mips

MIPS™ Processor
ABIl Conformance Guide
Version 1.2.2

MIPS ABI Group, Inc.

DRAFT COPY
August 30, 1996
File: titlepage

Copyright 1992,1993,1994,1995,1996 MIPS ABI Group, Inc.
Printed in USA

Permission to use, copy, and distribute this specification to
support application development and portability is hereby granted.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all
information in this specification, the contributing vendor
companies assume no liability to any party for any loss or damage
caused by errors or omissions in this specification.

TRADEMARKS

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of Silicon Graphics, Inc.

MIPS is a registered trademark of MIPS Technologies, Inc.

OSF, OSF/Motif and Motif are trademarks of the Open Software Foundation Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

UNIX is a registered trademark in the United States and other countries, licenses exclusively through X/Open Company Limited.
X Window System is a trademark of the X Consortium, Inc.

Revision History:

1.0 - First formally approved version.

1.0.1 - Minor corrections and changes.

1.1 - First major revision to reflect agreed upon new functionality that is part of the ABIl. Added X11R5 and
OSF/Motif 1.2 as required interfaces. Added comments about the relationship to OCMP. Introduced
Asynchronous 1/0 and tape ioctls as future directions. Introduced _xstat and _Istat as required interfaces.
Introduced extended GOT as future direction.

1.1.1 - Mark IRIX 5.1 and IRIS Development Option 3.17 + ABI changes as the reference platform. Add abicc
and abild arguments. Minor cleanup. No functionality changes.

1.1.2 - Mark IRIX 5.2 and IRIS Development Option 3.18 as the reference platform. Revise future directions
statement to reflect functionality approved for revision 1.2. No functionality changes.

1.2 - Second major revision to reflect new functionality. Make Asynchronous I/0 and the tape ioctl’s a
standard part of the ABI, moving them from the futures section into Chapter 6. Add new sysinfo call to return
the number of processors actually available for assignment. Add comments from a new gABI on the order of
invocation of .init/ .fini sections. Make the expanded GOT part of the ABI, moving it from the futures section.
Add the ELF relocation flags R_MIPS_LOVENDOR and R_MIPS_HIVENDOR to allow for more orderly
addition of relocation types. Add sbrk to libc. Add RTLD_GLOBAL option to dlopen() routine. Add libgen
as a supported archive library. Add a number of new future direction indications.

1.2.1 - Minor changes. Mark IRIX 6.2 and IRIS Development Option 6.2 as the new reference platform for 1.2.
Clarify ABI_MTWEOF behavior in mtio section. Deprecate -q option to abicc. Define O_DSYNC and
O_RSYNC in async 1/0 section. Add new sysinfo call to return hardware serial number for license
management software.

1.2.2 - Minor changes. Added "Signal Handling" and "Presentation of Network Distributed Information”
sections to chapter 6. Add -Kschar, -Brpath and -Bnolibraryreplacement options to abicc/abild in chapter 4.
Add additional installation devices and wording for network installation to chapter 2.

DRAFT COPY
August 30, 1996
File: titlepage

Contents

1 INTRODUCTION
Overview 1-1
Conformance 1-5

2 SOFTWARE INSTALLATION

Software Installation and Packaging 2-1

File Tree for Add-On Software 2-2

Devices 2-3
3 LOW-LEVEL SYSTEM INFORMATION

Low-Level System Information 3-1

4 OBJECT FILES

Relocation 4-1
Link Editing 4-2
Object Files 4-3
Debugging 4-4
Compiler and Linker Options 4-5
5 PROGRAM LOADING AND DYNAMIC LINKING
Dynamic Linking 5-1
6 LIBRARIES
Introduction 6-1
System Library 6-3
C Library 6-4
Runtime Dynamic Linking Library 6-16

Table of Contents i

FINAL COPY
August 30, 1996
File: MasterToc

FINAL COPY

August 30, 1996
File: MasterToc

Networking Services Library 6-18

Mutual Exclusion Library 6-19

Socket Library 6-21

ABI Library 6-32

X Window System Library 6-38

Math Library 6-43

OSF/Motif Library 6-44

General-Purpose Library 6-45

BSD Emulation Library 6-47

Presentation of Network Distributed Information 6-49
7 FORMATS AND PROTOCOLS

ABI Version Identification 7-1
8 SYSTEM COMMANDS

System Commands 8-1
9 EXECUTION ENVIRONMENT

Execution Environment 9-1
10 WINDOWING AND TERMINAL INTERFACES

Windowing and Terminal Interfaces 10-1
1 1 DEVELOPMENT ENVIRONMENT

Development Environment 11-1
A FUTURE DIRECTIONS

Future Directions A-1

Long-Term Projects A-4
| N Index

Index IN-1

Table of Contents

Figures and Tables

Figure 4-1:
Figure 5-1:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:
Figure 6-14:
Figure 6-15:
Figure 6-16:
Figure 6-17:
Figure 6-18:
Figure 6-19:
Figure 6-20:
Figure 6-21:
Figure 6-22:
Figure 6-23:
Figure 6-24:
Figure 6-25:
Figure 6-26:
Figure 6-27:
Figure 6-28:
Figure 6-29:
Figure 6-30:
Figure 6-31:
Figure 6-32:
Figure 6-33:
Figure 6-34:
Figure 6-35:
Figure 6-36:
Figure 6-37:
Figure 6-38:

Expanded GOT Relocation Types
Initialization Ordering Example
Shared Library Names
| i bc Additional Required Entry Points
| i bc Contents, Names without Synonyms
| i bc Contents, Names with Synonyms
| i bc Contents, Names with Synonyms, previously listed without Synonyms
Header File: <sys/ syst em nf o. h>
Additions to Header File: <sys/nti o. h>
Example Tape Layout
Tape Positioning after i oct | Operations
Tape Positioning after cl ose for device opened with no-rewind access
Break instruction bit assignments
Additions to <sys/ debug. h> for br eak Codes
I'i bdl Contents
I i bnsl Contents, Additional Required Entry Points
I i bnsl Contents, Global External Data Symbols
| i bmut ex Contents
Header File: <abi _mut ex. h>
| i bsocket Contents
Header File: <net /i f. h>
Header File: <net /i f _arp. h>
Header File: <netinet/if_et her. h>
Header File: <neti net/in. h>
Header File: <neti net/tcp. h>
Header File: <sys/i oct| . h>
Header File: <net db. h>
Header File: <net/rout e. h>
Header File: <sys/ socket . h>
Header File: <sys/types. h>
Header File: <sys/ un. h>
|'i babi Contents
Header File: aio.h
Header File: signal.h
Header File: limits.h
Header File: errno.h
Header File: fcntl.h
Header File: unistd.h
| i bX Contents
I i bX Contents, Global External Data Symbols

Table of Contents

FINAL COPY
August 30, 1996
File: MasterToc

6-5

6-10
6-12
6-12
6-13
6-14
6-15
6-16
6-18
6-18
6-19
6-20
6-21
6-22
6-23
6-23
6-24
6-25
6-25
6-27
6-28
6-28
6-31
6-31
6-32
6-33
6-34
6-34
6-35
6-35
6-35
6-38
6-42

Figure 6-39:
Figure 6-40:
Figure 6-41:
Figure 6-42:
Figure 6-43:
Figure 6-44:

X11RS5 Include Files

X11R5 X Toolkit Intrinsics Include Files
Required | i bmFunctions

OSF/Motif 1.2 Include Files

| i bgen Contents

| i bucb Contents

August 30, 1996
File: MasterToc

6-42
6-42
6-43
6-44
6-45
6-47

Table of Contents

1 INTRODUCTION

Overview 1-1
Audience and Purpose 1-1
Relationship to OCMP 1-1
Organization 1-2
Related Documentation 1-2
Terminology 1-3
Conformance 1-5
Changes from Version 1.1 to Version 1.2 1-5
General Guidelines for Porting to MIPS ABI Platforms 1-5
Working with the MIPS ABI Group 1-6
Platform Conformance Testing 1-6
The Application Coonformance Test Suite(ACTS) 1-6

Table of Contents

FINAL COPY
August 30, 1996
File: Cchapl

Overview

The information contained in this specification provides implementation guidelines and defines additional
capabilities beyond the binary standards provided by the System V Application Binary Interface (the generic ABI
or gABI) and the MIPS Processor ABI Supplement (psABI), which are required for the development and distri-
bution of binary compatible software, including so-called "shrink-wrapped" software.

The vendors contributing to the development of this Conformance Guide include: Concurrent Computers, Control
Data Systems Incorporated, Dansk Data Elektronik A/S, NEC Corporation, Pyramid Technology Corporation (a
Siemens-Nixdorf Company), Silicon Graphics Incorporated and its’ subsidiary MIPS Technologies Incorporated, Sie-
mens Nixdorf Informationssysteme AG, Sony Microsystems, and Tandem Computers. These vendors are known col-
lectively as the MIPS ABI Group, Inc.

The Santa Cruz Operation has supported the effort through review and comment on the specifications as they
were developed. UniSoft Group Limited has supported the effort through review and comment on the
specifications and the development of testing technology.

A number of Independent Software Vendors have contributed greatly to the development of this Conformance
Guide, including Oracle Corporation, SAS Institute Incorporated and Edinburgh Portable Compilers Ltd.

Audience and Purpose

This specification is intended to guide application writers in developing software that will run portably across
all MIPS” RISC processor-based systems that are ABI conforming. It also is a specification for implementors
of compliant operating systems. This document is intended to define areas beyond the current ABIs as well as
address any outstanding ambiguities. Some information may not be relevant to all audiences.

It is intended that application writers and ISVs use the generic ABI and the psABI in conjunction with this
specification as a complete and rich environment for portable application development on the MIPS ABI refer-
ence processor.

Relationship to OCMP

Several of the member firms of the MIPS ABI group are also active in the Open Computing environment for
MIPS Platforms (OCMP) efforts in Japan. The OCMP-ABI is based on the MIPS ABI version 1.0.1 with exten-
sions in several areas:

B Internationalization and localization, especially in Japanese language support

B CD-ROM access libraries

B Specification of X11R5 and OSF/Motif 1.2.
The intent of both the MIPS ABI group and the OCMP members is to keep their respective specifications
aligned. Version 1.1 of this document introduced X11R5 and OSF/Motif 1.2 as required interfaces. The X11R5
interface is supported by Dynamic Shared Object libraries, while OSF/Motif 1.2 is supported by a static

archive, | i bXm a, present in the ABI build environment. Internationalization and CD-ROM access libraries
are possible future additions to the MIPS ABI, but are not yet formally part of it.

Overview 1-1

FINAL COPY
August 30, 1996
File: chapl

Organization

This specification is organized similarly to other ABIs for ease of use with the companion standards. In addi-
tion to the standard ABI, this specification covers conformance testing issues, implementation guidelines, and
future directions.

This book is organized as follows:

Chapter 1 provides overview information, including a summary of additions to the ABI and an expla-
nation of conformance issues.

Chapter 2 describes software installation and packaging issues.
Chapter 3 presents low level system information.

Chapter 4 describes object files.

Chapter 5 describes program loading and dynamic linking.

Chapter 6 presents library information.

Chapter 7 describes formats and protocols.

Chapter 8 describes system commands.

Chapter 9 describes execution environments.

Chapter 10 describes windowing and terminal interfaces.

Chapter 11 discusses development environments for an ABI system.

Appendix A discusses future directions.

Related Documentation

The following books should be used for reference.

1-2

System V Application Binary Interface, Revised First Edition, Prentice-Hall, ISBN 0-13-880410-9. This is the
defining document for the generic ABI.

System V Application Binary Interface, MIPS Processor Supplement, Prentice-Hall, ISBN 0-13-880170-3. This
is the defining document for the psABI for the MIPS Processor family.

System V Interface Definition Third Edition, UNIX System Laboratories, UNIX Press The SVID specifies the
base operating system environment for the development of compatible applications, including the API
(Application Programming Interface). It was originally published in four volumes, two additional
volumes were published later. UNIX Press Titles are available from Addison-Wesley. The current
issues of these volumes are:

O Volume I, ISBN 0-201-56652-4
O Volume I, ISBN 0-201-56653-2
O Volume 11, ISBN 0-201-56654-0

INTRODUCTION

FINAL COPY
August 30, 1996
File: chapl

O Volume IV, ISBN 0-201-56655-9
O Volume V, ISBN 0-201-56656-7
O Volume VI, ISBN 0-201-52480-6
O Set, Volumes I-VI, ISBN 0-201-58822-6
The Errata for the SVID, Third Edition should also be obtained.

System V Interface Definition, Fourth Edition. The 4th edition of the SVID has been published in electronic
form by SCO. It is available through the mips ABI "home page" on the World Wide Web, using the URL
htt p: // ww. i psabi . or g/ Tech/ St andar ds. The 4th edition is not specifically a base document
for this specification, but should be consulted to fill in definitions of certain routines defined in this
specification especially because they were omitted from the SVID 3rd edition. The places where this is
applicable are noted in the text.

MIPS RISC Architecture, Kane & Heinrich, Prentice Hall, ISBN 0-13-590472-2.

X Window System: the Complete Reference to Xlib, X Protocol, ICCCM, XLFD, X Version 11 Release 5 Third
Edition, Scheifler et al, Digital Press, ISBN 1-55558-088-2.

643115-1.

OSF/Motif Programmer’s Reference, Revision 1.2, Open Software Foundation, Prentice-Hall, ISBN 0-13-

B Portable Operating System Interface (POSIX) IEEE Std. 1003.1b-1993, IEEE, ISBN 1-55937-375-X. This
volume is more formally titled IEEE Standard for Information Technology — Portable Operating System Inter-
face (POSIXO) — Part 1: Application Program Interface (API) — Amendment 1: Realtime Extension [C
Language]. It provides the base IEEE Std 1003.1-1990 specification, as well as the real-time extensions
that were the work of the P1003.4 committee.

Single copies of the Prentice Hall books may be obtained from Simon and Schuster by calling 800-947-7700
(USA only) or through the Prentice Hall WWW page as ht t p: / / ww. prenhal | . cont .

Terminology

The following terms are used throughout this book.

ABI

ABI-conforming program

ABI-conforming system

ABI-nonconforming program

Overview

A specification conforming to the System V Application Binary Interface.
The System V ABI for a particular system is composed of the generic ABI,
the processor-specific supplement for the processor used in the system,
and the processor-specific conformance guide (this volume).

A program written to include only the system routines, commands, and

other resources included in the ABI; a program compiled into an execut-
able file that has the formats and characteristics specified for such files in
the ABI; a program whose behavior complies with the rules given in the

ABI.

A computer system that provides the binary system interface for applica-
tion programs described in the System V ABI.

A program written to include system routines, commands, and other
resources not included in the ABI; a program compiled into a format dif-
ferent from that specified in the ABI; a program whose behavior does not
comply with the rules given in the ABI.

1-3

FINAL COPY
August 30, 1996
File: chapl

Generic ABI The processor-independent portions of the System V Application Binary
Interface. Also abbreviated to "gABI".

Processor-specific ABI or Supplement
Those portions of the System V ABI specific to a particular processor archi-
tecture. Also abbreviated to "psABI".

Conformance Guide (this document) Implementation guidelines and additional capabilities
beyond the gABI and psABI. Also informally known as the "Black Book".

Reference Platform The combination of hardware and software such that ABI-conforming
applications which are generated on and execute correctly on the reference
platform are guaranteed to execute correctly on all ABI-conforming sys-
tems. The reference platform hardware for the MIPS ABI group consists
of the Silicon Graphics family of workstations and servers, including:

Personal IRIS Workstations

INDY Workstation

INDIGO and INDIGO R4000 Workstations
CRIMSON Systems

Power Series Servers

CHALLENGE Servers

ONYX Workstations

The reference platform software corresponding to the MIPS Processor ABI
Conformance Guide Version 1.2 consists of a reference operating system
(IRIX 6.2) and compiler suite (IRIS Development Option 6.2).

Note that this version of the ABI is based on the R3000 instruction set,
although compatible applications may be built and executed on all sup-
ported MIPS processors.

Undefined behavior Behavior that may vary from instance to instance or may change at some
time in the future. Some undesirable programming practices are marked
in the ABI as yielding undefined behavior.

Unspecified property A property of an entity that is not explicitly included or referenced in the
ABI and may change at some time in the future. In general, it is not good
practice to make a program depend on an unspecified property.

1-4 INTRODUCTION

FINAL COPY
August 30, 1996
File: chapl

Conformance

The collection of specifications referenced in this volume, including the gABI, the psABI, and this specification, |
as well as the X Window System and OSF/Motif volumes, define the standard interfaces for compiled applica-
tion programs on the MIPS architecture.

Diffmarkings have been inserted in this book to indicate the evolution of the Conformance Guide.
NOTE
A"|" character in the right-hand margin indicates a change in the ABI made when Version 1.2 of the Confor-
‘ mance Guide was published. Deletions are marked with a "*" character. Note that there were considerable

editorial changes (to fonts, layout, table headings, etc.) between these two revisions, the change bars are
intended to highlight substantive changes only. Some entirely new sections are not diffmarked, and are so
noted. Tables of symbols are also not diffmarked, instead a "*" is used to indicate new symbols.

Differences between Version 1.0 and Version 1.1 of the Conformance Guide are not noted.

Changes from Version 1.1 to Version 1.2

Make Asynchronous 1/0 and the tape i oct | ’s a standard part of the mips ABI.

Add new sysi nf o call to return the number of processors actually available for assignment.

Add new sysi nf o call to return a hardware serial number usable for software licensing schemes.
Add comments from a new generic ABI on the order of invocation of . i ni t/. fi ni sections.

Make the expanded GOT part of the mips ABI, moving it from the futures section.

Add the ELF relocation flagsR_M PS_LOVENDOR and R_M PS_HI VENDCR to allow for more orderly addition of
relocation types.

Addsbrk tolibc.

Add RTLD_GLOBAL option to dl open routine.

Add | i bgen as a supported archive library.

Mark IRIX 6.2 and IRIS Development Option 6.2 as the new reference platform for 1.2.

Deprecate —q option to abi cc.

Add -Kschar , -Br pat h and —-Bnol i br ar yr epl acenent options to abi cc/ abi | d.

Add “Signal Handling” and *‘Presentation of Network Distributed Information’ sections to chapter 6.
Add additional installation devices and wording for network installation.

Add a number of new future direction indications.

General Guidelines for Porting to MIPS ABI Platforms

A document entitled Constructing MIPS ABI Compliant Binaries on the IRIX 5.x Operating System is available.
This porting guide includes information on how to port applications to the reference platform, as well as a
summary of common problems encountered when porting applications. This guide is available from the Sili-
con Graphics Developer Program or any of the other companies participating in the MIPS ABI group. An
informal list of "Frequently Asked Questions" is also available.

Conformance 1-5

FINAL COPY
August 30, 1996
File: chapl

Working with the MIPS ABI Group

A reference paper describing the MIPS ABI group is available. It includes general information about the group
as well as a list of marketing and technical representatives from each company. Application developers who
wish to develop MIPS ABI compliant applications should contact the Applications manager at any one of the
MIPS ABI companies to get detailed information on developer and marketing programs.

Platform Conformance Testing

All MIPS ABI conforming systems are measured for conformance against the MIPS ABI ABIVTS (ABI Valida-
tion Test Suite). This test suite is obtained from UniSoft which not only is the author of the generic test suite,
but has developed test coverage for all of the mips ABI extensions under contract to the MIPS ABI Group, Inc.

