
Default

Paul Manias

Default ii

Copyright © Copyright1996-1997 DreamWorld Productions.

Default iii

COLLABORATORS

TITLE :

Default

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Manias June 4, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Default iv

Contents

1 Default 1

1.1 games.library . 1

1.2 Master Library Functions . 1

1.3 Structure Layout . 2

1.4 GMS Lists . 3

1.5 Tags . 4

1.6 GMS Error Codes . 6

1.7 GMS Data Objects . 6

1.8 games.library/InitGPI . 9

1.9 games.library/RemoveGPI . 10

1.10 games.library/InitJoyPorts . 10

1.11 games.library/ReadMouse . 11

1.12 games.library/ReadJoyPort . 12

1.13 games.library/ReadJoyStick . 13

1.14 games.library/ReadAnalogue . 13

1.15 games.library/ReadJoyPad . 15

1.16 games.library/ReadSegaPad . 15

1.17 games.library/ReadKey . 16

1.18 games.library/FastRandom . 17

1.19 games.library/SlowRandom . 17

1.20 games.library/WaitLMB . 18

1.21 games.library/WaitFire . 18

1.22 games.library/WaitTime . 19

1.23 games.library/AddInputHandler . 19

1.24 games.library/RemInputHandler . 20

1.25 games.library/AddInterrupt . 20

1.26 games.library/RemInterrupt . 21

1.27 games.library/SmartLoad . 21

1.28 games.library/QuickLoad . 22

1.29 games.library/SmartUnpack . 23

Default v

1.30 games.library/SmartSave . 24

1.31 games.library/SetUserPrefs . 24

1.32 games.library/LoadPic . 25

1.33 games.library/UnpackPic . 27

1.34 games.library/GetPicInfo . 28

1.35 games.library/AllocMemBlock . 28

1.36 games.library/FreeMemBlock . 30

1.37 games.library/DecToText . 30

1.38 games.library/LoadObjectFile . 31

1.39 games.library/FreeObjectFile . 31

1.40 games.library/GetObject . 32

1.41 games.library/GetObjectList . 32

1.42 games.library/CopyObject . 33

1.43 games.library/FindGMSTask . 34

1.44 games.library/ . 34

Default 1 / 34

Chapter 1

Default

1.1 games.library

Name: GAMES.LIBRARY AUTODOC
Version: 0.5 Beta.
Date: 15 February 1997
Author: Paul Manias
Copyright: DreamWorld Productions, 1996-1997. All rights reserved.
Notes: This document is still being written and will contain errors

in a number of places. The information within cannot be
treated as official until this autodoc reaches version 1.0.

GENERAL INFORMATION
Structures
Lists
Tags
Data Objects
Error Codes

FUNCTIONS
Games.Library
Screens.GPI
Blitter.GPI
Sound.GPI

1.2 Master Library Functions

GAMES.LIBRARY
AddInputHandler()
AddInterrupt()
AddTrack()
AllocMemBlock()
DecToText()
DeleteTrack()
FastRandom()
FindGMSTask()
FreeMemBlock()
InitGPI()

Default 2 / 34

RemInputHandler()
RemInterrupt()
RemoveGPI()
SetUserPrefs()
SlowRandom()
WaitTime()

User Input Functions
InitJoyPorts()
ReadMouse()
ReadJoyPort()
ReadJoyStick()
ReadJoyPad()
ReadSegaPad()
ReadAnalogue()
ReadKey()
WaitLMB()
WaitFire()

Data Processing Functions
GetPicInfo()
LoadPic()
LoadPicInfo()
QuickLoad()
SmartLoad()
SmartSave()
SmartUnpack()
UnpackPic()

Object Processing Functions
LoadObjectFile()
FreeObjectFile()
GetObject()
GetObjectList()

1.3 Structure Layout

STRUCTURE LAYOUT

GMS structures have been designed with just one commonality: They all
start with a version header, followed by a private "stats" field.
Following this are whatever fields are relevant for that structure type.

Example:

STRUCTURE GameScreen,0
LONG GS_VERSION
APTR GS_Stats
...

The version header consists of a two character structure ID, followed by an
integer that usually determines the version number. An example for
GameScreens is: GSV1 = ("GS"<<16)|00. The integer can be used for jump
tables to deal with the various structure types and handling the future

Default 3 / 34

expansion of the structure.

The stats field follows immediately after the version ID, and is reserved
for a second structure. This structure holds special information such as
pre-calculated data for faster routines, and records of allocated memory.
It is completely private, unless stated otherwise. If a structure is
written to a file, then the stats field could contain the chunk size, as in
IFF. To prevent confusion the Stats field must always be set to 0 when
being initialised for the first time.

Structure IDentification can be used for more than tracking versions of
passed structures. One such is example is the LIST ID header, which tells
a function that it needs to perform the same action to more than one
structure. You can see more about this in Lists.

STRUCTURE AUTO-INITIALISATION

A standard GMS policy for initialisation functions is to initialise all
empty fields to either the user defaults, or values determined by any
related fields. For example, omitting the ScrWidth and ScrHeight values
from a screen would cause the screen to open at the user’s ScrWidth and
ScrHeight defaults. On the other hand if you were to omit the PicWidth and
PicHeight settings, then these would inherit the values present in ScrWidth
and ScrHeight. Sometimes if there is a file present, the values will come
from that file’s header structure. For example, IFF pictures will fill out
a picture structure if it has empty fields.

The only fields that are not auto-initialised are the ones containing
flags, such as the attrib and option fields.

FUTURE COMPATIBILITY

Structures are fully suppported as Data Objects. This means that you can
still attain 100% future compatibility when initialising a pre-formatted
structure (Tags do not even offer this level of compatibility). The only
request is that your structures are located in an external OBJect file.

1.4 GMS Lists

LISTS

A list is intended for processing 2 or more structures inside a function.
This is the fastest way that you can process a whole lot of structures
without having to make heaps of function calls. Lets say you wanted to
load in 10 sounds from your hard-drive using InitSound(). Normally
InitSound() takes a Sound Structure, but it can also identify a list by
checking the header ID.

To illustrate, a typical list for initialising/loading sounds looks like
this:

Default 4 / 34

SoundList:
dc.l "LIST" ;List identification header.
dc.l SND_Boom ;Pointers to each sound to load and
dc.l SND_Crash ; initialise.
dc.l SND_Bang
dc.l SND_Ping
dc.l SND_Zoom
dc.l SND_Zig
dc.l SND_Zag
dc.l SND_Wang
dc.l SND_Whump
dc.l SND_Bong
dc.l LISTEND ;Indicate an end to the list.

When you want to load all your sounds in, just use this piece of code:

move.l GMS_Base(pc),a6
lea SoundList(pc),a0 ;a0 = Pointer to the soundlist.
CALL InitSound
tst.l d0
bne.s .error

Pretty easy right? Of course, there are lots of other functions that sup-
port lists. The not-so obvious ones are:

InitBOB()
InitSprite()
InitSound()
FreeSound()

Some functions are specially written to be given lists only, eg
DrawBOBList(). This is mainly for speed reasons, as we don’t want to waste
time checking if a structure is a list or not in time critical situations.

