rmhenglish

rmhenglish

] COLLABORATORS
TITLE :
rmhenglish
ACTION NAME DATE SIGNATURE
WRITTEN BY May 24, 2025
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

rmhenglish iii

Contents

1

rmhenglish 1
1.1 Index . . . o e e e 1
1.2 warning e e e |
1.3 dntroduction e e e e 1
1.4 TequiremMentso e e e e e e e e e e e 2
1.5 installation. L e e e 2
1.6 author e e 2
1.7 distribution L e e 2
1.8 termsS e e 2
1.9 bugs e 3
L10 functions o o e e e e 3
L1T addappicon e e e e e e e 5
112 addeX . . . o e e e e 5
1.13 addlibrary e 6
114 addpart e e e e e 6
115 addtime e e e 6
1.16 allocsignal e e 7
LI7 and o e e 7
1.18 appiconsignal L e 7
1.19 changemode L e 8
1.20 checknotify e e e 8
1.21 checksignal e 8
1.22 checktimer o e e 8
123 cmptime e e e e e e 9
1.24 comparedates L e e e e e 9
1.25 createtempfile L L e e e e 9
1.26 createtimer o i it e e e e e e e e e e e e e e e 10
127 cxsignal e e e 10
1.28 date2gmt e e e e e e e e 10

1.29

deletevar L e e e 11

rmhenglish iv

1.30 dOSString o o o e 11
31 ds2tv. . o o e e 11
1.32 easyrequest e e e e e e e e 11
133 expand L e e e 12
1.34 fault 13
1.35 filepart e e e e e 13
1.36 formatdate e 13
1.37 freeappiCon L e e e e e e e 14
1.38 freecX o o 15
1.39 freesignal e e e e e e 15
1.40 freenotify L e 15
LAY freetimer o o e e e e e e e 15
1.42 getdate L e e e 16
1.43 getfiledate e e e e 16
144 getsyStiMe e e e e e e e 16
LAS OZ . . o o o e e e 17
1.46 getuniqueid L L e 17
LAT ELVAT o e e e e e e e e e e 17
1.48 gmtoffset 18
1.49 handleappicon L e e e e e e e e e 18
1.50 handlecx o L e e 18
151 help . . o o 19
152 H0CIT . . o o o 19
1.53 GSINteractive o e e e e e e e e 20
1.54 Tock . . o o 20
1.55 match . . . o e 20
1.56 matchpattern L e e e 21
1.57 namefromfile e 21
1.58 notifysignal e 21
1.59 openurl . . .o e e 21
1.60 O . . o e e 22
1.61 parseconfig L e e e e e 22
1.62 parsedate e e 23
1.63 parsepattern o i e 24
1.64 pathpart e 24
1.65 portsignal e 24
1.66 portwait e e 25
1.67 printfault e e e e 25
1.68 programname e e e e e 25

rmhenglish v

1.69
1.70
1.71
1.72
1.73
1.74
L.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89
1.90
1.91
1.92
1.93

1AdArES e e e e e e e e e e e e 26
readtextClip e e 27
realname e e e e 27
TEQUESIET « . v v v v v e 28
SEICOMIMENE . . .« . v v v v bt e et e et e e e e e e e e e e e e e e e e e 28
setfiledate L L e 28
SBLOWNIET . .« © . v v v it e 29
SELIOBIT . . o o o i i it e e e e e e e e e 29
SEIIEXXVAT .+« o v v v v e v e 29
setsignal . . . L L L e e e e e 30
SEESIEIIL v e e e e e e e e e e e e e e e 30
SELSYSHIME o o e e e e e 30
SELVAT . . v v e e e e e e e e e e 30
SIgnal .. oL e e e e 31
startnotify L L e 31
SEATEMET o ot e e e e e e e e e e e e e e e e 32
SLOPHIMET o o o e 32
subtime e 32
timersignal L e e 32
tV2dS . L L 33
verifyhotkey o L e e 33
WALl . . o e e e e 33
waitforchar e 33
WHtEteXtCIID o e e e e e e e e e e 34

rmhenglish 1/34

Chapter 1

rmhenglish

1.1 Index

rmh.library 5.1

Warning
Distribution
Author

Introduction
System requirements
Installation

Terms

Bugs

Functions

OW 00 J o U b WK

1.2 warning

THIS SOFTWARE AND INFORMATION ARE PROVIDED "AS IS".
ALL USE IS AT YOUR OWN RISK, AND NO LIABILITY OR
RESPONSIBILITY IS ASSUMED. NO WARRANTIES ARE MADE.

1.3 introduction

The name of the library stands for Rexx Must Have:
the library is a set of functions I think ARexx macros should have.

The library offers functions to:

- manipulate:
appicon standard AmigaOS app icon
commodities standard AmigaOS cx
notify standard AmigaOS notify on file or clipboard changes
timers timer.device timers

- alloc signal and use them in a standard AmigaOS signals events driven
programming style

— parse arguments and files with the most powerfull ReadArgs around
and the very cute examine

rmhenglish 2/34

— help programmer with many functions that handle date, time, environment
vars and so on.

All resources created are automagically freed at the exit of the macro.

All "object",e.g. timers or notifies, are named with unique integers.

1.4 requirements

The library needs AmigaOS, version >=2.

1.5 installation

Use the installation script.

1.6 author

I am Alfonso Ranieri

My e-mail address is alfier@iol.it
You can find me on irc at:

- #amigaita ircnet ;

- f#amyita ircnet

You can find last version of this library at my home page:
http://users.iol.it/alfier

1.7 distribution

rmh.library is FreeWare.

