LES Map Editor V2

LES Map Editor V2

] COLLABORATORS
TITLE :
LES Map Editor V2
ACTION NAME DATE SIGNATURE
WRITTEN BY August 9, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

LES Map Editor V2 iii

Contents

1 LES Map Editor V2 1
1.1 Main Menu e e |
1.2 les_IntroduCtion o v o e e e e e e 1
1.3 les_shareware L e 2
1.4 1eS_dOCS . . . o o s s 3
1.5 les_screenlayout L e e e e e e e 5
1.6 les_menustrip o i e e e e e e e e e e e e e e e e 5
1.7 les_drawingcontrol L L e e 8
1.8 les_informationarea e e s, 9
1.9 les_controlarea L e e e 9
1.10 les_shapescroller e e e 10
TIT TeS_VIEWAICA v v v v ot e e e e e e e e e e e 11
1.12 les_shapeselector e e e e 12
1.13 les_groupselector L e e 13
1.14 les_rangeselector e e e e 14
1.15 les_configuration L. e e e e e e e 14
1.16 les_surfacedata L e e 16
1.17 les_reflecttable e 16
1.18 les_shapenames e 18
1.19 les_mapshapeadjust L 18
1.20 les_loadingshapes e 19
1.21 les_loadin@maps o i it e e e e e e e e e 20
1.22 1es_savingmaps v o vt e 20
1.23 les_savingCuStommaps v v v v e e e e e e e e e e e e e e e e e e e 21
1.24 1@S_SaVerawmap v v v v et i e 21
1.25 les_custommapfileformat L 22
1.26 les_tooltypesupport e e e e e e e e 24
1.27 1eS_ZENeTateSOUICE v v v v v e v e 26
1.28 ArexX SUppOIt o o e e e e e e e e 26
1.29 Arexx Loader/Saver e 28
1.30 les_creditS v o o e e s, 30
1.31 les_index e e s 30

LES Map Editor V2

1/31

Chapter 1

LES Map Editor V2

1.1 Main Menu

LES Map Editor V2

(formerly RI Map Editor)
LES Map Editor V2 (c)1994 Leading Edge Software

System Requirements:

IMb+ of memory
0S2.0 at least

Introduction
Shareware
Docs

Credits

Main Index

1.2 les_introduction

Introduction

Leading Edge Software is a team of university students (and staff)
to produce quality software for the Amiga range of computers.

The LES team:

Steven McNamara - Code,Documentation,Gfx (68000 expert :-))
Steven Matty - Code,Documentation, Gfx, Sampling

aiming

LES Map Editor V2 2/ 31

Steven Green — Code?,Documentation, Gfx, Sampling
Steven Innell — Music,Documentation, 3D Gfx
Robert Brennan - Gfx

Nigel Hughes — Code,Documentation, Gfx

Mike Richards - Gfx

The first project to be undertaken by the group was a user friendly Map
Editor suitable not only for games but many other applications as well
(this will become apparent further within these docs). Enjoy :-)

Contact us!

Note: If you don’t know some of the gibberish in this section just ignore
it - you don’t have access to what I am talking about :-)

There are a number of ways to get in contact with Leading Edge Software,
these being: EMail,Normal Mail,Phone or even Talk on the UNIX systems.

Normal Mail: Leading Edge Software
Stephen McNamara,
17 Mayles Road,
Southsea,
Portsmouth,
Hants.
PO4 8NP.

Telephone: England

(01705) 781507 - Steven McNamara
(01705) 611522 - Steven Green

EMail: sis3149@sis.port.ac.uk - Stephen McNamara
sis3099@sis.port.ac.uk - Steven Green
sis3147@sis.port.ac.uk - Steven Matty
spi@dcs.gmw.ac.uk - Steven Innell

You can also (Y)Talk us at either
sis3149@anubis.sis.port.ac.uk
or s1s3099@anubis.sis.port.ac.uk

Please feel free to mail us if you want a chat about this or anything else
we have done.

1.3 les_shareware

Shareware

Please help support this program by registering for it. It is only by
people registering that this program will continue to grow in the future.
You’1ll also ensure that our group as a whole continues to release public
domain and shareware software. If you intend to use this editor, as with
all shareware software, you should really register.

LES Map Editor V2 3/ 31

The editor is not crippled in any way, nor has it been made awkward to use
(for example, requesters popping up randomly whilst using it). There is
nothing to make you register (except loads of extra stonking features!),
we’re just appealing to your sense of justice. Support the shareware ideal.
The registration fee for the LES Map Editor is five pounds sterling.

Things on the "Will do if people register’ are:

o Shape editing - via an arexx link to ShapeZ (a shape
grabber/editor written by Nigel Hughes)

o Palette editing and saving.
o Definable keyboard short-cuts.
o Better memory/screen mode handling.

o ARexx loader/saver list for automatic file format
selection.

The registered version of this program already supports the following cool
features:

* Multiple map files in memory at once - maps can be any size but
currently share the same shapes and palette. Multiple maps means though
that you can easily cut 'n’ paste between maps (using the Group functions
of the Map Editor).

* Loads more arexx support, including: shape requester, adding menu
items (so an arexx program can add its own menu items/subitems to the Map

Editor’s menu strip).

* And errrmmmmm welllllll and more :).
Now, on with the docs

1.4 les docs

What is the LES Map Editor?

The LES Map Editor is a program written is written in Blitz Basic 2 and

680x0 assembler. The editor is geared towards to Blitz Basic 2
developers, but this does not mean that it is restricted for use within
Blitz Basic. It could be used for any type of map creation, for any

language.

LES Map Editor V2 4/ 31

Basically a Map Editor simplifies the task of creating maps for your games,
projects, designers, puzzles etc. etc. In fact it may be used for any such
task in which a map is needed. Such an example for the type of maps that

can be created would be an overhead view game such as pacman or

dynablasters, even sideviewing games can be designed e.g.. the shareware game
StarWoids had its maps created using the LES Map Editor.

This Map Editor is different to others however through its user friendliness
and ease of use - you can even grab iff pictures of blocks with it and use
them as blocks for use with your map. This means that the only program you
need to create you map from scratch is the LES Map Editor.

The LES Map Editor uses Intuition fully, thus allowing anyone to use it
quickly and easily. As long as you, the user, have a basic understanding
of ideas like menu strips, windows and buttons (gadgets) then you should
have no problems getting into, and using, this editor.

Some Jargon and references....

Some simple jargon used inside this doc file:

Blocks/shapes - these are the graphics that you’re using to build
up your map. They can be thought as of bricks that
are built up into wall, where the wall would be
your map.

Groups - groups are ’'collections’ of blocks. They are used
to make repeated collections of blocks easier to
use.

