
Overview 389389

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 389 of 518

Chapter 10 The Parser
Any mindmap component may contain a formula that produces a
result. A formula may be associated with a component or em-
bedded in the component. In order to embed (you), you invoke
the Formula Editor and define the formula. If you wish to asso-
ciate a formula with an object, this is accomplished in any of
the many Link dialog boxes. Input fields that are capable of
dealing with formulas can be recognized by a small command
button in their upper right corner which displays a question
mark.

You may create formulas using:
} constants or values

} mathematical, comparison, and logical operators

} references to other components

} built-in routines called functions

You may combine these elements into an expression. For ex-
ample, a formula for a field ‘Invoice Total’ could be:

Overview

Constants

Constants are values in formulas that do not change:

Examples:
} ; 1.12 is a constant

} ; ‘Due’ is a text constant

When you include a text constant in a formula, you must en-
close the text constant with either single or double quotation

3 9 03 9 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 390
of 518

marks. To include quotation marks within a text constant, you
must use backslash quotation marks:

Example:
}

; results in Date ‘Second Notice’ Due:

Operators

Operators are symbols indicating how to combine two or more
expressions. They include the standard arithmetic operators (+,
-, *, /, ^, and %) and some special operators discussed later:
} ; * is the multiplication operator

}
; + combines text values

Component References

Component names may be used in formulas to include the con-
tents of the component in the formula. When mindmap evaluates
the formula, the contents of the component replaces the name
of the component.

Examples:
} ; SubTotal is a component name

}
; AmountOrders is a component

Functions

Functions perform frequently used calculations (or operations)
and are generally followed by parameters (values or references
to components). Functions are described in detail later.

Examples:
} ; Supplies the current system date

} ; returns the cosine value of edt1

Overview 391391

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 391 of 518

Expressions

An expression is a logical sequence of functions, values, con-
stants, and operators working together to return a single re-
sult. Expressions are like clauses and phrases in a sentence.

Examples:
}

}

Using appropriate operators and functions, you may construct
various kinds of values within a formula. However, a formula
may have only one type of result:
} string

} numeric

} date

} time

The internal representation of strings is ASCIIZ. Call-by-Name
references to strings are guaranteed to supply a buffer size of
4096 bytes, including the terminating null character. Numeric
values are represented as doubles. Dates are represented as
unsigned long (32-bit) values, interpreted as Julian date. Time
is an unsigned long (32-bit) value, interpreted as seconds.

You must take care in constructing expressions with regards to
the various types of data used. Using incorrect types might lead
to unexpected results. For numerical errors occurring in
mathematical functions of the parser, the value expected to be
returned from the function is replaced with 0, if the function
reports an error. An error message is appended to the system
log file, as well as to the parser window, if applicable (see mind-
map menu File | Preferences | FormulaFile | Preferences | Formula on page 46).

Currently, the math runtime library supports the following er-
ror messages:
} ‘Numerical overflow in function fn(arg)’

} ‘Invalid argument range in function fn(arg)’

} ‘Argument singularity in function fn(arg)’

} ‘Partial loss of precision in function fn(arg)’

3 9 23 9 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 392
of 518

} ‘Total loss of precision in function fn(arg)’

where fn(arg) is replaced with the function name and argument
that caused the error.

Please note, that for object-registered functions, the parser only
defines the requested data type for passed arguments, whereas
the data type returned by the function may depend on the spe-
cific implementation. For example, the function GetProp, regis-
tered by the VBX object, returns a data type depending on the
name of the property. Passing this value directly to a function
might cause problems, if the function expects a different type.
These problems have been avoided by having mindmap auto-
matically perform a reasonable conversion before passing the
argument.

mindmap automatically converts into appropriate types and ap-
pends a warning to the system log. This applies also to opera-
tors that combine different types. Almost always, mindmap at-
tempts to concatenate the factors as strings.

Operators

mindmap supplies various types of operators to work with ex-
pressions:
} mathematical

} comparison

} logical

} text

By definition, operators are placed between two expression
elements. The following tables show all the mindmap operators
and indicate how two values are combined:

Mathematical Operators

Symbol Name Definition and Example

+ Plus Add two values

Overview 393393

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 393 of 518

- Minus Subtracts second value from first value

* Multiply Multiplies two values

/ Divide Divides the first value by the second

An error message is generated if the
divisor is zero.

Mod

%

Modulus Calculates the remainder of a division

 ;equals 2

 ;equals 0

The percent symbol can be used in place
of ‘mod’.

^ Power ; equals 100

 ; equals 32

The result of this operation is 1 if both
expressions are zero.

() Precedence mindmap evaluates formulas from left to
right, performing multiplications and
divisions before additions and
subtractions. Using parentheses allows
you to change the order. mindmap
evaluates expressions between
parentheses first.

 ;equals 28

 ;equals 40

3 9 43 9 4 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 394
of 518

Comparison Operators

These operators compare two values and return either true or
false. These expressions are often referred to as Boolean ex-
pressions. Arithmetically, a result of true equals 1 and a false
equals 0.

Symbol Name Definition and Example

=

==

Equals True if both elements are equal

 ; false

 ; true

<>

!=

Not equals True if both elements are not equal

 ; true

 ; false

> Greater
than

True if the value on the left of the
operator exceeds the one on the right

 ; false

 ; false

 ; true

< Less Than True if the value on the left of the
operator is less than the value on the
right

 ; true

 ; false

 ; false

>= Greater
Than or
Equal To

True if the value on the left is greater
than or equal to the value on the right

 ; true

 ; true

 ; false

<= Less Than
or Equal to

True if the value on the left is less than
or equal to the value on the right

Overview 395395

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 395 of 518

 ; false

 ; true

 ; true

Logical Operators

Logical operators can build compound conditions into a for-
mula. Sometimes, two or more conditions must be met before
you choose a particular method of calculation. Logical operators
enable you to describe such combinations of conditions.

Symbol Definition and Example

AND True only if both elements are true

‘true’ AND ‘true’ equals ‘true’

‘true’ AND ‘false’ equals ‘false’

‘false’ AND ‘true’ equals ‘false’

‘false’ AND ‘false’ equals ‘false’

OR True if either of the two values is true

‘true’ OR ‘true’ equals ‘true’

‘true’ OR ‘false’ equals ‘true’

‘false’’ OR ‘true’ equals ‘true’

‘false’ OR ‘false’ equals ‘false’

XOR True if either, but not both values, are true

‘true’ OR ‘true’ equals ‘false’

‘true’ OR ‘false’ equals ‘true’

‘false’ OR ‘true’ equals ‘true’

‘false’ OR ‘false’ equals ‘false’

NOT Changes the value of the subsequent Boolean
operation from true to false or from false to true

NOT 5 = 3 equals ‘true’

3 9 63 9 6 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 396
of 518

AND and OR are used to combine two expressions. NOT is only
used on a single expression.

The result of a logical operation is treated as a numeric value
having the possible values 0 or 1. Be aware that calculations
with the results of logical operations are possible.

Text Operators

You may use text operators to indicate text constants in your
formula or to combine two or more expressions into one expres-
sion.

Symbol Name Definition and Examples

+ Concatenate Appends the text string on the right to
the end of the text string on the left

 ; equals ‘abcdef’

Special Symbols to be used in text
constants

The following symbols are valid only within string constants
(such as text enclosed in single or double quotation marks) and
may be used to denote special characters in the text string.

Symbol Name Definition and Examples

“ “

‘ ‘

Text
Constant

Marks the beginning and the end of
characters to be considered a text
constant. Quotes without text between
them indicate a blank space. If you
enter text into a formula without using
quotes, mindmap interprets the text as a
component name or as a function.

Overview 397397

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 397 of 518

 ; a text string containing the
four characters edt1

mindmap ; a text string containing the
seven characters mindmap

 ; refers to a component with the
name edt1

\\ Backslash To represent a backslash in a text string,
one has to put a backslash in front of it.

‘c:\\mindmap\\samples’
results in
c:\mindmap\samples

\’ Double
Quotation
mark

To represent double quotation marks in
a text string, a backslash has to be set in
front of each quote.

“Tool \”mindmap\””
results in
Tool ‘mindmap’

Alternatively, the following form may be
used:

“Tool ‘mindmap’”

results in

Tool ‘mindmap’

\’ Single
Quotation
mark

To represent single quotation marks in a
text string, a backslash has to be set in
front of each quote.

“Tool \”mindmap\””
results in

Tool ‘mindmap’

Alternatively, the following form may be
used:

“Tool “mindmap””
results in

Tool ‘mindmap’

\n New Line
Character

To represent the new-line-character
0x0A.

(This corresponds to the character code
according to the ASCII table.)

3 9 83 9 8 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 398
of 518

\r Carriage
Return
Character

To represent the carriage-return-
character 0x0D.

(This corresponds to the character code
according to the ASCII table.)

\t Tab
Character

To represent the tab-character 0x09.

(This corresponds to the character code
according to the ASCII table.)

Formulas and functions
mindmap allows for any component to have a value, even if it is
not apparent (i.e. command buttons) that this is the case. Some
of the components are able to display their value. These in-
clude, for example, text and input fields. Other components
cannot visualize their value, as is the case for graphical primi-
tives, imported graphics, etc. In either case, it is possible to
query the component for its value. A component may also in-
clude a formula. The result of the formula is the value of the
component.

The values may be of the type numeric, string, or date. Strings
are always enclosed in quotation marks. If a string is entered
without the quotes, the parser will generate an error message
(see ‘Parser Error Messages’ on page 391). Date constants are
also enclosed in quotation marks, but they must follow the na-
tional rule of date formatting. Therefore, entering a calendar
date depends on the currently selected language DLL
(currently either MMDEU.DLL or MMENG.DLL).