That’s basically the summary on lists. You may be interested to know that
the GMS package is the only programmers aid that supports structures in
this way. You will learn more about lists and how ID fields will help you
in other areas of this doc.

1.5 Tags

GMS TAGS

GMS supports Tags in a way that is almost identical to the Amiga OS. The
only major difference is that the new design allows them to operate a
little faster. Tags allow you to support all future structure versions,
and they are convenient for use in C. Unfortunately they take up more
memory than a convential structure. Functions currently supporting tags
are:

AddScreen()
LoadPic()

Default 5 / 34

For C users the names of these functions are changed so that they have a
"TAGS" suffix, eg AddScreenTags(). Assembler programmers can use the
already existing functions. Note that tags are treated the same way as
lists, and are correctly identified by functions only when they are passed
a TAGS ID in the first field.

On the lowest level, tags are represented like this:

dc.l "TAGS",<Structure>
dc.l <ti_Tag>,<ti_Data>
dc.l TAGEND

Example:

dc.l "TAGS",GameScreen
dc.l GSA_ScrWidth,320
dc.l GSA_ScrHeight,256
dc.l TAGEND

If you omit the Structure and replace it with NULL, the relevant structure
will be allocated for you. This structure will be placed in the NULL entry
(useful for assembler programmers), and also be returned by the function.
If a Tag call results in a return of NULL then an error has occured and the
call has failed.

Here is an example of using Tags in C:

struct GameScreen *GameScreen;

if (GameScreen = AddScreenTags(TAGS,NULL,
GSA_Planes,AMT_PLANES,
GSA_Palette,Palette,
GSA_ScrMode,LORES|COL24BIT,
GSA_ScrWidth,320,
GSA_ScrHeight,256,
GSA_ScrType,INTERLEAVED,
GSA_ScrAttrib,DBLBUFFER,
TAGEND)) {

/* Code Here */

DeleteScreen(GameScreen);
}

There are also some special flags that you can use for advanced Tag
handling. These flags are identified in ti_Tag, and they are:

TAG_IGNORE - Skips to the next Tag entry.

TAG_MORE - Terminates the current TagList and starts another one (pointed
to in the ti_Data field).

TAG_SKIP - Skips this and the next ti_Data items.

That’s all you need to know, just remember to terminate all your tag calls
with TAGEND.

Default 6 / 34

1.6 GMS Error Codes

ERROR CODES

GMS has a universal set of error codes that are used by functions with a
return type of ErrorCode. This enables you to easily identify errors and
debug these problems when they occur. Here is a description of current
error codes and what they mean:

[0] ERR_OK
No error occurred, function has executed successfully.

[1] ERR_NOMEM
Not enough memory was available when this function attempted to allocate a
memory block.

[2] ERR_NOPTR
A required structure address pointer was not present.

[3] ERR_INUSE
This structure has previous allocations that have not been freed.

[4] ERR_STRUCT
You have given this function a structure version that is not supported, or
you have passed it an unidentifiable memory address.

[5] ERR_FAILED
An unspecified failure has occurred.

[6] ERR_FILE
Unspecified file error, eg file not found, disk full etc.

[7] ERR_DATA
This function encountered some data that has unrecoverable errors.

[8] ERR_SEARCH
An internal search was performed and it failed. This is a specific error
that can occur when the function is searching inside file headers for
something, eg the BODY section of an IFF file.

[9] ERR_SCRTYPE
Screen Type not recognised or supported, eg currently True Colour modes are
not available.

[10] ERR_GPI
This function tried to initialise a GPI and failed.

1.7 GMS Data Objects

GMS DATA OBJECTS

One of the problems with conventional games programming is that after the

Default 7 / 34

game has been compiled, all the structures and object data is often fixed
in place, impossible to edit from a user point of view, and has no
potential of future expansion.

By providing support for external data objects, we can achieve the
possibility of up to 100% of data editing with very little effort. This
opens up a large number of avenues for the future of your product. Even if
you stop developing it, other users can still make improvements. For
example:

Graphic Artists may edit your graphics in all areas, such as upgrading them
to 24bit quality, changing resolutions from 320x256 to 1280x1024, altering
the size, amount of animation frames, and clipping of your BOBs, adding and
changing RasterList commands, and so on.

Programmers may change existing code segments to create new effects,
improve compatibility, make time critical sections faster, and generally
change whatever you allow them to.

Game Players could design new levels, change attack plans, game settings,
and edit the game to suit their own tastes.

The File Format
Data Objects are compiled into a single binary file. The easiest way to
learn how it works is to view one; here is an example of a GameScreen
and a picture located in an object file:

---START---

ORG $0 ;Data is absolute.

;All object files start with "GOBJ" and then the data objects start
;immediately after this.

dc.l "GOBJ" ;File identification.

;The GameScreen object starts with the compulsory object header,
;which also contains the name of the object in question. You need
;to remember the names of all your objects as this is the only way
;to correctly identify them. The structure data then follows in
;the data section

OBJ_GameScreen:
dc.l "STRC" ;Object is a STRC [Structure].
dc.l .end ;Pointer to the next structure.
dc.b "DemoScreen",0 ;Name.
even

.data dc.l GSV1,0
dc.l 0,0,0 ;Screen memory 1/2/3.
dc.l 0 ;Screen link.
dc.l 0 ;Address of palette.
dc.l 0 ;Address of rasterlist.
dc.l 0 ;Amount of colours in palette.
dc.w 640,256 ;Screen Width and Height.
dc.w 0,0,0 ;Picture Widths and Height.
dc.w 0 ;Amount of planes.
dc.w 0,0 ;X/Y screen offset.

Default 8 / 34

dc.w 0,0 ;X/Y picture offset.
dc.l CENTRE ;Special attributes.
dc.w 0 ;Screen mode.
dc.w 0 ;Screen type

.end

;The layout of the Picture object is generally identical to the
;GameScreen, we have just changed the name and entered the
;correct structure data.

OBJ_Picture:
dc.l "STRC" ;Object is a STRC [Structure].
dc.l .end ;Pointer to the next structure.
dc.b "DemoPicture",0 ;Name.
even

.data dc.l PCV1,0 ;Version header.
dc.l 0 ;Source data.
dc.w 640,0,256 ;Width, Height.
dc.w 4 ;Amount of Planes.
dc.l 16 ;Amount of colours.
dc.l 0 ;Source palette.
dc.w HIRES|COL12BIT|LACED ;Screen mode.
dc.w ILBM ;Screen type.
dc.l GETPALETTE|VIDEOMEM ;Parameters.
dc.l .file

.file dc.b "GAMESLIB:data/IFF.Pic640x256",0
even

.end
;All files must terminate with an OEND string.
dc.l "OEND"

---END---

In time there will be an editor for object files, so everyone will be able
to create and edit them in a GUI interface rather than with an assembler.

GRABBING DATA FROM OBJECT FILES

You can grab a pointer to an object by first loading in the file, then
using the GetObject(), GetObjectList() or CopyObject() functions. All you
need to do is supply the name of the object you wish to grab and the
function will find it for you.

