
mipsABImips

MIPS Processor
ABI Conformance Guide

Version 1.2.2

MIPS ABI Group, Inc.

DRAFT COPY
August 30, 1996
File: titlepage

Copyright 1992,1993,1994,1995,1996 MIPS ABI Group, Inc.
Printed in USA

Permission to use, copy, and distribute this specification to
support application development and portability is hereby granted.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all
information in this specification, the contributing vendor
companies assume no liability to any party for any loss or damage
caused by errors or omissions in this specification.

TRADEMARKS

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of Silicon Graphics, Inc.
MIPS is a registered trademark of MIPS Technologies, Inc.
OSF, OSF/Motif and Motif are trademarks of the Open Software Foundation Inc.
POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
PostScript is a registered trademark of Adobe Systems, Inc.
UNIX is a registered trademark in the United States and other countries, licenses exclusively through X/Open Company Limited.
X Window System is a trademark of the X Consortium, Inc.

Revision History:
1.0 - First formally approved version.
1.0.1 - Minor corrections and changes.
1.1 - First major revision to reflect agreed upon new functionality that is part of the ABI. Added X11R5 and
OSF/Motif 1.2 as required interfaces. Added comments about the relationship to OCMP. Introduced
Asynchronous I/O and tape ioctls as future directions. Introduced _xstat and _lstat as required interfaces.
Introduced extended GOT as future direction.
1.1.1 - Mark IRIX 5.1 and IRIS Development Option 3.17 + ABI changes as the reference platform. Add abicc
and abild arguments. Minor cleanup. No functionality changes.
1.1.2 - Mark IRIX 5.2 and IRIS Development Option 3.18 as the reference platform. Revise future directions
statement to reflect functionality approved for revision 1.2. No functionality changes.
1.2 - Second major revision to reflect new functionality. Make Asynchronous I/O and the tape ioctl’s a
standard part of the ABI, moving them from the futures section into Chapter 6. Add new sysinfo call to return
the number of processors actually available for assignment. Add comments from a new gABI on the order of
invocation of .init/.fini sections. Make the expanded GOT part of the ABI, moving it from the futures section.
Add the ELF relocation flags R_MIPS_LOVENDOR and R_MIPS_HIVENDOR to allow for more orderly
addition of relocation types. Add sbrk to libc. Add RTLD_GLOBAL option to dlopen() routine. Add libgen
as a supported archive library. Add a number of new future direction indications.
1.2.1 - Minor changes. Mark IRIX 6.2 and IRIS Development Option 6.2 as the new reference platform for 1.2.
Clarify ABI_MTWEOF behavior in mtio section. Deprecate -q option to abicc. Define O_DSYNC and
O_RSYNC in async I/O section. Add new sysinfo call to return hardware serial number for license
management software.
1.2.2 - Minor changes. Added "Signal Handling" and "Presentation of Network Distributed Information"
sections to chapter 6. Add -Kschar, -Brpath and -Bnolibraryreplacement options to abicc/abild in chapter 4.
Add additional installation devices and wording for network installation to chapter 2.

DRAFT COPY
August 30, 1996
File: titlepage

Contents

1 INTRODUCTION
Overview 1-1
Conformance 1-5

2 SOFTWARE INSTALLATION
Software Installation and Packaging 2-1
File Tree for Add-On Software 2-2
Devices 2-3

3 LOW-LEVEL SYSTEM INFORMATION
Low-Level System Information 3-1

4 OBJECT FILES
Relocation 4-1
Link Editing 4-2
Object Files 4-3
Debugging 4-4
Compiler and Linker Options 4-5

5 PROGRAM LOADING AND DYNAMIC LINKING
Dynamic Linking 5-1

6 LIBRARIES
Introduction 6-1
System Library 6-3
C Library 6-4
Runtime Dynamic Linking Library 6-16

Table of Contents i

FINAL COPY
August 30, 1996
File: MasterToc

Networking Services Library 6-18
Mutual Exclusion Library 6-19
Socket Library 6-21
ABI Library 6-32
X Window System Library 6-38
Math Library 6-43
OSF/Motif Library 6-44
General-Purpose Library 6-45
BSD Emulation Library 6-47
Presentation of Network Distributed Information 6-49

7 FORMATS AND PROTOCOLS
ABI Version Identification 7-1

8 SYSTEM COMMANDS
System Commands 8-1

9 EXECUTION ENVIRONMENT
Execution Environment 9-1

10 WINDOWING AND TERMINAL INTERFACES
Windowing and Terminal Interfaces 10-1

11 DEVELOPMENT ENVIRONMENT
Development Environment 11-1

A FUTURE DIRECTIONS
Future Directions A-1
Long-Term Projects A-4

IN Index
Index IN-1

ii Table of Contents

FINAL COPY
August 30, 1996
File: MasterToc

Figures and Tables

Figure 4-1: Expanded GOT Relocation Types 4-1
Figure 5-1: Initialization Ordering Example 5-3
Figure 6-1: Shared Library Names 6-2
Figure 6-2: libc Additional Required Entry Points 6-4
Figure 6-3: libc Contents, Names without Synonyms 6-5
Figure 6-4: libc Contents, Names with Synonyms 6-5
Figure 6-5: libc Contents, Names with Synonyms, previously listed without Synonyms 6-5
Figure 6-6: Header File: <sys/systeminfo.h> 6-9
Figure 6-7: Additions to Header File: <sys/mtio.h> 6-10
Figure 6-8: Example Tape Layout 6-12
Figure 6-9: Tape Positioning after ioctl Operations 6-12
Figure 6-10: Tape Positioning after close for device opened with no-rewind access 6-13
Figure 6-11: Break instruction bit assignments 6-14
Figure 6-12: Additions to <sys/debug.h> for break Codes 6-15
Figure 6-13: libdl Contents 6-16
Figure 6-14: libnsl Contents, Additional Required Entry Points 6-18
Figure 6-15: libnsl Contents, Global External Data Symbols 6-18
Figure 6-16: libmutex Contents 6-19
Figure 6-17: Header File: <abi_mutex.h> 6-20
Figure 6-18: libsocket Contents 6-21
Figure 6-19: Header File: <net/if.h> 6-22
Figure 6-20: Header File: <net/if_arp.h> 6-23
Figure 6-21: Header File: <netinet/if_ether.h> 6-23
Figure 6-22: Header File: <netinet/in.h> 6-24
Figure 6-23: Header File: <netinet/tcp.h> 6-25
Figure 6-24: Header File: <sys/ioctl.h> 6-25
Figure 6-25: Header File: <netdb.h> 6-27
Figure 6-26: Header File: <net/route.h> 6-28
Figure 6-27: Header File: <sys/socket.h> 6-28
Figure 6-28: Header File: <sys/types.h> 6-31
Figure 6-29: Header File: <sys/un.h> 6-31
Figure 6-30: libabi Contents 6-32
Figure 6-31: Header File: aio.h 6-33
Figure 6-32: Header File: signal.h 6-34
Figure 6-33: Header File: limits.h 6-34
Figure 6-34: Header File: errno.h 6-35
Figure 6-35: Header File: fcntl.h 6-35
Figure 6-36: Header File: unistd.h 6-35
Figure 6-37: libX Contents 6-38
Figure 6-38: libX Contents, Global External Data Symbols 6-42

Table of Contents iii

FINAL COPY
August 30, 1996
File: MasterToc

Figure 6-39: X11R5 Include Files 6-42
Figure 6-40: X11R5 X Toolkit Intrinsics Include Files 6-42
Figure 6-41: Required libm Functions 6-43
Figure 6-42: OSF/Motif 1.2 Include Files 6-44
Figure 6-43: libgen Contents 6-45
Figure 6-44: libucb Contents 6-47

iv Table of Contents

FINAL COPY
August 30, 1996
File: MasterToc

1 INTRODUCTION

Overview 1-1
Audience and Purpose 1-1
Relationship to OCMP 1-1
Organization 1-2
Related Documentation 1-2
Terminology 1-3

Conformance 1-5
Changes from Version 1.1 to Version 1.2 1-5
General Guidelines for Porting to MIPS ABI Platforms 1-5
Working with the MIPS ABI Group 1-6
Platform Conformance Testing 1-6
The Application Coonformance Test Suite(ACTS) 1-6

Table of Contents i

FINAL COPY
August 30, 1996

File: Cchap1

Overview

The information contained in this specification provides implementation guidelines and defines additional
capabilities beyond the binary standards provided by the System V Application Binary Interface (the generic ABI
or gABI) and the MIPS Processor ABI Supplement (psABI), which are required for the development and distri-
bution of binary compatible software, including so-called "shrink-wrapped" software.

The vendors contributing to the development of this Conformance Guide include: Concurrent Computers, Control
Data Systems Incorporated , Dansk Data Elektronik A/S, NEC Corporation , Pyramid Technology Corporation (a
Siemens-Nixdorf Company), Silicon Graphics Incorporated and its’ subsidiary MIPS Technologies Incorporated , Sie-
mens Nixdorf Informationssysteme AG , Sony Microsystems, and Tandem Computers. These vendors are known col-
lectively as the MIPS ABI Group, Inc .

The Santa Cruz Operation has supported the effort through review and comment on the specifications as they
were developed. UniSoft Group Limited has supported the effort through review and comment on the
specifications and the development of testing technology.

A number of Independent Software Vendors have contributed greatly to the development of this Conformance
Guide, including Oracle Corporation , SAS Institute Incorporated and Edinburgh Portable Compilers Ltd.

Audience and Purpose

This specification is intended to guide application writers in developing software that will run portably across
all MIPS RISC processor-based systems that are ABI conforming. It also is a specification for implementors
of compliant operating systems. This document is intended to define areas beyond the current ABIs as well as
address any outstanding ambiguities. Some information may not be relevant to all audiences.

It is intended that application writers and ISVs use the generic ABI and the psABI in conjunction with this
specification as a complete and rich environment for portable application development on the MIPS ABI refer-
ence processor.

Relationship to OCMP

Several of the member firms of the MIPS ABI group are also active in the Open Computing environment for
MIPS Platforms (OCMP) efforts in Japan. The OCMP-ABI is based on the MIPS ABI version 1.0.1 with exten-
sions in several areas:

a Internationalization and localization, especially in Japanese language support

a CD-ROM access libraries

a Specification of X11R5 and OSF/Motif 1.2.

The intent of both the MIPS ABI group and the OCMP members is to keep their respective specifications
aligned. Version 1.1 of this document introduced X11R5 and OSF/Motif 1.2 as required interfaces. The X11R5 c
interface is supported by Dynamic Shared Object libraries, while OSF/Motif 1.2 is supported by a static c
archive, libXm.a, present in the ABI build environment. Internationalization and CD-ROM access libraries
are possible future additions to the MIPS ABI, but are not yet formally part of it.

Overview 1-1

FINAL COPY
August 30, 1996

File: chap1

Organization

This specification is organized similarly to other ABIs for ease of use with the companion standards. In addi-
tion to the standard ABI, this specification covers conformance testing issues, implementation guidelines, and
future directions.

This book is organized as follows:

a Chapter 1 provides overview information, including a summary of additions to the ABI and an expla-
nation of conformance issues.

a Chapter 2 describes software installation and packaging issues.

a Chapter 3 presents low level system information.

a Chapter 4 describes object files.

a Chapter 5 describes program loading and dynamic linking.

a Chapter 6 presents library information.

a Chapter 7 describes formats and protocols.

a Chapter 8 describes system commands.

a Chapter 9 describes execution environments.

a Chapter 10 describes windowing and terminal interfaces.

a Chapter 11 discusses development environments for an ABI system.

a Appendix A discusses future directions.

Related Documentation

The following books should be used for reference.

a System V Application Binary Interface, Revised First Edition, Prentice-Hall, ISBN 0-13-880410-9 . This is the
defining document for the generic ABI.

a System V Application Binary Interface, MIPS Processor Supplement, Prentice-Hall, ISBN 0-13-880170-3 . This c
is the defining document for the psABI for the MIPS Processor family.

a System V Interface Definition Third Edition, UNIX System Laboratories, UNIX Press The SVID specifies the c
base operating system environment for the development of compatible applications, including the API c
(Application Programming Interface). It was originally published in four volumes, two additional c
volumes were published later. UNIX Press Titles are available from Addison-Wesley. The current c
issues of these volumes are:

` Volume I, ISBN 0-201-56652-4

` Volume II, ISBN 0-201-56653-2

` Volume III, ISBN 0-201-56654-0

1-2 INTRODUCTION

FINAL COPY
August 30, 1996

File: chap1

` Volume IV, ISBN 0-201-56655-9

` Volume V, ISBN 0-201-56656-7

` Volume VI, ISBN 0-201-52480-6

` Set, Volumes I-VI, ISBN 0-201-58822-6

The Errata for the SVID, Third Edition should also be obtained. c

a System V Interface Definition, Fourth Edition . The 4th edition of the SVID has been published in electronic c
form by SCO. It is available through the mips ABI "home page" on the World Wide Web, using the URL c
http://www.mipsabi.org/Tech/Standards. The 4th edition is not specifically a base document c
for this specification, but should be consulted to fill in definitions of certain routines defined in this c
specification especially because they were omitted from the SVID 3rd edition. The places where this is c
applicable are noted in the text.

a MIPS RISC Architecture, Kane & Heinrich, Prentice Hall, ISBN 0-13-590472-2 . c

a X Window System: the Complete Reference to Xlib, X Protocol, ICCCM, XLFD, X Version 11 Release 5 Third
Edition, Scheifler et al, Digital Press, ISBN 1-55558-088-2 .

a OSF/Motif Programmer’s Reference, Revision 1.2, Open Software Foundation, Prentice-Hall, ISBN 0-13-
643115-1 .

a Portable Operating System Interface (POSIX) IEEE Std. 1003.1b-1993, IEEE, ISBN 1-55937-375-X . This c
volume is more formally titled IEEE Standard for Information Technology − Portable Operating System Inter- c
face (POSIX) − Part 1: Application Program Interface (API) − Amendment 1: Realtime Extension [C c
Language]. It provides the base IEEE Std 1003.1-1990 specification, as well as the real-time extensions c
that were the work of the P1003.4 committee.

Single copies of the Prentice Hall books may be obtained from Simon and Schuster by calling 800-947-7700 c
(USA only) or through the Prentice Hall WWW page as http://www.prenhall.com/. c

Terminology

The following terms are used throughout this book.

ABI A specification conforming to the System V Application Binary Interface.
The System V ABI for a particular system is composed of the generic ABI,
the processor-specific supplement for the processor used in the system,
and the processor-specific conformance guide (this volume).

ABI-conforming program A program written to include only the system routines, commands, and
other resources included in the ABI; a program compiled into an execut-
able file that has the formats and characteristics specified for such files in
the ABI; a program whose behavior complies with the rules given in the
ABI.

ABI-conforming system A computer system that provides the binary system interface for applica-
tion programs described in the System V ABI .

ABI-nonconforming program A program written to include system routines, commands, and other
resources not included in the ABI; a program compiled into a format dif-
ferent from that specified in the ABI; a program whose behavior does not
comply with the rules given in the ABI.

Overview 1-3

FINAL COPY
August 30, 1996

File: chap1

Generic ABI The processor-independent portions of the System V Application Binary
Interface. Also abbreviated to "gABI".

Processor-specific ABI or Supplement
Those portions of the System V ABI specific to a particular processor archi-
tecture. Also abbreviated to "psABI". c

Conformance Guide c(this document) Implementation guidelines and additional capabilities c
beyond the gABI and psABI. Also informally known as the "Black Book".

Reference Platform The combination of hardware and software such that ABI-conforming
applications which are generated on and execute correctly on the reference
platform are guaranteed to execute correctly on all ABI-conforming sys-
tems. The reference platform hardware for the MIPS ABI group consists
of the Silicon Graphics family of workstations and servers, including:

a Personal IRIS Workstations
a INDY Workstation
a INDIGO and INDIGO R4000 Workstations
a CRIMSON Systems
a Power Series Servers
a CHALLENGE Servers
a ONYX Workstations

The reference platform software corresponding to the MIPS Processor ABI c
Conformance Guide Version 1.2 consists of a reference operating system c
(IRIX 6.2) and compiler suite (IRIS Development Option 6.2).

Note that this version of the ABI is based on the R3000 instruction set, c
although compatible applications may be built and executed on all sup- c
ported MIPS processors.

Undefined behavior Behavior that may vary from instance to instance or may change at some
time in the future. Some undesirable programming practices are marked
in the ABI as yielding undefined behavior.

Unspecified property A property of an entity that is not explicitly included or referenced in the
ABI and may change at some time in the future. In general, it is not good
practice to make a program depend on an unspecified property.

1-4 INTRODUCTION

FINAL COPY
August 30, 1996

File: chap1

Conformance

The collection of specifications referenced in this volume, including the gABI, the psABI, and this specification, c
as well as the X Window System and OSF/Motif volumes, define the standard interfaces for compiled applica-
tion programs on the MIPS architecture.

NOTE

Diffmarkings have been inserted in this book to indicate the evolution of the Conformance Guide.

A "|" character in the right-hand margin indicates a change in the ABI made when Version 1.2 of the Confor-
mance Guide was published. Deletions are marked with a "*" character. Note that there were considerable
editorial changes (to fonts, layout, table headings, etc.) between these two revisions, the change bars are
intended to highlight substantive changes only. Some entirely new sections are not diffmarked, and are so
noted. Tables of symbols are also not diffmarked, instead a "*" is used to indicate new symbols.

Differences between Version 1.0 and Version 1.1 of the Conformance Guide are not noted.

Changes from Version 1.1 to Version 1.2

Make Asynchronous I/O and the tape ioctl’s a standard part of the mips ABI .
Add new sysinfo call to return the number of processors actually available for assignment.
Add new sysinfo call to return a hardware serial number usable for software licensing schemes.
Add comments from a new generic ABI on the order of invocation of .init/.fini sections.
Make the expanded GOT part of the mips ABI , moving it from the futures section.
Add the ELF relocation flags R_MIPS_LOVENDOR and R_MIPS_HIVENDOR to allow for more orderly addition of
relocation types.
Add sbrk to libc.
Add RTLD_GLOBAL option to dlopen routine.
Add libgen as a supported archive library.
Mark IRIX 6.2 and IRIS Development Option 6.2 as the new reference platform for 1.2.
Deprecate −q option to abicc.
Add −Kschar, −Brpath and −Bnolibraryreplacement options to abicc/abild.
Add ‘‘Signal Handling’’ and ‘‘Presentation of Network Distributed Information’’ sections to chapter 6.
Add additional installation devices and wording for network installation.
Add a number of new future direction indications.

General Guidelines for Porting to MIPS ABI Platforms

A document entitled Constructing MIPS ABI Compliant Binaries on the IRIX 5.x Operating System is available. c
This porting guide includes information on how to port applications to the reference platform, as well as a
summary of common problems encountered when porting applications. This guide is available from the Sili-
con Graphics Developer Program or any of the other companies participating in the MIPS ABI group. An c
informal list of "Frequently Asked Questions" is also available.

