
REACTTM in IRIXTM 6.4

Technical Report

Silicon Graphics, Inc.

A description of the real-time capabilities of

IRIX 6.4 running on Onyx2TM and OriginTM

multiprocessor systems.

April 1997



2 REACT In IRIX 6.4 Technical Report



REACT in IRIX 6.4 Technical Report iii

Introduction 5

Scope Of This Document 5

Configuration Assumptions 5

Related Documentation 5

System Interrupt Response 7

Total Interrupt Response Time 7

Hardware Interrupt Latency 8

Software Interrupt Latency 8

Software Interrupt Latency Components 9

Potential Sources Of Software Interrupt Latency 9

Software Interrupt Response Time 10

Configuring For Real-Time Operation 12

Redirecting Interrupts 12

Allocating Processors 13

Locking Processes Into Memory 13

Processor Isolation 13

Overview 13

Activities That Override Processor Isolation 14

Minimizing Memory Management Overhead 14

Controlling Process Scheduling 14

POSIX 1003.1b Scheduler 15

REACT/pro Frame Scheduler (FRS) 16

User Scheduling 18

POSIX 1003.1b Features 20

Timers and Clocks 20

Interval Timers 20

Clocks 20

Clock Sources 21

Shared Memory and Memory-Mapped Files 22

Semaphores 22

Memory Locking 23

Asynchronous Disk I/O 23

Synchronized I/O 25

Signals 25

Handling Signals 25

Message Queues 26

Other Real-Time Programming Features 27

External Interrupts 27

User-Level Interrupts 27

User-PCI Interface 29



iv REACT in IRIX 6.4 Technical Report



Introduction

REACT In IRIX 6.4 Technical Report 5

1.0 Introduction

The REACTTM extensions to IRIXTM enable the programmer to configure a multipro-

cessor system to provide deterministic performance. REACT is the set of real-time fea-

tures that comes standard with every IRIX installation. These features include POSIX

1003.1b interfaces, processor control capabilities, interrupt control/routing and I/O

interfacing to the PCI and VME bus. With 6.4, IRIX is now fully conformant to POSIX

1003.1b. Many of the REACT extensions benefit not only traditional, real-time applica-

tions but also other applications such as multimedia and graphics. The REACT features

also simplify the implementation of running real-time applications.

The approach used in IRIX with REACT to achieve determinism is to provide the user

with full control over the assignment of software activity to processors. One processor

(or more, if desired) is designated as the system processor, and all non-deterministic

system activity takes place on that processor. For example, system activity typically

includes the UNIX scheduler and general-purpose disk and network I/O. The remaining

processors are designated as real-time processors, and no system activity takes place on

those processors unless explicitly requested by a real-time process.

1.1 Scope Of This Document

This document provides a detailed introduction to real-time computing solutions from

Silicon Graphics. It covers the REACT and REACT/pro extensions to the IRIX 6.4

operating system for Onyx2 or Origin200/2000 multiprocessor systems. This report

does not describe the real-time features or capabilities of IRIX 6.4 executing on any

other hardware platform. Specific hardware design details of the Onyx2 and Origin200/

2000 systems are addressed when they are of particular interest to developers of real-

time applications. It is assumed that readers of this document already have an under-

standing of the basic hardware architecture of Onyx2 and Origin systems. If not, please

refer to the documents identified in section 1.3.

1.2 Configuration Assumptions

The functionality described in this document is available on any multiprocessor Onyx2,

Origin 200 or Origin2000 system running IRIX 6.4. Within this document, these config-

urations are referred to generically as “the system”. Some real-time features described

herein require the addition of REACT/pro or WindView for IRIX software to the base

configuration.

1.3 Related Documentation

For more detailed or other related information about the topics discussed in this docu-

ment, refer to the documents identified here. These documents are available both on the

World Wide Web and on-line through SGI’s IRIS InSightTM. Many of these documents

plus other current real-time information can be found at: http://www.sgi.com/real-time/.

IRIX Admin: System Configuration and Operation (007-2859-002)

IRIX 6.4 Device Driver Programmer’s Guide (007-0911-070)



Introduction

6 REACT In IRIX 6.4 Technical Report

IRIX Man Pages (available on-line)

Topics in IRIX Programming (007-2478-004)

REACT Real-time Programmer’s Guide

WindView for IRIX Programmer’s Guide (007-2824-001)

Cellular IRIXTM 6.4 Technical Report

Onyx2TM Technical Report

Origin2000TM Technical Report

IEEE Standard for Information Technology - Portable Operating System Interface

(POSIX) - Part 1: System Application Program Interface (API) - Amendment 1: Real-

time Extension [C Language]



System Interrupt Response

REACT In IRIX 6.4 Technical Report 7

2.0 System Interrupt Response

This section describes the events that occur in response to an external interrupt.

2.1 Total Interrupt Response Time

The REACT extensions included in IRIX 6.4 provide guaranteed deterministic interrupt

response on a properly configured Origin or Onyx2 system. Performance is specified in

terms of total interrupt response, which is defined as the interval between the occurrence

of an external interrupt and the start of execution of a user process that was enabled by

that interrupt (full context switch included). The worst-case total interrupt response time

for a properly configured system is guaranteed not to exceed 200 µs. This guarantee

covers all multiprocessor Onyx2 and Origin systems running IRIX 6.4 or any successive

version of IRIX.

Total Interrupt Response time can be divided into two major component intervals (refer

to Figure 1):

1. Interrupt latency. The time between the occurrence of a hardware interrupt and the

instant when the operating system begins responding to that interrupt.

2. Software interrupt response time. The system time spent responding to the inter-

rupt, ending when a user process begins executing.

FIGURE 1. Components of Total Interrupt Response Time

PCI/VME
Interrupt
Occurs

Processor
Receives
Interrupt

IRIX
Begins

Responding

User
Process

Runs

Time

Hardware
Latency

Software
Latency

Interrupt Latency

Total Interrupt Response Time

Software Interrupt Response Time



System Interrupt Response

8 REACT In IRIX 6.4 Technical Report

Interrupt latency, as defined in the previous section, can be subdivided into two compo-

nent intervals:

1. Hardware interrupt latency. The time required for the interrupt to propagate

through the hardware from its source to the processor chip’s interrupt pin.

2. Software interrupt latency. The interval between the instant when the processor

receives the interrupt, and the instant when the operating system begins responding

to the hardware interrupt (i.e., when the device specific interrupt service routine

begins execution).