If you want to find more than one object, you can use an object list. This
is a special list designed for the GetObjectList() function. It looks like
this:

dc.l "OLST"
dc.l <Name>,<Object>
dc.l ...
dc.l LISTEND

<Name> points to the name of the object you wish to find. <Object> will be
initialised by the GetObjectList() function, ie it will point to the object
if it finds it. Normally you will set this field as NULL before calling
the function, if you place something in this field then GetObjectList()

Default 9 / 34

will ignore that particular entry.

You may also mix different kinds of objects in the same list, eg BOBs and
Sounds can all be found in one call.

Generally all of the Init() functions (eg InitBOB()) will support object
lists if they are supplied with one. These functions will ignore any
structures that they do not recognise, eg InitBOB() will not attempt to
initialise sound samples, so it is safe for different structures to be
mixed into one list.

1.8 games.library/InitGPI

games.library/InitGPI

NAME InitGPI - Load in a GPI and initialise it for function calls.

SYNOPSIS
GPIBase = InitGPI (GPINumber, Version).

d0 d0 d1

APTR InitGPI(UWORD GPINumber, UWORD Version);

FUNCTION
Loads in a GPI and initialises it ready for function calls.
Currently there are three GPI’s that require initialisation if you
want to use them:

Debug.GPI
Network.GPI
Vectors.GPI

If GPIBase returns with an address pointer then the initialisation
was successful and the GPI’s functions are ready to use. If the
function fails then it will return with NULL.

NOTE The GPIBase is the same as a library base pointer. Because of this
it is perfectly legal to make direct calls to the GPI itself.
However, do not make direct calls to the Sound, Screens and Blitter
GPI’s as they do expect to be called with the games.library base in
register a6.

As the Debug, Network and Vector GPI’s are not present yet, this
function is a bit useless for the moment :-)

INPUTS GPINumber - A recognised GPI ID Number, which is one of:

GPI_SCREENS, GPI_BLITTER, GPI_SOUND, GPI_NETWORK, GPI_VECTORS,
GPI_DEBUG, GPI_ANIM, GPI_REKO, GPI_TEXT.

Version - The minimum GPI version that you require.

RESULT GPIBase - Pointer to the GPIBase or NULL if error.

SEE ALSO

Default 10 / 34

RemoveGPI

1.9 games.library/RemoveGPI

games.library/RemoveGPI

NAME RemoveGPI -- Remove a GPI that was previously initialised.

SYNOPSIS
RemoveGPI(GPIBase)

a0

ULONG RemoveGPI(APTR GPIBase);

FUNCTION
Informs the games.library that you no longer wish to use the
specified GPI’s functions. You cannot make any calls to the GPI
after removing it.

All GPI’s that you open must be removed before your program exits.

INPUTS GPIBase - Pointer to a valid GPIBase returned from InitGPI().

SEE ALSO
InitGPI

1.10 games.library/InitJoyPorts

games.library/InitJoyPorts

NAME InitJoyPorts -- Initialise the JoyPorts and reset the movement
counters.

SYNOPSIS
InitJoyPorts()

void InitJoyPorts(void)

FUNCTION
If you are using any of the JoyPort related functions, then you
will have to initialise the ports before trying to use them. You
must call this function in the initialisation section of your
program, after you have called AddInputHandler() (or AddScreen()
which will do this for you).

You will also need to call this function if you need the movement
counters reset (note that even when you are not reading the
joyports an interrupt will be keeping track of any change in their
movements). If the user was to move an input device when you are
not calling any Read function, a nonsense value may be returned if
you start reading the ports again.

Default 11 / 34

SEE ALSO
ReadJoyPort

1.11 games.library/ReadMouse

games.library/ReadMouse

NAME ReadMouse -- Gets the current mouse co-ordinates and button states.

SYNOPSIS
ZBXY = ReadMouse(PortName)

d0 d0

ULONG ReadMouse(UWORD PortName);

FUNCTION
Reads the mouse port and returns any changes in its co-ordinates.
The status of the mouse is returned in ZXBYStatus (a packed state).
If the user was not using the mouse, then ZBXYStatus will return a
NULL value.

If you do not call InitJoyPorts() at the start of your program,
this function may may return nonsense values in the X/Y directions.
Also make sure that you call InitJoyPorts() whenever you need the
X/Y coordinate changes reset.

This function also requires that the input handler has already been
installed by GMS (Calling ShowScreen() will do this for you).

JoyPorts 3 and 4 are not supported by this function.

EXAMPLE If you are having trouble unpacking the ZBXYStatus value in C, here
is some code to get the X, Y and Z values.

XPos += (BYTE)(ZBXY>>8);
YPos += (BYTE)ZBXY;
ZPos += (BYTE)(ZBXY>>24);

To read the left mouse button:

if (ZBXY&MB_LMB) {
/* LeftMouse pushed... */

}

INPUT PortName = JPORT1 or JPORT2.

RESULT ZBXY - Contains changes in direction and button states.

BYTE | BIT RANGE | DATA
-----+-----------+--------------------------------------

1 | 0 - 7 | Y Direction
2 | 8 - 15 | X Direction
3 | 16 - 23 | Button status bits.
4 | 23 - 31 | Z Direction (currently not supported)

Default 12 / 34

Button status bits are:

MB_LMB - Left mouse button
MB_RMB - Right mouse button
MB_MMB - Middle mouse button

SEE ALSO
games/gamesbase.i

1.12 games.library/ReadJoyPort

games.library/ReadJoyPort

NAME ReadJoyPort -- Reads any joystick device in a given joyport.

SYNOPSIS
JoyStatus = ReadJoyPort(PortName, ReturnType)

d0 d0 d1

ULONG ReadJoyPort(UWORD PortName, UWORD ReturnType)

FUNCTION
Reads the joyport and returns its status in the required format,
regardless of what playing device is plugged in. Currently
supported devices are standard JoySticks, Analogue JoySticks,
SegaPads, CD32 JoyPads, the mouse, and the keyboard.

Unlike the lowlevel.library equivalent of this function, this
version is much faster and does not need to evaluate what device is
currently plugged in. It simply reads the specified joy type from
GMSPrefs and jumps to the correct routine.

Future devices may be added to this function - this will be
transparent to your program so that you can support devices that do
not exist yet.

NOTE The first time you call this function it may return nonsense
values. Therefore you must call InitJoyPorts() before use.

INPUTS PortName - JPORT1, JPORT2, JPORT3 or JPORT4.
ReturnType - JT_SWITCH: JoyStatus returns with switched bitflags.

JT_ZBXY: JoyStatus returns with the ZBXY format.

RESULT JoyStatus - Status of the JoyPort in one of the following two
formats:

For JT_SWITCH you will be returned the joyport status in bits which
are set by:

JS_LEFT, JS_RIGHT, JS_UP, JS_DOWN, JS_ZIN, JS_ZOUT, JS_FIRE1, JS_FIRE2,
JS_PLAY, JS_RWD, JS_FFW, JS_GREEN, JS_YELLOW.