Conformance 1-5

FINAL COPY
August 30, 1996

File: chap1

Working with the MIPS ABI Group

A reference paper describing the MIPS ABI group is available. It includes general information about the group
as well as a list of marketing and technical representatives from each company. Application developers who
wish to develop MIPS ABI compliant applications should contact the Applications manager at any one of the
MIPS ABI companies to get detailed information on developer and marketing programs. c

Platform Conformance Testing c

All MIPS ABI conforming systems are measured for conformance against the MIPS ABI ABIVTS (ABI Valida- c
tion Test Suite). This test suite is obtained from UniSoft which not only is the author of the generic test suite, c
but has developed test coverage for all of the mips ABI extensions under contract to the MIPS ABI Group, Inc . c

Conformance testing ensures that the interfaces provided by the vendors manifest the specified semantics and
syntax. The ABIVTS also verifies features contained in the ABI documents that may not have programmatic c
interfaces but may still be needed to satisfy binary compatibility. The Group also performs multiple platform
testing of selected applications to ensure that "real world" compatibility is achieved. c

The Application Coonformance Test Suite(ACTS) c

The reference platform operating system provides an Application Conformance Test Suite to check the ABI c
conformance of a binary program. The tool is provided as an aid in identifying problem areas in producing a c
conforming binary; passing the tests provided by the tool does not ensure complete conformance.

sABC Check programs in static mode; checks that the program is in the correct c
binary format, and does not access non-ABI interfaces.

dABC Check programs in dynamic mode; instrumented binary is produced, and is c
monitored at runtime for invalid arguments, etc. Best if used in conjunction c
with an application test suite that provides close to complete code coverage.

1-6 INTRODUCTION

FINAL COPY
August 30, 1996

File: chap1

2 SOFTWARE INSTALLATION

Software Installation and Packaging 2-1
Network Installation 2-1

File Tree for Add-On Software 2-2

Devices 2-3

Table of Contents i

FINAL COPY
August 30, 1996

File: Cchap2

Software Installation and Packaging

Network Installation c

Installation from a network resource may be accomplished by making the distribution tree for the optional c
product available in the form of a shared network-mounted (e.g. NFS) file system. This would be consistent c
with a CD-ROM in ISO 9660 format or ISO 9660 with Rock Ridge extensions mounted on a remote machine, c
with the mount point shared. It is also consistent with unspooling the distribution from media types (e.g. c
tapes) which are incapable of supporting file systems onto a disk file system and sharing the location of the c
unspooled files.

Software Installation and Packaging 2-1

FINAL COPY
August 30, 1996

File: chap2

File Tree for Add-On Software

The rules in the ‘‘File Tree for Add-on Software’’ section of the ‘‘Software Installation’’ chapter of the generic
ABI are expanded to include the following additional rules:

a Libraries and other executables not directly invoked by users should be installed in /opt/pkg/lib.

a Manual pages for add-on products should in installed under /opt/pkg/man.

a Header files needed to generate user code which will be linked with the application should be installed
in /opt/pkg/include.

In the above rules, pkg represents the abbreviated name of an add-on software package.

Additionally, a MIPS ABI conforming platform will provide the following directories:

/opt/bin
/opt/lib
/opt/man
/opt/include

/opt/lib is required to be in the default search path of the dynamic linker.

The installation script of an installable package may symbolically link files from directories under /opt/pkg/*
to the corresponding directories under /opt. For example, the post installation script for a package called
xtank might contain the following instructions:

for file in /opt/xtank/bin/*
do

ln -s $file /opt/bin/$file
done

The intent of this optional extension is to keep the PATH and MANPATH environment variables, among others,
from growing very large.

NOTE

ISVs using this optional extension must be aware of the potential name space conflicts in the /opt directory
tree. Not only must pkg names be unique, but individual binaries in packages that will link their files into the
common area of /opt must also have names likely to be unique so as not to conflict with files from other
packages which do the same.

While the use of the above scheme is strongly recommended, failure to use this packaging style does not in
and of itself render an add-on software package non-ABI-conformant.

2-2 SOFTWARE INSTALLATION

FINAL COPY
August 30, 1996

File: chap2

Devices

The following devices may be available for installation purposes:

/dev/abi/floppy floppy disk (1.44Mbyte)

/dev/abi/qic QIC-120 cartridge tape

/dev/abi/qic.nr QIC-120 cartridge tape (does not rewind on close)

/dev/abi/9track 6250 bpi 9-track tapes

/dev/abi/9track.nr 6250 bpi 9-track tapes (does not rewind on close)

/dev/abi/cd_iso CD-ROM in ISO 9660 format or ISO 9660 with Rock Ridge extensions. c

/dev/abi/8mm c8 millimeter tapes c

/dev/abi/8mm.nr c8 millimeter tapes (does not rewind on close) c

/dev/abi/dat c4 millimeter Digital Audio Tape c

/dev/abi/dat.nr c4 millimeter Digital Audio Tape (does not rewind on close)

See the ‘‘Physical Distribution Media’’ section in the ‘‘Software Installation’’ chapter of the MIPS Processor ABI c
Supplement for details on supported formats.

In addition to the formats listed in the MIPS Processor ABI Supplement, the following additional format is c
defined: c

a EXB8200 Recording Format for 8mm Tape. The EXB8200 recording format is specified in ECMA- c
145/169, ISO/IEC 11319-1992 . c

The following defintion from the MIPS Processor ABI Supplement is extended to include a more complete c
specification: c

a CD-ROM, ISO 9600 with Rock Ridge Extensions. The Rock Ridge Extensions are specified in System Use c
Sharing Protocol, Revision 1.10, Draft Standard, IEEE CDROM File Systems Working Group and Rock Ridge c
Interchange Protocol, Revision 1.10, Draft Standard, IEEE CDROM File Systems Working Group. c

NOTE

The devices listed here are supported for installation purposes only and are not guaranteed to generate ins-
tallation media. Each of these /dev/abi nodes will exist only if the corresponding device is supported on
the system.

Devices 2-3

FINAL COPY
August 30, 1996

File: chap2

3 LOW-LEVEL SYSTEM INFORMATION

Low-Level System Information 3-1

Table of Contents i

FINAL COPY
August 30, 1996

File: Cchap3

Low-Level System Information

NOTE

There are no extensions to low-level system information in this volume.

Low-Level System Information 3-1

FINAL COPY
August 30, 1996

File: chap3

4 OBJECT FILES

Relocation 4-1

Link Editing 4-2

Object Files 4-3

Debugging 4-4

Compiler and Linker Options 4-5

Table of Contents i

FINAL COPY
August 30, 1996

File: Cchap4

Relocation

NOTE

This section is new as of Version 1.2 of the Conformance Guide, but will not be marked with diffmarks.

The MIPS processor specific ABI specifies a Global Offset Table (GOT) which limits a DSO to 16K external
references. This has proven to be a limitation for a number of developers who wish to create very large DSOs.
A future version of the processor specific ABI expands the GOT. This expanded GOT is sufficiently desirable
to incorporate it into Version 1.2 of this document.

The expanded GOT is defined by four new Relocation Types which are added to <elf.h>.

Figure 4-1: Expanded GOT Relocation Types

Name Value Field Symbol Calculationii
R_MIPS_GOTHI16 22 T-hi16 external (G - (short)G) >> 16 + Aii
R_MIPS_GOTLO16 23 T-lo16 external G & 0xffffii
R_MIPS_CALLHI16 30 T-hi16 external (G - (short)G) >> 16 + Aii
R_MIPS_CALLLO16 31 T-lo16 external G & 0xffffiic

c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

The following paragraph replaces the third from last paragraph of Chapter 4 of the MIPS processor specific
ABI.

The first instance of R_MIPS_GOT16 or R_MIPS_GOTHI16 and R_MIPS_GOTLO16, or
R_MIPS_CALL16 or R_MIPS_CALLHI16 and R_MIPS_CALLLO16 relocations cause the link editor to
build a global offset table if one has not already been built.

The following paragraph replaces the last paragraph of Chapter 4 of the processor specific ABI.

R_MIPS_CALL16 or R_MIPS_CALLHI16 and R_MIPS_CALLLO16 relocation entries load function
addresses from the global offset table and indicate that the dynamic linker can perform lazy binding.
See ‘‘Global Offset Table’’ in Chapter 5 of the processor specific ABI.

To allow vendors flexibility in defining new relocation types for their own internal purposes, the following
two definitions are added to <elf.h>:

#define R_MIPS_LOVENDOR 100 /* Vendor specific relocations */
#define R_MIPS_HIVENDOR 127

Vendors are free to use any value between 100 and 127 for such internal purposes. Values in this ranges will
not be used for ABI purposes in the future.

Relocation 4-1

FINAL COPY
August 30, 1996

File: chap4

Link Editing

ISVs are cautioned that products that compile and link edit themselves after installation, or are designed to be c
on-site linked with end-user developed code, may inadvertently use system interfaces that are not defined by
the ABI. Specifically, the headers and static libraries on the Reference Platform, not specified by the ABI, may
not be compatible with those headers and libraries on all ABI vendors’ platforms.

This problem occurs only when an ISV’s application is link edited after installation (i.e., uses the ld command
to build itself). If all executables and shared libraries are built on the Reference Platform and pass the Applica-
tion Compliance Testing tool (ACT), the only possible external interfaces are those specified by the ABI. (Note
that ACT does not test manifest constants, such as ioctl calls compiled into the program.) The ABI interfaces
are present on all ABI conforming Operating Systems in the form of dynamic shared libraries. Thus they will
be resolved through dynamic linking to the dynamic shared libraries at run-time.

In the case where an application link edits itself after installation, it may expose an incompatibility between
non-ABI headers or libraries on the Reference Platform and another vendor’s platform. Furthermore, vendors
may change the interface or implementation of libraries not covered by the ABI in new operating system
releases.

The MIPS ABI Group offers the following guidelines to ISV’s whose applications must link edit after installa-
tion; they are not meant to be either exhaustive or foolproof:

a Compiler and linker flags are known to differ across the various platforms. To aid the ISV, each vendor
has agreed to provide a consistent interface in the wrappers abicc and abild, which are defined
further in ‘‘Compiler and Linker Options’’ in this chapter.

a The math routines in libm.a will be consistent across all vendor’s platforms.

a libcurses.a is known to depend on private interfaces in libc.so.1 and should be avoided if possi- c
ble, but limited functionality may be used from it if care is taken.

a Implementations of libucb.a may not be compatible across all vendor’s platforms and should not be
used.

a ISV’s should document the version of any system interface used by their application that is not sup-
ported by the ABI. For example, applications using X widgets, X extensions, Motif or other system
libraries which must be linked statically should document the release level of these libraries. This will
allow customers to compare release levels between the application and their system.

a Not all compilation systems behave the same with respect to conflicts with the ANSI C Strict Ref/Def c
Initialization model (see section 3.1 of the ANSI C Standard and elaboration in 3.1.2.2 of the Rationale c
for ANSI C; and note that section numbering is different in the ISO version). Some platforms emit c
warnings from the loader, while others a fatal error. If code is generated on a platform of the former c
type, it may link on that platform but not on some others. Application source code should be modified c
such that each external data symbol is defined in exactly one place, done by omitting the extern key- c
word. All other references should use the extern keyword.

4-2 OBJECT FILES

FINAL COPY
August 30, 1996

File: chap4

Object Files

All .o files shipped with an ISV product must use position independent code, as described in chapter 3 of the
System V ABI, MIPS Processor Supplement.

Object Files 4-3

FINAL COPY
August 30, 1996

File: chap4

Debugging

Only an ELF symbol table is needed for assembly level debugging with symbols.

4-4 OBJECT FILES

FINAL COPY
August 30, 1996

File: chap4

Compiler and Linker Options

The various platforms use different flags and switches for the compiler and linker. This is a reflection of the
differences in the heritage of the compiler systems on the various machines. Platform vendors should support
either the standard SVR4 Software Generation System (SGS) flags and switches or provide a wrapper function
which translates these standard switches into the local equivalents. The wrappers abicc and abild have
been developed to permit uniform compilation and loader flags. Vendors should provide these wrappers or
equivalent functions. Some compilation systems may not support all the flags and switches that the SVR4 SGS
does. Where possible the unsupported switches should be silently ignored by the wrapper or the base compi-
lation system.

The abicc wrapper supports the following flags, many are described in more detail in the cc(SD_CMD) page
in the System V Interface Definition, Third Edition (SVID 3) .

a −A controls #assert mechanisms.

a −Bsymbolic, −B symbolic, −Bdynamic, −B dynamic, −Bstatic, −B static controls linking phase library
name lookup. c

a −Brpath, −B rpath, specifies library search directories to the dynamic linker. c

a −Bnolibraryreplacement, −B nolibraryreplacement, directs the dynamic linker to always ignore the c
LD_LIBRARY_PATH environment variable.

a −C controls comment removal.

a −c suppresses linking phase.

a −D controls #define mechanisms.

a −dn, −d n, −dy, −d y selects dynamic (y) or static (n) linking.

a −E preprocess only (no compilation or linking).

a −f obsolete, ignored.

a −G direct linker to produce shared object. c

a −g generate symbolic debug information.

a −H prints include file names as they are processed.

a −I controls include file lookup.

a −Jsfm not supported, silently ignored.

a −Kfpe, −K fpe, −Kmau, −K mau, −Ksd, −K sd, −Ksz, −K sz not supported, silently ignored.

a −KPIC, −K PIC generate Position Independent Code (this is the default for the MIPS ABI).

a −Kminabi, −K minabi restrict libraries to ABI definitions (not needed for MIPS ABI, ignored). c

a −Kxgot, −K xgot generate code to use an expanded Global Offset Table (GOT). c

a −Kschar, −K schar −Kuchar, −K uchar causes the char datatype to be considered signed (schar) or the c
default unsigned (uchar).

Compiler and Linker Options 4-5

FINAL COPY
August 30, 1996

File: chap4

a −L controls library search path at linking phase.

a −l search specified library.

a −o names output file.

a −O controls optimization.

a −P perform only preprocessing.

a −p generate profiling code.

a −Qn, −Q n, −Qy, −Q y generates compiler identification in output.

a −q controls generation of profiling code.

NOTE

The −q option is deprecated, and will not be supported or documented in future editions of the Confor- c
mance Guide .

a −S suppress assembly and linking (leaves assembler file).

a −U causes specified name to be undefined.

a −V prints version information.

a −W not supported, generates a warning message.

a −Xa, −X a, −Xc, −X c, −Xt, −X t controls conformance to ANSI and ISO C standards.

a −Xreadwrite_const, −X readwrite_const place const data in writable memory. Selecting this option is a c
violation of the ANSI C standard. c

a −Xreadonly_const, −X readonly_const place const data in read-only memory. This is the default.

a −Y not supported, generates a warning message.

The abild wrapper supports the following flags, some of which are described in the ld(SD_CMD) page in
the System V Interface Definition, Third Edition (SVID 3) .

a −a undefined references generate errors (static mode).

a −b controls DSO linkage.

a −dn, −d n, −dy, −d y selects dynamic (y) or static (n) linking.

a −e defines entry point.

a −h controls dynamic linking name lookup.

a −l search the specified library.

a −m produce a memory map.

a −o names the output file.

a −r combine object files.

4-6 OBJECT FILES

FINAL COPY
August 30, 1996

File: chap4

a −s strip symbolic information.

a −t suppress warning about multiple defined symbols of different sizes.

a −u enters named symbol as an undefined.

a −zdefs, −z defs, −znodefs, −z nodefs, −ztext, −z text controls handling of undefined symbols.

a −Bsymbolic, −B symbolic, −Bdynamic, −B dynamic, −Bstatic, −B static control lib. name lookup c

a −Brpath, −B rpath, specifies library search directories to the dynamic linker. c

a −Bnolibraryreplacement, −B nolibraryreplacement, directs the dynamic linker to always ignore the c
LD_LIBRARY_PATH environment variable.

a −G produce shared object.

a −I specifies an interpreter to be linked with a.out.

a −L controls library lookup path.

a −M use specified map file.

a −Qn, −Q n, −Qy, −Q y add compiler identification strings to output.

a −V output a version identifier string.

a −Y controls library search list.

Compiler and Linker Options 4-7

FINAL COPY
August 30, 1996

File: chap4

5 PROGRAM LOADING AND DYNAMIC LINKING

Dynamic Linking 5-1
Shared Object Dependencies 5-1
Program Interpreter 5-1
Initialization and Termination Functions 5-1

Table of Contents i

FINAL COPY
August 30, 1996

File: Cchap5

Dynamic Linking

NOTE

This section is new as of Version 1.2 of the Conformance Guide, but will not be marked with diffmarks.

Shared Object Dependencies c

The MIPS processor specific ABI defines the default library search path to be c
/lib:/usr/lib:/usr/lib/cmplrs/cc. This specification defines the default library search path to be c
/lib:/usr/lib:/usr/lib/cmplrs/cc:/opt/lib. The /usr/lib/cmplrs/cc portion is deprecated c
and will be dropped in a future version of this specification.

Program Interpreter

For MIPS ABI conforming programs, the program interpreter (the contents of the PT_INTERP segment) shall
be /usr/lib/libc.so.1.

Initialization and Termination Functions

After the dynamic linker has built the process image and performed the relocations, each shared object gets the
opportunity to execute some initialization code. All shared object initializations happen before the executable
file gains control.

Before the initialization code for any object A is called, the initialization code for any other objects that object A
depends on are called. For these purposes, an object A depends on another object B, if B appears in A’s list of
needed objects (recorded in the DT_NEEDED entries of the dynamic structure). The order of initialization for
circular dependencies is undefined.

The initialization of objects occurs by recursing through the needed entries of each object. The initialization
code for an object is invoked after the needed entries for that object have been processed. In the case that more
than one object is available for initialization, reverse resolution ordering will determine the initialization order.

The example on the following page illustrates correct initialization ordering. In this example the a.out is
dependent on b, d, and e. b is dependent on d and f, while d is dependent on e and g. From this information a
dependency graph can be drawn. The above algorithm on initialization will then allow the following specified
initialization ordering.

Similarly, shared objects may have termination functions, which are executed with the atexit(BA_OS)
mechanism after the base process begins its termination sequence. The order in which the dynamic linker calls
termination functions is the exact reverse order of their corresponding initialization functions. If a shared
object has a termination function, but no initialization function, the termination function will execute in the
order it would have as if the shared object’s initialization function was present. The dynamic linker ensures
that it will not execute any initialization or termination functions more than once.

Dynamic Linking 5-1

FINAL COPY
August 30, 1996

File: chap5

Shared objects designate their initialization and termination functions through the DT_INIT and DT_FINI
entries in the dynamic structure, described in ‘‘Dynamic Section’’ in the generic ABI. Typically, the code for
these functions resides in the .init and .fini sections, mentioned in ‘‘Sections’’ of Chapter 4 of the generic
ABI.

NOTE

Although the atexit(BA_OS) termination processing normally will be done, it is not guaranteed to have exe-
cuted upon process death. In particular, the process will not execute the termination processing if it calls
_exit [see exit(BA_OS)] or if the process dies because it received a signal that it neither caught nor
ignored.