2.1.1 Hardware Interrupt Latency

For Origin and Onyx2 systems, the typical time required for the interrupt to propagate

from the VME bus to the appropriate CPU chip is less than 2µs (interrupt latency from

the PCI bus is slightly less). The theoretical worst-case propagation delay is under 5 µs.

Note that the theoretical worst case requires a very large configuration with propagation

over several routers. For single module configurations, 3µs is a more appropriate worst-

case hardware interrupt propagation delay. All of these delays assume that no other PCI/

VME master has the bus when the interrupt is generated.

Upon receiving a PCI/VME interrupt, the Origin/Onyx2 PCI/VME interface will read

status registers to identify the interrupting device(s) and clear the interrupt. This infor-

mation is used to select which device-specific interrupt service routine (ISR) will exe-

cute.

In order to minimize the time spent handling interrupts on the VME bus, it is preferable

to connect only a single device at each VME interrupt level.

2.1.2 Software Interrupt Latency

Software interrupt latency is the interval between the time when the hardware interrupt

arrives at the processor, and the time when the OS begins responding to the interrupt

(i.e., the interrupt service routine for that specific interrupt executes). It is important to

understand a couple of new features in IRIX 6.4 before identifying the components of

software interrupt latency.

2.1.2.1 Interrupt Threads

Under traditional IRIX (prior to 6.4) each CPU in the system had an interrupt stack of

one page size from which interrupts service routines were executed. When an interrupt

was received, the context of the currently executing process (if there was one) was saved

and the interrupt service routine executed on the CPU’s interrupt stack.

Starting with IRIX 6.4, most interrupts are now serviced through interrupt threads.

Interrupt threads are lightweight kernel execution entities that are scheduled at priorities

shared with user processes. The main benefit of interrupt threads for real-time develop-

ers is that they permit greater control over when interrupt service routines will execute

thereby allowing for more deterministic real-time response. Previously, with interrupt

service routines executing on the interrupt stack, all interrupts executed at priorities

higher than all user and kernel processes. This could result in non-real-time interrupts

having priority over critical real-time processes, most notably on single processor sys-

tems. Conversely, interrupt threads share priority space with all other processes. There-



System Interrupt Response

REACT In IRIX 6.4 Technical Report 9

fore, real-time developers can now execute their highest-priority real-time processes at

priorities higher than all non-real-time interrupt service routines.

2.1.2.2 Fully Preemptable Kernel

With the implementation of interrupt threads, IRIX 6.4 is fully preemptable. A preempt-

able kernel minimizes priority inversion by allowing a high priority process (or thread)

to immediately preempt a lower priority process (or thread) when it is executing kernel

code. Previously, IRIX was preemptable at only a finite number of points within the ker-

nel. With 6.4, however, IRIX is now preemptable except at the areas where a kernel

spinlock is being held.

2.1.3 Software Interrupt Latency Components

Software interrupt latency under IRIX 6.4 with interrupt threads is made up of the fol-

lowing components: the time needed for IRIX to detect the interrupt, the time to per-

form a mode switch to the CPU interrupt dispatcher, the time to execute the CPU

interrupt dispatcher, the time to dispatch the device-specific interrupt thread and the

time it takes to perform a thread context switch to the interrupt thread (refer to Figure 2).

Anytime interrupts are not masked in software, then the time needed for IRIX to detect

the interrupt is less than one instruction cycle. Under IRIX 6.4, the interrupt dispatcher

executes very quickly - within a few microseconds. If the interrupt is the highest-priority

executable thread, then the device-specific interrupt thread is dispatched immediately

(preempting any lower priority process or interrupt thread).

Since IRIX 6.4 is fully preemptable and interrupts are not blocked in device-specific

interrupt threads via raising of the Interrupt Priority Level (IPL), software interrupt

latency is kept to a minimum.

2.1.4 Potential Sources Of Software Interrupt Latency

The two situations in which interrupts are potentially held off are:

1. When a higher priority interrupt handler is executing.

2. When critical regions of kernel code are executing.

The following sections examine these two situations in detail.

2.1.4.1 Higher Priority Interrupt Handlers Executing

While the CPU interrupt dispatcher is executing, it masks interrupts from being serviced

for a very short period of time. All other interrupt service routines executing on proces-

sors configured for real-time will execute as interrupt threads and can therefore be inter-

rupted by higher priority threads at any time. This enables high-priority, real-time

interrupts to preempt lower priority interrupt threads and execute with very short laten-

cies. Additionally, since interrupt threads run only on the processor to which the inter-

rupt is directed, latency resulting from non-real-time interrupts and unrelated CPU

interrupt dispatcher cycles can easily be prevented. If non-real-time interrupts are

directed away from real-time processors as described in Section 3, they will never intro-

duce latency.



System Interrupt Response

10 REACT In IRIX 6.4 Technical Report

2.1.4.2 Critical Regions of Kernel Code Executing

IRIX 6.4 is a fully symmetric, fully preemptable, multiprocessor operating system that

allows multiple processors to execute simultaneously within the single memory-resident

image of the kernel. As previously mentioned, IRIX 6.2 was preemptable at only a finite

number of points within the kernel. With 6.4, however, IRIX is now preemptable except

at the areas where a kernel spinlock is being held. Only during very short periods of

time, where tasks such as thread scheduling and TLB management are occuring, will

preemption not occur immediately in IRIX 6.4.

To maximize determinism, real-time processes should avoid making system calls during

time-critical regions. Instead, activities such as forking processes, allocating memory,

etc. should be done prior to real-time execution as part of an initialization routine. Typi-

cally, the only types of kernel activity that should be initiated during a time-critical

region are those involved with process synchronization, communication or scheduling.

2.2 Software Interrupt Response Time

The software interrupt response time is the interval between the time when the device-

specific interrupt service routine begins responding to an interrupt and the time when a

user level process begins executing. Figure 2 shows the sequence of operations that are

included in the software interrupt response time. These are described below:

• Interrupt service routine (ISR). This is the time spent processing the interrupt in a

device-specific interrupt thread. ISRs always run on the processor where the hard-

ware interrupt signal has been directed. Users must provide an ISR for any device

they add to the system that generates interrupts. Typically, an ISR will unblock a

process by incrementing a semaphore or sending a signal to alert a process that the

interrupt has occurred. Since ISRs are application dependent, the time actually spent

in the ISR can vary depending upon what activity is performed. ISRs typically run at

kernel level, but with the addition of REACT/pro User Level Interrupts (ULIs), user-

level code can be written to service an interrupt (refer to Section 4.5 for further dis-

cussion of ULIs).