Independent of the currently selected language, decimals in
numeric constants are always separated by dot (not by comma).
This convention makes a mindmap application independent of
the language it was built in. However, input fields display nu-
meric values (as well as dates) nationalized.

Formulas and functions 399399

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 399 of 518

Assigning a Value via a Link

This link dialog box is used to assign a computed value to a
component

This link, placed on the OK button, assigns the result of edt-
Dollar multiplied by 1.5 to the input field edtDM.

Functions with an unspecified return
value

In contrast to most formulas and functions, mindmap supports
various functions which do not return a specific result. These
functions are also used by assigning a value. In this case, you
assign the value to a component which does not react to value
assignments (i.e. command buttons). In such a case, the func-
tion is executed without changing the values of components.

4 0 04 0 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 400
of 518

mindmap will evaluate the function and ignore the result

In this example, the first column in the selected row in the data
table tbl1 receives the value contained in edtInput. The function
SetDataTable does not return a value.

� More information about assigning values to a component can be
found on page 258.

Functions

A function is a built-in routine used to perform a specific cal-
culation. Instead of typing what might be a complex formula,
you simply type the function name. mindmap performs the cal-
culations defined by the function.

You include the function name in your own calculation formu-
las, followed by the values you want the function to use. The
information contained in the parentheses are called the pa-
rameters (also known as arguments). Most functions have one
or more parameters that you must supply in order for mindmap
to calculate the results you want.

Almost all mindmap functions contain these three basic parts:

General Functions 401401

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 401 of 518

} function name

} a set of parentheses

} the required parameters.

The function name tells mindmap what kind of work to do with
the parameters you supply. The parentheses identify where the
list of parameters begins and ends. When a function requires
more than one parameter, the parameters must be separated
with commas.

You use functions in your formulas by combining them with
component names, operators, values, and other functions. Capi-
talization is not important when typing functions.

Function parameters may be constants, component names, ex-
pressions, or other functions. You may nest one function within
another to perform more complex calculations with your data.

mindmap automatically converts arguments passed to functions
into the required data type. This applies to either built-in, ob-
ject-registered or functions imported through MNC files. If a
function does not require arguments you should not supply pa-
rentheses.

Example:

; extracts month from date

; the result will be the same because mindmap auto-
matically converts the date to string since this is the
required data type for the function substr.

General Functions
The following functions are always available. They are either
intrinsic to mindmap or have been declared externally in the
MMPARSE.MNC.

� For further details pertaining to the declaration of functions,
please refer to page 479.

4 0 24 0 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 402
of 518

abs

Syntax: abs(<num>)

Description: Returns the absolute value of a num-
ber. If the number is negative, the abs
function returns a positive value.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

The returned number is of the same
data type as the parameter <num>.

Example: à
where edt1 contains the

number 10

à
where edt2 contains the

number -10

See Also: sign

Category: Intrinsic function.

ANSI

Syntax: ANSI(<text1>, <text2>, <num>)

Description: Copies the first string into the second
one, translating from the IBM-8 char-
acter set into the ANSI character set.
The numerical value specifies how
many characters are to be translated.
The len function maybe used to cal-
culate the number of characters
available in the source string.

Parameter(s): <text> is a mindmap component that
can receive a text string. The <num >
parameter is an integer.

General Functions 403403

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 403 of 518

Return
Value(s):

A string is returned.

Example: This function is especially used to
translate language dependent special
characters like German umlaut char-
acters to the windows character set.

à
where edt2 contains

“abcdefg”

See Also: len

Category: Declared function.

AppName

Syntax: AppName (<component name>)

Description: This function returns a string con-
taining the full path name of the ap-
plication that contains the given com-
ponent.

Parameter(s): name of a component

Return
Value(s):

A string

Example: à

Category: MMLIB

arccos

Syntax: arccos(<num>)

Description: Returns the arccosine of a number.

Parameter(s): The <num> parameter is any expres-
sion that yields a number in the range
-1 to 1. This is a value in radians.

4 0 44 0 4 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 404
of 518

Return
Value(s):

The returned value is in radians. The
formula for converting degrees to ra-

dians is radians=degrees*(/180)

Example: à
where edt1 contains .34

See Also: arctan, arcsin, sin, cos, tan

Category: Intrinsic function.

arccosh

Syntax: arccosh(<num>)

Description: Returns the hyperbolic arccosine of an
angle.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

The return value is numeric.

See Also: sinh, cosh, tanh, arcsinh, arctanh

Category: Intrinsic function.

arcsin

Syntax: arcsin(<num>)

Description: Returns the arcsine of a number.

Parameter(s): The <num> parameter is any expres-
sion that yields a number in the range
-1 to 1.

Return
Value(s):

The returned value is in radians. The
formula for converting degrees to ra-

dians is radians=degrees*(/180)

Example: à
; where edt1 contains .34

General Functions 405405

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 405 of 518

See Also: arctan, arccos, sin, cos, tan

Category: Intrinsic function.

arcsinh

Syntax: arcsinh(<num>)

Description: Returns the hyperbolic arcsine of an
angle.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

The return value is numeric.

See Also: sinh, cosh, tanh, arccosh, arctanh

Category: Intrinsic function.

arctan

Syntax: arctan(<num>)

Description: Returns the arctangent of a number.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

The returned value is in radians. The
formula for converting degrees to ra-

dians is radians=degrees*(/180)

Example: à
; where edt1 contains 30.

See Also: arcsin, arccos, sin, cos, tan

Category: Intrinsic Function.

4 0 64 0 6 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 406
of 518

arctanh

Syntax: arctanh(<num>)

Description: Returns the hyperbolic arctangens of
an angle.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

The return value is numeric.

See Also: sinh, cosh, tanh, arcsinh, arccosh

Category: Intrinsic function.

calc

Syntax: calc(<text>)

Description: This function evaluates the statement
contained in the text string that is
supplied as parameter.

Parameter(s): The <text> parameter is a string rep-
resenting a valid parser statement.

Return
Value(s):

The outcome of this function depends
on the statement. It has the same
type that the statement evaluates to.

Example: If the input field edt1 contains the
value of 5 and the input field edt2
contains the text “edt1”, then the
function

; will return 35.

Category: Intrinsic function.

General Functions 407407

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 407 of 518

color

Syntax: color (<num>,<num>,<num>)

Description: This function converts three color
values into a 32-bit RGB color value.
The return value is calculated using
the formula

R*256*256+G*256+B

The lower 8 bits represent the color
value for blue, the next 8 bits repre-
sent the color value for green and the
next 8 bits represent the color value
for blue.

Parameter(s): The three parameters specify the
three color values for R, G and B re-
spectively.

Return
Value(s):

32-bit color value.

Example: à

(hexadecimal for white)

See Also:

Category: MMLIB

CopyFile

Syntax: CopyFile(<text>, <text>)

Description: Copies the second file onto the first
file. If the first file already exists, it
will be overwritten.

4 0 84 0 8 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 408
of 518

Parameter(s): The <text> parameter contains a valid
file name with the path if the file is
not in the current directory..

Return
Value(s):

0 ; OK
1 ; Out of memory
2 ; Source file not found
3 ; Cannot create target file
4 ; Disc full
5 ; Wildcard file copy not successful

Example:
; where edt1 contains the
text string
“C:\FILE1.TXT” and edt2
contains the text string
“FILE2.TXT”

or

mindmap

See Also: DeleteFile

Category: Declared function.

cos

Syntax: cos(<num>)

Description: Returns the cosine of a number.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

The returned value is in radians. The
formula for converting degrees to ra-

dians is radians=degrees*(/180)

Example: à
; where edt1 contains 30

See Also: arccos, arcsin, arctan, tan, sin

Category: Intrinsic function.

General Functions 409409

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 409 of 518

cosh

Syntax: cosh(<num>)

Description: Returns the hyperbolic cosine of an
angle.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

The return value is numeric.

See Also: sinh, tanh, arcsinh, arccosh, arctanh

Category: Intrinsic function.

crlf

Syntax: crlf

Description: Inserts a carriage return/line feed.

Parameter(s): none

Return
Value(s):

Returns a string containing the car-
riage return and line feed characters.

Example: An assign value command to an input
field supplies the following results:

; Joe Jones

; Joe Jones

Category: Intrinsic function

date

Syntax: date

4 1 04 1 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 410
of 518

Description: Supplies the current system date.

Parameter(s): none.

Return
Value(s):

A date in the format set in the
MINDMAP.INI file which is depend-
ent on what language (MMDEU.DLL
or MMENG.DLL) is selected. Please
note that you may set the date format
in the application, by using the mask
attribute. Then, the format is inde-
pendent of the MINDMAP.INI.

Example: à
(with MMDEU.DLL in-
stalled)

à
(with MMENG.DLL in-
stalled)

See Also: datestr, strdate, day, year, month,
time, sweekday, smonth

Category: Intrinsic function.

datestr

Syntax: datestr(<date>)

Description: Converts <date> into a string. In
most cases this conversion is not nec-
essary, since mindmap always at-
tempts to perform the necessary con-
versions, if there are inconsistencies
in the data types. Note that mindmap
uses a language specific notation for
the resulting string, depending on
the currently selected language DLL.

Parameter(s): The <date> parameter contains a
valid date.

Return
Value(s):

A string containing the date, as a
string in the format defined in the

General Functions 411411

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 411 of 518

MINDMAP.INI file or with the mask
attribute of the component.

