
What MindMap can be Used for

First and foremost, MindMap is an environment in which applications can be developed. Since computers ultimately execute 

machine instructions, a development environment must eventually generate such instructions. Over the brief history of 

computers, major advances have been accomplished in isolating the developer from the low level of machine code. Each new 

level of isolation has been accompanied with more abstraction. At each new level the developer has to deal less and less with 

machine based concepts. In the very early days, it used to be AND and OR switches. Then came registers and machine 

instructions. These were followed by variables, conditionals, loops, and so forth.

MindMap is a member of the newest development level - graphical development. It is a language, albeit a graphical language.

The price we have paid in general for the increase in power has been a loss of control. The more complex the entities that are 

manipulated, the less influence one has regarding the details. All in all, more can be accomplished, but at the expense of 

being limited by the scope of the environment.

Lets briefly look at the power issue. What MindMap offers is twofold. Persons competent in development, in general, are now 

able to perform most tasks much easier, faster and will be less prone to errors. Persons not having a background in 

development, can now build their own applications, without having to resort to agents to do the work for them.

MindMap is an environment in which applications are actually assembled. Existing building blocks (components) are used, 

arranged and connected, such that the result is an application. MindMap is not intended to be used as an environment in 

which building blocks are created. 

Traditional development environments offer a language, a debugging facility and a variety of supplemental tools. The 

language is supplied in the form of a compiler or interpreter. The developer enters statements into an editor and has the 

statements translated - either up front (compiler) or at runtime (interpreter). The statements input reflect a certain, and 

hopefully intended, procedural flow of things. Therefore, the developer must conceive of the flow (semantics) and then mold it 

into the language (syntax). In order to easily locate and eliminate syntactic and semantic errors in the code, a debugger is 

most often supplied. This helps the developer step through the application and view isolated states. Finally, most 

environments offer various other tools that ease the general process of building applications (linkers, profilers, etc.).

Here, MindMap differs dramatically from the traditional approach to development, in that it shifts the emphasis of 

development. The syntax of MindMap is very limited. Statements are not actually keyed in. They are selected from various 

lists, which are displayed depending on the situation. It is not possible to create a syntactically invalid statement. MindMap is 

also non-procedural, so that the concept of mapping the flow to a series of statements is also completely different. The 

process is much more comparable to painting a picture. What You See is What You Get (WYSIWYG) best describes it.

The assembler of an application selects a building block, defines various attributes and then links it to other blocks. Think of it 

as a grown-up version of an erector set or Lego® blocks. First, one selects the type of block from an assortment of different 

blocks (wheels, plates, blocks, windows, etc.). Next, a decision is made regarding the attributes of the selected block type 

(color, size, number of panes, etc.). Finally, the block is combined with other blocks (nobs are plugged into holes, parts are 

screwed together, etc.).

Obviously, the types of applications that can be built with the environment is a function of the available components, their 

attributes and the ability to connect the components. This is fundamentally a question of expandability. MindMap ships with a 

large assortment of components, having many attributes, and numerous methods of being combined with one another. 

Nevertheless, the system offers diverse means of incorporating new components.



What we Assume you Know

The first major assumption is that you know how to handle MS-Windows. We assume that you are familiar with MS-Windows 

concepts and associated conventions. This implies that you know how to deal with either a mouse and/or the equivalent 

keyboard entries.

If you will be using MindMap in conjunction with databases, we assume that you are knowledgeable of general database 

concepts . This means that you are comfortable with the concepts of fields, records, and tables. If the underlying database 

engine you are using supports SQL (Structured Query Language), and it becomes necessary to execute an action by 

employing SQL, we also assume that you are either familiar with the SQL language or have access to other sources of 

information about SQL.

If you will be using MindMap to construct multimedia applications and will be using MCI commands (Media Control Interface), 

we make the assumption that you are either already knowledgeable or have access to other sources of information on MCI.

It will be helpful if you have some experience in application development. This does not mean that we expect you to be able to 

write code, but having experience in programming usually means that you:

know how to decompose complex tasks into smaller, more manageable pieces;

are accustomed to first analyze and then design, before you jump to the actual realization;

have been exposed to the concepts of variables, loops, subroutines, etc.

Please do not misunderstand this point. It is absolutely not necessary to be a programmer in order to be able to build 

applications with MindMap. It simply makes it easier, in some cases, in that general programming concepts can be utilized. 

We must point out, though, that sometimes programming experience is a hindrance, in that it becomes difficult to think in non-

procedural terms.

Throughout this manual and your use of MindMap, we will discuss various options or alternatives in the use and configuration 

of the components. You are highly encouraged to try the alternatives discussed. Only by experimenting, will you truly come to 

realize the depth of possibilities offered in MindMap. We look forward to your comments, suggestions and general feedback.