Conformance testing ensures that the interfaces provided by the vendors manifest the specified semantics and
syntax. The ABIVTS also verifies features contained in the ABI documents that may not have programmatic
interfaces but may still be needed to satisfy binary compatibility. The Group also performs multiple platform
testing of selected applications to ensure that "real world" compatibility is achieved.

The Application Coonformance Test Suite(ACTS)

The reference platform operating system provides an Application Conformance Test Suite to check the ABI
conformance of a binary program. The tool is provided as an aid in identifying problem areas in producing a
conforming binary; passing the tests provided by the tool does not ensure complete conformance.

sABC Check programs in static mode; checks that the program is in the correct
binary format, and does not access non-ABI interfaces.

dABC Check programs in dynamic mode; instrumented binary is produced, and is
monitored at runtime for invalid arguments, etc. Best if used in conjunction
with an application test suite that provides close to complete code coverage.

1-6 INTRODUCTION

FINAL COPY
August 30, 1996
File: chapl

2 SOFTWARE INSTALLATION

Software Installation and Packaging 2-1
Network Installation 2-1
File Tree for Add-On Software 2-2
Devices 2-3

Table of Contents

FINAL COPY
August 30, 1996
File: Cchap2

Software Installation and Packaging

Network Installation

Installation from a network resource may be accomplished by making the distribution tree for the optional
product available in the form of a shared network-mounted (e.g. NFS) file system. This would be consistent
with a CD-ROM in 1SO 9660 format or ISO 9660 with Rock Ridge extensions mounted on a remote machine,
with the mount point shared. It is also consistent with unspooling the distribution from media types (e.g.
tapes) which are incapable of supporting file systems onto a disk file system and sharing the location of the
unspooled files.

Software Installation and Packaging

FINAL COPY
August 30, 1996
File: chap2

2-1

File Tree for Add-On Software

The rules in the “‘File Tree for Add-on Software’ section of the **‘Software Installation’ chapter of the generic
ABI are expanded to include the following additional rules:

B Libraries and other executables not directly invoked by users should be installed in/ opt / pkg/ | i b.
B Manual pages for add-on products should in installed under / opt / pkg/ nan.

B Header files needed to generate user code which will be linked with the application should be installed
in/ opt/ pkg/ i ncl ude.

In the above rules, pkg represents the abbreviated name of an add-on software package.
Additionally, a MIPS ABI conforming platform will provide the following directories:

[opt/bin
lopt/lib
[opt/ man
[opt/include

[opt/1ib isrequired to be in the default search path of the dynamic linker.

The installation script of an installable package may symbolically link files from directories under / opt / pkg/ *
to the corresponding directories under / opt . For example, the post installation script for a package called
xt ank might contain the following instructions;

for file in /opt/xtank/bin/*
do

In -s $file /opt/bin/$file
done

The intent of this optional extension is to keep the PATH and MANPATH environment variables, among others,
from growing very large.

ISVs using this optional extension must be aware of the potential name space conflicts in the / opt directory
NOTE | tree. Not only must pkg names be unique, but individual binaries in packages that will link their files into the
common area of / opt must also have names likely to be unique so as not to conflict with files from other
packages which do the same.

While the use of the above scheme is strongly recommended, failure to use this packaging style does notin
and of itself render an add-on software package non-AB| -conformant.

2-2 SOFTWARE INSTALLATION

FINAL COPY
August 30, 1996
File: chap2

Devices

The following devices may be available for installation purposes:

/ dev/ abi / f| oppy floppy disk (1.44Mbyte)

/dev/ abi/qic QIC-120 cartridge tape

/dev/ abi/qic.nr QIC-120 cartridge tape (does not rewind on close)

/ dev/ abi / 9track 6250 bpi 9-track tapes

/ dev/ abi /9track. nr 6250 bpi 9-track tapes (does not rewind on close)

/dev/ abi/cd_iso CD-ROM in I1SO 9660 format or ISO 9660 with Rock Ridge extensions.
/ dev/ abi / 8mm 8 millimeter tapes

/ dev/ abi / 8mm nr 8 millimeter tapes (does not rewind on close)

/ dev/ abi / dat 4 millimeter Digital Audio Tape

/ dev/ abi /dat . nr 4 millimeter Digital Audio Tape (does not rewind on close)

See the ““Physical Distribution Media’ section in the ““Software Installation” chapter of the MIPS Processor ABI
Supplement for details on supported formats.

In addition to the formats listed in the MIPS Processor ABI Supplement, the following additional format is
defined:

B EXB8200 Recording Format for 8mm Tape. The EXB8200 recording format is specified in ECMA-
145/169, ISO/IEC 11319-1992.

The following defintion from the MIPS Processor ABI Supplement is extended to include a more complete
specification:

B CD-ROM, ISO 9600 with Rock Ridge Extensions. The Rock Ridge Extensions are specified in System Use
Sharing Protocol, Revision 1.10, Draft Standard, IEEE CDROM File Systems Working Group and Rock Ridge
Interchange Protocol, Revision 1.10, Draft Standard, IEEE CDROM File Systems Working Group.

The devices listed here are supported for installation purposes only and are not guaranteed to generate ins-
NoTeE | tallation media. Each of these / dev/ abi nodes will exist only if the corresponding device is supported on
the system.

Devices 2-3

FINAL COPY
August 30, 1996
File: chap2

3 LOW-LEVEL SYSTEM INFORMATION

Low-Level System Information

Table of Contents

FINAL COPY
August 30, 1996
File: Cchap3

3-1

Low-Level System Information

There are no extensions to low-level system information in this volume.
NOTE

Low-Level System Information

FINAL COPY
August 30, 1996
File: chap3

4 OBJECT FILES

Relocation 4-1
Link Editing 4-2
Object Files 4-3
Debugging 4-4
Compiler and Linker Options 4-5

Table of Contents

FINAL COPY
August 30, 1996
File: Cchap4

Relocation

This section is new as of Version 1.2 of the Conformance Guide, but will not be marked with diffmarks.
NOTE

The MIPS processor specific ABI specifies a Global Offset Table (GOT) which limits a DSO to 16K external
references. This has proven to be a limitation for a number of developers who wish to create very large DSOs.
A future version of the processor specific ABI expands the GOT. This expanded GOT is sufficiently desirable
to incorporate it into Version 1.2 of this document.

The expanded GOT is defined by four new Relocation Types which are added to <el f . h>.

Figure 4-1: Expanded GOT Relocation Types

Name Value Field Symbol Calculation
R M PS_GOTHI 16 22 T-hil6 | external | (G - (short)G) >>16 + A
R M PS GOTLOL6 23 T-lol6 | external | G & Oxffff

R M PS_CALLH 16 30 T-hil6 | external | (G- (short)G)>>16+ A
R M PS _CALLLOL6 31 T-lol6 | external | G & Oxffff

The following paragraph replaces the third from last paragraph of Chapter 4 of the MIPS processor specific
ABI.

The first instance of R. M PS_GOT16 or R M PS GOTHI 16 and R M PS_GOTLOL16, or
R MPS CALL16 orR M PS CALLH 16 and R_M PS_CALLLOL16 relocations cause the link editor to
build a global offset table if one has not already been built.

The following paragraph replaces the last paragraph of Chapter 4 of the processor specific ABI.

R MPS CALL16 orR M PS CALLHI 16 and R_M PS_CALLLOL16 relocation entries load function
addresses from the global offset table and indicate that the dynamic linker can perform lazy binding.
See “Global Offset Table’” in Chapter 5 of the processor specific ABI.

To allow vendors flexibility in defining new relocation types for their own internal purposes, the following
two definitions are added to <el f . h>:

#define R_M PS_LOVENDOR 100 /* Vendor specific relocations */
#define R_M PS_H VENDOR 127

Vendors are free to use any value between 100 and 127 for such internal purposes. Values in this ranges will
not be used for ABI purposes in the future.

Relocation 4-1

FINAL COPY
August 30, 1996
File: chap4

Link Editing

ISVs are cautioned that products that compile and link edit themselves after installation, or are designed to be
on-site linked with end-user developed code, may inadvertently use system interfaces that are not defined by
the ABI. Specifically, the headers and static libraries on the Reference Platform, not specified by the ABI, may
not be compatible with those headers and libraries on all ABI vendors’ platforms.

This problem occurs only when an I1SV’s application is link edited after installation (i.e., uses the | d command
to build itself). If all executables and shared libraries are built on the Reference Platform and pass the Applica-
tion Compliance Testing tool (ACT), the only possible external interfaces are those specified by the ABI. (Note
that ACT does not test manifest constants, such asi oct | calls compiled into the program.) The ABI interfaces
are present on all ABI conforming Operating Systems in the form of dynamic shared libraries. Thus they will
be resolved through dynamic linking to the dynamic shared libraries at run-time.

In the case where an application link edits itself after installation, it may expose an incompatibility between
non-ABI headers or libraries on the Reference Platform and another vendor’s platform. Furthermore, vendors
may change the interface or implementation of libraries not covered by the ABI in new operating system
releases.

The MIPS ABI Group offers the following guidelines to ISV’s whose applications must link edit after installa-
tion; they are not meant to be either exhaustive or foolproof:

B Compiler and linker flags are known to differ across the various platforms. To aid the ISV, each vendor
has agreed to provide a consistent interface in the wrappers abi cc and abi | d, which are defined
further in “Compiler and Linker Options” in this chapter.

B The math routinesin| i bm a will be consistent across all vendor’s platforms.

W |ibcurses. ais known to depend on private interfacesin | i bc. so. 1 and should be avoided if possi-
ble, but limited functionality may be used from it if care is taken.

B Implementations of | i bucb. a may not be compatible across all vendor’s platforms and should not be
used.

B ISV’s should document the version of any system interface used by their application that is not sup-
ported by the ABI. For example, applications using X widgets, X extensions, Motif or other system
libraries which must be linked statically should document the release level of these libraries. This will
allow customers to compare release levels between the application and their system.

B Not all compilation systems behave the same with respect to conflicts with the ANSI C Strict Ref/Def
Initialization model (see section 3.1 of the ANSI C Standard and elaboration in 3.1.2.2 of the Rationale
for ANSI C; and note that section numbering is different in the ISO version). Some platforms emit
warnings from the loader, while others a fatal error. If code is generated on a platform of the former
type, it may link on that platform but not on some others. Application source code should be modified
such that each external data symbol is defined in exactly one place, done by omitting the ext er n key-
word. All other references should use the ext er n keyword.

4-2 OBJECT FILES

FINAL COPY
August 30, 1996
File: chap4

Object Files

All . o files shipped with an ISV product must use position independent code, as described in chapter 3 of the
System V ABI, MIPS Processor Supplement.

Object Files 4-3

FINAL COPY
August 30, 1996
File: chap4

Debugging

Only an ELF symbol table is needed for assembly level debugging with symbols.

4-4

FINAL COPY
August 30, 1996
File: chap4

OBJECT FILES

Compiler and Linker Options

The various platforms use different flags and switches for the compiler and linker. This is a reflection of the
differences in the heritage of the compiler systems on the various machines. Platform vendors should support
either the standard SVR4 Software Generation System (SGS) flags and switches or provide a wrapper function
which translates these standard switches into the local equivalents. The wrappers abi cc and abi | d have
been developed to permit uniform compilation and loader flags. Vendors should provide these wrappers or
equivalent functions. Some compilation systems may not support all the flags and switches that the SVR4 SGS
does. Where possible the unsupported switches should be silently ignored by the wrapper or the base compi-
lation system.

The abi cc wrapper supports the following flags, many are described in more detail in the cc(SD_CVD) page
in the System V Interface Definition, Third Edition (SVID 3).

B -A controls #assert mechanisms.

B -Bsymbolic, -B symbolic, -Bdynamic, —-B dynamic, —Bstatic, —B static controls linking phase library
name lookup.

B -Brpath, -B rpath, specifies library search directories to the dynamic linker.

—Bnolibraryreplacement, —B nolibraryreplacement, directs the dynamic linker to always ignore the
LD_LIBRARY_PATH environment variable.

—-C controls comment removal.

—c suppresses linking phase.

-D controls #def i ne mechanisms.

—-dn, —d n, —dy, —d y selects dynamic (y) or static (n) linking.

—E preprocess only (no compilation or linking).

—f obsolete, ignored.

-G direct linker to produce shared object.

—g generate symbolic debug information.

—H prints include file names as they are processed.

-l controls include file lookup.

=Jsfm not supported, silently ignored.

—Kfpe, —-K fpe, —-Kmau, —-K mau, -Ksd, —-K sd, —Ksz, —-K sz not supported, silently ignored.
—KPIC, -K PIC generate Position Independent Code (this is the default for the MIPS ABI).
—Kminabi, -K minabi restrict libraries to ABI definitions (not needed for MIPS ABI, ignored).

—Kxgot, —K xgot generate code to use an expanded Global Offset Table (GOT).

—Kschar, =K schar —Kuchar, —K uchar causes the char datatype to be considered signed (schar) or the
default unsigned (uchar).

Compiler and Linker Options 4-5

FINAL COPY
August 30, 1996
File: chap4

B -L controls library search path at linking phase.
B -1 search specified library.
B -0 names output file.
B -O controls optimization.
B -P perform only preprocessing.
B -p generate profiling code.
B -Qn,-Qn,-Qy, -Q Yy generates compiler identification in output.
B —qg controls generation of profiling code.

The —q option is deprecated, and will not be supported or documented in future editions of the Confor- |

NOTE | mance Guide.
|

B -S suppress assembly and linking (leaves assembler file).
B -U causes specified name to be undefined.
B -V prints version information.
B -W not supported, generates a warning message.
B —Xa, —Xa, -Xc, =X ¢, =Xt, =X t controls conformance to ANSI and ISO C standards.
B —Xreadwrite_const, =X readwrite_const place const data in writable memory. Selecting this option is a

violation of the ANSI C standard.

—-Xreadonly_const, —X readonly_const place const data in read-only memory. This is the default.
B -Y not supported, generates a warning message.
The abi | d wrapper supports the following flags, some of which are described in the| d(SD_CMD) page in
the System V Interface Definition, Third Edition (SVID 3).
B -a undefined references generate errors (static mode).
B -b controls DSO linkage.
—-dn, -d n, —dy, —-d y selects dynamic (y) or static (n) linking.
—e defines entry point.
—h controls dynamic linking name lookup.
-1 search the specified library.
—-m produce a memory map.

-0 names the output file.

—-r combine object files.

4-6 OBJECT FILES

FINAL COPY
August 30, 1996
File: chap4

B -s strip symbolic information.

B -t suppress warning about multiple defined symbols of different sizes.

B -u enters named symbol as an undefined.

B -zdefs, -z defs, —znodefs, -z nodefs, —ztext, —z text controls handling of undefined symbols.

B -Bsymbolic, -B symbolic, -Bdynamic, —-B dynamic, —Bstatic, —B static control lib. name lookup

B -Brpath, —B rpath, specifies library search directories to the dynamic linker.

B -Bnolibraryreplacement, —B nolibraryreplacement, directs the dynamic linker to always ignore the
LD_LIBRARY_PATH environment variable.

B -G produce shared object.

B -l specifies an interpreter to be linked with a.out.

B -L controls library lookup path.

B —-M use specified map file.

B -Qn,-Qn,-Qy, -Qy add compiler identification strings to output.

B -V output a version identifier string.

B -Y controls library search list.

Compiler and Linker Options

FINAL COPY
August 30, 1996
File: chap4

5 PROGRAM LOADING AND DYNAMIC LINKING

Dynamic Linking
Shared Object Dependencies
Program Interpreter

Initialization and Termination Functions

Table of Contents

FINAL COPY
August 30, 1996
File: Cchap5

5-1
5-1
5-1
5-1

Dynamic Linking

This section is new as of Version 1.2 of the Conformance Guide, but will not be marked with diffmarks.
NOTE

|
Shared Object Dependencies

The MIPS processor specific ABI defines the default library search path to be
[1ib:/usr/lib:/usr/lib/cnplrs/cc. Thisspecification defines the default library search path to be
[lib:/usr/lib:/usr/lib/cnplrs/cc:/opt/lib. The/usr/lib/cnplrs/cc portion isdeprecated
and will be dropped in a future version of this specification.

Program Interpreter

For MIPS ABI conforming programs, the program interpreter (the contents of the PT_| NTERP segment) shall
be/usr/lib/libc.so.1.

Initialization and Termination Functions

After the dynamic linker has built the process image and performed the relocations, each shared object gets the
opportunity to execute some initialization code. All shared object initializations happen before the executable
file gains control.

Before the initialization code for any object A is called, the initialization code for any other objects that object A
depends on are called. For these purposes, an object A depends on another object B, if B appears in A’s list of
needed objects (recorded in the DT_NEEDED entries of the dynamic structure). The order of initialization for
circular dependencies is undefined.

The initialization of objects occurs by recursing through the needed entries of each object. The initialization
code for an object is invoked after the needed entries for that object have been processed. In the case that more
than one object is available for initialization, reverse resolution ordering will determine the initialization order.

The example on the following page illustrates correct initialization ordering. In this example the a.out is
dependenton b, d, and e. b is dependent on d and f, while d is dependent on e and g. From this information a
dependency graph can be drawn. The above algorithm on initialization will then allow the following specified
initialization ordering.

Similarly, shared objects may have termination functions, which are executed with the at exi t (BA_QOS)
mechanism after the base process begins its termination sequence. The order in which the dynamic linker calls
termination functions is the exact reverse order of their corresponding initialization functions. If a shared
object has a termination function, but no initialization function, the termination function will execute in the
order it would have as if the shared object’s initialization function was present. The dynamic linker ensures
that it will not execute any initialization or termination functions more than once.

Dynamic Linking 5-1

FINAL COPY
August 30, 1996
File: chap5

Shared objects designate their initialization and termination functions through the DT_I NI T and DT_FI NI
entries in the dynamic structure, described in *“Dynamic Section” in the generic ABI. Typically, the code for
these functions residesinthe . i nit and. fi ni sections, mentioned in *‘Sections’ of Chapter 4 of the generic

ABI.

NOTE

Although the at exi t (BA_OS) termination processing normally will be done, it is not guaranteed to have exe-
cuted upon process death. In particular, the process will not execute the termination processing if it calls
_exit [seeexit (BA_OS)] or if the process dies because it received a signal that it neither caught nor
ignored.

The dynamic linker is not responsible for calling the executable file’s . i ni t section or registering the execut-
able file’'s. fi ni section with at exi t (BA_OS). Termination functions specified by users via the
at exi t (BA_OS) mechanism must be executed before any termination functions of shared objects.

PROGRAM LOADING AND DYNAMIC LINKING

FINAL COPY
August 30, 1996
File: chap5

Figure 5-1: Initialization Ordering Example

NEEDED Lists Dependency Graph

a.out b d

2324

Resolution Order:

Initialization Order:

Dynamic Linking 5-3

FINAL COPY
August 30, 1996
File: chap5

6 LIBRARIES

Introduction 6-1
Shared Library Names 6-2
System Library 6-3
C Library 6-4
Additional Entry Points 6-4
Support Routines 6-5
nmap Routine 6-6
sysi nf o Routine 6-7
Tape Manipulationi oct | Calls 6-9
B Tape Positioning 6-12
B Positioning on Close 6-13
W Effectsofwite 6-13
W Return Values 6-14
W Partitioned Tapes 6-14
Signal Handling 6-14
Support for Network Distributed Information 6-15
Runtime Dynamic Linking Library 6-16
Networking Services Library 6-18
Additional Entry Points 6-18
Mutual Exclusion Library 6-19

Table of Contents i

FINAL COPY
August 30, 1996
File: Cchap6

Socket Library 6-21
Support for Network Distributed Information 6-21
Data Definitions for Sockets 6-22
ABI Library 6-32
Asynchronous Input and Output 6-32

B Data Definitions 6-32

B Function Interfaces 6-35

B Implementation 6-36

W Restrictions 6-37
X Window System Library 6-38
Math Library 6-43
OSF/Motif Library 6-44
General-Purpose Library 6-45
BSD Emulation Library 6-47
Presentation of Network Distributed Information 6-49

FINAL COPY
August 30, 1996
File: Cchap6

Table of Contents

Introduction

This chapter describes additions and clarifications to the ABI library specifications. Facilities in these libraries
manipulate system data files, trap to the operating system, and so on. The routines described here are correc-
tions or omissions from the base documents, or additions specific to the MIPS ABI environment. The follow-
ing areas are defined:

libc The C library, containing various facilities defined by System V, ANSI C, POSIX, and so on. It
contains interfaces to basic system services.