• Dispatch cycle. During the dispatch cycle, the scheduler daemon determines which

user process should run next. A dispatch cycle will be followed either by a context

switch or a mode switch, depending on the outcome of the dispatch cycle. The

scheduler either resumes execution of the current process, or initiates a context

switch. If the processor was in the kernel idle loop at the time the interrupt occurred

and the next process to run was the one running just before the processor entered the

idle loop, a context switch will not be required.

• Context switch. During a context switch, the kernel saves the context of one user

process and restores the context of another user process.



System Interrupt Response

REACT In IRIX 6.4 Technical Report 11

FIGURE 2. Components of Software Interrupt Response Time

IRIX Begins
Responding
to Interrupt

IRIX
Response
Complete

Mode
Switch

Thread

Switch
Context Switch

ContextDispatch DispatchCPU

Dispatcher
Interrupt

Device

ISR
Specific Process

User

Runs

Time

Note: Intervals are not representative of actual time values



Configuring For Real-Time Operation

12 REACT In IRIX 6.4 Technical Report

3.0 Configuring For Real-Time Operation

Configuration checklist:

1. Direct interrupts not related to real-time processes away from the real-time proces-

sors. Direct real-time interrupts to the real-time processors.

2. Restrict real-time processors. This excludes the real-time processors from running

any processes not explicitly assigned to them.

3. Isolate the real-time processors from virtual memory management processing (iso-

late is a superset of restrict - if isolate is done restrict is not necessary).

4. Assign real-time processes to real-time processors.

5. Allocate and lock all physical memory used by real-time processes.

6. Exempt real-time processors from system clock interrupts and UNIX timesharing

scheduler activity.

Each of these steps is supported by the REACT extensions that are included in Irix.

Once these steps are complete, the total response time to an interrupt directed to a real-

time processor will be less than 200 µs, from the time the hardware interrupt occurs

until a user process begins executing.

This timing assumes one of two possible configurations. The recommended configura-

tion is that the interrupt signals start-of-frame to the REACT/pro frame scheduler (see

“REACT/pro Frame Scheduler (FRS)” on page 16). The frame scheduler will the ini-

tiate execution of the highest priority process enqueued in that frame’s run queue.

An alternate scenario for achieving the guaranteed worst-case timing requires a PCI or

VME device with a kernel-level device driver that handles interrupts from the device.

The interrupt service routine will unblock a specific user process that is sleeping await-

ing the interrupt. The guaranteed timing assumes the worst-case scenario in which a full

context switch is required.

When the frame scheduler is invoked, steps 2-6 listed above are invoked automatically,

and the only additional action required of the user is to redirect interrupts.

3.1 Redirecting Interrupts

Each hardware interrupt must have an associated Interrupt Service Routine (ISR), either

as part of a kernel device driver or a REACT/pro User Level Interrupt. When an inter-

rupt occurs, the ISR executes on the processor to which the interrupt has been directed

at boot time.

Unless otherwise directed, at boot time IRIX will distribute the interrupts from the con-

figured I/O devices across all available processors in order to distribute the processing

load evenly. Real-time behavior can be disrupted if a non-real-time interrupt is assigned

to a real-time processor.

NOTE: Interrupts must be explicitly redirected by the developer to ensure proper real-

time behavior. Otherwise, the system may assign non-real-time interrupts to real-time

processors without notifying the user.



Configuring For Real-Time Operation

REACT In IRIX 6.4 Technical Report 13

The user has full control over the assignment of any XIO-based interrupts (e.g., PCI and

VME interrupts) to processors. This is controlled through the DEVICE_ADMIN

INTR_TARGET directive that can be specified in the irix.sm file. A device driver

doesn’t need to do anything special in order to have its interrupts routed to a specified

target CPU - this can be done completely through the irix.sm file. For more information,

consult the IRIX 6.4 Device Driver Programming Guide and the man page system(4).

3.2 Allocating Processors

In a hard real-time application, the user should bind each real-time process to a proces-

sor and restrict these processors from running any other processes. This can be done

using shell commands, or more typically, using system calls. Once it is done, the system

processor and any other non-real-time processors can run other applications without

impacting real-time operation.

REACT provides a pair of calls for processor allocation. One command removes a pro-

cessor from the pool of available processors. It will then run only processes that have

been assigned to it using the other command. Once assigned to a processor, the process

will always execute there, including kernel services executing on behalf of the process.

Note: Allocating processes to processors does not affect where interrupt service routines

execute.

3.3 Locking Processes Into Memory

In a virtual memory system, any memory reference potentially can cause a page fault.

The time required to bring the data being referenced from disk into physical memory

will destroy real-time determinism. IRIX with REACT enables you to lock processes

into memory.

REACT supports several mechanisms for locking processes into memory, including

POSIX 1003.1b. In addition to providing a portable interface, this mechanism allows a

process to lock both current memory and subsequently allocated memory with a single

call.

3.4 Processor Isolation

3.4.1 Overview

Processor isolation enables the user to prevent the processor from receiving an inter-

processor interrupt that would otherwise suspend execution of user code on a real-time

processor. The kernel generates these inter-processor interrupts in order to perform cer-

tain housekeeping functions that are not visible to user processes.

In order to maintain the integrity of its shared memory, symmetric multiprocessing pro-

gramming environment, IRIX must carry on two system activities that are not visible to

user processes. These are instruction cache flushes, and Translation Look-aside Buffer

(TLB) flushes. Without processor restriction, at irregular intervals IRIX will generate an

inter-processor interrupt to cause all processors to flush their TLB or instruction cache.



Configuring For Real-Time Operation

14 REACT In IRIX 6.4 Technical Report

For isolated processors, IRIX will instead set a status bit to indicate that a flush is pend-

ing. When an isolated processor enters kernel mode, the status bits are tested and any

pending flushes are carried out. (A processor enters kernel mode whenever the running

process makes a system call, or when an interrupt occurs that is directed to that proces-

sor.) Processor isolation ensures that the user’s real-time process will never be pre-

empted by an unsolicited interrupt from the kernel.

3.4.2 Activities That Override Processor Isolation

All IRIX kernel services are available to a process running on an isolated processor, but

certain system calls will introduce additional latency because they generate inter-pro-

cessor interrupts that are not blocked by processor isolation.

The following system calls will override processor isolation if they are executed by a

process running on an isolated processor, or by an sproc of such a process running on

any processor. To avoid introducing non-determinism into a real-time application, these

system calls should be used only during an initialization routine which executes prior to

beginning real-time operation.

