Formula Components
Any MindMap component may contain a formula that produces a result.

A formula may be associated with a component or embedded in the component. In order to embed, you invoke the Formula
Editor and define the formula. If you wish to associate a formula with an object, this is accomplished in any of the many Link
dialog boxes. Input fields that are capable of dealing with formulas can be recognized by a small command button in their
upper right corner which displays a question mark. You may create formulas using:

constants or values
mathematical, comparison, and logical operators
references to other components

built-in routines called functions

You may combine these elements into an expression. For example, a formula for a field "Invoice Total" could be:

(Subtotal * 1.12) + Shipping

Constants

Constants are values in formulas that do not change:

Examples:
Shipping * 1.12 ; 1.12 is a constant
"Due " + date ; "Due " is a text constant

When you include a text constant in a formula, you must enclose the text constant with either single or double quotation
marks. To include quotation marks within a text constant, you must use backslash quotation marks:

Example:

"Date \"Second Notice\" Due: " results in:
Date "Second Notice" Due:

Operators

Operators are symbols indicating how to combine two or more expressions. They include the standard arithmetic operators (+,
-, %, 1, and %) and some special operators discussed later:

SubTotal * 1.12 ; * is the multiplication operator
"Date due "+ strdate ; + combines text values

MindMap supplies various types of operators to work with expressions:
comparison
logical
mathematical
text

By definition, operators are placed between two expression elements. The following tables show all the MindMap operators
and indicate how two values are combined.

{button ,Jumpld(PARSER.HLP>main,Comparison_Operators)} Comparison Operators

{button ,Jumpld(PARSER.HLP>main,Logical_Operators)} Logical Operator

{button ,Jumpld(PARSER.HLP>main,Mathematical_Operators)} Mathematical Operator

{button ,Jumpld(PARSER.HLP>(w95sec),Text_Operators)} Text Operator

{button ,Jumpld(PARSER.HLP>(w95sec),Special_Symbols_to_be_used_in_text_constants)} Special Symbols to be

used in text constants

Field References

Component names may be used in formulas to include the contents of the component in the formula. When MindMap
evaluates the formula, the contents of the component replaces the name of the component.

Examples:
SubTotal * 1.12 ; SubTotal is a component name
SubTotal / AmountOrders ; AmountOrders is a component
Functions

Functions perform frequently used calculations (or operations) and are generally followed by parameters (values or references
to components). Functions are described in detail later.

Examples:
date ; Supplies the current system date

cos(edt1) ; returns the cosine value of the value in edt1

Expressions

An expression is a logical sequence of functions, values, constants, and operators working together to return a single result.
Expressions are like clauses and phrases in a sentence.

Examples:
(SubTotal * 1.12) + Shipping
substr(Title, 2, 5) + Name

Using appropriate operators and functions, you may construct various kinds of values within a formula. However, a formula
may have only one type of result:

string
numeric
date

The internal representation of strings is ASCIIZ. Call-by-Name references to strings are guaranteed to supply a buffer size of
4096 bytes, including the terminating null character. Numeric values are represented as doubles.

Dates are represented as unsigned long (32-bit) values, interpreted as Julian date. You must take care in constructing
expressions with regards to the various types of data used. Using incorrect types might lead to unexpected results. For
numerical errors occurring in mathematical functions of the parser, the value expected to be returned from the function is
replaced with 0, if the function reports an error. An error message is appended to the system log file, as well as to the parser
window, if applicable

(see MindMap menu File| Preferences| Formula).
Currently, the math runtime library supports the following error messages:
"Numerical overflow in function fn(arg)"
"Invalid argument range in function fn(arg)"
"Argument singularity in function fn(arg)"
"Partial loss of precision in function fn(arg)"
"Total loss of precision in function fn(arg)"

where fn(arg) is replaced with the function name and argument that caused the error. Please note, that for object-registered
functions, the parser only defines the requested data type for passed arguments, whereas the data type returned by the
function may depend on the specific implementation.

For example, the function GetProp, registered by the VBX object, returns a data type depending on the name of the property.
Passing this value directly to a function might cause problems, if the function expects a different type. These problems have
been avoided by having MindMap automatically perform a reasonable conversion before passing the argument.

MindMap automatically converts into appropriate types and appends a warning to the system log. This applies also to
operators that combine different types. Almost always, MindMap attempts to concatenate the factors as strings.

Mathematical Operators

Symbol Name
+ Plus
- Minus
* Multiply
/ Divide
mod Modulus
%
A Power
() Precedence

Definition and Example

Add two values

2+2

SubTotal + Shipping

Subtracts second value from first value

2-2

SubTotal - Discount

Multiplies two values

2*2

SubTotal * SalesTax

Divides the first value by the second

Meters/100

500/2.5

An error message is generated if the divisor is zero.
Calculates the remainder of a division

5mod 3 ;equals 2

6 mod 3 ;equals O

The percent symbol can be used in place of 'mod'".
5%3

6% 3
1042=100
27r5=32

The result of this operation is 1 if both expressions
are zero.