Some special cases are covered in detail:

nmap Reserved range for MMAP_FI XED

sysinfo MIPS ABI specific additions

ntio Tape Manipulationi oct| Calls \

br eak Signal Handling - br eak instruction codes \

Network Distributed System Information \
l'i bdl The dynamic linking library, containing routines that give the user direct access to the

dynamic linking facilities.

I'ibnsl The networking services library, containing the transport layer interface routines, as well as
routines for machine independent data representation (XDR), remote procedure calls (RPC)
and other networking support.

I i brrut ex Routines allowing programs to access fast mutual exclusion features.

| i bsocket Routines providing an interface to Berkeley Software Distribution (BSD) networking facilities
based on the socket model. \

| i babi A library containing assorted routines which are additions to the base ABI documents. For the |
current release of this specification, if contains only the Asynchronous I/0 Interfaces from \
POSIX 1003.1b.

i bX A library for building applications using the X Window System, Version 11 protocol.

While not all ABI-conforming systems provide a complete ABI development environment, all are required to
have the ability to link ABI-conforming objects together with locally produced objects to produce a localized
binary. The actual environment to link ABI objects into a localized binary may be an optional package. Cer-
tain additional interfaces are provided for the use of ABI conforming programs in the form of of static archives
which are required to be present if the the ability to link ABI objects is installed on a platform.

[ibm Math Library

i bXm OSF/Moatif Library

I i bgen General-Purpose Library

Introduction 6-1

FINAL COPY
August 30, 1996
File: chap6

i bucb

BSD Emulation Library

Shared Library Names

Executable and shared object files contain the names of required shared libraries. The following shared
libraries are required by the MIPS ABI.

Figure 6-1: Shared Library Names

Library Reference Name

l'i bc fusr/lib/libc.so.1

l'i bnsl fusr/lib/libnsl.so

i bX fusr/lib/libXll.so0.2

i brrut ex fusr/lib/libnutex.so

|'i bdl fusr/lib/libdl.so

| i bsocket /usr/lib/libsocket.so

| i babi fusr/lib/libabi.so.1

6-2 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

System Library

The System Library, | i bsys, as described in the generic ABI Chapter 6, has been removed from the MIPS
ABI. Originally, will not necessarily exist as a separate library on ABI conforming systems. Thus,
/usr/lib/ld.so.1isnotrequired. As described in the generic ABI, all | i bsys symbols are present in

l'ibc.

System Library

FINAL COPY
August 30, 1996
File: chap6

6-3

C Library

The C library, | i bc, contains all the symbols listed in the generic ABI and MIPS processor specific ABI, as well
as the symbols described in the following sections.

Additional Entry Points |

The following routines are included in the | i bc library to provide entry points for the required source-level \
interfaces listed in the generic ABI. A description and syntax summary for each function follows the table. \

Figure 6-2: | i bc Additional Required Entry Points \

_fxstat _ | xst at _Xstat _xnknod nunare __nunane |

These entry points should not be called directly by application programs, which should continue to use the \
NOTE | source-level interfaces f st at , | st at , st at , nknod and unane. |

In order to implement the source-level interfaces, systems must provide stubs for the st at family and nknod |
in <sys/ st at. h>, and for uname in <sys/ ut sname. h>. Applications, in turn, must include those files to |
get the ABI-specified behavior, otherwise the older interfaces (those extant before the Expansion of Funda-
mental Types (or EFT)) may erroneously be included.

int fxstat(const int, int, struct stat *);
The semantics of this function are identical to those of the f st at (BA_OS) function describes
in the System V Interface Definition, Third Edition (SVID 3). Its only difference is that it requires
an extra first argument whose value must be 2.

int _Ixstat(const int, const char *, struct stat *);
The semantics of this function are identical to those of the | st at (BA_OS) function described
in the SVID 3 Its only difference is that it requires an extra first argument whose value must be
2.

The semantics of this function are identical to those of the st at (BA_OS) function described in
the SVID 3 Its only difference is that it requires an extra first argument whose value must be 2.

int _xnmknod(const int, const char *, node_t, dev_t);
The semantics of this function are identical to those of the mknod (BA_OS) function described
in the SVID 3 Its only difference is that it requires an extra first argument whose value must be
2.

i nt nuname(struct utsnane *);
The semantics of this function are identical to those of the unane (BA_OS) function described

|
|
|
|
|
|
|
|
int _xstat(const int, const char *, struct stat *); \
|
|
|
|
|
|
|
in the SVID 3 The symbol _nunane is also available with the same semantics. \

6-4 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

Support Routines

Figure 6-3: | i bc Contents, Names without Synonyms

_cl eanup _nuneric nodf

Figure 6-4: |i bc Contents, Names with Synonyms

getitinmer get ti meof day | ogb makecont ext
next af t er sbrk* scal b sel ect
setitiner set | abel set egi d* set eui d*
swapcont ext sysinfo

*Function is new to version 1.2

Note that the following routines are listed in the generic ABI as Names without Synonymes.

Figure 6-5: | i bc Contents, Names with Synonyms, previously listed without Synonyms

f open vfprintf vprintf vsprintf

void *sbrk(int incr)

The sbr k function is used to grow or shrink the area of a process which can be used for data

storage. Ifincr is positive, it will grow the area, if negative, it will shrink it. If the data area
expanded past the maximum previous size, the new area will be initialized to zero, but the
contents of any space which had been previously allocated will be undefined.

sbr k returns a pointer to the previous end of the data area or —1 if it was unable to change

is

the size as requested. If -1 is returned, the data storage area will remain the previous size and

er r no will be set to one of the following:

ENOVEM Allocating the requested space would exceed the maximum amount of space

allowed to the process.
EAGAI N The allocation could have succeeded but there is currently not enough
memory available in the system to satisfy the request.
int setegid (gid t group)
int seteuid (uid_ t user)
set eui d and set egi d set the effective user ID and group 1D of the current process.

If the effective user ID of the calling process is not super-user, but if its real user (group) ID
equal to uid (gid), or if the saved set-user (group) ID from execve is equal to uid (gid), then
the effective user (group) ID is set to uid (gid).

C Library

FINAL COPY
August 30, 1996
File: chap6

is

6-5

These functions return 0 on success, -1 on failure and set er r no to indicate the error.

I ong sysinfo (int command, char *buf, |ong count)
sysi nf o copies information relating to the system on which the process is executing into the
buffer pointed to by buf. Upon successful completion, the value returned indicates the buffer
size in bytes required to hold the complete value and the terminating null character. If this
value is no greater than the value passed in count, the entire string was copied; if this value is
greater than count, the string copied into buf has been truncated to count-1 bytes plus a ter-
minating null character.

Otherwise, a value of - 1 is returns and errno is set to indicate the error. sysi nf o can be
called with a count of O to determine the required buffer size. Alternatively, a reasonable
guess for count is 256, which is likely to cover all strings returned by this interface in typical
installations.

Operating system implementors should note that the SVR4 definition of get t i neof day differs from the
NoTE | BSDA4.3 version.

nmap Routine

A group of programs may need to specify the address of shared memory and mapped file regions in order to
use the same addresses to access these regions. The address range from 0x30000000 to Ox3f f f 0000 is
reserved for this purpose; additional contiguous space above this range is recommended and may be sup-
ported. A MIPS ABI conforming system guarantees that shared memory and mapped file regions placed by
the system will not fall in this range.

The placement of a shared memory or mapped file region by a program must follow these rules:
B The address range of the reserved region will at least lie between 0x30000000- 0x3f f f 0000.
B No two fixed regions may occupy the same chunk of memory, modulo 256K.
B The address of a mapped file region and the corresponding file offset must be congruent modulo 256K.

For example, if a program wants to create a 0x3000-byte shared memory region and map a file with an offset
of 0x2000 and length of 0x1000, both regions will have fixed addresses. One possible placement of these
regions puts the shared memory region at [0x30000000, 0x30002f f f] and [0x30042000, 0x30042f ff] .

The above discussion only applies when fixed addresses must be used (MAP_FI XEDis used in flags). As
NOTE | noted in the documentation for mmap, the use of MAP_FI XED is discouraged for general use.

Implementors using nmap are advised that the generic ABI requires
NOTE
B the system will zero fill any partial page at the end of an mmap'ed object
B the system will never write out any modified portions of the last page of an object which are beyond its
end, i.e. mmap cannot be used to extend the size of a file.
B references to whole pages following the end of an object will result in the delivery of a SI GBUS signal.
6-6 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

sysi nf o Routine

The following are additions to commands supported by sysi nf o. The new and recommended routines are
described below, along with examples. A sysi nf o header file, including the additional commands, follows.
See vendor release notes for vendor values.

_MPS_SI _VENDOR

_MPS_SI_0S_PROVI DER

_MPS_SI _0S_NAMVE

_MPS_SI _HW NAMVE

_MPS_SI_NUM PROCESSORS

_MPS_SI _AVAI L_PROCESSORS

_MPS_SI_HOSTI D

C Library

Copy into the array pointed to by buf a string which is the name of the com-
pany providing the system. The vendor is the company actually selling the
product rather than the company which built the product.

Example: Si |l i con Graphics, |Inc.

Copy into the array pointed to by buf a string which is the name of the com-
pany providing the operating system. This is the name of the company
which built the operating system.

Example: Si |l i con Graphics, |Inc.

Copy into the array pointed to by buf a string which is the name of the
operating system.

Example: | Rl X

Copy into the array pointed to by buf a string which is the name of the
hardware platform. The name is vendor selected.

Example: | P12

Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the number of processors. This number is the physical number of
processors and does not reflect whether processors have been previously
allocated to other tasks and are unavailable for further allocation. The new
(as of Version 1.2 of this document) _M PS_SI _AVAI L_PROCESSORS request
should be used to query the number of processors actually available for
assignment.

Example: 4

Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the number of processors which are currently active and available for
general use, i.e. are not reserved for some specific task. In most cases
_MPS_SI _AVAI L_PROCESSCRS will be equal to_M PS_SI _NUM PROCESSORS,
but some system implementations may permit processors to be dedicated to
specific tasks such as a real-time environment, and they would be unavail-
able for general purpose assignment. In such a case

_M PS_SI _AVAI L_PROCESSCRS would be less than

_M PS_SI _NUM PROCESSCRS. In no case shall the OS return a value for

_M PS_SI_AVAI L_PROCESSORSwWhich is larger than

_MPS_SI _NUM PROCESSORS.

Example: 3

Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the host id in hex.

6-7

FINAL COPY
August 30, 1996
File: chap6

_MPS_SI_SERI AL

M PS_SI _COSREL_MAJ

_MPS_SI_OSREL_M N

_M PS_SI _OSREL_PATCH

_M PS_SI _PROCESSCRS

Example: c052d008 \

This value was intended to be used by license management \
software. However, most platform vendors chose to implement it by |
providing some form of the Internet address of the machine, and \
many ISVs with license management concerns found this inade- \
quate. To avoid compatibility concerns caused by changing an \
existing interface, a new request _M PS_SI _SERI AL, has been \
defined to return a hardware-based identifier. 1SVs who consider an |
Internet-address-based identifier inadequate should use

_MPS_SI _SERI AL instead of _M PS_SI _HOSTI D.

Copy into the array pointed to by buf a string that can be converted into a |
32-bit, non-volatile system identifier not based on an internet address. The |
returned string should be something associated with some piece of \
hardware in the system. If _M PS_SI _SERI AL has been implemented but \
will not supply a valid identifier, -1 is returned and errno is set to ENODEV. \

Example: 6908941A

Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the OS major release number.

Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the OS minor release number.

Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the OS patch release number.

Release patch (5.1.1) is an example: \

_MPS SI_OSREL_MAJ: 5
MPS SI_OSREL MN .1.1 |
_MPS_SI_OSREL_PATCH 0

Copy into the array pointed to by buf a string which is processor type. In
the case of a multiprocessor, this will be a comma separated list with
_M PS_SI _NUM PROCESSORS entries.

OS implementors: The following is the mapping from the value
NOTE | returned by the chip’s "imp" register to the processor type string which
should be returned.

Processor Type

R2000

R2000

R3000A

R6000

RA000, RA400 |
R6000A

0x9 RL10000 (T5) |

orwNRFRO 3

LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

NOTE

OxA
0xB
0x10
0x20

Example: R2000A/ R3000 3.0

R4200
R4300
R8000
R4600

For the R4400, the chip’s "rev" register is 40 so that the imp/rev pair reads

0x440, while for the R4000 it reads 0x400.

There are no additions to the system level commands.

Figure 6-6: Header File: <sys/ syst em nf 0. h>

-

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

SI_SYSNAME
S| _HOSTNAMVE

S| _RELEASE
SI_VERSI ON
SI_MACHI NE

SI _ARCHI TECTURE
SI_HW SERI AL

S| _HW PROVI DER
SI_SRPC_DOWAI N
_M PS_SI _VENDOR

_MPS_SI _0S_PROVI DER

_MPS_SI _0S_NAME
_MPS_SI_HW NAME

_MPS_SI _NUM PROCESSORS

_MPS_SI _HOSTI D
_MPS_SI _OSREL_MAJ
_MPS_SI_OSREL_M N

_MPS_SI _OSREL_PATCH
_M PS_SI _PROCESSORS

_MPS_SI_AVAI L_PROCESSORS

_MPS_SI_SERI AL

0~NO O WN R

©

100
101
102
103
104
105
106
107
108
109
110
111

N

o

)

Tape Manipulationi oct| Calls

C Library

August 30, 1996

FINAL COPY

File: chap6

6-9

The entire nt i o section is new as of Version 1.2 of the Conformance Guide, but will not be marked with diff-
NOTE | marks.

A standard set of binary compatible i oct | calls for the postitioning and movement of tape devices is part of
the ABI with Version 1.2 of this document. As with other aspects of the ABI, the intent of these definitions is to
allow a machine independent mechanism of tape positioning and manipulation.

As these specifications were discussed, some fundamental inconsistencies were discovered among the existing
implementations of the tape manipulationi oct | ’s. Because each vendor must retain binary compatibility for
their own software, new values have been established for these interfaces, rather than reusing existing values.

The header file <sys/ nt i 0. h> (described in the System V Interface Definition, Third Edition. but not formally
part of the generic ABI) shall include the following additional definitions.

Figure 6-7: Additions to Header File: <sys/ nti o. h>

. 3

#define ABI_MIOCTOP (("t' << 8) | 9)

struct abi _ndata {

short mt_op; /* Operation, see below */

| ong nm_cnt; /* Operation count */

unsi gned short nt_sts; /* Returned status, see bel ow */

| ong reservedl;

| ong reservedz;

| ong reserveds3;
b
#defi ne ABI _MI'V\EOF
#define ABI _MIFSF
#def i ne ABI _MIBSF
#def i ne ABlI _MIFSR
#defi ne ABI _MIBSR
#defi ne ABlI _MIREW /* Rewi nd
#defi ne ABI _MIOFFL /* Rewi nd or Rewi nd and Unl oad

N)

/* Wite tape mark */

/* Forward space file

/* Backward space file
/* Forward space record
/* Backward space record

OO WNEO

ABI _MT1 OCTCR is equivalent to the hex value 0x7409.

The value of the mt_sts element on return is specific to different tape devices and some implementations may
not modify this element.

The fields reservedl, reserved? and reserved3 are included for compatibility.

ABlI _MI'AEOF This operation writes file mark at the current tape location. A file mark is a delimiter contain-
ing no data. When the tape is positioned immediately before a file mark, a r ead function call
will return a value of zero. This operation is not considered as writing data. Fields used in
abi_mdata are:

6-10 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

ABI _MIFSF
ABI _MIBSF
ABI _MIFSR
ABI _MIBSR
ABI _MIREW
C Library

Name Input or Output Description

mt_cnt Input Number of file marks to write
mt_sts Output Result status

This operation moves the tape forward until mt_cnt file marks have been passed, leaving it
positioned after the last file mark. Fields used in abi_mdata are:

Name Input or Output Description
mt_cnt Input Number of file marks to space forward.
mt_sts Output Resulting status.

This command is similar to the ABl _ MTFSF except that the direction of tape movement is
reversed and the tape will be positioned before the file mark. The use of abi_mdata fields is
identical. Fields used in abi_mdata are:

Name Input or Output Description
mt_cnt Input Number of file marks to space backward.
mt_sts Output Resulting status.

This command may be unsupported on some tape devices.

This operation spaces the tape forward a specified number of records. Fields used in
abi_mdata are:

Name Input or Output Description
mt_cnt Input Number of records to space forward.
mt_sts Output Resulting status.

This command is similar to the ABI _ MIFSR command except that the direction of tape move-
ment is reversed. The use of abi_mdata fields is identical.

Name Input or Output Description
mt_cnt Input Number of records to space forward.
mt_sts Output Resulting status.

This command may be unsupported on some tape devices.

This operation rewinds the tape to the beginning, but it remains on-line. Fields used in
abi_mdata are:

6-11

FINAL COPY
August 30, 1996
File: chap6

Name Input or Output Description
mt_sts Output Resulting status.

ABI _MIOFFL This operation rewinds the tape to the beginning, if it is not already at that position. It then

does any device-specific actions required to unload the tape. On some magnetic tape devices,
unloading may be entirely manual and so this is identical in action to ABI _ MTREW Fields
used in abi_mdata are;

Name Input or Output Description
mt_sts Output Resulting status.

Tape Positioning

The position of the tape read/write head must be consistent across platforms for applications using tape

i oct| calls. The physical data on tapes varies between different device types and between driver implemen-

tations, but there is a consistent interpretation of the logical sequence of information on a tape as seen with the
r ead function. Assume the following logical information on a tape, with the beginning of tape to the left and

the end of the tape to the right and positions labeled 0 through 5.

Figure 6-8: Example Tape Layout
<datal> <data2> <FM1> <data3> <FM2> <EOD>

10 |1 |2 |3 |4 |5

Each labelled position is to the beginning-of-tape side of the data blocks and file marks. Attempts to read the
end-of-data (EOD) information will receive either an error indication or zero bytes read, depending upon the
implementation.

Sequential single-block r ead calls from the beginning of the tape in this example will return <datal>,
<data2>, end-of-file (indicated by a return value of zero), <data 3>, end-of-file and end-of-data. The data
blocks in this example are all the same size. Detection of end-of-data on the tape is indicated by ar ead with a
return value of zero, followed by a r ead which returns zero or an error indication with errno set to ENOSPC.

