07a27f28-0

John Brooks

07a27128-0

] COLLABORATORS
TITLE
07a27f28-0
ACTION NAME DATE SIGNATURE
WRITTEN BY John Brooks August 9, 2024

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

07a27128-0 iii

Contents
1 07a27£28-0 1
1.1 Linked List Library e e 1
1.2 INTRODUCTION e e e e e e 1
1.3 LEGAL STUFF e 2
1.4 LINKLISTH e e 2
1.5 STRUCTURES 2
1.6 FUNCTIONS 3
1.7 LINKLIST.LIB e e e e e e 3
1.8 STANDARD FUNCTIONS 4
1.9 stdGetNewLink () e e e e e e e 4
1.10 Single List Functions e e 4
1.11 singleGetNewLink () o e e e e e 5
1.12 singleAttachBegin () o L e e 5
1.13 singleAttachEnd () o . e 6
1.14 singlelnsertLink () L e e e e e e 6
1.15 singleDeletelink () o Lo e e e e 7
1.16 singleSearch ()« . L 8
1.17 singleFindEnd () e e e 8
1.18 singleDestroyList () e e e 9
1.19 DOUBLE LIST FUNCTIONS e 9
1.20 doubleGetNewLink () e e e e 10
1.21 doubleAttachEnd (). e 10
1.22 doubleAttachEnd (). e 11
1.23 doublelnsertlink () e e e e e 11
1.24 doubleDeleteLink () e 12
1.25 doubleFindBegin () e e e e e 12
1.26 doubleFindEnd () L 13
1.27 doubleSearch () e 13
1.28 doubleDestroyList () o . e e e e e e e e e e 14

1.29

CIRCULAR LIST FUNCTIONS e e e 15

07a27128-0 iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37

circleGetNewLink () L e 15
circleStartList () e e e e e 15
circleAttachEnd () e e e e 16
circleInsertlink () L L e e e e 17
circleDeleteLink () e e e 17
circleSearch e e e 18
circleDestroyList () o e e e e e e e e 18
HISTORY . . . o e e e e 19

07a27128-0 1/19

Chapter 1

07a27128-0

1.1 Linked List Library

Linked List Library vl1.1l

~~INTRODUCTION~ —-—— what this is all about
~~LEGAL~STUFF~~ —-—— permissions and copyright info
~~LINKLIST.H~~~ ——— the header file
~~LINKLIST.LIB~ ——— the library file
~~HISTORY~~~~~~ —-—— what was I thinking??

1.2 INTRODUCTION

Well, I finally got tired of re-writing code for linked lists. It
would~usually take me a couple of hours cause I had to figure out how to do it
all~over again. I took about a week, only a couple of hours a day, and came
up~with this library.

A few facts about this thing. There is code written for three basic types
of~linked lists, single link, double link, and circular link. There are
several~duplicate functions between the types. None of the functions are
dependant~upon other functions in the library. Yes, this results in some
duplicate code~but the size is about 5k so who really cares. I stayed away
from recursion.~This seems to make it Jjust a bit faster.

The library was developed on an Amiga 3000 with the SAS C compiler version 6.3.
The code was compiled and tested with the Memlib libray to ensure there were no

memory errors or leaks from it.

To help out a bit, there are examples of how to use the library calls in
this~document. Enjoy. I hope you like it.

If you have any comments, questions, suggestions, or wish to send gifts
or~donations I can be reached at

John Brooks

07a27128-0 2/19

461 3rd St
Satellite Bch, FL 32937

SAS/C® Copyright ©1992 by SAS Institute Inc., Cary, NC, USA
Memlib was written and copyrighted ©1988-1992 by Doug Walker

1.3 LEGAL STUFF

Permission is granted to develop and release software products both public
and~commercial with this library. There are no restrictions on the use of
it.

Permission is not granted to dissasemble or modify the library
or~documentation without permission from the author.

1.4 LINKLIST.H

LINKLIST.H The library header file.