MindMap evaluates formulas from left to right,
performing multiplications and divisions before
additions and subtractions. Using parentheses allows
you to change the order. MindMap evaluates
expressions between parentheses first.

3+5*5 ;equals 28

(3+5)*5 ;equals 40

{button ,Jumpld(PARSER.HLP>main,Operators)} Operators in General

{button ,Jumpld(PARSER.HLP>main,Comparison_Operators)} Comparison Operators

{button ,Jumpld(PARSER.HLP>main,Logical_Operators)} Logical Operators

{button ,Jumpld(PARSER.HLP>(w95sec),Text_Operators)} Text Operators

{button ,Jumpld(PARSER.HLP>(w95sec),Special_Symbols_to_be_used_in_text_constants)}

used in text constants

Special Symbols to be

Comparison Operators

These operators compare two values and return either true or false. These expressions are often referred to as Boolean
expressions. Arithmetically, a result of true equals 1 and a false equals 0.

Symbol Name

= Equals

<> Not equals

!_

> Greater

than

< Less Than

>= Greater
Than or
Equal To

<= Less Than

or Equal to

Definition and Example

True if both elements are equal

23 =29 ;false

27 =27 ;true

True if both elements are not equal
23 <>29 ;true

27 <> 27 ;false

True if the value on the left of the operator exceeds the
one on the right

23>29 ;false
23>23 ;false
23>19 ;true

True if the value on the left of the operator is less than
the value on the right

23 <29 ;true
23 <23 ;false
23 <19 ;false

True if the value on the left is greater than or equal to
the value on the right

23>=19 ;true
23 >=23 ;true
23>=29 ;false

True if the value on the left is less than or equal to the
value on the right

23 <=19 ;false
23 <= 23 ; true
23 <=29 ;true

{button ,Jumpld(PARSER.HLP>main,Operators)} Operators in General

{button ,Jumpld(PARSER.HLP>main,Logical_Operators)} Logical Operators

{button ,Jumpld(PARSER.HLP>main,Mathematical_Operators)} Mathematical Operators

{button ,Jumpld(PARSER.HLP>(w95sec),Text_Operators)} Text Operators

{button ,Jumpld(PARSER.HLP>(w95sec),Special_Symbols_to_be_used_in_text_constants)}

used in text constants

Special Symbols to be

Logical Operators

Logical operators can build compound conditions into a formula. Sometimes, two or more conditions must be met before you
choose a particular method of calculation. Logical operators enable you to describe such combinations of conditions.

Symbol Definition and Example

AND True only if both elements are true
‘true” AND ‘true’ equals ‘true’
‘true” AND false” equals ‘false’
‘false” AND ‘true’ equals ‘false”
‘false” AND ‘false” equals ‘false”

OR True if either of the two values is true
‘true” OR ‘true’ equals ‘true’
‘true” OR ‘false” equals ‘true’
‘false OR ‘true” equals ‘true’
‘false” OR ‘false” equals ‘false’

XOR True if either, but not both values, are true
‘true” OR “true” equals false’
‘true” OR ‘false” equals ‘true”
‘false” OR ‘true’ equals "true’
‘false” OR ‘false” equals ‘false’

NOT Changes the value of the subsequent boolean operation from true to
false or from false to true

NOT 5 = 3 equals 'true'

AND and OR are used to combine two expressions. NOT is only used on a single expression.

The result of a logical operation is treated as a numeric value having the possible values 0 or 1. Be aware that calculations
with the results of logical operations are possible.

{button ,Jumpld(PARSER.HLP>main,Operators)} Operators in General

{button ,Jumpld(PARSER.HLP>main,Comparison_Operators)} Comparison Operators

{button ,Jumpld(PARSER.HLP>main,Mathematical_Operators)} Mathematical Operators

{button ,Jumpld(PARSER.HLP>(w95sec),Text_Operators)} Text Operators

{button ,Jumpld(PARSER.HLP>(w95sec),Special_Symbols_to_be_used_in_text_constants)} Special Symbols to be

used in text constants

Text Operators

You may use text operators to indicate text constants in your formula or to combine two or more expressions into one
expression.

Symbol Name Definition and Examples

+ Concatenate Appends the text string on the right to the end of the
text string on the left

"abc" + "def" ; equals "abcdef"

{button ,Jumpld(PARSER.HLP>main,Operators)} Operators in General

{button ,Jumpld(PARSER.HLP>main,Comparison_Operators)} Comparison Operators

{button ,Jumpld(PARSER.HLP>main,Logical_Operators)} Logical Operators

{button ,Jumpld(PARSER.HLP>main,Mathematical_Operators)} Mathematical Operators

{button ,Jumpld(PARSER.HLP>(w95sec),Special_Symbols_to_be_used_in_text_constants)} Special Symbols to be

used in text constants

Special Symbols to be used in text constants

The following symbols are valid only within string constants (i.e. text enclosed in single or double quotation marks) and may
be used to denote special characters in the text string.