The dynamic linker is not responsible for calling the executable file’s .init section or registering the execut-
able file’s .fini section with atexit(BA_OS). Termination functions specified by users via the
atexit(BA_OS) mechanism must be executed before any termination functions of shared objects.

5-2 PROGRAM LOADING AND DYNAMIC LINKING

FINAL COPY
August 30, 1996

File: chap5

Figure 5-1: Initialization Ordering Example

a.out b d a.out

b d e

d f g

e

b d e

f g

NEEDED Lists Dependency Graph

a.out b d e f g

Resolution Order:

g f e d b a.out

Initialization Order:

Dynamic Linking 5-3

FINAL COPY
August 30, 1996

File: chap5

6 LIBRARIES

Introduction 6-1
Shared Library Names 6-2

System Library 6-3

C Library 6-4
Additional Entry Points 6-4
Support Routines 6-5
mmap Routine 6-6
sysinfo Routine 6-7
Tape Manipulation ioctl Calls 6-9

a Tape Positioning 6-12
a Positioning on Close 6-13
a Effects of write 6-13
a Return Values 6-14
a Partitioned Tapes 6-14

Signal Handling 6-14
Support for Network Distributed Information 6-15

Runtime Dynamic Linking Library 6-16

Networking Services Library 6-18
Additional Entry Points 6-18

Mutual Exclusion Library 6-19

Table of Contents i

FINAL COPY
August 30, 1996

File: Cchap6

Socket Library 6-21
Support for Network Distributed Information 6-21
Data Definitions for Sockets 6-22

ABI Library 6-32
Asynchronous Input and Output 6-32

a Data Definitions 6-32
a Function Interfaces 6-35
a Implementation 6-36
a Restrictions 6-37

X Window System Library 6-38

Math Library 6-43

OSF/Motif Library 6-44

General-Purpose Library 6-45

BSD Emulation Library 6-47

Presentation of Network Distributed Information 6-49

ii Table of Contents

FINAL COPY
August 30, 1996

File: Cchap6

Introduction

This chapter describes additions and clarifications to the ABI library specifications. Facilities in these libraries
manipulate system data files, trap to the operating system, and so on. The routines described here are correc-
tions or omissions from the base documents, or additions specific to the MIPS ABI environment. The follow-
ing areas are defined:

libc The C library, containing various facilities defined by System V, ANSI C, POSIX, and so on. It
contains interfaces to basic system services.

Some special cases are covered in detail:

mmap Reserved range for MMAP_FIXED

sysinfo MIPS ABI specific additions

mtio Tape Manipulation ioctl Calls c

break Signal Handling − break instruction codes c

Network Distributed System Information c

libdl The dynamic linking library, containing routines that give the user direct access to the
dynamic linking facilities.

libnsl The networking services library, containing the transport layer interface routines, as well as
routines for machine independent data representation (XDR), remote procedure calls (RPC)
and other networking support.

libmutex Routines allowing programs to access fast mutual exclusion features.

libsocket Routines providing an interface to Berkeley Software Distribution (BSD) networking facilities
based on the socket model. c

libabi cA library containing assorted routines which are additions to the base ABI documents. For the c
current release of this specification, if contains only the Asynchronous I/O Interfaces from c
POSIX 1003.1b.

libX A library for building applications using the X Window System, Version 11 protocol.

While not all ABI-conforming systems provide a complete ABI development environment, all are required to
have the ability to link ABI-conforming objects together with locally produced objects to produce a localized
binary. The actual environment to link ABI objects into a localized binary may be an optional package. Cer-
tain additional interfaces are provided for the use of ABI conforming programs in the form of of static archives
which are required to be present if the the ability to link ABI objects is installed on a platform.

libm Math Library

libXm OSF/Motif Library

libgen General-Purpose Library c

Introduction 6-1

FINAL COPY
August 30, 1996

File: chap6

libucb BSD Emulation Library

Shared Library Names c

Executable and shared object files contain the names of required shared libraries. The following shared c
libraries are required by the MIPS ABI. c

Figure 6-1: Shared Library Names c

Library Reference Name ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c
libc /usr/lib/libc.so.1 c
libnsl /usr/lib/libnsl.so c
libX /usr/lib/libX11.so.2 c
libmutex /usr/lib/libmutex.so c
libdl /usr/lib/libdl.so c
libsocket /usr/lib/libsocket.so c
libabi /usr/lib/libabi.so.1 ccc

c
c
c
c
c
c
c

c

6-2 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

System Library

The System Library, libsys, as described in the generic ABI Chapter 6, has been removed from the MIPS
ABI. Originally, will not necessarily exist as a separate library on ABI conforming systems. Thus,
/usr/lib/ld.so.1 is not required. As described in the generic ABI, all libsys symbols are present in
libc.

System Library 6-3

FINAL COPY
August 30, 1996

File: chap6

C Library

The C library, libc, contains all the symbols listed in the generic ABI and MIPS processor specific ABI, as well
as the symbols described in the following sections.

Additional Entry Points c

The following routines are included in the libc library to provide entry points for the required source-level c
interfaces listed in the generic ABI. A description and syntax summary for each function follows the table. c

Figure 6-2: libc Additional Required Entry Points c

_fxstat _lxstat _xstat _xmknod nuname _nuname cc

NOTE

These entry points should not be called directly by application programs, which should continue to use the c
source-level interfaces fstat, lstat, stat, mknod and uname. c

In order to implement the source-level interfaces, systems must provide stubs for the stat family and mknod c
in <sys/stat.h>, and for uname in <sys/utsname.h>. Applications, in turn, must include those files to c
get the ABI-specified behavior, otherwise the older interfaces (those extant before the Expansion of Funda-
mental Types (or EFT)) may erroneously be included.

int _fxstat(const int, int, struct stat *); c
The semantics of this function are identical to those of the fstat(BA_OS) function describes c
in the System V Interface Definition, Third Edition (SVID 3) . Its only difference is that it requires c
an extra first argument whose value must be 2. c

int _lxstat(const int, const char *, struct stat *); c
The semantics of this function are identical to those of the lstat(BA_OS) function described c
in the SVID 3 Its only difference is that it requires an extra first argument whose value must be c
2. c

int _xstat(const int, const char *, struct stat *); c
The semantics of this function are identical to those of the stat(BA_OS) function described in c
the SVID 3 Its only difference is that it requires an extra first argument whose value must be 2. c

int _xmknod(const int, const char *, mode_t, dev_t); c
The semantics of this function are identical to those of the mknod(BA_OS) function described c
in the SVID 3 Its only difference is that it requires an extra first argument whose value must be c
2. c

int nuname(struct utsname *); c
The semantics of this function are identical to those of the uname(BA_OS) function described c
in the SVID 3 The symbol _nuname is also available with the same semantics. c

6-4 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Support Routines c

Figure 6-3: libc Contents, Names without Synonyms

_cleanup _numeric modf

Figure 6-4: libc Contents, Names with Synonyms

getitimer gettimeofday logb makecontext
nextafter sbrk* scalb select
setitimer setlabel setegid* seteuid*
swapcontext sysinfo

*Function is new to version 1.2 c

Note that the following routines are listed in the generic ABI as Names without Synonyms.

Figure 6-5: libc Contents, Names with Synonyms, previously listed without Synonyms

fopen vfprintf vprintf vsprintf

void *sbrk(int incr) c
The sbrk function is used to grow or shrink the area of a process which can be used for data c
storage. If incr is positive, it will grow the area, if negative, it will shrink it. If the data area is c
expanded past the maximum previous size, the new area will be initialized to zero, but the c
contents of any space which had been previously allocated will be undefined. c

sbrk returns a pointer to the previous end of the data area or −1 if it was unable to change c
the size as requested. If −1 is returned, the data storage area will remain the previous size and c
errno will be set to one of the following: c

ENOMEM cAllocating the requested space would exceed the maximum amount of space c
allowed to the process. c

EAGAIN cThe allocation could have succeeded but there is currently not enough c
memory available in the system to satisfy the request. c

int setegid (gid_t group) c

int seteuid (uid_t user) c
seteuid and setegid set the effective user ID and group ID of the current process. c

If the effective user ID of the calling process is not super-user, but if its real user (group) ID is c
equal to uid (gid), or if the saved set-user (group) ID from execve is equal to uid (gid), then c
the effective user (group) ID is set to uid (gid). c

C Library 6-5

FINAL COPY
August 30, 1996

File: chap6

These functions return 0 on success, -1 on failure and set errno to indicate the error. c

long sysinfo (int command, char *buf, long count) c
sysinfo copies information relating to the system on which the process is executing into the c
buffer pointed to by buf. Upon successful completion, the value returned indicates the buffer c
size in bytes required to hold the complete value and the terminating null character. If this c
value is no greater than the value passed in count, the entire string was copied; if this value is c
greater than count, the string copied into buf has been truncated to count-1 bytes plus a ter- c
minating null character. c

Otherwise, a value of -1 is returns and errno is set to indicate the error. sysinfo can be c
called with a count of 0 to determine the required buffer size. Alternatively, a reasonable c
guess for count is 256, which is likely to cover all strings returned by this interface in typical c
installations. c

NOTE

Operating system implementors should note that the SVR4 definition of gettimeofday differs from the
BSD4.3 version.

mmap Routine

A group of programs may need to specify the address of shared memory and mapped file regions in order to
use the same addresses to access these regions. The address range from 0x30000000 to 0x3fff0000 is
reserved for this purpose; additional contiguous space above this range is recommended and may be sup-
ported. A MIPS ABI conforming system guarantees that shared memory and mapped file regions placed by
the system will not fall in this range.

The placement of a shared memory or mapped file region by a program must follow these rules:

a The address range of the reserved region will at least lie between 0x30000000-0x3fff0000.

a No two fixed regions may occupy the same chunk of memory, modulo 256K.

a The address of a mapped file region and the corresponding file offset must be congruent modulo 256K.

For example, if a program wants to create a 0x3000-byte shared memory region and map a file with an offset
of 0x2000 and length of 0x1000, both regions will have fixed addresses. One possible placement of these
regions puts the shared memory region at [0x30000000,0x30002fff]and [0x30042000,0x30042fff]. c

NOTE c
The above discussion only applies when fixed addresses must be used (MAP_FIXED is used in flags). As cc
noted in the documentation for mmap, the use of MAP_FIXED is discouraged for general use. cc

NOTE

Implementors using mmap are advised that the generic ABI requires

a the system will zero fill any partial page at the end of an mmap ’ed object

a the system will never write out any modified portions of the last page of an object which are beyond its
end, i.e. mmap cannot be used to extend the size of a file.

a references to whole pages following the end of an object will result in the delivery of a SIGBUS signal.

6-6 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

sysinfo Routine

The following are additions to commands supported by sysinfo. The new and recommended routines are
described below, along with examples. A sysinfo header file, including the additional commands, follows.
See vendor release notes for vendor values.

_MIPS_SI_VENDOR Copy into the array pointed to by buf a string which is the name of the com-
pany providing the system. The vendor is the company actually selling the
product rather than the company which built the product.

Example: Silicon Graphics, Inc. c

_MIPS_SI_OS_PROVIDER Copy into the array pointed to by buf a string which is the name of the com-
pany providing the operating system. This is the name of the company
which built the operating system.

Example: Silicon Graphics, Inc. c

_MIPS_SI_OS_NAME Copy into the array pointed to by buf a string which is the name of the
operating system.

Example: IRIX c

_MIPS_SI_HW_NAME Copy into the array pointed to by buf a string which is the name of the
hardware platform. The name is vendor selected.

Example: IP12 c

_MIPS_SI_NUM_PROCESSORS Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the number of processors. This number is the physical number of
processors and does not reflect whether processors have been previously
allocated to other tasks and are unavailable for further allocation. The new c
(as of Version 1.2 of this document) _MIPS_SI_AVAIL_PROCESSORS request
should be used to query the number of processors actually available for
assignment.

Example: 4 c

_MIPS_SI_AVAIL_PROCESSORS cCopy into the array pointed to by buf a string which is the ASCII representa- c
tion of the number of processors which are currently active and available for c
general use, i.e. are not reserved for some specific task. In most cases c
_MIPS_SI_AVAIL_PROCESSORS will be equal to _MIPS_SI_NUM_PROCESSORS , c
but some system implementations may permit processors to be dedicated to c
specific tasks such as a real-time environment, and they would be unavail- c
able for general purpose assignment. In such a case c
_MIPS_SI_AVAIL_PROCESSORS would be less than c
_MIPS_SI_NUM_PROCESSORS . In no case shall the OS return a value for c
_MIPS_SI_AVAIL_PROCESSORSwhich is larger than c
_MIPS_SI_NUM_PROCESSORS . c

Example: 3

_MIPS_SI_HOSTID Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the host id in hex.

C Library 6-7

FINAL COPY
August 30, 1996

File: chap6

Example: c052d008 c

WARNING

This value was intended to be used by license management c
software. However, most platform vendors chose to implement it by c
providing some form of the Internet address of the machine, and c
many ISVs with license management concerns found this inade- c
quate. To avoid compatibility concerns caused by changing an c
existing interface, a new request _MIPS_SI_SERIAL, has been c
defined to return a hardware-based identifier. ISVs who consider an c
Internet-address-based identifier inadequate should use
_MIPS_SI_SERIAL instead of _MIPS_SI_HOSTID.

_MIPS_SI_SERIAL cCopy into the array pointed to by buf a string that can be converted into a c
32-bit, non-volatile system identifier not based on an internet address. The c
returned string should be something associated with some piece of c
hardware in the system. If _MIPS_SI_SERIAL has been implemented but c
will not supply a valid identifier, -1 is returned and errno is set to ENODEV. c

Example: 6908941A

_MIPS_SI_OSREL_MAJ Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the OS major release number.

_MIPS_SI_OSREL_MIN Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the OS minor release number.

_MIPS_SI_OSREL_PATCH Copy into the array pointed to by buf a string which is the ASCII representa-
tion of the OS patch release number.

Release patch (5.1.1) is an example: c

_MIPS_SI_OSREL_MAJ: 5
_MIPS_SI_OSREL_MIN: .1.1 c
_MIPS_SI_OSREL_PATCH 0

_MIPS_SI_PROCESSORS Copy into the array pointed to by buf a string which is processor type. In
the case of a multiprocessor, this will be a comma separated list with
_MIPS_SI_NUM_PROCESSORS entries.

NOTE

OS implementors: The following is the mapping from the value
returned by the chip’s "imp" register to the processor type string which
should be returned.

imp Processor Type

0 R2000
1 R2000
2 R3000A
3 R6000
4 R4000, R4400 c
6 R6000A
0x9 R10000 (T5) c

6-8 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

0xA R4200 c
0xB R4300 c
0x10 R8000 c
0x20 R4600 c

Example: R2000A/R3000 3.0 c

For the R4400, the chip’s "rev" register is 40 so that the imp/rev pair reads c
0x440, while for the R4000 it reads 0x400.

NOTE

There are no additions to the system level commands.

Figure 6-6: Header File: <sys/systeminfo.h>

#define SI_SYSNAME 1
#define SI_HOSTNAME 2
#define SI_RELEASE 3
#define SI_VERSION 4
#define SI_MACHINE 5
#define SI_ARCHITECTURE 6
#define SI_HW_SERIAL 7
#define SI_HW_PROVIDER 8
#define SI_SRPC_DOMAIN 9
#define _MIPS_SI_VENDOR 100
#define _MIPS_SI_OS_PROVIDER 101
#define _MIPS_SI_OS_NAME 102
#define _MIPS_SI_HW_NAME 103
#define _MIPS_SI_NUM_PROCESSORS 104
#define _MIPS_SI_HOSTID 105
#define _MIPS_SI_OSREL_MAJ 106
#define _MIPS_SI_OSREL_MIN 107
#define _MIPS_SI_OSREL_PATCH 108
#define _MIPS_SI_PROCESSORS 109
#define _MIPS_SI_AVAIL_PROCESSORS 110 c
#define _MIPS_SI_SERIAL 111 c

Tape Manipulation ioctl Calls

C Library 6-9

FINAL COPY
August 30, 1996

File: chap6

NOTE

The entire mtio section is new as of Version 1.2 of the Conformance Guide, but will not be marked with diff-
marks.

A standard set of binary compatible ioctl calls for the postitioning and movement of tape devices is part of
the ABI with Version 1.2 of this document. As with other aspects of the ABI, the intent of these definitions is to
allow a machine independent mechanism of tape positioning and manipulation.

As these specifications were discussed, some fundamental inconsistencies were discovered among the existing
implementations of the tape manipulation ioctl’s. Because each vendor must retain binary compatibility for
their own software, new values have been established for these interfaces, rather than reusing existing values.

The header file <sys/mtio.h> (described in the System V Interface Definition, Third Edition. but not formally
part of the generic ABI) shall include the following additional definitions.

Figure 6-7: Additions to Header File: <sys/mtio.h>

#define ABI_MTIOCTOP ((’t’ << 8) | 9)

struct abi_mdata {
short mt_op; /* Operation, see below */
long mt_cnt; /* Operation count */
unsigned short mt_sts; /* Returned status, see below */
long reserved1;
long reserved2;
long reserved3;

};
#define ABI_MTWEOF 0 /* Write tape mark */
#define ABI_MTFSF 1 /* Forward space file
#define ABI_MTBSF 2 /* Backward space file
#define ABI_MTFSR 3 /* Forward space record
#define ABI_MTBSR 4 /* Backward space record
#define ABI_MTREW 5 /* Rewind
#define ABI_MTOFFL 6 /* Rewind or Rewind and Unload

ABI_MTIOCTOP is equivalent to the hex value 0x7409.

The value of the mt_sts element on return is specific to different tape devices and some implementations may
not modify this element.

The fields reserved1, reserved2 and reserved3 are included for compatibility.

ABI_MTWEOF This operation writes file mark at the current tape location. A file mark is a delimiter contain-
ing no data. When the tape is positioned immediately before a file mark, a read function call
will return a value of zero. This operation is not considered as writing data. Fields used in
abi_mdata are:

6-10 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Name Input or Output Descriptionii
mt_cnt Input Number of file marks to write
mt_sts Output Result status

ABI_MTFSF This operation moves the tape forward until mt_cnt file marks have been passed, leaving it
positioned after the last file mark. Fields used in abi_mdata are:

Name Input or Output Descriptionii
Number of file marks to space forward.mt_cnt Input

mt_sts Output Resulting status.

ABI_MTBSF This command is similar to the ABI_MTFSF except that the direction of tape movement is
reversed and the tape will be positioned before the file mark. The use of abi_mdata fields is
identical. Fields used in abi_mdata are:

Name Input or Output Descriptionii
Number of file marks to space backward.mt_cnt Input

mt_sts Output Resulting status.

This command may be unsupported on some tape devices.

ABI_MTFSR This operation spaces the tape forward a specified number of records. Fields used in
abi_mdata are:

Name Input or Output Descriptionii
Number of records to space forward.mt_cnt Input

mt_sts Output Resulting status.