Maps - this is the actual data you are editing. Maps are

built up from shapes and groups using the editor
and saved out for inclusion in your game.

Blitz2 Map Editor - this is the original map editor supplied with the
Blitz Basic 2 package. The LES Map Editor is
partially based on this editor, and includes
practically all of its features. Any Blitz2 map
editor users should find the transition to this
editor very painless.

Screen Layout Reflect Table
Editor Menustrip Shape Names
Drawing Control Area Map Shape Adjust
Information Area Loading Shapes
View Area Loading Maps

Control Area Saving Maps

Shape Scroller Saving Custom Maps
Group Selector Save Raw Map
Range Selector Custom Map File Format
Configuration Tooltype Support

Surface Data Generate Source

LES Map Editor V2

5/ 31

Shape Selector ARexx Support

1.5 les_screenlayout

The screen layout

The LES Map Editor screen is laid out into a series of vertical sections.
These are:

o Menu Strip

o Drawing Control Area

o Shape Scroller [optional]
o View Area

These areas will be discussed one after the other.

1.6 les_menustrip

The Map Editor Menu Strip

Most of the features of the LES Map Editor are reached via the menu strip.

Map editor has 3 menus: the Project menu, the Prefs menu and the
operations menu. Following is a complete list of menu options available,
with keyboard short-cuts and explanatory text. All on menus are

shown with the standard ’'Amiga’ symbol next to their name to help you
identify them.

On the Project menu:

The items in the project menu allow you to load and save different file
types, as well as control the current map and shapes.

New map Amiga n - brings up the new map requester, from where you
can create a new map or load one off disk. You
can cancel this requester if you like, in which
case nothing happens to your map. Otherwise, a
new map will erase your old one.
Clear map Amiga c - opens a requester asking you if you really want
to clear the current map. Clicking okay will
erase everything in the map.
Resize map Amiga z - brings up a requester that looks like the New
map requester except that here you can resize
either the map size or the block size for
shapes. Clicking Okay will change the size of
the map without erasing it. You will, though,

LES Map Editor V2

6/ 31

loose data if you resize the map to smaller than
its original size.

Changing the block size in this requester will
cause all current shapes to be scanned to make

sure they are no bigger than the new size. Shapes

that are larger than the block size will be
cleared.

Load map Amiga 1 - brings up a file requester from where

select either a custom map or a raw file to load
into the editor. When you select a file, the
program will automatically try and identify the
file type. If it doesn’t manage to identify it,
a requester will open up asking you to select the
file type to load it as.

This file requester remembers the path you last
loaded from for easy map editing.

Load shapes Amiga a - opens a file requester asking you

shapes file to load. Selecting a file will

cause the Shape Load window to open up. Here

you select some options about how the shapes

in the file should be loaded in or can cancel the
load.

See the section on Loading Shapes for more
information.

Load palette Amiga p - brings up a file requester asking

an IFF file from which to load a palette from.
The file can be a picture, anim or Jjust a palette
file on its own (e.g. saved out from DPaint’s
Save palette option).

you can

to select a

you to select

Save map Amiga s - opens a file selector from where you select the

filename to save the current map as. You will be

warned if the file already exists and asked if you

really want to overwrite it. Selecting a file
will cause the Save Map window open where you can
select what information you want saved in the map
file.

See the section on Saving Maps for more
information.

Save raw Amiga S - opens a file requester from where you

Generate source Amiga G - brings up a window asking you to choose exactly

About

the name of the raw map file to save. Selecting
a file will cause 2 requesters to open up asking
you how you want the raw map to be saved. Select
your options here and the map will be saved to
disk.

See the section on Saving Maps for more
information.

how the Blitz source code will be generated.
There are many options to choose from, you should
look at the section on Generating Source for more
information about them. Clicking cancel will
abort this function whilst okay will open a file
requester where you select where to save the
source to.

can select

Amiga ? - opens up several requesters giving program

information and details of the author.

Quit and die Amiga g - opens a requester asking you to confirm that

LES Map Editor V2 7 /31

you really do want to quit. Selecting okay will
cause the program to end and all current work to
be deleted. Please save out any maps that you
wish to keep before you select this option.

The Prefs (stands for Preferences) menu:

This menu allows you to configure the map editor environment.

Configuration Amiga / - brings up windows where you can configure almost

everything inside the editor. There are three
configuration windows, and each has a More button
which allows you to jump to the next one.

See the section on Configuration to get more
information about all the configurable options.

Iconify Amiga I - iconifies the program to either the Tools menu on

Screen

the Workbench screen or a window on the Workbench
screen depending on the iconify mode selected

in the configuration. Iconfying the program
causes its screen to close and some memory to be
frozen up. It does not quit the program -

instead it Jjust puts the program to sleep until
you need it again.

mode Amiga m - opens up a ReqgTools screen mode requester from
where you can select your preferred mode (e.g.
Lowres, hires etc.). Clicking on okay will cause
the map editor to reopen its screen in the new
resolution straight away. Only standard screen
modes are available (e.g. no HAM modes).

Note: when you save your configuration, the screen
mode details are automatically saved with it so
that the editor can open its screen in your
preferred mode when next run.

Remap shapes Amiga e - whenever a palette is loaded into the editor, the

bottom four colours are automatically altered by
the editor to preserve the bottom four colours for
its own use. This means that the editor will
always look the same. This does also mean,
though, that graphics that use the bottom four
colours will be corrupted slightly. The remap
option allows you to change all occurrences of the
bottom four colours in the shapes to spare colours
at the top of the palette. This means that all
shapes will be viewed correctly inside the editor.
Remapping can only be done if your shapes are in
less that 256 colours and you have a palette
loaded. Also note that the palette loaded isn’t
actually altered by this command. Thus you can
save out the palette in a custom map without
worrying about it being corrupted.

Surface data Amiga d - opens up a window from where you can edit the

surface data for the currently loaded shapes.
See the section on Surface Data for more
information.

Reflect table - has a sub menu where you decide what you want to

do to the reflect table. the submenus are: Load,
Edit and Save. Selecting a submenu will cause the

LES Map Editor V2

8/ 31

desired function to run.
See the section on Reflect Table for more

information.
Shape names - brings up a requester where you can select whether
you want to load or save shape names. You can

also cancel this requester.
See the section on Shape Names for more
information.

The operations menu:

This menu allows you to perform several different, map related operations.
You should note, though, that options on these menus *cannotx be undone.
For example: once a Fill Map Range function has been performed, you cannot
used the undone function to restore the original data.