• cachectl(2) system call to mark pages cacheable or uncacheable (note that

cachectl(2) system calls have no effect on Challenge/Onyx systems)

• fork(2) system call to create a new process

• sproc(2) system call to create a new share group process

• munmap(2) system call to release pages of memory

• sbrk(2) system call that releases memory or grows memory past a 4 MB boundary

• mprotect(2) system call to set protection on a portion of memory that is shared

(MAP_LOCAL is immune)

• prctl(2) system call to acquire information on the current process

The following system calls will generate inter-processor interrupts to an isolated proces-

sor if they are called from any processor and passed the pid of a process running on the

isolated processor.

• prctl(2) system call to acquire information on a process running on an isolated pro-

cessor

• a write using proc(4) to the address space of a process running on an isolated proces-

sor

3.4.3 Minimizing Memory Management Overhead

To minimize memory management overhead, a real-time process should not free any

memory pages during real-time execution. Accordingly, real-time processes and device

drivers should be written so that memory resources are allocated once and reused, rather

than repeatedly allocated and freed.

3.5 Controlling Process Scheduling

Real-time developers have a choice of three approaches to scheduling their application

processes under IRIX.

• POSIX 1003.1b IRIX scheduler - the general-purpose scheduler included in IRIX



Configuring For Real-Time Operation

REACT In IRIX 6.4 Technical Report 15

• REACT/pro Frame Scheduler (FRS) - sold separately as part of REACT/pro, the

FRS replaces the POSIX 1003.1b IRIX scheduler on processors where it is enabled.

Available only for Origin, Onyx2, Challenge, and Onyx multiprocessor systems, the

FRS can run on up to n-1 processors in the system. (The FRS cannot run on the sys-

tem processor.)

• User scheduling - Simple scheduling algorithms can be easily implemented by the

user.

3.5.1 POSIX 1003.1b Scheduler

The scheduler in IRIX 6.4 and subsequent releases conforms to the API specifications

defined by POSIX 1003.1b. IRIX 6.4 also supports the schedctl semantics used in previ-

ous versions of IRIX, but the POSIX semantics are recommended for portability.

POSIX 1003.1b allows users to specify one of two scheduling policies: FIFO or Round-

Robin. Silicon Graphics has extended the POSIX scheduler to include a timesharing

policy that is the default on all processors.

3.5.1.1 First-In-First-Out (FIFO)

The FIFO policy implements preemptive, fixed-priority based scheduling. The highest

priority process that is ready-to-run will execute either until it blocks or until a higher

priority process becomes ready-to-run. When choosing between two processes with

equal priority, the scheduler selects the one that first became ready-to-run. (Thus the

name “FIFO”.)

No timesharing is imposed under the FIFO policy. A processor running under the FIFO

policy will continue to take a scheduler clock interrupt every 10 mS, but the interrupt

will not trigger any scheduler activity.

3.5.1.2 Round-Robin

The round-robin policy is similar to FIFO, but with the addition of an execution time

quantum. The highest priority, ready-to-run process will execute until:

• it blocks

• it is preempted by a higher priority process

• its time quantum expires and a process of equal priority is ready-to-run

The duration of a time slice is user selectable in increments of 10 mS. This relatively

course resolution makes the round-robin policy inappropriate for most hard real-time

applications.

3.5.1.3 Setting Process Priority

Beginning with version 6.4, IRIX has adopted a new model for process priority. The

previous model divided the range of priorities into three bands, one of which was real-

time. Assigning a process a priority in the real-time band affected the aging policy for

that process, and in some cases other characteristics such as timer resolution.

Under IRIX 6.4 there are two priority bands: timesharing and real-time. A process spec-

ifies its priority band by selecting a scheduler policy. Selecting either FIFO or Round-



Configuring For Real-Time Operation

16 REACT In IRIX 6.4 Technical Report

Robin scheduling will place a process in the real-time priority band. By default, a pro-

cess will be assigned the timesharing policy and priority band.

Within the real-time band IRIX 6.4 offers a set of 256 priority levels in a unified priority

scheme that includes kernel threads as well as real-time user processes. Most kernel

activity, including most interrupt service routines, in IRIX 6.4 consists of threads exe-

cuting at a fixed priority in the real-time band. Accordingly, it is possible to assign to a

user process a priority higher than most kernel activity. Developers who choose to do

this should proceed with caution.

The lower 128 priority levels are available for real-time user processes that do not

require priorities above those of the kernel threads.

3.5.1.4 Avoiding Priority Inversion

When executing competing fixed-priority processes there is always the danger of prior-

ity inversion. Priority inversion occurs when a high priority thread is blocked waiting for

a lower priority thread to release a resource. IRIX is equipped with a basic priority

inheritance protocol which handles priority inversion. This protocol is best described in:

“Sha, Lui et al., Priority Inheritance Protocols: An Approach to Real-Time Synchroni-

zation, IEEE Transactions on Computers, Vol. 39, No. 9, Sept. 1990”

For example, if a real-time process is waiting for a lock that is held by a lower priority

process, the priority of the process that holds the lock will be temporarily raised to that

of the higher priority process. This avoids a form of priority inversion that would other-

wise occur if the low priority process had to wait for a resource held by a process whose

priority was above its own, but below that of the real-time process.

3.5.2 REACT/pro Frame Scheduler (FRS)

REACT/pro, an add-on software product from Silicon Graphics, includes a periodic

scheduler that is tailored to the requirements of many hard real-time applications. It is a

general purpose facility that can be configured to meet a wide range of scheduling

requirements. The FRS offers the lowest scheduling latency possible on Origin, Onyx2,

Challenge, and Onyx multiprocessor systems.

The FRS is a kernel module that controls the scheduling on each processor where it is

enabled.

3.5.2.1 Interrupt Sources

The FRS is driven by an interrupt source whose period is equal to the shortest frame-

time required. The user chooses an interrupt source from among the following:

• High-resolution timers

• External interrupt

• Any kernel-level device driver (e.g.VME or PCI)

• Vertical retrace interrupt (graphics systems only)

• User process (useful for debug)



Configuring For Real-Time Operation

REACT In IRIX 6.4 Technical Report 17

The most commonly used interrupt source for the FRS is the internal high-resolution

real-time clock. Driving the FRS with the internal timer allows the user to set up frames

at one or more related frequencies, and schedule processes in priority order within each

frame.Other interrupt sources allow the FRS to easily be synchronized with the external

world, either through the external interrupt connector on the system’s back panel, or via

an interrupt generated by a VME or PCI board.