For JT_ZBXY you will be returned the joyport status in a packed
state, containing directional values and button status bits:

Default 13 / 34

BYTE | BIT RANGE | DATA
-----+-----------+--------------------------------------

1 | 0 - 7 | Y Direction
2 | 8 - 15 | X Direction
3 | 16 - 23 | Button status bits.
4 | 23 - 31 | Z Direction (currently not supported)

Button bits: JB_FIRE1/MB_LMB, JB_FIRE2/MB_RMB, JB_FIRE3/MB_MMB.

SEE ALSO
ReadMouse, ReadJoyStick, ReadJoyPad, ReadSegaPad, ReadAnalogue,
games/games.i

1.13 games.library/ReadJoyStick

games.library/ReadJoyStick

NAME ReadJoyStick -- Read the joystick status from a given joyport.

SYNOPSIS
JoyBits = ReadJoyStick(PortName)

d0 d0

ULONG ReadJoyStick(UWORD Portname);

FUNCTION
Interprets the current status of a joystick in the given port.
Ports 3 and 4 are recognised as extended joysticks in the parallel
port. If the user was not using the joystick, then JoyBits will
return a NULL value.

NOTE Try to use ReadJoyPort(), as that gives the same results, but
supports Joypads, Analogue joysticks etc.

INPUTS PortName - JPORT1, JPORT2, JPORT3 or JPORT4.

RESULT JoyBits - The current joystick status bits. These are:

JS_LEFT = 0
JS_RIGHT = 1
JS_UP = 2
JS_DOWN = 3
JS_FIRE1 = 6
JS_FIRE2 = 7
JS_FIRE3 = 8

SEE ALSO
ReadJoyPort, ReadJoyPad, ReadSegaPad, ReadAnalogue,
games/games.i

1.14 games.library/ReadAnalogue

Default 14 / 34

games.library/ReadAnalogue

NAME ReadAnalogue -- Read an analogue joystick from the given port.

SYNOPSIS
ZBXYStatus = ReadAnalogue(PortName)

d0 d0

ULONG ReadAnalogue(UWORD PortName);

FUNCTION
Reads an analogue joystick in either port 1 or port 2. The status
of the joystick is returned in ZXBYStatus (a packed state). If the
user was not using the joystick, then ZBXYStatus will return a NULL
value.

The first time you call this function it may return nonsense values
in the X/Y directions. Therefore you must call it in the
initialisation section of your program before using it in the rest
of your program.

JoyPorts 3 and 4 are not supported by this function.

EXAMPLE If you are having trouble unpacking the ZBXYStatus value in C, here
is some code to get the X, Y and Z values.

XPos += (BYTE)(ZBXY>>8);
YPos += (BYTE)ZBXY;
ZPos += (BYTE)(ZBXY>>24);

INPUTS PortName - JPORT1 or JPORT2.

RESULT ZBXYStatus - Current status of the analogue joystick.

The status data looks like this:

BYTE | BIT RANGE | DATA
-----+-----------+--------------------------------------

1 | 0 - 7 | Y Direction
2 | 8 - 15 | X Direction
3 | 16 - 23 | Button status bits.
4 | 23 - 31 | Z Direction (currently not supported)

Note that the further the joystick is pushed in a given direction,
the higher the value returned for the relevant byte. Negative
values denote a push in the opposite direction.

BUGS NOT IMPLEMENTED YET.

SEE ALSO
ReadJoyPort, ReadJoyStick, ReadSegaPad, ReadJoyPad,
games/games.i

Default 15 / 34

1.15 games.library/ReadJoyPad

games.library/ReadJoyPad

NAME ReadJoyPad -- Reads a CD32 joypad from a specified port number.

SYNOPSIS
JoyBits = ReadJoyPad(PortName)

d0 d0

ULONG ReadJoyPad(UWORD PortName);

FUNCTION
Reads a standard Amiga JoyPad (ie a CD32 joypad) and returns its
current status in the JoyBits format. If the user was not using
the joypad, then JoyBits will return a NULL value.

INPUTS PortName - JPORT1 or JPORT2.

RESULT JoyBits - Current joypad status bits. These are:

JS_LEFT = 0
JS_RIGHT = 1
JS_UP = 2
JS_DOWN = 3
JS_RED = 6
JS_BLUE = 7
JS_PLAY = 8
JS_RWD = 9
JS_FFW = 10
JS_GREEN = 11
JS_YELLOW = 12

The red and blue buttons are the equivalent of fire buttons 1 and 2
on a standard joystick.

BUGS I have not tested this!

SEE ALSO
ReadJoyPort, ReadJoyStick, ReadSegaPad, ReadAnalogue, games/games.i

1.16 games.library/ReadSegaPad

games.library/ReadSegaPad

NAME ReadSegaPad - Reads a Sega joypad from a specified port number.

SYNOPSIS
JoyBits = ReadSegaPad(PortName)

d0 d0

ULONG ReadSegaPad(UWORD PortName)

FUNCTION

Default 16 / 34

Reads a standard Sega JoyPad and returns its current status in the
JoyBits format. If the user was not using the SegaPad, then
JoyBits will return a NULL value.

INPUTS PortName - JPORT1 or JPORT2.

RESULT JoyBits - Current joypad status bits. The flags are:

JS_LEFT, JS_RIGHT, JS_UP, JS_DOWN, JS_FIRE1, JS_FIRE2

BUGS This has not even been tested by me! Somone test it and tell me if
it works OK.

SEE ALSO
ReadJoyPort, ReadJoyStick, ReadJoyPad, ReadAnalogue, games/games.i

1.17 games.library/ReadKey

games.library/ReadKey

NAME ReadKey -- Reads the keyboard and returns any new keypresses.

SYNOPSIS
KeyValue = ReadKey(Keys)

d0 a1

UBYTE ReadKey(struct Keys *);

FUNCTION
Checks to see if there was a keypress since the last time you
called this routine. If there were no keypresses then KeyValue
will return a NULL value.

Most key values are returned as ANSI, which is of the range 1-127.
Special keys (eg Cursor Keys, function Keys etc) are held in the
range of 128-255. You can see what these special keys are in
games.i.

Qualifiers have automatic effects on the ANSI value (eg shift+c
will return "C"). Alt keys, Ctrl keys, and Amiga keys have no
effect on the ANSI value.

The KeyStruct is also updated for future reference. A KeyStruct
will hold up to four keys since your previous check. If you are
calling ReadKey() every vertical blank, you are already supporting
typing speeds of an astronomical 600 words per minute, so it is
only necessary to check KP_Key1. If you are only grabbing keys
every 1/2 second, then all fields should be checked.

NOTE The GMS input handler needs to be active for this function to work.
This is done by calling ShowScreen() or AddInputHandler() in the
initialisation section of your program.

INPUT Keys - Pointer to a valid Keys structure. This structure is in the
form of:

Default 17 / 34

STRUCTURE KP,00
UWORD KP_ID ;Updated by function, ignore.
UBYTE KP_Key1 ;Newest KeyPress.
UBYTE KP_Key2 ;...
UBYTE KP_Key3 ;...
UBYTE KP_Key4 ;Oldest KeyPress.