Example: à
; where edt1 contains
12.07.1995

Please note again that, if you forget
the datestr function in this example,
mindmap would convert date to string
automatically, if a string is expected
instead of a date.

See Also: date, strdate, day, year, month,
smonth, time, weekday sweekday

Category: Intrinsic function.

day

Syntax: day(<date>)

Description: Returns the numeric value of the day
of the month of the calendar date
supplied.

Parameter(s): A string containing the date.

Return
Value(s):

A string containing a two-digit num-
ber.

Example: à
; where edt1 contains the
current date 12.07.1995
(if MMDEU.DLL is in-
stalled)

à
; where edt2 contains the
current date 07/12/1995
(if MMENG.DLL is in-
stalled)

See Also: month, smonth, year, date, strdate,
datestr, time, weekday, sweekday

Category: Intrinsic function

4 1 24 1 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 412
of 518

DeleteFile

Syntax: DeleteFile(<text>)

Description: The function deletes the file, whose
file name is contained in <text>.

Parameter(s): The <text> parameter contains a valid
file name or path and file name if the
file is not in the current directory.

Return
Value(s):

If the function was not successful, one
of the following error values will be
returned:
} File not found

} Path not found

} Access denied

Example: This function is especially used to
translate language dependent special
characters like German umlaut char-
acters to the windows character set.

; where edt1 contains the
text string “FILE1.TXT”
or “C:\\FILE1.TXT”.

Please note that this function does not
support long file names in Win d o w s 9 5 or Win-
dows NT.

; where edt1 contains the
text string “FILE1.TXT”
or “C:\\FILE1.TXT”

See Also: CopyFile

Category: Declared function.

General Functions 413413

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 413 of 518

exp

Syntax: exp(<num>)

Description: Returns the exponential value of the
given parameter.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

Exponential value

Example: à

See Also: log, ln

Category: Intrinsic function.

Format

Syntax: Format (<text>, <num>)

Description: This function converts a number into
a string. You may select from a vari-
ety of format specifiers to control the
output.

Parameter(s): The first parameter specifies the for-
mat. It has the following form:

%[-][#][0][width][.precision]type

Each field of the format specification
is a single character or number signi-
fying a particular format option. The
simplest format specification contains
only the percent sign and a type char-
acter (for example, %i). The optional
fields (in brackets) control other as-

4 1 44 1 4 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 414
of 518

pects of the formatting. Following are
the optional and required fields and
their meanings:

Field Meaning

- Pad the output value
with blanks or zeros to
the right to fill the field
width, aligning the out-
put value to the left. If
this field is omitted, the
output value is padded to
the left, aligning it to the
right.

Prefix hexadecimal val-
ues with 0x (lowercase) or
0X (uppercase).

0 Pad the output value
with zeros to fill the field
width. If this field is
omitted, the output value
is padded with blank
spaces.

width Convert the specified
minimum number of
characters. The width
field is a nonnegative in-
teger. The width specifi-
cation never causes a
value to be truncated; if
the number of characters
in the output value is
greater than the specified
width, or if the width
field is not present, all
characters of the value
are printed, subject to the
value of the precision
field.

precision Convert the specified

General Functions 415415

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 415 of 518

minimum number of dig-
its. If there are fewer
digits in the argument
than the specified value,
the output value is pad-
ded on the left with zeros.
The value is not trun-
cated when the number of
digits exceeds the speci-
fied precision. If the
specified precision is zero
or omitted entirely, or if
the period (.) appears
without a number fol-
lowing it, the precision is
set to 1.

 type This field may be any of
the following character
sequences:

Sequence Meaning

d, i Insert a signed decimal
integer argument (16-bit).

ld, li Insert a long signed
decimal integer argument
(32-bit).

u Insert an unsigned inte-
ger argument (16-bit).

lu Insert a long unsigned
integer argument (32-bit).

x, X Insert an unsigned hexa-
decimal integer argument
in lowercase or uppercase
(16-bit).

lx, lX Insert a long unsigned
hexadecimal integer ar-
gument in lowercase or
uppercase (32-bit).

4 1 64 1 6 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 416
of 518

The second parameter is the number
to be converted.

Return
Value(s):

The function returns the converted
string.

Example: If edt1 contains the value 123, the
function will convert the following
strings

à

à

à

à

à

where . represents a space character.

See Also: FormatString

Category: Imported function.

FormatString

Syntax: FormatString(<text>, <text>)

Description: This function converts a string. You
may select from a variety of format
specifiers to control the output.

Parameter(s): The first parameter specifies the for-
mat. It has the following form:

%[-][width][.precision]s

Each field of the format specification
is a single character or number signi-
fying a particular format option. The
simplest format specification contains
only the percent sign and the charac-

General Functions 417417

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 417 of 518

ter s (for example, %s). The optional
fields (in brackets) control other as-
pects of the formatting. Following are
the optional and required fields and
their meanings:

Field Meaning

. Pad the output value
with blanks to the right
to fill the field width,
aligning the output value
to the left. If this field is
omitted, the output value
is padded to the left,
aligning it to the right.

Width Convert the specified
minimum number of
characters. The width
field is a nonnegative in-
teger. The width specifi-
cation never causes a
value to be truncated; if
the number of characters
in the output value is
greater than the specified
width, or if the width
field is not present, all
characters of the value
are printed, subject to the
value of the precision
field.

Precision Convert the specified
maximum number of
characters.

The second parameter is the string to
be converted.

Return
Value(s):

The function returns the converted
string.

4 1 84 1 8 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 418
of 518

Example: If edt1 contains the string “Hello”, the
function

will return the string

“Hello…..”
; where . represents a
space character.

See Also: Format

Category: Imported function.

frac

Syntax: frac(<num>)

Description: This function returns the fractional
part of a floating-point value.

Parameter(s): <num> is a floating-point value

Return
Value(s):

A floating-point value

Example:
; equals 0.56

; equals -0.33

; equals 0.44 if edt1 con-
tains e. g. “9.44”

See Also: int, round

Category: Intrinsic function.

GetFileCount

Syntax: GetFileCount(<text>)

Description: Counts the number of files specified

General Functions 419419

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 419 of 518

by <text>. Wildcards are permitted.

Parameter(s): The parameter <text> contains a valid
MS-DOS directory name.

Return
Value(s):

An integer is returned.

Example: à
; where edt1 contains the
string C:\WINDOWS*.*.

When specifying paths always use two
backslashes instead of single back-
slashes.

See Also: CopyFile, DeleteFile

Category: Declared function.

GetHomeDir

Syntax: GetHomeDir(<text>)

Description: This function converts the file name
defined by <text> into a full path
name representing a file in the appli-
cation’s home directory, provided that
<text> is not a full path name itself.
The application’s home directory is
the directory where the application
EXE file is.

Parameter(s): <text> Identifies the name of a file
and should not contain path and drive
specifications.

Return
Value(s):

<text> The return value is a string
representing a full path name based
on the name given through the func-
tion’s parameter.

Example:

the above function reads the user’s

4 2 04 2 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 420
of 518

name from the INI file in the same
directory where the EXE file is
(instead of searching the Windows
directory).

See Also: ReadProfile, WriteProfile

Category: Declared function.

GetModuleHandle

Syntax: GetModuleHandle(<text>)

Description: This function retrieves the handle of
the specified module.

Parameter(s): <text> address of name of module

Return
Value(s):

Handle of the module, if the function
is successful. Otherwise, it is NULL.

Example: This function maybe used to verify
the existence of a running instance of
a program. It will return a non-zero
value if the specified module name is
already running. For instance

GetModuleHandle(“Excel”)

will return a positive integer if Excel
has already been launched. Please
note that the name of the module is
not always identical to the name of
the associated EXE file; however, a
number of tools are available in the
public domain to show a list of all
running modules.

Category: Declared MS-Windows kernel func-
tion.

General Functions 421421

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 421 of 518

GetParent

Syntax: GetParent(<num>)

Description: Retrieves the handle <num> of the
given window’s parent window (if
any).

The following hierarchy applies to a
mindmap Application running as an
executable file:

mindmap Application Window
Object Area Window

while the following hierarchy applies
to a mindmap application in the Devel-
opment Environment:

mindmap Frame Window
MDIClient class

MDI Child Window
Object Area Window

Parameter(s): <num> identifies the window whose
parent window handle is to be re-
trieved.

Return
Value(s):

<num> is the handle of the parent
window, if the function is successful.
Otherwise, it is NULL, indicating an
error or no parent window.

Example:

See Also: SetWindowText

Category: Declared MS-Windows kernel func-
tion.

4 2 24 2 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 422
of 518

GetTickCount

Syntax: GetTickCount

Description: This function returns the number of
milliseconds that have elapsed since
Windows was started.

Parameter(s): None.

Return
Value(s):

The function returns a numeric value
(32-bit) which represents the number
of milliseconds since Windows was
started.

Example: à

Category: Intrinsic function.

GetWindowText

Syntax: GetWindowText(<num1>, <text>,
<num2>)

Description: This function copies text of the given
window’s title bar (if it has one) into a
buffer. If the given window is a con-
trol, the text within the control is
copied.

Parameter(s): <num1> handle of window

<text> address of buffer for text

<num2> An integer; maximum num-
ber of bytes to copy

Return
Value(s):

The length, in bytes, of the copied
string, not including the terminating
null character. It is zero if the window
has no title bar, the title bar is empty,
or the <num1> parameter is invalid.

General Functions 423423

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 423 of 518

Since mindmap guarantees the size of a
call-by-name argument to be 4096,
the third parameter can be any suit-
able value less than 4096. Under
normal circumstances, 256 is suffi-
cient.