Symbol Name Definition and Examples

" Text Constant Marks the beginning and the end of characters to be

" considered a text constant. Quotes without text
between them indicate a blank space. If you enter
text into a formula without using quotes, MindMap
interprets the text as a component name or as a
function.

"edt1" ; a text string containing the four characters
edt1

'MindMap' ; a text string containing the seven
characters MindMap

edt1 ; refers to a component with the name edt1

\\ Backslash To represent a backslash in a text string, one has to
put a backslash in front of it.
"c:\\mindmap\\samples" in the formula field results in
c:\mindmap\samples

\" Double To represent double quotation marks in a text string,
Quotation a backslash has to be set in front of each quote.
mark "Tool \"MindMap\"" results in Tool "MindMap"

Alternatively, the following form may be used:
"Tool "MindMap" results in Tool "MindMap"

\ Single To represent single quotation marks in a text string, a
Quotation backslash has to be set in front of each quote.
mark "Tool 'MindMap\" results in Tool MindMap

Alternatively, the following form may be used:
"Tool 'MindMap" results in Tool MindMap

\n New Line To represent the new-line-character 0x0A.
Character (This corresponds to the character code according to
the ASCII table.)
\r Carriage To represent the carriage-return-character Ox0D.
Return (This corresponds to the character code according to
Character the ASCII table.)
\t Tab To represent the tab-character 0x09.
Character (This corresponds to the character code according to

the ASCII table.)

{button ,Jumpld(PARSER.HLP>main,Operators)} Operators in General

{button ,Jumpld(PARSER.HLP>main,Comparison_Operators)} Comparison Operators
{button ,Jumpld(PARSER.HLP>main,Logical_Operators)} Logical Operators

{button ,Jumpld(PARSER.HLP>main,Mathematical_Operators)} Mathematical Operators

{button ,Jumpld(PARSER.HLP>(w95sec),Text_Operators)} Text Operators

The use of formulas and functions in MindMap

MindMap allows for any component to have a value, even if it is not apparent (i.e. command buttons) that this is the case.
Some of the components are able to display their value. These include, for example, text and input fields. Other components
cannot visualize their value, as is the case for graphical primitives, imported graphics, etc. In either case, it is possible to
query the component for its value. A component may also include a formula. The result of the formula is the value of the
component.

The values may be of the type numeric, string, or date. Strings are always enclosed in quotation marks. If a string is entered
without the quotes, the parser will generate an error message (see "Parser Error Messages"”). Date constants are also
enclosed in quotation marks, but they must follow the national rule of date formatting. Therefore, entering a calendar date
depends on the currently selected language DLL (currently either MMDEU.DLL or MMENG.DLL).

Independent of the currently selected language, decimals in numeric constants are always separated by dot (not by comma).
This convention makes a MindMap application independent of the language it was built in. However, input fields display
numeric values (as well as dates) nationalized.

There are various methods to assign a value to a component:

{button ,Jumpld(PARSER.HLP>main,Assigning_a_Value_via_a_Link)} Assigning a Value via a Link
{button ,Jumpld(PARSER.HLP>main,Functions_with_an_unspecified_return_value)} Functions with an unspecified

return value

Assigning a Value via a Link

Example:

Create and Edit Links - binCOMPUTE |
Events: Message:
Left mouse buttan released j| Assignvalue j| Ok,
Condition: *| | Zoom || Clear condition

Cancel

Assignment to ohject: Help
edtDM —|+]|eel|X

edt01 ;l

T =

T w2

T 3 _I

[btnCOMPUTE -
| 3
Farmula:
edtDOLLAR=*1 . § T

This link, placed in the button btnCOMPUTE, assigns the result of edtDOLLAR multiplied by 1.5 to the input field edtDM.

{button ,Jumpld(PARSER.HLP>main,The_use_of_formulas_and_functions_in_MindMap)} The use of formulas and
functions in MindMap
{button ,Jumpld(PARSER.HLP>main,Functions_with_an_unspecified_return_value)} Functions with an unspecified

return value

Functions with an unspecified return value

In contrast to most formulas and functions, MindMap supports various functions which do not return a specific result. These
functions are also used by assigning a value. In this case, you assign the value to a component which does not react to value
assignments (i.e. command buttons). In such a case, the function is executed without changing the values of components.

Example:

Create and Edit Links - binAPPEND |

Ewents: Message:

Left mouse button released j| Assign value j|

K,

..

Condition: * | | Zoom || Clear condition

Cancel

Azsignment to object: Help
pgl —

] pal
] btntPPEMD

edtial LIE

=

K1
Formula:
SetDataTable(thll CurrentRow(thll) .1, edtVALTE)

HOE

In this example, the first column in the selected row in the datatable tbl1 receives the value contained in edtVALUE. The
function SetDataTable does not return a value.

{button ,Jumpld(PARSER.HLP>main,The_use_of_formulas_and_functions_in_MindMap)} The use of formulas and

functions in MindMap

{button ,Jumpld(PARSER.HLP>main,Assigning_a_Value_via_a_Link)} Assigning a Value via a Link

Functions

A function is a built-in routine used to perform a specific calculation. Instead of typing what might be a complex formula, you
simply type the function name. MindMap performs the calculations defined by the function.