For video and real-time graphics applications on Onyx and Onyx2, the frame scheduler

can be driven by the vertical retrace interrupt generated by the graphics subsystem’s

frame buffer. This arrangement generates frames at the same rate as the video frame

rate, with the FRS’s start-of-frame occuring at the beginning of the vertical blanking

interval. Vertical retrace should be chosen as the interrupt source in applications that

combine IRIS Performer and the FRS on the same multiprocessor system.

While the FRS is typically used for periodic scheduling, it can also be driven aperiodi-

cally. An interface is provided to allow a user process such as a debugger to trigger a

frame, thus allowing single-step operation.

3.5.2.2 Operation

When the FRS is enabled on a processor, it removes that processor from the pool of pro-

cessors available to the POSIX 1003.1b scheduler, and configures it for real-time opera-

tion. The user specifies the number of minor frames per major frame. This relationship

is shown in Figure 3.

FIGURE 3. REACT/pro Frame Scheduler

Major FrameMajor Frame

Minor-0 Minor-1 Minor-2 Minor-0 Minor-1 Minor-2

TIME

Q0 Q1 Q3

Incoming Interrupts

Process Queues



Configuring For Real-Time Operation

18 REACT In IRIX 6.4 Technical Report

Each minor frame has an associated queue of processes to be executed within that

frame. The processes are executed in the order they are enqueued. Processes can be

added or deleted from a queue dynamically after the FRS has been started.

The minor / major frame construct enables multiple, related frame rates to be created.

The incoming interrupts determine the minor frame’s period. By setting the number of

minor frames per major frame, the user can create a major frame with a period equal to

any number of the minor frames.

For example, a set of related frame rates can be created. Specify a timer interrupt to start

minor frames at the highest desired frame rate, and specify the number of minor frames

per major frame equal to the ratio of the lowest and highest desired rates. Enqueue pro-

cesses to be run at the highest rate in every minor frame, and enqueue processes to be

run at the lowest rate in only one minor frame per major frame. Enqueue processes to be

run at the middle rate in every other minor frame, and so forth.

Each enqueued process is assigned a discipline, which specifies the process’s preemp-

tion behavior. Nominally, a process that has not been found ready to run throughout the

duration of a minor frame will generate an underrun error, and a process that has not

yielded the CPU by the end of its minor frame will generate an overrun error. Other

behaviors can be invoked through the assignment of disciplines to processes.

Processes controlled by the frame scheduler can block waiting for an event, such as

completion of an I/O operation or availability of a system resource. The frame scheduler

will start execution of the next enqueued process. As soon as the higher priority process

becomes ready-to-run, the frame scheduler will resume its execution.

Frame scheduling can be enabled on all but one processor in a multiprocessor system;

i.e. all but the system processor. Each frame scheduler handles only one processor, so a

separate FRS must be initialized on each processor independently. One of the FRSs is

designated the master, and the others are slaves. The slaves register with the master, then

wait for the signal to start. In this way the FRS ensures all processors begin operation

with the same frame.

3.5.3 User Scheduling

3.5.3.1 User-level Scheduling

Applications being ported to Silicon Graphics from other platforms often have an exist-

ing scheduler or executive process. While porting an existing user-level scheduler will

not provide optimum performance, it is often useful.

In these cases, it is desirable to suspend most or all IRIX scheduling activity and give

control of the processor to the user’s executive process. The simplest and most portable

method is to select the FIFO policy of the POSIX 1003.1b scheduler, and give the exec-

utive process a high process priority.

The executive process can establish fixed-rate execution by programming a POSIX

timer (or itimer) to fire at the desired rate. Because it has the highest priority, the execu-

tive process will always run immediately after the timer fires. The executive process



Configuring For Real-Time Operation

REACT In IRIX 6.4 Technical Report 19

unblocks the processes it wants to run, then sleeps awaiting the next timer interrupt. The

unblocked processes will then run in priority order.

3.5.3.2 Kernel-level Scheduling

Timers notify the requesting process of timer expiration using a signal. The time

required to deliver a a signal is typically in the range of 100 to 350 microseconds. When

a timer is used to wake up the executive process at start-of-frame, the time required to

deliver the signal is part of the start-of-frame overhead.

The overhead of delivering a signal can be avoided by using an external interrupt source

and a kernel-level device driver. In this scenario, a PCI or VME board generates the

interrupt that triggers the start of a new frame. The kernel-level interrupt service routine

can set semaphores to wake up the processes it wants to run. This saves the overhead of

delivering a signal to wake up a sleeping process.

In this scenario, the interrupt service routine can either wake up the executive process,

or it can directly wake up the process(es) to run during the frame. Having the interrupt

service routine wake up an executive process maximizes flexibility and minimizes the

amount of kernel-level code, but it also adds an additional context switch.

The free-running hardware timer provides the highest resolution and accuracy, and is

recommended for use in real-time applications.



POSIX 1003.1b Features

20 REACT In IRIX 6.4 Technical Report

4.0 POSIX 1003.1b Features

This section discusses the POSIX 1003.1b features of IRIX with REACT. IRIX 6.4 is

fully conformant to POSIX 1003.1b.

4.1 Timers and Clocks

Origin and Onyx systems include hardware support which enable the clocks and timers

in REACT to provide high precision with minimal system overhead. Each CPU includes

its own hardware clock circuit. All clock circuits are initialized simultaneously and

driven by the same frequency source. This ensures complete synchronization of timers

and clocks on all CPUs.

Clocks return a value for the current time. They are useful for timestamping events and

for measuring the wall clock time that elapsed between execution of two points in user

code.

Timers send a signal to the process that requested them after the specified period has

elapsed.

IRIX with REACT supports several clock and timer programming interfaces. For maxi-

mum performance and portability, Silicon Graphics recommends use of the POSIX

1003.1b clocks and timers interfaces. Only POSIX.1b clocks and timer will be

described in this document. For a description of the System V and BSD interfaces sup-

ported by IRIX, refer to the REACT in IRIX Version 5.3 Technical Report, or the

REACT/pro Real-Time Programmer’s Guide.

4.1.1 Interval Timers

Timers enable a user process to cause itself or another user process to receive an asyn-

chronous interrupt after a specified time interval has elapsed. A single timer call can

generate a string of periodic interrupts. When the timer expires, the process is notified

using a Posix 1003.1b signal. IRIX will wake up (context-switch in) the process if it has

been sleeping while waiting for that signal (and it is the highest priority). This behavior

enables timers to be used to implement a simple executive that runs processes periodi-

cally.

