rxsocket_eng_guide

rxsocket_eng_guide

COLLABORATORS
TITLE :
rxsocket_eng_guide
ACTION NAME DATE SIGNATURE
WRITTEN BY May 24, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

rxsocket_eng_guide iii

Contents

1

rxsocket_eng guide 1
L1 main . . .o o e e e e e 1
1.2 warning e e e |
1.3 guide e e 2
1.4 distribution L e 2
1.5 author L 2
1.6 introduction L e e e 2
1.7 installation e 3
1.8 Tequirements e e e e e e e e e e e e e e e e e e e 3
1.9 termsSo e e 3
LIO BUgS . . o o o e 4
LIT StrUCtUreS o o o o o e e e e e e e e e e e e e 4
112 functions o o . e e e e 6
.13 functionS by type o e e e 7
L14 accept . . . o o e e e e e e 9
115 addr2e . . . o e 9
116 bind o 9
17 ClOSEIrXSCON v v vt it i e e e e e e e e e e 10
1.18 closesocket e e e 10
1.19 connect e 11
1.20 dup2socket e e e e 11
121 errno o o e e 11
1.22 @ITOTSIIING o v v o e e e e e e e e e 11
1.23 gethostbyaddr L e e 12
1.24 gethostbyname L L e e 12
1.25 gethostid o e e e e 12
1.26 gethostname L e e 12
1.27 Eetpeernameo e e e e e e e e e e e e e e e e e 13
1.28 getprotobyname i e 13
1.29 getprotobynumber L e 13

rxsocket_eng_guide iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68

GELSEIVDYNAME oL e e e e e e e e e e e e e e e e 13
GELSEIVDYPOIL o o o o e e e e e e e e e e e e e e e 14
getsocketbaseo L L e e e e 14
getsocketbasesingle L L e e e e e 15
getsOCKEIEVENLS L . e e e e e e e 15
getsoCketname L e e e e e e e e e e e 15
getsoCkopt . . . L L e e 16
help . . . e e e 16
hosterrorno L L L e e e e e 17
NOSEEITOTSIIING o o o o e 17
inetaddr L 17
INEtCKSUM L e e e 17
INEINTOA o L L e e e 18
foctlsocket L e 18
isdotaddr L L 19
ISHbON . . . e 19
1SONSOCKS . . . L L 20
ISUP & o v e e e e e e e e 20
ISSOCKEL . . . o 20
lastsocket L e 20
Lsten o e e e e 21
nextrxsreleased e 21
obtainsocket L 21
OPENCONNECLION . . . v v v v v v v et e 22
OPENIXSCOM .+ v v v v e v e et e 23
qUETYINtEITACeS o e e e e e e e e e e e e e e e e 24
TECV . v v e e i e e e e e e e e e e e e e e e 24
TeCVITOM L L e e 25
recviromuntil oL e e e 26
TeCVIING L 26
releasecopyofsocket L oL L e 27
releasesoCketo L L e e 27
TESOIVE . . . o o e e e e 27
rxscall . .o e 28
SENA . . L e e e 28
SENALO L e 29
SErXSOCKEIOPL o o o o e e e e e e e e e 29
setsocketbaseo L L e 30

setsocketbasesingleo L. L e e e 30

rxsocket_eng_guide v

1.69 setsocketsignals L 30
1.70 setsockopt L. e e 31
L71 shutdown 32
172 syslog . . o o o e e e 32
1.73 syslogetl . . . o o o e e e e 33
174 socket 34
L75 waitselect 34
176 WIIEIXSCON o v v i i i e i e e e e e e e e e e e 35
1.77 passing sOCKetS L L e e e e 35
178 thanks 36
1.79 bibliography e e 36
1.80 mote o e e 37

1.81 inetdsupport e e e e e e e e e e 37

rxsocket_eng_guide 1/38
Chapter 1
rxsocket_eng_guide
1.1 main
rxsocket.library 9.5
1. Warning
2. About this guide
3. Distribution
4. Author
5. Introduction
6. System requirements
7. Installation
8. Terms
9. Bugs
10. Structures
11. Functions
12. Function by type
13. Passing sockets
14. Thanks
15. Bibliography
16. Note
17. Inetd support
1.2 warning
THIS SOFTWARE AND INFORMATION ARE PROVIDED xAS ISx*.
ALL USE IS AT YOUR OWN RISK, AND NO LIABILITY OR
RESPONSIBILITY IS ASSUMED. NO WARRANTY IS MADE,
ECCEPT THAT xTHIS CODE IS TOTALLY BACKDOORS FREEx.
To check the integrity of this archive you must:
- download the rxsocket.md5.lha at http://users.iol.it/alfier/soft/rxsocket. ¢«

html
- store rxsocket.md5 files from the above archive in ram:rxsocket.md5
- unpack your rxsocket archive
- go into "rxsocket/" drawer
- start mdbSsum —-cv ram:rxsocket.mdb

rxsocket_eng_guide 2/38

The rxsocket.md5.lha archive always refers to the last
Aminet distribution, rather than to beta versions and/or
versions avaible at my home page.

1.3 guide

This guide contains links with inline ARexx macros wich
use rmh.library/OpenURL. They will work if and only if

you have both openurl.library and rmh.ibrary installed.
rmh.library is by me and it is included in this archive.

openURL.library is by Troels Walsted Hansen:

"This library was created to make it easier for application programmers to
include clickable URLs in their applications, about windows, etc. "

You can find it on aminet at comm/www/OpenURL20.lha

1.4 distribution

rxsocket.library is FreeWare.
You are free to detribute it as long as the original archive is kept intact.
Commercial use or its inclusion in other software package is prohibited <«

without
prior consens from the Author.

1.5 author

I am Alfonso Ranieri

My e-mail address is alfier@iol.it

My home page is at http://users.iol.it/alfier/
You can find me on:

- #amigaita ircnet~;
- #amyita ircnet

1.6 introduction

This library is a complete bridge to bsdsocket.library ,
so it is a powerfull ARexx API for internet comunication.