RESULT KeyValue - Contains the latest keypress value, ie is identical to
KP_Key1.

Keys - Updated to hold new key data. You may receive as much
as 4 keys in the provided fields. Key fields containing
zero indicate that no key was pressed.

SEE ALSO
AddInputHandler, games/misc.i

1.18 games.library/FastRandom

games.library/FastRandom

NAME FastRandom -- Generate a random number between 0 and <Range>.

SYNOPSIS
Random = FastRandom(Range)

d0 d1

UWORD FastRandom(UWORD Range);

FUNCTION
Creates a random number as quickly as possible. The routine uses
one divide to determine the range and will automatically change the
random seed value each time you call it. This routine has now been
fully tested and generates 100% patternless numbers.

Remember that all generated numbers fall BELOW the Range. Add 1 to
your range if you want this number included.

INPUTS Range - A range between 1 and 32767. An invalid range of 0 will
result in a division by zero error.

RESULT Random - A number greater or equal to 0, and less than Range.

SEE ALSO
SlowRandom, demos/randomplot

1.19 games.library/SlowRandom

games.library/SlowRandom

NAME SlowRandom -- Generate a random number between 0 and <Range>.

Default 18 / 34

SYNOPSIS
Random = SlowRandom(Range)

d0 d1

ULONG SlowRandom(UWORD Range);

FUNCTION
Generates a very good random number in a relatively short amount of
time. This routine takes approximately two times longer than
FastRandom(), but is guaranteed of giving excellent random number
sequences.

Remember that all generated numbers fall BELOW the Range. Add 1 to
your range if you want this number included.

INPUTS Range - A range between 1 and 32767.

RESULT Random - A number greater or equal to 0, and less than Range.

SEE ALSO
FastRandom, demos/randomplot

1.20 games.library/WaitLMB

games.library/WaitLMB

NAME WaitLMB -- Wait for the user to hit the left mouse button.

SYNOPSIS
WaitLMB()

void WaitLMB(void);

FUNCTION
Waits for the user to hit the left mouse button. It will not
return to your program until this event occurs. Multi-tasking time
will be increased while waiting and an implanted AutoSwitch() call
supports screen switching.

SEE ALSO
ReadMouse, WaitFire

1.21 games.library/WaitFire

games.library/WaitFire

NAME WaitFire -- Wait for the user to hit a fire button.

SYNOPSIS
WaitFire(PortName)

d0

Default 19 / 34

void WaitFire(UWORD PortName);

FUNCTION
Waits for the user to hit the fire button. It will not return to
your program until this event occurs. Multi-tasking time will be
increased while waiting and an implanted AutoSwitch() call supports
screen switching.

INPUTS PortName - JPORT1, JPORT2, JPORT3 or JPORT4.

SEE ALSO
ReadJoyStick, ReadJoyPad, ReadSegaPad, WaitLMB, games/games.i

1.22 games.library/WaitTime

games.library/WaitTime

NAME WaitTime -- Wait for a specified amount of micro-seconds.

SYNOPSIS
WaitTime(MicroSeconds)

d0

void WaitTime(UWORD MicroSeconds);

FUNCTION
Waits for a specified amount of micro-seconds. During this time it
will reduce the task priority and make regular calls to
AutoSwitch() for you.

INPUT MicroSeconds - Amount of micro-seconds to wait for.

1.23 games.library/AddInputHandler

games.library/AddInputHandler

NAME AddInputHandler -- Add an input handler to the system.

SYNOPSIS
AddInputHandler()

void AddInputHandler(void)

FUNCTION
Adds an input handler at the highest priority to delete all system
input events. The idea behind this is to prevent input falling
through to system screens and to give you more CPU time by killing
all inputs.

If you are going to use any of the Read functions (eg ReadKey())
then it is vital that this function is active. This is because
some of the Read functions are hooked into the input handler

Default 20 / 34

that this function provides.

NOTE By default this function is always called by ShowScreen().
Therefore you only need to call this routine if you are using some
other screen opening routine not in the games.library.

SEE ALSO
RemInputHandler

1.24 games.library/RemInputHandler

games.library/RemInputHandler

NAME RemInputHandler -- Remove the active input handler.

SYNOPSIS
RemInputHandler()

void RemInputHandler(void)

FUNCTION
Removes the active input handler from the system. As a result this
will also deactivate certain Read functions (eg ReadKey()).

NOTE DeleteScreen() automatically calls this function so that any input
handlers set up by ShowScreen() are removed.

SEE ALSO
AddInputHandler

1.25 games.library/AddInterrupt

games.library/AddInterrupt

NAME AddInterrupt -- Activate a custom written hardware interrupt.

SYNOPSIS
IntBase = AddInterrupt(Interrupt, IntNum, IntPri)

d0 a0 d0 d1

ULONG AddInterrupt(APTR Interrupt, UWORD IntNum, BYTE IntPri)

FUNCTION
Initialises a system-friendly hardware interrupt and activates it
immediately. See the SetIntVector() and AddIntServer() descrip-
tions in the exec.library for more details on system interrupts.

INPUTS Interrupt - Pointer to your interrupt routine.
IntNum - The hardware interrupt bit.
IntPri - The priority of the interrupt, -126 to +127.

RESULT IntBase - Pointer to the interrupt base, you have to save this

Default 21 / 34

address and pass it back to RemInterrupt() before your
program exits.

SEE ALSO
RemInterrupt, exec/SetVector, games/misc.i

1.26 games.library/RemInterrupt

games.library/RemInterrupt

NAME RemInterrupt -- Remove an active interrupt.

SYNOPSIS
RemInterrupt(IntBase)

d0

void RemInterrupt(ULONG IntBase)

FUNCTION
Disable and remove an active interrupt from the system. This
function is identical to RemIntServer() in the exec.library, but is
a little easier to handle.

INPUT IntBase - Pointer to an interrupt base returned from AddInterrupt().

SEE ALSO
AddInterrupt, games/games.i

1.27 games.library/SmartLoad

games.library/SmartLoad

NAME SmartLoad -- Load in a file and depack it if possible.

SYNOPSIS
MemLocation = SmartLoad(FileName, Destination, MemType)

d0 a0 a1 d0

ULONG SmartLoad(char *FileName, APTR Destination, ULONG MemType)

FUNCTION
Loads in a file and depacks it if necessary. If the function
cannot find a recognised packer for the file then it will assume
that it is not packed, and load it in without alteration.

SmartLoad() is written to be as intelligent as possible when
loading the file. This includes keeping memory usage as low as
possible, and searching the current directory for a file if any
disk assignment cannot be found. Future revisions of SmartLoad()
are likely to contain more of these types of intelligent features.

Currently supported packers are XPK (external), PowerPacker (inter-

Default 22 / 34

nal) and RNC (internal). The recommended packing method for your
files is the traditional RNC packer, which does not require any
extra buffers for unpacking.

Files packed with XPK require the xpkmaster.library and the
relevant compressor in your LIBS: directory, if the file is to
unpack. Keep this in mind when distributing your game.