Each position is such that if a r ead is performed, the block beginning at that position will be read, i.e. if the
tape is at position 1, ar ead will return the contents of block "data2". The following table summarizes the final
position of the tape head when various commands are performed with the tape head at a given starting posi-
tion, a value of mt_cnt of one and with successful (no error) completion of thei oct | call:

Figure 6-9: Tape Positioning after i oct| Operations

Starting Command
Position FSF BSF FSR BSR read
0 3 - 1 - 1
1 3 - 2 0 2
2 3 - - 1 3 w/ EOF indication
6-12 LIBRARIES
FINAL COPY

August 30, 1996
File: chap6

Figure 6-9: Tape Positioning after i oct| Operations (continued)

3 5 - 4 - 4
4 5 2 - 3 5w/ EOF indication
5 - 4 - - undefined

Tape manipulation has proven to be an extremely subtle issue. The discussions of the exact semantics of

NoTE | the various operations have highlighted the fact that many different interpretations of the basic semantics are

possible. Operating system implementors should pay careful attention to the semantics expressed in the

‘ above table, as they define the ABI behavior. It is believed that these semantics are compatible with most of
the existing implementations.

The r ead indicated above is for the size of one data block. The EOF indication for r ead is a return value of
zero.

Items in the table indicated by a hyphen result in a tape position which is not defined by the ABI. It is
implementation-dependent whether an error condition is reported by thei oct | call.

Positioning on Close

The tape position after closing on devices opened with rewind access is the beginning of the tape. The position
after closing on devices opened with no-rewind access is generally undefined. However, if a file mark has just
been read the tape will remain at the current position when closed.

If the last operation was to write data, a file mark is written. The applies whether the device was opened with
rewind or no-rewind access. Some tape drives write an end of data marker at the firmware level. The tape
position after closing on devices opened with no-rewind access will be after the file mark.

Figure 6-10: Tape Positioning after cl ose for device opened with no-rewind access

Last Operation Action After cl ose

wite Write EOF, position after EOF.
read which returned EOD indication Position after EOF

i oct| (ABI _MI'ECF) Position after EOF

i octl (ABI _MTFSF) Leaves positioned after EOF
All others Undefined

Effectsof wite

Data written with awr i t e function will be written starting at the first data block or file mark following the
current tape position. The effect on data following the written data is undefined and may not be retrievable by
subsequent tape positioning and r ead functions.

If the tape has just been positioned to the point after a file mark, writing to the tape will start a new tape file
even if the file mark is the last one prior to the end-of-data. This allows new tape files to be added to the end
of the previous data.

C Library 6-13

FINAL COPY
August 30, 1996
File: chap6

Return Values

Thei oct| function returns =1 when errors occur and sets the global variable errno to error codes defined in
<er r no. h>. The values returned in the mt_sts element of the abi_mdata structure are device-specific and
should only be used for display purposes.

Reading an end-of-file causes a return value of zero from the r ead call. If the file mark read is the last one on
the tape, a subsequent r ead will return either zero or an error indication with errno set to ENOSPC.

Partitioned Tapes

Some magnetic media are logically partitioned into multiple logical tapes. When the commands specified
herein are used on such a medium they apply to the logical tape rather than the physical tape. For example,
rewind media command for a partitioned 4mm DDS tape will position the write head before the first block of
the current partition, which may be different than the first block of the physical medium. The specification of
commands which affect media partitioning is outside the scope of the ABI.

Signal Handling

Compilers and assemblers may generate a br eak <n> instruction which may be used to trap exceptions such |
as overflow and divide-by-zero. The break code <n> determines what signal is generated by the kernel. \

The following figure indicates the bit assignments for the br eak instruction. \

Figure 6-11: Break instruction bit assignments

31 26 25 65 0 |
SPECIAL BREAK
000000 code 001101
6 20 6

In a MIPS ABI conforming program,

W Bits 16-25 of the break instruction are used to contain the break code.

B Bits 6-15 are reserved and must not be used.

The allowable break code values and the signals they generate are given in the following figure. Other values
are not allowed in MIPS ABI conforming applications.
The defined codes are added to <sys/ debug. h>:

6-14 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

Figure 6-12: Additions to <sys/ debug. h>for br eak Codes

#def i ne BRK_ABORT 0x20000 /* abort(3) used to cause Sl GABT */
#defi ne BRK_OVERFLOW 0x60000 /* overflow check - used to cause SI GFPE */
#define BRK_DI VZERO 0x70000 /* divide by zero check - used SI GFPE */

BRK_OVERFLOW
This is used with various assembler macros to do overflow checking (integer overflow) for \
checked add, subtract, multiply.

BRK_DI VZERO
This is generated for division: after the di v is initiated, C and other compilers generate code \
to check for a zero divisor and fall into a break BRK_DI VZERQ if the divisor is zero.

Other values may not be consistently implemented and are not allowed in MIPS ABI conforming applications.

System implementors are advised that if a break code that is not supported by a vendor is detected, the sys-
NOTE | tem should issue a warning message indicating the invalid break value. If there was a way to detect a MIPS
ABI conforming program, it would be recommended that the program be aborted when this condition occurs.

Support for Network Distributed Information

Some | i bc interfaces are affected if the system supports distributed information services. These routinesare |
get pwnam get pwui d, set pwent , get pwent ,and endpwent for password-file access; and get gr gi d, \
get grnam set grent , get grent ,endgrent ,andi ni t gr oups for group-file access. See “‘Presentation of |
Distributed System Information’ elsewhere in this chapter for details. \

C Library 6-15

FINAL COPY
August 30, 1996
File: chap6

Runtime Dynamic Linking Library

Thel i bdl library allows users to dynamically link shared libraries after a program is launched. The library
contains the following entry points.

Figure 6-13: | i bdl Contents

dl open dl cl ose dl sym dl error

Shared libraries are accessed with dl open and released with dl ¢l ose. Symbols in shared libraries opened
via dl open can be located by callingdl sym | i bdl isimplemented as a shared library, linked on the com-
mand line using - | dl .

voi d *dl open(char *pathname, int node);
This routine makes a shared object available to a running process. It returns a handle for
future dl cl ose and dl symcalls.

int dlclose(void *handl e);
Disassociates a shared object previously opened by dl open from the current process.

void *dl sym(void *handl e, char *nane);
Allows a process to obtain the address of a symbol defined within a shared object previously
opened by dl open.

char *dl error(void);
Returns a formatted character string describing the last error that occurred during dynamic
linking processing.

Implementation notes:

B dl open looks for DT_NEEDED entries in the . dynani ¢ section of the shared library it opens and, for
each entry, invokes dl open on the shared library entry names. This process recurses until all libraries
specified by DT_NEEDED entries have been loaded. In no case will the dynamic linker link in a shared
library twice.

B Normally, the exported symbols from an object accessed with dl open are directly available only to
those other objects that were loaded as a result of the same call to dl open. If the value RTLD GLOBAL
(which is defined to be 4) is or’ed with the nbde argument, the exported symbols of all objects loaded
via this call to dl open are directly available to all other dl open’d objects. This behavior is part of the
behavior specified in a future edition of the generic ABI (the 3rd edition).

B dl cl ose unmaps the shared library associated with the handle passed to it and any other libraries that
were linked via the recursive process described above. It guarantees that a library is not unlinked until
all the references to it are closed.

B dl symrestricts its search to the shared libraries linked by the dl open that created its handle. The
search looks first in the shared library referenced by the handle and then recursively traverses libraries
named in DT_NEEDED entries in a breadth-first order.

6-16 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

B dl error returns an English message; it is not internationalized.

Runtime Dynamic Linking Library 6-17

FINAL COPY
August 30, 1996
File: chap6

Networking Services Library

The Networking Services library, | i bnsl , contains all the symbols listed in the generic ABI and MIPS proces-
sor specific ABI, as well as the following symbols, which were omitted from the base documents or were not
fully defined.

Additional Entry Points

The following routines are included in | i bnsl to correct oversights in the base documents.

Figure 6-14: | i bnsl Contents, Additional Required Entry Points

nc_sperror* netdir_perror* netdir_sperror* xdr_u_int*
xdrrec_endof record* xdrrec_ski precord*

*Function is new to version 1.2

These routines are defined in the SVID 4th Edition.

Figure 6-15: | i bnsl Contents, Global External Data Symbols

_nderror* svc_fdset* t _errno* rpc_createerr*

*Symbol is new to version 1.2

6-18 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

Mutual Exclusion Library

The Mutual Exclusion Library, | i brrut ex, provides ABI entry points for mutual exclusion.

Figure 6-16: | i bnut ex Contents

init_lock acquire_l ock rel ease_| ock spi n_| ock*
stat | ock

*Function is new to version 1.2

These functions supply a user-level interface to mutual exclusion. The parameter | ck must point to memory
shared by all processes wishing to acquire or test the lock. The library routines might not contain checks for
the validity (e.g. non-null value) of the | ck parameter. If only a single process will be using the lock, | ck
need not reside in shared memory. | i bnut ex is provided as a shared library, linked on the command line
using - | mut ex. The header file <abi _mut ex. h> should be included.

int init_|lock(abilock_t *Ick);
i ni t_| ock must be called on a lock before any of the other functions. It initializes the lock to
an unlocked state. A non-zero return status indicates an error.

int acquire_l ock(abilock t *Ick);
acqui re_| ock tries once to acquire the lock referenced by | ck. It returns zero if the lock
was acquired, otherwise non-zero.

int release_ | ock(abilock t *Ick);
rel ease_I| ock unconditionally releases the lock pointed to by | ck. The ability for one pro-
cess to release the lock of another process is permitted. A non-zero return status will indicate
an error.

voi d spin_l ock(abilock t *Ick);
spi n_| ock tries to acquire the lock referenced by | ck and does not return until the lock is
acquired.

int stat | ock(abilock t *Ick);
st at _| ock returns the current state of the lock referenced by | ck without attempting to
acquire the lock. It returns zero if the lock is free, otherwise non-zero.

The contents of the structure abi | ock_t are defined in <abi _mut ex. h> as follows:

Mutual Exclusion Library 6-19

FINAL COPY
August 30, 1996
File: chap6

Figure 6-17: Header File: <abi _nut ex. h>

. 3

int init_lock(abilock_t *Ick);
int acquire_l ock(abilock_t *Ick);
int release_l ock(abilock_t *Ick);
voi d spin_l ock(abil ock_t *Ick);
int stat_|lock(abilock_t *Ick);

typedef struct {
unsi gned | ong abi _| ock;
} abilock_t;

)

Locks may not be freed automatically by the system. Locks acquired by a process that dies may remain
NoTE | locked.

The user is responsible for implementing a back-off policy if acqui r e_| ock returns failure.

Even though st at _| ock returns status indicating that the lock is available, a call to acqui r e_I ock could
still fail.

Although the name spi n_I ock implies that the implementation must "busy wait" by repeatedly trying to |
acquire the lock, this is not necessarily the best implementation. OS developers are free to implement more
sophisticated schemes provided that the intended semantics of the call are maintained.

6-20 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

Socket Library

This definition is derived from the SVR4 specification of sockets, which depends on the Networking Services
Library (I i bnsl) for services. However, applications that rely on assumptions about the underlying imple-

mentation of sockets may not be ABI compliant. In particular, stream operations on sockets are not supported.

Constants labeled "may not be supported” are included for consistency between vendors but may not be
implemented on all ABI compliant platforms. However, the constants are required to be included in the
header files. The socket library is supplied as a shared library, | i bsocket . so. The socket library (-

| socket) must precede the networking services library (- | nsl) in the cc command line.

NOTE

The behavior of a zero queue length (the second argument) to the | i bsocket routine | i st en is undefined.

Figure 6-18: | i bsocket Contents

bi nd

endnet ent

et her _aton

et her _ntoa

get host bynane
get net bynane
get pr ot obynane
get ser vbynane
get socknane

accept
endhost ent
endser vent
ether _line
get host byaddr
get net byaddr
get peer nane
get pr ot oent
get servent

ht onl ht ons

i net | naof i net _nakeaddr
i net _network i net_ntoa

nt ohl nt ohs
recvfrom recvinsg
sendnsg sendt o

set net ent set pr ot oent
set sockopt shut down
socket pai r

connect
endpr ot oent

et her _hostton
et her _nt ohost
get host ent

get net ent

get pr ot obynunber
get servbyport
get sockopt

i net _addr

i net _net of
listen

recv

send

set host ent
set servent
socket

Support for Network Distributed Information

Some | i bsocket interfaces are affected if the system supports distributed information services. These rou-
tines are endhost ent , get host byaddr , get host bynane, get host ent , and set host ent for host-file
access; endservent , get ser vbynane, get servhyport , get servent ,and set servent for services-file
access; endpr ot oent , get pr ot obynane, get pr ot obynunber , get pr ot oent , and set pr ot oent for
protocol-file access; endnet ent , get net byaddr , get net bynane, get net ent , and set net ent for
networks-file access. See ‘‘Presentation of Distributed System Information’ elsewhere in this chapter for

Socket Library

6-21

FINAL COPY
August 30, 1996

File: chap6

details.

Data Definitions for Sockets

The following system header files contain the data structures and manifest constants required for sockets.

Figure 6-19: Header File: <net/if. h>

7

#define | FF_UP Ox1
#def i ne | FF_BROADCAST 0x2
#def i ne | FF_DEBUG 0x4
#def i ne | FF_LOOPBACK 0x8
#defi ne | FF_PO NTOPO NT 0x10
#define | FF_NOTRAI LERS 0x20
#define | FF_RUNNI NG 0x40
#def i ne | FF_NOARP 0x80
#defi ne | FF_PROM SC 0x100
#define | FF_ALLMULTI 0x200
#define | FF_I NTELLI GENT 0x400
#def i ne | FF_MJULTI CAST 0x800
#def i ne | FF_PRI VATE 0x8000
struct ifreq {
#defi ne | FNAMSI Z 16
char i fr_nanme[| FNAVSI Z] ;
uni on {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char i fru_oname[| FNAMSI Z] ;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
char ifru_data[1];
char ifru_enaddr[6];
}yoifr_ifru;
#defi ne i fr_addr ifr_ifru.ifru_addr
#def i ne i fr_dstaddr ifr_ifru.ifru_dstaddr
#defi ne i fr_onane ifr_ifru.ifru_onane
#defi ne ifr_broadaddr ifr_ifru.ifru_broadaddr
#def i ne ifr_flags ifr_ifru.ifru_flags
#defi ne ifr_netric ifr_ifru.ifru_metric
#defi ne ifr_data ifr_ifru.ifru_data
#def i ne i fr_enaddr ifr_ifru.ifru_enaddr
b
struct i fconf {
int ifc_len;
uni on {
caddr _t i fcu_buf;
struct ifreq *ifcu_req;
} ifc_ifeu;

N

\

J

6-22

FINAL COPY
August 30, 1996
File: chap6

(continued on next page)

LIBRARIES

Figure 6-19: Header File: <net /i f. h> (continued)

#defi ne i fc_buf ifc_ifcu.ifcu_buf
#defi ne ifc_req ifc_ifcu.ifcu_req

b

Figure 6-20: Header File: <net/if_arp. h>

5 3

struct arpreq {
struct sockaddr arp_pa;
struct sockaddr arp_ha;

int arp_flags;
b
#define ATF_I NUSE 0x01
#define ATF_COM 0x02
#def i ne ATF_PERM 0x04
#define ATF_PUBL 0x08

#define ATF_USETRAILERS 0x10

-)

Figure 6-21: Header File: <netinet/if_ether. h>

typedef u_char ether_addr_t[6];

Socket Library 6-23

FINAL COPY
August 30, 1996
File: chap6

Figure 6-22: Header File: <neti net/in. h>

-

#def i
#def i
#def i
#def i

}s

}s

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

o

ne
ne
ne
ne

struct
u_long s_addr;

struct
char

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

nt ohl (x) (x)
nt ohs(x) (x)
ht onl (x) (x)
htons(x) (x)

in_addr {

struct sockaddr _in {
short sin_famly;
u_short sin_port;

i n_addr sin_addr;

sin_zero[8];

IPPROTOIP 0
| PPROTO | CVP 1
| PPROTO | WP 2
| PPROTO GGP 3
| PPROTO TCP 6
| PPROTO EGP 8
| PPROTO PUP 12
| PPROTO UDP 17
| PPROTO I DP 22
| PPROTO_HELLO 63
| PPROTO ND 77

| PPROTO_RAW 255
| PPROTO_MAX 256

| P_OPTI ONS

| P_MULTI CAST_I| F

| P_MULTI CAST_TTL

| P_MULTI CAST_LOOP
| P_ADD_MEMBERSHI P
| P_DROP_MEMBERSHI P
| P_HDRI NCL

IP_TCS

IP_TTL

| P_RECVOPTS

| P_RECVRETOPTS

| P_RECVDSTADDR

| P_RETOPTS

O~NO O WN B

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

#def i ne | NADDR_ANY (u_l ong) 0x00000000

nmay
nmay
may
may
may
may
nmay
nmay
may
may
may
nmay

not
not
not
not
not
not
not
not
not
not
not
not

be
be
be
be
be
be
be
be
be
be
be
be

support ed
support ed
support ed
support ed
support ed
support ed
support ed
support ed
support ed
support ed
support ed
support ed

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

6-24

FINAL COPY

August 30, 1996

File: chap6

LIBRARIES

Figure 6-23: Header File: <neti net/tcp. h>

#def i ne TCP_NODELAY 0x01
#defi ne TCP_MAXSEG 0x02

Figure 6-24: Header File: <sys/i octl . h>

7

#defi ne | OCPARM_MASK Oxf f

& OCPARM_MASK) <<16) |(x<<8) ly)
&l OCPARM MASK) <<16) |(x<<8) ly)

& OCPARM_MASK) <<16) |(x<<8) ly)
#define _1OM(X,y,t) (1OCIN(((t)\
& OCPARM _NMASK) <<16) |[(x<<8) |y)

#define S| OCE FBRDADDR _| OAR(" i’ , 23,
#define S| OCSI FBRDADDR _| ON'i ', 24,
#define SI OCA FNETMASK _I OAR("i ', 25,

o

#define _IORN(Xx,y,t) (1 OC_QUTI(((t)\

#define 10C_VAOD 0x20000000

#define 1 0OC_OUT 0x40000000

#define |1OC.IN 0x80000000

#define 1 OC_|I NOUT (1'CC_I NI ©oC_aur)

#define _1Q(x,y) (1 CC_VA D|(x<<8) ly)

#define _IOR(X,y,t) (1roec_adTi((((int)sizeof (t))\

#define _1ONX,y,t) (I1OC_IN((((int)sizeof (t))\

#define _IOMR(X,y,t) (I1OC_INQUT|((((int)sizeof(t))\
&l OCPARM _NMASK) <<16) |[(x<<8) |y)

#defi ne SI OCSHI WAT _ION’s’, 0, int)

#define S| OCGH WAT _IOR("s’, 1, int)

#define SI OCSLOMT _I1ON’s’, 2, int)

#define SI OCCLOMNT _IOR("s", 3, int)

#defi ne S| OCATVARK _IOR(’s’, 7, int)

#define SI OCSPGRP _I1ON's’, 8, int)

#define SI OCGPCRP _IOR("s", 9, int)

#defi ne S| OCCADDRT _lown’'r’, 10, struct rtentry)

#define Sl OCDELRT _ION'r’, 11, struct rtentry)

#defi ne S| CCSI FADDR _lown i, 12, struct ifreq)

#defi ne S| CCd FADDR _ITOAR("i",13, struct ifreq)

#define SIOCSI FDSTADDR _ION'i', 14, struct ifreq)

#defi ne S| OCA FDSTADDR _| OAR(" i ', 15, struct ifreq)

#defi ne SI OCSI FFLAGS _1ON’i’', 16, struct ifreq)

#define SIOCA FFLAGS _IOAR('i', 17, struct ifreq)

#defi ne S| CCSI FMEM _lown’i’, 18, struct ifreq)