This file allows access into the linklist library. When looking at this file
it is not that easy to tell what is going on. Hopefully this will help.

~STRUCTURES~ —-—— the pre-defined C structures that are used
with the library

~FUNCTIONS~~ —-—— a listing of all the functions in the library.

1.5 STRUCTURES

Linked List Library Structures
Single Link List

typedef struct _single {

struct _single *next;
void *data;
} Single;

Double Link List

typedef struct _double {

struct _double *next;
struct _double *prev;
void ~data;

} Double;

07a27128-0

3/19

Circle Link List

typedef struct _circle {
struct _circle *next;
void ~*data;
} Circle;

1.6 FUNCTIONS

FUNCTIONS

standard list functions
void *stdGetNewLink (int)
single list functions

Single xsingleGetNewLink (void)

Single =xsingleAttachBegin (Single *, Single x)
Single =xsingleAttachEnd (Single x, Single x)
Single =xsingleInsertLink (Single x, Single x)
Single =xsingleDeletelink (Single x, Single x)
Single *singleSearch (void *, Single x)

Single xsingleFindEnd (Single x)

void singleDestroyList (Single x)

double list functions

Double *doubleGetNewLink (void)

Double xdoubleAttachBegin (Double %, Double x)
Double *doubleAttachEnd (Double *, Double x)
Double +*doublelInsertLink (Double %, Double x)
Double +*doubleDeletelLink (Double %, Double %)
Double *doubleFindBegin (Double =)

Double *doubleFindEnd (Double «*)

Double xdoubleSearch (void %, Double x)

void doubleDestroyList (Double x)

circular list functions

Circle +circleGetNewLink (void)

Circle =xcircleStartList (Circle x)

Circle =*circleAttachEnd (Circle %, Circle *)
Circle =*circlelInsertlLink (Circle %, Circle =x)
Circle =xcircleDeletelLink (Circle %, Circle =x)
Circle *circleSearch (void %, Circle x)

void circleDestroyList (Circle x)

1.7 LINKLIST.LIB

07a27128-0

4/19

Library Functions
This section will explain in detail each of the functions contained in the
library. There will be an example of how to use the code as part of the
description.

Standard~List~Functions

Single~List~Functions~~

Double~List~Functions~~
Circular~List~Functions

1.8 STANDARD FUNCTIONS

Standard Functions
These functions can be used with any linked list. Since they are pretty
generic, typedef’ing will more than likely be used to keep the compiler

quiet.

stdGetNewLink

1.9 stdGetNewLink ()

stdGetNewLink
void *stdGetNewLink (size) int size;

This function returns a pointer to the amount of memory allocated 1in the

argument size. The pointer will probably have to be typedef’ed into a useful
type. This function’s primary use is to get memory for any user created
structures.

example:

#include "linklist.h"

main ()

{
Single xlink;
link = (Single «*)stdGetNewlLink (sizeof (Single));

error: returns NULL if the memory could not be allocated.

1.10 Single List Functions

Single List Functions

07a27128-0 5/19

The following functions are used with the single linked list. If a different
structure is used with these functions, problems can occur with the memory
bounds of pointers. To ensure this doesn’t happen the structures used with
the single functions should be the same size as the defined single

structure.

singleGetNewLink~
singleAttachBegin
singleAttachEnd~~
singleInsertLink~
singleDeletelLink~
singleSearch~~~~~

singleFindEnd~~~~
singleDestroyList

1.11 singleGetNewLink ()

singleGetNewLink
Single xsingleGetNewLink (void)

This function returns a pointer of type single to the allocated memory.
Typedef the function if a different pointer type is being used.

example:
#include "linklist.h"
main () {

Single xlink;
link = singleGetNewLink ();

error: returns a NULL if the memory could not be allocated.