The functions of this library directly call bsdsocket.library
functions, which I’11 name "original functions", but this doc

rxsocket_eng_guide 3/38
is not an introduction to bsdsocket.library but just a guide
to rxsocket.library functions.
The environment is macro-private: each macro opens bsdsocket.library
and what else must be private and stores a list of "things" that must
be freed on exit.
The way used to handle arguments and results is:
— when the original function wants a non-structure as argument,
that argument is given to the function;
- when the original function wants a structure as argument, a
valid ARexx variable name is the argument for that structure:
various fields of that stem must be set by the user;
- when the original function returns an integer, that integer is returned;
- when the original function returns a structure, a valid ARexx variable
name is passed as argument to the function and various fields of that
stem are set by the function. An ARexx boolean is returned.
This is a general policy in my ARexx libraries to try to emulate the AmigaOS
tags programming way.
1.7 installation
Run the installation script.
1.8 requirements
The library needs AmigaOS, version >=2, and a TCP/IP stack.
The library is tested on:
— Miami 2.xx 3.xx MiamiDx any beta release
— Genesis (genesis.library 2.xx 3.xx)
- TermiteTCP 1.50
It works on TermiteTCP 1.50 , but some functions are not avaible with it.
All examples needs rmh.library. It is included in this archive.
1.9 terms
- stem or stemName : a valid ARexx variable name e.g. var, var.0, var.name, —
var ;
— socket : the named space created by socket (), Dup2Docket (), and so on;

— socketfd : the socket descriptor id as an integer value;

rxsocket_eng_guide

4/38

— addr or address: the Internet address, in dotted form.
An Internet address is a 32 bits unsigned long, rappresented in the "dotted"

1.10

1.11

form as "a.b.c.d" "a.b.c" "a.b" "a" or as a symbolic name.

In this library addresses are passed/returned in dotted form, e.g. resolve()

return the dotted form of its argument or -1.
I wanted to use the original bsdsocket.library API, but ARexx integer
implementation makes difficult to use integer as Internet addresses.

types of arguments: the types used are:

D any data -

numeric /N

symbol /S ARexx valid symbol

stemName /V ARexx valid symbol as S but with length<20

< =z

bugs

This is not a rxsocket.library bug, but an Amitcp bug:

DO NOT CREATE ROUTE SOCKET IF USING AMITCP; JUST A SIMPLE
s=socket ("ROUTE", "RAW")

BADLY CRASHES AMITCP !!!

structures

The main structures passed or returned to/from functions are:

the bsdsocket.library structures:

As I said above, I emulate structure as ARexx stemName; an example will help:

struct hostent returned by GetHostByName (), GetHostByAddr ()
struct servent returned by GetServByName (), GetServByNumber ()
struct protoent returned by GetProtoByName (), GetProtoByNumber ()
struct sockaddr_in passed and returned to/from various functions

we want to get the local protoent of the echo TCP service, so we need a call

to

GetServByName () passing it a stemName (see Terms) :

if ~GetGervByName ("SE", "echo","TCP") then do
/* failure =/
say "no echo TCP service"
exit

end

/* success */
say "Name:" se.ServName
say "Port:" se.ServPort

' se.ServProto

say "Proto:'
if se.ServAliases.num=0 then say "No alias"
else do

say "Aliases"

rxsocket_eng_guide

5/38

do i = 0 to se.ServAliases.num-1
say se.ServAliases.i
end
end

As you can see, GetServByName () sets, on success,
— SERVNAME
— SERVPORT
— SERVPROTO
— SERVALIASES.NUM
- SERVALIASES.O , ... , SERVALIASES.last (last =

the first arguments.

If an array is part of

in

X.Y.NUM and the mebers
_l;

so if X.Y.NUM == 0 the

For each structure the

- hostent
— HOSTNAME
— HOSTADDRTYPE
— HOSTLENGTH
— HOSTALIASES.NUM
- HOSTALIASES.O,
— HOSTADDRLIST.NUM
- HOSTADDRLIST.O,

— servent
- SERVNAME
— SERVPORT
- SERVPROTO
— SERVALIASES.NUM
- SERVALIASES.O,

- protoent
- PROTONAME
— PROTOPROTO
— PROTOALIASES.NUM
- PROTOALIASES.O,

the fields:

SERVALIASES.NUM-1)
of the ARexx stem that has as root part that stemName you give the function as

the structure then the number of members are returned <

can be found in X.Y.O0 ,

array is empty.

, X.Y.last last =

fields read or set by functions are:

, HOSTALIASES.last

(last =

, HOSTADDRLIST.last (last

, SERVALIASES.last

(last =

, PROTOALIASES.last (last

HOSTALIASES.NUM-1)

HOSTADDRLIST.NUM-1)

SERVALIASES.NUM-1)

PROTOALIASES.NUM-1)

X.Y.NUM <«

To make life easier a lot of arguments have their human form and can be passed

to functions (directly or in as stem field)

They are expecially:

- FAMILY as in socket (family, type,protocol)

as string.

or ADDRFAMILY the address

family that actually has just the string form "INET"
can be passed as integer too.

- type as in socket (family, type,protocol)

string
forms

"STREAM"
~ "DGRAM"

the type of the socket has the <

rxsocket_eng_guide 6/38

—_ n RAW "
— n RDM"
"SEQPACKET"
can be passed as integer too.

— protocoll as in socket (family, type,protocol) the protocol of the socket has <
the
string forms
— "IPH
~ "HOPOPTS"
- "ICMP"
- "IGMP"
- "GGPp"
- "IPIP"
- "TCP"
- "EGP"
- "PUP"
— "UDP "
- "IDP"
— "TP "
- "IPV6"
~ "ROUTING"
— "FRAGMENT"
- "RSVP"
- "ESP"
—_ "AH"
- "ICMPV6"
- "NONE"
- "DSTOPTS"
- "EON"
- "ENCAP"
- "DIVERT"
- "RAW"
can be passed as integer too.

1.12 functions

accept

addr2c

bind
CloseRxsCon
CloseSocket
connect
Dup2Socket
errno
ErrorString
GetHost
GetHostBYADDR
GetHostBYName
GetHostID
GetHostName
GetPeerName
GetProtoByName
GetProtoByNumber
GetServByName

rxsocket_eng_guide 7/38

GetServByPort
GetSocketBase
GetSocketBaseSingle
GetSocketEvents
GetSockName
GetSockOpt

help
HostErrorno
HostErrorString
InetAddr
InetCksum
InetNTOA
IoctlSocket
IsDotAddr
IsLibOn
IsOnSocks

IsUp

IsSocket
LastSocket
Listen
NextRxsReleased
ObtainSocket
OpenConnection
OpenRxsCon
QueryInterfaces
recv

