
Some Background Considerations

Defining a behavior for components in MindMap is equivalent to the process of programming an application in a conventional

development environment such as C++, VisualBasic, PowerBuilder, etc. In MindMap, defining the behavior is accomplished

by assigning one or more links to a component. A link is comprised of exactly one incoming event and one outgoing

message. This pair is what we call a link. The process of defining such links in MindMap is referred to as linking components.

An event functions as a trigger for a component. When a trigger occurs, the component which has been associated with the

trigger will receive control and do as it has been instructed in the message. It will generate the message. A message, in turn,

will cause a specific reaction by the associated component or it will act as an event for a subsequent component.

Thus, building an application can be viewed as constructing a network of components, sending and receiving both events and

messages. In the above model, a component is receiving exactly one event and generating one message. In other words, it

has exactly one link associated with it. If this were always the case, an application would be fairly limited. Therefore, MindMap

allows multiple links to be assigned to a component.

In a two-dimensional representation, the cubes represent the components and are displayed as a network, albeit in this case

a very simplistic one. If the two-dimensional representation is collapsed into one dimension (represented by the balls), then an

application can be viewed as a single list of components connected in a parent-child relationship.

This leads to a very important aspect of MindMap, which should be kept clearly in mind when constructing applications    the

mechanism by which messages are passed in the system. Let us take this, and granted, a somewhat abstract representation,

one level further. Consider the balls in the above representation to be pearls on a chain. In this little example, the application

would consist of one string of pearls. Lets look at a somewhat more complex application.

This is a necklace of necklaces    where multiple strings of pearls are interconnected. The top level of this picture represents

the application itself. At this level, events are received from the operating system. When a user clicks on the mouse, the

operating system intercepts the event and determines which programs are running at the time. It then determines which

program is in foreground and should presumably be waiting for user interaction. Once this has been determined, the operating

system forwards the event into the message handling facility of the program, in this case MindMap.

Next, MindMap    actually its event-message handler    grabs the event and forwards it to the first page. All pages are on the

same string of pearls, meaning that they are logically at the same level. The event is passed into the necklace and the first

page receives it. The page determines whether or not it is to act on it. In case it decides it doesnt want to deal with it, it passes

the event on to the next page on the necklace. The process begins anew. Eventually either a page decides to process the

event or it ends up back at the top of the chain, in which it is simply discarded.

If a page decides that it should deal with the event, it grabs the event, opens up its little necklace of components on the page

and forwards the event into this chain. The process begins again. The first component on the page takes a look at the event

and decides if it wants to act on it. If not, it passes the event on to the next in line. Either the event is squeezed back up to the

page level without having been dealt with, or some component on the page has grabbed it and acted on it. In this case, the

event will be flagged so that subsequent components will not deal with it. The flagged event is then passed through the

component level of the chain, up to the page level, where it is then rushed back up to the application level.

The sequence for processing events is    graphically speaking    either left to right or right to left, depending on the particular

type of event. Well, how does this relate to the components as viewed on the screen? Easy. The first page in a MindMap

application is the leftmost page. The next created page will be next in line, or to the right of the previous page. Inserting a new

page can be envisioned as cutting open the necklace, adding in a new pearl and knotting the chain back together again.

The same metaphor can be used for the components themselves. The first placed component is first-in-line. It is at the

leftmost position on its segment of the necklace. The next created component is attached to the right of its predecessor.

This pearls-on-the-necklace order can also be viewed differently; namely, in the sense of foreground and background. The

first component placed on a page is in the background. The next component is in foreground, relative to the first, and so on.

Thus, the last placed component is in foreground, relative to all other components on the page. If you now move a component

into background (via the menu option Edit | Background or vice versa Edit | Foreground, what you are actually doing is

rearranging the pearls on the necklace. You are, figuratively speaking, cutting open the necklace and inserting the component

into a new position.

Applying this metaphor to groups, we get the following picture. When you create a group of components, what is really

happening is that the component necklace segment is cut open, a new type of component is created and inserted (being the

non-visible group component) and all components belonging to the group are strung onto the new segment, which dangles off

the component segment. A group of groups is, thus, a necklace of necklaces.

Keep in mind, that the order in which the components receive and process their messages, also corresponds to the order in

which they are painted onto the screen - from background to foreground or from foreground to background

The direction of event passing actually depends on the type of event. Generally, all mouse-related events are passed from

right to left (foreground to background) in order to make sure that events being in the foreground receive mouse clicks first, as

one would expect. On the other hand, system related events like Application started or F3 key pressed are passed from left to

right.

We strongly recommend that links acting on the same type of system related event (like Application started or Page activated)

are kept together on a single component. This makes it easiest to keep control over the sequence of operation.

How to Define a Link

Before getting into the details of what each event and message actually does, lets look at how they are assigned to a

component.

Select a component to which you want to assign a link. Next, either click on the menu option Properties | Links, press the F6

function key, or activate the attribute toolbox for the component. Lets assume you did the latter.

Now, click on the icon displaying an arrow leaving a little square and pointing towards a little circle. This will result in the

following screen being displayed:

Since no links have been defined so far, the major portion of this dialog box is empty. In order to define a new link, click on the

New button on the right side of the dialog box. This will open up the following dialog box:

This is the control center. Here is where you actually define the behavior of a component. At the top left of this screen, you

see the Events list. Next to it is the Message list. Underneath both lists is an area which deals with conditions. The rest of the

screen is dedicated to whatever definitions are necessary, in conjunction with the selected event-message combination.

Therefore, it will change its appearance depending on the selection made earlier.

To demonstrate the method by which a link is defined, drop down the Events list. Select one of the events, such as Left

Mouse Button Released. Next, drop down the Message list and select the message entitled Sound. This will result in the

following screen:

As you will notice, the bottom section of the dialog box has changed to reflect the selection of the Sound message. Click on

any one of the options on the left side and accept the selection by clicking on the OK button on the right side of the screen.

This will result in returning you to the initial link dialog box, only this one has now been updated to reflect the new link

definition.

The dialog box now displays a link defined for the component btn1 (see the caption bar on the dialog box). The link can be

read to say that:

When the mouse has been moved on top of the component btn1, and the left mouse button has been clicked and

subsequently released, the sound associated with the default setting will be produced.

Next, create another link, this time associating a different sound with the same event. The screen should then look similar to

this one:

If you were to execute this little application, then the following actions would take place. Once you clicked on the push button

named btn1, the sound associated with Default would be played (provided you have a sound card installed), immediately

followed by the sound associated with System speaker. In other words, the processing sequence of links is top-to-bottom of

the list for any given component. There is one aspect you should be aware of, though. Some events are generated sooner

than other events, an example being Application started. If you have assigned this event to any component in the application,

then it will be executed, and thus the message associated with it will be performed, before the list of any component will be

processed.

Relative to a component, the link list is processed from top to bottom. Relative to the application though (which in some cases

might override the apparent sequence associated with any given component), certain events are generated without user

interaction, and prior to any user interaction events. These will be processed first.

If you wish to rearrange the order of link processing, you can easily do so. In this simple case, lets assume you want to hear

the sound associated with the System speaker entry before the Default sound is generated. In this case, select the second

link (Sound Speaker sound). It will invert the background color. On the bottom right hand side of the dialog box, you can see

two arrow heads, one pointing up, the other pointing down. Click on the one pointing up. This will cause the second link to be

moved up, in front of the Sound Default link.

Another way of rearranging the links is by selecting the link you wish to move. Then, keeping the left mouse button pressed,

drag it to the position you wish it to be moved to. The cursor will change its appearance

to display where it will accept placement of the link. This cursor will appear whenever the mouse has been positioned between

two existing links, or at the top or the bottom of the list of links.

You can also delete, copy, and paste links within this screen, as well as between links screens.

If you wish to delete a link, select it and then click on the Delete button on the right side of the dialog box. If you want to delete

multiple links, you can select them either individually by keeping the CTRL key pressed and clicking on the link, or by keeping

the SHIFT key pressed and clicking on the links. Using the CTRL key approach permits you to select non-contiguous links.

Using the SHIFT key method will select all links between the first and the last selection made using the mouse.

Using the Copy button on the right side of the dialog box, you can place the selected link(s) on the clipboard. You can employ

the same selection methods just described for the delete function. Once selected, the links are placed on the clipboard as

soon as you click on the Copy button. Copying links to the clipboard will overwrite any links placed there previously.

You can retrieve the links from the clipboard by clicking on the Paste button. The link(s) off the clipboard will be placed

immediately above the links selected at the time. Thus if you already have to links on the screen and you insert the contents

of the clipboard, then assuming the first of the two links is selected, the contents will be placed as the first links.

Another feature available is that of toggling a link active and inactive. Links are active by default. If you wish to temporarily

turn one off (make it inactive), then simply select it and mark the check box on the lower right hand side of the dialog box. The

selected link(s) will be grayed and will not be executed during run time.

Common Events

All components have a common heritage in regards to the events they support. When a component developer builds a new

component he/she is offered a set of generic events. It is then the decision of the developer to support all, or any sub-set, of

these events. In addition, the developer can then register new events, that are specific to the component being developed.

The simpler components do not support their own events. They merely inherit their events from the generic list of events.

Following is the set of generic events. In general, all    or at least a major portion of them    are supported by all components.

Event Description (When generated)

Left mouse

button clicked

When left mouse button is pressed and before

it is released.

Left mouse

button released

When left mouse button has been released.

This (and right mouse button released) is the

preferred event on which to trigger buttons.

Left mouse

button double

clicked

When left mouse is clicked twice in rapid

sequence.

Note:

Many users have difficulties performing this

operation. This is in part due to the sensitivity

settings for the mouse. When attempting to

double click many users move the mouse a few

pixels. This is often enough for Windows to

interpret the action as two separate single

mouse clicks. It is generally advised to avoid

using this event, if at all possible.

Right mouse

button clicked

When right mouse button is pressed and

before it is released.

Right mouse

button released

When right mouse button has been released.

This (and left mouse button released) is the

preferred event on which to trigger buttons.

Right mouse

button double

clicked

When right mouse button is clicked twice in

rapid sequence.

Note:

Many users have difficulties performing this

operation. This is in part due to the sensitivity

settings for the mouse. When attempting to

double-click many users move the mouse a

few pixels. This is often enough for Windows to

interpret the action as a two separate single

mouse clicks. It is generally advised to avoid

using this event, if at all possible.

Activate Page When control is passed to current page

(jumped to or to component on page).

Use this event when you wish actions to be

taken before anything else on the page, to

which is being jumped, is to be executed.

Deactivate Page When control is passed to another page.

Use this event if you need to clean up

something, before turning control over to the

next page.

Mouse

movement

Any movement of the mouse will generate this

event. This event is sent to the component

which the mouse is currently above.

Use this event very cautiously, since it will be

generated anytime the mouse is moved within

the border of the selected component.

Mouse

movement into

object

When the mouse cursor is moved into selected

component.

Use this event in conjunction with the changing

of the appearance of the mouse cursor.

Mouse

movement out of

object

When the mouse cursor leaves the selected

component.