1.12 singleAttachBegin ()

singleAttachBegin

Single *singleAttachBegin (list, 1link)
Single =xlist;

Single =x1link;

Attaches the new link to the start of the list and returns the pointer to
the start of the new list.

example:

#include "linklist.h"

07a27128-0 6/19

main ()
{
Single *1list, link;
link = singleGetNewLink ();

list = singleAttachBegin (list, link);

NOTE: The first argument to this function must be the start of the
list or a serious leak can and will occur.

error: returns a NULL if either of the arguments is an invalid pointer.

1.13 singleAttachEnd ()

singleAttachEnd
Single #*singleAttachEnd (list, link)
Single =xlist;
Single =x1link;
The function returns the pointer to the same list that was passed in as the
first argument. The pointer to the link will be attached to the end of the
list.
example:
#include "linklist.h"
main () {
Single xlist, =link;

link = singleGetNewLink ();
list singleAttachEnd (list, 1link);

The list variable and argument doesn’t have to be the start of the list. It
is a little quicker if the list argument is somewhere deeper into the list.

The big problem is when a pointer to the start of the list is not maintained

a memory leak occurs and also loss of data.

error: returns NULL if either of the arguments is an invalid pointer

1.14 singlelnsertLink ()

07a27128-0 7/19

singleInsertLink

Single #*singlelInsertLink (before, new)
Single xbefore;
Single =xnew;

This function is used when a link needs to be inserted somewhere inside the
list. To speed up the operation it takes the link that is before the

new link as the first argument so the whole link doesn’t have to be

parsed. This function can be used to attach a link to the end of the

list. The pointer to the first argument is returned.

example:
#include "linklist.h"
main () {

Single xlist, *new_link;

list = singleInsertLink (list, new_1link);

error: returns NULL if either of the pointers are invalid.

1.15 singleDeleteLink ()

singleDeletelLink

Single #*singleDeletelLink (list, 1link)
Single =xlist;
Single =x1link;

This function is used to remove a link from the list. Since it is technically
a memory bug to free memory that is not allocated (Memlib complains) the
function makes sure the link is in the list Dbefore freeing and setting the
pointers of the other links. 1If the 1link is not part of the list it must be
freed by the programmer or attached to the link before it can be freed with
this call. The arguments are the pointer to the list and the link being
removed. The pointer to the new list is returned.

example:
#include "linklist.h"
main () {

Single *1list, =1link;

list = singleDeletelLink (list, link);

07a27128-0 8/19

As with singleAttachEnd the argument list doesn’t have to be the start of the
list to help speed things up, but the same memory leak and data loss
potential is there.

error: returns a NULL if either of the arguments is an invalid pointer.

1.16 singleSearch ()

singleSearch

Single =xsingleSearch (data, list)
void xdata;
Single =xlist;

This function may be a little tricky and rarely used. It requires some
pointer that will be compared to the Single->data part of the structure. The
other argument is the list to be searched. It returns the link if found or
NULL if not.

example:

#include "linklist.h"

main () {
Single xlist, =xlink;
char *data = "data";

link->data = data;

if (!(singleSearch (data, 1list)))
printf ("Data not found\n");

error: returns a NULL if the second argument is an invalid pointer.

1.17 singleFindEnd ()

singleFindEnd

Single xsingleFindEnd (list)
Single =xlist;

This function is pretty much self explanatory. Its only argument is the list
and it returns a pointer to the last link of that list.

example:

#include "linklist.h"

07a27128-0

9/19

main () {
Single xlist;

/* remove the last link of the list x/
list = singleDeletelLink (list, singleFindEnd (list));

error: NULL is returned if the argument is invalid.

1.18 singleDestroylList ()

singleDestroyList

void singleDestroyList (list)
Single =xlist;

The use of this function is pretty much straight forward - destroy the whole
list. The function parses through the list to find the end and then one by
one frees the memory to each link.

NOTE: This function does not free the memory pointed to by the Single->data
pointer. It would be simple to do this but if it was a pointer to another
structure that had memory pointer in it, there would be serious memory leaks.
Any memory that has been allocated inside this pointer must be freed before
calling this function.

example:

#include "linklist.h"

main ()
Single xlist;

singleDestroyList (list);
exit (0);

error: no error condition is returned. If the pointer is invalid the function

returns without releasing the memory.