You include the function name in your own calculation formulas, followed by the values you want the function to use. The
information contained in the parentheses are called the parameters (also known as arguments). Most functions have one or
more parameters that you must supply in order for MindMap to calculate the results you want.

Almost all MindMap functions contain these three basic parts:
function name
a set of parentheses
the required parameters.

The function name tells MindMap what kind of work to do with the parameters you supply. The parentheses identify where the
list of parameters begins and ends. When a function requires more than one parameter, the parameters must be separated
with commas.

height(Rectangle1)
You use functions in your formulas by combining them with component names, operators, values, and other functions.

Capitalization is not important when typing functions.

Function parameters may be constants, component names, expressions, or other functions. You may nest one function within
another to perform more complex calculations with your data.

MindMap automatically converts arguments passed to functions into the required data type. This applies to either built-in,
object-registered or functions imported through MNC files. If a function does not require arguments you should not supply
parentheses.

Example:
substr(datestr(date), 4,2) ; extracts month from date
substr(date,4,2) ; the result will be the same because

MindMap automatically converts the
date to string since this is the required
data type for the function substr.

General Functions

The following functions are always available. They are either intrinsic to MindMap or have been declared externally in the
MMPARSE.MNC. (For further details pertaining to the declaration of functions, please refer to the chapter in the Appendix.)

f._.1
Fal
G J

abs

f._.1
'~
& - J

arccos

f._.\
'~
G - J

arcsinh

f._.1
Fal
G - J

calc

f._.1
'~
G - J

cos

f._.\ f._.\
IA~TA
L LA T ¥

ANSI AppName

f._.1 f._.\
Yallral
L AN T

arccosh arcsin

l'._.1 l'._.\
Yalllal
L L AT T

arctan arctanh

f._.1 f._.1
IA~TA
e d &

color CopyFile

f._.1 f._.\
IA~A
e & S

cosh crif

f._.'l
'~

date

f._.1
Fal

DeleteFile

f._.1
'~

FormatString

GetFileCount
ity |
GetMouseX, GetMouseY

|

2
86
M

GetWindowText

datestr day

f;\f;\
IAllA

exp Format

f;\f._.\
IAllA

frac GetEnv

GetHomeDir GetModuIeHandIe

GetParent GetTlckCount
F—\\r—- 1
height

gsum

f._.'l
'~

Hex
=3
‘_J

int

r="
Al
C—
r="
Al

Istrspn

f._.1
Fal

month

f._.1
Inl

PageNum

hwnd hwndChild

f;\f;\
IAllA

JulianDate len

f;\f._.\
IAllA

log lower

f._.ﬁf._.\
IAllA

MakeDir MMWindow

ObjectCount PageCount

PointinObject

f._.\
'~
G - J

rand

=3
SetWindowText

f==3

‘ | J

ﬁ“.—.n
I'A
"

sqrt

f._.1
Fal
G - J

strpos

f._.1
Fal
G - J

sweekday

ReadProfile round

f._.1 f._.1
IA~AIA
T AT T

ShowWindow sign

f._.1 f._.\
IA~A
e & S

sinh smonth

f._.1 f._.\
IA~TA
L AT T

str strdate

f._.1 f._.1
IA~AIA
e & S

strrepl substr or substring

f._.1 f._.\
IA~IA
L AT T

tan tanh

time

val

WinHelp
gty |

year

l'._.1 l'._.\
Yalllal
T AT T

trim upper

f;\f;\
IAllA

weekday width

f;\f._.\
IAllA

WriteProfile Xpos

YMDFromJuIlan ypos

abs

Syntax: abs (<num>)

Description: Returns the absolute value of a number. If the number is negative,
the abs function returns a positive value.

Parameter(s): The <num> parameter is any expression that yields a number.

Return Value(s): The returned number is of the same data type as the parameter
<num>.

Example: abs (edt1) -> 10

;where edt1 contains the number 10

abs (edt2) -> 10

;where edt2 contains the number -10

125
S

See Also:

Category: Intrinsic function.

l'._.'l
I~
& e J

General Functions

ANSI

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

86
M

General Functions

ANSI (<text1>, <text2>, <num>)

Copies the first string into the second one, translating from the
IBM-8 character set into the ANSI character set. The numerical
value specifies how many characters are to be translated. The len
function maybe used to calculate the number of characters available
in the source string.

<text> is a MindMap component that can receive a text string.
The <num > parameter is an integer.

A string is returned.

This function is especially used to translate language dependent
special characters like German Umlaute characters to the MS-
Windows™ character set.

len

Declared function.

AppName

Syntax:

Description:

Parameter(s):
Return Value(s):
Example:

See Also:
Category:

'

General Functions

AppName (<Component Name>)

This function returns a string containing the full path name of the
application that contains the given component.

Name of a component.
A string.

AppName (StartButton1) -> C:\MINDMAP\APPS\LOGON.MM

MMLIB

arccos

Syntax:
Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

'

General Functions

arccos (<num>)
Returns the arccosine of a number.