ABI_MTBSR This command is similar to the ABI_MTFSR command except that the direction of tape move-
ment is reversed. The use of abi_mdata fields is identical.

Name Input or Output Descriptionii
Number of records to space forward.mt_cnt Input

mt_sts Output Resulting status.

This command may be unsupported on some tape devices.

ABI_MTREW This operation rewinds the tape to the beginning, but it remains on-line. Fields used in
abi_mdata are:

C Library 6-11

FINAL COPY
August 30, 1996

File: chap6

Name Input or Output Descriptionii
mt_sts Output Resulting status.

ABI_MTOFFL This operation rewinds the tape to the beginning, if it is not already at that position. It then
does any device-specific actions required to unload the tape. On some magnetic tape devices,
unloading may be entirely manual and so this is identical in action to ABI_MTREW. Fields
used in abi_mdata are:

Name Input or Output Descriptionii
mt_sts Output Resulting status.

Tape Positioning

The position of the tape read/write head must be consistent across platforms for applications using tape
ioctl calls. The physical data on tapes varies between different device types and between driver implemen-
tations, but there is a consistent interpretation of the logical sequence of information on a tape as seen with the
read function. Assume the following logical information on a tape, with the beginning of tape to the left and
the end of the tape to the right and positions labeled 0 through 5.

Figure 6-8: Example Tape Layout

<data1> <data2> <FM1> <data3> <FM2> <EOD>
ˆ ˆ ˆ ˆ ˆ ˆ
| 0 | 1 | 2 | 3 | 4 | 5

Each labelled position is to the beginning-of-tape side of the data blocks and file marks. Attempts to read the
end-of-data (EOD) information will receive either an error indication or zero bytes read, depending upon the
implementation.

Sequential single-block read calls from the beginning of the tape in this example will return <data1>,
<data2>, end-of-file (indicated by a return value of zero), <data 3>, end-of-file and end-of-data. The data
blocks in this example are all the same size. Detection of end-of-data on the tape is indicated by a read with a
return value of zero, followed by a read which returns zero or an error indication with errno set to ENOSPC.

Each position is such that if a read is performed, the block beginning at that position will be read, i.e. if the
tape is at position 1, a read will return the contents of block "data2". The following table summarizes the final
position of the tape head when various commands are performed with the tape head at a given starting posi-
tion, a value of mt_cnt of one and with successful (no error) completion of the ioctl call:

Figure 6-9: Tape Positioning after ioctl Operations

Starting Command
Position FSF BSF FSR BSR readii
0 3 - 1 - 1
1 3 - 2 0 2
2 3 - - 1 3 w/ EOF indication

6-12 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-9: Tape Positioning after ioctl Operations (continued)

3 5 - 4 - 4
4 5 2 - 3 5 w/ EOF indication
5 - 4 - - undefined

NOTE

Tape manipulation has proven to be an extremely subtle issue. The discussions of the exact semantics of
the various operations have highlighted the fact that many different interpretations of the basic semantics are
possible. Operating system implementors should pay careful attention to the semantics expressed in the
above table, as they define the ABI behavior. It is believed that these semantics are compatible with most of
the existing implementations.

The read indicated above is for the size of one data block. The EOF indication for read is a return value of
zero.

Items in the table indicated by a hyphen result in a tape position which is not defined by the ABI. It is
implementation-dependent whether an error condition is reported by the ioctl call.

Positioning on Close

The tape position after closing on devices opened with rewind access is the beginning of the tape. The position
after closing on devices opened with no-rewind access is generally undefined. However, if a file mark has just
been read the tape will remain at the current position when closed.

If the last operation was to write data, a file mark is written. The applies whether the device was opened with
rewind or no-rewind access. Some tape drives write an end of data marker at the firmware level. The tape
position after closing on devices opened with no-rewind access will be after the file mark.

Figure 6-10: Tape Positioning after close for device opened with no-rewind access

Last Operation Action After closeiii
write Write EOF, position after EOF.
read which returned EOD indication Position after EOF
ioctl(ABI_MTWEOF) Position after EOF
ioctl(ABI_MTFSF) Leaves positioned after EOF
All others Undefined

Effects of write

Data written with a write function will be written starting at the first data block or file mark following the
current tape position. The effect on data following the written data is undefined and may not be retrievable by
subsequent tape positioning and read functions.

If the tape has just been positioned to the point after a file mark, writing to the tape will start a new tape file
even if the file mark is the last one prior to the end-of-data. This allows new tape files to be added to the end
of the previous data.

C Library 6-13

FINAL COPY
August 30, 1996

File: chap6

Return Values

The ioctl function returns −1 when errors occur and sets the global variable errno to error codes defined in
<errno.h>. The values returned in the mt_sts element of the abi_mdata structure are device-specific and
should only be used for display purposes.

Reading an end-of-file causes a return value of zero from the read call. If the file mark read is the last one on
the tape, a subsequent read will return either zero or an error indication with errno set to ENOSPC.

Partitioned Tapes

Some magnetic media are logically partitioned into multiple logical tapes. When the commands specified
herein are used on such a medium they apply to the logical tape rather than the physical tape. For example,
rewind media command for a partitioned 4mm DDS tape will position the write head before the first block of
the current partition, which may be different than the first block of the physical medium. The specification of
commands which affect media partitioning is outside the scope of the ABI.

Signal Handling

Compilers and assemblers may generate a break <n> instruction which may be used to trap exceptions such c
as overflow and divide-by-zero. The break code <n> determines what signal is generated by the kernel. c

The following figure indicates the bit assignments for the break instruction. c

Figure 6-11: Break instruction bit assignments c

31 ccc

cc

SPECIAL c
000000 c

26 25 c

6 c

cc

cc

code c

20 c

0 ccc

cc

6 5 c

BREAK c
001101 c

6 c

In a MIPS ABI conforming program, c

a Bits 16-25 of the break instruction are used to contain the break code. c

a Bits 6-15 are reserved and must not be used. c

The allowable break code values and the signals they generate are given in the following figure. Other values c
are not allowed in MIPS ABI conforming applications. c
The defined codes are added to <sys/debug.h>:

6-14 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-12: Additions to <sys/debug.h> for break Codes

#define BRK_ABORT 0x20000 /* abort(3) used to cause SIGABT */
#define BRK_OVERFLOW 0x60000 /* overflow check - used to cause SIGFPE */
#define BRK_DIVZERO 0x70000 /* divide by zero check - used SIGFPE */

BRK_OVERFLOW
This is used with various assembler macros to do overflow checking (integer overflow) for c
checked add, subtract, multiply.

BRK_DIVZERO
This is generated for division: after the div is initiated, C and other compilers generate code c
to check for a zero divisor and fall into a break BRK_DIVZERO if the divisor is zero.

Other values may not be consistently implemented and are not allowed in MIPS ABI conforming applications.

NOTE

System implementors are advised that if a break code that is not supported by a vendor is detected, the sys-
tem should issue a warning message indicating the invalid break value. If there was a way to detect a MIPS
ABI conforming program, it would be recommended that the program be aborted when this condition occurs.

Support for Network Distributed Information

Some libc interfaces are affected if the system supports distributed information services. These routines are c
getpwnam, getpwuid, setpwent, getpwent, and endpwent for password-file access; and getgrgid, c
getgrnam, setgrent, getgrent, endgrent, and initgroups for group-file access. See ‘‘Presentation of c
Distributed System Information’’ elsewhere in this chapter for details. c

C Library 6-15

FINAL COPY
August 30, 1996

File: chap6

Runtime Dynamic Linking Library

The libdl library allows users to dynamically link shared libraries after a program is launched. The library
contains the following entry points.

Figure 6-13: libdl Contents

dlopen dlclose dlsym dlerror

Shared libraries are accessed with dlopen and released with dlclose. Symbols in shared libraries opened
via dlopen can be located by calling dlsym. libdl is implemented as a shared library, linked on the com- c
mand line using -ldl.

void *dlopen(char *pathname, int mode);
This routine makes a shared object available to a running process. It returns a handle for
future dlclose and dlsym calls.

int dlclose(void *handle);
Disassociates a shared object previously opened by dlopen from the current process.

void *dlsym(void *handle, char *name);
Allows a process to obtain the address of a symbol defined within a shared object previously
opened by dlopen.

char *dlerror(void);
Returns a formatted character string describing the last error that occurred during dynamic
linking processing.

Implementation notes:

a dlopen looks for DT_NEEDED entries in the .dynamic section of the shared library it opens and, for
each entry, invokes dlopen on the shared library entry names. This process recurses until all libraries
specified by DT_NEEDED entries have been loaded. In no case will the dynamic linker link in a shared
library twice.

a Normally, the exported symbols from an object accessed with dlopen are directly available only to c
those other objects that were loaded as a result of the same call to dlopen. If the value RTLD_GLOBAL c
(which is defined to be 4) is or’ed with the mode argument, the exported symbols of all objects loaded c
via this call to dlopen are directly available to all other dlopen’d objects. This behavior is part of the c
behavior specified in a future edition of the generic ABI (the 3rd edition).

a dlclose unmaps the shared library associated with the handle passed to it and any other libraries that
were linked via the recursive process described above. It guarantees that a library is not unlinked until
all the references to it are closed.

a dlsym restricts its search to the shared libraries linked by the dlopen that created its handle. The
search looks first in the shared library referenced by the handle and then recursively traverses libraries
named in DT_NEEDED entries in a breadth-first order.

6-16 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

a dlerror returns an English message; it is not internationalized.

Runtime Dynamic Linking Library 6-17

FINAL COPY
August 30, 1996

File: chap6

Networking Services Library

The Networking Services library, libnsl, contains all the symbols listed in the generic ABI and MIPS proces- c
sor specific ABI, as well as the following symbols, which were omitted from the base documents or were not
fully defined.

Additional Entry Points c

The following routines are included in libnsl to correct oversights in the base documents.

Figure 6-14: libnsl Contents, Additional Required Entry Points

nc_sperror* netdir_perror* netdir_sperror* xdr_u_int*
xdrrec_endofrecord* xdrrec_skiprecord*

*Function is new to version 1.2 c

These routines are defined in the SVID 4th Edition. c

Figure 6-15: libnsl Contents, Global External Data Symbols

_nderror* svc_fdset* t_errno* rpc_createerr*

*Symbol is new to version 1.2 c

6-18 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Mutual Exclusion Library

The Mutual Exclusion Library, libmutex, provides ABI entry points for mutual exclusion.

Figure 6-16: libmutex Contents

init_lock acquire_lock release_lock spin_lock*
stat_lock

*Function is new to version 1.2 c

These functions supply a user-level interface to mutual exclusion. The parameter lck must point to memory
shared by all processes wishing to acquire or test the lock. The library routines might not contain checks for
the validity (e.g. non-null value) of the lck parameter. If only a single process will be using the lock, lck
need not reside in shared memory. libmutex is provided as a shared library, linked on the command line
using -lmutex. The header file <abi_mutex.h> should be included.

int init_lock(abilock_t *lck);
init_lock must be called on a lock before any of the other functions. It initializes the lock to
an unlocked state. A non-zero return status indicates an error.

int acquire_lock(abilock_t *lck);
acquire_lock tries once to acquire the lock referenced by lck. It returns zero if the lock
was acquired, otherwise non-zero.

int release_lock(abilock_t *lck);
release_lock unconditionally releases the lock pointed to by lck. The ability for one pro-
cess to release the lock of another process is permitted. A non-zero return status will indicate
an error. c

void spin_lock(abilock_t *lck); c
spin_lock tries to acquire the lock referenced by lck and does not return until the lock is c
acquired.

int stat_lock(abilock_t *lck);
stat_lock returns the current state of the lock referenced by lck without attempting to
acquire the lock. It returns zero if the lock is free, otherwise non-zero.

The contents of the structure abilock_t are defined in <abi_mutex.h> as follows:

Mutual Exclusion Library 6-19

FINAL COPY
August 30, 1996

File: chap6

Figure 6-17: Header File: <abi_mutex.h>

int init_lock(abilock_t *lck);
int acquire_lock(abilock_t *lck);
int release_lock(abilock_t *lck);
void spin_lock(abilock_t *lck);
int stat_lock(abilock_t *lck);

typedef struct {
unsigned long abi_lock;

} abilock_t;

NOTE

Locks may not be freed automatically by the system. Locks acquired by a process that dies may remain
locked.

The user is responsible for implementing a back-off policy if acquire_lock returns failure.

Even though stat_lock returns status indicating that the lock is available, a call to acquire_lock could
still fail.

Although the name spin_lock implies that the implementation must "busy wait" by repeatedly trying to c
acquire the lock, this is not necessarily the best implementation. OS developers are free to implement more
sophisticated schemes provided that the intended semantics of the call are maintained.

6-20 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Socket Library

This definition is derived from the SVR4 specification of sockets, which depends on the Networking Services
Library (libnsl) for services. However, applications that rely on assumptions about the underlying imple-
mentation of sockets may not be ABI compliant. In particular, stream operations on sockets are not supported.
Constants labeled "may not be supported" are included for consistency between vendors but may not be
implemented on all ABI compliant platforms. However, the constants are required to be included in the
header files. The socket library is supplied as a shared library, libsocket.so. The socket library (-
lsocket) must precede the networking services library (-lnsl) in the cc command line.

NOTE

The behavior of a zero queue length (the second argument) to the libsocket routine listen is undefined.

Figure 6-18: libsocket Contents

accept bind connect
endhostent endnetent endprotoent
endservent ether_aton ether_hostton
ether_line ether_ntoa ether_ntohost
gethostbyaddr gethostbyname gethostent
getnetbyaddr getnetbyname getnetent
getpeername getprotobyname getprotobynumber
getprotoent getservbyname getservbyport
getservent getsockname getsockopt
htonl htons inet_addr
inet_lnaof inet_makeaddr inet_netof
inet_network inet_ntoa listen
ntohl ntohs recv
recvfrom recvmsg send
sendmsg sendto sethostent
setnetent setprotoent setservent
setsockopt shutdown socket
socketpair

Support for Network Distributed Information

Some libsocket interfaces are affected if the system supports distributed information services. These rou- c
tines are endhostent, gethostbyaddr, gethostbyname, gethostent, and sethostent for host-file c
access; endservent, getservbyname, getservbyport, getservent, and setservent for services-file c
access; endprotoent, getprotobyname, getprotobynumber, getprotoent, and setprotoent for c
protocol-file access; endnetent, getnetbyaddr, getnetbyname, getnetent, and setnetent for c
networks-file access. See ‘‘Presentation of Distributed System Information’’ elsewhere in this chapter for c

Socket Library 6-21

FINAL COPY
August 30, 1996

File: chap6

details.

Data Definitions for Sockets

The following system header files contain the data structures and manifest constants required for sockets.

Figure 6-19: Header File: <net/if.h>

#define IFF_UP 0x1
#define IFF_BROADCAST 0x2
#define IFF_DEBUG 0x4
#define IFF_LOOPBACK 0x8
#define IFF_POINTOPOINT 0x10
#define IFF_NOTRAILERS 0x20
#define IFF_RUNNING 0x40
#define IFF_NOARP 0x80
#define IFF_PROMISC 0x100
#define IFF_ALLMULTI 0x200
#define IFF_INTELLIGENT 0x400
#define IFF_MULTICAST 0x800
#define IFF_PRIVATE 0x8000

struct ifreq {
#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ];
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char ifru_oname[IFNAMSIZ];
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
char ifru_data[1];
char ifru_enaddr[6];

} ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr
#define ifr_dstaddr ifr_ifru.ifru_dstaddr
#define ifr_oname ifr_ifru.ifru_oname
#define ifr_broadaddr ifr_ifru.ifru_broadaddr
#define ifr_flags ifr_ifru.ifru_flags
#define ifr_metric ifr_ifru.ifru_metric
#define ifr_data ifr_ifru.ifru_data
#define ifr_enaddr ifr_ifru.ifru_enaddr
};

struct ifconf {
int ifc_len;
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;

(continued on next page)

6-22 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-19: Header File: <net/if.h> (continued)

#define ifc_buf ifc_ifcu.ifcu_buf
#define ifc_req ifc_ifcu.ifcu_req
};

Figure 6-20: Header File: <net/if_arp.h>

struct arpreq {
struct sockaddr arp_pa;
struct sockaddr arp_ha;
int arp_flags;

};

#define ATF_INUSE 0x01
#define ATF_COM 0x02
#define ATF_PERM 0x04
#define ATF_PUBL 0x08
#define ATF_USETRAILERS 0x10

Figure 6-21: Header File: <netinet/if_ether.h>

typedef u_char ether_addr_t[6];

Socket Library 6-23

FINAL COPY
August 30, 1996

File: chap6

Figure 6-22: Header File: <netinet/in.h>

#define ntohl(x) (x)
#define ntohs(x) (x)
#define htonl(x) (x)
#define htons(x) (x)

struct in_addr {
u_long s_addr;

};

#define INADDR_ANY (u_long)0x00000000 c

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

#define IPPROTO_IP 0
#define IPPROTO_ICMP 1
#define IPPROTO_IGMP 2
#define IPPROTO_GGP 3
#define IPPROTO_TCP 6
#define IPPROTO_EGP 8
#define IPPROTO_PUP 12
#define IPPROTO_UDP 17
#define IPPROTO_IDP 22
#define IPPROTO_HELLO 63
#define IPPROTO_ND 77

#define IPPROTO_RAW 255
#define IPPROTO_MAX 256

#define IP_OPTIONS 1
#define IP_MULTICAST_IF 2 /* may not be supported */
#define IP_MULTICAST_TTL 3 /* may not be supported */
#define IP_MULTICAST_LOOP 4 /* may not be supported */
#define IP_ADD_MEMBERSHIP 5 /* may not be supported */
#define IP_DROP_MEMBERSHIP 6 /* may not be supported */
#define IP_HDRINCL 7 /* may not be supported */
#define IP_TOS 8 /* may not be supported */
#define IP_TTL 9 /* may not be supported */
#define IP_RECVOPTS 10 /* may not be supported */
#define IP_RECVRETOPTS 11 /* may not be supported */
#define IP_RECVDSTADDR 12 /* may not be supported */
#define IP_RETOPTS 13 /* may not be supported */

6-24 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-23: Header File: <netinet/tcp.h>

#define TCP_NODELAY 0x01
#define TCP_MAXSEG 0x02

Figure 6-24: Header File: <sys/ioctl.h>

#define IOCPARM_MASK 0xff
#define IOC_VOID 0x20000000
#define IOC_OUT 0x40000000
#define IOC_IN 0x80000000
#define IOC_INOUT (IOC_IN|IOC_OUT)
#define _IO(x,y) (IOC_VOID|(x<<8)|y)
#define _IOR(x,y,t) (IOC_OUT|((((int)sizeof(t))\

&IOCPARM_MASK)<<16)|(x<<8)|y)
#define _IORN(x,y,t) (IOC_OUT|(((t)\

&IOCPARM_MASK)<<16)|(x<<8)|y)
#define _IOW(x,y,t) (IOC_IN|((((int)sizeof(t))\

&IOCPARM_MASK)<<16)|(x<<8)|y)
#define _IOWN(x,y,t) (IOC_IN|(((t)\

&IOCPARM_MASK)<<16)|(x<<8)|y)
#define _IOWR(x,y,t) (IOC_INOUT|((((int)sizeof(t))\