Goto map %X,y Amiga g - opens a window from where you can select whether
or not the move is relative or absolute. This
window has two gadgets in which you can enter the
coordinate to go to, these gadgets are
automatically loaded with the current screen
position when the window is opened. Selecting
Okay will cause the move to performed, Cancel
will abort.
Fill map range Amiga f - this first brings up the shapes requester for you
to select a shape to fill with. It then opens a
window from where you select the area of the map
to fill. You type in the position and size of the
fill into the gadgets and click Okay to perform
the fill, Cancel will abort.
Replace shape Amiga r - this function replaces all occurrences of one shape
in the current map with the current shape. It
will first ask you to select the shape to replace
from the shape requester. Then it will open a
window from where you can select the area of the
map to replace. Only shapes within this area will
be replaced. Click Okay to perform the replace,
or Cancel to abort.
Map flip Amiga h - brings up a requester asking you in which
direction you want to flip. After selecting either
X or Y it opens up a window from where you can
select the area of the map to be flipped.
Selecting Okay will perform the flip, else Cancel
will abort.
Note: this operation uses the Reflect Table.
Map shape Amiga — Allows you to alter the map data directly by
adjust subtracting an integer value from all positions
within a given map range.
See later in this doc for a full discussion of
this function.

1.7 les_drawingcontrol

The Drawing Control Area

LES Map Editor V2

9/ 31

This area is located directly under the menu strip. It is split into the
separate areas, these being the Information area and the Control area.
Here you are given information about the current position on display in the
map and given the chance to change the current drawing mode.

1.8 les_informationarea

Information Area

The Information area is located on the left of the Drawing Control area
and has two lines of text on it. The first is titled MAP POS, this stands
for map position and tells you the map coordinates underneath the mouse
pointer. It also shows the shape number at that position in the map, If
the mouse is not inside the drawing area, this line will be blank. It will
also remain blank, if you have not selected "Onscreen coordinates” from the
configuration screen from the Prefs menu.

The information is shown in the form of:

MAP POS: x,y,shape number

although shape number will not appear if the map position is not defined
(e.g. you have drawn anything there yet).

The second line of text in this area shows the current view coordinates of
the view in relation to the map. It is shown in the form of:

VIEWING: x1 to x2,vl to y2

where (x1,yl) are the coordinates, in the map, of the top left hand corner
of the view area, and (x2,y2) are the coordinates of the bottom right hand
side of view area. If the current map is smaller than the viewing area,
(x2,v2) will be the bottom right corner of the map.

1.9 les_controlarea

Control Area

The Control area is located on the right of the Drawing Control area. It
contains a series of gadgets that allow you to control the map drawing
process, these gadgets are:

Gadget Shortcut Description

Shape <Space> Brings up the shape selector window

Group g Brings up the group selector window

L(eft) 1 Asks you to click on a shape in the map
to assign to the left mouse button. If you

hold down <Shift> whist pressing the
shortcut, the shape under the mouse pointer

LES Map Editor V2 10/ 31

is automatically selected.

R(ight) r Asks you whether you want to select a map
block to assign to assign to the right mouse
button or delete the current assign.

If you click on select you’ll be asked to
select a shape from the map.

As with L(eft), pressing <Shift> and the
shortcut will cause the shape under the
mouse pointer to be automatically selected.

The following are only available if you are using a screen that is wider
than 320 pixels. If your screen is only 320 pixels wide (low res) then
these functions can only be activated from the keyboard shortcuts.

Undo u Causes the last shape or group drawing
operation to be undone. Clicking on undo
again will cause the original data to
return. Note that the undo buffer can only
undo a maximum of 1000 shapes.

Full f Fills the view area with all the current
shapes. From here you can then select a
shape for either the left or right mouse
button by clicking on one. If you have more
shapes than can be viewed on screen at once,
you can scroll the area up and down with
the up and down cursor keys.

Name n brings up a window with a list of all
currently defined names, from here you can
select a shape to put on the left mouse
button by name. Just click in the list of
names and hit Okay.

Draw/Box/Line <none> selects the current drawing mode for shapes
only - not groups. Changing the mode
automatically changes back to shape drawing.

1.10 les_shapescroller

The Shape Scroller

The shape scroller is located directly below the Drawing Control Area. It
allows you to view a range of the currently loaded shapes and select
different shapes without the need to open any windows. Just clicking on a
shape in the scroller with either the right mouse button or the left mouse
button will automatically select that shape for the mouse button pressed.
Note that you must release the button to continue.

The scroller has two scroll buttons, these are located at opposite ends of
the scroller and allow you to move it left and right through the shapes.
Click on these buttons with the left mouse button to scroll one shape at a
time in the selected direction, or click with the right mouse to move to the
start or end of the shapes (depending on what button you click on).

The scroller automatically adjusts its size to fill the whole horizontal
screen width. All shapes inside the scroller, are shown as 16x16 blocks,

LES Map Editor V2 11/31

this means that a shape larger than this will be clipped to fit inside this
size. If you haven’t got enough shapes loaded to fill the scroller, the
extra slots will be meshed out and will be unselectable.

Last point about the scroller: if you do not like the scroller, you can
switch it off from the configuration menu. Switching it off allows the view
area to expand vertically by approximately 17 pixels. This can be useful if
you’re trying to get as much of a map onscreen as possible.

1.11 les_viewarea

The View Area

This area is the actual view area for the map you’re editing. It takes up
most of the screen’s height and always fills the full width of the screen.

Moving the mouse pointer into the scroll area will cause the current shape
(or group) to be drawn under the mouse pointer. This draw is just to show
you what the shape will look like when actually look like when drawn down -
it is not a permanent change. Moving the mouse around the view area will
cause the current drawing shape(s) to move with the pointer, giving you a
preview of what it would look like if you drew them down.

Drawing with shapes is easy. Simply press the left mouse button and
release to draw the current shape(s) under your mouse pointer, or press and
move the mouse to draw the shape(s) at several different positions at once.
Pressing the right mouse button will cause a different shape to be drawn on
your map, depending on the current setting of the button. The default for
the right mouse button is delete, this means that when you draw, instead of
a shape being drawn onto your map, the current shape at the map position is
deleted. You can, though, assign a shape to the right mouse button (by
either selecting one from the shape scroller, pressing R on the keyboard or
selecting the 'R’ gadget on the screen). When drawing with this, any shapes
you try and draw will be replaced with selected right mouse button shape.

It is fairly unlikely that your map is going to exactly fit into the view
area. When your map is smaller than the view, the area inside the view
where you cannot draw will be meshed off. You will be unable to draw
anything inside this meshed area. You will, though, only get a mesh if you
have the mesh option selected from the configuration windows, otherwise the
area will be blank. If your map is to big for the view you are able to
scroll around it with the cursor keys. This lets you create and edit a map
that is much larger than the current view can show with ease. Pressing a
cursor key will scroll the map in the given direction one block unit (the
unit will be the block width for X scrolling or the block height for Y
scrolling). If this isn’t fast enough for you, you can press shift at the
same time to Jjump a full views worth of map. Note, though, that you’ll
never be able to scroll outside of the map area. If you wish to move to a
specific coordinate or wish to move large distances, you can use the Goto
Map XY menu option to jump to a certain position.