RecvFrom
RecvFromUntil
RecvLine
ReleaseCopyOfSocket
ReleaseSocket
resolve

RxsCall

send

SendTo
SetRxSocketOpt
SetSocketBase
SetSocketBaseSingle
SetSocketSignals
SetSockOpt
ShutDown

socket

SysLog
SysLogCtl
WaitSelect
WriteRxsCon

1.13 functions by type

Sockets
CloseSocket
Dup2Socket
IsSocket
LastSocket
NextRxsReleased

rxsocket_eng_guide 8/38

ObtainSocket
ReleaseCopyOfSocket
ReleaseSocket
RxsCall

socket

ShutDown
GetSocketEvents

Sockets and socketbase options
IoctlSocket

GetSocketBase
GetSocketBaseSingle
SetSocketBase
SetSocketBaseSingle

GetSockOpt

SetSocketSignals

SetSockOpt

Rx/Tx

recv

RecvFrom
RecvFromUntil
RecvLine

send

SendTo

Listen
OpenConnection
WaitSelect

Connections
accept

bind
connect

Databases
GetHost
GetHostBYADDR
GetHostBYName
GetHostID
GetHostName
GetProtoByName
GetProtoByNumber
GetServByName
GetServByPort
QueryInterfaces
IsUp

Names
GetPeerName
GetSockName
InetAddr
InetNTOA
resolve

Low level
InetCksum
IsOnSocks

rxsocket_eng_guide

9/38

Errors and log
errno
ErrorString
HostErrorno
HostErrorString
SysLog
SysLogCtl

Various

addr2c
CloseRxsCon
IsDotAddr
IsLibOn

help
OpenRxsCon
SetRxSocketOpt
WriteRxsCon

1.14 accept

accept

Usage: sockfd=accept (socketfd, remote)
<socketfd/N>, <remote/V>

Accepts a connection on a socket after a bind and a listen.
Creates a new socket for the new connection and returns its socketfd.
Fills remote with the sockaddr_in fields of the connected peer.

Returns the socketfd, an integer >=0, or -1 for failure.

1.15 addr2c

Addr2C

Usage: packetAddr=Addr2C (addr)
<addr/N>

Converts an Internet address, e.g. as returned by resolve
to packed chars.
Usefull when you want to export an address into memory.

1.16 bind

bind

Usage: res=bind(socketfd, locale)
<socketfd/N>, <locale/V>

rxsocket_eng_guide 10/38

Assign a port number to a socket.

stem must be set as sockaddr_in, usually with ADDRADDR as O,
but can be not-set at all, e.g. for DGRAM sockets.

Returns -1 for failure.

EXAMPLE

sock = socket ("INET", "DGRAM", "IP")
if sock<0 then do

say "cannot open socket:" errno()
exit

end

local .ADDRFAMILY = "INET"

local.ADDRADDR = O
local .ADDRPORT = 4000

if bind (sock, "LOCAL")<0 then do
say "cannot allocate port 4000:"™ Errno()
exit

end

1.17 closerxscon

CloseRxsCon

Usage res=CloseRxsCon (attempt)
<attempt /N>

Closes the global rxsocket console.

attemp can be 0 or a non negative integer (1)

If no attemp is specified it is assumed to be 0

if attempt is 0, the function wait till all the console users
release it. If attemp is 0, the funtion doesn’t wait and the
console is closed iff it is not busy

Returns an ARexx boolean
See OpenRxsCon WriteRxsCon

1.18 closesocket

CloseSocket

Usage res=CloseSocket (socketfd)
<socketfd/N>

Closes a socket.

Returns -1 for failure.
The way how a socket is closed depends on its LINGER parameter value.

rxsocket_eng_guide 11/38

1.19 connect

connect

Usage: res=connect (socketfd, remote)
<socketfd/N>, <remote/V>

Connects the socket to the socketaddr_in as defined in remote

Returns -1 for failure.

EXAMPLE
sin.addrFamily = "INET"
sin.addrPort = 80
sin.addrAddr = addr /* from a call to resolve() =*/

if connect (sockfd, "SIN")<0 then do
say "connect: error" Errno ()
exit

end

1.20 dup2socket

Dup2Socket

Usage: sockfd=Dup2Socket (socketfd)
<socketfd/N>

Duplicates an existing socket and returns the new socketfd.
A new internal socket resource is allocated.
It calls the original dup2socket () function with the second

argument as —-1.

Returns the new socketfd or -1 for failure.

1.21 errno

errno

Usage: error=errno|()

Returns the current error code.

1.22 errorstring

ErrorString
Usage: errorString=ErrorString (code)
[code/N]

rxsocket_eng_guide 12/38

Returns the error string associated with the error code.
If code is not specified, it is assumed to be the current
error code.

1.23 gethostbyaddr

GetHostByAddr

Usage: res=GetHostByAddr (host, addr)
<host/V>, <addr /N>

Fills "host" with a hostent data, host given as addr.

Returns an ARexx boolean.
HostErrorno () can be used to get the error code for failure.

1.24 gethostbyname

GetHostByName

Usage: res=GetHostByName (host, hostName)
<host/V>, <hostName>

Fills "host" with a hostent, host given as name.

Returns an ARexx boolean.
HostErrorno () can be used to get the error code for failure.

1.25 gethostid

GetHostID ()

Usage: id=GetHostID ()

Returns the unique identifier of current host.
NOTE:

This function is deprecated.
To get the ip of an interface use QueryInterface ()

1.26 gethostname

GetHostName

Usage: res=GetHostName (name)
<name/S>

rxsocket_eng_guide 13/38

Fills "name" with the current host name.

Returns an ARexx boolean.

1.27 getpeername

GetPeerName

Usage: res=GetPeerName (socketfd, remote)
<socketfd/N>, <remote/V>

Set remote with a sockaddr_in of the peer connected to a socket.
Returns an ARexx boolean.

No TermiteTCP.

1.28 getprotobyname

GetProtoByName

Usage: res=GetProtoByName (stem, protoName)
<stem/V>, <protoName>

Set stem with the protoent of the proto given as name.

Returns an ARexx boolean.

1.29 getprotobynumber

GetProtoByNumber

Usage: res=GetProtoByNumber (stem,protoID)
<stem/V>, <protoID/N>

Set stem with the protoent of the proto given as number.

Returns an ARexx boolean.

1.30 getservbyname

GetServByName

Usage: res=GetServByName (stem, serviceName, protoName)
<stem/V>, <serviceName>, <protoName>

rxsocket_eng_guide

14 /38

1.31

Fills stem with the serventry of the service given as name and protocol.

Returns an ARexx boolean.

No TermiteTCP.

getservbyport

GetServByPort

Usage: res=GetServByPort (stem, portNumber, protoName)
<stem/V>, <potNumber /N>, <protoName>

Fills stem with the serventry of the of the service given as port

number and protocol.

Returns an ARexx boolean.