Use this event in conjunction with the changing

of the appearance of the mouse cursor.

Application

started

When the application is started (put into run

mode or executed as EXE file).

Application

terminated

When the application is normally terminated

(put into edit mode or quit as EXE file), this

event will be generated.

This event is often used to clean house (i.e.,

set variables to some predefined value) before

leaving the application.

Goal of a jump When the selected component has been

jumped to (used in conjunction with sub

routines/sub assemblies).

Error in

calculation

When an error in evaluating a formula is

encountered. This event is sent to all

components on the active page.

Begin

Drag&Drop

When a drag&drop operation using the mouse

begins. This event is sent to the component

initiating the drag&drop operation.

End Drag&Drop When a drag&drop operation using the mouse

ends. This event is sent to the component that

has initiated the drag&drop operation.

F1-F12-Keys When any function key is pressed in run mode

for the selected component. This event is sent

to all components on the currently active page.

Note:

F4 toggles back into edit mode, if the file is

running as an .MM file. When running an .MM

file which has been converted to an .EXE file,

this function key will not toggle between edit

mode and run mode.

Esc-Key When the ESC key is pressed for the selected

component.

Component Specific Events

The following list contains those events which are available if, and only if, the associated component has been installed.

These events are specific to the particular component. They will only be visible in the list of events for a component of the

same type.

Buttons

Event Description (When generated)

Button pressed When a command button has been pressed

and before it is released.

Button released When a command button has been released.

Row up/left When Up arrow has been clicked on a

selected scroll bar component.

Page up/left When area on selected scroll bar between

elevator and the Up arrow has been pressed

Row down/right When Down arrow has been clicked on a

selected scroll bar component

Page down/right When area on selected scroll bar between

elevator and Down arrow has been clicked

Move Only when the elevator bar on the scroll bar is

moved up and down (or left and right on a

horizontal scroll bar), will this event be

generated.

Scroll change The event is generated when either the

elevator bar is moved, one of the arrows has

been clicked on, or the area between the

elevator bar and an arrow has been clicked.

Data Tables

Event Description (When generated)

Receive focus Whenever the cursor is placed inside a cell of

the data table, this event will be generated.

This event is only generated when the data

table itself receives focus. Use the event

Cursor changed if you want to determine each

single click into a cell of the data table.

Lose focus Whenever the data table itself or a cell inside

the data table loses focus, this event will be

generated.

Cursor changed Anytime the cursor is moved to another cell

within the data table, this event is generated.

Double-click Whenever a cell in the data table receives a

double click, this event is generated.

Abort edit mode This event is sent when the cell edit mode is

canceled with the ESC key.

Begin edit mode The normal procedure to begin the edit mode

in the cell of a data table is to press the

CTRL+E key. This will generate the event. If

the cursor is placed inside a cell of the data

table and the user begins to enter in

characters, the event will also be generated.

Cell changed Whenever the content of a cell has been

changed, this event will be generated. Keying

in the same characters as are already in the

cell, will not generate this event.

Order changed If the attribute, which permits the user to

rearrange the rows at run time, has been set,

then the event will be generated whenever a

row has actually been rearranged. The

process for rearranging rows is to select a row,

keeping the left mouse button pressed, moving

it to another row and letting go of the left

mouse button. The row can only be dropped

when the cursor changes its appearance,

signaling a valid position.

Input Fields

Event Description (When generated)

Enter If the cursor is inside the input field (input field

has focus) and the user presses the ENTER

key, this event is generated. If the input field is

set to display multiple lines, then ENTER will

cause carriage/line feed and the cursor will be

placed into the first column of the next row.

Keyboard input If the cursor is inside the input field (input field

has focus) and the user begins to type in

characters this event is generated.

Receive focus Whenever the cursor is placed inside the input

field, this event is generated.

Lose focus If the input field had focus and the cursor was

used to click somewhere other than inside the

input field, this event is generated.

Cursor changed If the cursor is inside the input field (input field

has focus) and the user moves the cursor

(caret) to another position by clicking on the

arrow keys on the keyboard, this event will be

generated. Moving the position of the caret by

means of the mouse will not generate this

event.

MCI

Event Description (When generated)

Mode changed This event is generated, if the mode of the

multimedia component changes (e.g. playing,

seeking, stopped, ...).

Device not ready This event is generated, if the device is in a

state in which playing a multimedia file is not

possible, as is the case when a CD was

ejected from a CD drive.

Stopped This event is generated, when the device ends

playing a multimedia sequence, regardless of

whether the device stops through user

interaction or if the end of the media is

reached. Prior to sending this event, the Mode

changed event will be    sent.

Playing This event is generated, when the device starts

playing a multimedia sequence. The event is

sent after the Mode changed event has been

generated.

Recording This event is generated, when the device starts

recording a multimedia sequence. The event is

sent after the Mode changed event has been

generated.

Seeking This event is generated, when the device

moves to a new position of a multimedia

sequence. The event is sent after the Mode

changed event has been generated.

Paused This event is generated, when the device is in

pause mode. The event is sent after the Mode

changed event generated.

Device is open This event is generated, when a multimedia

sequence is ready to be launched after

loading. Prior to sending this event, the Mode

changed event will be sent.

Position changed This event is generated continuously once

every second to indicate the progress of

playing a multimedia file. Use the

mciGetPosition or mciGetPositionString

functions to retrieve the current position. (see

Parser)

Size changed This event is generated, when the MCI

interface changes the size of the display

window.

Media changed This event is generated, when a new media

(such as a CD) is loaded.

Error This event is generated, when the MCI

interface detects an error. The formula value of

the MCI component contains the appropriate

error string.

VBX

If you register a VBX, then it will usually augment the list of events by itself. Since these events are specific to the component,

there is no way to document, here, which events will be registered. As is the case with all other component specific events,

the events registered by the VBX will be appended to the list. Some of the otherwise available events might be excluded from

the list, since the VBX paradigm does not support them (such as drag & drop) between non-VBX components.

You should refer to the documentation accompanying the VBX in order to determine which events are/will be available.

Encapsulation (Client / Server)

An encapsulation component will always register at least one event. In addition to this event, the developer of the

encapsulation component (subassembly) will be responsible for exposing other facilities. These facilities, otherwise referred to

as the sub-assemblys API (Application Programming Interface), will appear in the event list, as defined by the component

developer.

Event Description (When generated)

Server has closed This event is generated when the server

has terminated normally. The client

connected to this server will receive this

event and can process it.

Database

The following events are generated by any installed database.

Event Description (When generated)

Record

loaded

When a query is sent to a database, and a record has

been returned to MindMap, an event of this type is

generated. Also, if the database cursor has been

moved to a new position, by means of the First record,

Previous Record, Next record, Last record or Go to

record commands.

Refresh

data fields

Delete

failed

When the MindMap application attempts to delete a

record in the database and the operation has failed,

this event is generated. A possible cause for this failure

might be that the database is write-protected.

Insert failed When the MindMap application attempts to insert a

record in the database and the operation has failed,

this event is generated. A possible cause for this failure

might be that the database is write-protected

Update

failed

When the MindMap application attempts to update a

record in the database and the operation has failed,

this event is generated. A possible cause for this failure

might be that the database is write-protected

Input/Output

The following events are generated, independent of the type of data stored on the clipboard.

Event Description (When generated)

New data in

clipboard

Whenever something is copied to the

clipboard, this event is generated. This event

can be used to signal to the application that a

copy has been successful.

Clipboard empty Whenever another application has changed or

has cleared the contents of the clipboard.

Menu

Event Description (When generated)

Menu When a menu component is placed on the

screen and a text has been assigned to a field,

then this text will appear as the event option in

the event list. The text string itself has no

meaning. It merely functions as a placeholder

representing the nth menu entry.

Note:

The only events a menu component has, are

those entered into the component itself, by the

developer.

Common Messages

The following list contains all the messages which are available in the standard environment. This means that even if you

have not installed additional components, these messages will be available to you. Each additional component can choose to

register its own messages. In this case, they are added to this list. The description of the component specific messages are

dealt with on a component-by-component basis at the end of this list.

Whenever you select a message from the list on the right side of the dialog box, the lower section of the dialog box will

change to reflect the selection. The actual contents of the link dialog box after having selected a message is, thus, a function

of the selected message.

Jump

Once you select the jump message, the dialog box will take on the following appearance.

This message is used in a number of different ways. Its most common use is to transfer control from one page to another. By

no means is this its most important use, though. The fact is that a jump message transfers control to whatever it jumps to,

making it suitable for a number of different situations, such as:

reassigning focus

beginning a subroutine

a dummy operation to execute parser statements

In order to actually jump to another component (which includes a page), merely select the component in the list which opens

once you select this message. You can jump to any component, although the reaction due to the jump might differ.

If you jump to a page (not a component on the page), the jumped to page will display itself. If you have set any effects on the

page, these will take affect. All components on the page will receive a message to paint themselves and to evaluate any

parser statement associated with them. The paint sequence corresponds to the order in which they were created, or more

precisely the order in which they have been layered (foreground / background). They will be painted from background to

foreground. The component farthest in background, capable of receiving focus, will receive it.

If you jump to a component on a different page, then the page will be displayed, the components will be painted in the order

as described above, and any parser statements will be evaluated. The difference is that the default focus assignment is

overridden by the component jump. If the component the jump is directed to is capable of receiving a focus, it and not the

component farthest in background, will receive focus.

Special consideration must be given if the component that receives the jump has been set to be invisible. In this case the

page will not be displayed. Lets look at an example. If you have placed a rectangle on page two, along with a number of other

components and you jump from page one to the invisible rectangle, then all links associated with the rectangle (Goal of a

Jump), as well as the associated parser statements will be executed. You can use this feature to launch activities without

letting the normal effects of a jump become visible.

If you jump to a component on the same page, more or less the same process takes place. The page is not redrawn though,

unless some other link is executed that invokes a repaint. Again, if you jump to an invisible component, the jump and all links

associated with the jumped to component will be executed. If the component could receive focus, but has been set to be

invisible, then it will not accept the focus and focus will remain where it originally was (again, assuming that no link is activated

that otherwise changes focus).

A jump message is also used to initiate a subroutine. This is done by dropping a placeholder component (most commonly a

rectangle is used) on the desktop. Next, all desired links are placed on the rectangle. The event they trigger on though is Goal

of a jump. When the rectangle is jumped to, then it is actually receiving a Goal of a Jump event. Lets view this process in

more detail:

Sending

Component

Receiving

Component

Description

Left Mouse

Button

Released   

Call to…

The component transfers control to the

receiving component.

Left Mouse

Button

Released   

Change

Attributes Color

to Green

This link is not executed, since the control

has been received not via user interaction on

the component, but via transfer from another

component.

Goal of a Jump

Sound

This link is processed, since control has

been received through the jump

message/event. The sound message is

executed.

Next link Control is back at the initial component.

It must be noted, that the behavior of the sending component during the period in which the receiving component is

processing its links, can be influenced by the setting of the switches on the right of the dialog box.