LES Map Editor V2

12/31

1.12 les_shapeselector

The following are additional requesters that are used to help you, amongst
other things, select the current drawing shape/group.

Shape Selector Window

This window allows you to select a shape from the currently loaded ones.
It is called up by pressing either on the ’Shape’ gadget on the Control
Area or by pressing <SPACE> on the keyboard. When used in this way, it
allows you to easily select a shape to place on the left mouse button.

Inside the window, you will find a set of gadgets that let you move up
and down through the currently loaded shapes, as well as some info about
the current shape. On the left and right sides of the window are two sets
of two gadgets. They are for changing the current shape, the bottom top
gadget of each set moves one shape at a time, whilst the bottom one moves
ten shapes at a time. This gadgets can be activated from the keyboard, use
"<’ and ’>’" to decrease or increase the current shape by one, or press
<Shift> and either of them to decrease/increase by ten shapes.

The number of the current shape is shown at the top of the window.
Directly underneath this there is a display box in which the current shape
is shown. If the shape is larger than the box, it will be clipped to fit

inside it. The last bit of info that is shown about the shape is the name
of it. This is displayed in a text gadget directly under the view area,
you can type a new name for the shape directly into this gadget. The name

should be in the form of a variable, e.g. Backgroundblock. You can have
numbers in the name, but they should always appear at the end of it, e.g.:

Backgroundblockl is allowed
Backgroundlblock is not allowed

The name text gadget can be activated from the keyboard, just press
[Return]. Note, though, that whilst the text gadget is active, you cannot
use any of the keyboard shortcuts for the window.

An extra feature of this window is that you can select a shape from the
map. All you have to do is click outside the window on a shape in the view
area. This will cause the current shape to automatically switch to the
selected shape.

To exit the window and select the current shape for the left mouse
button, just press on the Select gadget at the bottom of the window or
press the S key.

Operations

Several of the functions on the Operations menu will call up the shape
selector window. When this happens, you will not be selecting a shape to
draw with, but rather a shape to perform the operation with. An example of
this is the replace operation, in this you’ll be asked to select a shape to
replace with the current shape. From the selector window you’d click on

LES Map Editor V2

13 /31

the shape you wanted replaced in your map.

1.13 les_groupselector

Group Selector Window

This window allows you to control groups inside the map editor. From it
you can select, create or delete any groups available. The window can be
invoked either by clicking the gadget Group in the Control Area, or by
pressing the G key.

The group window is very similar to the shape selector window in that it
shows you info about the current group and allows you to cycle through the
groups. Where it differs, though, is in that is has a series of extra
gadgets that are specific to groups, these are:

Xflip/Yflip: This allows you to flip the current group either
horizontally (X) or vertically (Y) about its
center.

X0.5: It is possible that your group may be too big to
display in the view area of the window. If this
happens you can select this gadget to enable

viewing at half normal size. With this gadget
"checked’ all groups will be shown at half their
normal size inside the view area. This will not

affect drawing with the groups.

R.T.: This stands for Reflect Table and says whether
or not you want the reflect table to be used when
groups are flipped horizontally and vertically. If
this gadget is checked the reflect table is on for
group flipping.

Create: Clicking on this will allow you to edit a group
from scratch. The selector window will be hidden,
and you’ll be able to click with the left mouse
button on parts of the map to add items to the group.
The relative position and shape number of the map
square you click on will be stored in the current
group. You cannot add empty positions to a group,
and a group can have a maximum of 100 shapes in it.
You can also only select each position once, the
position will be highlighted to show that it has
been added okay.

Press with the right mouse button to end creation
of groups and return to the selector window.

Note: the current group will be replaced by the new
one when you perform this function.

Delete: Allows you to clear the current groups data. Note,
though, that you cannot undo this delete.

Select: Exits the selector window and puts the map editor

LES Map Editor V2

14 /31

into group drawing mode. If the group you have
currently selected has no shapes in it, the mode
will automatically be changed back to shape draw
and will use the last selected shape.

Please note that all these gadgets have keyboard shortcuts. They will all

have an underline character in their text showing the key to press to
activate them.

1.14 les_rangeselector

Range Selector Window

This window is used by all the functions that just act on a specific area

of the map. In it, you select the area of the map that the function should

use, or cancel if you wish to abort the function.
There are 8 gadgets in the window, and these are split up into 2 groups.
<String gadgets>
Start Map X: Set the start x position for the function.
Start Map Y: Set the start y position for the function.
Width to do: Set the width of the function (must be at least 1)
Height to do: Set the height of the function (must be at least 1)
<Button gadgets>
From View: Sets up the start positions, width and height to
reflect the current map view area. This can be

used to quickly select the visible area of the map.

From Map: Sets up the start positions, width and height so
that the function will work on the entire map.

Okay: Exit the requester and perform the function.

Cancel: Abort the requester and cancel the function.

1.15 les_configuration

Configuration
The map editor is very configurable. You can change a lot of options to
customize it to just how you like it. You can also save all preferences so

that it will automatically load into the correct mode when next run.

The configuration section consists of 3 windows, entitled Default Paths,

LES Map Editor V2

15/ 31

Misc 1 and Misc 2. All these requesters have 3 buttons at the bottom of
their windows:

o More - skips to the next window
o Save — save the current configuration
o Okay — exit configuration section

Default paths

From here you can select the default paths to load/save maps from, load
shapes from and load palettes from. You can either enter a new path into
the string gadgets, or you can click on the gadgets next to the paths to
bring up a requester from where you can click a path with the mouse.

This contains a series of different gadgets:

o Buffersize: set the size of the buffer used for undrawing shapes
and groups on the map. The size will be dependant on the depth of your
screen and the number of shapes in the groups you’re drawing with. If in
doubt, set this value high (max is 500k) to ensure that a crash will not
occur.

o Iconify to: this cycle gadget lets you select whether to iconify
to the Tools menu or a window on the Workbench screen.

o Iconify end: this is used when you are iconifying to a window.