You are free to detribute it as long as the original archive is kept intact.
Commercial use or its inclusion in other software package is prohibited
without prior consens from the Author.

1.8 terms

- stem or stemName: a valid ARexx variable name e.g. var, var.0, var.name, var;

— DateStamp: a stem set by macro or returned by functions, with
the fields:
— DAYS
— MINUTE
- TICK

rmhenglish 3/34

set;

- TimeVal: a stem set by macro or returned by functions, with
the fields:
- SECS
- MICRO
set;

- types of arguments: the types used are:
D any data -
numeric /N

N

S symbol /S ARexx valid symbol

Y stemName /V ARexx valid symbol as S but with length<20
1.9 bugs

None serious known.

1.10 functions

The functions have also the "RMH_ "FunctionName form to avoid conflicts with
functions from other libraries.

Dos related
ChangeMode
CreateTempFile
DosString
expand
IsInteractive
lock
MatchPattern
NameFromFile
ParsePattern
ReadArgs
RealName
SetComment
SetOwner

Notify
CheckNotify
FreeNotify
NotifySignal
StartNotify

AppIcon
AddAppIcon
AppIconSignal
FreeAppIcon
HandleAppIcon

Commodity
AddCx

rmhenglish 4/34

CxSignal
FreeCx
HandleCx
VerifyHotkey

Faults
AddPart
AllocSignal
and
CheckSignal
fault
FilePart
FreeSignal
IoErr

or

PathPart
PortSignal
PortWait
PrintFault
ProgramName
SetIoErr
SetSignal
signal

wait
WaitForChar
XOor

Timer
AddTime
CheckTimer
CmpTime
CompareDates
CreateTimer
date2GMT
ds2tv
FormatDate
FreeTimer
GetDate
GetFileDate
GetSysTime
GetTZ
GMTOffset
ParseDate
SetFileDate
StartTimer
StopTimer
SubTime
SetSysTime
TimerSignal
tv2ds

Vars
DeleteVar
GetVar
SetVar

Various

rmhenglish 5/34

AddLibrary
EasyRequest
GetUniquelD
help

OpenURL
ParseConfig
ReadTextClip
requester
SetRexxVar
SetStem
WriteTextClip

1.11 addappicon

AddAppIcon

Usage: applconID = AddApplcon (name, icon)
<name>, [icon]

Adds an appicon on the workbench screen.
An appicon is a standard AmigaOS appicon.

"name" is the name of the appicon.

"ico" is the name of a info file, without the .info suffix.
If "icon" is not given or the icon can’t be found, the system
tools default icon is used.

The appicon is freed at the exit of the macro if it wasn’t yet.

Returns an unique ID.

See ApplIconSignal FreeAppIcon HandleAppIcon

1.12 addcx

AddCx

Usage: cxID = AddCx (name,title,desc, flags, hotkey)
<name>, <title>, <descr>, [flag], [hotkey]

Adds a commodity.
A commodity is a standard but limited AmigaOS commodity.

"name" is the name of the commodity as in Exchange

"text" 1is the text as in Exchange

"descr2 is the description as in Exchange

"flags" is one or more of:

- UNIQUE only one cx with name is allowed

- NOTIFY notify me if someone try to open another cx with name
- SHOWHIDE receive APPEAR DISAPPEAR

"hotkey" is a wvalid hotkey description. If it is specified, the
cx will receive a HOTKEY event when this sequence is used.

rmhenglish 6/34

The functions returns:

- 0 a UNIQUE cx with named "name" already exists
- 1 invalid hotkey description

— otherwise cxID

See CxSignal FreeCx HandleCx

1.13 addlibrary

AddLibrary

Usage: res = AddLibrary(<libl>, {1ib})
<libl>, {1ib}

Adds to the ARexx libraries list till to 15 libraries with
the query offset at -30 and priority O.

Each library is first check to be already in the ARexx library
list, the a try to open it is made.

Returns an integer:
-0 all ok
- n>0 n-th lib can’t be added. The var RESULT is set to the name that failed.
So use is:
if Addlibrary (namel,name2)>0 then do /* failure x/
say "can’t add ’'"result"’"

exit
end

1.14 addpart

AddPart

Usage: complete = AddPart (path, file)
<path>,<file>

Adds "path" to "file".
Returns the complete path to file.

See FilePart PathPart

1.15 addtime

rmhenglish 7/34

AddTime

Usage: call AddTime (timel,time2)
<timel/V>,<time2/V>

Adds "timel" to "time2", result in "timel", both timeval structures.

See CmpTime GetSysTime SubTime SetSysTime

1.16 allocsignal

AllocSignal

Usage: sigBit = AllocSignal ()
Allocates an returns a signal bit.
The mask to wait for is 2xxsigBit.
Returns -1 for failure

See CheckSignal FreeSignal signal wait

1.17 and

and

Usage: res = and(vall,val2,..)
<vall/N>,<val2/N>, {val/N}

And till to 15 integer.

See or wait

1.18 appiconsignal

AppIconSignal

Usage: signal = ApplIconSignal (appIconID)
<appIconID/N>

applIconID is the appicon ID returned by AddAppIcon
Returns the signal of an appicon.
The mask to wait for is signal.

See AddAppIcon FreeApplIcon HandleAppIcon

rmhenglish 8/34

1.19 changemode

ChangeMode

Usage: res = ChangeMode (file,mode)
<file>,<EXCLUSIVE | SHARED>

Changes the mode of a file or a lock opened in this macro.
Returns an ARexx boolean.