MindMap also supports computed jumps. When you select a component in the component list, MindMap will use the

component as an absolute place to jump to. There might be situations in an application you are building, in which you would

like to jump to a page or component which is determined at run time. To enable a computed (or parsed) jump, you must point

the jump to a component which contains the destination. In this case the jump doesnt actually jump to the specified

component, it uses the contents of the component as a pointer to the real destination.

Lets use a little example to clarify this feature. Place an input field on Page1 of the application. Place a command button next

to it. Now create a second and a third page. Go back to the first page and place a link on the command button which reads:

Left Mouse Button Release Jump to EDT1

At the top of the section displaying the component list in the link dialog box, you can see a row of buttons.

Next to the plus (+) and the minus signs (-) you will see two additional buttons. The button labeled AB toggles the component

list to display in alphabetical order. The button with the capital sigma () is the one we need in this context. If you selected the

input field labeled EDT1, this name should appear in the area to the left of the four buttons. If you now click on the -button, the

list of components will be grayed and the components name listed in the field will be ungrayed. The -button will remained

pressed. If you now leave the dialog box (by clicking the OK button) and return to the list of defined links, you will notice that

the components name has been placed in square brackets ([]). This symbolizes that the component, in this case EDT1, is not

being used as a jump target, but as a supplier of the pointer.

Assign value

Once you have selected this message, the dialog box will change to reflect the options associated with this message:

This is the method by which a specific value can be assigned to another component. If you employ the parser, then you can

assign a statement to a component, which will be evaluated when the component is instructed to do so. The general

conceptual syntax for the Assign value statement is

component x    statement

with component x being the component selected in the upper section of the dialog box. (Please note that only those

components that are capable of having a value assigned to them are displayed in the list.) The statement belongs in the area

beneath the list of components. The statement itself must adhere to a certain syntax. (The valid syntax of statements is

described extensively in conjunction with the parser.)

A statement may include:

constants or values

operators

references to other components

functions

Thus, a valid statement might be:

sqrt(component x) * (10*pi)

or

substr(component y,2,3)

The first statement would assign the result of the mathematical operation on the component-x as described in the statement.

The second statement would assign the result of the string operation to the appropriate component.

Please note that you do not include any assignment or equality operators such as = or < in the statement. By selecting the

component in the list, you are already making the assignment and you must merely supply the rest of the equation.

The component to which you assign the value, does not necessarily have to be able to deal with the assigned value. You can

use a component as a storage location for values. Often, rectangles are used as temporary storage locations for values, much

as they are used for subroutines.

Lets look at a little example of this concept.

Place a command button, an input field and a rectangle, on the desktop. Select the command button and put the following link

on it:

Left Mouse Button Release - Assign Value 23 to RCT1.

Next, define the following link on the same command button:

Left Mouse Button Release - Assign Value RCT1 to EDT1.

Note that this assumes the rectangle has been given the name RCT1 and the input field has been set to EDT1.

The first link assigns the value to the rectangle and, even though the rectangle cant deal with the assignment in the

conventional manner, it does store it. The second link takes the value of the rectangle and displays it, since the edit field

knows how to deal with values.

Please note that this little example would not function properly, if you were to reverse the order of the two links. The links are

processed by MindMap in a top-to-bottom order.

Drag&Drop

First, lets look at the concept. Dragging & dropping implies taking something from one component and passing it on to

another component. The component which is providing the data does not get involved in the manner in which the receiving

component deals with the data. Sender and receiver are completely independent of one another.

Once you select the Drag & Drop message, the dialog box will change its appearance. On the lower left-hand side of the

dialog box, a list of components capable of supplying data via drag & drop are displayed. Immediately to the right, you will see

a list of components in the application which have the ability to react to drag & drop data.

Lets use a simple example to explain how this message works. Place a button and two input fields on page 1. Select the

command button and place a link on it. Use Left Mouse Button Released as the event and select the Drag & Drop message.

The two list boxes will only contain components capable of sending or receiving data via this message. Therefore, the button

you have placed on the screen will not appear. Select edt1 as the component from which the data is requested and select

edt2 as the receiving component. Put MindMap in run mode and type some data into the input field edt1. Now, click on the

command button and the data should be copied from edt1 to edt2.

Lets take this one step further. Return to edit mode and click on the icon representing the import of graphic files. Select BMP

as the format and search your system for a .BMP file. Generally, your Windows directory will contain such files. While youre at

it, try to remember a second file name (or better yet, take a note of it). Accept the selection and place the bitmap on the

desktop. Next, select the bitmap and set its attribute to drag & drop enable. (This is the icon with the little hand dropping the

ball.) You should still have a command button and an input field placed on the desktop. If not, place one of each on the page.

Select the command button and place a link on it. As an event, use the omnipresent Left Mouse Button Released, and, as the

message, use Drag & Drop. Now select the input field as the originating data source and select the bitmap as the receiving

component. Accept the link, go back to the desktop and put MindMap into run mode. Your screen should look something like

this:

Select the input field and key in the name of the file you either memorized or have written down. Please make sure that you

type in the complete path for the file. When you click on the command button, a drag & drop operation will be performed.

Strangely enough though, the existing bitmap will be replaced by the bitmap contained in the file you have specified in the

input field.

What has happened? The bitmap has received a file name as data via the drag & drop message. It has then attempted to

display the file name, which it cant. It then attempted to locate a file by that name (and hopefully succeeded), has opened the

file, read it, and displayed the contents in place of the existing bitmap. The existing bitmap has taken on the roll of a

placeholder.

Reverse the order of sending and receiving in the above example - drag & drop the bitmap to the input field (remember to set

the attribute of the input field to enable incoming data via drag & drop). Go into run mode and execute the link. Interestingly

enough, what will happen is that the bitmap will display its file name in the input field. What has happened now, is that the

bitmap started out by sending the actual bitmap to the edit field. It responded by informing the sender, that it could not deal

with this form of data, only with alphanumeric information. The bitmap component then sent it a file name. This the input field

could deal with and immediately displayed it.

Try the same procedure with a list box. Place a list box on the desktop, along with a button and a bitmap. Set the drag & drop

attribute of the list box to receive data. Instruct the button to perform a link, whereby it is to send data via drag & drop from the

bitmap to the list box. Put MindMap into run mode and execute the link. As presumably expected, the list box displays the file

name associated with the bitmap. Now go back into edit mode and set the specific attributes of the list box to Show Bitmaps

(bottom left hand corner of the specific attributes dialog box). Now get back into run mode and execute the link. Well, the list

box now displays the bitmap you sent it. If you execute the link multiple times, the list box will display multiple instances of the

bitmap.

The point of the story is that each component reacts differently to incoming data via the drag & drop message.

The drag & drop message also supports the computed drag & drop feature. When specifying the sending component, click

on the -button after selecting the component. Keep in mind though, that the supplying component must be capable of

containing a pointer (i.e. a graphical primitive cannot be used here). Then select the destination. When the link is executed, it

will go to the specified component, pick up the pointer, and go and get the contents of the component the pointer is pointing

to. The contents will then be forwarded to the receiving component.

The same procedure can be used the other way around. The receiving component can contain a pointer to the component

which is really supposed to receive the data. This way you can pick up data from a component and send it right back to itself.

Here is a break-down of how the components react to incoming data via drag & drop:

Sending

component

Receiving

component

Description

Input field Input field The input field will overwrite its contents and

display the contents of the sending input

field.

List box The list box will append the contents of the

input field to the bottom of its list. This is true

even if you have highlighted a row in the

receiving list box - the incoming data will

always be appended.

Collapsed list

box

If the input field contains backslashes (\)

starting in the first column, these will be

interpreted as indentators. One backslash

will indent the string one level. Two

backslashes equals two levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though, unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The contents of the input field will be placed

in the first column, first row of the data table.

Subsequent drag & drops will overwrite the

contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the contents of

the input field will be placed on the clipboard

and made available as text to other

applications.

If the attribute has been set to any of the

graphic formats, then the clipboard will still

accept the text and make it available to other

applications as a text.

If the input field has been given a specific

format, such as a date or time format, the

clipboard will interpret the data as a string

and make it available as a string.

Input/output:

File system

If you drag the contents of an input field to

file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop

an input field to the I/O component, the

component will open the file, write the

contents to the file, and subsequently close

the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The contents of the input field will not be

appended to the existing file. If you have

checked the option Append to file, then

subsequent executions of the link will

append the contents of the input field to the

specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the contents of an input field is sent to

an MCI component via drag & drop, the

receiving component attempts to interpret it

as a command. If the input field contains a

valid file name, then the MCI component will

retrieve the file, open, and load it.

Buttons - no reaction -

Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

List box Input field The input field will overwrite its contents and

display the selected row of the sending list

box. Only the selected row in the list box will

be sent.

If the list box has been set to show bitmaps,

then dragging & dropping the selected row to

input field will result in the input field

displaying the file name of the bitmap.

List box The list box will append the contents of the

sending list box to the bottom of its list. This

is true even if you have highlighted a row in

the receiving list box - the incoming data will

always be appended.

If the list box has been set to show bitmaps,

then dragging & dropping the selected row of

the sending list box will result in the

receiving list box displaying the file name of

the bitmap.

Collapsed list

box

If the sending list box contains backslashes

(\) starting in the first column, these will be

interpreted as indentators. One backslash

will indent the string one level. Two

backslashes equals two levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

If the list box has been set to show bitmaps,

then dragging & dropping the selected row

collapsed list box will result in the collapsed

list box displaying the file name of the

bitmap.

Combo box The combo box behaves in the same

manner the list box does.

If the list box has been set to show bitmaps,

then dragging & dropping the contents to

combo box will result in the combo box

displaying the file name of the bitmap.

Drop down The drop down behaves in the same manner

the list box does.

If the list box has been set to show bitmaps,

then dragging & dropping the contents to

drop down will result in the drop down

displaying the file name of the bitmap.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though, unless you drop down

the list.

If the list box has been set to show bitmaps,

then dragging & dropping the selected row to

a drop down list will result in the drop down

displaying the file name of the bitmap.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

If the list box has been set to show bitmaps,

then sending the selected row to a bitmap,

CGM, etc., will result in the selected bitmap

in the list box to be displayed instead of the

placeholder.

Data table The contents of the list box will be placed in

the first column, first row of the data table.

Subsequent drag & drops will overwrite the

contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the selected row

of the list box will be placed on the clipboard

and made available as text to other

applications.

If the attribute has been set to any of the

graphic formats, then the clipboard will still

accept the text and make it available to other

applications as a text.

Input/output:

File system

If you drag the selected row of a list box onto

a file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop a

selected row of the list box to the I/O

component, the component will open the file,

write the contents to the file, and

subsequently close the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The selected row of the list box will not be

appended to the existing file. If you have

checked the option Append to file, then

subsequent executions of the link will

append the selected row of the list box to the

specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the selected row of a list box is sent to

an MCI component via drag & drop, the

receiving component attempts to interpret it

as a command. If the list box contains a valid

file name, then the MCI component will

retrieve the file, open, and load it.