&IOCPARM_MASK)<<16)|(x<<8)|y)

#define SIOCSHIWAT _IOW(’s’, 0, int)
#define SIOCGHIWAT _IOR(’s’, 1, int)
#define SIOCSLOWAT _IOW(’s’, 2, int)
#define SIOCGLOWAT _IOR(’s’, 3, int)
#define SIOCATMARK _IOR(’s’, 7, int)
#define SIOCSPGRP _IOW(’s’, 8, int)
#define SIOCGPGRP _IOR(’s’, 9, int)
#define SIOCADDRT _IOW(’r’, 10, struct rtentry)
#define SIOCDELRT _IOW(’r’, 11, struct rtentry)
#define SIOCSIFADDR _IOW(’i’, 12, struct ifreq)
#define SIOCGIFADDR _IOWR(’i’,13, struct ifreq)
#define SIOCSIFDSTADDR _IOW(’i’, 14, struct ifreq)
#define SIOCGIFDSTADDR _IOWR(’i’,15, struct ifreq)
#define SIOCSIFFLAGS _IOW(’i’, 16, struct ifreq)
#define SIOCGIFFLAGS _IOWR(’i’,17, struct ifreq)
#define SIOCSIFMEM _IOW(’i’, 18, struct ifreq)
#define SIOCGIFMEM _IOWR(’i’,19, struct ifreq)
#define SIOCGIFCONF _IOWR(’i’,20, struct ifconf)
#define SIOCSIFMTU _IOW(’i’, 21, struct ifreq)
#define SIOCGIFMTU _IOWR(’i’,22, struct ifreq)
#define SIOCGIFBRDADDR _IOWR(’i’,23, struct ifreq)
#define SIOCSIFBRDADDR _IOW(’i’,24, struct ifreq)
#define SIOCGIFNETMASK _IOWR(’i’,25, struct ifreq)

(continued on next page)

Socket Library 6-25

FINAL COPY
August 30, 1996

File: chap6

Figure 6-24: Header File: <sys/ioctl.h> (continued)

#define SIOCSIFNETMASK _IOW(’i’,26, struct ifreq)
#define SIOCGIFMETRIC _IOWR(’i’,27, struct ifreq)
#define SIOCSIFMETRIC _IOW(’i’,28, struct ifreq)
#define SIOCSARP _IOW(’i’, 30, struct arpreq)
#define SIOCGARP _IOWR(’i’,31, struct arpreq)
#define SIOCDARP _IOW(’i’, 32, struct arpreq)
#define SIOCUPPER _IOW(’i’, 40, struct ifreq)
#define SIOCLOWER _IOW(’i’, 41, struct ifreq)
#define SIOCSETSYNC _IOW(’i’, 44, struct ifreq)
#define SIOCGETSYNC _IOWR(’i’, 45, struct ifreq)
#define SIOCSSDSTATS _IOWR(’i’, 46, struct ifreq)
#define SIOCSSESTATS _IOWR(’i’, 47, struct ifreq)
#define SIOCSPROMISC _IOW(’i’, 48, int)
#define SIOCADDMULTI _IOW(’i’, 49, struct ifreq)
#define SIOCDELMULTI _IOW(’i’, 50, struct ifreq)
#define SIOCPROTO _IOW(’s’, 51, struct socknewproto)
#define SIOCGETNAME _IOR(’s’, 52, struct sockaddr)
#define SIOCGETPEER _IOR(’s’, 53, struct sockaddr)
#define IF_UNITSEL _IOW(’s’, 54, int)
#define SIOCXPROTO _IO(’s’, 55)
#define SIOCIFDETACH _IOW(’i’, 56, struct ifreq)
#define SIOCGENPSTATS _IOWR(’i’, 57, struct ifreq)
#define SIOCX25XMT _IOWR(’i’, 59, struct ifreq)
#define SIOCX25RCV _IOWR(’i’, 60, struct ifreq)
#define SIOCX25TBL _IOWR(’i’, 61, struct ifreq)
#define SIOCSLGETREQ _IOWR(’i’, 71, struct ifreq)
#define SIOCSLSTAT _IOW(’i’, 72, struct ifreq)
#define SIOCSIFNAME _IOW(’i’, 73, struct ifreq)
#define SIOCGENADDR _IOWR(’i’, 85, struct ifreq)
#define SIOCSOCKSYS _IOW(’i’, 86, struct socksysreq)

6-26 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-25: Header File: <netdb.h>

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

#define h_addr h_addr_list[0]
};

struct netent {
char *n_name;
char **n_aliases;
int n_addrtype;
unsigned long n_net;

};

struct protoent {
char *p_name;
char **p_aliases;
int p_proto;

};

struct servent {
char *s_name;
char **s_aliases;
int s_port;
char *s_proto;

};

Socket Library 6-27

FINAL COPY
August 30, 1996

File: chap6

Figure 6-26: Header File: <net/route.h>

struct rtentry {
u_long rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
u_long rt_use;
union {

struct ip_provider *rtu_prov;
struct ifnet *rtu_ifp;

} rt_u;
#define rt_prov rt_u.rtu_prov
#define rt_ifp rt_u.rtu_ifp
};

#define RTF_UP 0x1
#define RTF_GATEWAY 0x2
#define RTF_HOST 0x4
#define RTF_REINSTATE 0x8
#define RTF_DYNAMIC 0x10
#define RTF_MODIFIED 0x20

#define RTF_SWITCHED 0x40
#define RTF_SLAVE 0x80
#define RTF_REMOTE 0x100
#define RTF_TOSWITCH 0x200

Figure 6-27: Header File: <sys/socket.h>

#define AF_UNSPEC 0
#define AF_UNIX 1
#define AF_INET 2
#define AF_IMPLINK 3
#define AF_PUP 4
#define AF_CHAOS 5
#define AF_NS 6
#define AF_NBS 7
#define AF_ECMA 8
#define AF_DATAKIT 9
#define AF_CCITT 10
#define AF_SNA 11
#define AF_DECnet 12
#define AF_DLI 13
#define AF_LAT 14
#define AF_HYLINK 15

(continued on next page)

6-28 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-27: Header File: <sys/socket.h> (continued)

#define AF_APPLETALK 16
#define AF_NIT 17
#define AF_802 18
#define AF_OSI 19
#define AF_X25 20
#define AF_OSINET 21
#define AF_GOSIP 22

struct sockaddr {
u_short sa_family;
char sa_data[14];

};

#define SO_DEBUG 0x0001
#define SO_ACCEPTCONN 0x0002
#define SO_REUSEADDR 0x0004
#define SO_KEEPALIVE 0x0008
#define SO_DONTROUTE 0x0010
#define SO_BROADCAST 0x0020
#define SO_USELOOPBACK 0x0040
#define SO_LINGER 0x0080
#define SO_OOBINLINE 0x0100
#define SO_IMASOCKET 0x0400

#define SOL_SOCKET 0xffff

struct linger {
int l_onoff;
int l_linger;

};

#define SOCK_DGRAM 1
#define SOCK_STREAM 2
#define SOCK_RAW 4
#define SOCK_RDM 5
#define SOCK_SEQPACKET 6

#define PF_UNSPEC AF_UNSPEC
#define PF_UNIX AF_UNIX
#define PF_INET AF_INET
#define PF_IMPLINK AF_IMPLINK
#define PF_PUP AF_PUP
#define PF_CHAOS AF_CHAOS
#define PF_NS AF_NS
#define PF_NBS AF_NBS
#define PF_ECMA AF_ECMA
#define PF_DATAKIT AF_DATAKIT
#define PF_CCITT AF_CCITT
#define PF_SNA AF_SNA
#define PF_DECnet AF_DECnet
#define PF_DLI AF_DLI

(continued on next page)

Socket Library 6-29

FINAL COPY
August 30, 1996

File: chap6

Figure 6-27: Header File: <sys/socket.h> (continued)

#define PF_LAT AF_LAT
#define PF_HYLINK AF_HYLINK
#define PF_APPLETALK AF_APPLETALK
#define PF_NIT AF_NIT
#define PF_802 AF_802
#define PF_OSI AF_OSI
#define PF_X25 AF_X25
#define PF_OSINET AF_OSINET
#define PF_GOSIP AF_GOSIP

struct msghdr {
caddr_t msg_name;
int msg_namelen;
struct iovec *msg_iov;
int msg_iovlen;
caddr_t msg_accrights;
int msg_accrightslen;

};

#define MSG_OOB 0x1
#define MSG_PEEK 0x2
#define MSG_DONTROUTE 0x4

struct socknewproto {
int family;
int type;
int proto;
dev_t dev;
int flags;

};

struct socksysreq {
int args[7];

};

6-30 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-28: Header File: <sys/types.h>

#ifndef FD_SETSIZE
#define FD_SETSIZE 1024
#endif

#ifndef NBBY
#define NBBY 8
#endif

typedef long fd_mask;
#define NFDBITS (sizeof(fd_mask) * NBBY)
#ifndef howmany
#define howmany(x, y) (((x)+((y)-1))/(y))
#endif

typedef struct fd_set {
fd_mask fds_bits[howmany(FD_SETSIZE, NFDBITS)];

} fd_set;

#define FD_SET(n, p) ((p)->fds_bits[(n)/NFDBITS] \
|= (1 << ((n) % NFDBITS)))

#define FD_CLR(n, p) ((p)->fds_bits[(n)/NFDBITS] \
&= ˜(1 << ((n) % NFDBITS)))

#define FD_ISSET(n, p) ((p)->fds_bits[(n)/NFDBITS] \
& (1 << ((n) % NFDBITS)))

#define FD_ZERO(p) memset((char *)(p), 0, sizeof(*(p)))

Figure 6-29: Header File: <sys/un.h> c

c
struct sockaddr_un { cc

short sun_family; cc
char sun_path[108]; cc

}; cc

Socket Library 6-31

FINAL COPY
August 30, 1996

File: chap6

ABI Library

NOTE

The entire ABI Library section is new as of Version 1.2 of the Conformance Guide, but will not be marked with
diffmarks.

Asynchronous Input and Output

The library libabi.so.1 contains routines which perform asynchronous I/O operations. These are based
on the asynchronous I/O routines documented in the POSIX 1003.1b (Real-Time) standard, but using callback
functions for completion notification rather than real-time signals. This allows for more flexible operation and,
in some implementations, increased performance. Since it is based on the POSIX standard, that standard
should be consulted in concert with this one for full details.

Figure 6-30: libabi Contents

aio_cancel* aio_error* aio_fsync*
aio_hold* aio_read* aio_return*
aio_suspend* aio_write* lio_listio*

*Function is new to version 1.2

These routines have the equivalent behavior, except for the restrictions listed on page 37, to routines in the
POSIX 1003.1b specification. The aio_hold routine does not have a POSIX equivalent.

Data Definitions

The header file <aio.h> includes definitions of the data structures and constants used by many of the asyn-
chronous I/O function interfaces. It should also include the function prototypes.

Data structures and constants related to completion notification are defined in <signal.h>.

Defines for hard-coded operational limits are in <limits.h>.

Error codes for asynchronous I/O are in <errno.h>.

File open modes and fcntl options for asynchronous I/O are in <fcntl.h>.

Defines allowing querying for run-time limits are in <unistd.h>.

NOTE

In the following figures, the C-style comment text is intended to be descriptive, but does not itself form part of
the standard.

6-32 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-31: Header File: aio.h

/* for aio_cancel() return values */
#define AIO_CANCELED 1 /* all operations canceled */
#define AIO_NOTCANCELED 2 /* some ops could not be canceled */
#define AIO_ALLDONE 3 /* no ops could be canceled, all done */

/* for aiocb.lio_opcode */
#define LIO_NOP 0 /* listio request with no data xfer */
#define LIO_READ 1 /* listio read request */
#define LIO_WRITE 2 /* listio write request */

/* for lio_listio mode flag */
#define LIO_WAIT 4 /* suspend until lio_listio complete */
#define LIO_NOWAIT 3 /* do not suspend or notify for lio_listio */

/* for aio_hold routine */
#define AIO_HOLD_CALLBACK 1
#define AIO_RELEASE_CALLBACK 2
#define AIO_ISHELD_CALLBACK 3

typedef struct aiocb {
int aio_fildes; /* file descriptor */
volatile void *aio_buf; /* data buffer location */
size_t aio_nbytes; /* number bytes of data */
off_t aio_offset; /* file offset */
int aio_reqprio; /* request priority */
struct sigevent aio_sigevent; /* notification method */
int aio_lio_opcode;/* listio operation */
ulong aio_reserved[7]; /* reserved for internal use */
ulong aio_pad[6];

} aiocb_t;

/* prototypes */
int aio_read(aiocb_t *);
int aio_write(aiocb_t *);
int lio_listio(int, aiocb_t * const [], int, sigevent_t *);
int aio_error(const aiocb_t *);
int aio_return(aiocb_t *);
int aio_cancel(int, aiocb_t *);
int aio_suspend(const aiocb_t * const [], int, const struct timespec *);
int aio_fsync(int op, aiocb_t *);
int aio_hold(int);

ABI Library 6-33

FINAL COPY
August 30, 1996

File: chap6

Figure 6-32: Header File: signal.h

typedef union {
int nisigno; /* signal number */
void (*nifunc)(union sigval); /* callback data */

} notifyinfo_t;

typedef union sigval {
int sival_int; /* integer notify value */
void *sival_ptr; /* pointer notify value */

} sigval_t;

typedef struct sigevent {
int sigev_notify; /* notification type */
notifyinfo_t sigev_notifyinfo; /* notification info */
sigval_t sigev_value; /* notification handler argument */
ulong sigev_reserved[13]; /* reserved for internal use */
ulong sigev_pad[6]; /* reserved for future use */

} sigevent_t;

#define sigev_func sigev_notifyinfo.nifunc
#define sigev_signo sigev_notifyinfo.nisigno

/* values of sigev_notify */
#define SIGEV_NONE 128 /* no async notification */
#define SIGEV_SIGNAL 129 /* queued signal notification

NOT SUPPORTED for MIPS ABI */
#define SIGEV_CALLBACK 130 /* callback notification */

Figure 6-33: Header File: limits.h

#define _POSIX_AIO_LISTIO_MAX 2
#define _POSIX_AIO_MAX 1

#define _ABI_AIO_XFER_MAX (128*1024) /* minimum max value */

6-34 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-34: Header File: errno.h

#define EINPROGRESS 150
#define ECANCELED 158

Figure 6-35: Header File: fcntl.h

#define O_DSYNC 0x20
#define O_RSYNC 0x40

Figure 6-36: Header File: unistd.h

#define _SC_ASYNCHRONOUS_IO 64 /* is POSIX AIO supported? */
#define _SC_ABI_ASYNCHRONOUS_IO 65 /* is ABI AIO supported? */
#define _SC_AIO_LISTIO_MAX 66 /* max listio operation */
#define _SC_AIO_MAX 67 /* max AIO */
#define _PC_ASYNC_IO 64 /* can this file do POSIX AIO? */
#define _PC_ABI_ASYNC_IO 65 /* can this file do ABI AIO? */
#define _PC_ABI_AIO_XFER_MAX 66 /* biggest ABI AIO xfer for this file */

NOTE

_SC_ASYNCHRONOUS_IO and _PC_ASYNC_IO are included for completeness, for checking for strict POSIX con-
formance. An ABI-conforming application would not query for POSIX, but rather for the ABI values.

Function Interfaces

The operation and error returns from all functions except aio_hold are those of the corresponding POSIX
1003.1b definition with the substitution of callback functions for notification by real-time signals. In addition
to the specified error returns, the functions which correspond to POSIX 1003.1b functions can also set errno to
the following value:

EBADF Asynchronous I/O is not supported on the given file descriptor.

int aio_read(aiocb_t *aiocbp)
asynchronous read

ABI Library 6-35

FINAL COPY
August 30, 1996

File: chap6

int aio_write(aiocb_t *aiocbp)
asynchronous write

int lio_listio(int mode, aiocb_t * const list[], int nent, sigevent_t *sig)
list directed I/O

int aio_error(const aiocb_t *aiocbp)
retrieve error status of asynchronous I/O operation

int aio_return(aiocb_t *aiocbp)
retrieve return status of asynchronous I/O operation

int aio_cancel(int fildes, aiocb_t *aiocbp)
cancel asynchronous I/O request

int aio_suspend(const aiocb_t * const list[], int nent, const struct timespec
*timeout)
wait for asynchronous I/O request

int aio_fsync(int op, aiocb_t *iocbp)
asynchronous file synchronization

int aio_hold(int should_hold)
Defer or resume reception of callback invocations. If the should_hold parameter is
AIO_HOLD_CALLBACK , callbacks will be deferred; if AIO_RELEASE_CALLBACK , callback invoca-
tion will resume. aio_hold counts calls, and only when the count of AIO_HOLD_CALLBACK
calls reaches zero via a corresponding number of AIO_RELEASE_CALLBACK calls will callbacks
be released. Upon successful completion, the state prior to the call is returned. A return value
of 1 indicates there were one or more hold calls, a value of 0 indicates callbacks were not
being held. Otherwise, a value of −1 is returned and errno is set to indicate the error.
aio_hold can also be called with a parameter of AIO_ISHELD_CALLBACK which will query the
current state; it returns 1 if callbacks are currently held, 0 otherwise. When a callback routine
is called, callbacks are automatically held.

aio_hold will fail if one or more of the following are true:

EINVAL The value of should_hold is not one of AIO_ISHELD_CALLBACK ,
AIO_HOLD_CALLBACK or AIO_RELEASE_CALLBACK .

ENOSYS Asynchronous I/O is not supported on the current system.

EIO It was not possible to perform this operation due to an error.

Implementation

The element sigev_notify in the sigevent structure may have the values SIGEV_NONE or SIGEV_CALLBACK. These
values, as well as SIGEV_SIGNAL (which is not used but reserved) are chosen to have values so that an imple-
mentation can easily distinguish calls to the ABI implementation of async I/O from similar co-existing imple-
mentations. In particular, these values are chosen to be larger than MAXSIG.

The element nisigno in the notifyinfo union is unused in this version, but is provided for possible future
changes. If the sigev_notify element of the sigevent structure is set to SIGEV_CALLBACK, sigev_notifyinfo.nifunc
(which can also be referred to as sigev_func) indicates the function to be invoked when the operation com-
pletes. That function will be called with a single argument, which is the value in sigev_value, and will use the
current stack indicated by the $sp register.

6-36 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

The execution context in which callback functions are invoked is undefined, however the callback has access to
all global data and functions.

All operations require the aio_reqprio and pad fields to be set to zero.

In keeping with the POSIX 1003.1b standard, limits are generally not hardcoded. Instead, applications should
use sysconf to query for system-wide limits, and pathconf for per-file limits.

Unlike in the POSIX standard, no extensions to the data structures are allowed. The implementation may use
the reserved fields for internal purposes.