#defi ne S| OCd FVEM _TOAR("i',19, struct ifreq)

#define SI OCA FCONF _ITOMNR("i',20, struct ifconf)

#defi ne SI OCSI FMTU _lowi’, 21, struct ifreq)

#defi ne SI OCd FMTuU _TOAR("i',22, struct ifreq)

struct ifreq)
struct ifreq)
struct ifreq)

N

J

Socket Library

FINAL COPY
August 30, 1996
File: chap6

(continued on next page)

6-25

Figure 6-24: Header File: <sys/i octl . h> (continued)

-

#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def i
#def i
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

SI OCSI FNETMASK _I OWN(" i’

SI OCA FMETRI C
S| OCSI FMETRI C
S| OCSARP

SI OCGARP

S| OCDARP

S| OCUPPER

SI CCLOVER

S| OCSETSYNC
SI OCGETSYNC
SI OCSSDSTATS
S| OCSSESTATS
S| OCSPROM SC
SI OCCADDMULTI
S| OCDELMULTI
S| OCPROTO

SI OCGETNAME
S| OCGETPEER

I F_UNI TSEL

SI OCXPROTO

S| OCl FDETACH
S| OCGENPSTATS
SI OCX25XMr

SI OCX25RCV

SI OCX25TBL

SI OCSLGETREQ
S| OCSLSTAT

S| OCSI FNAMVE
SI OCGENADDR
S| OCSOCKSYS

I OMR(i
oW

o,

I OMR(i
TONC
TON
TON
TON
_IOMR(i

CTOMR("

TON
TON
TON

_low's’,

IOR(’S’
IOR(’S’

_low's’,

1o s,
TONC
TOMR(i

|

CTOMR(

CTOAR(
|
|

_TOMR("

_OMR(™ i

TONC

_ToN i,
CTOMR(

TON

|
TOMR(" i’
|

,26, struct ifreq)

27,

struct ifreq)

,28, struct ifreq)

30,
', 31,
, 32,
40,
, 41,
, 44,
', 45,
, 46,
, 47,
48,
, 49,
, 50,
51,
, 52,
, 53,
54,
55)
, 56,
57,
, 59
, 60,
', 61,
, 71,
, 12,
73,
, 85
, 86,

struct arpreq)
struct arpreq)
struct arpreq)
struct ifreq)
struct ifreq)
struct ifreq)
struct ifreq)
struct ifreq)
struct ifreq)
int)
struct ifreq)
struct ifreq)
struct socknewpr ot o)
struct sockaddr)
struct sockaddr)
int)

struct ifreq)
struct ifreq)
struct ifreq)
struct ifreq)
struct ifreq)
struct ifreq)
struct ifreq)
struct ifreq)
struct ifreq)
struct socksysreq)

6-26

FINAL COPY
August 30, 1996
File: chap6

LIBRARIES

Figure 6-25: Header File: <net db. h>

7 N

struct hostent {
char *h_nane;
char **h aliases;
int h_addrtype;
int h_l engt h;
char **h addr_list;
#defi ne h_addr h_addr _list[0]

s

struct netent {
char *n_nane;
char **n_al i ases;
int n_addrtype;

unsi gned |l ong n_net;

b

struct protoent {
char *p_naneg;
char **p_ali ases;
int p_pr ot o;

b

struct servent {
char *s_nane;
char **s aliases;
int s_port;
char *s_proto;

\ J

Socket Library 6-27

FINAL COPY
August 30, 1996
File: chap6

Figure 6-26: Header File: <net/route. h>

-

struct
u_l

u_l
uni
}or

}s

g

#def i ne
#def i ne
#def i ne

#def i ne

#def i ne

rtentry {

ong rt_hash;

uct sockaddr rt_dst;
uct sockaddr rt_gat eway;

str

str

short rt_flags;
short

on {

rt_refcnt;
ong rt_use;

struct ip_provider *rtu_prov;
struct ifnet *rtu_ifp;

t_u;

#defi ne RTF_UP
#def i ne

RTF_GATEVWAY
#defi ne RTF_HOST
RTF_REI NSTATE
RTF_DYNAM C
RTF_MODI FI ED

RTF_SW TCHED
#define RTF_SLAVE

#defi ne RTF_REMOTE
RTF_TOSW TCH

#define rt_prov rt_u.rtu_prov
#define rt_ifp rt_u.rtu_ifp

Ox1
0x2
0ox4
0x8
0x10
0x20

0x40
0x80
0x100
0x200

Figure 6-27:

Header File: <sys/ socket . h>

-

#def i ne
#define AF_PUP
#define AF_CHACS
#define AF_NS
#define AF_NBS
#define AF_ECVA
AF_DATAKI T
#define AF_CCTT
#define AF_SNA
#define AF_DECnet
#define AF_DLI
#define AF_LAT
#define AF_HYLINK

#def i ne

#define AF_UNSPEC
#define AF_UN X
#define AF_I NET
AF_1 MPLI NK

O~NO O WNEO

J

6-28

FINAL COPY

August 30, 1996

File: chap6

(continued on next page)

LIBRARIES

Figure 6-27: Header File: <sys/ socket . h> (continued)

-

#def i
#def i
#def i
#def i
#def i
#def i
#def i

b

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

b

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

struct
int
int

ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

AF_APPLETALK 16

AF NIT 17
AF_802 18
AF_Csl 19
AF_X25 20
AF_Osl NET 21
AF_GOSI P 22

struct sockaddr {
u_short sa_famly;
char

sa_dat a[14] ;

SO_DEBUG 0x0001
SO _ACCEPTCONN 0x0002
SO _REUSEADDR 0x0004
SO _KEEPALI VE 0x0008
SO DONTROUTE ~ 0x0010
SO _BROADCAST 0x0020
SO_USELOOPBACK 0x0040
SO LI NGER 0x0080
SO _OOBI NLINE ~ 0x0100
SO | MASOCKET 0x0400

SOL_SOCKET Oxffff

linger {

| _onoff;

I _l'inger;

SOCK_DGRAM 1
SOCK_STREAM 2
SOCK_RAW 4
SOCK_RDM 5
SOCK_SEQPACKET 6
PF_UNSPEC AF_UNSPEC
PF_UNI X AF_UNI X
PF_I NET AF_| NET
PF_I MPLI NK AF_1 MPLI NK
PF_PUP AF_PUP
PF_CHACS AF_CHAGCS
PF_NS AF_NS
PF_NBS AF_NBS
PF_ECVA AF_ECVA
PF_DATAKI T AF_DATAKI T
PF_CCITT AF_CCITT
PF_SNA AF_SNA
PF_DECnet AF_DECnet
PF_DLI AF_DLI

N

o

J

Socket Library

FINAL COPY
August 30, 1996
File: chap6

(continued on next page)

6-29

Figure 6-27: Header File: <sys/ socket . h> (continued)

-

o

#define PF_LAT AF_LAT
#define PF_HYLINK AF_HYLI NK
#define PF_APPLETALK AF_APPLETALK
#define PF_NIT AE NIT
#define PF_802 AF_802
#define PF_Osl AF_Csl
#define PF_X25 AF_X25
#define PF_OSI NET AF_OSI NET
#define PF_GOSIP AF_QOSI P

struct msghdr {
caddr _t nsg_nang;

int nsg_nanel en;
struct iovec *nsg_iov;
int msg_i ovl en;
caddr_t msg_accrights;
int msg_accri ght sl en;
b
#define MSG_OOB 0x1
#define MSG_PEEK 0x2

#define MSG_DONTROUTE 0x4

struct socknewproto {

int famly;
int type;
int proto;
dev_t dev;
int flags;

b

struct socksysreq {
i nt args[7];
b

6-30

August 30, 1996

FINAL COPY

File: chap6

LIBRARIES

Figure 6-28: Header File: <sys/types. h>

7 N

#i f ndef FD_SETSI ZE
#defi ne FD_SETSI ZE 1024
#endi f

#i f ndef NBBY
#defi ne NBBY 8
#endi f

t ypedef | ong fd_mask;
#defi ne NFDBI TS (si zeof (fd_nask) * NBBY)
#i f ndef howrany

#define howmany(x, y) (((x)+((y)-1))/(y))
#endi f

t ypedef struct fd_set {
fd_mask fds_bits[howrany(FD_SETSI ZE, NFDBI TS)];
} fd_set;

#define FD_SET(n, p) ((p)->fds_bits[(n)/NFDBITS] \
= (1 << ((n) % NFDBITS)))
#define FD CLR(n, p) ((p)->fds_bits[(n)/NFDBITS] \
&= " (1 << ((n) % NFDBITS)))
#define FD_ISSET(n, p) ((p)->fds_bits[(n)/NFDBITS] \
& (1 << ((n) % NFDBITY)))
#define FD_ZERQ(p) menset ((char *)(p), 0, sizeof(*(p)))

)

Figure 6-29: Header File: <sys/ un. h>

struct sockaddr_un {
short sun_fam ly
char sun_pat h[108] ;

—

Socket Library 6-31

FINAL COPY
August 30, 1996
File: chap6

ABI Library

The entire ABI Library section is new as of Version 1.2 of the Conformance Guide, but will not be marked with
NoTE | diffmarks.

Asynchronous Input and Output

The library | i babi . so. 1 contains routines which perform asynchronous 1/0 operations. These are based
on the asynchronous 170 routines documented in the POSIX 1003.1b (Real-Time) standard, but using callback
functions for completion notification rather than real-time signals. This allows for more flexible operation and,
in some implementations, increased performance. Since it is based on the POSIX standard, that standard
should be consulted in concert with this one for full details.

Figure 6-30: | i babi Contents

ai o_cancel * aio_error* ai o_fsync*
ai o_hol d* ai o_read* ai o_return*
ai o_suspend* aio wite* lio_ listio*

*Function is new to version 1.2

These routines have the equivalent behavior, except for the restrictions listed on page 37, to routines in the
POSIX 1003.1b specification. The ai o_hol d routine does not have a POSIX equivalent.

Data Definitions

The header file <ai 0. h> includes definitions of the data structures and constants used by many of the asyn-
chronous 1/0 function interfaces. It should also include the function prototypes.

Data structures and constants related to completion notification are defined in <si gnal . h>.
Defines for hard-coded operational limitsarein<l i m ts. h>.

Error codes for asynchronous 1/0 are in <err no. h>.

File open modes and f cnt | options for asynchronous I/O are in<f cnt | . h>.

Defines allowing querying for run-time limits are in <uni st d. h>.

In the following figures, the C-style comment text is intended to be descriptive, but does not itself form part of
NOoTE | the standard.

6-32 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

Figure 6-31: Header File: aio.h

-

/* for aio_cancel () return val ues */

#defi ne Al O CANCELED 1 l*
#defi ne Al O_NOTCANCELED
#defi ne Al O ALLDONE 3 /*

/* for aioch.lio_opcode */

#defi ne LI O_NOP 0 [*
#define LI O_READ 1
#define LIO WRI TE 2 /*

/* for lio_listio node flag */
#define LIO WAIT 4
#define LI O NOWAI T 3 /*

/* for aio_hold routine */

#define Al O HOLD CALLBACK 1
#defi ne Al O RELEASE CALLBACK 2
#define AlO | SHELD CALLBACK 3

typedef struct aiocb {

/* prototypes */

int aio_read(aiocbh_t *);

int aio_wite(aiocbh_t *);

int lio_listio(int, aiocb_t * const [], i
int aio_error(const aioch_t *);

int aio_return(aioch_t *);

int aio_cancel (int, aiocb_t *);

int ai o_suspend(const aiochb_t * const [],
int aio_fsync(int op, aiocb_t *);

int aio_hold(int);

\

int aio_fildes; /*
vol atile void *ai o_buf;
size_t ai o_nbytes; /*
of f _t ai o_offset;
int ai o_reqgprio; /*
struct sigevent ai o_sigevent; [*
int aio_lio_opcode; /*
ul ong
ul ong ai o_pad[6] ;
} aiocb_t;

al | operations canceled */
/* some ops coul d not be cancel ed */
no ops coul d be cancel ed, all done */

listio request with no data xfer */
/* listio read request */
listiowite request */

/* suspend until lio_listio complete */
do not suspend or notify for lio_listio */

file descriptor */

/* data buffer |ocation */
nunber bytes of data */

/* file offset */
request priority */
notification nethod */
listio operation */

aio_reserved[7]; /* reserved for internal use */

nt, sigevent_t *);

int, const struct tinespec *);

N

J

ABI Library

FINAL COPY
August 30, 1996
File: chap6

6-33

Figure 6-32: Header File: signal.h

-

g

typedef union {

int ni si gno;

voi d (*ni func) (union sigval);
} notifyinfo_t;

t ypedef union sigval {
i nt sival _int; /*
voi d *sival _ptr; /*
} sigval _t;

typedef struct sigevent {

int sigev_notify; /*
notifyinfo_t si gev_noti fyinfo;
sigval _t si gev_val ue; /*
ul ong sigev_reserved[13]; /*
ul ong si gev_pad[6] ; /*

} sigevent_t;

#define sigev_func sigev_notifyinfo.nifunc
#def i ne sigev_signo sigev_notifyinfo.nisigno

/* values of sigev_notify */
#defi ne SI GEV_NONE 128 /*
#define SI GEV_SI GNAL 129 /*

#defi ne SI GEV_CALLBACK 130 /*

/* signal nunber */
/* cal |l back data */

integer notify value */
pointer notify value */

notification type */

/* notification info */
notification handl er argunent */
reserved for internal use */
reserved for future use */

no async notification */
queued signal notification
NOT SUPPORTED for M PS ABI */
cal | back notification */

Figure 6-33: Header File: limits.h

#define _PCSI X_Al O LI STIO MAX 2
#def i ne _POSI X_Al O MAX 1

#define _ABI _Al O XFER MAX (128*1024)

/* mni mum max val ue */

6-34

FINAL COPY
August 30, 1996
File: chap6

LIBRARIES

Figure 6-34; Header File: errno.h

#def i ne EI NPROGRESS 150
#defi ne ECANCELED 158

Figure 6-35: Header File: fcntl.h

#define O_DSYNC 0x20
#define O_RSYNC 0x40

Figure 6-36: Header File: unistd.h

5 3

#defi ne _SC_ASYNCHRONQUS | O 64 /* is PCSI X Al O supported? */

#define _SC_ABI _ASYNCHRONQUS_| O 65 /* is ABl Al O supported? */
#define _SC Al O LI STI O MAX 66 /* max listio operation */

#define _SC_Al O MAX 67 /* max Al O */

#define _PC_ASYNC_ | O 64 /* can this file do PCSI X AlO? */
#define _PC_ABI _ASYNC | O 65 /* can this file do ABI Al O? */
#define _PC_ABlI _Al O XFER_MAX 66 /* biggest ABI AIO xfer for this file */

N)

_SC_ASYNCHRONQUS_| O and _PC_ASYNC | O are included for completeness, for checking for strict POSIX con-
NnoTe | formance. An ABI-conforming application would not query for POSIX, but rather for the ABI values.

Function Interfaces

The operation and error returns from all functions except ai o_hol d are those of the corresponding POSIX
1003.1b definition with the substitution of callback functions for notification by real-time signals. In addition
to the specified error returns, the functions which correspond to POSIX 1003.1b functions can also set errno to
the following value:

EBADF Asynchronous 1/0 is not supported on the given file descriptor.

int aio_read(aiocb_t *aiochp)
asynchronous read

ABI Library 6-35

FINAL COPY
August 30, 1996
File: chap6

int aio wite(aiocb t *aiochp)
asynchronous write

int lio_listio(int node, aiocb_t * const list[], int nent, sigevent_t *sig)
list directed 1/0

int aio_error(const aioch_t *aiochp)
retrieve error status of asynchronous 1/0 operation

int aio_return(aioch_t *aiochp)
retrieve return status of asynchronous 1/0 operation

int aio_cancel (int fildes, aiocb_t *aiochp)
cancel asynchronous 170 request

int ai o_suspend(const aiocb_t * const list[], int nent, const struct tinespec
*timeout)
wait for asynchronous 170 request

int aio_fsync(int op, aiocb_t *iocbp)
asynchronous file synchronization

int aio_hold(int shoul d_hol d)
Defer or resume reception of callback invocations. If the should_hold parameter is
Al O HOLD CALLBACK, callbacks will be deferred; if Al O RELEASE_CALLBACK, callback invoca-
tion will resume. ai o_hol d counts calls, and only when the count of Al O HOLD_CALLBACK
calls reaches zero via a corresponding number of Al O RELEASE_CALLBACK calls will callbacks
be released. Upon successful completion, the state prior to the call is returned. A return value
of 1 indicates there were one or more hold calls, a value of O indicates callbacks were not
being held. Otherwise, a value of -1 is returned and errno is set to indicate the error.
ai o_hol d can also be called with a parameter of Al O | SHELD CALLBACK which will query the
current state; it returns 1 if callbacks are currently held, O otherwise. When a callback routine
is called, callbacks are automatically held.

ai o_hol d will fail if one or more of the following are true:

El NVAL The value of should_hold is not one of Al O | SHELD CALLBACK,
Al O_ HOLD CALLBACK or Al O_RELEASE_CALLBACK.

ENOSYS Asynchronous 1/0 is not supported on the current system.

ElO It was not possible to perform this operation due to an error.

Implementation

The element sigev_notify in the sigevent structure may have the values SI GEV_NONE or SI GEV_CALLBACK. These
values, as well as SI GEV_SI GNAL (which is not used but reserved) are chosen to have values so that an imple-
mentation can easily distinguish calls to the ABI implementation of async 1/0 from similar co-existing imple-
mentations. In particular, these values are chosen to be larger than MAXSI G.

The element nisigno in the notifyinfo union is unused in this version, but is provided for possible future
changes. If the sigev_notify element of the sigevent structure is set to SI GEV_CALLBACK, sigev_notifyinfo.nifunc
(which can also be referred to as sigev_func) indicates the function to be invoked when the operation com-
pletes. That function will be called with a single argument, which is the value in sigev_value, and will use the
current stack indicated by the $sp register.

6-36 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

The execution context in which callback functions are invoked is undefined, however the callback has access to
all global data and functions.

All operations require the aio_reqprio and pad fields to be set to zero.

In keeping with the POSIX 1003.1b standard, limits are generally not hardcoded. Instead, applications should
use sysconf to query for system-wide limits, and pat hconf for per-file limits.

Unlike in the POSIX standard, no extensions to the data structures are allowed. The implementation may use
the reserved fields for internal purposes.

Restrictions

The following restrictions must be observed by applications using this facility:

NOTE

The reserved fields are for internal use by various implementations and should not be used by applica-
tions.

The behavior in the presence of the definition of _PCOSI X_PRI ORI TI ZED | Oand
_POSI X_PRI ORI TY_SCHEDULI NG is undefined. Among other things, this means that the behavior when
aio_reqprio is non-zero is undefined.

There is a maximum number of bytes that may be transferred in a single request. An application may
either use the minimum maximum (_ABI _Al O XFER_MAX) or query pat hconf using the
_PC_ABI _Al O XFER _MAX parameter (preferred) to determine the limit for the file in question.

If asynchronous 1/0 is not supported on a given file descriptor, i.e. pat hconf (_PC_ABI _ASYNC | O
would return a value other than 1, the asynchronous 1/0 functions will return an error with errno set to
EBADF.

Use of the O_SYNC flag with open will ensure that completion notification will occur only after the data
has been committed to be written to persistent storage.

Behavior due to modification of the contents of an aioch structure between the time an operation is
queued and the operation completes is undefined. The application should use ai o_er r or to check for
completion if the status is unknown.

The behavior when sigevent.sigev_notify is set to SI GEV_SI GNAL is undefined.