1.20 checknotify

CheckNotify

Usage: res = CheckNotify(notifyID)
<notifyID/N>

Checks if a notify notified the macro (the object content changed).

notifyID is the notify ID returned by StartNotify
Returs an arexx boolean.

See FreeNotify NotifySignal StartNotify

1.21 checksignal

CheckSignal

Usage: rec = CheckSignal (mask)
<mask /N>

Check the signals specified in "mask".
Checked signals are cleared.

Returns the signals set.

See AllocSignal FreeSignal signal wait

1.22 checktimer

CheckTimer

Usage: res = CheckTimer (timerID)
<timerID/N>

Check if a timer completed.

timerID is the timer ID returned by CreateTimer

rmhenglish 9/34

If the timer was not started, the function returns 1, as the timer
completed.

Returs an arexx boolean.

See CreateTimer FreeTimer StartTimer StopTimer

1.23 cmptime

CmpTime

Usage: res = CmpTime (timel,time?2)
<timel/V>,<time2/V>

Compares "timel" to "time2", both timeval structures.
Returns:
<0 timel<time?2

0 timel=time2

>0 timel>time2

See AddTime GetSysTime SubTime SetSysTime

1.24 comparedates

CompareDates

Usage: res = CompareDates (datel,date2)
<datel/V>,<date2/V>

Compares 2 dates set as DateStamp.
Returns:
<0 datel>date2
0 datel==date2
>0 datel<date2

See ds2tv FormatDate GetDate GetFileDate ParseDate SetFileDate tv2ds

1.25 createtempfile

CreateTempFile

Usage: name = CreateTempFile ()

Opens an unique temporary file in T: and return it’s
complete name.

"Temporary" means that at the end of the macro the file
will be deleted.

The file is not open in the macro; if you need to write

rmhenglish 10/34

to it, Jjust do a open() with the name returned by this
function.

1.26 createtimer

CreateTimer

Usage: timerID = CreateTimer ()

Creates a timer.
A timer can be used to create timeout, to wait for specific amount of time,
to break a wait loop and so on.

Returns the ID of the timer.

See CheckTimer FreeTimer StartTimer StopTimer

1.27 cxsignal

CxSignal

Usage: signal = CxSignal (cxID)
<cxID/N>

cxID is the cx ID returned by AddCx
Returns the signal of a cx.

The mask to wait for is signal.

See AddCx FreeCx HandleCx

1.28 date2gmt

date2GMT

Usage: res = date2GMT (date)
<date/V>

Reads the "date" as a datestamp structure and converts it to the
GMT format according to TZ in ENV:

If TZ is not found, the date is untouched.

The function takes care of the presence of the daylight in TZ

Returns:
0 TZ is not present in ENV:

1 TZ is present in ENV: and the date was converted

See GetDate GetTzZ GMTOffset

rmhenglish

11/34

1.29 deletevar

DeleteVar

Usage:

<name>, [options]

Deletes the wvar named

If present,

e.

VAR
ALIAS
IGNORE
GLOBAL
BINARY
NTNULL
SAVE

g. "VAR GLOBAL"
The default is "VAR GLOBAL"

See GetVar SetVar

1.30 dosstring

DosString

Us

age: s

[code/N]

If code is not specified,

"name"

call DeleteVar (name, [options])

options is one or more of:

tring = DosString(code)

Return a localized dos string.

1.31

ds

Us

ds2tv
2tv
age: call ds2tv(from, to)

<from/V>, [to/V]

Convert

in

See CompareDates FormatDate GetDate GetFileDate ParseDate SetFileDate tv2ds

"to"

"from", a DateStamp,
if given.

1.32 easyrequest

EasyRequest

to a TimeVal,

it is assumed to be the current IoErr

writing it in "from" or

rmhenglish 12/34

Usage: res = EasyRequest (text,title,gadgetText, screenName, flags, idcmp)
<text>, [title], [gadgetText], [screeName], [NOFALLBACK], [idcmp/N]

Creates and shows and intuition easy requester.

- "text" is the text of the requester

- "title" is the title (default "Arexx Macro Request")

— "gadgetText" is the string for gadgets text; each gadgetText must be
separeted by the other with a | (e.g. "alb|c" creates 3 gadgets a b c¢)
(default " OK ")

- "screenName" is the name of a pubblic screen where to open the requester

— "NOFALLBACK", if present as the 5th argument makes the function to not
open the requester on the default pubblic screen if the screenName
dosn’t exist, but to fail

— "idcmp" is an integer value of IDCMP flags wich will close the requester

Q

"text" and "gadgetText" can contain a % but only followed by an another %
Gadget are counted from left to right and first is number 1, last O.

Returns:
-30 the gost window was not created (means screen not found or too few memory <
)
=20 the requester was not created
-1 idcmp received (RC is set to the idcmp received)

0 last gadget pressed
n>=0 gadget number n pressed

BUG
The requester is not patchable.

See requester

1.33 expand

expand

Usage: num = expand(stem,pattern, [FILE|DIR])
<stem/V>, <pattern>, [FILE|DIR]

Reads entries which match given pattern.

Normally every kind of entries are read, but if the 3nd argument is:
— FILE only files are read
— DIR only dir are read

Entries are written in fields.i, ..., fields.x where x=num-1.
The fields set are:

— DIRENTRYTYPE as TYPE but numeric

- TYPE "FILE" or "DIR"

rmhenglish

13/34

- DATE

- ENTRYTYPE
— PROTECTION
- SIZE

— NUMBLOCKS
— COMMENT

— OWNERUID

— OWNERGID

datestamp structure

Returns the numbers of entries that match pattern.