No TermiteTCP.

1.32 getsocketbase

GetSocketBase

Usage: res=GetSocketBase (stem)

<stem/V>

Gets some global parameters in the bsdsocket.library base.
The original bsdsocket.library function is SocketBaseTagList,

get/set; here we split it in 2 as GetSocketBase ()

You must set the field of stem you want to get,
The function fills the fields you choosed with their current value.

The fields accepted are:

— "BREAKMASK"

— "DTABLESIZE"
— "ERRNO"

— "ERRNOSTRPTR"
— "HERRNOSTRPTR"
— "HERRNO"

- "SIGIOMASK

- "SIGURGMASK

- "LOGFACILITY"
- "LOGMASK"

- "LOGSTAT"

Return -1 for failure.

EXAMPLE

drop a. /+ to be sure we don’t make a mass

then call the function.

i)

and SetSocketBase () .

*/

which is used to

rxsocket_eng_guide 15/38

a.ERRNOSTRPTR=40 /* must be numeric =*/
a.BREAKMASK=1 /+ can be whatever you want x/
a.HERRNOSTRPTR=2 /* must be numeric =*/

call GetSocketBase ("A")

say a.ERRNOSTRPTR ————-— >"Message too long"
say a.BREAKMASK ————- >4096
say a.HERRNOSTRPTR = —-————- >"Host name lookup failure"

1.33 getsocketbasesingle

GetSocketBaseSingle

Usage: res=GetSocketBaseSingle (opt,var,value)
<opt>,<var/V>, [value/N]

See GetSocketBase() .

Just as GetSocketBase () but get a single option.

var is where the value will be written.

value is the value for ERRNOSTRPTR and HERRNOSTRPTR.

Return -1 for failure.

1.34 getsocketevents

GetSocketEvents

Usage: res=GetSocketEvents (stem)
<stem/V>

Retrieves asynchronous events of sockets, setting the fields:
— ACCEPT

CLOSE

— CONNECT

— ERROR

- 0O0B

— READ

- WRITE

of the stem passed as argument, with an ARexx boolean.

Returns the sockefd of the socket interested in the asynchronous events
or -1 if no socket.

Errno() CAN’T be used to get info if failure.

1.35 getsocketname

rxsocket_eng_guide 16/38

GetSocketName

Usage: res=GetSocketName (socketfd, stem)
<socketfd/N>, <stem/V>

Sets stem as a sockaddr_in of the socket.

Returns -1 for failure.

1.36 getsockopt

GetSockOpt

Usage: res=GetSockOpt (socketfd, level, parm, stem)
<socketfd/N>,<level>, <name>, <stem/V>

Sets stem with value of the parm associated with a socket at level "level".

Levels are:
"SOCKET"
— nypn

Valid parms for "SOCKET" are:
—_ "DEBUG"

— "REUSEADDR"
— "REUSEPORT"
- "KEEPALIVE"
— "DONTROUTE"
- "LINGER"

— "BROADCAST"
- "OOBINLINE"
- "TYPE"

- "ERROR"

The value is written in stem.
If "LINGER", the fields "ONOFF", "LINGER" of stem are set.

Valid parms for "IP" are:

— "HDRINCL"

— "IPOPTIONS" just a boolean not an options buffer
— wTTL"

_ "TOS"

Returns -1 for failure.

1.37 help

help

Usage: helpString=help (funName)
<funName>

rxsocket_eng_guide

17 /38

Returns the arguments mask string of rxsocket.library function "funName".

1.38 hosterrorno

HostErrorno

Usage: error=HostErrorno ()

Returns current host-lookup error.

1.39 hosterrorstring

HostErrorString

Usage: errorString=HostErrorString (code)
[code/N]

Returns string associated with host-lookup error code.

If code is not specified, it is assumed to be the current
host-lookup error code.

1.40 inetaddr

InetAddr

Usage: inetAddr=InetAddr (addr)
<addr/N>

Converts IP from dotted form to integer addr.

The STRING returned IS NOT an ARexx number, but just a string of decimal

digits.

Returns -1 on error (bad dotted addr).

1.41 inetcksum

InetCksum

Usage: cksum=InetCksum(data, len)
<data>, [len/N]

Computes an Internet checksum on data for len bytes.
If no len, chekcsum is computed on all data.

The chekcsum is "the 16 bit one’s complement of the
one’s complement sum of all 16 bit words of ’data’

P

rxsocket_eng_guide 18 /38

for ’len’ bytes"; 1if ’"len’ is odd a padding byte is
added at the end of data.

1.42 inetntoa

InetNTOA

Usage: addrString=InetNTOA (hostName)
<addr>

Converts IP address from integer addr to dotted form.

1.43 ioctlsocket

IoctlSocket

Usage: res=IoctlSocket (socketfd,parm,data,var)
<socketfd/N>, <parm>, <data>, [var/V]

Set or get socket attributes.
The function has 3 differemt form.

To set a socket attribute:

- FIOASYNC value is /N

- FIONBIO value is /N

the function must be used in the form
res = IoctlSocket (socketfd,attr,value)
<socketfd/N>, <attrs>, <value>

e.g.

res = IoctlSocket (sock, "FIONBIO", 1)
sets as socket non blocking

To get a socket attribute:

- SIOCATMARK

— FIONREAD

the function must be used in the form
res = IoctlSocket (socketfd, attr,var)
<socketfd/N>, <attr>, <var/v>

e.g.

res = IoctlSocket (s, "FIONREAD", "A")
gets the number ready to be read in a

To get an interface attribute:
— SIOCGIFADDR

— SIOCGIFDSTADDR

— SIOCGIFBRDADDR

— SIOCGIFNETMASK

- SIOCGIFFLAGS

— SIOCGIFMETRIC

- SIOCGIFMTU

— SIOCGIFPHYS

rxsocket_eng_guide 19/38

the function must be used in the form

res = IoctlSocket (socketfd, attr, name, var)
<socketfd/N>, <attr>, <name>, <var/V>
e.g.

res = IoctlSocket (s, "SIOCGIFADDR", "miO", "A")
gets the IFAddr of miO (if it exists) and write it in a as a dotted addr.

Returns -1 for failure.

EXAMPLES:
look at ioctl.rexx in examples drawner.

NOTE:

I didn’t want to let user set any interface attributes.
I think this is dangerous. Anyway it might change.

1.44 isdotaddr

IsDotAddr

Usage: res=IsDotAddr (addr)
<addr>

Tests if addr is a "good dotted internet address form".

Returns an ARexx boolean.