The application must return from a callback function before the next callback function is invoked. If an
application exits or does a | ongj np out of a callback, the future use of any asynchronous I/0 request is
undefined.

Some devices may not support all 1/0 sizes and offsets. Operations on such devices will return -1 and
set errno accordingly to indicate that an unsupported operation has occurred.

The number of outstanding callbacks may be limited by a system resource limit, possibly a tunable vari-
able. If the limit is exceed, calls will begin to fail and set errno to EAGAI N until resources free up.

Application vendors are cautioned that these interfaces are present only in systems which comply with Ver-
sion 1.2 and above of this document. These interfaces are new to the ABI and may not be immediately avail-
able on all platforms.

Operating system implementors are advised that parallelized | i o_| i st i o implementations, in which many
1/0 operations are in progress at a given time are strongly desired by the DBMS community. Simply serially
processing the I i o_l i sti o call may not be of much benefit to the DBMS community.

If the implementation chooses to use threads, then the system-supplied libraries must be thread-safe.

ABI Library 6-37

FINAL COPY
August 30, 1996
File: chap6

11l Please Discard this Page !!!

6-38 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

X Window System Library

Graphical MIPS ABI-conforming applications may be constructed using the X Window System, Version 11,
Release 5 (X11R5). The generic ABI specifies X11R3 but indicates an intent to track upward compatible future
releases of the X Window System. Prior versions of this document relied on the generic ABI specification of
X11R4 and did not have MIPS ABI extensions in this area. This library is required on all ABI-conforming sys-

tems.

The basic X11 support library, | i bX, shall be supported as a DSO, | i bX11. so. 2, by ABI-conforming sys-
tems. (Ii bX11. so. 1 isreserved for implementations that may have had X11R4 versions.) The X Toolkit
Intrinsics library, | i bXt , is supplied as a static archive in the ABI build environment.

The following functions reside in | i bX and must be provided on all ABI-conforming systems.

Figure 6-37: | i bX Contents

XAct i vat eScr eenSaver
XAddHost s
XAddToSaveSet

XAl | ocCol or Cel | s

XAl | ocNanedCol or

XAl | ocWWHI nt s

XAut oRepeat Of f

XBel |

XBi t mapUni t

XCel | sOf Scr een
XChangeKeyboar dCont r ol
XChangePr operty
XCheckl f Event
XCheckTypedW ndowEvent
XGi r cul at eSubwi ndows Down
XC ear W ndow

XC osel M

XcnsAl | ocCol or
XcnsCl ELabd i pab
XcmsCl ELabQuer yMaxC
XcnmsCl ELabQuer yM nL
XcmsCl ELuvd i pL
XcrsCl ELuvQuer yMaxC
XcmsCl ELuvQuer yM nL
XcrsCl EuvYToCl ELuv
XcmsCl Exy YToCl EXYZ
Xcms Cl EXYZToCl ExyY
XcnmsConvert Col or s
XcnsDi spl ayOf CCC
XcnsLookupCol or
XcmsQuer yBl ue
XcmsQuer yGr een
XcmsRGBi ToCl EXYZ

6-38

XAddExt ensi on

XAddPi xel

XAl | ocd assHi nt

XAl | ocCol or Pl anes
XAl | ocSi zeHi nt's

XAl | owEvent s

XAut oRepeat On

XBi t mapBi t Or der

XBl ackPi xel
XChangeAct i vePoi nt er G ab
XChangeKeyboar dMappi ng
XChangeSaveSet
XCheckMaskEvent
XCheckW ndowEvent
XGi r cul at eSubwi ndows Up
Xd i pBox

XcnmsAddCol or Space
XcnsAl | ocNanedCol or
XcmsCl ELabd i pL
XcnmsCl ELabQuer yMaxL
XcnmsCl ELabToCl EXYZ
XcmsCl ELuvd i pLuv
XcmsCl ELuvQuer yaxL
XcmsCl ELuvToCl EuvY
XcmsCl EuvYToCl EXYZ
XcnmsCl EXYZToCl ELab
Xcms Cl EXYZToORGBI
XcrsCr eat eCCC
XcmsFor mat O Prefi x
XcnsPref i xOF For mat
XcnmsQuer yCol or
XcmsQuer yRed

Xcnms RGBi ToRGB

FINAL COPY
August 30, 1996
File: chap6

XAddHost

XAddToExt ensi onLi st

XAl | ocCol or

XAl | ocl conSi ze

XAl | ocSt andar dCol or map

XAl | Pl anes

XBaseFont NaneLi st O Font Set
XBi t mapPad

XBl ackPi xel O Scr een
XChangeGC

XChangePoi nt er Cont r ol
XChangeW ndowAt t ri but es
XCheckTypedEvent

XG r cul at eSubwi ndows

XC ear Ar ea

XC oseDi spl ay
XcnmsAddFunct i onSet

Xcms CCCOf Col or map

XcnmsCl ELabd i pLab

XcnmsCl ELabQuer yMaxLC
XcnsCl ELabWhi t eShi ft Col or s
XcnmsCl ELuvd i puv

XcnsCl ELuvQuer yiaxLC
XcnmsCl ELuvWhi t eShi ft Col or s
XcmsCl EuvYToTekHVC

XcmsCl EXYZToCl EuvY

XcnmsQ i ent Whi t ePoi nt OF CCC
Xcms Def aul t CCC
XcnsFreeCCC

XcmsQuer yBl ack

XcmsQuer yCol ors

XcmsQuer yWii te

Xc s RGBToRGBI

LIBRARIES

Figure 6-37: | i bX Contents (continued)

XcmsScr eenNunmber OF CCC
XcnsSet Conpr essi onPr oc
Xcms St or eCol or

Xcms TekHVCA i pV

Xcms TekHVCQuer y MaxV
Xcms TekHVCQuer yM nV
XcmsVi sual OF CCC

XCont ext Dependent Dr awi ng
XCopy Col or mapAndFr ee
XCr eat eBi t mapFr onDat a
XCr eat eFont Set
XCreatel C

XCr eat ePi xmapCur sor
XCr eat eSi npl eW ndow
XDef aul t Col or mapCF Scr een
XDef aul t GC

XDef aul t Scr een

XDef aul t Vi sual

XDel et eCont ext
XDestroyl C

XDest r oy Subwi ndows

XDi spl ayCel I's

XDi spl ayKeycodes

XDi spl ayOf I M

XDi spl ayString
XDoesBacki ngSt or e

XDr awAr cs

XDr awLi ne

XDr awPoi nt s

XDr awSegnent s

XDr awText

XEnpt yRegi on

XESet d oseDi spl ay
XESet Cr eat eGC

XESet Event ToWre

XESet FreeGC

XESet W r eToEvent

XExt ent sOf Font Set

XFet chNane

XFi | | Pol ygon

XFi |l t er Event

XFl ush

XFor ceScr eenSaver
XFreeCol ors

XFr eeFont

XFr eeFont Pat h
XFreeModi fi er map

X Window System Library

XcmsScr eenWi t ePoi nt OF CCC
XcnsSet Wi t eAdj ust Proc
Xcns St or eCol or s
XcnsTekHVCA i pVC
XcnsTekHVCQuer yMaxVC
XcnsTekHVCToCl EuvY
XConf i gur eW ndow
XConvert Sel ecti on
XCopyGC

XCr eat eCol or map

XCr eat eGC

XCr eat el mage

XCr eat ePi xmapFr onBi t mapDat a
XCr eat eW ndow

XDef aul t Dept h

XDef aul t GCOf Scr een

XDef aul t Scr eenCf Di spl ay
XDef aul t Vi sual O Scr een
XDel et eModi fi er mapEntry
XDest r oyl mage

XDest r oyW ndow

XDi spl ayHei ght

XDi spl ayMot i onBuf f er Si ze
XDi spl ayCOf Scr een

XDi spl ayW dt h
XDoesSaveUnder s

XDr aw mageSt ri ng

XDr awLi nes

XDr awRect angl e

XDrawst ri ng

XDr awText 16

XEnabl eAccessCont r ol
XESet CopyGC

XESet Err or

XESet FI ushGC

XESet Pri nt Error Val ues
XEvent MaskOf Scr een

XFet chBuf f er

XFillArc

XFi || Rectangl e

XFi ndCont ext

XFl ushGC

XFr ee

XFr eeCur sor

XFreeFont I nfo

XFr eeFont Set

XFr eePi xmap

FINAL COPY
August 30, 1996
File: chap6

XcnsSet CCCOf Col or map
Xcms Set Whi t ePoi nt
XcrmsTekHVCOA i pC

Xcrs TekHVCQuer yMaxC
XcnsTekHVCQuer yMaxVSanpl es
XcnsTekHVCWhi t eShi ft Col ors
XConnect i onNunber
XCopyAr ea

XCopyPI ane

XCr eat eFont Cur sor

XCr eat ed yphCur sor
XCr eat ePi xmap

XCr eat eRegi on

XDef aul t Col or map

XDef aul t Dept hOF Scr een
XDef aul t Root W ndow
XDef aul t String

XDef i neCur sor

XDel et eProperty

XDest r oyRegi on

XDi sabl eAccessCont r ol
XDi spl ayHei ght MM

XDi spl ayNane

XDi spl ayPl anes

XDi spl ayW dt hMM

XDr awAr ¢

XDr awl nageStri ngl6
XDr awPoi nt

XDr awRect angl es

XDr awSt ri ngl6
XEHeadOf Ext ensi onLi st
XEqual Regi on

XESet Cr eat eFont

XESet Error String
XESet Fr eeFont

XESet W r eToEr r or
XEvent sQueued

XFet chByt es
XFillArcs

XFi | | Rect angl es

XFi ndOnExt ensi onLi st
XFont sOF Font Set

XFr eeCol or map

XFr eeExt ensi onLi st
XFr eeFont Narres
XFreeGC

XFreeStringLi st

6-39

XGCont ext Fr omGC

XGet O assHi nt

XGet Er r or Dat abaseText
XCet Font Property
XCGet | conNane

XCet | nage

XCGet Keyboar dCont r ol
XGet Mot i onEvent s
XCGet Poi nt er Cont r ol
XCet Scr eenSaver

XCGet St andar dCol or map
XCGet Tr ansi ent For H nt
XGet W ndowPr operty
XGet WHi nt s

XGet WWNor mal Hi nt's
XGet ZoonHi nt's

XG abKeyboar d

XHei ght MMX Scr een

XI f Event

Xl ni t Ext ensi on

XI nt er nAt om
XKeysynToKeycode
XLast KnownRequest Processed
XLi st Font s

XLi st 1 nst al | edCol or maps
XLoadFont

XLocal eCf I M
XLookupStri ng
XMapSubwi ndows

XMat chVi sual | nfo
XmbDr awl nageSt ri ng
XmbLookupStri ng
XmbText Escapenent
XmbText Per Char Ext ent s
XMoveResi zeW ndow
XNext Event

XO f set Regi on

XPar seCol or

XPeekl f Event

XPl anesCf Scr een

XPr ot ocol Revi si on
XPut | mage

XQuer yBest Cur sor
XQueryBestTil e

XQuer yExt ensi on
XQuer yPoi nt er
XQueryTree

Figure 6-37: | i bX Contents (continued)

XCeonetry

XGet Command

XCet Err or Text

XGet GCVal ues

XGet | conSi zes

XGet | MVal ues

XCGet Keyboar dMappi ng
XCGet Nor mal Hi nt's
XCGet Poi nt er Mappi ng
XGet Sel ect i onOnner
XGet Subl nage

XCGet Vi sual I nfo
XGet WO i ent Machi ne
XCGet WM conNane
XGet WWPr ot ocol s
XGrabButt on

XG abPoi nt er

XHei ght OF Scr een

Xl mageByt eOr der

Xl nsert Modi fi ermapEntry
Xl nt er sect Regi on
XKeysynToSt ri ng

XLi st Dept hs

XLi st Font sWt hl nfo
XLi st Pi xmapFor mat s
XLoadQuer yFont
XLookupCol or
XLower W ndow
XMapW ndow
XMaxCmapsOf Scr een
XmbDr awSt ri ng
XmbReset | C

XmbText Ext ent s
XmbText PropertyToText Li st
XMoveW ndow

XNext Request
XOpenDi spl ay

XPar seGeonetry
XPendi ng

XPoi nt | nRegi on

XPr ot ocol Versi on
XPut Pi xel

XQuer yBest Si ze
XQuer yCol or

XQuer yFont

XQuer yText Extents
XRai seW ndow

FINAL COPY
August 30, 1996
File: chap6

XCet At omNane

XGet Def aul t

XGet Font Pat h

XCet Ceonetry

XGet | Cval ues

XCet | nput Focus

XGet Modi fi er Mappi ng
XCet Pi xel

XCGet RGBCol or maps
XGet Si zeHi nts

XCet Text Property
XGet W ndowAt t ri but es
XCGet WMCol or mapW ndows
XCet WWNane

XCGet WWBI zeHi nts

XG abKey

XG abServer

Xl coni f yW ndow
XIMX | C

Xl nst al | Col or map
XKeycodeToKeysym
XKilldient

XLi st Ext ensi ons

XLi st Host s

XLi st Properties
XLocal eCf Font Set
XLookupKeysym
XMapRai sed
XMaskEvent
XMaxRequest Si ze
XmbDr awText

XmbSet WWPr operti es
XmbText Li st ToText Property
XM nCmapsOf Scr een
XNewibdi fi er map
XNoOp

XOpenl M

XPeekEvent

Xper mal | oc

XPol ygonRegi on

XPut BackEvent
XQ.engt h

XQueryBest Sti ppl e
XQueryCol ors

XQuer yKeynmap

XQuer yText Ext ent s16
XReadBi t mapFi | e

LIBRARIES

Figure 6-37: | i bX Contents (continued)

XRebi ndKeysym

XRect | nRegi on
XRenoveHost

XReset Scr eenSaver
XRest ackW ndows

Xr mDest r oyDat abase
Xr et Fi | eDat abase
Xrmnitialize

Xr mPar seCommand

Xr mPut Li neResour ce
Xr mQCet Resour ce

Xr mQPut Resour ce

Xr nSet Dat abase

Xr St ri ngToQuar kLi st
XRoot W ndowCf Scr een
XSaveCont ext
XScreenO Di spl ay
XSendEvent

XSet Aft er Functi on
XSet Cl assHi nt

XSet d i pRect angl es
XSet Dashes
XSetFillStyle

XSet For egr ound

XSet | CFocus

XSet | CVal ues

XSet Li neAttri butes
XSet Nor mal H nt's
XSet Regi on

XSet Sel ect i onOaner
XSet St andar dProperti es
XSet Subwi ndowivbde
XSet Tr ansi ent For Hi nt

XSet W ndowBackgr oundPi xmap

XSet W ndowBor der W dt h
XSet WMCol or mapW ndows
XSet WWNarre

XSet WWPr ot ocol s

XShri nkRegi on

XSt or eCol or

XSt or eNanedCol or

XSubl nage

XSync

XText Ext ent s16

XText Wdt h16

XUngr abBut t on

XUngr abPoi nt er

X Window System Library

XRecol or Cur sor

XRef r eshKeyboar dMappi ng
XRenoveHost s

XResi zeW ndow

Xr mConbi neDat abase

Xr nEnuner at eDat abase
Xr nCet Resour ce
XrmLocal eOf Dat abase
XrmPer nSt ri ngToQuar k
Xr mPut Resour ce

Xr mQGet Sear chLi st
XrmQPut St ri ngResour ce
Xr St ri ngToBi ndi ngQuar kLi st
Xr mni queQuar k

XRot at eBuf fers

XScr eenCount
XScreenResourceString
XSer ver Vendor

XSet Ar cMbde

XSet d i pMask

XSet G oseDownMbde
XSet Er r or Handl er

XSet Font

XSet Functi on

XSet | conNane

XSet | nput Focus

XSet Local eModi fiers
XSet Pl aneMask

XSet RGBCol or maps

XSet Si zeH nts

XSet St at e

XSet Text Property

XSet TSOri gi n

XSet W ndowBor der

XSet W ndowCol or nap
XSet WWHi nt s

XSet WWNor mal Hi nt's
XSet WVSi zeHi nt's

XSt or eBuf f er

XSt or eCol or s

XStringlLi st ToText Property
XSubt r act Regi on
XSynchr oni ze

XText PropertyToStri ngLi st
XTr ansl at eCoor di nat es
XUngr abKey

XUngr abSer ver

FINAL COPY
August 30, 1996
File: chap6

XReconf i gur eWMW ndow
XRenoveFr onSaveSet
XRepar ent W ndow
XResour ceManager St ri ng
Xr mConbi neFi | eDat abase
Xr mGet Dat abase

XrnGet St ri ngDat abase
Xr mver geDat abases
XrPut Fi | eDat abase
XrnPut St ri ngResour ce
Xr nCet Sear chResour ce
XrmQuar kToSt ri ng

Xr 6t ri ngToQuar k
XRoot W ndow

XRot at eW ndowPr operti es
XScreenNunber O Scr een
XSel ect | nput

XSet AccessCont r ol

XSet Backgr ound

XSetd i pOrigin

XSet Conmand
XSetFillRule

XSet Font Pat h

XSet G aphi csExposur es
XSet | conSi zes

XSet | CEr r or Handl er
XSet Modi fi er Mappi ng
XSet Poi nt er Mappi ng
XSet Scr eenSaver

XSet St andar dCol or map
XSet Sti ppl e

XSetTile

XSet W ndowBackgr ound
XSet W ndowBor der Pi xmap
XSet Wl i ent Machi ne
XSet WM conNare

XSet WWPr operti es

XSet ZoonHi nt s

XSt or eByt es

XSt or eNane

XSt ringToKeysym
XSupportsLocal e

XText Ext ent's

XText Wdt h

XUndef i neCur sor

XUngr abKeyboar d

XUni nst al | Col or map

6-41

Figure 6-37: | i bX Contents (continued)

XUni onRect W t hRegi on
XUnmapSubwi ndows
XVaCr eat eNest edLi st
XWar pPoi nt er

Xwe Dr awText

XwcReset | C

XwcText Li st ToText Property
XWhi t ePi xel

XW dt hOF Scr een
XWWGeonet ry

_XAl'l ocScratch

_XFl ushGCCache
_XReadPad

_XSet Last Request Read

XUni onRegi on
XUnmapW ndow
XVendor Rel ease
XweDr awl nageSt ri ng
XwcFreeStringlLi st
Xwe Text Escapenent
XwcText Per Char Ext ent s
XWhi t ePi xel O Screen
XW ndowEvent
XWiteBitmapFile
_XEat Dat a

_XRead

_XRepl y

XUnl oadFont

XUnset | CFocus

XVi sual | DFr onMi sual
XweDr awSt ri ng
XwcLookupStri ng
XweText Ext ent s
XwcText PropertyToText Li st
XW dt hMMVOf Scr een
XW t hdr awW ndow
XXor Regi on

_XFl ush

_XReadEvent s
_XSend

Thel i bX library requires that some global external data symbols be defined for its’ routines to work properly.
All the data symbols listed in the table below must be provided by the | i bX library.

Figure 6-38: | i bX Contents, Global External Data Symbols

XcmsCl ELabCol or Space
XcmsCl EuvYCol or Space
Xcms Cl EXYZCol or Space
XcmsRGBCol or Space

Xcms TekHVCCol or Space

XcmsCl ELuvCol or Space
XcmsCl ExyYCol or Space
XcnsLi near RGBFunct i onSet
XcmsRGBI Col or Space

Xcms UNDEFI NEDCol or Space

An ABI-conforming system shall provide the following include files whose content is defined by the X11R5
Reference Manual.