It lets you select whether the right mouse button ends the iconify, or the

zoom gadget of the window.
o IconifyX: default x position of the iconify window.
o IconifyY: default y position of the iconify window.

o Use ApplIcon: select whether or not an appicon appears on the
Workbench screen. The appicon can have maps dropped on it
to automatically load them in.

o Interleaved: lets you select whether or not the screen is
interleaved (0S3.0+ only). Interleaved screens
flicker much less when they’re scrolled and so are a
lot nicer to work with.

o Shape remap: decide what happens when shapes are loaded whilst a
palette is also loaded. Options are:

No — don’t remap shapes

Yes— automatically remap shapes

Ask—- open a requester asking whether or not
to remap the shapes straight after

LES Map Editor V2

16/ 31

loading them

o0 Use mesh: lets you select whether or not areas of the view are
that you cannot draw on are meshed out. If this
checkbox is ’checked’ then the mesh is on.

o Shape scroller: switch shape scroller on and off. If checked
then the scroller is on.
See the section named Shape Scroller for info
about the scroller.

o0 Quiet shape remap: decide whether remapping shapes gives a
progress indicator or if it just sets the
mouse to a busy pointer. Quiet remapping
is slightly faster than using the progress
indicator.

o RIMP icon files: select whether to save icon files when custom
maps are saved.

o Onscreen co-ordinates: shows x,y coords, and shape number
next to MAP POS: in the information
area.

1.16 les_surfacedata

Surface Data

Surface data allows you to assign separate values to shapes. When you
save custom maps, you’ll be given an option to save out an extra chunk of
data that will hold a copy of your map, except that all shape numbers are
replaced by surface data. Thus you could build, for example, a tree out of
6 separate blocks, but assign them the same surface value. Your program
could then use the main map data to draw an onscreen map and use the surface
data map for something like collision detection.

The surface data window consists of two shape display boxes. Each has a
slider so that the shape displayed in it can be changed to any of the
currently loaded. Each also has a gadget for entering an integer value for

the shapes surface data.

There are two display areas so that you can easily set the surface values
for a range of shapes. In the center of the window there is a 3 integer
gadget. This gadget holds the value to assign to either all shapes or a
range of shapes. To set a range, set up one display area to point at the first
shape in your range, and set the other to point at the last. This range
can then have one value assigned to every shape in it by clicking the
"Set Range’ button.

1.17 les_reflecttable

LES Map Editor V2 17 /31

Reflect Table

The reflect table allows you extra control over flipping maps and groups.
In the reflect table, each shape loaded has a xflip and a yflip shapes
number. What these means is that when a shape is flipped, it automatically
changes to the alternate shape in the table. Thus xflipping a shape in a
group or map would cause it to change into an alternate shape.

Let me give an example to illustrate this. Say you had some tunnel
shapes. On represents a left exit from a tunnel, one a mid-section of
tunnel and the last a right exit from a tunnel. These shapes in a map
could represent a tunnel section in your map. They’d be drawn out with my
left exit, then the mid and then the right exit, going horizontally across
the screen. Now what would happen if you flipped just these 3 blocks? The
left and right exit would be reversed, giving a corrupted tunnel that would
need redrawing to make it look correct.

To get round this, you could use the reflect table. You’d set it up so
that the left tunnel exit flipped horizontally into the right exit. Then
when the area of map was flipped, the exits would automatically change into
the correct exit. This is a fairly simple example, a larger one could
involve a number of blocks in a shoot-em-up. It would be likely that a lot
of the background blocks would just be the x or y flips (e.g. flipping the
"image’ if a shape when drawing) of other blocks. Thus you could draw an
area of map, and using the reflect table, easily flip this and paste it
somewhere else for my variety in your level.

Editing the reflect table

The edit window consists of 3 shape display areas. The one in the top
left shows the current shape being edited. The other two show what the
shape currently flips into in the x and y directions. These can be changed

using the sliders next to each area to change what the shape flips into.
There are several buttons in this window, these are:

o Correct: this looks at the shapes that the current shape flips

into. It then makes it so that those shapes will flip into the current
shape. This can be explained from the tunnel example given earlier. When
you flip the left tunnel exit horizontally, you want it to change into the
right tunnel exit. Inversely, when you flip the right one, you want it to
turn into the left one. To do this, all you’d have to do is set up the
left to flip into the right and then press on ’Correct’. The right exit
will then automatically be adjusted to flip into the left exit.

o Reset ALL: resets all shapes so that they flip into themselves.
o Okay: Exit the window and keep any changes.

o Cancel: Exit the window but don’t keep any changes.

LES Map Editor V2 18 /31

1.18 les_shapenames

Shape Names

In the map editor, individual shapes can be named. This can be very
helpful as in programs it is very useful to address individual shapes by a
constant (e.g. #background) than an actual number. If you use constants,
you can change orders of shapes and delete shapes in your files without
having to go through your program making changes to all your blits etc.
All you have to do is change your maps and change the constants at the top
of your program.

Names are entered in the shape select window. Inside this window is a
string gadget, inside which you can enter a name. Don’t put a "#’ at the
start of the name - when you save names, they automatically have a ’#’
added to the front of them. See the section on the shape select window for
more information about entering shape names (e.g. what names are allowed).

The ’Shape Names’ menu item

Clicking on this menu item will cause a requester to open. From here you
can either Load or Save shape names. Shape names are stored in a standard
ASCii file that can be inserted straight into any source code. They are
saved out in the following form:

" #’ +<shapename>+’ =’ +<shapenumber>
e.g. if the name for shape 20 is Backgroundblock, it would be saved as:

#Backgroundblock=20

Assembler programmers will need to change the shape name file after
inserting it to replace all "=’ with ’ equ ’.

If you are loading, you should make sure that the file you select if
actually a shape names file. Selecting a different file could lead to a
crash.

1.19 les_mapshapeadjust

Map Shape Adjust

This menu item allows you to add or subtract an integer value from a
specific area of the current map. It is a fairly complex process, in that
a series of requesters have to be replied to before the process actually
takes place.

What actually happens is that you select firstly a shape range to perform
the adjustment on. Only shapes within this range will actually be altered
on the map, but the alteration may cause the final shape number to ’'leave’
this range. The adjusted value will never be more than the currently

LES Map Editor V2 19/ 31

loaded number of shapes.

Then you must enter an integer value to added to all the shape numbers in
the current map. This value can be either positive (to increase the shape
numbers) or negative (to decrease the shape numbers).

Next you select the map range to change. when the adjust is performed,
it will only have any effect within this range.

After you have entered all the above information, you’ll be asked to
finally confirm that you want to actually perform the change. Beware,
though, the change cannot be undone.

Let me list out those steps to try and make it a bit clearer:

o Select shape range. This is done with two visits to the
Shape Select Window

o Select adjust value. Done using a standard string
requester

o Select map range. This is done using the Range Select
Window

o Confirm that you want to actually perform the adjust

And that’s all you have to do! Simple, huh? ;-)

1.20 les_loadingshapes

Loading Shapes

Shapes can be loaded in two ways. Either from a Blitz2 shapes file or
from an IFF picture file. TIf you select an IFF from the file selector, the
editor will automatically load and scan the picture for shapes. It finds
the edges of all graphics in the iff and cuts individual shapes out. It
will also ask you whether or not you want to grab the palette from the iff
for use in the editor.