Buttons - no reaction -

 Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Collapsed

list box

Input field The input field will overwrite its contents and

display the contents of the sending collapsed

list box.

If you have selected a row which is indented,

then the indentation characters (\) will not be

sent to the receiving component.

List box The list box will append the selected row of

the collapsed list box to the bottom of its list.

This is true even if you have highlighted a

row in the receiving list box - the incoming

data will always be appended.

If you have selected a row which is indented,

then the indentation characters (\) will not be

sent to the receiving component.

Collapsed list

box

If the collapsed list box contains indented

rows, the dragging & dropping them to

another collapsed list box will strip the

preceding indentators (\) and the resulting

collapsed list box will not display the rows

indented.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The selected row of the collapsed list box

will be placed in the first column, first row of

the data table. Subsequent drag & drops will

overwrite the contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the selected row

of the collapsed list box will be placed on to

the clipboard and made available as text to

other applications.

If the attribute has been set to any of the

graphic format, then the clipboard will still

accept the text and make it available to other

applications as a text.

Input/output:

File system

If you drag the selected row of a collapsed

list box to file system I/O component, nothing

will happen. If you specify a file name in the

attribute of the component and drag & drop a

selected row to the I/O component, the

component will open the file, write the

contents to the file, and subsequently close

the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The selected row of the collapsed list box

will not be appended to the existing file. If

you have checked the option Append to file,

then subsequent executions of the link will

append the selected row of the collapsed list

box to the specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the selected row of an collapsed list

box is sent to an MCI component via drag &

drop, the receiving component attempts to

interpret it as a command. If the received

data contains a valid file name, then the MCI

component will retrieve the file, open, and

load it.

Buttons - no reaction -

 Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Combo box Input field The input field will overwrite its contents and

display the selected row of the sending

combo box.

List box The list box will append the selected row of

the combo box to the bottom of its list. This

is true even if you have highlighted a row in

the receiving list box - the incoming data will

always be appended.

Collapsed list

box

If the selected row of the combo box

contains backslashes (\) starting in the first

column, these will be interpreted as

indentators. One backslash will indent the

string one level. Two backslashes equals two

levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The contents of the combo box will be

placed in the first column, first row of the

data table. Subsequent drag & drops will

overwrite the contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the selected row

of the combo box will be placed on to the

clipboard and made available as text to other

applications.

If the attribute has been set to any of the

graphic format, then the clipboard will still

accept the text and make it available to other

applications as a text.

If the combo box has be given a specific

format, such as a date or time format, the

clipboard will interpret the data as a string

and make it available as a string.

Input/output:

File system

If you drag the contents of an combo box to

file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop

an combo box to the I/O component, the

component will open the file, write the

contents to the file, and subsequently close

the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The selected row of the combo box will not

be appended to the existing file. If you have

checked the option Append to file, then

subsequent executions of the link will

append the selected row of the combo box

to the specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the selected row of the combo box is

sent to an MCI component via drag & drop,

the receiving component attempts to

interpret it as a command. If the selected

row of the combo box contains a valid file

name, then the MCI component will retrieve

the file, open, and load it.

Buttons - no reaction -

Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Drop down Input field The input field will overwrite its contents and

display the selected row of the sending drop

down.

List box The list box will append the selected row of

the drop down to the bottom of its list. This is

true even if you have highlighted a row in the

receiving list box - the incoming data will

always be appended.

Collapsed list

box

If the selected row of the drop down contains

backslashes (\) starting in the first column,

these will be interpreted as indentators. One

backslash will indent the string one level.

Two backslashes equals two levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The contents of the drop down will be placed

in the first column, first row of the data table.

Subsequent drag & drops will overwrite the

contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the selected row

of the drop down will be placed on to the

clipboard and made available as text to other

applications.

If the attribute has been set to any of the

graphic format, then the clipboard will still

accept the text and make it available to other

applications as a text.

Input/output:

File system

If you drag the selected row of an drop down

to file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop a

selected row of a drop down to the I/O

component, the component will open the file,

write the contents to the file, and

subsequently close the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The selected row of the drop down will not

be appended to the existing file. If you have

checked the option Append to file, then

subsequent executions of the link will

append the selected row of the drop down to

the specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the selected row of a drop down is

sent to an MCI component via drag & drop,

the receiving component attempts to

interpret it as a command. If the selected

row of the drop down contains a valid file

name, then the MCI component will retrieve

the file, open, and load it.

Buttons - no reaction -

Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Drop down

list

Input field The input field will overwrite its contents and

display the selected row of the sending drop

down list.

List box The list box will append the selected row of

the drop down list to the bottom of its list.

This is true even if you have highlighted a

row in the receiving list box - the incoming

data will always be appended.

Collapsed list

box

If the drop down list contains backslashes (\)

starting in the first column, these will be

interpreted as indentators. One backslash

will indent the string one level. Two

backslashes equals two levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The contents of the drop down list will be

placed in the first column, first row of the

data table. Subsequent drag & drops will

overwrite the contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the selected row

of the drop down list will be placed on to the

clipboard and made available as text to other

applications.

If the attribute has been set to any of the

graphic format, then the clipboard will still

accept the text and make it available to other

applications as a text.

Input/output:

File system

If you drag the selected row of an drop down

list to file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop

the selected row of a drop down list to the

I/O component, the component will open the

file, write the contents to the file, and

subsequently close the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The selected row of the drop down list will

not be appended to the existing file. If you

have checked the option Append to file, then

subsequent executions of the link will

append the selected row of the drop down

list to the specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the selected row of a drop down list is

sent to an MCI component via drag & drop,

the receiving component attempts to

interpret it as a command. If the selected

row of the drop down list contains a valid file

name, then the MCI component will retrieve

the file, open, and load it.

Buttons - no reaction -

Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Bitmap,

CGM, etc.

(referred to

in the

following

simply as

bitmap)

Input field The input field will overwrite its contents and

display the file name of the graphic element

that is being sent.

List box The list box will append the file name to the

bottom of its list. This is true even if you

have highlighted a row in the receiving list

box - the incoming data will always be

appended.

If the list box has been set to show bitmaps,

then it will display a shrunken version of the

bitmap, if the source is a bitmap. Vector

cannot be displayed in the list box.

Collapsed list

box

If the bitmap contains backslashes (\)

starting in the first column, these will be

interpreted as indentators. One backslash

will indent the string one level. Two

backslashes equals two levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The contents of the input field will be placed

in the first column, first row of the data table.

Subsequent drag & drops will overwrite the

contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the contents of

the input field will be placed on to the

clipboard and made available as text to other

applications.

If the attribute has been set to any of the

graphic format, then the clipboard will still

accept the text and make it available to other

applications as a text.

If the input field has be given a specific

format, such as a date or time format, the

clipboard will interpret the data as a string

and make it available as a string.

Input/output:

File system

If you drag the contents of an input field to

file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop

an input field to the I/O component, the

component will open the file, write the

contents to the file, and subsequently close

the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The contents of the input field will not be

appended to the existing file. If you have

checked the option Append to file, then

subsequent executions of the link will

append the contents of the input field to the

specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the contents of an input field is sent to

an MCI component via drag & drop, the

receiving component attempts to interpret it

as a command. If the input field contains a

valid file name, then the MCI component will

retrieve the file, open, and load it.

Buttons - no reaction -

Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Data table Input field The input field will overwrite its contents and

display the contents of the sending input

field.

List box The list box will append the contents of the

input field to the bottom of its list. This is true

even if you have highlighted a row in the

receiving list box - the incoming data will

always be appended.

Collapsed list

box

If the input field contains backslashes (\)

starting in the first column, these will be

interpreted as indentators. One backslash

will indent the string one level. Two

backslashes equals two levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The contents of the input field will be placed

in the first column, first row of the data table.

Subsequent drag & drops will overwrite the

contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the contents of

the input field will be placed on to the

clipboard and made available as text to other

applications.

If the attribute has been set to any of the

graphic format, then the clipboard will still

accept the text and make it available to other

applications as a text.

If the input field has be given a specific

format, such as a date or time format, the

clipboard will interpret the data as a string

and make it available as a string.

Input/output:

File system

If you drag the contents of an input field to

file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop

an input field to the I/O component, the

component will open the file, write the

contents to the file, and subsequently close

the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The contents of the input field will not be

appended to the existing file. If you have

checked the option Append to file, then

subsequent executions of the link will

append the contents of the input field to the

specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the contents of an input field is sent to

an MCI component via drag & drop, the

receiving component attempts to interpret it

as a command. If the input field contains a

valid file name, then the MCI component will

retrieve the file, open, and load it.

Buttons - no reaction -

Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Input/output:

Clipboard

Input field The input field will overwrite its contents and

display the contents of the sending input

field.

List box The list box will append the contents of the

input field to the bottom of its list. This is true

even if you have highlighted a row in the

receiving list box - the incoming data will

always be appended.

Collapsed list

box

If the input field contains backslashes (\)

starting in the first column, these will be

interpreted as indentators. One backslash

will indent the string one level. Two

backslashes equals two levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The contents of the input field will be placed

in the first column, first row of the data table.

Subsequent drag & drops will overwrite the

contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the contents of

the input field will be placed on to the

clipboard and made available as text to other

applications.

If the attribute has been set to any of the

graphic format, then the clipboard will still

accept the text and make it available to other

applications as a text.

If the input field has be given a specific

format, such as a date or time format, the

clipboard will interpret the data as a string

and make it available as a string.

Input/output:

File system

If you drag the contents of an input field to

file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop

an input field to the I/O component, the

component will open the file, write the

contents to the file, and subsequently close

the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The contents of the input field will not be

appended to the existing file. If you have

checked the option Append to file, then

subsequent executions of the link will

append the contents of the input field to the

specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the contents of an input field is sent to

an MCI component via drag & drop, the

receiving component attempts to interpret it

as a command. If the input field contains a

valid file name, then the MCI component will

retrieve the file, open, and load it.

Buttons - no reaction -

Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Input/output:

File system

Input field The input field will overwrite its contents and

display the contents of the sending input

field.

List box The list box will append the contents of the

input field to the bottom of its list. This is true

even if you have highlighted a row in the

receiving list box - the incoming data will

always be appended.

Collapsed list

box

If the input field contains backslashes (\)

starting in the first column, these will be

interpreted as indentators. One backslash

will indent the string one level. Two

backslashes equals two levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The contents of the input field will be placed

in the first column, first row of the data table.

Subsequent drag & drops will overwrite the

contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the contents of

the input field will be placed on to the

clipboard and made available as text to other

applications.

If the attribute has been set to any of the

graphic format, then the clipboard will still

accept the text and make it available to other

applications as a text.

If the input field has be given a specific

format, such as a date or time format, the

clipboard will interpret the data as a string

and make it available as a string.

Input/output:

File system

If you drag the contents of an input field to

file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop

an input field to the I/O component, the

component will open the file, write the

contents to the file, and subsequently close

the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The contents of the input field will not be

appended to the existing file. If you have

checked the option Append to file, then

subsequent executions of the link will

append the contents of the input field to the

specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the contents of an input field is sent to

an MCI component via drag & drop, the

receiving component attempts to interpret it

as a command. If the input field contains a

valid file name, then the MCI component will

retrieve the file, open, and load it.