1.19 DOUBLE LIST FUNCTIONS

Double List Functions

These following functions are for double linked lists. Again, the predefined

structures don’t have to be used but make sure that any user defined strucures

07a27128-0 10/19

have the same basic format to prevent any weird memory and/or pointer problems.

doubleGetNewLink~
doubleAttachBegin
doubleAttachEnd~~
doubleInsertLink~
doubleDeleteLink~
doubleFindBegin
doubleFindEnd~~~~
doubleSearch
doubleDestroyList

1.20 doubleGetNewLink ()

doubleGetNewLink

Double *doubleGetNewLink (void)

Returns a pointer to the new link of type Double.
example:

#include "linklist.h"

main ()

{

Double *1link;
link = doubleGetNewLink ();

error: returns a NULL if the memory could no be allocated.

1.21 doubleAttachEnd ()

doubleAttachBegin

Double xdoubleAttachBegin (list, link)
Double =*1list;
Double *1link;

This function parses through the list and attaches the link to the start. The <>

pointer
to the new list is returned, not necessarily the start of the list.

example:
#include "linklist.h"
main ()

{
Double =*1list;

07a27128-0

11/19

list = doubleAttachBegin (list, doubleGetNewLink());

As with the attach function with the single lists, the first argument
can be any link on the list. The only difference here is that a pointer to the
head doesn’t have to be kept since the start can be found.

error: returns a NULL if either of the pointers are invalid.

1.22 doubleAttachEnd ()

doubleAttachEnd

Double xdoubleAttachEnd (list, 1link)

Double xlist;

Double x1link;

This function is identical to doubleAttachBegin except that it puts the link at
the

end of the list.

example:

#include "linklist.h"

main ()

{
Double =x1list;

list = doubleAttachEnd (list, doubleGetNewLink ());

error: if either of the pointers are invalid a NULL is returned.

1.23 doublelnsertLink ()

doubleInsertLink

Double xdoubleInsertLink (before, new)
Double xbefore;
Double xnew;

This function is almost identical to singlelInsertLink. It is used to insert a
link

somewhere in the list.

example:

H

07a27128-0 12/19

#include "linklist.h"
main ()

{
Double *list, =*1ink2;

list = doubleAttachEnd (list, doubleGetNewLink ());

link2 = doubleGetNewLink () ;
list = doublelInsertlLink (list, 1link2);

error: returns a NULL if either of the arguments are invalid pointers.

1.24 doubleDeleteLink ()

doubleDeletelink

Double *doubleDeletelLink (list, 1link)

Double xlist;

Double *1link;

This function is used to remove a link from the list. The function will not
free any memory allocated by the Double->data pointer. This memory,

and any memory further in, must be freed before the link is destroyed in
order to prevent memory leaks. The pointer to the new list is returned.
example:

#include "linklist.h"

main ()

{
Double *1list, =*1link;

list = doubleDeletelink (list, 1link);

error: 1f the pointers are invalid, a NULL is returned.

1.25 doubleFindBegin ()

doubleFindBegin

Double xdoubleFindBegin (list)
Double xlist;

07a27128-0

13/19

This function accepts the list as its only argumnt and then parses back through

it returning the pointer to the first link in the list.

example:

#include "linklist.h"

main ()

{

error:

Double *list, =*link;

list = doubleAttachBegin (list, link);
/+ make sure that list is pointing to the head */
list = doubleFindBegin (list);

a NULL is returned if the pointer is invalid.

1.26 doubleFindEnd ()

doubleFindEnd

Double xdoubleFindEnd (list)
Double *1list;

This function is identical to the doubleFindBegin except that it finds the end of
the list instead of the start.

example:

#include "linklist.h"

main ()

{

error:

Double =*1list;

/* remove the last link in the list =*/

list = doubleDeletelLink (list, doubleFindEnd (list));

if the argument is an invalid pointer, NULL is returned.