Restrictions

The following restrictions must be observed by applications using this facility:

a The reserved fields are for internal use by various implementations and should not be used by applica-
tions.

a The behavior in the presence of the definition of _POSIX_PRIORITIZED_IO and
_POSIX_PRIORITY_SCHEDULING is undefined. Among other things, this means that the behavior when
aio_reqprio is non-zero is undefined.

a There is a maximum number of bytes that may be transferred in a single request. An application may
either use the minimum maximum (_ABI_AIO_XFER_MAX) or query pathconf using the
_PC_ABI_AIO_XFER_MAX parameter (preferred) to determine the limit for the file in question.

a If asynchronous I/O is not supported on a given file descriptor, i.e. pathconf(_PC_ABI_ASYNC_IO)
would return a value other than 1, the asynchronous I/O functions will return an error with errno set to
EBADF.

a Use of the O_SYNC flag with open will ensure that completion notification will occur only after the data
has been committed to be written to persistent storage.

a Behavior due to modification of the contents of an aiocb structure between the time an operation is
queued and the operation completes is undefined. The application should use aio_error to check for
completion if the status is unknown.

a The behavior when sigevent.sigev_notify is set to SIGEV_SIGNAL is undefined.

a The application must return from a callback function before the next callback function is invoked. If an
application exits or does a longjmp out of a callback, the future use of any asynchronous I/O request is
undefined.

a Some devices may not support all I/O sizes and offsets. Operations on such devices will return −1 and
set errno accordingly to indicate that an unsupported operation has occurred.

a The number of outstanding callbacks may be limited by a system resource limit, possibly a tunable vari-
able. If the limit is exceed, calls will begin to fail and set errno to EAGAIN until resources free up.

NOTE

Application vendors are cautioned that these interfaces are present only in systems which comply with Ver-
sion 1.2 and above of this document. These interfaces are new to the ABI and may not be immediately avail-
able on all platforms.

Operating system implementors are advised that parallelized lio_listio implementations, in which many
I/O operations are in progress at a given time are strongly desired by the DBMS community. Simply serially
processing the lio_listio call may not be of much benefit to the DBMS community.

If the implementation chooses to use threads, then the system-supplied libraries must be thread-safe.

ABI Library 6-37

FINAL COPY
August 30, 1996

File: chap6

!!! Please Discard this Page !!!

6-38 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

X Window System Library

Graphical MIPS ABI-conforming applications may be constructed using the X Window System, Version 11,
Release 5 (X11R5). The generic ABI specifies X11R3 but indicates an intent to track upward compatible future
releases of the X Window System. Prior versions of this document relied on the generic ABI specification of
X11R4 and did not have MIPS ABI extensions in this area. This library is required on all ABI-conforming sys-
tems.

The basic X11 support library, libX, shall be supported as a DSO, libX11.so.2, by ABI-conforming sys-
tems. (libX11.so.1 is reserved for implementations that may have had X11R4 versions.) The X Toolkit
Intrinsics library, libXt, is supplied as a static archive in the ABI build environment.

The following functions reside in libX and must be provided on all ABI-conforming systems.

Figure 6-37: libX Contents

XActivateScreenSaver XAddExtension XAddHost

XAddHosts XAddPixel XAddToExtensionList

XAddToSaveSet XAllocClassHint XAllocColor

XAllocColorCells XAllocColorPlanes XAllocIconSize

XAllocNamedColor XAllocSizeHints XAllocStandardColormap

XAllocWMHints XAllowEvents XAllPlanes

XAutoRepeatOff XAutoRepeatOn XBaseFontNameListOfFontSet

XBell XBitmapBitOrder XBitmapPad

XBitmapUnit XBlackPixel XBlackPixelOfScreen

XCellsOfScreen XChangeActivePointerGrab XChangeGC

XChangeKeyboardControl XChangeKeyboardMapping XChangePointerControl

XChangeProperty XChangeSaveSet XChangeWindowAttributes

XCheckIfEvent XCheckMaskEvent XCheckTypedEvent

XCheckTypedWindowEvent XCheckWindowEvent XCirculateSubwindows

XCirculateSubwindowsDown XCirculateSubwindowsUp XClearArea

XClearWindow XClipBox XCloseDisplay

XCloseIM XcmsAddColorSpace XcmsAddFunctionSet

XcmsAllocColor XcmsAllocNamedColor XcmsCCCOfColormap

XcmsCIELabClipab XcmsCIELabClipL XcmsCIELabClipLab

XcmsCIELabQueryMaxC XcmsCIELabQueryMaxL XcmsCIELabQueryMaxLC

XcmsCIELabQueryMinL XcmsCIELabToCIEXYZ XcmsCIELabWhiteShiftColors

XcmsCIELuvClipL XcmsCIELuvClipLuv XcmsCIELuvClipuv

XcmsCIELuvQueryMaxC XcmsCIELuvQueryMaxL XcmsCIELuvQueryMaxLC

XcmsCIELuvQueryMinL XcmsCIELuvToCIEuvY XcmsCIELuvWhiteShiftColors

XcmsCIEuvYToCIELuv XcmsCIEuvYToCIEXYZ XcmsCIEuvYToTekHVC

XcmsCIExyYToCIEXYZ XcmsCIEXYZToCIELab XcmsCIEXYZToCIEuvY

XcmsCIEXYZToCIExyY XcmsCIEXYZToRGBi XcmsClientWhitePointOfCCC

XcmsConvertColors XcmsCreateCCC XcmsDefaultCCC

XcmsDisplayOfCCC XcmsFormatOfPrefix XcmsFreeCCC

XcmsLookupColor XcmsPrefixOfFormat XcmsQueryBlack

XcmsQueryBlue XcmsQueryColor XcmsQueryColors

XcmsQueryGreen XcmsQueryRed XcmsQueryWhite

XcmsRGBiToCIEXYZ XcmsRGBiToRGB XcmsRGBToRGBi

6-38 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-37: libX Contents (continued)

XcmsScreenNumberOfCCC XcmsScreenWhitePointOfCCC XcmsSetCCCOfColormap

XcmsSetCompressionProc XcmsSetWhiteAdjustProc XcmsSetWhitePoint

XcmsStoreColor XcmsStoreColors XcmsTekHVCClipC

XcmsTekHVCClipV XcmsTekHVCClipVC XcmsTekHVCQueryMaxC

XcmsTekHVCQueryMaxV XcmsTekHVCQueryMaxVC XcmsTekHVCQueryMaxVSamples

XcmsTekHVCQueryMinV XcmsTekHVCToCIEuvY XcmsTekHVCWhiteShiftColors

XcmsVisualOfCCC XConfigureWindow XConnectionNumber

XContextDependentDrawing XConvertSelection XCopyArea

XCopyColormapAndFree XCopyGC XCopyPlane

XCreateBitmapFromData XCreateColormap XCreateFontCursor

XCreateFontSet XCreateGC XCreateGlyphCursor

XCreateIC XCreateImage XCreatePixmap

XCreatePixmapCursor XCreatePixmapFromBitmapData XCreateRegion

XCreateSimpleWindow XCreateWindow XDefaultColormap

XDefaultColormapOfScreen XDefaultDepth XDefaultDepthOfScreen

XDefaultGC XDefaultGCOfScreen XDefaultRootWindow

XDefaultScreen XDefaultScreenOfDisplay XDefaultString

XDefaultVisual XDefaultVisualOfScreen XDefineCursor

XDeleteContext XDeleteModifiermapEntry XDeleteProperty

XDestroyIC XDestroyImage XDestroyRegion

XDestroySubwindows XDestroyWindow XDisableAccessControl

XDisplayCells XDisplayHeight XDisplayHeightMM

XDisplayKeycodes XDisplayMotionBufferSize XDisplayName

XDisplayOfIM XDisplayOfScreen XDisplayPlanes

XDisplayString XDisplayWidth XDisplayWidthMM

XDoesBackingStore XDoesSaveUnders XDrawArc

XDrawArcs XDrawImageString XDrawImageString16

XDrawLine XDrawLines XDrawPoint

XDrawPoints XDrawRectangle XDrawRectangles

XDrawSegments XDrawString XDrawString16

XDrawText XDrawText16 XEHeadOfExtensionList

XEmptyRegion XEnableAccessControl XEqualRegion

XESetCloseDisplay XESetCopyGC XESetCreateFont

XESetCreateGC XESetError XESetErrorString

XESetEventToWire XESetFlushGC XESetFreeFont

XESetFreeGC XESetPrintErrorValues XESetWireToError

XESetWireToEvent XEventMaskOfScreen XEventsQueued

XExtentsOfFontSet XFetchBuffer XFetchBytes

XFetchName XFillArc XFillArcs

XFillPolygon XFillRectangle XFillRectangles

XFilterEvent XFindContext XFindOnExtensionList

XFlush XFlushGC XFontsOfFontSet

XForceScreenSaver XFree XFreeColormap

XFreeColors XFreeCursor XFreeExtensionList

XFreeFont XFreeFontInfo XFreeFontNames

XFreeFontPath XFreeFontSet XFreeGC

XFreeModifiermap XFreePixmap XFreeStringList

X Window System Library 6-39

FINAL COPY
August 30, 1996

File: chap6

Figure 6-37: libX Contents (continued)

XGContextFromGC XGeometry XGetAtomName

XGetClassHint XGetCommand XGetDefault

XGetErrorDatabaseText XGetErrorText XGetFontPath

XGetFontProperty XGetGCValues XGetGeometry

XGetIconName XGetIconSizes XGetICValues

XGetImage XGetIMValues XGetInputFocus

XGetKeyboardControl XGetKeyboardMapping XGetModifierMapping

XGetMotionEvents XGetNormalHints XGetPixel

XGetPointerControl XGetPointerMapping XGetRGBColormaps

XGetScreenSaver XGetSelectionOwner XGetSizeHints

XGetStandardColormap XGetSubImage XGetTextProperty

XGetTransientForHint XGetVisualInfo XGetWindowAttributes

XGetWindowProperty XGetWMClientMachine XGetWMColormapWindows

XGetWMHints XGetWMIconName XGetWMName

XGetWMNormalHints XGetWMProtocols XGetWMSizeHints

XGetZoomHints XGrabButton XGrabKey

XGrabKeyboard XGrabPointer XGrabServer

XHeightMMOfScreen XHeightOfScreen XIconifyWindow

XIfEvent XImageByteOrder XIMOfIC

XInitExtension XInsertModifiermapEntry XInstallColormap

XInternAtom XIntersectRegion XKeycodeToKeysym

XKeysymToKeycode XKeysymToString XKillClient

XLastKnownRequestProcessed XListDepths XListExtensions

XListFonts XListFontsWithInfo XListHosts

XListInstalledColormaps XListPixmapFormats XListProperties

XLoadFont XLoadQueryFont XLocaleOfFontSet

XLocaleOfIM XLookupColor XLookupKeysym

XLookupString XLowerWindow XMapRaised

XMapSubwindows XMapWindow XMaskEvent

XMatchVisualInfo XMaxCmapsOfScreen XMaxRequestSize

XmbDrawImageString XmbDrawString XmbDrawText

XmbLookupString XmbResetIC XmbSetWMProperties

XmbTextEscapement XmbTextExtents XmbTextListToTextProperty

XmbTextPerCharExtents XmbTextPropertyToTextList XMinCmapsOfScreen

XMoveResizeWindow XMoveWindow XNewModifiermap

XNextEvent XNextRequest XNoOp

XOffsetRegion XOpenDisplay XOpenIM

XParseColor XParseGeometry XPeekEvent

XPeekIfEvent XPending Xpermalloc

XPlanesOfScreen XPointInRegion XPolygonRegion

XProtocolRevision XProtocolVersion XPutBackEvent

XPutImage XPutPixel XQLength

XQueryBestCursor XQueryBestSize XQueryBestStipple

XQueryBestTile XQueryColor XQueryColors

XQueryExtension XQueryFont XQueryKeymap

XQueryPointer XQueryTextExtents XQueryTextExtents16

XQueryTree XRaiseWindow XReadBitmapFile

6-40 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Figure 6-37: libX Contents (continued)

XRebindKeysym XRecolorCursor XReconfigureWMWindow

XRectInRegion XRefreshKeyboardMapping XRemoveFromSaveSet

XRemoveHost XRemoveHosts XReparentWindow

XResetScreenSaver XResizeWindow XResourceManagerString

XRestackWindows XrmCombineDatabase XrmCombineFileDatabase

XrmDestroyDatabase XrmEnumerateDatabase XrmGetDatabase

XrmGetFileDatabase XrmGetResource XrmGetStringDatabase

XrmInitialize XrmLocaleOfDatabase XrmMergeDatabases

XrmParseCommand XrmPermStringToQuark XrmPutFileDatabase

XrmPutLineResource XrmPutResource XrmPutStringResource

XrmQGetResource XrmQGetSearchList XrmQGetSearchResource

XrmQPutResource XrmQPutStringResource XrmQuarkToString

XrmSetDatabase XrmStringToBindingQuarkList XrmStringToQuark

XrmStringToQuarkList XrmUniqueQuark XRootWindow

XRootWindowOfScreen XRotateBuffers XRotateWindowProperties

XSaveContext XScreenCount XScreenNumberOfScreen

XScreenOfDisplay XScreenResourceString XSelectInput

XSendEvent XServerVendor XSetAccessControl

XSetAfterFunction XSetArcMode XSetBackground

XSetClassHint XSetClipMask XSetClipOrigin

XSetClipRectangles XSetCloseDownMode XSetCommand

XSetDashes XSetErrorHandler XSetFillRule

XSetFillStyle XSetFont XSetFontPath

XSetForeground XSetFunction XSetGraphicsExposures

XSetICFocus XSetIconName XSetIconSizes

XSetICValues XSetInputFocus XSetIOErrorHandler

XSetLineAttributes XSetLocaleModifiers XSetModifierMapping

XSetNormalHints XSetPlaneMask XSetPointerMapping

XSetRegion XSetRGBColormaps XSetScreenSaver

XSetSelectionOwner XSetSizeHints XSetStandardColormap

XSetStandardProperties XSetState XSetStipple

XSetSubwindowMode XSetTextProperty XSetTile

XSetTransientForHint XSetTSOrigin XSetWindowBackground

XSetWindowBackgroundPixmap XSetWindowBorder XSetWindowBorderPixmap

XSetWindowBorderWidth XSetWindowColormap XSetWMClientMachine

XSetWMColormapWindows XSetWMHints XSetWMIconName

XSetWMName XSetWMNormalHints XSetWMProperties

XSetWMProtocols XSetWMSizeHints XSetZoomHints

XShrinkRegion XStoreBuffer XStoreBytes

XStoreColor XStoreColors XStoreName

XStoreNamedColor XStringListToTextProperty XStringToKeysym

XSubImage XSubtractRegion XSupportsLocale

XSync XSynchronize XTextExtents

XTextExtents16 XTextPropertyToStringList XTextWidth

XTextWidth16 XTranslateCoordinates XUndefineCursor

XUngrabButton XUngrabKey XUngrabKeyboard

XUngrabPointer XUngrabServer XUninstallColormap

X Window System Library 6-41

FINAL COPY
August 30, 1996

File: chap6

Figure 6-37: libX Contents (continued)

XUnionRectWithRegion XUnionRegion XUnloadFont

XUnmapSubwindows XUnmapWindow XUnsetICFocus

XVaCreateNestedList XVendorRelease XVisualIDFromVisual

XWarpPointer XwcDrawImageString XwcDrawString

XwcDrawText XwcFreeStringList XwcLookupString

XwcResetIC XwcTextEscapement XwcTextExtents

XwcTextListToTextProperty XwcTextPerCharExtents XwcTextPropertyToTextList

XWhitePixel XWhitePixelOfScreen XWidthMMOfScreen

XWidthOfScreen XWindowEvent XWithdrawWindow

XWMGeometry XWriteBitmapFile XXorRegion

_XAllocScratch _XEatData _XFlush

_XFlushGCCache _XRead _XReadEvents

_XReadPad _XReply _XSend

_XSetLastRequestRead

The libX library requires that some global external data symbols be defined for its’ routines to work properly.
All the data symbols listed in the table below must be provided by the libX library.

Figure 6-38: libX Contents, Global External Data Symbols

XcmsCIELabColorSpace XcmsCIELuvColorSpace
XcmsCIEuvYColorSpace XcmsCIExyYColorSpace
XcmsCIEXYZColorSpace XcmsLinearRGBFunctionSet
XcmsRGBColorSpace XcmsRGBiColorSpace
XcmsTekHVCColorSpace XcmsUNDEFINEDColorSpace

An ABI-conforming system shall provide the following include files whose content is defined by the X11R5
Reference Manual.

Figure 6-39: X11R5 Include Files

X11/cursorfont.h X11/keysymdef.h X11/X.h
X11/Xatom.h X11/Xcms.h X11/Xlib.h
X11/Xproto.h X11/Xresource.h X11/Xutil.h

Figure 6-40: X11R5 X Toolkit Intrinsics Include Files

X11/Intrinsic.h X11/IntrinsicP.h X11/Shell.h
X11/ShellP.h X11/StringDefs.h X11/Vendor.h
X11/VendorP.h

6-42 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Math Library

Frequently, applications must rely on groups of object files not required to be present on an ABI conforming
implementation. These may be provided in static archives provided with the development environment. If
each member of the archive is itself ABI conforming, then an ABI conforming application may statically link
members from this archive and still be ABI conforming. If extensions to an archive are not ABI conforming,
then an ABI conforming application may not include that extension in an executable.

All development environments for ABI applications shall contain ABI conforming versions of libm.a. The
MIPS processor specific ABI shall define the path to the directory that contains these libraries. The following
are entry-points that must be defined for each respective library, as defined in the System V Interface Definition,
Third Edition.

Figure 6-41: Required libm Functions

acos acosh asin asinh atan* atan2
atanh cbrt ceil cos cosh erf
erfc exp fabs floor fmod gamma
hypot* j0 j1 jn lgamma log
log10 pow remainder sin sinh sqrt
tan tanh y0 y1 yn

*Function was erroneously omitted from earlier editions c

Math Library 6-43

FINAL COPY
August 30, 1996

File: chap6

OSF/Motif Library

An ABI-conforming system shall support Release 1.2 of the OSF/Motif software as a static library in the ABI
build environment, libXm.a. The first ABI reference platform (corresponding to version 1.0 of this
specification) supported OSF/Motif 1.1 as a static library.

An ABI-conforming system shall provide the following include files whose content is defined by the OSF/Motif
Programmer’s Reference Manual .