Figure 6-39: X11R5 Include Files

X11/cursorfont.h X11/ keysyndef. h X11/ X. h

X11/ Xat om h X11/ Xcns. h X11/ Xlib.h

X11/ Xproto. h X11/ Xresource. h X11/ Xutil.h
Figure 6-40: X11R5 X Toolkit Intrinsics Include Files

X11l/Intrinsic.h X11/IntrinsicP.h X11/ Shel | . h

X11/ Shel | P. h
X11/ Vendor P. h

X11/ StringDefs. h X11/ Vendor . h

6-42

LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

Math Library

Frequently, applications must rely on groups of object files not required to be present on an ABI conforming
implementation. These may be provided in static archives provided with the development environment. If
each member of the archive is itself ABI conforming, then an ABI conforming application may statically link
members from this archive and still be ABI conforming. If extensions to an archive are not ABI conforming,
then an ABI conforming application may not include that extension in an executable.

All development environments for ABI applications shall contain ABI conforming versions of | i bm a. The
MIPS processor specific ABI shall define the path to the directory that contains these libraries. The following
are entry-points that must be defined for each respective library, as defined in the System V Interface Definition,
Third Edition.

Figure 6-41: Required | i bmFunctions

acos acosh asin asi nh at an* at an2
at anh cbrt ceil cos cosh erf
erfc exp f abs fl oor f mod ganmma
hypot * jo il jin | gamma | og

l ogl0 pow remai nder sin si nh sqrt
tan tanh yO0 yl yn

*Function was erroneously omitted from earlier editions

Math Library 6-43

FINAL COPY
August 30, 1996
File: chap6

OSF/Motif Library

An ABI-conforming system shall support Release 1.2 of the OSF/Motif software as a static library in the ABI

build environment, | i bXm a. The first ABI reference platform (corresponding to version 1.0 of this

specification) supported OSF/Motif 1.1 as a static library.

An ABI-conforming system shall provide the following include files whose content is defined by the OSF/Motif

Programmer’s Reference Manual.

Figure 6-42: OSF/Motif 1.2 Include Files

X ArrowB. h
Xni CascadeB. h
Xni Cut Paste. h
X DrawnB. h
Xnmil Frane. h
Xm List.h

Xml MessageB. h
Xm PushB. h
Xni Scal e. h
Xni Sel ecti oB. h
X Text . h

Xm Xm h

Xni Arr owBG. h
Xni CascadeBG h
Xm Di al 0gS. h
Xm Fil eSB. h
Xni Label . h

Xm Mai nW h

X PanedW h
Xm PushBG h
Xnmi Scrol | Bar. h
Xml Separ at oG h
Xm Toggl eB. h
Xml XnP. h

X Bul l etinB. h
Xnm Conmand. h
Xml Drawi ngA. h
Xm Form h

Xni Label G h
Xl MenuShel | . h
Xni Prot ocol s. h
X RowCol um. h
Xnmi Scrol |l edW h
Xml Separator. h
Xml Toggl eBG h

6-44

FINAL COPY
August 30, 1996
File: chap6

LIBRARIES

General-Purpose Library

These functions constitute a general-purpose library, | i bgen. This library is not implemented as a shared
object. Itis required to link OSF/Motif applications.

Figure 6-43: | i bgen Contents

basenane bget s buf split copyl i st
di r nane eaccess gmat ch i sencrypt
nkdirp p2open p2cl ose pat hfi nd
regecnp regex rodirp strcadd
strccpy st readd st recpy strfind
strrspn strtrns

conpi |l e* st ep* advance*

* Listed as Level 2 in the SVID
These functions are declared in <l i bgen. h>.

char *basenane(char *);

char *bgets(char *, size t, FILE *, char *);
size_t bufsplit(char *, size t, const char *);
char *copylist(const char *, off _t *);

char *dirnane(char *);

i nt eaccess(const char *, int);

nt gmatch(const char *, const char *);

nt isencrypt(const char *, size t);

nt nkdirp(const char *, node_t);

nt p2open(const char *, FILE *[2]);

nt p2cl ose(FILE *[2]);

char *pathfind(const char *, const char *, const char *);
char *regcnp(const char *, ...);

char *regex(const char *, const char *, ...);

int rndirp(char *, char *);

char *strccpy(char *, const char *);

char *strcadd(char *, const char *);

char *strecpy(char *, const char *, const char *);
char *streadd(char *, const char *, const char *);
int strfind(const char *, const char *);

char *strrspn(const char *, const char *);

char *strtrns(const char *, const char *, const char *, char *);

These functions are declared in <r egexpr . h>, and operate as described in the System V Interface Definition,

Third Edition (SVID 3). Note that the description in the SVID refers to a slightly different implementation, and

refereneces a different header file, <r egexp. h>, not the | i bgen implementation. In any case, these routines

are marked as level 2 and should be avoided, as they are not required to be present on an ABI-conforming sys-

General-Purpose Library 6-45

FINAL COPY
August 30, 1996
File: chap6

tem.

char *conpil e(const char *, char *, char *);

int step(const char *, const char *);
i nt advance(const char *, const char *);

6-46 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

BSD Emulation Library

I i bucbh. a provides many of the popular interfaces from BSD UNIX. It is intended to be used as a migration
path for ISVs moving applications from BSD UNIX to SVR4. Over time all ISVs are encouraged to move to the
SVR4 ABI interfaces since they may not be supported in the future. It is also important to note that use of

I i bucbh. a pullsin all of its BSD interfaces. This can result in subtle problems for applications which mix BSD
and SVR4 interfaces, for example using the BSD pri nt f and SVR4 r eaddi r . In the previous case, both the
printf andreaddir calls would use the BSD version. This class of problem will be exposed at runtime

rather than compile time.

Figure 6-44: | i bucb Contents

al | oca al phasort bcnp
bcopy bzero dbm cl ose
dbm del et e dbm do_next key dbm fetch
dbm firsthash dbm firstkey dbm f or der
dbm next key dbm open dbm store
dc enduser shel | f open
fp_accrued_excepti ons fp class_d fp class_f
fp_direction fp_precision fprintf
ftine get dt abl esi ze get hosti d
get host nane get pagesi ze get rusage
get user shel | getwd i eee_handl ers
i ndex initstate i snan

kill pg | ongj np nct |

nkst enp printf psi gna
rand random re_conp
re_exec readdi r ri ndex
scandir set host nane setj np
setstate set user shel | si gbl ock
si gf pe si gi nterrupt si gha

si gpause si gset nask si gst ack
si gvec sl eep sprintf
srand srandom strcasecnp
st rncasecnp sys_siglist tinmes

ti mezone ual arm usl eep
utinmes viprintf vprintf
vsprintf wai t 3

BSD Emulation Library

6-47

FINAL COPY
August 30, 1996
File: chap6

The BSD Emulation Library is at level 2, and is likely to be removed in the next edition of this specification.

6-48 LIBRARIES

FINAL COPY
August 30, 1996
File: chap6

Presentation of Network Distributed Information

Information about certain system databases, such as passwords, groups, hosts, services, protocols and net-
works, must be returned in a consistent manner between ABI-specified function interfaces and other, non-ABI
methods. Non-ABI methods may include function interfaces as well as utilities, such as | ogi n and
yppasswd (if supported). For example, if the password file on a system is managed by the use of NIS, then
use of get pwnamfor a particular user name will return the same home directory as the user specified would
get by logging in, and get pwnamcalled from a MIPS ABI conforming program will return the same informa-
tion in the password structure as get pwnamcalled from a non-ABI program. The MIPS ABI interfaces which
must support this behavior are as follows:

Passwords get pwnam get pwui d, set pwent , get pwent , endpwent .

These routinesare inl i bc.

The MIPS ABI does not provide any routines operating on the shadow password file. |
NOTE \
Groups getgrgi d, get grnam set grent , get grent,endgrent,initgroups.
These routines are inl i bc.
Hosts endhost ent , get host byaddr , get host bynane, get host ent , set host ent .
These routines are in | i bsocket .
Services endservent , get servbynane, get servbyport , getservent ,setservent.
These routines are in | i bsocket .
Protocols endpr ot oent , get pr ot obynane, get pr ot obynunber , get pr ot oent , set pr ot oent .
These routines are in | i bsocket .
Networks endnet ent , get net byaddr , get net bynane, get net ent , set netent .
These routines are in | i bsocket .
Not all MIPS ABI conforming implementations choose to distribute all of the databases listed above. |
HoTE Platform vendors are advised that the intent of this section is to provide consistent behavior for at least two
popular network information services, NIS and DNS, but without specifying precisely how that consistency is
obtained, nor restricting the implementation to any specific current or future services.
Presentation of Network Distributed Information 6-49

FINAL COPY
August 30, 1996
File: chap6

7 FORMATS AND PROTOCOLS

ABI Version Identification

Table of Contents

FINAL COPY
August 30, 1996
File: Cchap7

7-1

ABI Version Identification

An ABI-conforming system which conforms to revision 1.2 or later of the ABI Conformance Guide will have
an ASCII file which identifies the highest revision level to which the system conforms.

The version file is named / et ¢/ m psabi ver si on.

The file contains a newline-terminated string of the form major.minor. Only the first line should be processed;
all subsequent lines should be ignored. Sub-versions (e.g., the .1 in 1.0.1) are not reflected in the version file as
they only reflect clarifications to the wording in a baseline spec.

If the file is not found, the system should only be assumed to be conformant to a Conformance Guide revision
prior to 1.2 - it is not possible to distinguish between revision 1.0 and revision 1.1.

ABI Version ldentification 7-1

FINAL COPY
August 30, 1996
File: chap7

8 SYSTEM COMMANDS

System Commands
The - D option to cpio
The mt Command

The mount and umount Commands

Table of Contents

FINAL COPY
August 30, 1996
File: Cchap8

8-1
8-1
8-1
8-2

System Commands

In addition to those commands listed in the generic ABI and the Processor Specific ABI, the following com-
mands are available to application programs running on ABI-conforming systems:

B - Doptiontocpi o
conpr ess

nount

mt

tar

unconpr ess

unount
B zcat

With the exception of the - D option to cpi 0, and nt, nount and unount, these commands are as \
described in the System V Interface Definition, Third Edition (SVID 3). \

The - Doption to cpio |

The cpi 0 command must support the - Doption. - Dis used by the SVR4 packaging tools, and has been found |
to be necessary for installation of third party software which resides on multi-file tapes. - Ddisables tape read |
ahead and automatic volume switching.

The mt Command

The nt command is a magnetic tape manipulation program, with the following syntax:
nt -f tapename command [count]

nt is used to give commands to a magnetic tape drive. Note that tapename must reference a raw (not block)
tape device. By default, mt performs the requested operation once. Operations may be performed multiple
times by specifying count.

Valid choices for command are as follows:

f sf Forward space count files.
rew nd Rewind the tape (count is ignored).
System Commands 8-1
FINAL COPY

August 30, 1996
File: chap8

A rewind media command for a partitioned 4mm DDS tape will take you to the first

NoTE | block of the current partition, not the physical beginning of media. The

specification of commands to deal with partitioned DDS media is outside the

‘ current scope of the ABI.

nt returns a 0 exit status upon successful completion, 1 if the command was unrecognized, and 2 if an opera-
tion failed.

NOTE

Differences are known to exist among various vendor platforms as to exactly where a tape is positioned after
reading a file on a multi-file tape. These are difficult to reconcile due to compatibility requirements with prior
OS releases by each vendor. Applications that use multi-file tapes, especially using them for installation
should consider using dd to actually extract the information, and the undocumented - D option for cpi o (dis-
cussed above) which inhibits read ahead. This is the mechanism used by the SVR4 packaging tools. Ven-
dors have generally made dd properly position the tape in a consistent way.

The mount and umount Commands

The nount and unnount commands specify how to mount and unmount file systems. The specification
below extends the definition in the SVID 3 to support the mounting and unmounting of CD-ROM based file
systems. This definition is derived from the OCMP and SVR4.2 specifications.

If FSType is cdf s, the special argument must be / dev/ abi / cd_i so. Note that FSType and/or special can in
some circumstances be determined from / et ¢/ vf st ab.

The cdf s-specific options to mount include;

ro

susplnosusp

rriplhorrip

nnconv=a

Mounts the resource read-only. This option or the - r option are required.

Enables/disables the processing of all System Use Sharing Protocol (SUSP) com-
pliant extensions to the 1ISO-9660/High Sierra specification. The SUSP defines a
mechanism for which the System Use Area of a Directory Record may be shared
by multiple independent organizations, for example, Rock Ridge Interchange Pro-
tocol (RRIP). The nosusp flag prevents the processing of all SUSP-compliant
extensions, even if recorded on the media.

Enables/disables the processing of all the Rock Ridge Interchange Protocol (RRIP)
extensions to the 1ISO-9660/High Sierra specification. The RRIP is a SUSP-
compliant set of extensions that provide POSIX file semantics within the context
of an 1SO-9660/High Sierra file-system. Ther ri p flag requires that the susp flag
also be set. The norri p flag prevents the processing of all RRIP extensions even
if recorded on the media.

Sets the file name conversion mode for the 1ISO-9660/High Sierra file and direc-
tory names recorded on the CD-ROM. The nntonv option lets you specify how
the file and directory names are seen by the user on the host system. Non-ISO-
9660 and non-High Sierra names are not converted.

a is some combination of the following:

c Names are not converted; the names used are the ones recorded
on the CD-ROM.

SYSTEM COMMANDS

FINAL COPY
August 30, 1996
File: chap8

System Commands

m

Converts upper case letters to lower case.

Suppresses the version number and the separator (;).

FINAL COPY
August 30, 1996
File: chap8

8-3

9 EXECUTION ENVIRONMENT

Execution Environment

Table of Contents

FINAL COPY
August 30, 1996
File: Cchap9

9-1

Execution Environment

There are no extensions to execution environment in this volume.
NOTE

Execution Environment

FINAL COPY
August 30, 1996
File: chap9

10 WINDOWING AND TERMINAL INTERFACES

Windowing and Terminal Interfaces 10-1

Table of Contents i

FINAL COPY
August 30, 1996
File: Cchapl0

Windowing and Terminal Interfaces

The windowing system for the MIPS ABI is X11R5. ABI conformant applications should use the DSO library
i bX11. so. 2. The X Toolkit Library, libXt, is supplied as a static archive | i bXt . a in the IRIX Reference
Platform ABI Build environment. Due to inadequacies of the available test tools, it is not feasible to ensure
that each vendor’s implementation of libXt as a DSO is functionally equivalent. Also supplied as a static
archive in the ABI build environment is the OSF/Motif library, | i bXm a, constructed from the OSF/Motif
Release 1.2.3 baseline. In the future, these libraries may become DSOs if adequate tests can be developed to
ensure compatibility.

The ABI does not require that the system support an X Server, allowing for the possibility of server systems
without local graphics capabilities.

The Window System is an optional component in the generic ABI. This chapter alters the concept so that
NoTe | libraries are manadatory and only the server is optional for conforming systems.

Windowing and Terminal Interfaces 10-1

FINAL COPY
August 30, 1996
File: chap10

11 DEVELOPMENT ENVIRONMENT

Development Environment 11-1
Software Packaging Tools 11-1

Table of Contents i

FINAL COPY
August 30, 1996
File: Cchapll

Development Environment

NOTE

The facilities and interfaces described in this section are optional components of the System V Application
Binary Interface.

Any system may be used to provide a development environment for ABI conforming applications. This
chapter describes the commands, options, libraries, and path mechanisms necessary to produce an ABI con-
forming application. This development environment need not be hosted on an ABI conforming implementa-

tion.

Software Packaging Tools

A development environment for ABI applications shall include each of the following commands as defined in
the “AS_CMD” section of the System V Interface Definition, Third Edition (SVID 3).

B pkgproto

B pkgtrans

B pkgnk

The pkgt r ans command shall generate output compliant with chapter 2 of the generic ABI.

Development Environment 11-1

FINAL COPY
August 30, 1996
File: chapll

A FUTURE DIRECTIONS

Future Directions A-1
C++ A-1
Large File Access A-1
[ong | ong A-1
X11R6 A-2
Network Installation A-2
Evolution of Base Standards A-2
Generation Platforms Support A-2
Symmetric Multiprocessing A-2
XPG 4 Unified Unix Interfaces A-2
Optional Feature Interrogation A-3
Expanded Dynamic Linking Control A-3
Portable stack backtrace A-3
Long-Term Projects A-4
Symbolic Debugging A-4
Line Printer Spooling A-4
OpenGL™ A-4
64-Bit ABI A-4
UMA A-4
Communications APls A-4

Table of Contents

FINAL COPY
August 30, 1996
File: CappA

Future Directions

This section is not part of the specification. It is provided to give an insight into development that is being
NoTE | considered for inclusion into a future version of this specification. It is not marked with diffmarks.

The MIPS ABI Group offers no guarantees that any particular feature listed here will ever be part of the
specification, or that any particular feature will take the form described here.

The application binary interface standards will continue to evolve over time to accomodate new technology.
Future evolution will increase the capabilities defined in the ABI specifications and will expand the standard
development environment provided for application writers and independent software vendors. This section
describes issues the MIPS ABI Group is considering for inclusion in future revisions of this specification.

C++
Support for C++ application development and linking provided by means of a Compiler Environment con-
cept. This Compiler Environment concept provides a complete package which itself is an ABI product. A full

ABI for C++ where different C++ compilers can contribute objects to a binary is most desirable but is waiting
for completion of the ISO C++ standardization effort.

Large File Access

A set of interfaces that allows access to files larger than can be described by 32-bit quantities and used on
filesystems which can support them.

| ong | ong

A 64-bit quantity described to the C compilation system as | ong | ong as an integral type. This is primarily
for use by the Large File interfaces.

Future Directions A-1

FINAL COPY
August 30, 1996
File: appA

X11R6

X11R6 (Release 6) as the supported version of the X Window System.

Network Installation

A standard mechanism for installing software over a network.

Evolution of Base Standards
The Version 1 releases of this specification were based on the first editions of the System V ABI and the MIPS

Processor Supplement. The new base editions for Version 2 releases would be the 3rd editions of the gABI and
psABI under this proposal.

Generation Platforms Support

Introduce a concept of Generation Platforms allowing ABI applications to be developed on machines besides the
Reference Platform.

Symmetric Multiprocessing

Features to enable application programs to take advantage of SMP platforms. These include a system call to
perform processor reservations and obtain status, and possibly support for the POSIX Threads programming
model.

XPG 4 Unified Unix Interfaces

The XPG4.2 interfaces, formerly known as Spec 1170.

A-2 FUTURE DIRECTIONS

FINAL COPY
August 30, 1996
File: appA

Optional Feature Interrogation
A mechanism that allows interrogation of a particular system to see whether it supports a particular feature.

This capability allows both features designated as optional and early adoption of features (i.e., a platform may
support a particular feature from a later specification without being conformant to the entire specification).

Expanded Dynamic Linking Control

Options to the compilation environment which will allow finer control over dynamic linking, including sym-
bol visibility, control over run-time search paths, etc.

Portable stack backtrace

Specification of a mechanism for a stack backtrace of a program to be obtained without resorting to stepping
through individually disassembled instructions.

Future Directions A-3

FINAL COPY
August 30, 1996
File: appA

Long-Term Projects

A number of projects which may appear in later editions of this specification, but certainly won’t be in the next

version.

Symbolic Debugging

Currently, full symbolic debugging is not possible except on the generation platform. Full support by means of

specifying the /proc interface and likely DWARF 2.0.