Hardware and Software Requirements

MindMap appreciates powerful hardware, but it does not give up on systems that are not state-of-the-art. The faster, bigger 

and better your system is, the faster your MindMap applications will run. Being a little more specific…

The more RAM you have, the better it is. MindMap will function on a 4MB system, although you might not enjoy the 

performance. We suggest a minimum of 8MB - obviously the more, the better.

Additional RAM is more important to MindMap than a faster microprocessor. Obviously, the faster the processor, the faster 

MindMap will execute. MindMap will function on a 386SX, although we would suggest a 486 as a minimum processor.

Since MindMap itself, and most applications built with it, are very user interface oriented, and thus utilize graphics extensively, 

we suggest a fast graphics card. MindMap will function in 4-bit, 640x480 pixels graphic environments, but we again suggest 

at least 256 colors and a fast graphics card.

Since MS-Windows is a virtual memory operating system, swapping from memory to the hard disk and back is quite 

common. MindMap and applications built with MindMap are generally compact in size, but, nonetheless, must often be 

swapped to a hard disk. Once MindMap has been installed, it does not make special demands concerning the hard disk. The 

faster the drive, the more free space it has, and the less fragmented it is, the better. MindMap consumes approximately5MB of 

hard disk space after installation.

Since MindMap is an MS-Windows application it does require one of the currently available MS-Windows environments. 

MindMap currently supports the 16-bit interface in MS-Windows, so it will run on the following versions of MS-Windows:

MS-Windows 3.11

MS-Windows for Workgroups

MS-Windows 95

If you plan on using the supplied database interface, you will require Microsofts ODBC (Open Database Connection). 

MindMap installs a version on your system, but please take caution here; there might be a conflict with other ODBC 

applications on your system. MindMap supports the 16- and 32-bit implementations of ODBC. In order to have access to 

some of the more sophisticated features (scrollable cursors, etc.), you must use ODBC 2.x.

If you use videos (AVI files) or other multimedia features in MindMap, it will be necessary to have Video for Windows and/or 

any other required drivers installed (Sound card etc.). Video for Windows is included in MS-Windows 95 and MS-Windows NT 

4.0. Please refer to the vendor of your hardware for additional information.

If you have installed other software products, you might have opted to also install some supplied graphic filters. In this case, 

they will be recognized by MindMap and offered, along with the standard MindMap filters, when you attempt to import graphic 

files. These filters are denoted with an asterisk in front of the file type in the corresponding dialog box, while the MindMap 

filters appear without the asterisk.This applies to 16-bit versions of import filters which support the Lotus/Intel/Microsoft 

standard.



Suggested Reading

If you will be dealing with databases in your applications, we strongly recommend that you make yourself familiar with SQL. 

Although MindMap attempts to isolate you from SQL as much as possible, it might become necessary to generate more 

complex statements using SQL. A number of books and general introductory literature is available. Some of the titles we 

suggest include:

Author Title

Taylor SQL for Dummies;
IDG, 1995

Bowman, et al Practical SQL Handbook;
Addison-Wesley, 1996

Gruber Understanding SQL;
Sybex, 1990

If you plan on creating applications that include multimedia features (sound, video, animation, etc.), you will be using 

Microsofts MCI (Media Control Interface) language. The scope of this language is basically determined by Microsoft, but it has 

provisions for vendor specific extensions. Beside referring to the appropriate Microsoft literature, it might also be necessary to 

read the information provided by the vendor of your additional hardware/software.

Technically, MindMap is a visual programming language. It includes a syntax    which is graphical and does not permit you to 

create syntactically incorrect statements. It has a domain    which is limited to building a rather broad scope of applications 

under MS-Windows. Since it does not do away with underlying concepts commonly found in application building (loops, 

variables, subroutines, etc.), we recommend that you eventually devote some time to these concepts. If you have a 

programming background, these concepts are more than familiar to you. If you are a novice, you might run into some 

roadblocks, while building applications. They most likely will be of a more conceptual nature. It is therefore recommended that 

you spend time at least browsing through some fundamental literature dealing with these basic concepts.

MindMap directs a major focus towards the user interface. Building appealing and functional user interfaces is part science 

and part art. 

The scientific part is dealt with in the following representative publications:

Author Title

Aaron Marcus, Nick 
Smilonich, Lynne 
Thompson 

The Cross-GUI Handbook;
Addison-Wesley, 1995

Susan L. Fowler, Victor 
R. Stanwick

The GUI Style Guide;
Academic Press, 1995

The artistic side can be 
found in books such 
as:Ray Kristof, Amy 
Satran

Interactivity by design;
Adobe Press, 1995