The <num> parameter is any expression that yields a number in the
range -1 to 1. This is a value in radians.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

arccos (edt1) -> 1.2239

;where edt1 contains 0.34

arctan, arcsin, sin, cos, tan

Intrinsic function.

arcsin

Syntax:
Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

'

General Functions

arcsin (<num>)
Returns the arcsine of a number.

The <num> parameter is any expression that yields a number in the
range -1to 1.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

arcsin (edt1) -> 0.346917

;where edt1 contains 0.34

arctan, arccos, sin, cos, tan

Intrinsic function.

arctan

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

arctan (<num>)

Returns the arctangent of a number.

The <num> parameter is any expression that yields a number.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

arctan (edt1) -> 1.5374753

;where edt1 contains 30.

arcsin, arccos, sin, cos, tan

Intrinsic Function.

color

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

color (<num>, <num=>, <num>)

This function converts three color values into a 32-bit RGB color
value. The return value is calculated using the formula

R*256*256+G*256+B

The lower 8 bits represent the color value for blue, the next 8 bits
represent the color value for green and the next 8 bits represent the
color value for blue.

32..25 24.17 16..9 8.1

unused red green blue

The three parameters specify the three color values for R, G and B
respectively.

32-bit color value.

color (255, 255, 255) -> OxOOffffff (hexadecimal for white)

l'._.'l
I~
& J

General Functions

Ccos

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

cos (<num>)
Returns the cosine of a number.
The <num> parameter is any expression that yields a number.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

cos (edt1) -> 0.154251

;where edt1 contains 30

Intrinsic function.

l'._.'l
I~
& J

General Functions

crif

Syntax: crif
Description: Inserts a carriage return/line feed.
Parameter(s): none
Return Value(s): Returns a string containing the carriage return and line feed
characters.
Example: An assign value command to an input field supplies the following
results:
"Joe "+"Jones" ; Joe Jones
"Joe "+crlf+"Jones" ; Joe
Jones
See Also:
Category: Intrinsic function

86
M

General Functions

CopyFile

Syntax: CopyFile (<text>, <text>)

Description: Copies the second file onto the first file. If the first file already exists,
it will be overwritten.

Parameter(s): The <text> parameter contains a valid file name with the path if the
file is not in the current directory.

Return Value(s): 0 ;0K
1 ; Out of memory
2 ; Source file not found
3 ; Cannot create target file
4 ; Disc full
5 ; Wildcard file copy not successful
Example: CopyFile (edt1, edt2)
;where edt1 contains the text string "C:
\FILE1.TXT" and edt2 contains the text string
"FILE2.TXT"
or

CopyFile ("c:\\mm","c:\\mindmap*.*")
See Also: DeleteFile

Category: Declared function.

General Functions

date

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

date

Supplies the current system date.

none.

A date in the format set in the MINDMAP.INI file which is dependent
on what language (MMDEU.DLL or MMENG.DLL) is selected.
Please note that you may set the date format in the application, by
using the mask attribute. Then, the format is independent of the
MINDMAP.INI.

date -> 12.07.1995 (with MMDEU.DLL installed)

date -> 07/12/95 (with MMENG.DLL installed)

datestr, strdate, day, year, month, time, sweekday, smonth

Intrinsic function.

datestr

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

datestr (<date>)

Converts <date> into a string. In most cases this conversion is not
necessary, since MindMap always attempts to perform the
necessary conversions, if there are inconsistencies in the data
types. Note that MindMap uses a language specific notation for the
resulting string, depending on the currently selected language DLL.

The <date> parameter contains a valid date.

A string containing the date, as a string in the format defined in the
MINDMAP.INI file or with the mask attribute of the component.

datestr (edt1) -> "12.07.1995"
;where edt1 contains 12.07.1995

Please note again that, if you forget the datestr function in this
example, MindMap would convert date to string automatically, if a
string is expected instead of a date.

date, strdate, day, year, month, smonth, time, weekday sweekday

Intrinsic function.

day

Syntax: day (<date>)

Description: Returns the numeric value of the day of the month of the calendar
date supplied.

Parameter(s): A string containing the date.
Return Value(s): A string containing a two-digit number.
Example: day (edt1) -> 12

;where edt1 contains the current date
12.07.1995 (if MMDEU.DLL is installed)

day ("07/12/1995") -> 12

; (if MMENG.DLL is installed)

See Also: month, smonth, year, date, strdate, datestr, time, weekday,
sweekday
Category: Intrinsic function

l'._.'l
I~
& J

General Functions

DeleteFile

Syntax:

Description:
Parameter(s):

Return Value(s):

Example:

See Also:
Category:
-
‘ L

General Functions

DeleteFile (<text>)

The function deletes the file, whose file name is contained in
<text>.

The <text> parameter contains a valid file name or path and file
name if the file is not in the current directory.

If the function was not successful, one of the following error values
will be returned:

File not found
Path not found
Access denied

DeleteFile (edt1)

; where edt1 contains the text string "FILE1.TXT" or
"C:\\FILE1.TXT". Please note that this function does not support
long file names in MS-Windows(TM) 95 or MS-Windows(TM) NT.