See Also: SetWindowText

Category: Declared MS-Windows kernel func-
tion.

gsum

Syntax: gsum(<component name>)

Description: The function computes the sum of all
components (that have a value associ-
ated with them) placed on top of
<component name>. It performs a
graphical summation. Instead of ex-
pecting values as arguments, this
function works on components
dragged on top of another component.

Parameter(s): A component name.

Return
Value(s):

A numeric value

Example: à
; where two components
are placed on top of rc1,
each having a value of
50.1.

Category: Intrinsic function.

height

Syntax: height(<component name>)

4 2 44 2 4 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 424
of 518

Description: It measures in pixels the height of the
specified component.

Parameter(s): The <component name> parameter is
a valid component name.

Return
Value(s):

An integer

Example: à
; where the rectangle rc1
is 30 pixels high

See Also: width

Category: Intrinsic function

Hex

Syntax: Hex (<num>)

Description: This function converts a numerical
value into hexadecimal notation.

Parameter(s): numerical value (only the integer part
is used).

Return
Value(s):

string containing the converted hexa-
decimal value.

Example: à
returns the string “400”

Category: MMPSTOOL

hwnd

Syntax: hwnd(<component name>)

Description: This function returns the window
handle of the window to which the
specified component belongs.

The following hierarchy applies to a

General Functions 425425

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 425 of 518

mindmap Application running as an
executable file:

mindmap Application Window
Object Area Window

while the following hierarchy applies
to a mindmap application in the Devel-
opment Environment:

mindmap Frame Window
MDIClient class

MDI Child Window
Object Area Window

Parameter(s): The <component name> parameter is
a valid component name.

Return
Value(s):

none

Example: This function is generally useful in
(imported) functions which require
the window handle of the window the
component is associated with.

See Also: GetParent, hwndchild

Category: Intrinsic function.

int

Syntax: int(<num>)

Description: This Function returns a floating-point
value representing the largest integer
that is less than or equal to <num>.

Parameter(s): The <num> parameter contains any
number.

Return
Value(s):

Floating-point result; no error return

Example: à
; where edt1 contains 10.5

à

4 2 64 2 6 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 426
of 518

; where edt2 contains -9.6.

is 2.000000

; is -3.000000

See Also: frac, round

Category: Intrinsic function.

JulianDate

Syntax: JulianDate (<num>,<num>,<num>)

Description: This function computes the Julian
Date from three numerical values of
year, month and date. This function is
useful to perform date calculations
(e.g. number of days between dates,
calculation of the day of week).

Parameter(s): The first parameter is the year (if this
value is less than 100 it is assumed to
be the year of 1900+y).

The second parameter is the month.

The third parameter is the day.

Return Value(s): returns the Julian Date.

Example: à

See Also: YMDFromJulian

Category: MMLIB

len

Syntax: len(<text>)

Description: Obtains the length of the supplied
string.

General Functions 427427

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 427 of 518

Parameter(s): The <text> parameter is a string.

Return
Value(s):

Returns an integer.

Example: à
; where edt1 contains the
string “abcdefg”.

If edt1 contains a numeric value in-
stead of a string, the correct expres-
sion is the following:

See Also: str, substr, strpos, strrepl, upper,
lower

Category: Intrinsic function

ln

Syntax: ln(<num>)

Description: Determines the natural logarithm of
<num>.

Parameter(s): The parameter <num> is a floating
point value and must be greater than
zero.

Return
Value(s):

A floating point value as the result or
0 as an error value.

Please note that the result of ln(1) is
also 0!

Also note, that if an error occurs the
error log reports this function as
log10.

Example: à

à

à

; edt1 contains a numeri-

4 2 84 2 8 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 428
of 518

cal value

ln(val(edt1))
; edt1 contains a string of
numbers

See Also: log

Category: Intrinsic function.

log

Syntax: log(<num>)

Description: Returns the common logarithm (base
10) of a number.

Parameter(s): The <num> parameter may have any
positive floating point value.

Return
Value(s):

A floating point value as the result or
0 as an error value.

Please note that the result of log(1) is
also 0!

Also note, that if an error occurs the
error log reports this function as
log10.

Example: à

à

à

; edt1 contains a numeri-
cal value

; edt1 contains a string of
numbers

See Also: ln

Category: Intrinsic function.

General Functions 429429

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 429 of 518

lower

Syntax: lower(<text>)

Description: This function converts all letters in
<text> to lowercase.

Parameter(s): The <text> parameter contains char-
acters.

Return
Value(s):

A string containing only lowercase
letters.

Example: à
; where edt1 contains
“ABcDE”

See Also: upper, str, val

Category: Intrinsic function.

lstrspn

Syntax: lstrspn (<text1>,<text2>)

Description: This function returns the index of the
first character in string1 not belong-
ing to string2. This function is useful
to remove trailing spaces (or other
characters) from strings. Please note
that the returned index is zero-based
since this is an imported kernel func-
tion.

Parameter(s): Parameter: string to be searched.

Parameter: characters to be ignored.

Return Value(s): returns a zero-based index into
string1.

Example: The statement

4 3 04 3 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 430
of 518

will eliminate all trailing spaces from
the string in the input field edt1.

Category: MMLIB

MakeDir

Syntax: MakeDir (<text>)

Description: This function creates the directory
specified by the string given in the
parameter.

Parameter(s): Name of the directory to be created.
This name should not contain a ter-
minating backslash character. The
name may contain a drive specifier.

Return Value(s): This function returns one of the fol-
lowing numerical values:

0 directory already exists

1 directory has been created

2 cannot create directory (disk
may be write protected or speci-
fied directory is invalid).

Example: MakeDir(“c:\\example”)

MMWindow

Syntax: MMWindow

Description: Retrieves the windows handle of the
currently active mindmap application
window.

Parameter(s): none

Return
Value(s):

An integer value representing the
window handle.

General Functions 431431

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 431 of 518

Example: The following operation sets the cap-
tion text of the currently active mind-
map window.

Note that, since mindmap application
windows are always child windows,
their parent is either an MDI child or
a tiled window.

See Also: GetParent, SetWindowText

Category: Declared mindmap function.

month

Syntax: month(<date>)

Description: Extracts the numeric value of the
month from the date supplied.

Parameter(s): A string containing the date.

Return
Value(s):

A string containing a two-digit num-
ber

Example:

à
(with MMDEU.DLL in-
stalled)

à
(with MMENG.DLL in-
stalled)

It is important to choose the date
format that corresponds to the mind-
map language selection.

See Also: day, week, year, date, strdate, dat-
estr, smonth, sweekday

Category: Intrinsic function.

4 3 24 3 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 432
of 518

ObjectCount

Syntax: ObjectCount

Description: It counts the number of components
on the currently visible mindmap page.

Parameter(s): none

Return
Value(s):

An integer value.

Example: à
; where the page contains
12 components.

See Also: ObjectValue

Category: Intrinsic function.

PageCount

Syntax: PageCount

Description: It returns the total number of pages
in the currently active MM file.

Parameter(s): none.

Return
Value(s):

An integer value.

Example: à
; where the total number
of pages in the applica-
tion is 72.

See Also: PageNum, ReportPage

Category: Intrinsic function

General Functions 433433

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 433 of 518

PageNum

Syntax: PageNum

Description: It returns the page number of the
current page of either a mindmap ap-
plication, a printer template or an
output page object. The function re-
turns a value of 1 for the first page.

Parameter(s): none.

Return
Value(s):

An integer value.

Example: à
; where the function is
placed on the 6th page of
the application

See Also: PageCount, ReportPage

Category: Intrinsic function.

pi

Syntax: pi

Description: It computes the value of pi, which is
the ratio of the circumference to the
diameter of a circle.

Parameter(s): none.

Return
Value(s):

3.14159

Example: à

Category: Intrinsic function.

4 3 44 3 4 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 434
of 518

PointInObject

Syntax: PointInObject(<component name>, <x-
coordinate>, <y-coordinate>)

Description: This function determines if a point
defined by its x- and y-coordinate lies
within a given object.

Parameter(s): The <component name> parameter is
a valid component name.

The <x-coordinate> is a horizontal
coordinate.

The <y-coordinate> is a vertical coor-
dinate.

Return Value(s): This function returns 1 if the point
lies within the given component, oth-
erwise 0.

Example: Use this function together with the
functions GetMouseX and GetMouseY
to determine if (and where) the mouse
is positioned with respect to a given
component.

See Also: GetMouseX, GetMouseY

Category: Intrinsic function.

rand

Syntax: rand

Description: This function returns a pseudo ran-
dom value between 0 and 32767.

Parameter(s): None

Return Value(s): The value returned is a pseudo ran-
dom number.

General Functions 435435

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 435 of 518

Example: Use the following conversions if appli-
cable

à 0 <= r < 1

à 0 <= r < 10

Category: Intrinsic function.

ReadProfile

Syntax: ReadProfile(<text1>, <text2>, <text3>,
<text4>)

Description: This function returns a string associ-
ated with a given entry in an INI file.
The INI file is assumed to be in the
windows directory if a full path name
is not supplied.

Parameter(s): text1 section name

text2 key name

text3 default value to be returned,
if the key does not exist.

text4 name of the INI file.

Return
Value(s):

A string representing the entry in the
INI file or the given default value if
the section and keyword could not be
found.

Example:

returns the currently installed default
printer or the message No printer in-
stalled if such an entry could not be
found.

If the file name is specified without
path, it is assumed to be in the Win-
dows directory. Use the GetHomeFile
function to specify an .INI file in the

4 3 64 3 6 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 436
of 518

mindmap home directory.