1.45 islibon

IsLibON

Usage: res=IsLibON (name)
[name]

Tests on what stack the rxsocket is working on or if a library is present,
returning an ARexx boolean.

Name is a string made of one or more of the following words separeted by space

(s):
- MIAMI running on Miami
- AMITCP running on AmiTCP (~"MIAMI TTCP")
- TTCP running on TermiteTCP
— USERGROUP a usergroup.library is present
- GENESIS Genesis is installed

If no argument is given, the function returns a string describing
the stack in use. If no stack is running an empty string is
returned.

Nota Bene: Genesis is tested if no stack is running.

rxsocket_eng_guide 20/38

1.46 isonsocks

IsOnSocks

Usage: res=IsOnSocks (wrapper)
[wrapper]

Tests if the stack is running under a socks, e.g. you set a socks
in Miami socks.
It works with Miami and Genesis socks wrapper with no argument.

It flushes memory and searches in ExecBase library list.

Returns an ARexx boolean.

1.47 isup

IsUp

Usage: res=IsUp(interface)
<interface>

Tests if an interface is up.
Returns:
-1 the specified interface doesn’t exist

0 the interface is down
1 the interface is up

1.48 issocket

IsSocket

Usage res=IsSocket (socketfd)
<socketfd/N>

Tests i1f a socketfd is a valid socket descriptor.

Returns an ARexx boolean.

1.49 lastsocket

LastSocket ()

Usage: socketfd=LastSocket ()

Returns the last socketfd active in the macro, or -1 if none.
This function is usefull at a beginning of a macro that is supposed

rxsocket_eng_guide 21/38

to be started by RxsCall() or inetd, to check if it has a socket
already opened.

1.50 listen

listen

Usage: res=listen (socketfd, backloqg)
<socketfd/N>, <backlog/N>

Tells system that socket wants to accept connection.
backlog is the max number of connection accepted.

Returns -1 for failure.

1.51 nextrxsreleased

NextRxsReleased

Usage: key=NextrxsReleased/()

Returns the next released socket in a child macro called via RxsCall ()
from this macro.

See RxsCall ()

Returns a valid key to be used with ObtainSocket ()
If there are no (no more) sockets to get, key is null ()

Examples:

call RxsCall (fun,, "OBTAIN")

key=NextRxsReleased()

do i=0 while key~=null ()
s.i=0ObtainSocket (key)

end

1.52 obtainsocket

ObtainSocket

Usage: sockfd=ObtainSocket (key, family, type,protocol)
<key>, [family], [typel, [protocol]

The function is needed when you want to pass a socket from a macro to another.
It obtains a previously released socket.

Only rxsocket.library released sockets can be obtained.

Key is the key returned by ReleaseSocket () or ReleaseCopyOfSocket ().

The way used to handle a safe socket release-obtain is:

rxsocket_eng_guide 22 /38

- when a socket is released by ReleaseSocket () or ReleaseCopyOfSocket (), the

socket is still is linked in a list that belongs to the macro where it was <+
created.
- if a released socket is not obtained it is freed at the exit of the macro <
where

it was created;

- if a release socket was obtained with ObtainSocket () it belongs to the
environment of the macro where it was obtained;

- if ObtainSocket () fails for any reasones, the socket is still in the macro <

where it
was created;
- when a socket is released, it can’t be used before it is obtained.
- key is the result of ReleaseSocket () , ReleaseCopyOfSocket () or <«

NextRxsReleased ()
and consists of a packed char of length 8, or 4 on failure.
Key can be tested with a comparation to null() as we usually do with <+
messages
from an ARexx port. Key passed to ObtainSocket () is checked to test its <+
coerence,

anyway, please, don’t "play" with it.

Usally ReleaseSocket () is used in a "concurrent service" after a accept() and <
the

key is given as argument of a macro that must handle the new connection. The

first thing that macro should do is to obtain the socket with a call to

ObtainSocket () and tell the "parent macro" about the result of the operation

(e.g. with an ARexx message on an ARexx port).

If you specify one or more of family , type , proto , the socket is obtained
only if it matches them

Returns -1 for failure or the socketfd of the obtained socket.

1.53 openconnection

OpenConnection

Usage: sockfd=OpenConnection (proto,localPort,host,remotePort, stem)
<proto>,<localPort>, [host], [remoteport], [stem/V]

A function that creates a socket binds and/or connects it.

Let’s see the different forms:
— proto can be the string "TCP" or "UDP"
— portl and port2 are service name or port numbers
if and only if they are service names, they are resolve by getserbyname ()

res=0penConnection (proto, portl)
resolve portl if it is a service name
create a socket
bind the socket to portl

res=0penConnection (proto,portl, hostName)
resolve portl if it is a service name
resolve hostName

rxsocket_eng_guide 23/38

create a socket
connect the socket to hostName:portl

res=0penConnection (proto,portl, hostName, port?2)
resolve portl if it is a service name
resolve port2 if it is a service name
resolve hostName
create a socket
bind the socket to portl
connect the socket to hostName:port2

Did you understand?

Take a look at the examples.
Read some docs for the differeces beetwen conneting a socket of type TCP or <>
UDP.

Have fun!
Returns:

-5 socket can’t be bound, e.g. port already bound
-4 port2 not resolved

-3 portl not resolved

-2 host lookup failure

-1 bsdbsdsocket.library error

>=0 socket number id, if success

If present as the 5th argument and on connection, stem is filled as <>
socketaddr_in.

1.54 openrxscon

OpenRxsCon

Usage res=0OpenRxsCon ()

Tries to open the global rxsocket console.
The global rxsocket console ("console") is a console
to be used for debuggin porpouse.

It’s default description is
CON:0/10/280/120/RXSocket Console/WAIT/AUTO/CLOSE
but if the ENV:RXSCON is found, its content is used

Once the console is opened, rxsocket.library CANNOT be flused
until it is closed wvia CloseRxsCon ()

Returns an ARexx boolean (1 means the console was opened or it was
already opened) .
See CloseRxsCon WriteRxsCon

rxsocket_eng_guide

24 /38

1.55 queryinterfaces

1.56

QueryInterfaces
Usage: res = QuerylInterfaces (stem)
<stem/V>

Reads the interface list and writes interfaces attributes in stem
Returns the number of the found interfaces, so 0 means none, or -1
that means that the function was not able to create the DGRAM socket
needed for the query. Anyway a positive results means success.