CopyFile

Declared function.

exp

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

exp (Snum>)

Returns the exponential value of the given parameter.

The <num> parameter is any expression that yields a number.

Exponential value

exp (3) -> 20.0855369231877

log, In

Intrinsic function.

l'._.'l
I~
& J

General Functions

GetTickCount

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:
See Also:
Category:

M

General Functions

GetTickCount

This function returns the number of milliseconds that have elapsed
since MS-Windows(TM) was started.

None.

The function returns a numeric value (32-bit) which represents the
number of milliseconds since MS-Windows(TM) was started.

GetTickCount -> 22133234

Intrinsic function.

Hex

Syntax:
Description:
Parameter(s):
Return Value(s):

Example:

See Also:
Category:

M

General Functions

Hex (<numerical value>)

This function converts a numerical value into hexadecimal notation.

numerical value (only the integer part is used).

string containing the converted hexadecimal value.

hex (1024) -> 400

returns the string 400

MMPSTOOL

int

Syntax: int (<num>)

Description: This Function returns a floating-point value representing the largest
integer that is less than or equal to <num>.

Parameter(s): The <num> parameter contains any number.
Return Value(s): Floating-point result; no error return
Example: int (edt1) -> 10

;where edt1 contains 10.5
int (edt2) -> -10
;where edt2 contains -9.6.

int (2.8) -> 2.000000

int (-2.8) -> -3.000000

—h
=
[
(9]
-
o
C
>
[oN

See Also:

Category: Intrinsic function.

N
M

General Functions

frac

Syntax:
Description:
Parameter(s):
Return Value(s):

Example:

See Also:
Category:

M

General Functions

frac (<num>)

This function returns the fractional part of a floating-point value.

<num> is a floating-point value

A floating-point value

frac (3.56)
frac (-5.33)

frac (val(edt1))

=5
—
o

oun

Intrinsic function.

; equals 0.56
; equals -0.33

; equals 0.44 if edt1 contains e. g. "9.44"

gsum

Syntax:

Description:

Parameter(s):
Return Value(s):

Example:

See Also:
Category:

'

General Functions

gsum (<component name>)

The function computes the sum of all components (that have a value
associated with them) placed on top of <component name>. It
performs a graphical summation. Instead of expecting values as
arguments, this function works on components dragged on top of
another component.

A component name.
A <num> value.
gsum (rc1) -> 100.2

;where two components are placed on top of
rc1, each having a value of 50.1.

Intrinsic function.

GetFileCount

Syntax:

Description:

Parameter(s):
Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

GetFileCount (<text>)

Counts the number of files specified by <text>. Wildcards are
permitted.

The parameter <text> contains a valid MS-DOS directory name.
An integer is returned.
GetFileCount (edt1) -> 231

;where edt1 contains the string C:\WINDOWS*.*. When
specifying paths always use two backslashes instead of
single backslashes.

CopyFile, DeleteFile

Declared function.

height

Syntax:
Description:
Parameter(s):
Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

height (<component name>)

It measures in pixels the height of the specified component.

The <component name> parameter is a valid component name.

An integer.

height (rc1) -> 30

;where the rectangle rc1 is 30 pixels high

widt!

=

Intrinsic function

hwnd

Syntax:

Description:

Parameter(s):
Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

hwnd (<component name>)

This function returns the window handle of the window to which the
specified component belongs.

The following hierarchy applies to a MindMap Application running as
an executable file:

MindMap Application Window
Object Area Window

while the following hierarchy applies to a MindMap application in the
Development Environment:

MindMap Frame Window
MDIClient class
MDI Child Window
Object Area Window

The <component name> parameter is a valid component name.
none

This function is generally useful in (imported) functions which
require the window handle of the window the component is
associated with.

GetParent, hwndchild

Intrinsic function.

len

Syntax:
Description:
Parameter(s):
Return Value(s):

Example:

See Also:
Category:

'

General Functions

len (<text>)

Obtains the length of the supplied string.

The <text> parameter is a string.

Returns an integer.

len (edt1) -> 7

;where edt1 contains the string "abcdefg".

If edt1 contains a numeric value instead of a string, the correct
expression is the following:

len (str(edt1))

str, substr, strpos, strrepl, upper, lower

Intrinsic function

log

Syntax:
Description:
Parameter(s):

Return Value(s):

Example:

See Also:

Category:

86
M

General Functions

log (<num>)

Returns the common logarithm (base 10) of a number.

The <num> parameter may have any positive floating point value.

A floating point value as the result or O as an error value.

Please note that the result of log (1) is also 0 !

Also note, that if an error occurs the error log reports this function as
log10.

log (11) -> 1.041393
log (100) -> 2
log (0.8) -> -0.096910

log (edt1) ; edt1 contains a numerical value
log (val (edt1)) ; edt1 contains a string of numbers

Intrinsic function.

In

Syntax: In (<num>)

Description: Determines the natural logarithm of <num>.