See Also: WriteProfile

Category: Declared function

round

Syntax: round(<num1>, <num2>)

Description: Rounds the floating point value
<num1>. <num2> is the number of
digits to the right of the decimal
point.

Parameter(s): <num1> A floating point value

<num2> An integer, the number of
decimal digits; optional

Return
Value(s):

A floating point value.

Example: à

à
; PI equals 3.14159

à

; the contents of edt1 is
132.448123

See Also: frac, int

Category: Intrinsic function

SetWindowText

Syntax: SetWindowText(<num>, <text>)

Description: This function sets the title (caption
bar) of the currently active window to
be <text>

Parameter(s): <num> is the window handle

General Functions 437437

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 437 of 518

<text> is a string

Return
Value(s):

This Function does not return a value.

Example: The function

changes the text in the caption bar of
the mindmap Application Window to
contain the word Print.

See Also: GetWindowText, GetParent

Category: Declared MS-Windows function.

ShowWindow

Syntax: ShowWindow(<num1>, <num2>)

Description: The ShowWindow function sets the
given window’s visibility state.

Parameter(s): <num1> is the window’s handle

<num2> is an integer; the window
visibility flag, defined as follows

0 hide the window

1 show the window

2 minimize the window (show as
icon)

3 maximize the window

9 restore the window to its origi-
nal size and position

Return
Value(s):

Returns equal zero, if the window was
previously hidden;

returns nonzero, unequal 0; if the
window was previously visible.

4 3 84 3 8 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 438
of 518

Example: The operation:

minimizes the currently active mind-
map application.

See Also: GetParent, MMWindow

Category: Declared MS-Windows function.

sign

Syntax: sign(<num>)

Description: Determines if <num> is positive or
negative.

Parameter(s): <num> A floating point value

Return
Value(s):

A The function returns -1 if the given
parameter is less than zero, 1 if the
parameter is greater than zero and 0
if the given value is 0.floating point
value.

Example: à

à

à

See Also: abs

Category: Intrinsic function

sin

Syntax: sin(<num>)

Description: Returns the sine of an angle that is
measured in radians. The formula for
converting degrees to radians is radi-

General Functions 439439

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 439 of 518

ans=degrees*(/180).

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

A numeric value.

Example: s à
; where edt1 contains
30*(pi/180)

See Also: tan, cos, arcsin, arctan, arccos

Category: Intrinsic function.

sinh

Syntax: sinh(<num>)

Description: Returns the hyperbolic sine of an an-
gle.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

A numeric value.

See Also: cosh, tanh, arcsinh, arccosh, arctanh

Category: Intrinsic function.

smonth

Syntax: smonth(<date>)

Description: Returns the name of the month of
<date> using the installed language
library.

Parameter(s): A date

Return
Value(s):

A string

4 4 04 4 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 440
of 518

Example: à
; date “08/09/95”
(English Format)

; edt1 contains a date.

See Also: day, ,week, month, year, date, strdate,
datestr, sweekday

Category: Intrinsic function

sqrt

Syntax: sqrt(<num>)

Description: Returns the square root of <num>.

Parameter(s): The <num> parameter is any expres-
sion that yields a non-negative num-
ber.

Return
Value(s):

A floating point number.

Note that this function returns 0 for a
square root of a negative number.
However, an entry in the parser error
window is generated.

Example: à
; where edt1 contains 144.

Category: Intrinsic function.

str

Syntax: str(<num>)

Description: Translates a number <num> into a
string.

Parameter(s): The <num> parameter contains a
number value.

Return A string representation of <num>.

General Functions 441441

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 441 of 518

Value(s):

Example: à
; where edt1 contains the
integer 123.

à

à

See Also: val, strdate, datestr, strpos, substr,
strrepl

Category: Intrinsic function

strdate

Syntax: strdate(<text>)

Description: Converts <text> into a valid date if
possible. You may use this function to
force a conversion where other func-
tions require an argument of the type
date.

Keep in mind that mindmap will at-
tempt to automatically convert strings
to date values where dates are re-
quired, even if a string is supplied.

Parameter(s): The parameter <text> contains date.

Return
Value(s):

A valid date.

Example: à

; where edt1 contains
“12.07/12/.19975”.

See Also: date, datestr, str, substr, strpos,
strrepl

Category: Intrinsic function.

4 4 24 4 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 442
of 518

strpos

Syntax: strpos(<text1>, <text2>)

Description: Searches for the first occurrence of
<text2> in <text1>.

Parameter(s): <text1> and <text2> contain strings.

Return
Value(s):

An integer value with the beginning
position (1-based). The value 0 means
that nothing was found.

Example: à
; where edt1 contains
“abcdef” and edt2 con-
tains “bc”.

See Also: str, substr, upper, lower, strdate, dat-
estr, strrepl

Category: Intrinsic function.

strrepl

Syntax: strrepl(<text1>, <text2>, <text3>)

Description: Replaces all occurrences of <text2>
with <text3> in <text1>.

Parameter(s): All parameters contain strings

Return
Value(s):

An integer; the number of replace-
ments.

Example:
; where edt1 contains
“John Miller”, edt2 con-
tains “John”, and edt3
contains “Pete”. After the

General Functions 443443

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 443 of 518

replacement, edt1 con-
tains “Pete Miller” and
the return value is 1 (for 1
replacement).

See Also: str, strpos, substr, upper, lower,
strdate, datestr

Category: Intrinsic function.

substr
 or
substring

Syntax: substr(<text>, <num1>, [<num2>])
substring(<text>, <num1>, [<num2>])

Description: Extracts from <text> a substring
starting at position <num1> and with
a length of <num2> (1-based).

Parameter(s): <text> contains a string, <num1>
designates the starting position,
<num2> the desired length of the
substring to be extracted. The pa-
rameter <num2> is optional; without
this value the returned string is from
the position to the end of <text>.

Return
Value(s):

A string

Example: à

à
; where edt1 contains
“abcdef”.

à
; where edt2 contains
“Friday” and date is
“08/04/95”

à

4 4 44 4 4 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 444
of 518

; where date is
“08/04/95”

See Also: str, strpos, upper, lower, strdate, dat-
estr, strrepl

Category: Intrinsic function.

sweekday

Syntax: sweekday(<date>)

Description: Returns the name of the weekday of
<date> using the installed language
library.

Parameter(s): A date

Return
Value(s):

A string

Example: à
; date “08/09/95”
(English Format)

; edt1 contains a date

See Also: day, ,week, month, year, date, strdate,
datestr, sweekday

Category: Intrinsic function

tan

Syntax: tan(<num>)

Description: Returns the tangent of an angle
measured in radians. The formula for
converting degrees to radians is radi-

ans=degrees * (/180).

Parameter(s): The <num> parameter is any expres-

General Functions 445445

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 445 of 518

sion that yields a number.

Return
Value(s):

A floating point.

Example: à
; where edt1 contains
30*(pi/180)

See Also: sin, cos, arctan, arcsin, arccos

Category: Intrinsic function.

tanh

Syntax: tanh(<num>)

Description: Returns the hyperbolic tangent of an
angle.

Parameter(s): The <num> parameter is any expres-
sion that yields a number.

Return
Value(s):

A numeric value.

See Also: sinh, cosh, arcsinh, arccosh, arctanh

Category: Intrinsic function.

time

Syntax: time

Description: Supplies the current system time in
24h notation.

Parameter(s): none

Return
Value(s):

A time.

Example: time à 12:43:12

See Also: date

4 4 64 4 6 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 446
of 518

Category: Intrinsic function.

trim

Syntax: trim (<text>)

Description: This function removes trailing spaces
from the given string.

Parameter(s): String to be transformed.

Return Value(s): This function returns the transformed
string.

Example: à

Category: MMLIB

upper

Syntax: upper(<text>)

Description: Returns a string consisting of the up-
percase equivalent of the <text> pa-
rameter.

CharCharacters that lack an upper-
case equivalent in the ANSI character
set are returned unchanged.

Parameter(s): The <text> parameter contains a
string.

Return
Value(s):

A string.

Example: à
; where edt1 contains
“abc/+:?=“.

See Also: lower, val, str, strpos, substr, strrepl

Category: Intrinsic

General Functions 447447

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 447 of 518

val

Syntax: val(<text>)

Description: Returns the numerical equivalent of
the supplied <text>, for use with for-
mulas involving numbers or numeric
functions.

Parameter(s): The <text> parameter contains a
string representing a number

Return
Value(s):

A numerical value.

Example: à
;where edt1 contains the
string “123”.

à
; where edt2 contains the
string “1234567890”

See Also: str, int, frac

Category: Intrinsic function.

weekday

Syntax: weekday (<date>)

Description: This function determines the day-of-
week from a given date.

Parameter(s): The function expects a date value.
Use the strdate function to convert a
string into a date value.

Return Value(s): 1 = Monday
2 = Tuesday
3 = Wednesday
4 = Thursday
5 = Friday

4 4 84 4 8 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 448
of 518

6 = Saturday
7 = Sunday

Example: The function

weekday(date)

will return the weekday index for to-
day.
The function

will return the weekday index for
Christmas 1997.

See Also: sweekday

Category: MMLIB

width

Syntax: width(<component name>)

Description: It measures in pixels, the width of the
specified component.

Parameter(s): The <component name> parameter is
a valid component name.

Return
Value(s):

An integer.

Example: à
; where the rectangle rc1
is 50 pixels wide.

See Also: height

Category: Intrinsic function.

