a screen buffer. This is a
special function that is provided only for situations where you are
100% certain that no pixels lie outside the picture borders.
Because there is no checking, any rogue pixels can cause illegal
memory over-writes, so be careful! The advantage of this function
is that it is very fast at mass pixel writes.

The Pixel List is not the standard GMS "LIST" type. Instead it
looks like this:

dc.w <AmtEntries>,<EntrySize>
dc.w <XCoord>,<YCoord>
dc.l <Colour>
dc.w ...
dc.l ...

Example for blitting 3 pixels to a 4 colour screen of dimensions
320x256:

PixelList:
dc.w 3,PXL_SIZEOF
PIXEL 140,201,3
PIXEL 036,165,1
PIXEL 224,051,2

The PIXEL macro is used to help you fit the three fields on one

Blitter 17 / 20

line. Here is the C version:

PIXELLIST(3) = {
3,sizeof(struct PixelEntry),
140,201,3
036,165,1
224,051,2

};

You are also allowed to mutate each PixelEntry so that you can
store extra data in the array. For example, if you are writing a
demo with flashing lights/pixels, then it would be most convenient
if you could store the on/off state of each pixel in the same
array. To do this you will need to increase the EntrySize field to
the new size for each entry. Eg:

LightList:
dc.w 3,PXL_SIZEOF+2
PIXEL 140,201,3
dc.w 0
PIXEL 036,165,1
dc.w 1
PIXEL 224,051,2
dc.w 0

The equivalent mutant structure in C might look like this:

struct MutantEntry {
struct PixelEntry Data;
UWORD State;

};

You can also pull out the PixelEntry structure from the include
files and add extra fields to that if it is more convenient.

A flag exists for conveniently skipping pixel entries. Specify
SKIPPIXEL in the X coordinate if you do not wish for a pixel to be
drawn from that entry.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.
PixelList - Points to a list of pixels, explained above.

SEE ALSO
DrawPixelList, DrawPixel

1.20 games.library/ReadPixel

games.library/ReadPixel

NAME ReadPixel -- Reads a pixel colour from position X/Y.

SYNOPSIS
Pixel = ReadPixel(GameScreen, Buffer, XCoord, YCoord)
d0 a0 d0 d1 d2

Blitter 18 / 20

ULONG ReadPixel(struct GameScreen *, UWORD Buffer, WORD XCoord,
WORD YCoord)

FUNCTION
Reads a pixel from a GameScreen buffer area and returns its colour
number or RGB value depending on the screen type. If you give this
function coordinates that lie outside of the screen’s picture area,
it will return -1 in Pixel.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.
XCoord - The X coordinate to read the pixel from.
YCoord - The Y coordinate to read the pixel from.

RESULT Pixel - The pixel colour number/RGB value or -1.

SEE ALSO
ReadPixelList

1.21 games.library/ReadPixelList

games.library/ReadPixelList

NAME ReadPixelList -- Reads a list of pixels.

SYNOPSIS
Pixel = ReadPixelList(GameScreen, Buffer, PixelList)
d0 a0 d0 a1

ULONG ReadPixelList(struct GameScreen *, UWORD Buffer,
struct PixelList *)

FUNCTION
Untested.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.
PixelList - Pointer to a list of pixels.

SEE ALSO
ReadPixel

1.22 games.library/DrawLine

games.library/DrawLine

NAME DrawLine -- Draws a line between two points on a GameScreen.

SYNOPSIS
DrawLine(GameScreen, Buffer, XStart, YStart, XEnd, YEnd, Colour)

a0 d0 d1 d2 d3 d4 d5

Blitter 19 / 20

void DrawLine(struct GameScreen *, UWORD Buffer, WORD XStart,
WORD YStart, WORD XEnd, WORD YEnd, ULONG Colour)

FUNCTION
Draws a line between (XStart,YStart) and (XEnd,YEnd). Depending on
selections made in GMSPrefs this function may draw the line with
the processor or blitter (or perhaps both).

This function supports clipping for lines that are outside of the
picture borders. For faster line drawing, use DrawUCLine when you
know that a line is within the screen borders.

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.
XStart - X starting coordinate.
YStart - Y starting coordinate.
XEnd - X end coordinate.
YEnd - Y end coordiate.
Colour - Line colour.

SEE ALSO
DrawUCLine

1.23 games.library/DrawUCLine

games.library/DrawUCLine

NAME DrawUCLine -- Draws a line between two points on a GameScreen
without clipping checks.

SYNOPSIS
DrawUCLine(GameScreen, Buffer, XStart, YStart, XEnd, YEnd, Colour)

a0 d0 d1 d2 d3 d4 d5

void DrawUCLine(struct GameScreen *, UWORD Buffer, UWORD XStart,
UWORD YStart, UWORD XEnd, UWORD YEnd, ULONG Colour)

FUNCTION
Draws a line between (XStart,YStart) and (XEnd,YEnd). Depending on
selections made in GMSPrefs this function may draw the line with
the processor or blitter (or perhaps both).

The function does not perform clipping of any sort, so it is
imperative that you keep any lines that you draw within your
picture boundaries. Otherwise use DrawLine().

INPUTS GameScreen - Pointer to an initialised GameScreen structure.
Buffer - The Buffer ID, ie BUFFER1, BUFFER2 or BUFFER3.
XStart - X starting coordinate.
YStart - Y starting coordinate.
XEnd - X end coordinate.
YEnd - Y end coordiate.
Colour - Line colour.

Blitter 20 / 20

SEE ALSO
DrawLine

1.24 games.library/AllocBlitMem

games.library/AllocBlitMem

NAME AllocBlitMem -- Allocate blitter memory.

SYNOPSIS
Memory = AllocBlitMem(Size)

d0 d0

APTR AllocBlitMem(ULONG Size)

FUNCTION
Allocates a block of memory suitable for the Blitter.GPI. On
current Amiga’s it will only grab chip mem, but fast ram may be
supported in the future (CPU only blitting).

INPUTS Size - The Size of the memory to allocate.

RESULT Memory - Pointer to the allocated memory. All blitter memory is
formatted with 0’s when allocated. Returns NULL if error.

SEE ALSO
FreeMemBlock

	Blitter
	Blitter.GPI
	Blitter.GPI Functions
	games.library/AllocBlitter
	games.library/FreeBlitter
	games.library/InitBOB
	games.library/FreeBOB
	games.library/ClearBOB
	games.library/DrawBOB
	games.library/DrawBOBList
	games.library/ClrScreen
	games.library/CopyBuffer
	games.library/InitRestore
	games.library/FreeRestore
	games.library/ResetRestore
	games.library/Restore
	games.library/DrawPixel
	games.library/DrawUCPixel
	games.library/DrawPixelList
	games.library/DrawUCPixelList
	games.library/ReadPixel
	games.library/ReadPixelList
	games.library/DrawLine
	games.library/DrawUCLine
	games.library/AllocBlitMem