Figure 6-42: OSF/Motif 1.2 Include Files

Xm/ArrowB.h Xm/ArrowBG.h Xm/BulletinB.h
Xm/CascadeB.h Xm/CascadeBG.h Xm/Command.h
Xm/CutPaste.h Xm/DialogS.h Xm/DrawingA.h
Xm/DrawnB.h Xm/FileSB.h Xm/Form.h
Xm/Frame.h Xm/Label.h Xm/LabelG.h
Xm/List.h Xm/MainW.h Xm/MenuShell.h
Xm/MessageB.h Xm/PanedW.h Xm/Protocols.h
Xm/PushB.h Xm/PushBG.h Xm/RowColumn.h
Xm/Scale.h Xm/ScrollBar.h Xm/ScrolledW.h
Xm/SelectioB.h Xm/SeparatoG.h Xm/Separator.h
Xm/Text.h Xm/ToggleB.h Xm/ToggleBG.h
Xm/Xm.h Xm/XmP.h

6-44 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

General-Purpose Library

These functions constitute a general-purpose library, libgen. This library is not implemented as a shared
object. It is required to link OSF/Motif applications.

Figure 6-43: libgen Contents

basename bgets bufsplit copylist
dirname eaccess gmatch isencrypt
mkdirp p2open p2close pathfind
regcmp regex rmdirp strcadd
strccpy streadd strecpy strfind
strrspn strtrns
compile* step* advance*

* Listed as Level 2 in the SVID

These functions are declared in <libgen.h>.

char *basename(char *);
char *bgets(char *, size_t, FILE *, char *);
size_t bufsplit(char *, size_t, const char *);
char *copylist(const char *, off_t *);
char *dirname(char *);
int eaccess(const char *, int);
int gmatch(const char *, const char *);
int isencrypt(const char *, size_t);
int mkdirp(const char *, mode_t);
int p2open(const char *, FILE *[2]);
int p2close(FILE *[2]);
char *pathfind(const char *, const char *, const char *);
char *regcmp(const char *, ...);
char *regex(const char *, const char *, ...);
int rmdirp(char *, char *);
char *strccpy(char *, const char *);
char *strcadd(char *, const char *);
char *strecpy(char *, const char *, const char *);
char *streadd(char *, const char *, const char *);
int strfind(const char *, const char *);
char *strrspn(const char *, const char *);
char *strtrns(const char *, const char *, const char *, char *);

These functions are declared in <regexpr.h>, and operate as described in the System V Interface Definition,
Third Edition (SVID 3) . Note that the description in the SVID refers to a slightly different implementation, and
refereneces a different header file, <regexp.h>, not the libgen implementation. In any case, these routines
are marked as level 2 and should be avoided, as they are not required to be present on an ABI-conforming sys-

General-Purpose Library 6-45

FINAL COPY
August 30, 1996

File: chap6

tem.

char *compile(const char *, char *, char *);
int step(const char *, const char *);
int advance(const char *, const char *);

6-46 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

BSD Emulation Library

libucb.a provides many of the popular interfaces from BSD UNIX. It is intended to be used as a migration
path for ISVs moving applications from BSD UNIX to SVR4. Over time all ISVs are encouraged to move to the
SVR4 ABI interfaces since they may not be supported in the future. It is also important to note that use of
libucb.a pulls in all of its BSD interfaces. This can result in subtle problems for applications which mix BSD
and SVR4 interfaces, for example using the BSD printf and SVR4 readdir. In the previous case, both the
printf and readdir calls would use the BSD version. This class of problem will be exposed at runtime
rather than compile time.

Figure 6-44: libucb Contents

alloca alphasort bcmp
bcopy bzero dbm_close
dbm_delete dbm_do_nextkey dbm_fetch
dbm_firsthash dbm_firstkey dbm_forder
dbm_nextkey dbm_open dbm_store
dc endusershell fopen
fp_accrued_exceptions fp_class_d fp_class_f
fp_direction fp_precision fprintf
ftime getdtablesize gethostid
gethostname getpagesize getrusage
getusershell getwd ieee_handlers
index initstate isnan
killpg longjmp mctl
mkstemp printf psignal
rand random re_comp
re_exec readdir rindex
scandir sethostname setjmp
setstate setusershell sigblock
sigfpe siginterrupt signal
sigpause sigsetmask sigstack
sigvec sleep sprintf
srand srandom strcasecmp
strncasecmp sys_siglist times
timezone ualarm usleep
utimes vfprintf vprintf
vsprintf wait3

BSD Emulation Library 6-47

FINAL COPY
August 30, 1996

File: chap6

WARNING

The BSD Emulation Library is at level 2, and is likely to be removed in the next edition of this specification.

6-48 LIBRARIES

FINAL COPY
August 30, 1996

File: chap6

Presentation of Network Distributed Information

Information about certain system databases, such as passwords, groups, hosts, services, protocols and net- c
works, must be returned in a consistent manner between ABI-specified function interfaces and other, non-ABI c
methods. Non-ABI methods may include function interfaces as well as utilities, such as login and c
yppasswd (if supported). For example, if the password file on a system is managed by the use of NIS, then c
use of getpwnam for a particular user name will return the same home directory as the user specified would c
get by logging in, and getpwnam called from a MIPS ABI conforming program will return the same informa- c
tion in the password structure as getpwnam called from a non-ABI program. The MIPS ABI interfaces which c
must support this behavior are as follows: c

Passwords cgetpwnam, getpwuid, setpwent, getpwent, endpwent. c

These routines are in libc. c

NOTE c
The MIPS ABI does not provide any routines operating on the shadow password file. cc

Groups cgetgrgid, getgrnam, setgrent, getgrent, endgrent, initgroups. c

These routines are in libc. c

Hosts cendhostent, gethostbyaddr, gethostbyname, gethostent, sethostent. c

These routines are in libsocket. c

Services cendservent, getservbyname, getservbyport, getservent, setservent. c

These routines are in libsocket. c

Protocols cendprotoent, getprotobyname, getprotobynumber, getprotoent, setprotoent. c

These routines are in libsocket. c

Networks cendnetent, getnetbyaddr, getnetbyname, getnetent, setnetent. c

These routines are in libsocket. c

NOTE c
Not all MIPS ABI conforming implementations choose to distribute all of the databases listed above. cc

Platform vendors are advised that the intent of this section is to provide consistent behavior for at least two cc
popular network information services, NIS and DNS, but without specifying precisely how that consistency is cc
obtained, nor restricting the implementation to any specific current or future services. cc

Presentation of Network Distributed Information 6-49

FINAL COPY
August 30, 1996

File: chap6

7 FORMATS AND PROTOCOLS

ABI Version Identification 7-1

Table of Contents i

FINAL COPY
August 30, 1996

File: Cchap7

ABI Version Identification c

An ABI-conforming system which conforms to revision 1.2 or later of the ABI Conformance Guide will have c
an ASCII file which identifies the highest revision level to which the system conforms. c

The version file is named /etc/mipsabiversion. c

The file contains a newline-terminated string of the form major.minor. Only the first line should be processed; c
all subsequent lines should be ignored. Sub-versions (e.g., the .1 in 1.0.1) are not reflected in the version file as c
they only reflect clarifications to the wording in a baseline spec. c

If the file is not found, the system should only be assumed to be conformant to a Conformance Guide revision c
prior to 1.2 - it is not possible to distinguish between revision 1.0 and revision 1.1. c

ABI Version Identification 7-1

FINAL COPY
August 30, 1996

File: chap7

8 SYSTEM COMMANDS

System Commands 8-1
The -D option to cpio 8-1
The mt Command 8-1
The mount and umount Commands 8-2

Table of Contents i

FINAL COPY
August 30, 1996

File: Cchap8

System Commands

In addition to those commands listed in the generic ABI and the Processor Specific ABI, the following com-
mands are available to application programs running on ABI-conforming systems:

a -D option to cpio c

a compress

a mount

a mt

a tar

a uncompress

a umount

a zcat

With the exception of the -D option to cpio, and mt, mount and umount, these commands are as c
described in the System V Interface Definition, Third Edition (SVID 3) . c

The -D option to cpio c

The cpio command must support the -D option. -D is used by the SVR4 packaging tools, and has been found c
to be necessary for installation of third party software which resides on multi-file tapes. -D disables tape read c
ahead and automatic volume switching.

The mt Command

The mt command is a magnetic tape manipulation program, with the following syntax:

mt -f tapename command [count]

mt is used to give commands to a magnetic tape drive. Note that tapename must reference a raw (not block)
tape device. By default, mt performs the requested operation once. Operations may be performed multiple
times by specifying count.

Valid choices for command are as follows:

fsf Forward space count files.

rewind Rewind the tape (count is ignored).

System Commands 8-1

FINAL COPY
August 30, 1996

File: chap8

NOTE

A rewind media command for a partitioned 4mm DDS tape will take you to the first
block of the current partition, not the physical beginning of media. The
specification of commands to deal with partitioned DDS media is outside the
current scope of the ABI.

mt returns a 0 exit status upon successful completion, 1 if the command was unrecognized, and 2 if an opera-
tion failed.

NOTE

Differences are known to exist among various vendor platforms as to exactly where a tape is positioned after
reading a file on a multi-file tape. These are difficult to reconcile due to compatibility requirements with prior
OS releases by each vendor. Applications that use multi-file tapes, especially using them for installation
should consider using dd to actually extract the information, and the undocumented -D option for cpio (dis-
cussed above) which inhibits read ahead. This is the mechanism used by the SVR4 packaging tools. Ven-
dors have generally made dd properly position the tape in a consistent way.

The mount and umount Commands

The mount and unmount commands specify how to mount and unmount file systems. The specification
below extends the definition in the SVID 3 to support the mounting and unmounting of CD-ROM based file
systems. This definition is derived from the OCMP and SVR4.2 specifications. c

If FSType is cdfs, the special argument must be /dev/abi/cd_iso. Note that FSType and/or special can in c
some circumstances be determined from /etc/vfstab. c

The cdfs-specific options to mount include: c

ro cMounts the resource read-only. This option or the -r option are required. c

susp|nosusp cEnables/disables the processing of all System Use Sharing Protocol (SUSP) com- c
pliant extensions to the ISO-9660/High Sierra specification. The SUSP defines a c
mechanism for which the System Use Area of a Directory Record may be shared c
by multiple independent organizations, for example, Rock Ridge Interchange Pro- c
tocol (RRIP). The nosusp flag prevents the processing of all SUSP-compliant c
extensions, even if recorded on the media. c

rrip|norrip cEnables/disables the processing of all the Rock Ridge Interchange Protocol (RRIP) c
extensions to the ISO-9660/High Sierra specification. The RRIP is a SUSP- c
compliant set of extensions that provide POSIX file semantics within the context c
of an ISO-9660/High Sierra file-system. The rrip flag requires that the susp flag c
also be set. The norrip flag prevents the processing of all RRIP extensions even c
if recorded on the media. c

nmconv=a cSets the file name conversion mode for the ISO-9660/High Sierra file and direc- c
tory names recorded on the CD-ROM. The nmconv option lets you specify how c
the file and directory names are seen by the user on the host system. Non-ISO- c
9660 and non-High Sierra names are not converted. c

a is some combination of the following: c

c cNames are not converted; the names used are the ones recorded c
on the CD-ROM. c

8-2 SYSTEM COMMANDS

FINAL COPY
August 30, 1996

File: chap8

l cConverts upper case letters to lower case. c

m cSuppresses the version number and the separator (;). c

System Commands 8-3

FINAL COPY
August 30, 1996

File: chap8

9 EXECUTION ENVIRONMENT

Execution Environment 9-1

Table of Contents i

FINAL COPY
August 30, 1996

File: Cchap9

Execution Environment

NOTE

There are no extensions to execution environment in this volume.

Execution Environment 9-1

FINAL COPY
August 30, 1996

File: chap9

10 WINDOWING AND TERMINAL INTERFACES

Windowing and Terminal Interfaces 10-1

Table of Contents i

FINAL COPY
August 30, 1996
File: Cchap10

Windowing and Terminal Interfaces

The windowing system for the MIPS ABI is X11R5. ABI conformant applications should use the DSO library
libX11.so.2. The X Toolkit Library, libXt, is supplied as a static archive libXt.a in the IRIX Reference
Platform ABI Build environment. Due to inadequacies of the available test tools, it is not feasible to ensure
that each vendor’s implementation of libXt as a DSO is functionally equivalent. Also supplied as a static
archive in the ABI build environment is the OSF/Motif library, libXm.a, constructed from the OSF/Motif c
Release 1.2.3 baseline. In the future, these libraries may become DSOs if adequate tests can be developed to
ensure compatibility.

The ABI does not require that the system support an X Server, allowing for the possibility of server systems
without local graphics capabilities. c

NOTE c
The Window System is an optional component in the generic ABI. This chapter alters the concept so that cc
libraries are manadatory and only the server is optional for conforming systems. cc

Windowing and Terminal Interfaces 10-1

FINAL COPY
August 30, 1996

File: chap10

11 DEVELOPMENT ENVIRONMENT

Development Environment 11-1
Software Packaging Tools 11-1

Table of Contents i

FINAL COPY
August 30, 1996
File: Cchap11

Development Environment

NOTE

The facilities and interfaces described in this section are optional components of the System V Application
Binary Interface.

Any system may be used to provide a development environment for ABI conforming applications. This
chapter describes the commands, options, libraries, and path mechanisms necessary to produce an ABI con-
forming application. This development environment need not be hosted on an ABI conforming implementa-
tion.

Software Packaging Tools

A development environment for ABI applications shall include each of the following commands as defined in
the ‘‘AS_CMD’’ section of the System V Interface Definition, Third Edition (SVID 3) .

a pkgproto

a pkgtrans

a pkgmk

The pkgtrans command shall generate output compliant with chapter 2 of the generic ABI. c

Development Environment 11-1

FINAL COPY
August 30, 1996

File: chap11

A FUTURE DIRECTIONS

Future Directions A-1
C++ A-1
Large File Access A-1
long long A-1
X11R6 A-2
Network Installation A-2
Evolution of Base Standards A-2
Generation Platforms Support A-2
Symmetric Multiprocessing A-2
XPG 4 Unified Unix Interfaces A-2
Optional Feature Interrogation A-3
Expanded Dynamic Linking Control A-3
Portable stack backtrace A-3

Long-Term Projects A-4
Symbolic Debugging A-4
Line Printer Spooling A-4
OpenGLTM A-4
64-Bit ABI A-4
UMA A-4
Communications APIs A-4

Table of Contents i

FINAL COPY
August 30, 1996

File: CappA

Future Directions

NOTE

This section is not part of the specification. It is provided to give an insight into development that is being
considered for inclusion into a future version of this specification. It is not marked with diffmarks.

WARNING

The MIPS ABI Group offers no guarantees that any particular feature listed here will ever be part of the
specification, or that any particular feature will take the form described here.

The application binary interface standards will continue to evolve over time to accomodate new technology.
Future evolution will increase the capabilities defined in the ABI specifications and will expand the standard
development environment provided for application writers and independent software vendors. This section
describes issues the MIPS ABI Group is considering for inclusion in future revisions of this specification.

C++

Support for C++ application development and linking provided by means of a Compiler Environment con-
cept. This Compiler Environment concept provides a complete package which itself is an ABI product. A full
ABI for C++ where different C++ compilers can contribute objects to a binary is most desirable but is waiting
for completion of the ISO C++ standardization effort.

Large File Access

A set of interfaces that allows access to files larger than can be described by 32-bit quantities and used on
filesystems which can support them.

long long

A 64-bit quantity described to the C compilation system as long long as an integral type. This is primarily
for use by the Large File interfaces.

Future Directions A-1

FINAL COPY
August 30, 1996

File: appA

X11R6

X11R6 (Release 6) as the supported version of the X Window System.

Network Installation

A standard mechanism for installing software over a network.

Evolution of Base Standards

The Version 1 releases of this specification were based on the first editions of the System V ABI and the MIPS
Processor Supplement. The new base editions for Version 2 releases would be the 3rd editions of the gABI and
psABI under this proposal.

Generation Platforms Support

Introduce a concept of Generation Platforms allowing ABI applications to be developed on machines besides the
Reference Platform.

Symmetric Multiprocessing

Features to enable application programs to take advantage of SMP platforms. These include a system call to
perform processor reservations and obtain status, and possibly support for the POSIX Threads programming
model.

XPG 4 Unified Unix Interfaces

The XPG4.2 interfaces, formerly known as Spec 1170.

A-2 FUTURE DIRECTIONS

FINAL COPY
August 30, 1996

File: appA

Optional Feature Interrogation

A mechanism that allows interrogation of a particular system to see whether it supports a particular feature.
This capability allows both features designated as optional and early adoption of features (i.e., a platform may
support a particular feature from a later specification without being conformant to the entire specification).

Expanded Dynamic Linking Control

Options to the compilation environment which will allow finer control over dynamic linking, including sym-
bol visibility, control over run-time search paths, etc.

Portable stack backtrace

Specification of a mechanism for a stack backtrace of a program to be obtained without resorting to stepping
through individually disassembled instructions.

Future Directions A-3

FINAL COPY
August 30, 1996

File: appA

Long-Term Projects

A number of projects which may appear in later editions of this specification, but certainly won’t be in the next
version.

Symbolic Debugging

Currently, full symbolic debugging is not possible except on the generation platform. Full support by means of
specifying the /proc interface and likely DWARF 2.0.

Line Printer Spooling

Interfaces for programmatic access to the printer spooling system.

OpenGLTM

Specification of OpenGL as an optional component.

64-Bit ABI

Specification of a full 64-bit binary standard.

UMA

Support for the Universal Measurement Architecture.

Communications APIs

A number of requests are being evaluated.