Buttons - no reaction -

Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Input/output:

Printer

Input field The input field will overwrite its contents and

display the contents of the sending input

field.

List box The list box will append the contents of the

input field to the bottom of its list. This is true

even if you have highlighted a row in the

receiving list box - the incoming data will

always be appended.

Collapsed list

box

If the input field contains backslashes (\)

starting in the first column, these will be

interpreted as indentators. One backslash

will indent the string one level. Two

backslashes equals two levels, etc.

If characters precede the backslash(s),

these will be ignored and only the characters

following the backslash(s) will be transferred

to the collapsed list box.

Combo box The combo box behaves in the same

manner the list box does.

Drop down The drop down behaves in the same manner

the list box does.

Drop down list The drop down list behaves in the same

manner the list box does. It will not show the

new entries though unless you drop down

the list.

Bitmap, CGM,

etc.

The graphic components will attempt to

interpret the incoming data as a file name. If

they succeed, they will attempt to open the

file and display its contents. If the file type

(i.e. .BMP) does not correspond to the

placeholders file type (i.e. CGM), the

receiving component will display the file

contents in its own format.

Data table The contents of the input field will be placed

in the first column, first row of the data table.

Subsequent drag & drops will overwrite the

contents of that cell.

If you specify a certain column in the drag &

drop attribute of the data table, then the

incoming data will be placed in the first row

of the specified column.

Input/output:

Clipboard

If the clipboard attribute has been set to

accept text, then the result of the drag &

drop operation will be that the contents of

the input field will be placed on to the

clipboard and made available as text to other

applications.

If the attribute has been set to any of the

graphic format, then the clipboard will still

accept the text and make it available to other

applications as a text.

If the input field has be given a specific

format, such as a date or time format, the

clipboard will interpret the data as a string

and make it available as a string.

Input/output:

File system

If you drag the contents of an input field to

file system I/O component, nothing will

happen. If you specify a file name in the

attribute of the component and drag & drop

an input field to the I/O component, the

component will open the file, write the

contents to the file, and subsequently close

the file.

If you execute the same link again, the

process will be repeated. If you have set the

switch in the attribute dialog box to warn you

prior to attempting to overwrite the existing

file, a warning message will be displayed,

otherwise the file will simply be overwritten.

The contents of the input field will not be

appended to the existing file. If you have

checked the option Append to file, then

subsequent executions of the link will

append the contents of the input field to the

specified file.

Menu - no reaction -

Text - no reaction -

Output page - no reaction -

MCI When the contents of an input field is sent to

an MCI component via drag & drop, the

receiving component attempts to interpret it

as a command. If the input field contains a

valid file name, then the MCI component will

retrieve the file, open, and load it.

Buttons - no reaction -

Graphical

primitives

 - no reaction -

Sending

component

Receiving

component

Description

Menu You cannot drag & drop the contents of the

menu component to other components.

Text You cannot drag & drop the contents of the

text component to other components.

Output page You cannot drag & drop the contents of the

output page component to other

components.

MCI You cannot drag & drop the contents of the

MCI component to other components.

Buttons You cannot drag & drop the contents of the

buttons component to other components.

 Graphical

primitives

You cannot drag & drop the contents of the

graphical primitives component to other

components.

Change attributes

During the course of an application, it often becomes necessary to change one or many attributes of a component. You might

wish to change the color of a graphical primitive to reflect a change in a certain status, or you might want to gray the text on a

button and simultaneously switch it to be inactive.

To achieve this, you merely have to define the event which will trigger the change, select the component you want to perform

the attribute change on, the attribute to be changed, and the new value it is to take on.

All attributes that can be changed in edit mode, can also be changed in run mode. Obviously, this will always be at the

discretion of the application developer, but, nonetheless, all attributes can be changed.

If a component registers its own attributes, these are accessible via the entry Object in the attribute list.

Let us use two examples to demonstrate how this message is used.

First, we will simply toggle the color of rectangle.

1. Place a command button and a rectangle.

2. Access the link facility on the command button.

3. The event should be Left Mouse Button Released

4. The message should be Change Attributes

5. Select the rectangle in the list

6. Double-click on the Colors attribute and select red

7. Acknowledge the link

8. Create a new link using the Right Mouse Button Released as the event

9. Proceed as described above, but select a different color this time.

10. Acknowledge the input and return back to the MindMap screen.

11. Put the application into run mode and toggle the color.

12. Now, let us create a somewhat more complex link, using the Change Attribute message.

13. The goal is to turn a command button inactive, conditional on the contents of an input field.

1. Place two command buttons and an input field

2. Label one command button with OK, label the other one with Search

3. Name the first button, btnOK, the second one btnSearch

4. Set the format of the input field to be Number

5. Access the links on btnOK

6. As the event use Left Mouse Button Released

7. As the message select Change Attributes

8. Now select btnSearch and its Object attribute

9. Check the check box labeled inactive

10. Select the Conditional field just beneath the Event list and enter edt1=1

11. Acknowledge the link

12. Create a new link with the inactive check box unchecked and enter as a condition, edt1=2

13. Your links should look like these:

Put this little application into run mode and enter a 1 into the input field. Once you have released the left mouse button on the

OK button, the Search button should become inactive. Entering a 2 into the input field, and subsequently releasing the left

mouse button on the OK button, will switch it back to the active mode.

Change cursor

This message is used when you want to notify the user of some, possibly non-obvious, condition in your application.

Examples might be that you want to:

cue the user as to the existence of a hot spot

signal that a special operation is taking place (printing, drag&drop, etc.)

We will assume you want to change the cursor to indicate the location of a hot spot on a bitmap.

1. Place a bitmap on the screen

2. Select a circle (graphical primitive) and place it on top of some significant area of the bitmap

3. Select transparent as the fill color

4. Select transparent as the line color

5. Access the link facility on the circle

6. Select Mouse Movement into Object as the event

7. Select Change Cursor as the message

8. Choose one of the cursors offered in the scrollable list

9. Acknowledge the link

10. Create a new link with Mouse Movement out of Object as the event and the same message

11. Now, pick a different cursor from the list

Acknowledge this link, also

12. Your two links should look something like these:

Keep in mind that you must always change the appearance of the cursor back to its initial state, dependent on some valid

event, even if you jump to another page.

Sound

This message is used to give the user some simple form of audible feedback, depending on some action. It will function on all

Windows systems which have a loudspeaker. You should not confuse this message with the multimedia message MCI

command and Multimedia. This message is the least common denominator on all Windows systems. Therefore, it is actually

only capable of generating simple sounds, such as beeps.

This message picks up the valid settings on your system that have been assigned in the Windows Control Panel. Please note

that your setting does not necessarily match those on other systems. Please keep this in mind when planning to deploy your

applications to other systems.

Building a link based on this message is extremely straight forward.

1. Place a component and access its links

2. Select an event and pick the Sound message

3. Click on one of the aforementioned sound options in the selection list

4. Acknowledge the link and put the little application into run mode

5. Generate the event and you should hear the sound

Time-out

This message does exactly as the name implies    it times out for a specified period. During this period, all links on the

component which starts the time-out are not processed. Any other links on other components, which may become active

during the time-out, will be processed.

The time specified in the input field is defined in milliseconds (1 sec. = 1000 msec). This field is also evaluated by the parser

at run time, so that a statement can be input, instead of a constant. Thus, the actual time-out period can be kept variable.

Move

This message allows certain components to be moved at run time.

Note:

The movement is limited to the page on which the component has been placed. Moving it outside the coordinate space of the

page, will make it inaccessible for the user. Returning it into the visible area requires the execution of an additional Move

message.

All components can be moved during run time, although in some cases, it is hard to conceive of a reason to do so.

Again, let us build a simple example.

1. Place a command button and a rectangle

2. Access the link feature on the command button

3. As an event use Left Mouse Button Released, as a message use Move

4. Select the rectangle from the list of components below the event list

5. Click on the Update button on the right side of the dialog box (This should cause the x- and y-coordinates of the rectangle

to appear in the corresponding fields.)

6. Retain the displayed Width and Height and enter a Delay of 1000 msec

7. Acknowledge the entries and return to the MindMap screen

8. While still in edit mode, move the rectangle to a different location on the screen. Put the little sample application into run

mode and click on the command button. With the delay of a second, the rectangle should return to the position at which it

was prior to you moving it manually.

9. The Update button picks up the x- and y-coordinates, as well as the size of the selected component. Obviously, you can

enter any other (valid) value. By default, the size of the selected component is retained.

10. Since all 5 fields are parsed at run time, you can also enter a computed statement.

11. When the component is moved with a delay, then a frame the size of the component is drawn and it is moved with the

specified delay to the designated screen position. It is not possible to move the component as it is seen in its static form.

Program execution

This message is used to launch other executable files (or programs) from within MindMap. Keep in mind that launching an

application in Windows implies that another process is started. This means that control will immediately return to MindMap -

links following the program execution will immediately be executed.

Lets try a little example. To launch the MS Windows calculator from within MindMap, perform the following steps:

1. Place a command button

2. Access the link feature on the command button

3. Use Left Mouse Button released as the event and Program Execution as the message

4. Click on the Browse button and navigate the file list until you find the calculator (under normal conditions, it will be located

in your Windows directory)

5. Acknowledge the link and return to the MindMap screen

6. Place the little application into run mode and click on the command button. MindMap will pass control to Windows, which

in turn will locate the Windows calculator and launch it. If you minimize the calculator, return to the little application and

click on the command button again, another instance of the calculator will be launched. To avoid launching multiple

instances, you must terminate the application you have started, before you attempt to launch it again.

7. Both fields in the dialog box are parsed, meaning you can also enter any valid statement. This is especially useful if you

wish to launch the application in conjunction with a specific file. If you wish to launch a word processor, together with a

document the user selected from a list, then you simply use the string concatenation feature to add the selected file to the

program name.

8. Lets construct another little example. We want the user to pick the word processor application from one list of files and the

document they want to work on from the second list. Clicking on the command button should launch the application and

pass the document file, via the command line interface.

Here are the necessary steps:

1. Place two list boxes. Name one ProgramFiles and the other DocFiles. Set the component specific attribute of both list

boxes to display files with full path display.

2. Place an input field beneath each list box. Name the one beneath the ProgramFiles list box ProgramFileName. Name the

other one DocFileName. (In a real application both input fields would be set to be invisible at run time.)

3. Place a command button and label it with a caption, such as Execute

4. Select the list box ProgramFiles and access the link facility. As an event, use Application Started. As the message, use

Combo-/List box. Here, select the option, Directory, and enter the string C:*.EXE, including the quotation marks. This will

only display files with the extension .EXE.

5. Place another link on the list box. Use Double-click as the event and Drag & Drop as the message. Drag & Drop the

contents of this list box to the input field ProgramFileName. (This will assure that the full path is used.)