Parameter(s): The parameter <num?> is a floating point value and must be greater
than zero.

Return Value(s): A floating point value as the result or 0 as an error value.

Please note that the result of In (1) is also 0!

Also note, that if an error occurs the error log reports this function as
log10.

Example: In(1) -> 0
In (100) -> 4.605172
In (0.8) -> -0.223144

In (edt1) ; edt1 contains a
numerical
value
In (val (edt1)) ; edt1 contains a string of
numbers

See Also:

g

Category: Intrinsic function.

N
M

General Functions

lower

Syntax: lower (<text>)
Description: This function converts all letters in <text> to lowercase.
Parameter(s): The <text> parameter contains characters.
Return Value(s): A string containing only lowercase letters.
Example: lower (edt1) -> "abcde"
;where edt1 contains "ABcDE"
See Also: upper, str, val
Category: Intrinsic function.

N
M

General Functions

GetHomeDir

Syntax:

Description:
Parameter(s):

Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

GetHomeDir (<string>)

This function converts the file name defined by <string> into a full
path name representing a file in the applications home directory,
provided that <string> is not a full path name itself.

The applications home directory is the directory where the
application EXE file is.

<string>
Identifies the name of a file and should not contain path and drive
specifications.

<string>
The return value is a string representing a full path name based on
the name given through the functions parameter.

ReadProfile ("MyApp","UserName","",GetHomeDir ("DEMO.INI"))

the above function reads the users name from the INI file in the
same directory where the EXE file is (instead of searching the MS-
Windows(TM) directory).

GetHomeDir ("test.dat") will return C:\MINDMAP\TEST.DAT

ReadProfile, WriteProfile

Declared function.

GetParent

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

General Functions

GetParent (<num>)

Retrieves the handle <num> of the given windows parent window (if
any).

The following hierarchy applies to a MindMap Application running as
an executable file:

MindMap Application Window
Object Area Window

while the following hierarchy applies to a MindMap application in the
Development Environment:

MindMap Frame Window
MDIClient class
MDI Child Window
Object Area Window

<num>
Identifies the window whose parent window handle is to be
retrieved.

<num>
Handle of the parent window, if the function is successful.
Otherwise, it is NULL, indicating an error or no parent window.

GetParent (MMWindow)
SetWindowText

Declared MS-Windows(TM) kernel function.

GetWindowText

Syntax:

Description:

Parameter(s):

Return Value(s):

See Also:
Category:

86
M

General Functions

GetWindowText (<num1>, <text>, <num?2>)

This function copies text of the given windows title bar (if it has one)
into a buffer. If the given window is a control, the text within the
control is copied.

<num1> handle of window
<text> address of buffer for text
<num?2> An integer; maximum number of bytes to copy

The length, in bytes, of the copied string, not including the
terminating null character. It is zero if the window has no title bar, the
title bar is empty, or the <num1> handle of window parameter is
invalid.

GetWindowText (GetParent (MMWindow),edt1,256)

Since MindMap guarantees the size of a call-by-name argument to
be 4096, the third parameter can be any suitable value less than
4096. Under normal circumstances, 256 is sufficient.

SetWindowText

Declared MS-Windows(TM) kernel function.

GetModuleHandle

Syntax:
Description:
Parameter(s):

Return Value(s):

Example:

See Also:
Category:

86
M

General Functions

GetModuleHandle (<text>)
This function retrieves the handle of the specified module.
<text> address of name of module

Handle of the module, if the function is successful. Otherwise, it is
NULL.

This function maybe used to verify the existance of a running
instance of a program. It will return a non-zero value if the specified
module name is already running. For instance

GetModuleHandle ("Excel")

will return a positive integer if Excel has already been launched.
Please note that the name of the module is not always identical to
the name of the associated EXE file; however, a number of tools are
available in the public domain to show a list of all running modules.

Declared MS-Windows(TM) kernel function.

month

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

month (<date>)

Extracts the numeric value of the month from the date supplied.
A string containing the date.

A string containing a two-digit number

month (date)
month ("12.07.1995") -> 7 (with MMDEU.DLL installed)
month ("07/12/1995") -> 7 (with MMENG.DLL installed)

It is important to choose the date format that corresponds to the
MindMap language selection.

day, weekday, year, date, strdate, datestr, smonth, sweekday

Intrinsic function.

MMWindow

Syntax:

Description:

Parameter(s):
Return Value(s):

Example:

See Also:
Category:

86
M

General Functions

MMWindow

Retrieves the windows handle of the currently active MindMap
application window.

none

An integer value representing the window handle.

The following operation sets the caption text of the currently active
MindMap window.

SetWindowText (GetParent (MMWindow),"")

Note that, since MindMap application windows are always child
windows, their parent is either an MDI child or a tiled window.

GetParent, SetWindowText

Declared MindMap function.

ObjectCount

Syntax: ObjectCount

Description: It counts the number of components on the currently visible
MindMap page.