WinHelp

Syntax: WinHelp
(<num>,<text>,<num>,<text>)

General Functions 449449

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 449 of 518

Description: This function directly invokes the
windows help system.

Parameter(s): The first parameter is the window
handle of the parent window calling
the help system. Please always use
the result of the function MMWindow.

The second parameter is the name of
the help file.
The third parameter is one of the fol-
lowing constants:
2 = Close the Windows help system
for the specified help file.
3 = Display the contents page of the
specified help file.
261 = Show a help screen for the key-
word specified in parameter 4. Please
note that this keyword must be de-
fined in the help file for this function
to be successful.

The fourth parameter is the keyword
if the third parameter is 261. Other-
wise this parameter should be an
empty string.

Return Value(s): The return value is non-zero if the
function was successful. Otherwise
zero.

Example:

Category: MMPARSE.MNC

WriteProfile

Syntax: WriteProfile(<text1>, <text2>, <text3>,
<text4>)

Description: This function places a string associ-
ated with a given entry into an INI
file. The INI file is assumed to be in

4 5 04 5 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 450
of 518

the windows directory if a full path
name is not supplied.

Parameter(s): text1 section name

text2 key name

text3 desired value for the given
key

text4 name of the INI file.

Return
Value(s):

none

Example: The function:

writes the contents of the input field
with the name edt1 to the file
MYAPP.INI in the windows directory.
Assuming that edt1 contains the
name of the user, his name may later
be retrieved by the operation:

which is normally used in a value as-
signment to the input field edt1,
again.

See Also: ReadProfile

Category: Declared function

xpos

Syntax: xpos(<component name>)

Description: It returns the upper left position of
the specified <component name>
measured in pixels from the top of the
screen.

General Functions 451451

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 451 of 518

Parameter(s): The <component> contains a valid
component name.

Return
Value(s):

An integer.

Example: à
; where edt1 is positioned
at the 56th pixel from the
top of the screen.

See Also: ypos

Category: Intrinsic function.

year

Syntax: year(<date>)

Description: Returns the year of the calendar date
supplied.

Parameter(s): A string containing the date.

Return
Value(s):

A string containing a four-digit num-
ber.

Example: à

à
; where edt1 contains the
current date 12.07.1995
or 12.07.95

See Also: day, month, date, strdate, datestr,
sweekday, smonth

Category: Intrinsic function

YMDFromJulian

Syntax: YMDFromJulian (<num>)

Description: This function converts a Julian Date
into a mindmap date value. This func-

4 5 24 5 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 452
of 518

tion is useful to reconvert the result of
date calculations (e.g. number of days
between dates, calculation of the day
of week).

Parameter(s): The parameter is a numeric value
representing a Julian date.

Return Value(s): The return value is a mindmap date.
Use the datestr function to convert
this date into a string.

Example:
à

See Also: JulianDate, datestr

Category: MMLIB

ypos

Syntax: ypos(<component name>)

Description: It returns the upper left position of
the specified <component name>
measured in pixels from the left of the
screen..

Parameter(s): The <component name> contains a
valid component name.

Return
Value(s):

An integer.

Example: à
; where edt1 is positioned
at the 152nd pixel from
the left of the screen.

See Also: xpos

Category: Intrinsic function

Component Specific Functions 453453

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 453 of 518

Component Specific Functions
Some components register their own functions. These are al-
ways available, as long as the corresponding component library
(*.MDL) has been loaded by mindmap.

Database Functions

The database functions are declared by MMBASE.MDL, that is
part of the mindmap standard installation. If this file is loaded
as specified in the MINDMAP.INI, the following functions are
available:

dbBaseName

Syntax: dbBaseName(<database>)

Description: This function determines the name of
the database, or in case of ODBC, the
name of the data source to which
<database> belongs.

Parameter(s): The <database> parameter corre-
sponds to a database name, as defined
in mindmap.

Return
Value(s):

A string.

Example:

See Also: dbTableName, dbFieldName

Category: Declared by MMBASE.MDL

4 5 44 5 4 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 454
of 518

dbCurrentRow

Syntax: dbCurrentRow(<database>)

Description: This function calculates the current
record number in the current result
set.. The first record number is 1.

Parameter(s): The <database> parameter corre-
sponds to a database name, as defined
in mindmap.

Return
Value(s):

An integer.

Example:

;this expression displays
the current position in a
result set, e. g. 11/131
would mean, the 11th rec-
ord of 131 records

See Also: dbRowCount

Category: Declared by MMBASE.MDL

dbFieldCount

Syntax: dbFieldCount(<database>)

Description: Determines the number of columns of
the database table defined by the da-
tabase object supplied as parameter.

Parameter(s): The <database> parameter corre-
sponds to a database name, as defined
in mindmap.

Return
Value(s):

An integer.

Component Specific Functions 455455

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 455 of 518

Example: à
; if the table db1 consists
of 13 columns

Category: Declared by MMBASE.MDL

dbFieldName

Syntax: dbFieldName(<database>,<num>)

Description: This function determines the name of
the column in the database table
<database> at position <num> (1-
based).

Parameter(s): The <database> parameter corre-
sponds to a database name, as defined
in mindmap.

Return
Value(s):

A string.

Example: à

if the second field in the
database object is named
FirstName.

See Also: dbBaseName, dbTableName

Category: Declared by MMBASE.MDL

dbGetDate

Syntax: dbGetDate(<database>,<text>)

Description: This function converts a date into the
correct format depending on the data-
base used. Use this function in data-
base queries issued through SQL Exec

4 5 64 5 6 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 456
of 518

commands, e.g. that are not generated
automatically through the database
command Search for Fields.

Parameter(s): <database> name of the database
component

<text> name of the component con-
taining the date that has to be con-
verted

Return
Value(s):

A string

Example: à

; for an ODBC data
source

The following statement may be used
in a SQL Select command, assuming
that edtBirth has a value of
“01/01/1965”:

The next statement finds all database
records where the column BirthDate
lies between two boundaries edt-
BirthBegin and edtBirthEnd:

Category: Declared by MMBASE.MDL

dbIsOpen

Syntax: dbIsOpen(<database>)

Description: This function tests if the database
<database> is open, in which case a

Component Specific Functions 457457

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 457 of 518

conconnect operation to the database
has been

sucsuccessful and a cursor has been
es

tablished.tablished.

Parameter(s): The <database> parameter corre-
sponds to a database name as defined
in mindmap.

Return
Value(s):

0, if database is not open

1, if database is open

Example: à
; meaning that the data-
base db1 is not currently
opened.

Category: Declared by MMBASE.MDL

dbRowCount

Syntax: dbRowCount(<database>)

Description: This function supplies the number of
records in the result set.

Please not that it depends on the da-
tabase driver how this function works.
In general, most ODBC drivers are
not capable of returning the number
of rows in the result set, unless the
last record in the result set has been
fetched. This implies that, to be safe,
a “go to last record” command should
be executed before using this func-
tion. The function returns -1 if the
number of records in the database is
unknown.

Parameter(s): The <database> parameter corre-
sponds to a database name, as defined

4 5 84 5 8 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 458
of 518

in mindmap.

Return
Value(s):

An integer.

Example:

;this expression displays
the current position in a
result set, e. g. 11/131
would mean, the 11th rec-
ord of 131 records

See Also: dbCurrentRow

Category: Declared by MMBASE.MDL

dbSQLSearch

Syntax: dbSQLSearch(<database>)

Description: Retrieves the “WHERE”-part of a SQL
SELECT statement, according to the
components to which the database is
connected and for which the “search”
option has been set. Please note that
the “WHERE”-part is also dependent
on the “Search Mode”-settings of an
input field,. This is set by setting the
attribute symbolized by the magnifier
glass on the attribute toolbox of the
component.

Parameter(s): The <database> parameter corre-
sponds to a database name, as defined
in mindmap.

Return
Value(s):

A string.

Example: à

Component Specific Functions 459459

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 459 of 518

In this example there are 3 input
fields connected to db1:

edt1 with contents 2 and Search Mode
is <f> = <a>

edt2 with contents “MGM” and Search
Mode is <f> = <a>

edt3 with contents “R;S” and Search
Mode is <f> like “<a>%”

Category: Declared by MMBASE.MDL

dbTableName

Syntax: dbTableName(<database>)

Description: This function determines the name of
the table in the database which is
represented by the component
<database> on the screen.

Parameter(s): The <database> parameter corre-
sponds to a database name, as defined
in mindmap.

Return
Value(s):

A string.

Example: à

See Also: dbBaseName, dbFieldName

Category: Declared by MMBASE.MDL

4 6 04 6 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 460
of 518

Input Field Functions

The data table functions are declared by MMEDIT.MDL and/ or
MMEDIT.MDL, that is part of the mindmap standard installa-
tion. If these files are loaded as specified in the MINDMAP.INI,
the following functions are available:

edtGetCol

Syntax: edtGetCol(<input field >)

Description: This function determines the column
position of the caret in an input field.
You may want to use this function to
extract a portion of the contents of an
input field corresponding to the cur-
rently selected text.

Please note that this function is valid
only if the input field is visible. It is
not applicable for input fields that are
not on the active page.

Parameter(s): The <input field> parameter is the
name of an input field.

Return
Value(s):

This function returns the 1-based col-
umn number which identifies the
caret position or 0 if the input field is
invalid or does not exist.

Example: à
; where the cursor has
been used to select the 4th
column in the input field
edt1

See Also: edtGetRow, edtSetPos

Category: MMEDIT.MDL

Component Specific Functions 461461

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 461 of 518

edtGetRow

Syntax: edtGetRow(<input field >)

Description: This function determines the row
number of the caret in a multiline in-
put field. For a single line input field
this function will always return 1.
You may want to use this function to
extract a portion of the contents of an
input field corresponding to the cur-
rently selected text.