6. Do the same for the other list box, with the exception that the string you should enter is C:*.DOC. This will display only

those files with the extension .DOC.

7. Also place a link to drag & drop the contents of DocFiles to the input field named DocFileName.

8. Select the command button and access its link facility. Use Left Mouse Button Released as the event and Program

Execution as the message.

9. Enter into the field labeled Program name… the following string

ProgramFileName +      + DocFileName

The quotations marks enclose a blank which is concatenated between the program name and the doc file, since this is the

convention by which files are specified in the command line (an old MS-DOS convention).

10. Return to the MindMap screen and place this little application into run mode. The left list box should fill itself with the top-

level directories and the drives defined on your system. Navigate the structure until you find the program you wish to use.

Every time you double-click on an entry in the list box, it will appear in the input field beneath the list box.

11. Navigate the right list box until you have located the document file you wish to work on. Here, again, every double-click

will pass the selection from the list box to the input field.

12. Once you have located the program file and the document file, click on the command button.

13. In some cases, it is necessary to load an application, but to keep it minimized. To accomplish this, mark the check box

labeled:

14. Run minimized

15. If you launch an application using this switch, then the application will not appear in foreground, but it will be running.

System command

MindMap offers a set of commands which affect itself.

Maximize: This option allows you to let the user expand the application to full screen.

Minimize: Conversely this option allows you to let the user minimize the application (iconize). If you have used the feature

which allows you to define your own application icons, this will be displayed, once the application has been minimized.

Restore: Causes a MindMap application, that has been minimized, to restore itself to its initial size and position.

Terminate Application: Executing this message will terminate the MindMap application and return control to the Windows

environment. If the application you are executing is not running as an EXE file, then this message will function as a toggle

back into the edit mode of MindMap.

MCI Command

Windows offers a large set of multimedia extensions which can control audio/visual devices like sound boards, CD players,

Video Disc players as well as the Video for Windows system.

All of these devices are controlled through a common interface. The basic approach to this multimedia control interface (MCI)

is a command language. Windows itself defines only a minimum set of commands. Various types of multimedia devices may

introduce new commands to this syntax to cover their special features.

MindMap offers a convenient interface to this multimedia command language. The benefit of this approach is that low level

calls to the device interface are possible. The disadvantage is that you will have to concentrate on the various options of a

particular device by reading through the devices documentation.

The link dialog contains a generic set of predefined instructions you can chose from to build your MCI commands.

Please note at this point that a device is always identified by its type name. Valid type names may be

MCI Type Description

waveaudio Windows sound through a built-in sound board.

avivideo Video for Windows if running under Windows 95 or if it has been

properly installed as a Windows extension

cdaudio a CD-ROM drive as an audio CD-Player

Once an MCI device has been opened, it is referenced through an alias name in any further commands that apply to the open

device. This device name is arbitrary. However, you should select a suitable name to make it easier to associate a particular

statement with the type of device it is applied to.

If the device deals with files (Video for Windows and Wave but not CD Audio), then the desired file name has to be included.

If you pick various open commands from the pick list at the bottom of the link dialog, you will find a FILENAME with the most

common extension for this type of media. By pressing the button with the disk symbol, you may select an appropriate file from

a standard file dialog box.

Since all MCI commands are parsed, you may freely construct your own MCI command strings from the contents of other

MindMap components, e.g. input fields or list boxes.

The following example will open and play a Windows wave file. Execution of subsequent links will pause, until the file has

been played.

open C:\\WINDOWS\\TADA.WAV type waveaudio alias mysound

play mysound from start wait

close    mysound

If you omit the word WAIT, MindMap will play the file and continue to execute subsequent links. In this case make sure that

the sequence of commands is split across different events. Playing the sound file would immediately stop, if the MCI

command close mysound would be executed immediately after the command play mysound from start.

Try to put the following sequence of MCI commands on a button, given that the wave file exists.

Message Box

This message allows you to post a message box with various alternative buttons. This feature is generally used to inform the

user of a certain condition, to offer options regarding the general flow of the application, or to post an error message.

Place a button on the MindMap screen and access its links. As an event, use Left Mouse Button Released and select the

Message box as the message. The following dialog box will be presented:

The first entry you can make relates to the title or caption of the message box you wish to display. MindMap has put a

placeholder into the field called Title. Please enter the desired caption into this field and make sure that you enclose the string

in double quotation marks. Since this field is parsed, not enclosing a string in quotations marks will have the parser attempt to

interpret the string as the name of a component which contains the desired string. The corollary is that you can also enter a

component name containing the string you wish to use as a title.

The next field is used to enter the actual body of the message text you wish to display. Again, this field is parsed. Thus, if you

wish to enter a string which is to be displayed, then enclose it in double quotation marks. If, on the other hand, you wish to

place a pointer (another component name) into this field, then do not enclose it in quotation marks. Please note that MindMap

will automatically attempt to format the string, should it not fit into the boundaries of the message box. If you wish to force a

new line (carriage return/line feed), then enter an ENTER or a CTRL+ENTER. In this case, the link will display a double

vertical line, which depicts the position of the new line.

At the bottom of the dialog box you will find three fields which correspond to a maximum of three buttons you can display on

the message box at run time. Enter the labels in the corresponding fields.

To the immediate right of each of the label fields, you will find a field titled Goto. This is where you can enter the location the

button should jump to. You can either manually enter the component name to which you want to divert control, or you can

click on the button labeled Object. This will pop up the list of all components.

Lets construct a little example.

This example will display a message box with a caption and a body, along with two buttons pointing to other components.

1. Place a command button, an input field, and a rectangle. Label the button

2. Now access the link facility of the button, using Left Mouse Button released as the event and Message Box as the

message

3. Enter in a caption and a body for the message box

4. Keep the OK label and point it at the rectangle (rct1)

5. Also retain the Cancel label and point it at the edit field

6. Acknowledge the dialog and return to the desktop

Now lets deal with the components you are pointing to:

1. Select the rectangle and access its links

2. As the event select Goal of a Jump and as its message generate a Sound

3. Acknowledge and return to the desktop

Start your application. As soon as you click on the command button, the message box should appear. If you click on the OK

button, the message box should disappear and you should hear a sound. Click on the command button again, this time click

on the Cancel button. Again, the message box will disappear, but the focus will now be in the input field.

Data Tables

Since data tables are a standard MindMap component, this message will appear, even if you havent placed a data table in the

application. You will not be able to execute a data table message though, until you have placed one in the application.

Once a data table is available, three classes of commands can be accessed. These are:

Row operations

Column operations

Miscellaneous

As the labels suggest, the commands are either oriented at the row, the column or the table in general.

Note:

All row and column operations assume integer numbers. The data table message will automatically convert/round strings,

floating point, etc., values to integers. Also note that row/column numbers start with 1.

Lets begin by looking at the row commands:

This group allows for six different commands:

Command Description

Delete row This command will delete the row specified in the Value section of the

dialog box. Since this field is parsed, you may either enter an integer

or a component containing an integer. MindMap always attempts to

resolve a string entry as a component name (reference), before

interpreting it as a literal. Therefore, you can cascade the pointer in the

Value field; i.e., a component name, which contains a component

name, etc.

If the data table contains only one row, it cannot be deleted.

Insert row This command will insert a new row immediately above the currently

selected row. All rows - starting with and including the currently

selected row - will be incremented by 1.

The contents of the newly inserted row will be empty.

The focus of the data table will remain with the previously selected

row.

This command will override the setting of maximum rows in the

component specific attribute.

Append row This command will append a new row to the bottom of the data table.

The contents of the newly inserted row will be empty.

The focus will remain in the selected row.

This command will override the setting of maximum rows in the

component specific attribute.

Move

current row

This command will move the selected row to the new row specified in

the Value field at the bottom of the dialog box. The moved row will be

inserted into the new position. The old row from where the row was

copied will be deleted.

Since this field is parsed, you may either enter an integer or a

component containing an integer. MindMap always attempts to resolve

an string entry as a component name (reference), before interpreting it

as a literal. Therefore, you can cascade the pointer in the Value field;

i.e., a component name, which contains a component name, etc.

If you do not specify a row number, the selected row will be deleted.

Copy

current row

This command will copy the selected row to the new row specified in

the Value field at the bottom of the dialog box. The copy of the row will

be placed in a newly inserted row.

Since this field is parsed, you may either enter an integer or a

component containing an integer. MindMap always attempts to resolve

an string entry as a component name (reference), before interpreting it

as a literal. Therefore you can cascade the pointer in the Value field,

i.e. a component name, which contains a component name, etc..

Select row This command will select a row specified in the Value field at the

bottom of the dialog box. Since this field is parsed, you may either

enter an integer or a component containing an integer. MindMap

always attempts to resolve an string entry as a component name

(reference), before interpreting it as a literal. Therefore you can

cascade the pointer in the Value field, i.e. a component name, which

contains a component name, etc.

If you specify a row number less than 1 or greater than the largest

existing row number, nothing will happen. Any previously selected row

will remain selected.

Now, let us review the column commands:

This group allows for four commands:

Note:

All column operations require that the switch Large Data be deactivated in the component specific attributes of the

corresponding data table.

Command Description

Delete

column

This command will delete the column specified in the Value section of

the dialog box. Since this field is parsed, you may either enter an

integer or a component containing an integer. MindMap always

attempts to resolve an string entry as a component name (reference),

before interpreting it as a literal. Therefore, you can cascade the

pointer in the Value field; i.e., a component name, which contains a

component name, etc.

If the data table contains only one column, it will be deleted. The

consequence, though, is that the complete data table will also be

deleted.

Insert

column

This command will insert a column specified in the Value section of the

dialog box. Since this field is parsed, you may either enter an integer

or a component containing an integer. MindMap always attempts to

resolve an string entry as a component name (reference), before

interpreting it as a literal. Therefore, you can cascade the pointer in the

Value field; i.e., a component name, which contains a component

name, etc.

The insertion will increment the column number of all columns greater

than the column being inserted by 1. The column attributes of the

inserted column will be picked up from the settings in the component

specific attributes of the data table.

Any column selections prior to the insertion will remain selected.

Append

column

This command will append a new column to the right of the data table.

The contents of the newly inserted column will be empty.

The focus will remain in the selected row and column.

This command will override the setting of maximum columns in the

component specific attribute.

 Select

column

This command will select the column specified in the Value section of

the dialog box. Since this field is parsed, you may either enter an

integer or a component containing an integer. MindMap always

attempts to resolve an string entry as a component name (reference),

before interpreting it as a literal. Therefore, you can cascade the

pointer in the Value field; i.e., a component name, which contains a

component name, etc.

MindMap will not highlight the currently selected column.

Now, we will look at the last group:

This group contains one command, which deletes all rows. Column operations are still possible, such as insertion and

deletion, but no rows exist. The display of the data table will only retain the column headings and the previous size.

Combo- / List boxes

This message is listed in the collection of standard messages, but it will only display its options if a combo-/list box has been

placed in the application and selected in the left hand side of the dialog box. The available options are:

The field labeled Formula at the bottom of the dialog box is parsed at run time. It will accept either literals enclosed in double

quotation marks or standard parser statements.