A-4 FUTURE DIRECTIONS

FINAL COPY
August 30, 1996

File: appA

IN Index

Index IN-1

Table of Contents i

FINAL COPY
August 30, 1996
File: Cbookindex

Index

A
ABI 1: 3

additions 6: 1

clarifications 6: 1

conformance 1: 5

conforming program 1: 3

conforming system 1: 3

development environment 11: 1

evolution A: 1

nonconforming program 1: 3

version identification 7: 1

ABI library 6: 32

ABI Validation Test Suite 1: 6

abicc 4: 2, 5

abild 4: 2, 5−6

abilock_t 6: 19

abi_mutex.h 6: 20

ABITS (see ABI Validation Test Suite)
ABIVTS (see ABI Validation Test Suite)
accept 6: 21

acos 6: 43

acosh 6: 43

acquire_lock 6: 19

ACT (see Application Compliance Testing Tool)
ACTS (see Application Conformance Test Suite)
additions, ABI 6: 1

aio_cancel 6: 32

aiocb 6: 33

aio_error 6: 32

aio_fsync 6: 32

<aio.h> 6: 32

aio_hold 6: 32

aio_read 6: 32

aio_return 6: 32

aio_suspend 6: 32

aio_write 6: 32

alloca 6: 47

alphasort 6: 47

API (See Application Programming Interface)
Application Compliance Testing Tool 4: 2

Application Conformance Test Suite 1: 6

Application Programming Interface 1: 2

ArrowBG.h (Motif) 6: 44

ArrowB.h (Motif) 6: 44

asin 6: 43

asinh 6: 43

asynchronous I/O 6: 1, 32

atan2 6: 43

atanh 6: 43

atexit(BA_OS) 5: 1−2

audience 1: 1

B
bcmp 6: 47

bcopy 6: 47

bind 6: 21

Black Book (see conformance guide)
break codes 6: 1

BRK_ABORT 6: 15

BRK_DIVZERO 6: 15

BRK_OVERFLOW 6: 15

BulletinB.h (Motif) 6: 44

bzero 6: 47

C
C library 6: 4

CascadeBG.h (Motif) 6: 44

CascadeB.h (Motif) 6: 44

cbrt 6: 43

cc 4: 5

ceil 6: 43

clarifications, ABI 6: 1

_cleanup 6: 5

Command.h (Motif) 6: 44

compiler, command-line options 4: 5

compress command 8: 1

Concurrent Computers 1: 1

conformance, ABI 1: 5

conformance guide 1: 3−4, 7: 1

conforming program, ABI 1: 3

conforming system, ABI 1: 3

connect 6: 21

contributing ISVs 1: 1

Index IN-1

FINAL COPY
August 30, 1996
File: bookindex

contributing vendors 1: 1

Control Data Systems Incorporated 1: 1

cos 6: 43

cosh 6: 43

cpio command 8: 1

cursorfont.h (X11) 6: 42

CutPaste.h (Motif) 6: 44

D
Dansk Data Elektronik A/S 1: 1

dbm_close 6: 47

dbm_delete 6: 47

dbm_do_nextkey 6: 47

dbm_fetch 6: 47

dbm_firsthash 6: 47

dbm_firstkey 6: 47

dbm_forder 6: 47

dbm_nextkey 6: 47

dbm_open 6: 47

dbm_store 6: 47

dc 6: 47

debugging 4: 4

/dev/abi/8mm 2: 3

/dev/abi/8mm.nr 2: 3

/dev/abi/9track 2: 3

/dev/abi/9track.nr 2: 3

/dev/abi/cd_iso 2: 3

/dev/abi/dat 2: 3

/dev/abi/dat.nr 2: 3

/dev/abi/floppy 2: 3

/dev/abi/qic 2: 3

/dev/abi/qic.nr 2: 3

development environment 11: 1

devices, installation 2: 3

DialogS.h (Motif) 6: 44

dlclose 6: 16

dlerror 6: 17

dlopen 6: 16

dlsym 6: 16

documentation 1: 2

DrawingA.h (Motif) 6: 44

DrawnB.h (Motif) 6: 44

DT_NEEDED 6: 16

dynamic linking
initialization function 5: 1

program interpreter 5: 1

termination function 5: 1

E
Edinburgh Portable Compilers Ltd 1: 1

elf.h 4: 1

endgrent 6: 49

endhostent 6: 21, 49

endnetent 6: 21, 49

endprotoent 6: 21, 49

endpwent 6: 49

endservent 6: 21, 49

endusershell 6: 47

erf 6: 43

erfc 6: 43

errno.h 6: 14

<errno.h> 6: 32, 34

/etc/mipsabiversion 7: 1

ether_aton 6: 21

ether_hostton 6: 21

ether_line 6: 21

ether_ntoa 6: 21

ether_ntohost 6: 21

execution environment 9: 1

exit 5: 2

exp 6: 43

F
fabs 6: 43

<fcntl.h> 6: 32, 35

FileSB.h (Motif) 6: 44

floor 6: 43

fmod 6: 43

fopen 6: 5, 47

Form.h (Motif) 6: 44

fp_accrued_exceptions 6: 47

fp_class_d 6: 47

fp_class_f 6: 47

fp_direction 6: 47

fp_precision 6: 47

fprintf 6: 47

Frame.h (Motif) 6: 44

fstat 6: 4

ftime 6: 47

future directions A: 1

_fxstat 6: 4

IN-2 Index

FINAL COPY
August 30, 1996
File: bookindex

G
gABI (see generic ABI)
gABI (see generic ABI)
gamma 6: 43

generic ABI 1: 1−5, 2: 2

generic ABI 5: 2, 6: 3−4, 18, 8: 1

getdtablesize 6: 47

getgrent 6: 49

getgrgid 6: 49

getgrnam 6: 49

gethostbyaddr 6: 21, 49

gethostbyname 6: 21, 49

gethostent 6: 21, 49

gethostid 6: 47

gethostname 6: 47

getitimer 6: 5

getnetbyaddr 6: 21, 49

getnetbyname 6: 21, 49

getnetent 6: 21, 49

getpagesize 6: 47

getpeername 6: 21

getprotobyname 6: 21, 49

getprotobynumber 6: 21, 49

getprotoent 6: 21, 49

getpwent 6: 49

getpwnam 6: 49

getpwuid 6: 49

getrusage 6: 47

getservbyname 6: 21, 49

getservbyport 6: 21, 49

getservent 6: 21, 49

getsockname 6: 21

getsockopt 6: 21

gettimeofday 6: 5

getusershell 6: 47

getwd 6: 47

global offset table 4: 1

GOT (see global offset table)
guide for porting 1: 5

guidelines, link editing 4: 2

H
header file
abi_mutex.h 6: 20

<aio.h> 6: 32

elf.h 4: 1

<errno.h> 6: 32, 34

<fcntl.h> 6: 32, 35

if_arp.h 6: 23

if_ether.h 6: 23

if.h 6: 23

in.h 6: 24

ioctl.h 6: 26

<limits.h> 6: 32, 34

mtio.h 6: 10

netdb.h 6: 27

route.h 6: 28

<signal.h> 6: 32−33

socket.h 6: 30

stat.h 6: 4

systeminfo.h 6: 9

tcp.h 6: 25

types.h 6: 31

un.h 6: 31

<unistd.h> 6: 32, 35

utsname.h 6: 4

header file - Motif
ArrowBG.h 6: 44

ArrowB.h 6: 44

BulletinB.h 6: 44

CascadeBG.h 6: 44

CascadeB.h 6: 44

Command.h 6: 44

CutPaste.h 6: 44

DialogS.h 6: 44

DrawingA.h 6: 44

DrawnB.h 6: 44

FileSB.h 6: 44

Form.h 6: 44

Frame.h 6: 44

LabelG.h 6: 44

Label.h 6: 44

List.h 6: 44

MainW.h 6: 44

MenuShell.h 6: 44

MessageB.h 6: 44

PanedW.h 6: 44

Protocols.h 6: 44

PushBG.h 6: 44

PushB.h 6: 44

RowColumn.h 6: 44

Scale.h 6: 44

ScrollBar.h 6: 44

ScrolledW.h 6: 44

Index IN-3

FINAL COPY
August 30, 1996
File: bookindex

SelectioB.h 6: 44

SeparatoG.h 6: 44

Separator.h 6: 44

Text.h 6: 44

ToggleBG.h 6: 44

ToggleB.h 6: 44

Xm.h 6: 44

XmP.h 6: 44

header file - X11
cursorfont.h 6: 42

keysymdef.h 6: 42

Xatom.h 6: 42

Xcms.h 6: 42

X.h 6: 42

Xlib.h 6: 42

Xproto.h 6: 42

Xresource.h 6: 42

Xutil.h 6: 42

header file - Xt
Intrinsic.h 6: 42

IntrinsicP.h 6: 42

Shell.h 6: 42

ShellP.h 6: 42

StringDefs.h 6: 42

Vendor.h 6: 42

VendorP.h 6: 42

header file additions, sys/debug.h 6: 14

hierarchy, installation files 2: 2

htonl 6: 21

htons 6: 21

I
IDO (see IRIS Development Option)
IEEE Standard POSIX 1003.1b-1993 1: 3

ieee_handlers 6: 47

if_arp.h 6: 23

if_ether.h 6: 23

if.h 6: 23

implementation guide, organization 1: 2

implementation guidelines 1: 5

index 6: 47

inet_addr 6: 21

inet_lnaof 6: 21

inet_makeaddr 6: 21

inet_netof 6: 21

inet_network 6: 21

inet_ntoa 6: 21

in.h 6: 24

initgroups 6: 49

init_lock 6: 19

initstate 6: 47

installation
devices 2: 3

script 2: 2

structure 2: 2

interpreter 5: 1

Intrinsic.h (X Toolkit) 6: 42

IntrinsicP.h (X Toolkit) 6: 42

ioctl.h 6: 26

IRIS Development Option 1: 4

IRIX 1: 4

isnan 6: 47

ISVs, contributing 1: 1

J
j0 6: 43

j1 6: 43

jn 6: 43

K
keysymdef.h (X11) 6: 42

killpg 6: 47

L
LabelG.h (Motif) 6: 44

Label.h (Motif) 6: 44

lazy binding 4: 1

ld 4: 6

ld command 4: 2

ld.so.1 6: 3

lgamma 6: 43

libabi 6: 1, 32

libabi.so.1 6: 32

libc 4: 2, 6: 1, 4, 49

libc contents 6: 4−5

libcurses 4: 2

libdl 6: 1, 16

libdl contents 6: 16

libgen 6: 1

IN-4 Index

FINAL COPY
August 30, 1996
File: bookindex

libgen.h 6: 45

libm 4: 2, 6: 1, 43

libm contents 6: 43

libmutex 6: 1, 19

libmutexP contents 6: 19

libnsl 6: 18, 21

libnsl contents
additional required entry points 6: 18

global external data symbols 6: 18

libraries 6: 1

library
ABI 6: 32

BSD emulation 6: 47

C 6: 4

dynamic linking 6: 1

math 6: 43

Motif 10: 1

mutual exclusion 6: 19

networking services 6: 1, 18, 21

OSF/Motif 6: 44

runtime dynamic linking 6: 16

socket 6: 1, 21

system 6: 3

X Toolkit 6: 38, 10: 1

X11R5 6: 38, 10: 1

libsocket 6: 1, 21

libsocket contents 6: 21

libucb 4: 2, 6: 2, 47

libucb contents 6: 47

libX11 6: 1, 38

libX11.so.1 6: 38

libX11.so.2 6: 38

libXm 6: 1, 44, 10: 1

libXt 6: 38, 10: 1

<limits.h> 6: 32, 34

link editing 4: 2

command-line options 4: 5

guidelines 4: 2

post-installation 4: 2

lio_listio 6: 32

listen 6: 21

List.h (Motif) 6: 44

log 6: 43

log10 6: 43

logb 6: 5

login 6: 49

longjmp 6: 47

low-level system information 3: 1

lstat 6: 4

_lxstat 6: 4

M
MainW.h (Motif) 6: 44

makecontext 6: 5

math library 6: 43

mctl 6: 47

MenuShell.h (Motif) 6: 44

MessageB.h (Motif) 6: 44

MIPS ABI
implementation guidelines 1: 5

porting guide 1: 5

reference platform 1: 5

MIPS ABI Group, Inc. 1: 1

MIPS Processor ABI Conformance Guide (see con-
formance guide)

MIPS Processor ABI Supplement (see Processor
Supplement)

MIPS processor specific ABI (see processor specific
ABI)

MIPS RISC Architecture 1: 3

MIPS Technologies Incorporated 1: 1

_MIPS_SI_AVAIL_PROCESSORS 6: 7

_MIPS_SI_HOSTID 6: 7

_MIPS_SI_HW_NAME 6: 7

_MIPS_SI_NUM_PROCESSORS 6: 7

_MIPS_SI_OS_NAME 6: 7

_MIPS_SI_OS_PROVIDER 6: 7

_MIPS_SI_OSREL_MAJ 6: 8

_MIPS_SI_OSREL_MIN 6: 8

_MIPS_SI_OSREL_PATCH 6: 8

_MIPS_SI_PROCESSORS 6: 8

_MIPS_SI_VENDOR 6: 7

mknod 6: 4

mkstemp 6: 47

mmap 6: 1, 6

reserved address space 6: 6

modf 6: 5

Motif 10: 1

mount command 8: 1−2

mt command 8: 1

mtio 6: 1, 10

mtio.h 6: 10

mutual exclusion library 6: 19

Index IN-5

FINAL COPY
August 30, 1996
File: bookindex

N
nc_sperror 6: 18

_nderror 6: 18

NEC Corporation 1: 1

netdb.h 6: 27

netdir_perror 6: 18

netdir_sperror 6: 18

Networking Services library 6: 18

nextafter 6: 5

NIS 6: 49

nonconforming program, ABI 1: 3

notifyinfo 6: 34

ntohl 6: 21

ntohs 6: 21

_numeric 6: 5

_nuname 6: 4

nuname 6: 4

O
object files 4: 3

OCMP 1: 1

/opt subtreee 2: 2

/opt/bin 2: 2

/opt/include 2: 2

/opt/lib 2: 2

/opt/man 2: 2

Oracle Corporation 1: 1

OSF/Motif 6: 1, 10: 1

OSF/Motif 1.2 include files 6: 44

OSF/Motif Programmer’s Reference 1: 3

P
PanedW.h (Motif) 6: 44

pkgmk command 11: 1

pkgproto command 11: 1

pkgtrans command 11: 1

platform conformance testing 1: 6

porting guide 1: 5

position independent code 4: 3

POSIX 1003.1b 6: 1, 32

POSIX 1003.1b-1993 1: 3

post-installation link editing 4: 2

pow 6: 43

printf 6: 47

process, entry point 5: 1

processor specific ABI 4: 1, 3, 5: 1, 6: 4, 18, 43, 8: 1

Processor Supplement 1: 1−5, 2: 3

program interpreter 5: 1

property, unspecified 1: 4

Protocols.h (Motif) 6: 44

psABI (see Processor Supplement)
psABI (see processor specific ABI)
psignal 6: 47

PushBG.h (Motif) 6: 44

PushB.h (Motif) 6: 44

Pyramid Technology Corporation 1: 1

R
rand 6: 47

random 6: 47

readdir 6: 47

re_comp 6: 47

recv 6: 21

recvfrom 6: 21

recvmsg 6: 21

re_exec 6: 47

reference platform 1: 4−5

regexp.h 6: 45

regexpr.h 6: 45

related documentation 1: 2

release_lock 6: 19

remainder 6: 43

rindex 6: 47

R_MIPS_CALLHI16 4: 1

R_MIPS_CALLLO16 4: 1

R_MIPS_GOTHI16 4: 1

R_MIPS_GOTLO16 4: 1

R_MIPS_HIVENDOR 4: 1

R_MIPS_LOVENDOR 4: 1

route.h 6: 28

RowColumn.h (Motif) 6: 44

rpc_createerr 6: 18

RTLD_GLOBAL 6: 16

runtime dynamic linking library 6: 16

S
SAS Institute Incorporated 1: 1

sbrk 6: 5

scalb 6: 5

IN-6 Index

FINAL COPY
August 30, 1996
File: bookindex

Scale.h (Motif) 6: 44

scandir 6: 47

script, installation 2: 2

ScrollBar.h (Motif) 6: 44

ScrolledW.h (Motif) 6: 44

select 6: 5

SelectioB.h (Motif) 6: 44

send 6: 21

sendmsg 6: 21

sendto 6: 21

SeparatoG.h (Motif) 6: 44

Separator.h (Motif) 6: 44

setegid 6: 5

seteuid 6: 5

setgrent 6: 49

sethostent 6: 21, 49

sethostname 6: 47

setitimer 6: 5

setjmp 6: 47

setlabel 6: 5

setnetent 6: 21, 49

setprotoent 6: 21, 49

setpwent 6: 49

setservent 6: 21, 49

setsockopt 6: 21

setstate 6: 47

setusershell 6: 47

SGS (see Software Generation System)
Shell.h (X Toolkit) 6: 42

ShellP.h (X Toolkit) 6: 42

shutdown 6: 21

Siemens Nixdorf Informationssysteme AG 1: 1

sigblock 6: 47

sigevent 6: 34

sigfpe 6: 47

siginterrupt 6: 47

signal 6: 47

Signal Handling 6: 14

<signal.h> 6: 32−33

sigpause 6: 47

sigsetmask 6: 47

sigstack 6: 47

sigval 6: 34

sigvec 6: 47

Silicon Graphics Incorporated 1: 1

sin 6: 43

sinh 6: 43

sleep 6: 47

socket 6: 21

socket.h 6: 30

socketpair 6: 21

Software Generation System 4: 5

software packaging tools 11: 1

Sony Microsystems 1: 1

spin_lock 6: 19

sprintf 6: 47

sqrt 6: 43

srand 6: 47

srandom 6: 47

stat 6: 4

stat.h 6: 4

stat_lock 6: 19

strcasecmp 6: 47

StringDefs.h (X Toolkit) 6: 42

strncasecmp 6: 47

svd_fdset 6: 18

SVID (See System V Interface Defintion)
swapcontext 6: 5

sys/debug.h 6: 14

sysinfo 6: 1, 5, 7

sys_siglist 6: 47

system commands 8: 1

system information, low-level 3: 1

system library 6: 3

System V Application Binary Interface (see generic
ABI)

System V Interface Defintion 1: 2, 4: 5−6, 6: 4, 10, 43,

45, 8: 1−2, 11: 1

systeminfo.h 6: 9

T
tan 6: 43

Tandem Computers 1: 1

tanh 6: 43

tape ioctls 6: 1

tape manipulation ioctl calls 6: 10

tape positioning 6: 12

tar command 8: 1

tcp.h 6: 25

terminal interfaces 10: 1

terminology 1: 3

t_errno 6: 18

testing, platform conformance 1: 6

Text.h (Motif) 6: 44

Index IN-7

FINAL COPY
August 30, 1996
File: bookindex

The Santa Cruz Operation 1: 1

times 6: 47

timezone 6: 47

ToggleBG.h (Motif) 6: 44

ToggleB.h (Motif) 6: 44

types.h 6: 31

U
ualarm 6: 47

umount command 8: 1

uname 6: 4

uncompress command 8: 1

undefined behavior 1: 4

un.h 6: 31

UniSoft Group, Ltd. 1: 6

UniSoft Group Limited 1: 1

<unistd.h> 6: 32, 35

unmount command 8: 2

unspecified property 1: 4

usleep 6: 47

utimes 6: 47

utsname.h 6: 4

V
Vendor.h (X Toolkit) 6: 42

VendorP.h (X Toolkit) 6: 42

vendors, contributing 1: 1

verifier, application binaries 4: 2

version identification 7: 1

vfprintf 6: 5, 47

vprintf 6: 5, 47

vsprintf 6: 5, 47

W
wait3 6: 47

windowing interfaces 10: 1

X
X Toolkit (Xt) 6: 38, 10: 1

X Toolkit (Xt) include files 6: 42

X Window System: the Complete Reference ... 1: 3

X11 include files 6: 42

X11R5 6: 1, 38, 10: 1

Xatom.h (X11) 6: 42

Xcms.h (X11) 6: 42

xdrrec_endofrecord 6: 18

xdrrec_skiprecord 6: 18

xdr_u_int 6: 18

X.h (X11) 6: 42

Xlib.h (X11) 6: 42

Xm.h (Motif) 6: 44

_xmknod 6: 4

XmP.h (Motif) 6: 44

Xproto.h (X11) 6: 42

Xresource.h (X11) 6: 42

_xstat 6: 4

Xutil.h (X11) 6: 42

Y
y0 6: 43

y1 6: 43

yn 6: 43

yypasswd 6: 49

Z
zcat command 8: 1

IN-8 Index

FINAL COPY
August 30, 1996
File: bookindex