If you pass NULL as the Destination address, SmartLoad() will
allocate the memory for you and return it in MemLocation, but you
must give a recognised memory type.

If you give the Destination for the file then the MemType is
ignored.

NOTE If you wanted the allocation you will have to free it with
FreeMemBlock() when you are finished with it.

INPUTS FileName - Pointer to a null terminated string containing a file
name.

Destination - Destination for unpacked data or NULL for allocation.
MemType - Memory Type (only required if Destination is NULL).

RESULT MemLocation - Pointer to the loaded data or NULL if failure.

SEE ALSO
QuickLoad, SmartUnpack, <exec/memory.i>

1.28 games.library/QuickLoad

games.library/QuickLoad

NAME QuickLoad -- Load in a file without any depacking.

SYNOPSIS
MemLocation = QuickLoad(FileName, Destination, MemType)

d0 a0 a1 d0

APTR QuickLoad(char *FileName, APTR Destination, ULONG MemType)

FUNCTION
Loads in a file without attempting to depack it. The advantage of
this function is that it will assess the file size and load it all
in for you. It can also allocate the memory space if required, and
has limited directory searching as in SmartLoad(), if the file
cannot immediately be found.

If you pass NULL as the Destination address, QuickLoad() will
allocate the memory for you but you must supply a recognised memory
type. If you give the Destination for the file then the MemType is
ignored.

NOTE If you wanted the allocation you will have to free it with
FreeMemBlock() when you are finished with it.

Default 23 / 34

INPUTS FileName - Pointer to a null terminated string containing a file
name.

Destination - Destination for unpacked data or NULL for allocation.
MemType - Memory Type (only required if Destination is NULL)

RESULT MemLocation - Pointer to the loaded data or NULL if failure.

SEE ALSO
SmartLoad, SmartUnpack

1.29 games.library/SmartUnpack

games.library/SmartUnpack

NAME SmartUnpack -- Unpack data from one memory location to another.

SYNOPSIS
MemLocation = SmartUnpack(Source, Destination, Password, MemType)

d0 a0 a1 d0 d1

APTR SmartUnpack(APTR Source, APTR Destination, ULONG Password,
ULONG MemType)

FUNCTION
Attempts to unpack a data area if it can assess the packing method
used. The data should begin with an ID longword followed by the
size of the original data before it was packed. The data itself
must follow directly after this. Any packer that does not do this
will not be supported by this function.

If you pass NULL as the destination address, SmartUnpack() will
allocate the memory for you, but you must give a recognised memory
type. If you give the Destination, the MemType is ignored.

This function currently supports XPK (external) and the RNC
(internal) packer types. The RNC packer can unpack directly over
itself (ie Source and Destination can be the same). Do not try
this with the XPK packer - it won’t work!

NOTE Remember to free any memory returned in MemLocation with
FreeMemBlock() if you wanted the allocation.

INPUTS Source - Pointer to start of packed data (must be an ID
header).

Destination - Destination for unpacked data or NULL for allocation.
Password - FileKey or NULL if none is used.
MemType - Memory type (only supply if Destination is NULL).

RESULT MemLocation - Pointer to the unpacked data.

SEE ALSO
SmartLoad

Default 24 / 34

1.30 games.library/SmartSave

games.library/SmartSave

NAME SmartSave -- Save a file to disk using a packer algorithm.

SYNOPSIS
ErrorCode = SmartSave(FileName, Source, SrcLength)

d0 a0 a1 d0

UWORD SmartSave(char *FileName, APTR Source, ULONG SrcLength)

FUNCTION
Packs a file if possible, and then saves the resulting data out to
disk. The currently supported packing method is XPK-NUKE, but
GMSPrefs will soon allow the user to select any XPK packing method.
To load the data back into your game, you will have no choice but
to use SmartLoad().

INPUTS FileName - Name of the file to save to.
Source - Pointer to the start of the source data.
SrcLength - Amount of data to save.

RESULT ErrorCode - A standard GMS errorcode. NULL indicates success.

SEE ALSO
SmartLoad, SmartUnpack, games/games.i

1.31 games.library/SetUserPrefs

games.library/SetUserPrefs

NAME SetUserPrefs -- Initialise a new set of preferences.

SYNOPSIS
ErrorCode = SetUserPrefs(Name)

d0 a0

ULONG SetUserPrefs(char *Name)

FUNCTION
Initialises a new set of GMS preferences for the games.library.
The function will take the Name you have given and search for its
directory in ENV:GMSPrefs/. If found, the settings in this
directory will be loaded and each GPI will be reactivated for the
new preferences to take effect. If the Name is not found or if you
supply a Name of NULL, the default settings will be loaded. If the
default settings are not found, then the internal settings will be
used.

This function may also set your tasks priority and perform various
other actions that can directly affect your task, or the
environment that it is running in. For this reason, it is
essential that this is the first function that you call after

Default 25 / 34

opening the games.library.

The prefences manager for altering game settings is GMSPrefs, which
handles all game directories, the default settings and so on. For
more information on the options available to the user, see the file
GMSPrefs.guide.

NOTE If ENV:GMSPrefs/ does not exist, ENVARC:GMSPrefs/ will be searched,
then S:GMSPrefs/.

The field tc_UserData in your exec task node will be used to point
to a second GMSTask node. If you need a UserData node, there is a
link called gt_UserData in the GMSTask structure (see
games/tasks.i) which you may use for your own means. We recommend
that you treat this field as a chain of links in case of future
expansion.

INPUT Name - The name of the preferences directory to access, or NULL for
the default.

RESULT ErrorCode - Returns ERR_OK if successful.

1.32 games.library/LoadPic

games.library/Loadpic

NAME LoadPic -- Load in a recognised picture file.

SYNOPSIS
ErrorCode = LoadPic(Picture)

d0 a1

Picture = LoadPic(TagList)
d0 a1

ULONG LoadPic(struct Picture *)

struct Picture * LoadPicTags(unsigned long ...)

FUNCTION
Loads in a picture file (PIC_File), and if the picture type is
recognised, unpacks the data to a buffer given in PIC_Data. If you
do not supply a data destination, then a buffer will be allocated
for you and placed in PIC_Data. If this is the case you will later
have to call FreePic() to give this buffer back to the system.

LoadPic() has all the standard features of GMS functions, including
field initialisation for NULL fields. Note that by setting certain
fields you are placing restrictions on the picture that is to be
loaded. For example, if the picture is bigger then the specified
width, the picture will have its right edge clipped. To get around
this simply leave the Width field at zero, and LoadPic() will
initialise this field, loading the picture without clipping it.

NOTE If this function cannot identify the source header, then the call

Default 26 / 34

will fail. Currently the only supported format is IFF, but GIF,
JPEG and other picture format support will be added later (someone
please send me the info!)

INPUT Picture - Pointer to a Picture structure or TagList.

Here follows a description of each field:

PIC_VERSION
The version of the structure, currently PCV1.

PIC_Data
Pointer to the picture’s data destination for the unpack. If you
specify NULL here, a buffer will be allocated and placed here for
you.