Line Printer Spooling

Interfaces for programmatic access to the printer spooling system.

OpenGLT'\’I

Specification of OpenGL as an optional component.

64-Bit ABI

Specification of a full 64-bit binary standard.

UMA

Support for the Universal Measurement Architecture.

Communications APIs

A number of requests are being evaluated.

A-4

FINAL COPY
August 30, 1996
File: appA

FUTURE DIRECTIONS

IN Index

Index IN-1

Table of Contents i

FINAL COPY
August 30, 1996
File: Cbookindex

Index

A

ABl 1:3
additions 6:1
clarifications 6:1
conformance 1.5
conforming program 1:3
conforming system 1:3
development environment 11:1
evolution A:1
nonconforming program 1:3
version identification 7:1
ABI library 6:32
ABI Validation Test Suite 1:6
abicc 4:2,5
abild 4256
abilock t 6:19
abi _mutex.h 6:20
ABITS (see ABI Validation Test Suite)
ABIVTS (see ABI Validation Test Suite)
accept 621
acos 6:43
acosh 6:43
acquire_lock 6:19

ACT (see Application Compliance Testing Tool)
ACTS (see Application Conformance Test Suite)

additions, ABI 6:1

ai o_cancel 6:32

aiocb 6:33

aio_error 6:32

aio_fsync 6:32

<ai 0. h> 6:32

aio _hold 6:32

aio read 6:32

aio return 6:32

ai o_suspend 6:32

aio wite 632

alloca 6:47

al phasort 6:47

API (See Application Programming Interface)
Application Compliance Testing Tool 4:2
Application Conformance Test Suite 1:6
Application Programming Interface 1:2
Arr owBG. h (Motif) 6:44

Index

ArrowB. h (Motif) 6: 44
asin 6:43
asi nh 6:43

asynchronous I/0 6:1, 32

atan2 6:43

atanh 6:43
atexit(BA_0OS) s5:1-2
audience 1:1

B

bcnp 647
bcopy 6:47
bind 6:21

Black Book (see conformance guide)

br eak codes 6:1
BRK_ABORT 6:15
BRK_DIVZERO &6:15
BRK_OVERFLOW 6: 15

Bul | eti nB. h (Motif)

bzero 6:47

C

Clibrary 6:4

CascadeBG h (Matif) 6:

44

44

CascadeB. h (Motif) 6: 44

cbrt 6:43
cC 45
ceil 6:43

clarifications, ABl 6:1
cleanup 6:5

Cormrand. h (Motif) 6:44
compiler, command-line options 4:5

conpress command 8:1
Concurrent Computers 1:1

conformance, ABl 1:5

conformance guide 1:3-4, 7:1

conforming program, ABI
conforming system, ABI
connect 6:21
contributing ISVs 1:1

FINAL COPY
August 30, 1996
File: bookindex

1:3
1.3

IN-1

contributing vendors 1:1

Control Data Systems Incorporated 1:1

COS 6:43
cosh 6:43

cpi ocommand 8:1
cursorfont. h (X11) 6:42
Cut Past e. h (Motif) 6:44

D

Dansk Data Elektronik A/S 1:1

dbm cl ose 6:47

dbm del ete 6:47

dbm do_next key 6: 47

dbm fetch e6:47

dbm firsthash 647

dbm firstkey 6:47

dbm f order 6:47

dbm next key 6:47

dbm open 6:47

dbm store 6:47

dc 6:47

debugging 4:4

[dev/ abi /8mm 2:3

[dev/ abi /8mm nr 2:3

[dev/ abi/9track 2:3

/dev/ abi/9track.nr 2:3

/dev/abi/cd_iso 2:3

[dev/ abi /dat 2:3

[dev/ abi/dat.nr 2:3

/ dev/ abi/fl oppy 2:3

/dev/abi/qgic 2:3

/dev/abi/qic.nr 2:3

development environment 11:1

devices, installation 2:3

Di al 0gS. h (Motif) 6: 44

dl cl ose 6:16

dlerror 6:17

dl open 6:16

dl sym 6: 16

documentation 1:2

Dr awi ngA. h (Motif) 6: 44

Dr awnB. h (Motif) 6: 44

DT_NEEDED &6: 16

dynamic linking
initialization function 5:1
program interpreter 5:1

IN-2

termination function 5:1

E

Edinburgh Portable Compilers Ltd 1:1

elf.h 41
endgrent 6:49
endhost ent 6: 21, 49
endnet ent 6:21,49
endpr ot oent 6: 21, 49
endpwent 6:49
endservent 6:21, 49
endusershel | 6:47
erf 6:43

erfc 6:43

errno.h 6:14
<errno. h> 6:32 34
[etc/ m psabiversion 7:1
ether_aton 621
ether _hostton 621
ether_line 621
ether _ntoa 621

et her _ntohost 621
execution environment 9:1
exit 52

exp 6:43

F

fabs 643
<fcntl.h> 6:3235

Fi | eSB. h (Motif) 6: 44
floor 6:43

fnod 643

fopen 6:5,47

For m h (Motif) 6: 44
fp_accrued_excepti ons 6:47
fp_class_d 647
fp_class_f 6:47
fp_direction 647
fp_precision 647
fprintf 6:47

Frame. h (Motif) 6:44
fstat 6:4

ftine e6:47

future directions A:1
_fxstat 64

FINAL COPY
August 30, 1996
File: bookindex

Index

G

gABI (see generic ABI)

gABI (see generic ABI)
ganmma 6:43

generic ABI 1:1-5, 2:2
generic ABl 5:2, 6:3-4,18, 8:1
get dt abl esi ze 6:47
getgrent 6:49
getgrgid 6:49

get grnam 6:49

get host byaddr 6:21, 49
get host bynanme 6: 21, 49
get hostent 6:21, 49

get hostid 6:47

get host nane 6: 47
getitimer 65

get net byaddr 6:21, 49
get net bynanme 6:21, 49
getnetent 6:21,49

get pagesi ze 6:47

get peer nane 6:21

get pr ot obynanme 6:21, 49
get pr ot obynunber 6:21, 49
get prot oent 6:21, 49
get pwent 6:49

get pwnam 6: 49

get pwui d 6:49
getrusage 6:47

get servbynanme 6:21,49
get servbyport 6:21,49
getservent 6:21,49

get socknane 6:21

get sockopt 6:21
gettinmeofday 6:5
getusershel |l 6:47
getwd 6:47

global offset table 4:1
GOT (see global offset table)
guide for porting 1:5
guidelines, link editing 4:2

H

header file
abi _nutex.h 6:20
<ai 0. h> 6:32
elf.h 41

Index

<errno. h> 6:32 34
<fcntl.h> 6:32 35
if_arp.h 6:23
if_ether.h 623
if.h 623
in.h 624
ioctl.h 6:26
<limts.h> 6:3234
nio.h 610
netdb. h 6:27
route.h 6:28
<signal . h> 6:32-33
socket.h 6:30
stat.h 6:4
systemnfo.h 6:9
tcp.h 625
types.h 6:31
un.h 6:31
<uni std. h> 6:32,35
utsnane.h 6:4
header file - Motif
ArrowBG h 6:44
ArrowB. h 6:44
Bul l etinB.h 6:44
CascadeBG h 6:44
CascadeB. h 6:44
Conmand. h 6: 44
Cut Paste.h 6:44
Di al 0gS. h 6:44
Drawi ngA. h 6: 44
DrawnB. h 6:44
FileSB.h 6:44
Formh 6:44
Frane.h 6:44
Label G h 6:44
Label . h 6:44
List.h 6:44
Mai NW h 6:44
MenuShel | . h 6:44
MessageB. h 6: 44
PanedW h 6:44
Prot ocol s. h 6:44
PushBG h 6:44
PushB. h 6:44
RowCol utm. h 6: 44
Scale.h 644
Scroll Bar.h 6:44
Scroll edWh 6:44

FINAL COPY

August 30, 1996
File: bookindex

IN-3

Sel ectioB. h 6:44
Separat oG h 6:44
Separator.h 6:44
Text.h 6:44
Toggl eBG h 6: 44
Toggl eB. h 6:44
Xm h 6:44
XmP. h 6:44
header file - X11
cursorfont.h 6:42
keysynmdef . h 642
Xatom h 6:42
Xcns. h 6:42
X. h 6:42
Xlib.h 6:42
Xproto.h 6:42
Xresource.h 6:42
Xutil.h 642
header file - Xt
Intrinsic.h 6:42
IntrinsicP.h 6:42
Shell.h 6:42
Shel I P. h 6:42
StringDefs.h 6:42
Vendor. h 6:42
VendorP. h 6:42
header file additions, sys/ debug. h 6:14
hierarchy, installation files 2:2
htonl 6:21
htons 6:21

IDO (see IRIS Development Option)
IEEE Standard POSIX 1003.1b-1993 1:3
i eee_handl ers 6:47

if_arp.h 6:23

if_ether.h 623

if.h 6:23

implementation guide, organization 1:2
implementation guidelines 1:5

ndex 6:47

net addr 6:21

net | naof 6:21

net _makeaddr 6:21

net netof 6:21

i
i
i
i
i
i net_network 6:21

IN-4

inet_ntoa 6:21
in.h 624
i nitgroups 6:49
init_lock 6:19
initstate 6:47
installation

devices 2:3

script 2:2

structure 2:2
interpreter 5:1
Intrinsic.h(XToolkit) 6:42
IntrinsicP.h(XToolkit) 6:42
ioctl.h 6:26
IRIS Development Option 1:4
IRIX 1:4
i snan 6:47
ISVs, contributing 1:1

J

jO 6:43
j1 643
jn 643

K

keysyndef . h (X11) 6:42
killpg 647

L

Label G h (Motif) 6:44
Label . h (Motif) 6:44
lazy binding 4:1

Id 46

| d command 4:2
ld.so.1 63

| gamma 6:43

libabi 6:1,32
libabi.so.1 6:32
libc 4:2, 6:1,4,49

| i bc contents 6:4-5
i bcurses 4:2
libdl 6:1,16

|'i bdl contents 6:16
libgen 61

FINAL COPY
August 30, 1996
File: bookindex

Index

[ibgen.h 6:45

libm 4:2, 6:1,43

| i bmcontents 6: 43

li brutex 6:1,19

i brut exP contents 6:19
li bnsl 6:18,21

l'i bnsl contents

additional required entry points 6: 18
global external data symbols 6: 18

libraries 6:1
library
ABIl 6:32
BSD emulation 6: 47
C 64
dynamic linking 6:1
math 6:43
Motif 10:1
mutual exclusion 6: 19
networking services 6:1, 18, 21
OSF/Motif 6: 44
runtime dynamic linking 6: 16
socket 6:1,21
system 6:3
X Toolkit 6:38, 10:1
X11R5 6:38, 10:1
i bsocket 6:1,21
| i bsocket contents 6:21
libucb 4:2, 6:2 47
| i bucb contents 6: 47
[ibX11l 6:1,38
li bX11.s0.1 6:38
li bX11.s0.2 6:38
[ibXm 6:1,44, 10:1
libXt 6:38 10:1
<limts.h> 6:3234
link editing 4:2
command-line options 4:5
guidelines 4:2
post-installation 4:2
l[io_listio 6:32
listen 621
Li st. h (Motif) 6:44
log 6:43
[0g10 6:43
logbh 65
[ogin 6:49
[ongj mp 6:47
low-level system information 3:1

| stat 6:4
_Ixstat e6:4
M

Mai nW h (Motif) 6: 44
nmakecont ext 6:5
math library 6: 43
nctl 647
MenuShel | . h (Motif) 6: 44
MessageB. h (Motif) 6:44
MIPS ABI
implementation guidelines 1:5
porting guide 1:5
reference platform 1.5
MIPS ABI Group, Inc. 1:1
MIPS Processor ABI Conformance Guide (see con-
formance guide)
MIPS Processor ABI Supplement (see Processor
Supplement)
MIPS processor specific ABI (see processor specific
ABI)
MIPS RISC Architecture 1:3
MIPS Technologies Incorporated 1:1
_MPS_SI_AVAI L_PROCESSORS 6:7
_MPS_SI_HOSTID 6:7
_MPS_SI_HWNAME 6:7
_MPS_SI _NUM PROCESSORS 6: 7
_MPS_SI_OS NAME 6:7
_MPS_SI_0S_PROVIDER 6:7
_MPS SI _OSREL_MAJ 6:8
_MPS SI_OSREL_M N 6:8
_MPS_SI_OSREL_PATCH 6:8
_MPS_SI _PROCESSORS 6:8
_M PS_SI _VENDOR 6:7
nknod 6:4
nkstenp 6:47
map 6:1,6
reserved address space 6:6
nodf 6:5
Motif 10:1
nmount command 8:1-2
nt command 8:1
ntio 61,10
ntio.h 610
mutual exclusion library 6: 19

Index IN-5

FINAL COPY
August 30, 1996
File: bookindex

N process, entry point 5:1

processor specific ABl 4:1,3, 5:1, 6:4,18,43, 81
Processor Supplement 1:1-5, 2:3
program interpreter 5:1

property, unspecified 1:4

Pr ot ocol s. h (Motif) 6:44

psABI (see Processor Supplement)
psABI (see processor specific ABI)

psi gnal 6:47

PushBG h (Motif) 6: 44

PushB. h (Motif) 6:44

Pyramid Technology Corporation 1:1

nc_sperror 618

_nderror 6:18

NEC Corporation 1:1

netdb. h 6:27

netdir_perror 6:18
netdir_sperror 618
Networking Services library 6: 18
nextafter 65

NS 6:49

nonconforming program, ABI 1:3
notifyinfo 634

ntohl 6:21

ntohs 6:21 R
_nuneric 65

_nunane 6:4 rand e6:47
nunane 6:4 random e:47

readdir 6:47
re_conp 6:47
@) recv 6:21
recvfrom 621
recvnsg 6:21
re_exec 6:47
reference platform 1:4-5
regexp. h 6:45
regexpr.h 6:45
related documentation 1:2
rel ease | ock 6:19
remai nder 6:43
rindex 6:47
R MPS CALLH 16 4:1
R MPS CALLLOL6 4:1
R MPS GOTH 16 4:1

object files 4:3

OCMP 1:1

/ opt subtreee 2:2

[opt/bin 2:2

[opt/include 2:2

lopt/lib 2:2

[opt/man 2:2

Oracle Corporation 1:1
OSF/Motif 6:1, 10:1
OSF/Motif 1.2 include files 6: 44
OSF/Motif Programmer’s Reference 1:3

P R M PS _GOTLOL6 4:1
R M PS_H VENDOR 4:1

PanedW h (Motif) 6: 44 R M PS_LOVENDOR 4:1
pkgnk command 11:1 route.h 6:28
pkgpr ot o command 11:1 RowCol umm. h (Motif) 6: 44
pkgtrans command 11:1 rpc_createerr 6:18
platform conformance testing 1:6 RTLD GLOBAL 6:16
porting guide 1:5 runtime dynamic linking library 6: 16

position independent code 4: 3
POSIX 1003.1b 6:1,32

POSIX 1003.1b-1993 1:3 S
Eg\sl\'fl-lr:tzla;llatlonImkedmng "2 SAS Institute Incorporated 1:1
printf 647 sbrk 6:5
scalb 65
IN-6 Index
FINAL COPY

August 30, 1996
File: bookindex

Scal e. h (Motif) 6: 44
scandir 6:47

script, installation 2:2
Scrol | Bar. h (Motif) 6: 44
Scrol | edW h (Motif) 6: 44
select 6:5

Sel ecti oB. h (Motif) 6: 44
send 6:21

sendnsg 6:21

sendto 6:21

Separ at oG h (Motif) 6: 44
Separ at or . h (Motif) 6: 44
setegid 6:5

seteuid 6:5

setgrent 6:49

set hostent 6:21,49

set host name 6: 47
setitinmer 65

setjnp 6:47

set | abel 65

setnetent 6:21,49

set protoent 6:21,49

set pwent 6:49
setservent 6:21,49

set sockopt 6:21
setstate 6:47
setusershel | 6:47

SGS (see Software Generation System)
Shel | . h (X Toolkit) 6:42
Shel | P. h (X Toolkit) 6: 42
shut down 6:21

Siemens Nixdorf Informationssysteme AG 1:1
si gbl ock 6:47

si gevent 6:34

si gf pe 6:47
siginterrupt 6:47
signal 6:47

Signal Handling 6: 14
<signal . h> 6:32-33

si gpause 6:47

si gset mask 6:47
sigstack 6:47

sigval 6:34

sigvec 6:47

Silicon Graphics Incorporated 1:1
sin 6:43

sinh 6:43

sl eep 6:47

Index

socket 6:21

socket.h 6:30

socketpair 6:21

Software Generation System 4:5

software packaging tools 11:1

Sony Microsystems 1:1

spin_l ock 6:19

sprintf 6:47

sqrt 6:43

srand 6:47

srandom 6:47

stat 64

stat.h 6:4

stat _lock 6:19

strcasecnp 6:47

StringDefs. h (X Toolkit) 6:42

strncasecnp 6:47

svd_fdset 6:18

SVID (See System V Interface Defintion)

swapcont ext 6:5

sys/ debug. h 6:14

sysinfo 6:1,57

sys_siglist 6:47

system commands 8:1

system information, low-level 3:1

system library 6:3

System V Application Binary Interface (see generic
ABI)

System V Interface Defintion 1:2, 4:5-6, 6: 4, 10, 43,
45, 8:1-2, 11: 1

systemnfo.h 6:9

T

tan 6:43

Tandem Computers 1:1

tanh 6:43

tape ioctls 6:1

tape manipulation ioctl calls 6: 10
tape positioning 6: 12

tar command 8:1

tcp.h 625

terminal interfaces 10:1
terminology 1:3

t_errno 6:18

testing, platform conformance 1:6
Text . h (Motif) 6: 44

IN-7

FINAL COPY
August 30, 1996
File: bookindex

The Santa Cruz Operation 1:1
tinmes 6:47

ti mezone 6:47

Toggl eBG h (Motif) 6: 44
Toggl eB. h (Motif) 6: 44
types.h 631

U

ual arm e6:47

unount command 8:1
unane 6:4

unconpr ess command 8:1
undefined behavior 1:4
un. h 6:31

UniSoft Group, Ltd. 1:6
UniSoft Group Limited 1:1
<uni std. h> 6:32,35
unnmount command 8:2
unspecified property 1:4
usl eep 6:47

utines 6:47

utsnane. h 6:4

V

Vendor . h (X Toolkit) 6:42
Vendor P. h (X Toolkit) 6: 42
vendors, contributing 1:1

verifier, application binaries 4:2

version identification 7:1
viprintf 65,47
vprintf 6:5 47
vsprintf 65,47

W

wait3 6:47
windowing interfaces 10:1

X

X Toolkit (Xt) 6:38, 10:1

X Toolkit (Xt) include files 6: 42
X Window System: the Complete Reference ...

X11 include files 6: 42

IN-8

X11R5 6:1,38, 10:1

Xat om h (X11) 6:42

Xcns. h (X11) 6:42
xdrrec_endofrecord 6:18
xdrrec_ski precord 6:18
xdr_u_int 6:18

X. h(X11) 6:42
Xl'ib.h(X11) 6:42

Xm h (Motif) 6: 44
_xnknod 6:4

XmP. h (Motif) 6:44

Xprot o. h (X11) 6:42
Xresource. h (X11) 6:42
_Xstat 6:4
Xutil.h(X11) e6:42

Y

y0 6:43
yl 6:43
yn 6:43
yypasswd 6:49

Z

zcat command 8:1

FINAL COPY
August 30, 1996
File: bookindex

Index