Once you’ve selected a shapes file from the file selector you’ll be
presented with a window from where you can select how to load the shapes
in. Options will have checkboxes next to them, click these on or off
affects the status of the options. Valid options are:

o Reject smaller size - blocks that are smaller than the current
block size will be replaced with a blank
shape if this option is enabled. Note that
shapes larger than the block size are
always cleared.

o Reset handles - if enabled automatically sets the shape
handles to the top left corner. This
option xshouldx always be enabled since
shapes with different handles could
possibly cause a software failure.

o Overwrite current - 1if enabled, this will load the new shapes

LES Map Editor V2 20/ 31

at position 0. If disabled, the last
current shape will be calculated, and the
shapes will be loaded after these. This is
useful if your maps are made up off several
different shapes files.

o0 Quiet mode - if enabled, this will skip the status
information for shape scanning. This
speeds up loading but you loose out on
information about whether shapes are being
resized etc.

1.21 les_loadingmaps

Loading Maps

Clicking on the Load Map menu item will cause a file requester to open.
From here you’ll be asked to select a map file to load. This can either be
a custom map, a raw map or a map from the original Blitz Basic 2 map
editor.

When you select a map, the map editor will automatically try and
identify it. It will look at the start of the file and try and find the
custom header. If it finds this, it will perform a custom map load where
it will look for information in the map, and ask you to confirm which
chunks of data you want loaded from the map. The map data will always be
loaded, but you may select whether or not to load extra info, for example
palette, surface data and groups.

If the file is not identified, a requester will open asking you to
identify the map as raw (in which case you’ll be asked what form the data
is held in) or as a Blitz2 map file. 1If you select Blitz2, the map editor
will automatically look for the <mapname>.mapstuff file that is associated
with Blitz2 maps. If this file cannot be found, your map may become
corrupted as this file holds the map and block dimensions.

1.22 les_savingmaps

Saving Maps

The map editor supports saving in two formats: custom and raw. Both of
these formats have there good and bad points and are suitable for different
stages of a programs development.

Custom maps always come out at least slightly larger than raw maps. They
do though hold a lot more info that raw maps. For example, you can save a
palette, a pointer to a shapes file, group information and surface data
inside one custom map file. Thus when you load this one file into the
editor, you’ll automatically have all your groups back, plus the palette
and the shape file you originally loaded. This can take a lot of hassle

LES Map Editor V2 21/31

out of editing map files, as it simplifies the process of loading in a map.

On the negative side of custom maps is that fact that anybody could view
your map files simply by loading them in. They could also rip out your
maps as size info etc. is held all in one file. Depending on what sort of
project you’re working on, this could be a crucial point.

Raw maps are simply what they say: they are just a chunk of memory saved
out that describes the map. They hold no size information at all, or any
other type of info, except ’'this shape goes here’ info. They are always
smaller than custom maps. They are thus perfect for a finished product as
it anybody wanting to view them would have to have some info about their
dimensions before viewing could be done. For development, though, they are
not as good as custom maps because you have to manually load in extra data
(like a palette) and cannot save group information.

It is recommended that you use the custom maps during development of your
programs, and then use raw maps in a finished product is necessary (e.g.
for security).

When saving either raw or custom maps, you’ll first be asked to select
the save filename from a file selector, and then asked how you want the

data saved. When you select the name, you’ll also be asked to confirm an
overwrite of an existing file (if it does already exist).

1.23 les_savingcustommaps

Saving custom maps

When you save these maps, a window will open from where you can select
exactly what data to save with your map. There will be a series of
checkboxes in this window, which you can click on or off depending on what
you want saved. Valid options, at this time, are:

o Save palette in map

o Save group information

o Create Icon file =

o Pointer to shape file (stores filename in map)

o Surface data

* Creates an icon file for the saved map, with the map editor as the
default tool for it.

After selecting your options just click on the save gadget to go ahead
with the save or click cancel to abort.

1.24 les_saverawmap

LES Map Editor V2 22/ 31

Save raw map

After selecting your filename, you’ll be asked to select the size of data
to save. The options given to you are: Byte, Word and Cancel. Byte should
only be selected if you use less than 128 shapes in total (this takes into
account the fact that a basic doing a Peek.b will sign extend the number).
Byte files, though, will come out as half the size of word files. The only
other difference is that slightly different code is needed to use each type
of data in your own programs. The byte option is mainly of us to people
who already use a map editor that saves out data in bytes (like the Blitz2
map editor).

A second option will be given to you if you don’t cancel the first
requester. This option asks you what wvalue you want to identify a null
position in the map when saved. Possibly answers are: 00, -1 and cancel.
00 is the default, and means that the first shape number available for use
in the map is 1. -1 is available to help those who have previously used
different editors that use this value for null slots. Note that custom
maps use 00 for a null position.

The save will then go ahead as long as you didn’t select cancel from
either requester.

1.25 les_custommapfileformat

Custom Map File Format

Here is the structure of map files saved out using the custom map mode.
Note for the uninitiated:

.1 = longword value (4 bytes)

.w = word value (2 bytes)
.b = byte (errrmmmmm..... 1 byte!)
+4 = 4 byte offset from start of data
Map data is saved out in ’‘chunks’. These chunks have the general form:

4 byte header: identifier. e.g. CMAP = palette data
4 byte size : byte size of chunk
actual data

Custom Map Header: (always present)

+0.1 "RIMP" ;File identifier
+4.w block width ;pixels

+6.w block height ;pixels

+8.w map width ;in blocks

+10.w map height ;in blocks

LES Map Editor V2 23/ 31

Version chunk: (always present)
+0.1 "VERS" ;Chunk identifier
+4.1 size of chunk ;in bytes
+8.1 "2.00" ;4 byte string holding

; version number

Map chunks follow in the following order (if present in map file):

Palette:
+0.1 "CMAP" ;Chunk identifier
+4.1 size of chunk ;in bytes (SAME AS IFF ILBM)

+8,9,10.b r,g,b ;values for colour 0
+11,12,13.b r,qg,b ;values for colour 1

etc.... for all colours
Groups:
+0.1 "GRPS" ;Chunk identifier
+4.1 byte size of chunk
+8.1 number of groups

for each group:
+0.w number of blocks
+2,+4,+6.w block 1,deltax,deltay,block number
+2,+4,+6.w block 2,deltax,deltay,block number

Shapes:
+0.1 "SHAP" ; chunk identifier
+4.1 size of chunk ; in bytes
+8..... filename of shapes file
Surface data: (map data)
+0.1 "SURE" ; chunk identifier
+4.1 size of chunk ; in bytes
+8.... map data ; (stored same as in MAPD chunk)
Surface data: (array of values)
+0.1 "SURD" ; chunk identifer
+4.1 size of chunk ; in bytes (=2 number of
; shapes)
+8.w data ; surface value for shape 0
+10.w data ; surface value for shape 1

(repeats for all defined shapes)

Map Data:
+0.1 "MAPD" ;Chunk identifier
+4.1 length of data ;bytes
+8.... data stored one row at a time

Each map position has a word value assigned to it which
gives the block number at that square in the map. 0=no block in map
position, 1 is therefore the first block number available for use.