Compared with the REACT/pro frame scheduler, using timers for scheduling incurs the

additional overhead of a signal, which is typically in the range of 100 to 350 microsec-

onds,. Also, timers handle can handle only simple timing and priority scenarios. How-

ever, scheduling based on a timer works well for many applications.

4.1.2 Clocks

When called, a clock returns the current time of day to the calling process. POSIX

clocks return the time to the caller as one 64-bit word formatted as two 32-bit values.

The lower 32 bits indicate nanoseconds, and the upper 32 bits indicate seconds.

Clocks are typically used to measure the elapsed time between events and to synchro-

nize execution across systems.



POSIX 1003.1b Features

REACT In IRIX 6.4 Technical Report 21

By reading the time before and after an operation and taking the difference, the applica-

tion can calculate elapsed time. IRIX with REACT supports four types of clock facili-

ties: POSIX 1003.1b clocks, UNIX System V timers, BSD4.2 timers, and direct access

to hardware timers from user code.

The free-running hardware timer provides the highest resolution and accuracy, and is

recommended for use in real-time applications.

4.1.3 Clock Sources

When initializing a POSIX timer, the user must specify a clock source from between the

two sources supported in IRIX. CLOCK_SGI_CYCLE should always be used when

possible in real-time applications, because it provides the highest accuracy. However,

this clock source is an SGI-specific extension to POSIX. CLOCK_REALTIME is a

source available in all compliant POSIX.1b implementations, but its resolution is lim-

ited to 1 millisecond in IRIX 6.4.

As implemented in IRIX 6.4, the user chooses from between two clock sources when

initializing a POSIX 1003.1b clock or timer:

CLOCK_REALTIME is available as a source for either clocks or timers. When read as a

clock, it returns the system’s notion of the elapsed time since January 1, 1970, expressed

in seconds and nanoseconds. Select this clock to maximize portability of code.

CLOCK_SGI_CYCLE - This clock source will always be the highest resolution clock

source available on any SGI platform. The resolution will vary across platforms, but the

time will always be returned in the seconds/nanoseconds format specified by Posix.

(Unit conversion is performed by the user-level library routine.) Use clock_getres(2) to

determine the underlying resolution of the clock. This clock source is reset to zero each

time IRIX is booted.

CLOCK_SGI_FAST - On every SGI platform, provides user access to the highest reso-

lution clock source with interrupt capability. It is usable only for POSIX timers.

The accuracy of the crystal oscillator that drives all clock sources is 100 parts per mil-

lion. This translates to a maximum timing error of 100 microseconds per second. While

a timer may drift this much relative to an external time source, the skew among timers

for different processors in the same system will be less than one clock tick, since all tim-

ers are clocked by the same hardware clock signal and are initialized to zero simulta-

neously.

Earlier versions of IRIX employed a construct called fasthz which imposed restrictions

on the intervals that could be timed using itimers. Beginning with IRIX 6.2, the fasthz

construct has been eliminated.The interface still exists, but setting fasthz has no effect

on POSIX timers or real-time itimers. Instead, all timers automatically provide the full

resolution of the hardware.



POSIX 1003.1b Features

22 REACT In IRIX 6.4 Technical Report

4.2 Shared Memory and Memory-Mapped Files

Silicon Graphic’s Origin and Onyx2 systems are designed with distributed shared-mem-

ory (DSM). DSM partitions main memory among the processors but accessible to and

shared by all processors. To every processor, main memory appears as a single address-

able space. The effect of a single, common memory is that processes running on differ-

ent CPUs can easily share pages of memory, and can update identical memory locations

concurrently.

Using POSIX 1003.1b shared memory (for example), a single segment of memory can

be mapped into the virtual address spaces of two or more processes. Two processes can

share/transfer data at memory speeds, one putting the data into a mapped segment and

the other process taking the data out. They can then coordinate their access to the data, if

required, using POSIX 1003.1b semaphores. But shared memory is more than just pro-

viding common access to data, it is providing the fastest possible communication

between processes.

In a program that starts multiple, lightweight processes with sproc(2), all processes

share the same address space and its contents. In these programs, the entire address

space is shared automatically. Normally, distinct processes (created by the fork(2) sys-

tem call) have distinct address spaces, with no writable contents in common. Shared

memory facilities within an OS allow one to define a segment of memory that can be

part of the address space of more than one process. The basic IRIX system operation for

shared memory is the POSIX 1003.1b conformant mmap(2) function, with which a pro-

cess makes the contents of a shared memory object (i.e., a file) part of its address space.

The POSIX shared memory facility is a simple, formal interface to the use of mmap(2)

to share segments of memory.

For backward compatibility, REACT also supports UNIX System V Release 4 (SVR4)

shared memory and SGI’s own arena shared memory.

4.3 Semaphores

The REACT implementation of POSIX 1003.1b semaphores provides a high-speed,

user-level synchronization mechanism. POSIX defines two types of semaphores: named

and unnamed. An unnamed semaphore is a semaphore object that exists in memory

only. It can be identified only by its memory address, so it can be shared only by pro-

cesses or threads that share that memory location (typically through the POSIX shared

memory facility). Since POSIX unnamed semaphores have been implemented in user

space, acquisition of an uncontested semaphore occurs immediately without any kernel

overhead.

A named semaphore is named in the IRIX filesystem, so it can be opened by any pro-

cess (subject to access permissions), even when the process does not share address

space with the creator of the semaphore. Named semaphores are persistent, meaning

that they are preserved (along with their state) until they are no longer referenced by any

active process or they have been explicitly deleted from the system file.

Both POSIX named and unnamed semaphores support priority queuing such that pro-

cesses blocked on semaphores are unblocked in priority order. Since unnamed sema-



POSIX 1003.1b Features

REACT In IRIX 6.4 Technical Report 23

phores are a more lieghtweight mechanism than named semaphores, they will generally

out perform them.

For backward compatibility purposes, IRIX also contains an implementation of UNIX

System V Release 4 (SVR4) and SGI’s own IRIX arena semaphores.

4.4 Memory Locking

IRIX with REACT fully supports POSIX 1003.1b memory locking through the

mlock(3c) and mlockall(3C) system calls. A single POSIX call to mlockall(3C) with the

MCL_CURRENT parameter locks into physical memory the entire address space of the

calling process. Locking a process’ address space in memory not only keeps it from

being paged but also helps to minimize the possibility of TLB misses during execution.