PIC_Width
The width of the picture in bytes. This field will be initialised
if a width is not given here. Note that the picture will be
clipped if it exceeds the width boundary.

PIC_Height
The height of the picture in pixels. This field will be
initialised if a height is not given here. Note that the picture
will be clipped if it exceeds the height boundary.

PIC_Planes
The amount of planes in this picture. As usual this field is
initialised if it is NULL. Note that the picture will lose planes
if it exceeds this value

PIC_AmtColours
The amount of colours that you want to grab from the palette, or
the amount of colours available for the remap. This field will be
initialised if it is unspecified.

PIC_Palette
Points to a palette if you want to use the REMAP option. On the
other hand if you specify the GETPALETTE option, then the picture’s
palette will calculated and placed in here.

PIC_ScrMode
The screen mode that this picture is being loaded into. This field
will be initialised for you if you specify GETVMODE in PIC_Options.
Otherwise it is assumed you have filled out this field.

PIC_Type
The data type of this picture, PLANAR, INTERLEAVED or CHUNKY. If
you omit a specification in this field, the function will
initialise it to the user’s preferred screen type.

PIC_Options
You can specify certain flags here that will affect the way the
picture is initialised. Valid flags are:

GETPALETTE - Gets the palette of the picture and generates a copy
of the colour values in COL12BIT or COL24BIT formats.

Default 27 / 34

The amount of colours obtained is dependent on the
PIC_AmtColours field. If you specify 0 in that field,
all the colours will be obtained.

REMAP - Remaps the picture data to fit the palette pointed to
in the PIC_Palette field.

GETVMODE - Gets the user’s preferred screen mode and writes it to
GS_ScrType.

VIDEOMEM - Allocates video memory that is displayable on screen.

RESIZE - Resizes the picture so that it fits the given
dimension limits (PIC_Width, PIC_Height)

PIC_File
Pointer to a NULL terminated string, that contains the filename for
this picture. This field is ignored by the UnpackPic() function.

RESULT ErrorCode - Returns NULL if successful.

SEE ALSO
UnpackPic, FreePic, games/image.i

1.33 games.library/UnpackPic

games.library/UnpackPic

NAME UnpackPic -- Unpack a picture to a designated buffer.

SYNOPSIS
ErrorCode = UnpackPic(Source, Picture)

d0 a1 a0

ULONG UnpackPic(APTR Source, struct Picture *)

FUNCTION
Unpacks the data contained in a recognised picture header to the
data destination given in PIC_Data. If you do not supply a data
destination, then a buffer will be allocated for you and placed in
PIC_Data.

If this function cannot identify the source header, then the call
will fail. The standard expected format is IFF, but GIF and JPEG
support will be added (for benefit of the user) later.

INPUT Source - Pointer to the header of the picture source.
Picture - Pointer to a Picture structure.

RESULT ErrorCode - Returns NULL if successful.

SEE ALSO
LoadPic, FreePic, games/image.i

Default 28 / 34

1.34 games.library/GetPicInfo

games.library/GetPicInfo

NAME GetPicInfo -- Get the information on a recognised picture type.

SYNOPSIS
ErrorCode = GetPicInfo(Picture)

d0 a1

ULONG GetPicInfo(struct Picture *)

FUNCTION
This function will load a picture’s information header (unless it
is already present in PIC_Header), and then fills out the Picture
structure according to the information that it finds. Only fields
that are set to NULL will be initialised, so preset fields will not
be affected.

You will need to use some special options provided by the
PIC_Options field to get certain information. GETPALETTE will
write out the picture’s palette data to the address in PIC_Palette.
If PIC_Palette is empty then the correct amount of memory will be
allocated and placed in this field for you. GETVMODE will find the
picure’s resolution and colour modes and write it to PIC_ScrMode.

By using this function you can find information on any picture
format currently supported by GMS. If the picture format cannot be
assessed, then an error code of ERR_DATA will be returned.

NOTE You will have to call FreePic() if any memory was allocated by the
GetPicInfo() function (eg if GETPALETTE was specified without a
pointer in PIC_Palette).

INPUT Picture - Pointer to a Picture structure.

RESULT ErrorCode - Returns NULL if successful.

SEE ALSO
LoadPic

1.35 games.library/AllocMemBlock

games.library/AllocMemBlock

NAME AllocMemBlock -- Allocate a new memory block.

SYNOPSIS
MemBlock = AllocMemBlock(Size, MemType)

d0 d0 d1

APTR AllocMemBlock(ULONG Size, ULONG MemType)

FUNCTION

Default 29 / 34

Allocates a memory block from the system - this function is almost
identical to AllocVec() in the exec library. It exists here
because AllocVec() is only available on V36+ machines, plus it
offers some extra features available for debugging purposes.

Header and Tail ID’s are used to offer a security system similar to
MungWall, acting as cookies on the header and tail of memory
blocks. You will be alerted by FreeMemBlock() if the ID’s are
damaged. This is a permanent debugging feature, so there is little
need to run MungWall for debugging your programs.

Resource tracking is available, so you will be warned if you
allocate memory and forget to free it on exit (ie when you close
the games.library). This memory will be freed for your
convenience.

By default all GMS memory is cleared before it is given to you.
For simplicity there are only a few memory types:

MEM_ANY
MEM_VIDEO
MEM_BLIT
MEM_SOUND

MEM_ANY is suitable for basic programming purposes, such as storing
variables and running code. On current Amiga’s this could be
either chip or fast memory.

MEM_VIDEO is for displaying graphics, and is also compatible with
the Blitter.GPI.

MEM_BLIT is memory that is compatible with the Blitter.GPI.
Currently this GPI only uses chip memory, but future versions could
also support CPU drawing from fast if the graphic is located in
that area.

MEM_SOUND is memory that is compatible with the Sound.GPI. Like
the Blitter.GPI only chip memory is currently supported, but in
future sounds could be buffered in fast memory.

You may also use the MEM_PUBLIC flag if other programs will be
accessing your memory. This type of memory is not tracked, so it
is legal to have a different program free such a memory block.

INPUT Size - Size of the required memblock in bytes.
MemType - The type of memory to allocate, eg MEM_VIDEO.

RESULT MemBlock - Pointer to the start of your allocated memblock or NULL
if failure. If the allocation was successful then
-8(MemBlock) will contain the size of your allocated
memory. You can read this value, but DON’T write to
it! You can also check for valid memory allocations by
looking at the ID header. "MEMH" is placed at
-12(MemBlock), and "MEMT" is placed at the end of the
memory block.

SEE ALSO

Default 30 / 34

FreeMemBlock

1.36 games.library/FreeMemBlock

games.library/FreeMemBlock

NAME FreeMemBlock -- Free a previously allocated mem block.

SYNOPSIS
FreeMemBlock(MemBlock)

a0

void FreeMemBlock(APTR MemBlock)

FUNCTION
Frees a memory area allocated by AllocMemBlock(), AllocVideoMem(),
AllocBlitMem(), or AllocSoundMem(). If the mem header or tail is
missing, then it is assumed that something has written over the
boundaries of your memblock, or you are attempting to free a
non-existant allocation. Normally this would cause a complete
system crash, but instead we simply alert you to the fact, and you
can continue on.