LES Map Editor V2 24 /31

1.26 les_tooltypesupport

Tooltype Support

The Map Editor supports a whole list of tooltypes to allow you to
customise it to your own needs. These tooltypes can be edited directly by
bringing up the information requester from WorkBench or can be changed by
using the save configuration option in the configuration windows.

ToolType list

MODEID — This is the viewmode id of the screen you want
the editor to open on. It is recommended that
you do not edit this tooltype directly - using the
save configuration option from inside the program
will automatically set this tooltype.

SWIDTH — This is the width of the screen to open. It must
be at least 320 pixels and must be a multiple of
320 pixels wide.

SHEIGHT — This is the height of the screen to open. It
must be at least 200 pixels tall.

MAPPATH

PALPATH

SHAPEPATH - These are the default paths for loading and
saving. Respectively, they are for map loading
and saving, palette loading and shape loading.

BUFFERSIZE - This is the size of the buffer that the program
uses when it is moving shapes around the screen
under the mouse pointer. A reasonable size for

the buffer is 200k but be warned that if you are
using a group with loads of large, colourful
blocks then the buffer may need to be bigger.

ICONIFYTYPE - The program has an iconify feature that allows
you to hide it away (e.g. close screen and free
up loads of memory). When the program is
iconified it uses up very little processor time
and only memory associated with the actual
program and the shapes loaded.

This tooltype takes values 0 to 1 and lets you
select the type of iconify that occurs. A value
of 1 means that the program should create a menu
item on WorkBench’s Tools menu. Selecting this
option uniconifies the program.

A value of 0 means that the program should create
a window on WorkBench. Closing this window or
using the zoom gadget actives the program.

ICONIFYEND
ICONIFYX

LES Map Editor V2 25/31

ICONIFYY - If you selected a window iconify then these
tooltypes let you configure the iconify window.
The ICONIFYEND tooltype lets you decide whether
the iconify is ended by selecting the zoom gadget
on the window or by pressing the right mouse
button whilst the window is active.

APPICON - This says whether or not you want the program to
automatically create an appicon onto which you
can drop RIMP map files for fast loading. This
tooltype has no value, if you do not want an
appicon then just put brackets around it
(" (APPICON) ") .

QUIETREMAP - This allows you to select whether or not the
shape remap option shows you a progress bar
whilst remapping. Bracketing the tooltype out
enables the progress bar.

CREATEICONS - This allows you to select whether or not icon
files should be created for any RIMP files saved
out. When icon files are created the default
tool of the file is automatically set to the map
editor allowing you to double click the file to
load the map editor.

DOMESH — This tooltype allows you to switch on or off the
mesh that covers areas of the current screen that
go outside of the current map. You will see a

mesh if this option is enabled and your map is
smaller than the current screen.

AUTOREMAP - This option has 3 values: Yes, No and Ask.
It applies to shape loading and lets you decide
whether or not shapes should be remapped straight
after they are loaded. Note: you can only remap
if you have a palette already loaded. Set this
tooltype to ask too bring up a requester asking
you to decide whether or not to remap.

SHAPESCROLL - Select whether the shape scroller is on or off.
Selecting this will mean that shape are displayed
at the top of the view area for easy selection.

SHAPEBUTTONS - This is a binary number that holds the last saved
status of the gadgets on the GetShapes window.
You should not edit these in the tooltype.
Select your preferred mode when doing Load Shapes
and then select Save configuration.

SAVEBUTTONS - This is like SHAPEBUTTONS except that it applies
to the statuses of the gadgets in the Save Custom
Map window.

LES Map Editor V2

26/ 31

1.27 les_generatesource

Generating Source

Selecting the Generate Source option is mostly of help to Blitz Basic 2

users,

since it generates some ASCII text that will display your map on a

given bitmap, once loaded into Blitz Basic.

Firstly, upon selecting this option, you are asked whether you are sure

you want to generate the source code.
otherwise click on cancel.

If you do, then select Okay,

You are now faced with a screen containing several Cycle gadgets and text
entry gadgets. I will list them below, and explain them further below:

Shortcut Gadget Use

f file format
saved (RIMP, or RAW). See the

Select style in which map will be

sections on saving custom/raw maps
for more details on the merits of

either style.

s raw size
data written out.

Byte or Word. Sets the size of the
(only used when

map being saved is in raw format) .

n raw null

sets the value to use as null when

saving as raw. Valid values are 00,

or -1. Again,

refer to saving raw

map section for merits of either

value.

1 Blitz2 Mode Sets the mode the map will run in
under Blitz 2. Options are AMIGA or

BLITZ.

D Data mode sets how the data values will be
written in the file. Options are

VARIABLES or CONSTANTS.

o shape offset
will be loaded from.

sets the offset that the first shape

P name prefix sets a prefix for the name of the

map you are saving.

You also have the option to Cancel from here, otherwise just click on Create

and via the file-requester that pops up,
to.

1.28 Arexx Support

enter a place to save your source

LES Map Editor V2 27 /31

Arexx Support

This program has an arexx port, named MapEditor. If you have several versions
of running at once, though, they’1ll have port names MapEditor0O, MapEditorl

etc for all versions. By sending messages to these ports functions can be
performed and values returned.

To send a message to an arexx port from the cli you use the rx command
(found in sys:rexxc/). This command accepts a command line like:

rx ’address "MapEditor" QUIT’

| |

| |

Arexx port Function
to send to to send

If the function returns a value, rx will print this value to the cli before
exiting.