If res is positive, interface attributes are written in
stem.i, ..., stem.j where j=res-1, e.g.

res = QueryInterface ("INTERFACES")
if res>=0 then do

say "Found" res "interface(s)"

do i=0 to res-1

say interfaces.i.name

end
end
else say "not able to find any interface"

The attributes are:
— Name
- Family the family of the interface as integer (2 stands for INET)
- AFAddr the address of this interface
- PPaddr
- BAddr
- NMask
- Metric
- MTU
— IFWire
- Flags the decimal value of flags, then
- up
- broadcast
- debug
- loopback
- pointtopoint
- notrailers
- running
- noarp
- promisc
- allmulti
- oactive
— simplex
- 1inkO
- linkl
- link2
- multicast

recv

rxsocket_eng_guide 25/38

recv

Usage: res=recv (socketfd,buff, len, flags)
<socketfd/N>, <buff/S>, [len/N], [flags]

Receives data from a connected socket. It receives max len bytes and fills <>
buff
with the data received.

If len is not specified it is assumed to be 256

Flags is one or more of:
— n OOB n

— "PEEK mw

— "DONTROUTE"

- "EOR"

— n TRUNC "

- "CTRUNC"

- "WAITALL"

— "DONTWAIT"

- "EOF n

- "COMPAT"

e.g. "OOB PEEK".

Returns -1 for failure or bytes read length.

1.57 recvifrom

RecvFrom

Usage: res=RecvFrom(socketfd,buff, len,flags, remote)
<socketfd/N>, <buff/S>, [len/N], [flags], [remote/V]

Receives data from a socket. It receives max len bytes and fills buff
with the data received.

If len is not specified it is assumed to be 256
If present, remote must be set as sockaddr_in.

Flags is one or more of:
— "OOB"

— "PEEK"

— "DONTROUTE"

—_ "EOR"

— "TRUNC"

- "CTRUNC"

- "WAITALL"

— "DONTWAIT"

—_ "EOF n

- "COMPAT"

.g. "OOB PEEK".

0}

Returns -1 for failure or bytes read length.

rxsocket_eng_guide 26 /38

1.58 recvfromuntil

RecvFromUntil

Usage: res=RecvFromUntil (socketfd,buff,len,stopData, flags, remote)
<socketfd/N>, <buff/S>, <len/N>, <stopData>, [flags], [remote/V]

Receives data from a socket until the stopData data occurr.

Very funny function that wait for a string to uccur and then

returns the data received till that string (but without that string).
Next recv of any kind will return data AFTER the stop string.

It receives max len bytes and fills buff with the data
received.

If present, remote must be set as sockaddr_in.

Flags is one or more of:
—_ "OOB"

—_ "PEEK"

— "DONTROUTE"

— IIEOR"

- "TRUNC"

— "CTRUNC"

- "WAITALL"

— "DONTWAIT"

—_ "EOF "

- "COMPAT"

e.g. "OOB PEEK".

Returns -1 for failure or bytes read length +1, so 1 means eof.

1.59 recvline

RecvLine

Usage: res=Recvline (socketfd,buff, len, flags, remote)
"<socketfd/N>, <buff/S>, [len/N], [flags], [remote/V]

Receives a line from a socket. It receives max len bytes and fills buff with
the data received.

If len is not specified it is assumed to be 256
If present stem must be set as sockaddr_in.

Flags 1is one or more of:
— "OOB"

—_ "PEEK"

— "DONTROUTE"

— IIEOR"

— "TRUNC"

- "CTRUNC"

- "WAITALL"

rxsocket_eng_guide 27 /38

— "DONTWAIT"

—_ "EOF "

- "COMPAT"

e.g. "OOB PEEK".

Returns -1 for failure or bytes read length.

This is a relly bad non buffered readline. Don’t use it so much!
This function doesn’t work on MiamiDx 0.9.

It was patched, so that if no remote is given, it uses recv() rather

then recvfrom(). So if ou are using this function with a STREAM
socket don’t pass it remote.

1.60 releasecopyofsocket

ReleaseCopyOfSocket

Usage: key=ReleaseCopyOfSocket (socketfd)
<socketfd/N>

Releases a copy of a socket to the public.
Returns a key string to be used with ObtainSocket ().

See ObtainSocket ().

1.61 releasesocket

ReleaseSocket

Usage: key=ReleaseSocket (socketfd)
<socketfd/N>

Releases a socket to the public.
Returns a key string to be used with ObtainSocket ().

See ObtainSocket ().

1.62 resolve

resolve

Usage: addr=resolve (host)
<host>

Converts IP address from name to dotted form (or from dotted form to itself)
The functions first tries inet_addr () and then a gethosbyname() .

Returns -1 or address of host.

rxsocket_eng_guide 28 /38

1.63 rxscall

RXSCall

Usage: res = RxsCall (macro, socketfd, flags)
<macro>, [socketfd/N], flags

This function calls macro , and creates a socket by releasing a copy of
socketfd and calling a special ARexx macro process handler that tries to
obtain that socket.

The socketfd in the called macro is usually DIFFERENT from the one passed.
The function LastSocket () returns the last socketfd created in the macro,

so 1f the macro was started by this function, LastSocket () always returns a
value>=0.
If socketfd is negative (-1) or it is not specified, no socket is passed.

Local vars, e.g. created bye rmh.library/SetVar () are passed to the child <+
macro.

Let’s name the macro in which this function is used "parent" and the macro
called "child"

flags can be one or more of:

- SYNC usually the child is called async; if you specify this flag,
the parent waits for the child to end;
note that other flags may force it;

- STRING child is a macro-string rather than a macro file name;

- FUN child is called as a function;

- RESULT a result is expected from child; SYNC is forced;

- OBTAIN every socket released in child, but not obtained at child exit,
is passed to parent, that can obtain it via NextRxsReleased() ;
this is the suggested way to share sockets among macros;

- NOERR if an error occurs in child, it is usually reported to the parent;

with this flag, you will not be bored by errors occurred in
child, and if an error occurred, it is written in RC; note that
this has sense only if SYNC was specified.

- OPENCON if child has no stdin/stdout, forces the global rxsocket console
to be opened, so that it will be the stdin/stdout of the macro

NOTA BENE: the socket is always duplicate, so i1if parents does not need it
my suggestion is to immediatly close it, expecially if it is a
STREAM one.

Returns:

- a result from child if RESULT was specified
- 0 if SYNC was not specified and there was no error in child

1.64 send

send

Usage: res=send(socketfd,data, flags)

rxsocket_eng_guide

29/38

<socket fd/N>, <data>, [flags]

Sends data to a connected socket.

Flags is one or more of:

Returns -1 for failure or legth of data send.