1.27 doubleSearch ()

@[fg shine}doubleSearch

Double
void

*doubleSearch (data, list)
*data;

07a27128-0

Double *1list;

The first argument to this function is a pointer to the data that will be
searched for. The function parses through the list, the second argument,
comparing the pointer to the Double->data pointer in the structure. If
found the pointer to the link is returned otherwise NULL is.

example:

#include "linklist.h"
main ()

{

Double *list, =*1link;
char *data = "data";

link->data = data;

if (! (doubleSearch (data, list)))
printf ("Data not found\n");

error: a NULL is returned if the second argument is an invalid pointer.

1.28 doubleDestroyList ()

doubleDestroyList

void doubleDestroyList (list)
Double xlist;

The use of this function is pretty much straight forward - destroy the whole
list. The function parses through the list to find the end and then one by
one frees the memory to each link.

NOTE: This function does not free the memory pointed to by the Double->data
pointer. It would be simple to do this but if it was a pointer to another
structure that had memory pointer in it, there would be serious memory leaks.
Any memory that has been allocated inside this pointer must be freed before
calling this function.

example:
#include "linklist.h"
main ()

{
Double *1list;

doubleDestroyList (list);
exit (0);

07a27128-0 15/19

error: if the pointer passed to the function is invalid it will not execute.
No error condition is returned.

1.29 CIRCULAR LIST FUNCTIONS

Circular List Functions

The following functions are to be used with circular linked lists. These
functions use links that only point in one direction (the next link) and
end up connecting back at the start. Because of the sometimes unique
behavior of circular links, some of the functions here may not behave in
the expected way, ie. a pointer to a link other than expected. These may
appear as bugs but there should be no great concern as the functions return
the most reliable pointers and since the list is circular there is no

loss of data through these functions.

circleGetNewLink~
circleStartList
circleAttachEnd
circleInsertLink
circleDeletelink

circleSearch
circleDestroyList

1.30 circleGetNewLink ()

circleGetNewLink

Circle *circleGetNewLink (void)

The function returns a pointer to the new link.
example:

#include "linklist.h"

main ()

{

Circle xlink;
link = circleGetNewLink ();

error: a NULL is returned if the memory couldn’t be allocated.

1.31 circleStartList ()

07a27128-0

16/19

circleStartList

Circle xcircleStartList (list)
Circle «list;

This is a very important function. This function starts the

pointer. It returns the pointer to the start of the list.
example:

#include "linklist.h"

main ()

{

Circle xlist;

list = circleGetNewLink ();
list circleStartList (list);

error: 1f the pointer is invalid, a NULL is returned.

1.32 circleAttachEnd ()

circleAttachEnd
Circle +*circleAttachEnd (list, 1link)
Circle «1list;

Circle =*1link;

This function attaches the link to the ’'end’ of the list.

points the link to the start completing the circle again.
example:

#include "linklist.h"

main ()

{

Circle xlist;

list = circleAttachEnd (list, circleGetNewLink());

circular

There really 1is
no end in a circular list. The function pareses through the list until it
finds the start and then it attaches the link just before the start and

error: 1f either of the pointers are invalid, a NULL is returned.

07a27128-0

17 /19

1.33 circlelnsertLink ()

circleInsertLink

Circle #*circlelInsertLink (before, new)
Circle =xbefore;
Circle xnew;

This function is used to insert a link somewhere in the list. To speed up

the process the first argument is the link that will be before
the new link. This function can be used to attach links to the
preverbial end of the list.

example:
#include "linklist.h"
main ()

{

Circle xlist, =link;

list = circleStartList (circleGetNewLink());
link = circleGetNewlLink ();

/* attach link to the end of the list «/
list = circlelInsertList (list, 1link);

/* now there are two links in the list =*/

error: 1f the arguements are invalid pointers, a NULL is returned.