Please note that this function is valid
only if the input field is visible. It is
not applicable for input fields that are
not on the active page.

Parameter(s): The <input field> parameter is the
name of an input field.

Return
Value(s):

This function returns the 1-based row
number which identifies the caret po-
sition or 0 if the input field is invalid
or does not exist.

Example: à
; where the cursor has
been put into the 3rd row
of the multiline input
field edt1

See Also: edtGetCol, edtSetPos

Category: MMEDIT.MDL

edtSetPos

Syntax: edtSetPos(<input field >, <row num-
ber>, <column number>)

Description: This function sets the caret to the po-

4 6 24 6 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 462
of 518

sition specified by the given row and
column number.

Please note that this function is valid
only if the input field is visible. It is
not applicable for input fields that are
not on the active page.

Parameter(s): The <input field> parameter is the
name of an input field.
The <row number> defines the row to
which the caret is to be placed. This
value must always be 1 for single line
input fields.
The <column number> defines the
column to which the caret is to be
placed.

Return
Value(s):

This function does not return a value.

Example: à
caret set to row 2,
column 5
; where edt1 is a multiline
input field and edt2 con-
tains the number 5.

See Also: edtGetCol, edtGetRow

Category: MMEDIT.MDL

Data Table Functions

The data table functions are declared by MMDATA.MDL, that
is part of the mindmap standard installation. If these files are
loaded as specified in the MINDMAP.INI, the following func-
tions are available:

Component Specific Functions 463463

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 463 of 518

Columns

Syntax: Columns (<data table name>)

Description: Determines the number of columns in
a data table.

Parameter(s): Name of a data table

Return
Value(s):

Number of columns as an integer
value

Example: à
; where the data table dt1
contains 12 columns

See Also: Rows

Category: MMDATA.MDL

CurrentCol

Syntax: CurrentCol (<Object name>)

Description: Returns the number (1-based) of the
column of a data table which has the
input focus.

Parameter(s): Name of a data table.

Return
Value(s):

Number of the selected column as an
integer.

Example: à
; where the cursor has
been used to select the 4th
column

Category: MMDATA.MDL

4 6 44 6 4 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 464
of 518

CurrentRow

Syntax: CurrentRow(<datatable>)

Description: Determines the number of the current
row (1-based).

Parameter(s): <datatable> component name

Return
Value(s):

An integer

Example: à
; if the 5th row of tbl1 is
selected

à

; displays the current row
in the datatable tbl1, e. g.
5/501 would mean, the
5th row of 501 rows.

See Also: Rows

Category: Declared by MMDATA.MDL

FirstMarkedRow

Syntax: FirstMarkedRow(<datatable>)

Description: Retrieves the number of the first
marked row in a multiple selection
data table (1-based).

Parameter(s): <datatable> component name

Return
Value(s):

An integer for the row position or
a negative number if nothing is se-
lected.

Example: à

Component Specific Functions 465465

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 465 of 518

; the 5th, 7th and 8th row
of tbl1 are selected

See Also: IsRowMarked

Category: Declared by MMDATA.MDL

IsRowMarked

Syntax: IsRowMarked(<datatable>,<row>)

Description: Checks if the row number <row> is
highlighted (1-based). Please note
that this is only defined for multiple-
selection data tables. The function
returns a negative value if an error
has occurred.

Parameter(s): <datatable> component name

<row> An integer; number of the row

Return
Value(s):

0 ; not highlighted

1 ; highlighted

Example:
; checks if the 3rd row of
data table tbl1 is high-
lighted

See Also: FirstMarkedRow

Category: Declared by MMDATA.MDL

Rows

Syntax: Rows(<datatable>)

Description: Determines the number of rows in the
Datatable <datatable>

Parameter(s): <datatable> component name

Return
Value(s):

An integer; number of rows

4 6 64 6 6 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 466
of 518

Example: à
; the Datatable tbl1 con-
sists of 124 rows.

à

; displays the current row,
3, in the data table tbl1,
which contains 124 rows.

See Also: CurrentRow

Category: Declared by MMDATA.MDL

SetDataTable

Syntax: SetDataTable(<datatable>,<row>,<col
umn>,<text>)

Description: Sets the value <text> into the data
table at position [<row>,<column>].

Parameter(s): <datatable> component name

<row> An integer

<column> An integer

<text> A string

Return
Value(s):

none

Example:

; The string ‘Hello world!’
is set into the data table
tbl1 at position [3,2]
which means the 3rd row,
2nd column

Category: Declared by MMDATA.MDL

Component Specific Functions 467467

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 467 of 518

List Box/ Combo Box functions

The list box and combo box functions are declared by
MMCOMBO.MDL, that is part of the mindmap standard instal-
lation. If this file is loaded as specified by the MINDMAP.INI,
the following functions are available:

CursorPos

Syntax: CursorPos(<list box/combo box>)

Description: Determines the number of the current
row (1-based).

Parameter(s): <list box/combo box> component
name

Return
Value(s):

An integer

Example: à
; the 3rd row is selected in
list box lst1

à

;this expression displays
the navigation in the list
lst1, e. g. 5/104 would
mean that the cursor is
positioned at the 5th entry
of 104 entries

See Also: LineCount, SelCount

Category: Declared by MMCOMBO.MDL

LineCount

Syntax: LineCount(<list box>)

4 6 84 6 8 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 468
of 518

Description: Determines the number of all entries
in the list box.

Parameter(s): <list box> component name

Return
Value(s):

An integer

Example: à
; list box lst1 has 382 en-
tries

à
;this expression displays
the navigation in the list
box lst1, e. g. 5/104
would mean that the cur-
sor is positioned at the
5th entry of 104 entries

See Also: CursorPos, SelCount

Category: Declared by MMCOMBO.MDL

SelCount

Syntax: SelCount(<list box >)

Description: Determines the number of selected
rows in a list box if the list box has
either the multiple selection or the
extended selection style.

Parameter(s): <list box/combo box> component name

Return
Value(s):

An integer

Example: à
; 3 entries are selected

See Also: CursorPos, LineCount

Category: Declared by MMCOMBO.MDL

Component Specific Functions 469469

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 469 of 518

Output page functions

The report functions are declared by MMREPORT.MDL, which
is part of the mindmap standard installation. If this file is loaded
as specified in the MINDMAP.INI, the following functions are
available:

ReportPage

Syntax: ReportPage(<component name>)

Description: Retrieves the currently active page
number of a report.

Parameter(s): <component name> name of the re-
port

Return
Value(s):

An integer

Example: à

See Also: ReportPageCount, PageNum

Category: Declared by MMREPORT.MDL

ReportPageCount

Syntax: ReportPageCount(<component
name>)

Description: Retrieves the number of pages in a
report.

Parameter(s): <component name> name of the re-
port

Return
Value(s):

An integer

Example: à

See Also: ReportPage, PageCount

4 7 04 7 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 470
of 518

Category: Declared by MMREPORT.MDL

VBX Functions

These functions are available if (i) a VBX control is installed
and (ii) the mindmap VBX library (MMVBX.MDL) has been
loaded.

GetParam

Syntax: GetParam(<VBX component>,
<index>)

Description: This function is valid only during the
response to events generated by a
VBX component. It retrieves a pa-
rameter which has been provided by
the VBX component.

Parameter(s): The <VBX component> parameter
references the VBX component which
generated the event.

The <index> parameter specifies
which of the list of parameters has to
be retrieved (1-based).

Return
Value(s):

The function returns the appropriate
parameter as a string regardless of
what type the VBX component has
assigned to it.

Example: This function can be used in cases
where a VBX event supplies parame-
ters that a Visual Basic program
would normally be able to interpret.

If the documentation for a VBX con-
trol (placed as vbx1 in mindmap) de-
fines an event through

Component Specific Functions 471471

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 471 of 518

the function GetParam(vbx1,1) will
return the value of Index as a string.

See Also: GetProp, SetProp

Category: MMVBX.MDL

GetProp

Syntax: GetProp (<VBX component
name>,<text>)

Description: This function returns the value of a
property of the given VBX component.
The property is defined by the second
parameter.

Parameter(s): The <VBX component> name as it has
been declared in the application.

A <text> parameter specifying the
name of the property as the VBX has
declared it.

Return
Value(s):

A value corresponding to the property
value.

Example: à
;where the height of the
placed VBX instances
equals 37 pixels.

See Also: SetProp, GetParam

Category: Declared in MMVBX.MDL

SetProp

Syntax: SetProp (<VBX component
name>,<text>,<text>)

4 7 24 7 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 472
of 518

Description: This function directly manipulates
the property of a VBX component.

Parameter(s): The first parameter is the name of the
VBX component.
The second parameter is the name of
the property to be changed.
The third parameter is the property
value as string. Please convert nu-
meric values to a string even if the
specified property requires a numeric
value.

Return
Value(s):

none.

See Also: GetProp

Category: MMVBX.MDL

MCI Functions

These functions are available if (i) an MCI driver is installed
for Windows and (ii) the MCI mindmap library (MMVFW.MDL)
has been loaded.

mciGetAlias

Syntax: mciGetAlias (<Multimedia component
name>)

Description: This function returns the currently
used alias name for the given multi-
media component. This name may be
required by certain MCI driver spe-
cific functions.

Parameter(s): Name of a multimedia component.

Return
Value(s):

This function returns a string con-
taining the MCI alias name.