1.65

OOB

PEEK
DONTROUTE
EOR

TRUNC
CTRUNC
WAITALL
DONTWAIT
EOF
COMPAT

.g. "OOB PEEK".

sendto

SendTo

Usage: res=SendTo (socketfd,data, flags, remote)
<socketfd/N>, <data>, [flags], [remote/V]

Send data to a socket.

If present, remote must be set as sockaddr_in.

Flags is one or more of:

0}

Returns -1 for failure or length of data send.

1.66

OOB

PEEK
DONTROUTE
EOR

TRUNC
CTRUNC
WAITALL
DONTWAIT
EOF
COMPAT

.g. "OOB PEEK".

setrxsocketopt

SetRxSocketOpt

Usage: call SetRxSocketOpt (options)
<options>

rxsocket_eng_guide 30/38

Sets global parameter in rxsocket.library for the current macro.
Actually, options defiined ares:
- HALT every blocking functions, can be broken via "hi"
e.g. connect () will be broken by "hi"
HALT re-sets this option ON again, after a NOHALT
— NOHALT set HALT by "hi" OFF

1.67 setsocketbase

SetSocketBase

Usage: res=SetSocketBase (stem)
<stem/V>

Sets global parameter in the bsdsocket.library base.
The original bdsocket.library function is SocketBaseTagList, which is use to
get/set; here we split it in 2 as GetSocketBase() and SetSocketBase().

You must set the field of "stem" with the value you want to set, then call the
function.

The fields are:
— BREAKMASK

— DTABLESIZE

— ERRNO

— HERRNO

- SIGEVENTMASK
- SIGIOMASK

— SIGURGMASK

- LOGFACILITY
- LOGMASK

- LOGSTAT

Returns -1 for failure.

1.68 setsocketbasesingle

SetSocketBaseSingle

Usage: res=SetSocketBaseSingle (opt, value)
<opt>, <value/N>

See SetSocketBase()
Just as SetSocketBase () but sets only one opt.
opt is the option name

value is the value to set, only numeric for now.

Returns -1 for failure.

1.69 setsocketsignals

rxsocket_eng_guide 31/38

SetSocketSignals

Usage: call SetSocketSignals (intrMask, ioMask,urgMask)
[intrMask/N], [ioMask/N], [urgMask/N]

Tells the stack which signals to use for SIGINT, SIGIO and SIGURG.
The same can be set by SetSocketBase ()

Returns always 1.

1.70 setsockopt

SetSockOpt

Usage: res=SetSockOpt (socketfd, level,parm,value,value?)
<socketfd/N>, <level>, <parm>, <value>, [value2/N]

Sets value of the opt name associated with a socket at level "level".

Levels are:
- SOCKET

- IP

- TCP

Parms for level "SOCKET" are:
- DEBUG N

— REUSEADDR
— REUSEPORT
— KEEPALIVE
— DONTROUTE
— LINGER

— BROADCAST
— OOBINLINE
— SNDBUF

— RCVBUF

— SNDLOWAT
— RCVLOWAT
- SNDTIMEO
— RCVTIMEO
- TYPE

- ERROR

— EVENTMASK

gzzzzz2zz222222 22

If parm is "EVENTMASK", value is one or more of:
— ACCEPT

— CLOSE

— CONNECT

— ERROR

- 0OOB

- READ

- WRITE

.g. "CONNECT ERROR".

D

rxsocket_eng_guide

32/38

1.71

If parm is "LINGER", "SNDTIMEO" or "RCVTIMEO" the 5th argument can be passed

(default 0).

Valid opt for level IP are:

— HDRINCL N
- TTL N
- TOS N

Valid opt for level TCP are:

— NODELAY N
- MAXSEG N
— NOPUSH N
— NOOPT N

Returns -1 for failure.

shutdown

ShutDown

Usage: res=ShutDown (socketfd, how)
<socketfd/N>, <how/N>

Causes all or part of a full-duplex connection on the socket to be shut down.

If how is 0, further receives will be disallowed.
If how is 1, further sends will be disallowed.
If how is 2, further sends and receives will be disallowed.

Returns -1 for failure.

1.72 syslog

SysLog

Usage: res=SysLog(message, level, facility)
<message>, [level], [facility]

message i1s a string that can’t contain %c if ¢ is different from
- m %m is the string related to the current errno

- % %% is a %

The function checks for other form and generates ARexx error 18 if
if find them.

Writes a message to syslog.
Level is on of:

- EMERG

— ALERT

- CRIT

- ERR

— WARNING

— NOTICE

- INFO

rxsocket_eng_guide 33/38

- DEBUG

Facility is on of:
— KERN

- USER

- MATL

— DAEMON

- AUTH

- SYSLOG

- LPR

- NEWS

- UUCP

- CRON

— AUTHPRIV
- FTP

Always returns 1.

1.73 syslogctl

SysLogCtl

Usage: res=SysLogCtl (logpointer, logmask, facility, opts)
[logpointer], [logmask], [facility], [opts]

Controlls syslog.

logpointer is a string (copied) to be a tag for the message
(generated in the calling macro.

logmask is one of:

- EMERG

— ALERT

- CRIT

- ERR

— WARNING

— NOTICE

- INFO

— DEBUG

It is a LOG_UPTO() filter mask.

facility is one of:
— KERN

- USER

- MATL

— DAEMON

— AUTH

- SYSLOG

- LPR

- NEWS

- UUCP

— CRON

— AUTHPRIV
- FTP

rxsocket_eng_guide 34 /38

opts 1is one or more (separated by space(s)) of:
- PID

- CONS

— ODELAY

— NDELAY

— NOWAIT

— PERROR

Returns an ARexx boolean.

1.74 socket

socket

Usage: sockfd=socket (family, type,protocol)
<family>, <type>, <protocol>

Creates an endpoint for communication and returns a descriptor.
Adds to the local-macro list of open sockets a new link so that

resource can be freed at macro exit.

Returns a socketfd as integer that can be used in every function
wich needs a "socketfd" argument.

Returns -1 for failure.

1.75 waitselect

WaitSelect

Usage: res=WaitSelect (stem, secs,micro,signals)
<stem/V>, [secs/N], [micro/N], [signals/N]

Waits for events on sockets or a timeout or exec signals.
An example will help.