1.34 fault

fault

Usage: fault (code,msq)

[code/N], [msg]

Builds and returns the string:

<msg>":" <dos error string of code>

If code is not specified, it is assumed to be the current IoErr

If msg is not specified it is assumed to be the macro name with no extension.

See Printfault IoErr DosString

1.35 filepart

FilePart

Usage: file = filepart (path)

<path>

Returns the file part of "path"

See AddPart PathPart

1.36 formatdate

FormatDate

Usage: date = FormatDate (date, fmt, locale)
[date/V], [fmt], [locale]

Returns a formatted date string.

If "date" is present, it must be a stem set as a DateStamp and the date

is read from it.
date.

If it is not present, the date is the current system

rmhenglish

14 /34

If

If it is not present, it is the "short date format"

Valid

o » o

SU. HmD 0 U0Qa W

=

o

G HadwnX™Bs0.Q

= =

o0 o0 0 O O O O O N A A A A A A A AN N N N N O O O A A A A o o o°
3

KX X

If

"fmt" is present, it must be a valid locale/FormatDate format string.
of the locale.

"locale2 is given,
the date in that locale way.

"fmt" commands are:
abbreviated weekday name
weekday name
abbreviated month name
month name
same as "%a %b $d %TH:%M:%S 3Y"
same as "%a %b %e %T %Z BY"
day number with leading Os
same as "%m/%d/sy"
day number with leading spaces
abbreviated month name
hour using 24-hour style with leading Os
hour using 12-hour style with leading Os
julian date
month number with leading Os
the number of minutes with leading Os
insert a linefeed
AM or PM strings
hour using 24-hour style
hour using 12-hour style
same as "%$I:%5M:%S %p"
same as "%H:3M"
number of seconds with leadings Os
insert a tab character
same as "$H:%$M:%S"

week number, taking Sunday as first day of week

weekday number

week number, taking Monday as first day of week

same as "%m/%d/%y"
same as "$H:%$M:%S"
year using two digits with leading Os
year using four digits with leading Os

default locale of the system.

See CompareDates ds2tv GetDate GetFileDate ParseDate SetFileDate tv2ds

1.37 freeappicon

FreeAppIcon

Usage: call FreeAppIcon (appIconlID)
<appIconID/N>

Frees an appicon created with AddAppIcon() .

appIconID is the appicon ID returned by AddAppIcon

Always returns 1.

the functions tries to open it to format

If it is not present, locale is the

rmhenglish 15/34

See AddAppIcon ApplconSignal HandleAppIcon

1.38 freecx

FreeCx

Usage: call FreeCx(cxID)
<cxID/N>

Frees a cx created with AddCx ().

cxID is the cx ID returned by AddCx
Always returns 1.

See AddCx CxSignal HandleCx

1.39 freesignal

FreeSignal

Usage: call FreeSignal (signal)
<signal/N>

Free a signal bit allocated by AllocSignal() .
DON’T PLAY WITH THIS FUNCTION!!!

See AllocSignal CheckSignal signal wait

1.40 freenotify

FreeNotify

Usage: call FreeNotify(notifyID)
<notifyID/N>

Frees a notify
notifyID is the notify ID returned by StartNotify

See CheckNotify NotifySignal StartNotify

1.41 freetimer

FreeTimer

Usage: call FreeTimer (timerID)

rmhenglish 16/34

<timerID/N>

Free a timer
timerID is the timer ID returned by CreateTimer

See CheckTimer CreateTimer StartTimer StopTimer

1.42 getdate

GetDate

Usage: res = GetDate (date, "GMT")
<date/V>, ["GMT"]

Reads the system date and set "date" as a DateStamp struct.

If "GMT" is specified as the second argument, the date is
returned in GMT format according to the TZ definition in ENV:
If "GMT" is specified, but TZ is not present, the date returned
is the current system date, but not converted to GMT value.
Returns:

0 "GMT" was specified but TZ is not present in ENV:

1 "GMT" was not specified or it was and TZ is present in env:

See CompareDates ds2tv FormatDate GetFileDate ParseDate SetFileDate twv2ds

1.43 getfiledate

GetFileDate

Usage: res = GetFileDate (fileName, date)
<fileName>, <date/V>

Reads the date of "fileName" and set "date" as a DateStamp struct.
Returns:
0 the file was not found

1 success

See CompareDates ds2tv FormatDate GetDate ParseDate SetFileDate tv2ds

1.44 getsystime

GetSysTime

Usage: call GetSysTime (time)
<time/V>

Sets "time" as a TimeVal from the current system time.

rmhenglish 17/34

See AddTime CmpTime SubTime SetSysTime

1.45 getiz

GetTZz

Usage: res = GetTZ (var)
<stem/V>

Reads "ENV:TZ" , if any, and sets in "var" the fields:
- daylight boolean, the daylight string is present;
- timezone number of seconds to ADD to convert to GMT ;

- tzstn timezone string;
- tzdtn daylight string (if any);
Returns:

— 0 TZ doesn’t exist (no fields is set);
- 1 TZ exist.

See date2GMT GetDate GMTOffset

1.46 getuniqueid

GetUniquelID

Usage: 1d = GetUniquelD ()

Each call to this function returns an unique integer.