Option Description

Add string This option will add the string referenced in the field at the bottom of

the dialog box to the combo-/list box selected at the left hand side of

the dialog box.

If the parser statement evaluates to multiple lines, e.g. by inserting

crlf strings or by fetching the contents of a multi line input field,

multiple insert operations will be performed.

Add string

unique

This option will add the string referenced in the field at the bottom of

the dialog box to the combo-/list box selected at the left hand side of

the dialog box, only if the string is not already contained in the

combo-/list box.

If the parser statement evaluates to multiple lines, e.g. by inserting

crlf strings or by fetching the contents of a multi line input field,

multiple insert operations will be performed if the lines are distinct.

Delete string This option will delete an occurrence of the string which matches the

string referenced in bottom of the dialog box. Regardless of the

current position in the combo-/list box, the list will be scanned from

the top of the list.

The comparison is case insensitive.

Find string This option will find the first occurrence of the string which matches

the string referenced in the bottom of the dialog box. Regardless of

the current position in the combo-/list box, the list will be scanned

from the top of the list.

The comparison is case insensitive.

Select entry This option will select the row in the combo-/ list box which is

specified in the bottom of the dialog box. The option expects a

number denoting a row number.

Row numbers are 1-based, meaning that the first row is number 1.

Attempting to select a row number 0, will result in no row being

selected. Attempting to select a row number greater than the number

of existing rows will leave the last selected row still selected.

Clear

selection

This option will remove the highlight of any selected row. If multiple

selection has been defined for this component and multiple rows

have been selected, then this operation will remove all selections.

Delete entry This option will delete the row in the combo-/ list box which is

specified in the bottom of the dialog box. The option expects a

number denoting a row number.

Row numbers are 1-based, meaning that the first row is number 1.

Attempting to delete a non-existing row number will cause no row to

be deleted.

Delete all

entries

This option will delete all entries in the specified component,

regardless of any selections.

Directory This option will fill the specified combo-/list box with the contents of

the directory referenced in the bottom of the dialog box.

The valid syntax for the specification is:

x:*.*

where x: is a valid drive; and *.* are wildcards for file names. You

may also specify any other valid file name portion, such as *.BMP or

XYZ*.*.

The entry must be enclosed in double quotation marks. Directory

delimiters must always be two backslashes.

The field is parsed so that a component name or a valid parser

statement can be substituted for a path specification in the form of a

literal.

If the component specific attributes of the component were not set to

allow the display of files, this message will automatically set the

attribute, although it will only display file names (not drives and/or

paths). In order for drives and/or paths to be displayed, the

corresponding attribute settings must have been made.

If you have selected Collapsed List box, then this operation will have

no effect.

MCI in General

If you have multimedia capabilities installed on your system, then the MCI component will register a set of its own messages.

Open File Open a media file. This command is applicable only to media that is

associated to a file, e.g. Video For Windows or wave audio.

If the value input field at the bottom of the dialog contains or evaluates

to a valid file name, then this file is opened. Otherwise a file open

dialog box appears, which allows you to select a file. The system

automatically loads a media driver that is suitable for the given file

extension.

Close

Channel

Closes a previously open media. You should use this command only if

you control a devices behavior by means of special media commands.

Usually, a device is automatically closed when its page becomes

deactivated.

Play Plays a previously opened media from the current position or from

start, if it has not been played before. If the value input field contains a

numeric value, playing starts from the given position. The units of this

value depends on the type of media and its configuration (see the

commands Use Frame Mode and Use Time Mode).

Play from

Start

Plays a previously opened media from start.

Play

Reverse

Play the media backwards, if applicable to the particular media. Note

that Video For Windows files usually accomplish reverse playing

showing single frames (step mode).

Stop Stops playing the media. Playing resumes either through the Play or

the Resume command.

Pause Pauses playing of the media. The function is similar to the Stop

command. However, if hardware media is directed by the media driver,

this command differs from the stop command in that it setsthe device

in stand by mode. For instance, a video disc player will keep the video

heads running, while the Stop command will shut down the player.

Eject Media Ejects the media, if applicable. Generally, CD audio drives and video

disc players can eject the media.

Make New

Session

This command creates a new media session. It is applicable only to

media that has the ability to record. The value input field contains the

name of the media device (e.g. waveaudio).

Note that Video For Windows movies generally cannot be recorded

through the MCI interface.

Save File Saves a previously recorded media stream to a disk file. The value

input field contains a valid file name. Make sure that the extension of

this file is suitable for the current media type. If this field is empty, a file

save dialog box appears.

Use Frame

Mode

Sets the media to use Frame Mode. (e.g. applicable for Video For

Windows to return or set positioning information using video frames).

Use Time

Mode

Sets the media to use Time Mode. (e.g. applicable for devices    to

return or set positioning information using the elapsed time from start).

Resume Resumes playing of the device after a previous Pause command.

Seek To Sets the position of the currently open media to the numerical value

given in the input field at the bottom of the dialog. The units depend on

the particular configuration of the device. (see the commands Use

Frame Mode and Use Time Mode).

Send String Can be used to send command strings to the media device (which

must have been opened through either the Open File or the Make

New Session command). This message allows full control over the

device. Please refer to the documentation of the media specific driver.

Set Volume

To

Sets the output volume to the level defined by the numeric value in the

input field at the bottom of the dialog. Default volume is 1000 (=

100%). A value of 500 means half volume.

Set Speed

To

Sets the playing speed to the level defined by the numeric value in the

input field at the bottom of the dialog. Default speed    is 1000 (=

100%). A value of 500 means half speed.

Set Repeat

Mode

A value of 1 in the value input field indicates that the media has to be

played repeatedly. 0 disables repeat mode.

Single Step This command moves the current position of the media by a certain

step relative to the current position. A value of 1 in the value input field

means 1 step forward, -3 means three steps backwards.

Output Page

This component is the entity generally used to print information. Therefore, the specific messages it can deal with all relate in

some manner to its printing.

Since an output page is more or less another form of a MindMap page, components can be placed on it in the same manner

as they are on MindMap pages.

Since this component is a standard component, the entry in the message list will appear, regardless of the placement of such

a component in the application. The messages for the output page component are only available though, if an output page

component has been placed in the application.

There are two groups of commands available for an output page component:

Page

Draw mode

We will first explore the Page group:

This group contains ten different commands:

Command Description

First page If the output page component has more than one page, this command

will position to the first page and display it. If only one page exists, this

command will do nothing.

Previous

page

If the output page component contains more than one page and it has

not been positioned to the first page, then this command will position it

to the previous page.

Next page If the output page component contains more than one page and it has

not been positioned to the last page, then this command will position it

to the next page.

Last page This command will position to the last page. If only one page exists,

then this command will do nothing.

Append new

page

This command will add a new page to the right of the last page and

position to it.

Next lets investigate the Draw mode group of commands:

Here we have a total of eleven commands:

Command Description

Marker This command will allow the user to select components on the output

page component. It is equivalent to the arrow on the toolbar when

MindMap is in edit mode.

Rectangle This command allows the user to draw a rectangle on the output page

component at run time. The cursor remains in this draw mode, until a

different function is selected. The standard procedure for accessing a

components attributes are also valid in run mode.

Circle This command allows the user to draw a circle on the output page

component at run time. The standard procedure for accessing a

components attributes are also valid in run mode.

Rounded

rectangle

This command allows the user to draw a rounded rectangle on the

output page component at run time. The cursor remains in this draw

mode, until a different function is selected. The standard procedure for

accessing a components attributes are also valid in run mode.

Arc This command allows the user to draw an arc on the output page

component at run time. The cursor remains in this draw mode, until a

different function is selected. The standard procedure for accessing a

components attributes are also valid in run mode.

Pie segment This command allows the user to draw a pie segment on the output

page component at run time. The cursor remains in this draw mode,

until a different function is selected. The standard procedure for

accessing a components attributes are also valid in run mode.

Line This command allows the user to draw a line on the output page

component at run time. The cursor remains in this draw mode, until a

different function is selected. The standard procedure for accessing a

components attributes are also valid in run mode.

Zoom This command displays the zoom toolbar, containing zoom in, zoom

out and 1:1. The user can perform the zoom operations on the

currently displayed output page component at run time.

VBX in General

This message is available, if you have included a VBX via the File | Preferences menu. Only if the VBX has been placed in the

application, will the actual messages be available, though.

The specific messages a VBX component is capable of dealing with is a function of the component itself. Each VBX has its

own messages, so that you will have to consult the documentation accompanying the VBX.

The layout for the VBX message is consistent, independent of the selected VBX component. What differs are the actual

commands, which are integral to the VBX component itself.

The field labeled Text accepts the parameters associated with the selected command. Thus it is also dependent on the VBX

itself.

Encapsulation (Client / Server) in General

This icon represents the messages associated with the encapsulation component relating to the server instance. It will only be

available, if your application includes a server instance.

Once you select this message, MindMap will locate the server and display the servers default message and its API.

The default message which is available for all server instances is:

<<<Close the Server>>>

This message instructs the application (subassembly) containing the server instance, to terminate normally.

In addition to this default message, the server instance has those messages available that the builder of the instance defined

for it. These are the statements (API) that were defined in the process of constructing the server subassembly. Their function

is dependent on whatever the designer intends them to do.

This icon represents the messages associated with the encapsulation component relating to the client instance. It will only be

available, if your application includes a client instance.

Once you select the message from the list of available messages, MindMap will locate all client instances in your application

and display them in the list. When you select one of these client instances, MindMap will locate the physical instance of the

corresponding server (encapsulation) instance, open it, and query it for its API. If the associated server instance is not located

on the same computer, MindMap will attempt to establish a physical connection to the computer on which the server

component resides. It will then logically connect to the component and interrogate its interface. In this case, it might take

some time to establish the connection, depending on the connection method (modem, ISDN, network, etc.). MindMap will

display a progress bar during the process.

The result of this process is then displayed in the right hand section of the dialog box.

The <<<Close the Server>>> message sends this command to the server instance, which causes it to close down. This

message is automatically generated whenever the client component, which is connected to the server instance, is terminated

normally. It is still suggested that you generate this message in a controlled manner from within your client application.

The <<<Open the Server>>> message must be sent to the server instance, before it will accept any other messages. Without

receiving this message, the server instance will remain dormant.

Following these two default messages, are whatever other messages the constructor of the server application intended to

expose to the outside world.

Database in General

This message entry is visible even if a database component has not been placed in the current application. The actual

message options are only available if a database has been placed.

In the case of the ODBC driver, the set of commands are identical, independent of the actual underlying database. In those

cases in which the database is not a SQL compliant database, the ODBC driver emulates the actions of a true SQL database.

The database message contains five groups of commands. These are

Database

Cursor position

Record

Search

SQL Exec

Each one of these groups has a set of commands. The majority of the commands necessary to interact with a database have

been summarized into high-level commands, making the input of SQL superfluous. These commands can usually be

augmented by the inclusion of parameters specific to the command. In addition to these high-level commands, MindMap also

offers the opportunity of explicitly entering SQL commands, thereby permitting complete control of the database.