Let’s suppose we have 2 sockets, sfl and sf2, and we want to controll
if something happens about them. We do:

WAIT.READ.O = sfdl /x to wait for ready to be read event =/
WAIT.READ.1 sfd2

WAIT.WRITE.O = sfdl /+ to wait for ready to be written event x/

WAIT.WRITE.1 = sfdl
WAIT.EX.0 = sfdl /+ to wait for exceptions events=*/
WAIT.EX.1 = sfd2

/+ we wait for the events above, or 10 seconds or a signal in sig mask =*/
res = WaitSelect ("WAIT",10,0,siqg)

rxsocket_eng_guide 35/38

/* res may be:
< 0 error
= 0 no events on sockets
> 0 number of ready sockets

To test wich sockets is ready we make a boolean test on WAIT.O.READ
and so on

x/
if WAIT.0.READ then ... /% socket sfdl is ready to be read =/

The function returns:
-1 an error occurre
0 timeout or signal
>0 number of ready socket for xallx the READ, WRITE, EX.

The function sets:

- 1.READ ARexx boolean

- 1.WRITE ARexxX boolean

- 1.EX ARexx boolean

— SIGNALS received signals

A value of -1 as socket descriptor in READ.i, WRITE.i or EX.i
is skipped. if no socket descriptor is set, no socket is waited for.

Returns -1 for failure.

1.76 writerxscon

WriteRxsCon

Usage res = WriteRxsCon (msq)
<msg>

Write msg to the global rxsocket console.

If the console was not opened, it is opened

If msg doesn’t end with a newline ('\n’ , "A"x), a newline
is added.

Returns an ARexx boolean
See OpenRxsCon CloseRxsCon

1.77 passing sockets

Passign sockets means:
— exporting sockets TO another macro
- importing sockets FROM another macro

The general mechanism ReleaseSocket/ObtainSocket can be used to
manage import/export:
— macro A

- create socket s

rxsocket_eng_guide 36/38

— release socket s via ReleaseSocket ()
- send to macro B a message containing the key returned by ReleaseSocket ()
(or call macro B with the key as an argument)
— macro B
- wait for a message from macro A conteining the key to pass to ObtainSocket <
0
(or wait to be started from macro A with the key as an argument)
- tries to obtain the socket via ObtainSocket ()
— reply the message with the result of the operation
(or in same way tells A it obtained the socket, e.g. via a signal)
- macro A
- wait for answer from macro B
— test the result: if failure, re-obtain the socket and handles it

A simpler mechanism to EXPORT ONE socket is to use RxsCall funtion:
— macro A

- create socket s

- call macro B via RxsCall (B, s)

— close socket s (RxsCall() dup the socket)
— macro B

- get the socket via LastSocket () function
From version 9.1 there is a way to IMPORT sockets from a macro:
— macro A

- call macro B via RxsCall (B,, "OBTAIN")
— macro B

- create its sockets

— release them via ReleaseSocket ()
- macro A

— obtain the socket released by macro B via NextRXSReleased() function
With this mechanism you can, e.g, use a "child" macro to connect
to a host and obtain a "connected" socket from the "child"

1.78 thanks

- thanks to shido for his gift "Hi shido! A lot of ovetti for you :-)";

- thanks to [X_MaN] who introduced me into the irc world and Internet in
general;

— thanks to Kruse for his wonderfull Miami ;
- thans to poing for his help;
— thanks to Wiz for his help in Genesis support;

- thans to Amiga "May it leave for ever"

1.79 bibliography

- Quite all rfc ;

rxsocket_eng_guide 37 /38

— "Unix Network Programming" - W. Richard Stevens PTR Prentice Hall;

- socket.library autodoc from MiamiSDK, AmiTCPSDK and TermiteTCPSDK.

1.80 note

Pointers to deallocate the local environment in the library base 1is saved
in the fields pr_ExitCode and pr_ExitData of the Process structure of

the macro. At exit a chain of pr_ExitCode (pr_ExitData) is called.

Details are avaible on request.

When a function is not avaible, the user is informed via a requester
and an ARexx error 15 (function not found) is returned.

IsLibOn () can be used to test the environment.

rxsocket.library offers an API for other ARexx libraries that needs
to use bsdsocket.library functions in a clean way.
rxsocket.library SDK are avaible on request.

1.81 inetdsupport

With rxsocket.library you can easly create full functional inetd
server.

A little program called "rxs" is supplied. It should be installed
in c: (as the install script does) or in SYS:Rexxc

It launches an ARexx macro in a special way, so that it can
obtain the socket from inetd.

In inetd database you must

- use rxs (complete path) as "Service"

- use rxs as "Name"

— specify the name of the macro (and its arguments) as "Args"

rxs template is:
"CON=CONSOLE/S,MACRO/A/F"

CONSOLE macros called from inetd have no stdin/stdout, anyway
they can be forced to use rxsocket global console as stdin/stdout
for debugging porpouses. This switch forces the global rxsocket
console to be opened, if it is not. See OpenRxsCon

rxsco is a litle program to open the console via shell;

rxscc close the console.

MACRO is the name of the macro with its arguments
In the macro, you can obtain the socket passed by inetd, via

LastSocket () (NOTA BENE: this must be called BEFORE other
sockets are created):

rxsocket_eng_guide 38/38

s=LastSocket ()
if s>=0 then /* ok I was called from inet and the socket is s=*/

If LastSocket () returns -1, the macro was NOT started from inetd
and has no socket. In this event, the macro can choose to run as
a stand-alone service rather than an inetd service.

	rxsocket_eng_guide
	main
	warning
	guide
	distribution
	author
	introduction
	installation
	requirements
	terms
	bugs
	structures
	functions
	functions by type
	accept
	addr2c
	bind
	closerxscon
	closesocket
	connect
	dup2socket
	errno
	errorstring
	gethostbyaddr
	gethostbyname
	gethostid
	gethostname
	getpeername
	getprotobyname
	getprotobynumber
	getservbyname
	getservbyport
	getsocketbase
	getsocketbasesingle
	getsocketevents
	getsocketname
	getsockopt
	help
	hosterrorno
	hosterrorstring
	inetaddr
	inetcksum
	inetntoa
	ioctlsocket
	isdotaddr
	islibon
	isonsocks
	isup
	issocket
	lastsocket
	listen
	nextrxsreleased
	obtainsocket
	openconnection
	openrxscon
	queryinterfaces
	recv
	recvfrom
	recvfromuntil
	recvline
	releasecopyofsocket
	releasesocket
	resolve
	rxscall
	send
	sendto
	setrxsocketopt
	setsocketbase
	setsocketbasesingle
	setsocketsignals
	setsockopt
	shutdown
	syslog
	syslogctl
	socket
	waitselect
	writerxscon
	passing sockets
	thanks
	bibliography
	note
	inetdsupport