Component Specific Functions 473473

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 473 of 518

Example: à
; where 3061 represents
some (arbitrary) internal
identifier, pointing to the
component mci1.

See Also: mciSendString

Category: MMVFW.MDL

mciGetFileName

Syntax: mciGetFileName (<Multimedia com-
ponent name>)

Description: This function returns the name of the
file that has been opened by the given
multimedia component.

Parameter(s): Name of a multimedia component.

Return
Value(s):

This function returns a string con-
taining the name of a multimedia file.

Example: à

Category: MMVFW.MDL

mciGetLength

Syntax: mciGetLength (<Multimedia compo-
nent name>)

Description: This function returns the length of a
multimedia component. The unit of
this value depends on the currently
selected multimedia device. (A Video
for Windows file (*.AVI) returns the
length in Frames).

Parameter(s): Name of a multimedia component.

Return Numerical value specifying the length

4 7 44 7 4 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 474
of 518

Value(s): of the file in device specific units.

Example: The multimedia command “Seek”
with a value as of

will play the mci component named
mci1 from its middle position.

See Also: mciGetLength

Category: MMVFW.MDL

mciGetMediaName

Syntax: mciGetMediaName (<Multimedia
component Object name>)

Description: This function returns the media name
of the currently selected media, if you
load a new mci file at run time, i.e. via
drag&drop. The value of the return
parameter is dependent on the type of
media device which is loaded.

Parameter(s): Name of a multimedia component.

Return
Value(s):

Generally a file name, but this de-
pends on the media device type.

Category: MMVFW.MDL

mciGetMode

Syntax: mciGetMode (<Multimedia compo-
nent name>)

Description: This function returns a string which
describes the current state of the mul-
timedia component. Please note that
this string depends on the type of
MCI driver.

Parameter(s): Name of a multimedia component.

Component Specific Functions 475475

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 475 of 518

Return
Value(s):

A string describing the state of the
component. For a Video for Windows
component (*.AVI) this function may
return

“stopped”
“playing”

Example: à

; where the playing of the
file has been stopped.

Category: MMVFW.MDL

mciGetPosition

Syntax: mciGetPosition (<Multimedia compo-
nent name>)

Description: This function returns the current po-
sition of a multimedia component.
The unit of this value depends on the
currently selected multimedia device.
(A Video for Windows file (*.AVI) re-
turns the position in Frames).

Parameter(s): Name of a multimedia component.

Return
Value(s):

Numerical value specifying the cur-
rent position of the file in device spe-
cific units.

Example: à
; where the AVI file is cur-
rently positioned to frame
number 124.

You may want to use this function to
continuously display the position of a
playing multimedia device by assign-
ing the result of this function to a text
component through a link on the mul-
timedia event “Position Changed”.

See Also: mciGetPositionString

4 7 64 7 6 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 476
of 518

Category: MMVFW.MDL

mciGetPositionString

Syntax: mciGetPositionString (<Multimedia
component name>)

Description: This function returns a string de-
scribing the current position of a mul-
timedia component. The contents of
this string depends on the currently
selected multimedia device.

Parameter(s): Name of a multimedia component.

Return
Value(s):

A string describing the current posi-
tion of the file in device specific for-
mat.

Example: You may want to use this function to
continuously display the position of a
playing multimedia device by assign-
ing the result of this function to a text
component through a link on the mul-
timedia event “Position Changed”.

See Also: mciGetPosition

Category: MMVFW.MDL

mciGetRepeat

Syntax: mciGetRepeat (<Multimedia compo-
nent name>)

Description: This function determines if the given
mulmultimedia component is in re-
peat mode.

ReRepeat mode means that the mul-
timedia comcomponent is played re-
peatedly. Repeat mode is set through

Component Specific Functions 477477

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 477 of 518

a multimedia link com

mand.mand.

Parameter(s): Name of a multimedia component.

Return
Value(s):

0 if not in repeat mode,
1 if in repeat mode.

Example: à
(not in repeat mode)

Category: MMVFW.MDL

mciGetSpeed

Syntax: mciGetSpeed (<Multimedia compo-
nent name>)

Description: This function returns the currently
selected output speed of a multimedia
component. The value is returned in
percent of the normal output speed.
Therefore 1000 means normal speed,
500 means half speed.

Parameter(s): Name of a multimedia component.

Return
Value(s):

Numerical value specifying the per-
centage of normal speed.

Example: à

Category: MMVFW.MDL

mciGetStart

Syntax: mciGetStart (<Multimedia component
name>)

Description: This function returns the start posi-
tion of a multimedia component. The
unit of this value depends on the cur-
rently selected multimedia device. (A

4 7 84 7 8 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 478
of 518

Video for Windows file (*.AVI) usually
returns zero).

Parameter(s): Name of a multimedia component.

Return
Value(s):

Numerical value specifying the start
position.

Example: à
; where mci1 is an .AVI
file.

See Also: mciGetLength

Category: MMVFW.MDL

mciGetVolume

Syntax: mciGetVolume (<Multimedia compo-
nent name>)

Description: This function returns the sound vol-
ume of a multimedia component, if
applicable. A value of 1000 specifies
the normal output volume. Specify
lower values to decrease the volume
and higher values to increase the vol-
ume.

Parameter(s): Name of a multimedia component.

Return
Value(s):

Numerical value specifying the vol-
ume level.

Example: à
; where mci2 points to a
.WAV file.

Category: MMVFW.MDL

mciSendString

Syntax: mciSendString
(<text>,<text>,<Numerical

Component Specific Functions 479479

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 479 of 518

value>,<Numerical value>)

Description: This function is imported directly
from the Windows Multimedia sup-
port DLL. It sends commands imme-
diately to a multimedia device and
returns the result string.
You may want to use this function to
control media devices not supported
by the multimedia component.

Parameter(s): The first string is the command to be
sent to the multimedia device.
The second parameter should be the
name of an input field which will re-
ceive the response to the command.
The third parameter actually specifies
the maximum length of the response.
It should be set to 255.
The fourth parameter must be 0.

Return
Value(s):

This function returns zero if it was
successful. Otherwise, a device spe-
cific error code is returned. Please
refer to the documentation of the mul-
timedia device.

Example:

will start to play the .AVI
file referenced in mci1.

See Also: mciGetAlias

Category: MMPARSE.MNC

4 8 04 8 0 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 480
of 518

Registering External Functions
Following is an example of how mindmap can read and write
strings to and from INI files.

Please verify that your MMPARSE.MNC file includes the fol-
lowing two lines and that the file MMPSTOOL.DLL is in your
mindmap home directory, or at least in a path pointed to by the
PATH environment variable.

The parameters are interpreted as follows:

ReadProfile

1st string section name in the INI file.

2nd string key name in the section.

3rd string default return value if the section or the key
are missing.

4th string name of the INI file. If you omit the path in
this string, the windows directory is as-
sumed.

WriteProfile

1st string section name in the INI file.

2nd string key name in the section.

3rd string value to write into the INI file.

4th string name of the INI file. If you omit the path in
this string, the windows directory is as-
sumed.

GetHomeDir

Registering External Functions 481481

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 481 of 518

1st string file name without path specification.

Now create a value assignment and select as the target, an in-
put field or a text field to contain the name of the actual entry.
Enter the following line into the value editor of the assignment
message:

If you want to place the INI file into the mindmap home direc-
tory, you may replace the specifier ‘MINDMAP.INI’ with GetH-
omeDir(‘MINDMAP.INI’).

During load-time, mindmap reads the file MMPARSE.MNC
which allows the registration of functions from user-supplied
DLLs into the parser. Subsequently, such functions may be
used in value assignment messages, conditions, and all other
places where strings are parsed.

Please note that there are some restrictions related to the reg-
istration of external functions:
1. All external functions must follow the FAR PASCAL calling

scheme. (This convention implies that parameters are
pushed on the stack from left to right. This also means that
variable length parameter lists are not available. The called
function is responsible for cleaning up the stack. FAR im-
plies that the function is called via a 32-bit address.)

2. Only four types of parameters are supported: ASCIIZ-
String (string), 16-bit integer (integer) , 32-bit integer
(long), and 8 byte floating point (double).

3. Integer, long and double are passed as ‘call by value’ if not
otherwise declared. Numeric data types can be forced to
follow the ‘call by name’ scheme by adding the byname
modifier.

4 8 24 8 2 C H A P T E R 1 0 T H E P A R S E R

Friday, 14. March 1997 • Manual Master (Letter)_c2.doc • manual1.dot • page 482
of 518

4. Strings are passed as ‘call by name’ as FAR. If a DLL func-
tion passes a string back to the caller, the buffer pointed to
by the string is defined to hold al least4096 characters, in-
cluding the terminating null. If the component (e.g. an in-
put field) already contains a larger string this string is
passed in its complete length. Remember that the called
function cannot reallocate this pointer.

5. An external function may return either a 16-bit integer, a
32-bit integer or a FAR pointer to a string. In the latter
case, the buffer pointed to by the return value must either
exist in the default data segment of the called function or
be allocated in local or global memory. It must not be allo-
cated on the stack (automatic variable).

The following sample shows how to register the WinHelp func-
tion from the Windows Kernel:

The next example shows how a floating-point parameter can be
passed back to mindmap:

The corresponding declaration in the C-source for sample.dll
would then look like:

Additionally, the system allows constants to be defined through
the following syntax:

Please note that syntax errors in the MNC file are reported
through entries in the MMERROR.LOG file, which may be ex-
amined by using the MMINFO utility in the Op-
tions/Preferences menu.

Also note that if mindmap detects an error in an MNC file the
interpretation is abandoned.