1.47 getvar

GetVar

Usage: var = GetVar (name,options)
<name>, [options]

Gets the value of the var "name"

If present, options is one or more of:
- VAR

- ALIAS

— IGNORE

— GLOBAL

— BINARY

— NTNULL

— SAVE

e.g. "VAR GLOBAL"

The default is "VAR".

rmhenglish 18/34

See DeleteVar SetVar

1.48 gmtoffset

GMTOffset

Usage: gmo = GMTOffset (locale)
[locale]

Read the GMT offset in minutes from the locale.
OBSOLETE: use GetTZ that reads ENV:TZ (AmigaOS locale has no daylight field)

See date2GMT GetDate GetTZ

1.49 handleappicon

HandleAppIcon

Usage: numMsg = HandleAppIcon (applconlID,handle)
<appIconID>, <handle/V>

Handles an appicon.
applIconID is the appicon ID returned by AddAppIcon

The following fields of "handle" can be set:

- WAIT wait for messages from the appicon - default 1
- CTRLC wait for a ctrl-c as well - default O

- SIGNALS wait for this signals too - default 0

The functions returns the number of the messages that were pending
and sets the fields:
- .1.CLASS that can be:
- .1.DOUBLECLICK user doubleclicked the icon
- .1.DROP other icons were dropped over
where i = 0,...,n n = numMsg-1

If the class is DROP there are set the fields:

- .1.DROPNUM the number of icons dropped

- .1.NAME.] the name of the j-th icon

- .1.LOCK.j a boolean set if the above has a lock
(e.g. 1if another appicon is dropped over an appicon
the lock will be 0)

0,...,mm = .i.DROPNUM-1

where j

See AddAppIcon AppIlconSignal FreeAppIcon

1.50 handlecx

rmhenglish

19/34

HandleCx

Usage: numMsg = HandleCx (cxID,handle)
<cxID>, <handle/V>

Handles a cx.
cxID is the cx ID returned by AddCx

The following fields of "handle" can be set:

- WAIT wailt for messages from the cx - default 1
- CTRLC wait for a ctrl-c as well - default O

- SIGNALS wait for this signals too - default 0

The functions returns the number of the messages that were pending
and sets the fields:
- .1.CLASS that can be:
HOTKEY the hotkey was pressed
(only if you specified hotkey in AddCx())
— DISABLE pressed the gadget Disable in Exchange

— UNABLE pressed the gadget Unable in Exchange
(only if you specified NOTIFY in AddCx () flags)
- KILL pressed the gadget Remove in Exchange
— UNIQUE someone opened a c¢cx with the same name
- APPEAR pressed the gadget Show in Exchange

(only if you specified SHOWHIDE in AddCx () flags)
— DISAPPEAR pressed the gadget Hide in Exchange
(only if you specified SHOWHIDE in AddCx () flags)
LISTCHG someone changed the cx list
where i = 0,...,n n = numMsg-1

See AddCx CxSignal FreeCx

1.51 help

help

Usage: args = help (funName)
<funName/S>

Returns the arguments types mask of the function "funName"

1.52 ioerr
IoErr

Usage: err = IoErr()

Returns the current I/0 error code.

rmhenglish 20/34

1.53 isinteractive

IsInteractive

Usage: res = IsInteractive(file)
<file>

Checks if "file" is interactive, e.g. like a stdout console.

Returns an ARexx boolean.

1.54 lock

lock

Usage: res = lock(logic, name,mode)
<logic>, <name>, [mode]

Creates a lock with a logic name "logic", on "name" , of mode:
— EXCLUSIVE
— SHARED (default)

The function just works as internal ARexx open() , but rather than
opening a file, creates a lock

Many people asked me to insert in rmh.library a lock() function,
so here it is, but I don’t know how usefull it is :-)

The lock can be unlock via standard ARexx close () function,
anyway 1t is at macro exit.

ARexx sees the lock as a normal file, e.g it appears in show (f)
Anyway, there is no problem if you use a logic name refering a
lock rather than a file in the ARexx io function, because a
NIL: file is also created, e.g. if you do a

call lock(ram, "ram:")

call writeln(ram, "hello")

nothing happens.

The function ChangeMode () and NameFromFile () now works on locks too.

Returns an ARexx boolean.

1.55 match

Match

Usage: res = MatchPattern (pattern,string, [CASE])
<stringl>,<string2>, [CASE]

Verifies if "stringl" matches "string2"

rmhenglish 21/34

"stringl" is a AmigaDOS pattern string (NOT the result of ParsePattern()).
If the 3rd argument CASE is given, the matching is case sensitive.

See MatchPattern

1.56 matchpattern

MatchPattern

Usage: res = MatchPattern (pattern,string, [CASE])
<pattern>,<string>, [CASE]

Verifies if "string" matches "pattern"

"pattern" is be the result of ParsePattern().
If the 3rd argument CASE is given, the matching is case sensitive.

See Match ParsePattern

1.57 namefromfile

NameFromFile

Usage: signal = NameFromFile (file,var)
<file>, <var/S>

Writes in "var" the name of "file" , which must be the logical name
of a file or a lock opened in this macro.

Returns an ARexx boolean.

1.58 notifysignal

NotifySignal

Usage: signal = NotifySignal (notifyID)
<notifyID/N>

Returns the signal of a notify.
notifyID is the notify ID returned by StartNotify

The mask to wait for is signal.