Please note that it is beyond the scope of this manual to describe SQL (Structured Query Language) in detail. Despite a

standardized group of commands and syntax, many database vendors have created specific extensions for their own

databases. Again, it is beyond the scope of this manual to cover all of these variations. Please refer to vendor-specific

manuals for more details.

We will begin by describing the first group:

Command Description

Open

Database

This command will open the selected database. If the driver accepts

any additional options, these can be entered in the field at the bottom

of the dialog box labeled Value.

Close

Database

This command will close the selected database.

Commit The default setting for a database is auto commit. If this attribute has

been deselected, then the process of committing a database operation

can be controlled manually. This command will have the database

commit the operations. Please note that the particular ODBC database

driver must support commit/rollback for this function to be available.

 Rollback The default setting for a database is auto commit. If this attribute has

been deselected, then the process of rolling back a database operation

can be controlled manually. This command will have the database

rollback all non-committed operations.

The second group of commands deals with the positioning of a cursor in the database. By definition, the database cursor can

be moved to any record in the selected table. Operations such as deletion of records, insertion of records, etc., are then

performed at the cursor position.

This group contains five commands. These are:

Command Description

First record This command will position the cursor to the first record in the table.

Record numbers are 1-based, so that the first record is number 1.

Previous

record

This command will decrement the record counter by 1 and position the

cursor at that point, if it is larger than 1. Otherwise, the cursor will

remain at the first record.

Next record This command will increment the record number by one and position

the cursor at that point, unless the cursor is at the last record in the

table, in which case nothing will happen.

Last record This command will position the cursor to the last record in the table

and set the record number to the last record.

Goto record This operation will position the cursor to the record specified in the field

labeled Value. The Value field will accept either an integer, or a

component name which either contains an integer or another

component name. The field is parsed at runtime.

Database record numbers are 1-based.

The third group of commands deals with write operations to the database. These are:

Command Description

Update This command updates an existing record and writes the contents of

the components to the corresponding fields in the database table. The

record to which the components are written is determined by the

cursor position. The record at which the cursor is pointing at the time

the operation is committed, is the record to which the data is written.

Which components are written into their corresponding database fields

depends on the particular assignment settings.

No additional parameter (Value) is necessary.

Insert This operation writes the contents of the components to the

corresponding fields in the database. In doing so, this operation

creates a new record in the database. Since relational databases are

not kept in any specific order, the insertion occurs at the position of the

cursor at the time the operation is committed. Which components are

written into their corresponding database fields depends on the

particular assignment settings.

No additional parameter (Value) is necessary.

Delete This operation deletes the record the cursor is pointing at, when the

operation is committed.

Please be aware of the fact that deleting a row from a table may result

in serious implications for the database.

Consider two tables containing customer information and employee

information. An employee who is responsible for a particular customer

may be identified in the customer table only by his ID. If you delete the

employee, you will leave the corresponding ID in customers without

reference to the employee table. This is a violation of referential

integrity.

If not defined by the underlying database system, MindMap does not

take special care about the referential integrity of the database and

therefore will delete the selected record.

The fourth group of commands deals with queries to the database. These are:

Command Description

Clear display

fields

All input fields on any MindMap page associated with the selected

database will be cleared. This means that their contents will be set to

whatever has been previously specified in the corresponding default

settings for each input field (Preset). Commonly, a null string has

been set, so that the input fields will be blanked.

Search for

fields

The default setting for an input field associated with a database is

that is will be included in the query. Executing this command will

construct a SQL SELECT statement which includes all fields that are

set to be query fields. To exclude fields from participating in the

query (being included in the SELECT statement), change the

assignments in the connection between the input fields and the

database table.

The exact structure for the SELECT statement is also determined by

the search attribute of the corresponding input fields.

Select all

records

This command will generate a SELECT * FROM table, resulting in a

query which selects all records in the database. If dealing with a

large database, be careful in executing this command, due to the

possibility of an extremely large number of records being returned.

The last group of commands allows you to expand the existing high-level database commands by means of explicitly

generating SQL statements. For those users who wish to generate their own SQL statements, this is the location to do so. The

commands included in this group are:

 Command Description

SQL

SELECT

This command expects the WHERE, GROUP BY and/or HAVING

clause of a SQL statement in the value editor at the bottom of this

dialog.

MindMap will automatically prefix the given SQL part with the

clause

SELECT <connected fields> FROM<table name>

Typically the given clause could be WHERE name like Smi%

SQL

COMMAND

This message lets you enter and execute any type of SQL

statement supported by the database. Use this command to

typically issue commands which do not return a result set.

SQL

COMMAND

with refresh

This message lets you enter and execute any type of SQL

statement supported by the database. You should use this

command to execute SQL commands which return result sets.

Always make sure that the returned result set matches the

assignment of    MindMap components as defined by the database

component. Retrieving data from the result set to undefined or

invalid components may give unpredictable results.

Input/Output in General

There are two different entities to/from which this command can be applied. These are:

File System

Printer

Interaction with the file system implies that you either wish to read from or write to a file. Therefore, the appropriate

messages are:

Open

Close

Select the Input/Output component from the list on the left side of the dialog box. Then select the message, depending on

whether you are reading or writing a file. If you wish to read from a file, then drag & drop the contents of this component to a

component which can deal with the type of data you are reading (i.e., input field for alphanumeric data, a bitmap for incoming

or outgoing graphic data, etc.). Refer to the attributes of the component to set such things as file name, prompt user for file

name, etc.

Note that printing in a network environment, will generate a new print job, whenever a printer is opened and closed. It is more

common to put multiple print operations into a single job. Use these two commands to open and close the print job

accordingly.

These two commands cause the file or printer being opened and closed through a link message. Usually, a drag&drop

operation, that acts on either the printer or a file, will automatically open and then close the appropriate channel. Issuing

multiple drag&drop commands after another, will cause unwanted open and close actions on the printer or file. Therefore, it is

more convenient to open the appropriate channel first and close it when no longer needed.

Drag&Drop in General

MindMaps mechanism of drag&drop is commonly used to move information from one component to another. While the Assign

Value command is designed to evaluate formulas and store the result into a components formula attribute, drag&drop can be

thought of a mechanism which moves larger amounts of information, and especially types of information that cannot be

calculated with, such as bitmaps.

Please also keep in mind that the drag&drop facility is used in conjunction with MindMaps encapsulation feature

(Client/Server), which makes it possible to move information between components that reside on two different computers.

Drag&drop is accomplished using only a few rules. A component is either capable of

sending data,

receiving data or

both.

Information from a component can be offered in three different ways

ASCII Text information, sometimes limited in size according to a

components limitations. Text can include multiple lines, separated

by the carriage return-line feed sequence or multiple columns

within the same line can be separated by the tab character.

BITMAP Graphical information, usually device independent, i.e. rendering of

an image occurs in the most suitable way with respect to the

computers graphic adapter.

METAFILE Also graphical, but vector-oriented, data.

All three data types are internally stored in the same format as used for the Windows clipboard.

Obviously, each component renders its information as a suitable type. Some components can even supply their data in

multiple formats: A graphic component, for instance, can supply its contents as an image (either BITMAP or METAFILE), or it

can send the bitmaps file name, if requested by another component.

During the drag&drop exchange, both components negotiate a data type which both can support. Thinking of a drag&drop

operation being established between graphic component and an input field, the graphic component will first offer its data as an

image. Since an input field cannot deal with bitmaps, this offer will be refused, which in turn causes the graphic component to

send the bitmaps initial file name to the input field. If this negotiation also fails, nothing will be transferred, both components

appear to be incompatible.

Not every component is capable of sending and/or receiving drag&drop information. The following list contains all components

that participate in the drag&drop negotiation. Also, the data types that can be supplied or accepted are listed.

Component Sends Accepts

Graphic

component

Bitmap or Metafile,

Filename, if known, as text.

The graphic component

does not know about a file

name if the image has

been copied from the

clipboard.

Bitmap or Metafile.

Valid file name, i.e. complete

directory, file name and

extension information. According

to the extension, the graphic

component will choose a graphic

input filter to load the image.

Input field Text, limited by 32KB.

If the component is a multi

Text.

Large text data will be truncated

line input field, the lines will

be separated by the

carriage return-line feed

sequence.

Data classes other than

string will be converted into

strings before they are

transferred.

to the limitation of the input field.

Should the input field be

formatted to a class other than

string, the information is

expected to be a string and will

be translated appropriately.

List box Text:

Depending on the settings

in the components

drag&drop settings, either

the highlighted row(s) or all

rows are sent. Rows are

separated by the carriage

return-line feed sequence.

Graphic (Bitmap only):

If the list box is set to Show

Bitmaps, the currently

selected bitmap will be

sent.

Text:

The received text is appended to

the end of the list. If this text

contains multiple lines, multiple

rows will be created.

Graphic (Bitmap only):

If the list box is set to Show

Bitmaps, a valid file name is

expected. The list box will

attempt to load the graphic file

and stretch it to the width of the

list box (keeping the ratio

constant).

Data table Text:

Multiple cells in the same

row will be separated by

the tab character. Multiple

lines will be separated by

the carriage return-line

feed sequence. If a specific

column has been selected

in the drag&drop option

dialog, only the contents of

this column will be sent,

separated by crlf.

The data table component

either sends its entire

content or only the

highlighted rows,

depending on the settings

in the drag&drop

configuration dialog.

Text:

To be copied to multiple cells of

the data table, incoming text

data is expected to contain

multiple rows, separated by crlf

and/or columns, separated by

the tab character.

If multi column text information is

received into a data table having

selected a specific column in the

drag&drop dialog will result in

the data copied into subsequent

columns beginning with the

specified column.

New rows will automatically be

created if necessary.

Input/Output

- clipboard

The component will send

either text, bitmap or

metafile data, depending

on the current contents of

the clipboard. If the

clipboard is empty, nothing

is sent.

The component will accept all

types of information and copy it

to the clipboard, making it

available for other programs.

Input/Output

- file

The component will send

either text, bitmap or

metafile data, depending

on the contents of the

selected file. If the file

format cannot be

determined, its contents

will be sent as text.

The component will accept all

types of information and create a

file or append to an existing file if

text data was received.

Make sure that a file extension

suitable for the type of data has

been specified.

If bitmap information has been

received, the component will

always create a device

independent bitmap file (*.DIB or

*.BMP).

Input/Output

- printer

The component cannot

send any information.

Text:

Text data will be printed on the

specified printer using the

printers default font. The output

is limited by a single page,

regardless of the amount of data

being received.

Graphic:

The printer will print the graphic.

The size of the output can be

modified using the component

specific dialog.

Output page The output page will send a

rendering of the

components on its page.

The component will either accept

text or graphic and will create an

appropriate component on its

output page.

MCI

component

The component cannot

send any information.

Valid file name, i.e. complete

directory, file name and

extension information. According

to the extension, the MCI

component will attempt to open

the media device. (same

functionality as Open File link

command.

starting with 1