Bear in mind that it does pay to save your work and reset your
machine if such a message appears, as it indicates that important
memory data may have been destroyed.

NOTE Never attempt to free the same MemBlock twice.

INPUT MemBlock - Points to the start of a memblock. If NULL, then no
action will be taken (function exits).

SEE ALSO
AllocMemBlock

1.37 games.library/DecToText

games.library/DecToText

NAME DecToText -- Outputs a Number as decimal formatted text.

SYNOPSIS
Address = DecToText(Number, AmtDigits, Destination)

d0 d0 d1 a0

APTR DecToText(LONG Number, ULONG AmtDigits, char *Destination)

FUNCTION
Takes a Number and outputs it to Destination as decimal formatted
text. AmtDigits defines the maximum amount of digits that you want
to be written out. If the number does not completely fill the
given amount of digits, it will be trailed with leading zero’s. If

Default 31 / 34

the AmtDigits parameter is NULL, the number will be output with
left alignment, (no leading zero’s). Negative numbers get a ’-’
character put in front.

INPUTS Number - A number to convert to text.
AmtDigits - The amount of digits to write out, or NULL if you

want left alignment with no trailing 0’s.
Destination - Memory location of where you want the numeric text to

be written out.

RESULT Address - The address where this function stopped writing out any
characters.

1.38 games.library/LoadObjectFile

games.library/LoadObjectFile

NAME LoadObjectFile -- Loads a valid object file and readies it for use.

SYNOPSIS
ObjectBase = LoadObjectFile(FileName)

d0 a0

APTR LoadObjectFile(char *FileName)

FUNCTION
Loads in an object file using the SmartLoad() function. The file
must be a recognised object file with a "GOBJ" header in the first
4 bytes.

If you want to create your own object files, read the section on
Data Objects.

INPUTS FileName - Indicates where to find the object file on disk.

RESULT ObjectBase - Start of the object file. Returns NULL if failed.

SEE ALSO
FreeObjectFile

1.39 games.library/FreeObjectFile

games.library/FreeObjectFile

NAME FreeObjectFile -- Frees a previous loaded object file.

SYNOPSIS
FreeObjectFile(ObjectBase)

a0

void FreeObjectFile(APTR ObjectBase)

Default 32 / 34

FUNCTION
Frees an object file that has been loaded in with LoadObjectFile().
Objects that are loaded in and are not freed may present you with a
resource tracking error when you close the games.library.

INPUTS ObjectBase - Pointer to a valid ObjectBase as returned by
LoadObjectFile().

SEE ALSO
LoadObjectFile

1.40 games.library/GetObject

games.library/GetObject

NAME GetObject -- Finds an object by Name and returns it.

SYNOPSIS
Object = GetObject(ObjectBase, Name)

d0 a0 a1

FUNCTION
This function finds an object by Name, and returns a pointer to
that object inside the ObjectBase. This function does not make
copies of the object, so any changes you make will be affecting the
original object data. This should be fine for the majority of
circumstances.

If the object is a code segment, you can execute it in assembler
using these instructions:

CALL GetObject
tst.l d0
beq.s .error
move.l d0,a0
jsr (a0)

Structure segments immediately start with the Structure ID (eg
GSV1), as do TagLists ("TAGS"). Data segments point directly to
the beginning of the data in question.

INPUTS ObjectBase - Valid ObjectBase as returned by LoadObjectFile().
Name - Pointer to the name of the object that you wish to find.

RESULT Object - Pointer to the Object, or NULL if not found.

SEE ALSO
GetObjectList

1.41 games.library/GetObjectList

Default 33 / 34

games.library/GetObjectList

NAME GetObjectList --

SYNOPSIS
ErrorCode = GetObjectList(ObjectBase, ObjectList)

d0 a0 a1

ULONG GetObjectList(APTR ObjectBase, struct *ObjectList[])

FUNCTION
This function acts the same way as GetObject() but will grab the
objects from a list and process them one by one. This is the
fastest and most convenient way to obtain a large set of objects.

Here is the ObjectList format:

dc.l "OLST"
dc.l <Name>,<Object> ;PE_Name, PE_Object.
dc.l ...
dc.l LISTEND

<Name> points to a character string correctly identifying an
object, and <Object> should be NULL as it will be initialised by
this function.

INPUTS ObjectBase - Valid ObjectBase as returned by LoadObjectFile().
ObjectList - A list of objects to initialise.

RESULT ErrorCode - Returns ERR_OK if successful.
ObjectList - Will be updated so that each PE_Object field points to

the relevant object that was found.

SEE ALSO
GetObject

1.42 games.library/CopyObject

games.library/CopyObject

NAME CopyObject -- Make a copy of the object and return it.

SYNOPSIS

FUNCTION

INPUTS

RESULT

SEE ALSO

Default 34 / 34

1.43 games.library/FindGMSTask

games.library/FindGMSTask

NAME FindGMSTask -- Find the GMSTask node for the current task.

SYNOPSIS
GMSTask = FindGMSTask()

struct GMSTask * FindGMSTask(void)

FUNCTION
This function will supply you with a pointer to the GMSTask node
for the task that called this function. The GMSTask node is used
for storing data that is specific to your task - things like
preference settings for example. Generally most of the fields are
considered private, although you may read values from them if
necessary.

For the curious, it only takes 3 assembler instructions to grab the
task node, so there is no time wasted in calling this function.

RESULT
GMSTask - Points to the GMSTask node.

SEE ALSO
games/tasks.i

1.44 games.library/

games.library/

NAME

SYNOPSIS

FUNCTION

INPUTS

RESULT

SEE ALSO

	Default
	games.library
	Master Library Functions
	Structure Layout
	GMS Lists
	Tags
	GMS Error Codes
	GMS Data Objects
	games.library/InitGPI
	games.library/RemoveGPI
	games.library/InitJoyPorts
	games.library/ReadMouse
	games.library/ReadJoyPort
	games.library/ReadJoyStick
	games.library/ReadAnalogue
	games.library/ReadJoyPad
	games.library/ReadSegaPad
	games.library/ReadKey
	games.library/FastRandom
	games.library/SlowRandom
	games.library/WaitLMB
	games.library/WaitFire
	games.library/WaitTime
	games.library/AddInputHandler
	games.library/RemInputHandler
	games.library/AddInterrupt
	games.library/RemInterrupt
	games.library/SmartLoad
	games.library/QuickLoad
	games.library/SmartUnpack
	games.library/SmartSave
	games.library/SetUserPrefs
	games.library/LoadPic
	games.library/UnpackPic
	games.library/GetPicInfo
	games.library/AllocMemBlock
	games.library/FreeMemBlock
	games.library/DecToText
	games.library/LoadObjectFile
	games.library/FreeObjectFile
	games.library/GetObject
	games.library/GetObjectList
	games.library/CopyObject
	games.library/FindGMSTask
	games.library/