See CheckNotify FreeNotify StartNotify

1.59 openurl

rmhenglish

22/34

OpenURL

Usage:

<url>, [flags]

ARexx bridge to openurl.library/URL_OpenA.
Stop using script to send url to browsers,

"url" is the url to open.
"flags" is one or more of:

If

SHOW
BRINGTOFRONT
NEWWINDOW
LAUNCH

"flags" is not specified, global OpenURL preferences are

Returns:

Read openurl.library documentation.

1.60 or
or
Usage: res = or(vall,val2, ...

-1 OpenURL.library is not installed in the system;
0 OpenURL.library couldn’t contact any browser

1 success

<vall/N>,<val2/N>, {val/N}

Or till to 15 integers.

See and wait

1.61

parseconfig

ParseConfig

Usage: res = ParseConfig(file, stem,mode)

<file>,<stem/V>, [mode]

Read a configuration files.

A configuration file is an ascii file made of lines as

<option> {argument}.

During parsing are ignored:

empty lines

lines beginning with # or ;

lines after the 1024th
chars after a ;

res = OpenURL (url, flags)

just use this function et voila.

used.

rmhenglish 23/34

— char after the 256th

The functions write in "stem"

.1 option uppercased

.i.value {args} - empty if none

.i.line the line number (from 1) of the option (NOTA BENE .i.line~=1i usually)

"mode" is one or more of:

- SIMPLECOMMENT # doesn’t start a comment

— NOUPPER option is not uppsercased

— NOSTRIPSPACES every sequence of 2+ spaces or tabs in args is translated
in a single space

Returns:
- -1 file not found
- >=0 number of valid lines.

Example:

lets suppose a.config is:

Configuration file for a
#H4

NoGui

MODE sync

Wait yes ;wait the child to end
#

res=ParseConfig("a.config", "CONE")

--> res 3

(@)

NOGUI

nn

--> conf.
——> conf.0.value
-—> conf.0.1line 3

(@)

-—> conf.l MODE
-—> conf.l.value sync
-—> conf.l.line 4

-—> conf.2 WAIT
-—> conf.2.value yes
--> conf.2.line 5

1.62 parsedate

ParseDate

Usage: res = ParseDate (string, fmt, stem, locale)
<string>, [fmt], [stem/V], [locale]

Verify if "string" is a well formatted date according to "fmt"
and converts it to a DateStamp.

If "fmt" is present, it must be a valid locale/ParseDate format string:
only %a %A %$b %B %d %e %h %H $I %m %M %p %S %y %Y are accepted, others

[o)

generate ARexx error 18. It means after a ’'%’ there must be one of:

rmhenglish 24 /34

aAbBdehHImMp SyyY

Sorry, but it would have crashed very easly without this protection.

(I think locale.library/ParseDate i1s the buggest function in AmigaOS :)
If "fmt" is not given, it is the "short date format" of the locale.

If "stem" is given, it is set as a DateStamp.

If "locale" is given, the functions tries to open the locale to parse
the date in that locale way. If it is not present, "locale" is the
default locale of the system.

The function was optimized to not block if trash data are present in string:
it matches the number of the words present in "fmt" and passes to
locale.library/ParseDate only that number of words in "string".

With this, it should be very stable now.

Returns an arexx boolean.

See CompareDates ds2tv FormatDate GetDate GetFileDate SetFileDate tv2ds

1.63 parsepattern

ParsePattern

Usage: patt = ParsePattern(pattern,CASE)
<pattern>, [CASE]

Creates a pattern to use with MatchPattern().
If specified, the second argument must the string CASE.

Returns the pattern to use in MatchPattern.

See MatchPattern

1.64 pathpart

PathPart

Usage: path = PathPart (path)
<path>

Returns the path part of "path"

See AddPart FilePart

1.65 portsignal

rmhenglish 25/34

PortSignal

Usage: signal = PortSignal (portName)
<portName>

Return the signal of a in-macro-created port.
The mask to wait for is signal.

1.66 portwait

PortWait

Usage: secs = PortWait (portName, secs)
<portName>, [secs/N]

Wait for "portName" to appears for "secs" seconds.
If "secs2 is 0, wait till the port appears.
It is stoppable via ctrl-c.

Returns the seconds the function waited: 0 means the port DIDN’T appear.

EXAMPLE:

if PortWait ("NOTFYPORT",10)=0 then do
say "sorry, NOTIFYPORT not opened in last 10 seconds"
exit

end

BUG:

If the is opened and closed very fast, this function may not
see that the port was opened (humm maybe it is better :)

1.67 printfault

PrintFault

Usage: call PrintFault (code,msq)
[code/N], [msg], [stderr]

If code is not specified, it 1is assumed to be the current IoErr

If msg is not specified it is assumed to be the macro name with no extension.
stderr must be a logic name of a file created in this macro,

if it is not specified it is assumed to be STDERR or STDOUT if STERR

does not exist.

Prints to stderr the same string fault () would return.

1.68 programname

rmhenglish 26/34

ProgramName

Usage: pname = ProgramName (mode)
[FULL | NOEXT]

Returns the "program name" of the macro.
If FULL is specified the complete path is returned.
If FULL is not specified just the macro name is returned.

NOEXT works like no FULL, but only chars before the first .’ ,
if present, are returned.

1.69 readargs

ReadArgs

Usage: res = ReadArgs (<template>, [help], [stem/V], [args])
<template>, [help], [stem/V], [args]

Calls dos/ReadArgs () .
- "template" is the template of the arguments

— "help" is the help string to prompt when a ? is given (default "template" <+
itself)

n

- Var"

is the stem name where to write the arguments (default "PARM")
- "args" is the arguments line for an online arguments parsing, not from STDIN

If STDERR is opend (e.g. with open (STDERR,"x","W")) all intermedie I/O
operations are made with it.