The Map Editor supports a fair number of arexx commands, all of which make

it perform certain operations. The commands are (case insignificant):

QUIT - exit the program and free up all memory allocated

BEQUIET — reduce number of requesters to minimum (not fully
implemented)

BENOISY — show all requesters (not fully implemented)

ICONIFY — iconify the Map Editor (will iconify to the currently
defined mode, e.g. Tools menu or window)

REDRAWMAP - Causes the map screen to be redrawn. You can

optionally provide a set of coordinates to redraw at,

e.g. REDRAWMAP 10,0 will redraw at x=10,y=0

ACTIVATE - pops Map Editor screen to front and activates its
main window

ABOUT — bring up the information requester

VERSION - return a string holding the Map Editor version number

LOADMAP - load a map into the editor - the editor will
automatically sense what format the map is in

GRABMAP - grab a map from memory (see Arexx Loader/Saver
for more information)

LOADSHAPE - specify a filename to load shapes from, can be an IFF
or Blitz2 shape file. You can also optionally specify

an offset to load shapes at.
LOADPALETTE- specify a palette file to load from

RETURNMAP - return a data block describing the current map
(see Arexx Loader/Saver for more information)

KILLME — Tells the Map Editor to send a message 'EXIT’ to your
port before it exits

REQUEST - Bring up a requester on the Map Editor’s screen. The

title will be the name of your message port, you
supply the body text (the actual requester contents)
and optionally supply the buttons to display.

e.g. rx "address "MapEditor" REQUEST "Hello|world" _Okay|_Cancel’

LES Map Editor V2

28/ 31

REQUEST returns the value of the
the requester to you.

button selected in

LOADREQUEST- open up a load requester on the Map Editor’s screen.

You supply a title for the requester
and a default filename
The return value will be

have the word Load in it)
(e.g. Work:Temp/Testing) .
the filename entered by the user
routine makes sure that the file
returning.

SAVEREQUEST- same as LOADREQUEST except
the title. If the selected file
routine asks the user to confirm
write over it.

STRINGREQUEST- gets a string from the user,

cancels the requester.

(which should

or NULL. This
exists before

that it should have Save in
already exists, this
that they want to

nmn

returns if the user

Note that this command list is being extended in functionality and

usefulness in the registered version of this program.

commands are a necessity if you intend to
arexx.

Command Keys

The additional
use this program extensively via

This program allows you to place Arexx/Dos commands on keyboard

shortcuts.
on the Operations menu.
different definitions.
string gadgets - enter your commands into

The commands are entered using the Arexx Commands...
From this menu item you can edit/load/save the
If you decide to edit,

menu item

a window will open with ten
these.

These command keys allow you to activate your own custom loaders and

savers from the F1-10 keys on your keyboard.

For example, if your

loader/saver had an arexx port named ’'GameMap’ you could have the following

functions set up:

Fl: sys:rexxc/rx ’'address "GameMap" LOAD’
F2: sys:rexxc/rx 'address "GameMap" SAVE’
F3: sys:rexxc/rx ’"address "GameMap" ABOUT’
F4: sys:rexxc/rx ’"address "GameMap" QUIT’

You could

Note about arexx commands:
file 'mapeditor_arexx’
loads it in as its default command set.

when the Map

1.29 Arexx Loader/Saver

in its program directory.

then select the relevant Fkey to activate your loader/saver.

Editor first runs it looks for a
If it finds this file, it

Arexx Loader/Saver

Using arexx and the MapEditor arexx command set it is possible to write

custom loaders and savers for the Map Editor.

activated by pressing a command key (see

These loaders would be

Arexx Support) and then

LES Map Editor V2

29/ 31

work by calling the Map Editors functions.

As a rule, a loader/saver must support at least the following four
functions:

ABOUT open an information requester
LOAD load a map

SAVE - save a map

QUIT quit the loader/saver

The loader/saver must decide on what function is being called and act
appropriately. It is up to the writer of the loader/saver what other
features it has.

An example loader/saver, written in pseudo-code, would look something
like:

Open arexx port
waitloop:
while function<>QUIT
Wait for message at port
If function=LOAD
do_load
message Map Editor, function GRABMAP
endif
If function=SAVE
message Map Editor, function RETURNMAP
do_save
endif
If function=ABOUT
do_requester

endif

Wend

Close arexx port

End
It is up to you exactly what features you program has. For example it
could have an AppIcon - when the user drops a file on it the file 1is
automatically loaded into the Map Editor. Your program doesn’t even have
to load or save at all - it can be a check program for your maps, that
generates specific details in them, or integrity checks them (for games
that require a strict map layout). The possibilities are endless.

Loading/Saving a map into Map Editor

Both loading and saving use the following structure for passing

information between programs when loading (using GRABMAP) and Saving (using

RETURNMAP) :

Newtype.mapeditormsg

width.w ; Width of map

height.w ; Height of map

bwidth.w ; Block width

bheight.w ; Block height

datasize.b ; Datasize (O=byte, l=word)

mapnull.b ; Null indicator (0=00, 1=-1)

LES Map Editor V2 30/ 31

address.1l ; pointer to map data
End Newtype

The null indicator byte identifies what value in the map data indicates a

null position. If 0, then 0 in the map data means a null position and
shapes count from 1 in the map. If 1, then -1 means a null position and
shape usage starts from 0. This value must be either 0 or 1!

When getting the address of this structure from the Map Editor (using
RETURNMAP) the datasize will always be 1, and the mapnull value will always
be 0.

1.30 les_credits

Credits

Design/Code: Stephen McNamara

Advice: Steven Matty
Steven Green
Stuart Gray
Martin Kift
Jurgen Valks
and others???

Thanx to: Nico Franco for the ReqTools library

Neil O’Rourke for RegTools support in
Blitz

Acid Software for Blitz Basic 2

Everyone who mailed me about the
original RI Map Editor release (yes I
know it was bugged..... ;o))

Blitz-list mailers everywhere

Documentation: Stephen McNamara
Steven Green

Steven Innell

AmigaGuide conversion: Jurgen Valks

1.31 les_index

LES MAP EDITOR V2 Function Index

Screen Layout Reflect Table
Editor Menustrip Shape Names
Drawing Control Area Map Shape Adjust
Information Area Loading Shapes
View Area Loading Maps

Control Area Saving Maps

LES Map Editor V2

31/31

Shape Scroller

Group Selector

Range Selector

Configuration

Surface Data
Shape Selector

ARexx

Introdu
Sharewa
Docs

Credits

Saving Custom Maps
Save Raw Map

Custom Map File Format
Tooltype Support
Generate Source
Support

ction
re

	LES Map Editor V2
	Main Menu
	les_introduction
	les_shareware
	les_docs
	les_screenlayout
	les_menustrip
	les_drawingcontrol
	les_informationarea
	les_controlarea
	les_shapescroller
	les_viewarea
	les_shapeselector
	les_groupselector
	les_rangeselector
	les_configuration
	les_surfacedata
	les_reflecttable
	les_shapenames
	les_mapshapeadjust
	les_loadingshapes
	les_loadingmaps
	les_savingmaps
	les_savingcustommaps
	les_saverawmap
	les_custommapfileformat
	les_tooltypesupport
	les_generatesource
	Arexx Support
	Arexx Loader/Saver
	les_credits
	les_index