Additionally, by using the MCL_FUTURE option to this same call, a process can also

specify that future memory allocated be automatically locked. This includes the locking

of memory that gets allocated via malloc(3C), sbrk(2), or through growth of the stack.

For backward compatibility, REACT also supports SGI’s own memory locking call -

mpin(2) and the SVR4 plock(2) call but these have no functional or performance advan-

tages over the POSIX functions.

4.5 Asynchronous Disk I/O

Typically when a user process makes a system call to perform disk I/O, the calling pro-

cess blocks until the I/O operation is complete. To meet the needs of real-time applica-

tions, IRIX with REACT supports POSIX 1003.1b asynchronous I/O. When an

asynchronous I/O system call is made, the kernel initiates the I/O request on behalf of

the user process and returns control to the user process. The user process can either wait

for the I/O operation to complete, or it can continue executing until an I/O completion

notification is sent. This sequence of events is shown in Figure 4.



POSIX 1003.1b Features

24 REACT In IRIX 6.4 Technical Report

.

FIGURE 4. Asynchronous I/O Operation

The asynchronous I/O interface is implemented using child processes that perform the

actual I/O operations, and a control block in memory (aiocb) containing user and sys-

tem defined status and control information for the transaction, such as the file pointer

and the number of bytes.

The child processes can be created by the aio_sgi_init system call, or by the call that ini-

tiates the first asynchronous I/O transaction. For real-time applications, it is preferable

to create the child processes ahead of time, which allows the calling process to assign

execution of the child processes to another processor.

The lio_listio(3) feature allows multiple I/O requests to be made in a single function

call. The user process can simultaneously enqueue a number of aio requests to a device

and optionally receive a queued signal or execute a callback function when the request

completes.

The user process can choose to synchronously wait a specified amount of time for aio

completion, using the aio_suspend(3) call. This gives a program the capability of queu-

ing a number of aio requests, and then waiting until at least one of them has completed,

or the program is interrupted by a signal, or the timeout specified in the call expires.

When aio_suspend is used with aio_error(3) and aio_return(3), the user process incurs

the least amount of overhead using asynchronous I/O. Upon return from aio_suspend,

the functions aio_error and aio_return can be applied to the individual aiocb for com-

pletion status.

aio_sgi_init

aio_read

aio_suspend

Real-Time Processing I/0 Processing

Start Child Processes

Callback/Signal

User Process

Receive Info

(optional)



POSIX 1003.1b Features

REACT In IRIX 6.4 Technical Report 25

4.6 Synchronized I/O

Synchronous I/O operations ensure that data written by a real-time process has

reached the physical disk before the process resumes execution. IRIX with REACT pro-

vides the POSIX 1003.1b synchronized I/O interface for this purpose. An application

specifies that synchronized I/O is to be performed on a file by simply specifying the

O_SYNC flag on fcntl(2) or open(2) functions. When a disk file is opened specifying

O_SYNC, each call to write(2) blocks until the data has been written to disk. This pro-

vides a way of ensuring that all output is complete as it is created. If O_SYNC access is

combined with asynchronous I/O, one can let the asynchronous process suffer the delay.

IRIX with REACT also provides an O_DIRECT option to the fcntl(2) and open(2) func-

tions. O_DIRECT provides all the advantages of O_SYNC but with the additional advan-

tage of performing all reads and writes directly to or from the user program buffer

(without copying to a buffer in the kernel first). As with O_SYNC, O_DIRECT can be

used with asynchronous I/O.

4.7 Signals

A signal is an asynchronous notification of an event that is sent to a process when the

event associated with that signal occurs. Examples of such events include hardware

exceptions, timer expirations, terminal activity, as well as calls to kill(2), sigqueue(3),

sigsend(2), or raise(3c). IRIX with REACT supports the signal functions in BSD4.3 and

System V, as well as the POSIX P1003.1b real-time signals extension. Because only the

POSIX convention provides reliable and deterministic signal notification, the remaining

discussion in this section will be confined to those signals.

IRIX supports signal numbers between 0 and 64. The POSIX 1003.1b standard reserves

all signals between 33 (SIGRTMIN) and 64 (SIGRTMAX) for real-time applications.

The signals between 1 and 32 are of equal priority, but have a higher priority than real-

time signals. The real-time signals are prioritized such that the lower the signal number,

the higher the signal’s priority. With the POSIX 1003.1b signal interface if multiple

unblocked signals are pending, the highest priority signal will be delivered first. Con-

versely, a lower priority signal cannot preempt a higher priority signal handler.

4.7.1 Handling Signals

A process can request that a signal be caught and handled asynchronously, by specify-

ing the address of a function to be called when the signal is received (sigaction(2)). The

signal-handling function is entered asynchronously, without regard for what the process

was doing at the time the signal was delivered. A process can also synchronously wait

for the occurrence of a signal either with a specified timeout (sigtimedwait(3)) or with-

out a timeout (sigwait(3) or sigwaitinfo(3)). Additionally, it can unblock a signal and

then wait for that signal in a single atomic operation (sigsuspend(3)).

Signal latency can be long (as real-time programs measure time) and signal latency can

have high variability. In real-time applications where low signal latency is critical, syn-

chronous signal reception can be used to minimize this latency and variability. Latency

is reduced by eliminating the need for an additional context switch into a signal handler.



POSIX 1003.1b Features

26 REACT In IRIX 6.4 Technical Report

Variability is minimized since signals are received when the process is in a known state

without the uncertainties of asynchronous delivery.

4.8 Message Queues

POSIX 1003.1b message queues provide a simple interface to pass data among pro-

cesses. In most cases, the recommended real-time Inter-Process Communication (IPC)

mechanism on Silicon Graphics systems is shared memory because of its ease of use

and lack of kernel overhead. There are cases, however, where software applications pre-

fer to hold data locally to minimize potential data corruption - sharing data by using a

well defined sender/receiver protocol. In these cases, an IPC mechanism such as POSIX

message passing can be used.

As implemented in REACT, message queues support priority queuing and priority

inheritance to ensure correct operation when processes with different priority are shar-

ing a queue. Message queues have been implemented in user space using shared mem-

ory. The send and receive operations work entirely at user-level when there is no process

blocking/unblocking involved. This permits message queue operations to be faster and

more deterministic.

For backward compatibility purposes, IRIX also contains an implementation of message

queues compatible with UNIX System V Release 4 (SVR4).