The function writes (lets supposed "PARM" is the stem name), counting
them arguments from left to right:

- i.value the value of the argument

- i.flag arexx boolean indicating if the arguments was give

- i.mult number of MULTI if /M givien for argument i
i.value.j multi value j of arguments 1 (j = 0 ... i.mult)
EXAMPLE
/x x/

if ~ReadArgs ("FILE/M/A, BUFFER=BUFF/N, QUICK/S") then do
call PrintFault (IoErr (),ProgramName ())
exit

end

if parm.l.flag then say "BUFFER:" parm.l.value
if parm.2.flag then say "QUICK"

rmhenglish 27 /34

say "FILE(s):" parm.0.mult
do i = 0 to parm.0.mult

num = expand ("F",parm.0.value.i)
do j = 0 to num-1

say f.]
end

end

See fault IoErr PrintFault

1.70 readtextclip

ReadTextClip

Usage: res = ReadTextClip(var,clip/N)
<var/S>, [clip/N]

Writes in "var" the text content of the clipborad unit "clip"
Default value for clip is 0.

Returns:
-1 clip len is greater than 65535, only first 65535 chars are returned in var

0 failure
1 success

1.71 realname

RealName

Usage: realName = RealName (logicName, flags)
<logicName>, [flags]

Tries to get the real name for the specificied logicName
This is very usefull to try to "resolve" a generic volume name
not in AmigaDOS format to a device name

The device MUST be mounted, or it fails.

flags is:
— REQ if the device doesn’t exist , a requester will be show

Returns: the real name or an empty string for failure (the reasone

can be found via IoErr() , DosString())
Examples:
RealName (' ram:’) --> RAM:
RealName ('s:’) —--> HDO:s
RealName (' StorageCD#1:") —--> CDO:

(

RealName (’ :’) —-—> HD2:

rmhenglish 28/34

RealName (’’) ——-> "current dir"

RealName ("' Sys:Disk.info’) —--> HDO:Disk.info

RealName (' NOTEXISTS_DEVICE:’) ——> "" (IoErr() —--> 218)

RealName (' NOTEXISTS_DEVICE:’, "REQ") —-> "" (IoErr() —--> 218 , shows a requester <«
)

RealName (' NOTEXISTS_FILE’) ——> "" (IoErr() —-—> 205)

1.72 requester

requester

Usage: res = Requester (msgl, IDCMP,msg2,msg3)
<msgl>, [IDCMP/N], [msg2], [msg3]

Opens a DOS requester, with 2 gadgets and wait for gadgts or
"IDCMP" , if specified.

Returns:
0 "Cancel" gadget pressed
1 "Accept" gadget pressed or IDCMP cames

EXAMPLE

disk="Disk_bla bla:"

res = 1

call pragma ("W", "NULL")

do while ~exists(disk) & res
call pragma("w",1)
res = requester ("Insert" disk "in any drive",x2d(8000))
call pragma ("W", "NULL")

end

See EasyRequest

1.73 setcomment

SetComment

Usage: res = SetComment (file, comment)
<file>, <comment>

Sets the "comment" of "file" . "file2 is an AmigaDOS file name with path, not
an ARexx file name.

Returns an ARexx boolean.

1.74 setfiledate

rmhenglish 29/34

SetFileDate

Usage: res = SetFileDate (fileName, date)
<fileName>, <date/V>

Sets the date of "fileName" as defined in "date" a DateStamp
Returns an arexx boolean.

See CompareDates ds2tv FormatDate GetDate GetFileDate ParseDate tv2ds

1.75 setowner

SetOwner

Usage: res = SetOwner (file,GID,UID)
<file>,<GID/N>, <UID/N>

Sets the group id and the user id of "file"
"file" is an AmigaDOS file with path not an ARexx file name.

GID and UID are words and can be read with expand()

Returns an ARexx boolean.

1.76 setioerr

SetIoErr

Usage: call SetIoErr (code)
<code/N>

Sets the current I/0 error code.

1.77 setrexxvar

SetRexxVar

Usage: res = SetRexxVar (pkt,var,value)
<pkt>,<var/S>,<value>

Sets "var" to "value" in a foreign ARexx macro environment.
Let’s suppose you received a message "pkt" in a macro at a port.
With this function you are be able to set "var" to "value" in
the macro sender of the "pkt"

The function just checks if "pkt" is a "good" ARexx msg.

Don’t use this function with a message send in an async way.

Returns an ARexx boolean (0 is returned iff pkt==Null())
Any bad "pkt" generates ARexx error 17.

rmhenglish 30/34

1.78 setsignal

SetSignal

Usage: sig = SetSignal (new,mask)
<new/N>, <mask/N>

Queries and/or modifies the state of the recevived signals as specified in
mask

Returs the signals set
Examples:

To query all signals:
sig = SetSignal (0,0)

To query and clear the ctrl-c signal:
sig = SetSignal (0,2*x%x12)

1.79 setstem

SetStem

Usage: call SetStem(stem,field,data)
<stem/V>,<field/V>,<data>

Set the "field" of "stem" to "data"
This function is usefull to void calling INTERPRET too often

1.80 setsystime

SetSysTime

Usage: call SetSysTime (time)
<time/V>

Sets the system time as defined in "time" , a TimeVal.
Always returns 1.