1.34 circleDeleteLink ()

circleDeletelLink

Circle *circleDeletelLink (list, 1link)
Circle xlist;
Circle =*1link;

This is one of the functions that may not return the expected pointer into
the list. If the pointer being passed in as the list is the one destroyed
then the pointer becomes unstable. To avoid loss of data the link that
points to this link is the one that is passed back. This function does not
free any memory that is allocated deeper in the Circle->data pointer

This memory must be freed before the link is destroyed.
example:

#include "linklist.h"

main ()

{

Circle xlist, =link;

07a27128-0

18/19

list = circleDeletelink (list, 1link);

error: a NULL is returned if either of the pointers are invalid.

1.35 circleSearch

circleSearch

Circle xcircleSearch (data, list)

void *data;

Circle «1list;

As with the other search functions this one also parses through the list
looking at the Circle->data pointer. If a match is found it returns
the pointer to the link and return NULL if one is not.

example:

#include "linklist.h"

main ()

{

Circle =list, =link;
char *data = "data";

link->data = data;

if ((circleSearch (data, list)))
printf ("Found %s\n", data);

error: i1f the second pointer is invalid, a NULL is returned.

1.36 circleDestroyList ()

circleDestroyList

void circleDestroyList (list)
Circle «list;

The use of this function is pretty much straight forward - destroy the whole
list. The function parses through the list to find the end and then one
by one frees the memory to each link.

NOTE: This function does not free the memory pointed to by the Circle->data
pointer. It would be simple to do this but if it was a pointer to another

07a27128-0 19/19

structure that had memory pointer in it, there would be serious memory leaks.
Any memory that has been allocated inside this pointer must be freed before
calling this function.

example:

#include "linklist.h"

main ()

{

Circle xlist;

circleDestroyList (list);
exit (0);

error: if the pointer is not wvalid, the function will return without
releasing the memory. No error condition is returned.

1.37 HISTORY

Version 1.0
The initial release of the library.

Version 1.1
Added a new function singleAttachBegin() to the library.

Changed the functions singlelInsertLink (), doubleInsertLink (), and
circleInsertLink ().

singlelInsertLink (before, after, 1link); /*v 1.0x/
singlelInsertLink (before, 1link); /*v 1.1x/
doubleInsertLink (before, after, 1link); /*v 1.0%/
doubleInsertLink (before, link); /*v 1.1/
circlelInsertLink (before, after, 1link); /*v 1.0x/
circleInsertLink (before, 1link); /xv 1.1%/

The function circleStartList (), which creates a one link circular link to
initialize the list, is no longer needed. Now circleGetNewLink ()
correctly initializes the new list by doing this function. It is still
left in the library for compatability to version 1.0 and to initialize
any user created list structures.

All of the functions that take link pointers as arguments now have
error checking in them. If an invalid pointer is passed into the
function a NULL pointer is returned. This keeps the library from
crashing any programs due to SEGV errors.

	07a27f28-0
	Linked List Library
	 INTRODUCTION
	 LEGAL STUFF
	 LINKLIST.H
	 STRUCTURES
	 FUNCTIONS
	 LINKLIST.LIB
	 STANDARD FUNCTIONS
	 stdGetNewLink ()
	Single List Functions
	 singleGetNewLink ()
	 singleAttachBegin ()
	 singleAttachEnd ()
	 singleInsertLink ()
	 singleDeleteLink ()
	 singleSearch ()
	 singleFindEnd ()
	 singleDestroyList ()
	 DOUBLE LIST FUNCTIONS
	 doubleGetNewLink ()
	 doubleAttachEnd ()
	 doubleAttachEnd ()
	 doubleInsertLink ()
	 doubleDeleteLink ()
	 doubleFindBegin ()
	 doubleFindEnd ()
	 doubleSearch ()
	 doubleDestroyList ()
	CIRCULAR LIST FUNCTIONS
	 circleGetNewLink ()
	 circleStartList ()
	 circleAttachEnd ()
	 circleInsertLink ()
	 circleDeleteLink ()
	 circleSearch
	 circleDestroyList ()
	 HISTORY