Other Real-Time Programming Features

REACT In IRIX 6.4 Technical Report 27

5.0 Other Real-Time Programming Features

This section describes additional features of IRIX with REACT that are useful to real-

time developers.

5.1 External Interrupts

Standard on each Origin and Onyx2 system are two external interrupt ports (one input

and one output), which are designed to be connected to external equipment. The inter-

face to these lines is provided by special device files found in /dev/external_int (see

ei(7)). This interface allows separate machines to send and receive interrupts over a ded-

icated wire for inter-machine synchronization. Physically, the ports are female 3-con-

ductor 1/8 inch audio jacks identical to those found on portable stereo headphones.

In IRIX the external interrupt device driver maintains per-process state information,

allowing any number of processes to open this device and use it without interfering with

each other. On Origin and Onyx2 systems, external interrupts can be routed to specific

processors at kernel build time through the INTR_TARGET directive found in the

irix.sm file.

A user process can enable or disable interrupts (interrupts are automatically disabled

when the device is closed by the last process), assert or de-assert an interrupt, generate

an outgoing interrupt pulse (one shot), or program a repetitive square wave interrupt

pulse (outgoing square ware and repetitive pulse are available only on Origin and Onyx2

hardware).

Incoming interrupts can be handled in a number of ways. A process can instruct the

driver to send a signal when each interrupt arrives. The interrupt queue permits the sig-

nal handler to know exactly how many interrupts have arrived, even if a signal was dis-

carded. Or a user process may request to block in an ioctl() until an interrupt is received.

Finally, in situations where the overhead of a system call is unacceptable (for example,

when interrupts occur frequently), a process can busy wait for an interrupt to arrive,

using the eicbusywait library function. The interrupt queue maintained for this function

insures that an interrupt arriving before the library call is made will still be available to

the calling process. External interrupts can also be handled by user-level interrupts,

described further in Section 4.5. Finally, external interrupts can also be used as the input

interrupt for the frame scheduler.

5.2 User-Level Interrupts

The user level interrupt (ULI) facility allows a hardware interrupt to be handled by a

user process. The ULI facility is intended to both simplify and streamline the response

to external events. On Origin and Onyx2 platforms ULIs can be written to respond to

interrupts initiated either from the VMEbus, the PCIbus or from the external interrupt

ports. ULIs permit users to effectively provide the Interrupt Service Routine (ISR) for

an interrupt responding to events without taking a context switch. The ULI facility is

both easy to use and very high performance - typical interrupt response times are under

20 µsecs.



Other Real-Time Programming Features

28 REACT In IRIX 6.4 Technical Report

With ULI, one sets up a handler function within a user program. The handler is called

whenever the device causes an interrupt. The function is entered asynchronously from

the IRIX kernel’s interrupt-handling code. The kernel transfers from the kernel address

space into the user-process address space, and makes the call in user (not privileged ker-

nel) execution mode. Despite this more complicated linkage, one can think of the ULI

handler as a subroutine of the kernel’s interrupt handler.

Like the kernel’s interrupt handler, the ULI handler can be entered at almost any time,

regardless of what code is being executed by the CPU - a process of the parent program

or a process of another program, executing in user space or in a system function. In fact,

the ULI handler can be entered from one CPU while the parent program executes con-

currently in another CPU. The parent process and the ULI function can execute in true

concurrency, accessing the same global variables.

Because the ULI handler is called in a special context of the kernel’s interrupt handler, it

is severely restricted in the system facilities it can use. The list of features the ULI han-

dler may not use includes the following:

• Any use of floating-point calculations. The kernel does not take time to save float-

ing-point registers during an interrupt trap. The floating-point coprocessor is turned

off and an attempt to use it in the ULI handler causes a SIGILL (illegal instruction)

exception.

• Any use of IRIX system functions. Because most of the IRIX kernel runs with inter-

rupts enabled, the ULI handler could be entered while a system function was already

in progress. System functions do not support reentrant calls from the same process.

In addition, many system functions can sleep, which an interrupt handler may not

do.

• Any storage reference that causes a page fault. The kernel cannot suspend the ULI

handler for page I/O. Reference to an unmapped page causes a SIGSEGV (memory

fault) exception. This limitation can be overcome by locking down pages before

entering the ULI handler (through a call to the POSIX routine mlockall for instance).

• Any calls to C library functions that might violate the preceding restrictions.

Not only do ULIs allow for the fastest possible response to external events, but they are

also very simple to use. A program initializes ULIs by implementing the following sim-

ple steps:

1. Open the device special file for the device

2. For a VME/PCI device, map the device addresses into process memory

3. Lock the program address space in memory

4. Initialize any data structures used by the interrupt handler

5. Register the interrupt handler (single library call)

Any time after the handler has been registered, an interrupt can occur, causing entry to

the ULI handler.



Other Real-Time Programming Features

REACT In IRIX 6.4 Technical Report 29

5.3 User-PCI Interface

The USRPCI interface provides a mechanism to access PCI bus address space from user

programs. This provides a convenient mechanism for writing user level PCI device driv-

ers if DMA capabilities on the PCI card are not required. By using the USRPCI inter-

face to PCI devices, a user does not need to know any addressing information about the

device to be interfaced - simply the slot # and type of memory to be accessed. Reads and

writes can then be performed to the card through Programmed I/O (PIO) without any

kernel interaction. Mapping of PCI address space to user level device drivers is sup-

ported via the mmap(2) system call. In this mechanism, user level drivers do an open(2)

of the appropriate device path and invoke mmap(2) on the open file descriptor to map

the required device space to the process address space.

One consideration to be made when accessing PCI devices is that access times will vary

slightly based on the location of the PCI bus relative to the CPU where the PIO process

is being executed. To minimze latency, PIO should be done from one of the CPUs that

reside on the same node as the PCI bus itself.

On Origin and Onyx2 systems, PIO writes will nominally complete within 500 nanosec-

onds and PIO reads within 2200 nanoseconds (this assumes that there is no other con-

flicting traffic on the PCI bus). If access to the PCI bus includes passage through a

router, one should expect an addtional latency of about 200-300 nanoseconds per router.

Copyright 1997 Silicon Graphics, Inc. All rights reserved. Specifications subject to change with-
out notice. Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks, and
REACT, IRIX, Onyx, Origin, IRIS InSight are trademarks, of Silicon Graphics, Inc. UNIX is a
registered trademark in the United States and other countries, licensed exclusively through X/
Open Company, Limited. All other products mentioned herein are trademarks or registered trade-
marks of their respective companies.