See AddTime CmpTime GetSysTime SubTime

1.81 setvar

SetVar

Usage: res = SetVar (name,value,options)
<name>, <value>, [options]

rmhenglish 31/34

Sets the var "name" to "value"

If present, options is one or more of:
- VAR

- ALIAS

— IGNORE

— GLOBAL

— BINARY

— NTNULL

— SAVE

e.g. "VAR GLOBAL"

The default is "VAR GLOBAL"

See DeleteVar GetVar

1.82 signal

signal

Usage: call signal (task,signals)
<task/N>, <signals/N>

Signals "task" with "signals"
DON’T PLAY WITH THIS FUNCTION!!!

See AllocSignal CheckSignal FreeSignal wait

1.83 startnotify

StartNotify

Usage: notifyID = StartNotify (name,unit)
<name>, [unit/N]

Creates and starts a notify.

Notification can be for files or clip units.

When the object changes, the macro is signalled with a signal

that can be obtained by NotifySignal ().

If "name" is the string "CLIP", the notification occurs on the

clip unit "unit" (default 0), otherwise "name2 must be a valid AmigaDOS
COMPLETE file name.

If the notify is not freed in the macro, it is freed at exit.

Returns:

- <0 failure (e.g. "name" does not exists) . IoErr() can be used to find
the reasone - ONLY FOR FILE

- >0 id of the notify

See CheckNotify FreeNotify NotifySignal

rmhenglish

32/34

1.84 starttimer

StartTimer

Usage: timerID = StartTimer (timerID, secs,micros)
<timerID/N>, [secs/N], [micros/N]

Starts a timer to wait for "secs2 seconds and "micros" microseconds.

timerID is the timer ID returned by CreateTimer

The timer is started async, so you can go on doing what you want
after this call. To wait for the timer to complete just make a
wait to Wait () with its signal bit obtained with timerSignal() .
If the timer was already started, it is stopped and re-started

with the new timeout.

If the timer is not stopped or not freed, it is stopped and freed

at the exit of the macro.
Always returns 1.

See CheckTimer CreateTimer FreeTimer StopTimer

1.85 stoptimer

StopTimer

Usage: call StopTimer (timerID)
<timerID/N>

Stop a timer.
timerID is the timer ID returned by CreateTimer

Returns always 1, even if the timer was not started.

See CheckTimer CreateTimer FreeTimer StarTimer

1.86 subtime

SubTime

Usage: call SubTime (timel,time2)
<timel/V>,<time2/V>

Subtracts "timel" to "time2" , result in "time2",

See AddTime CmpTime GetSysTime SetSysTime

1.87 timersignal

both timeval structures.

rmhenglish 33/34

TimerSignal

Usage: signal = TimerSignal (timerID)
<timerID/N>

Returns the signal of a timer.
The mask to wait for is signal.

1.88 tvads

tv2ds

Usage: call tv2ds (from,to)
<from/V>, [to/V]

Convert from "from" , a TimeVal, to DateStamp, wrinting in "from" or
in "to" , 1f present.

See CompareDates ds2tv FormatDate GetDate GetFileDate ParseDate SetFileDate

1.89 verifyhotkey

VerifyHotkey

Usage: res = VerifyHotkey (hotkey)
<hotkey>

Verifies i1if "hotkey" is a valid Amiga Cx hotkey description.

1.90 wait
wait
Usage: received = wait (signals, secs,micros)

<signals/N>, [secs/N], [micros/N]
Waits for "signals" or "secs" seconds and "micros" microseconds
Returns the signals received or 0 on timeout.

See AllocSignal and CheckSignal FreeSignal or signal

1.91 waitforchar

rmhenglish 34/34

WaitForChar

Usage: res = WaitForChar (file, timeout)
<file>,<timeout /N>

Waits for a char from an interactive "file" for "timeout" seconds.
Returns -1 (eof) on end of file.

1.92 writetextclip

WriteTextClip

Usage: call writetextclip(text,clip)
<text>, [clip/N]

Writes "text" in the clipboard unit "clip"
Default value for "clip" is 0.

1.93 xor

XOor

Usage: res = xor(vall,val2,...)
<vall/N>,<val2/N>, {val/N}

XOR till to 15 integers.

See and or

	rmhenglish
	Index
	warning
	introduction
	requirements
	installation
	author
	distribution
	terms
	bugs
	functions
	addappicon
	addcx
	addlibrary
	addpart
	addtime
	allocsignal
	and
	appiconsignal
	changemode
	checknotify
	checksignal
	checktimer
	cmptime
	comparedates
	createtempfile
	createtimer
	cxsignal
	date2gmt
	deletevar
	dosstring
	ds2tv
	easyrequest
	expand
	fault
	filepart
	formatdate
	freeappicon
	freecx
	freesignal
	freenotify
	freetimer
	getdate
	getfiledate
	getsystime
	gettz
	getuniqueid
	getvar
	gmtoffset
	handleappicon
	handlecx
	help
	ioerr
	isinteractive
	lock
	match
	matchpattern
	namefromfile
	notifysignal
	openurl
	or
	parseconfig
	parsedate
	parsepattern
	pathpart
	portsignal
	portwait
	printfault
	programname
	readargs
	readtextclip
	realname
	requester
	setcomment
	setfiledate
	setowner
	setioerr
	setrexxvar
	setsignal
	setstem
	setsystime
	setvar
	signal
	startnotify
	starttimer
	stoptimer
	subtime
	timersignal
	tv2ds
	verifyhotkey
	wait
	waitforchar
	writetextclip
	xor