Parameter(s): none
Return Value(s): An integer value.
Example: ObjectCount -> 12
;where the page contains 12 components.
See Also: ObjectValue
Category: Intrinsic function.

l'._.'l
I~
& J

General Functions

pi
Syntax:

Description:

Parameter(s):
Return Value(s):
Example:

See Also:
Category:

'

General Functions

pi

It computes the value of pi, which is the ratio of the circumference to
the diameter of a circle.

none.

3.14159

pi*2 -> 6.28318

Intrinsic function.

PageNum

Syntax:

Description:

Parameter(s):
Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

PageNum

It returns the page number of the current page of either a MindMap
application or an Output Page Object. The function returns a value
of 1 for the first page.

none.
An integer value.
PageNum -> 6

; where the function is placed on the 6th page
of the application

PageCount, ReportPage

Intrinsic function.

PageCount

Syntax:
Description:
Parameter(s):
Return Value(s):

Example:

See Also:

Category:

PageCount

It returns the total number of pages in the currently active MM file.
none.

An integer value.

PageCount -> 72

;where the total number of pages in the
application is 72.

PageNum, ReportPage

Intrinsic function

l'._.'l
I~
& J

General Functions

ReadProfile

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

ReadProfile (<text1>, <text2>, <text3>, <text4>)

This function returns a string associated with a given entry in an INI
file. The INI file is assumed to be in the MS-Windows(TM) directory if
a full path name is not supplied.

text1 section name

text2 key name

text3 default value to be returned, if the key does not
exist.

text4 name of the INI file.

A string representing the entry in the INI file or the given default
value if the section and keyword could not be found.

ReadProfile ("windows","device","No printer installed","WIN.INI")

returns the currently installed default printer or the message No
printer installed if such an entry could not be found.

If the file name is specified without path, it is assumed to be in the
MS-Windows(TM) directory. Use the GetHomeFile function to
specify an .INI file in the MindMap home directory.

WriteProfile

Declared function

round

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

'

General Functions

round (<num1>, <num2>)

Rounds the floating point value <num1>. <num2> is the number of
digits to the right of the decimal point..

<num1> A floating point value
<num?2> An integer, the number of decimal digits; optional
A floating point value.

round (P1,3) -> 3.142
round (PI) -> 3

; Pl equals 3.14159
"$ "+str (round (edt1,2)) -> "$132.45"

; the contents of edt1 is 132.448123

=

fra

o

,in

Intrinsic function

sign

Syntax: sign (<snum1>)

Description: Determines if <num1> is positive or negative.

Parameter(s): <num1> A floating point value

Return Value(s): The function returns -1 if the given parameter is less than zero, 1 if

the parameter is greater than zero and 0 if the given value is 0.

Example: sign (-1.23) -> -1
sign (1.23) > 1
sign (0) -> O
sign (edt1)

See Also: abs

Category: Intrinsic function

N
M

General Functions

sin
Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

M

General Functions

sin (<num>)

Returns the sine of an angle that is measured in radians. The
formula for converting degrees to radians is
radians=degrees*(pi/180).

The <num> parameter is any expression that yields a number.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

sin (edt1) -> 0.49999999

;where edt1 contains 30*(pi/180)

tan, cos, arcsin, arctan, arccos

Intrinsic function.

sinh

Syntax:

Description:

Parameter(s):

Return Valu s):

Example:

See Also:

Category:

N
M

General Functions

sinh (<num>)

Returns the hyperbolic sine of an angle.

The <num> parameter is any expression that yields a number.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

sinh (edt1) -> 10.017875

;where edt1 contains 3

cosh, tanh, arcsinh, arccosh, arctanh

Intrinsic function.

cosh

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

cosh (<num>)

Returns the hyperbolic cosine of an angle.

The <num> parameter is any expression that yields a number.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

cosh (edt1) -> 10.067662

;where edt1 contains 3

sinh, tanh, arcsinh, arccosh, arctanh

Intrinsic function.

tanh

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

tanh (<num>)
Returns the hyperbolic tangens of an angle.
The <num> parameter is any expression that yields a number.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

tanh (edt1) -> 0.995055
;where edt1 contains 3

sinh, cosh, arcsinh, arccosh, arctanh

Intrinsic function.

arcsinh

Syntax:
Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

arcsinh (<num>)

Returns the hyperbolic arcsine of an angle.

The <num> parameter is any expression that yields a number.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

arcsinh (edt1) -> 1.818446

;where edt1 contains 3

sinh, cosh, tanh, arccosh, arctanh

Intrinsic function.

arccosh

Syntax:
Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

arccosh (<num>)

Returns the hyperbolic arccosine of an angle.

The <num> parameter is any expression that yields a number.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

arccosh (edt1) -> 1.762747

;where edt1 contains 3

sinh, cosh, tanh, arcsinh, arctanh

Intrinsic function.

arctanh

Syntax:
Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

arctanh (<num>)

Returns the hyperbolic arctangens of an angle.

The <num> parameter is any expression that yields a number.

The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

arctanh (edt1) -> 0.549306

;where edt1 contains 0.5

sinh, cosh, tanh, arcsinh, arccosh

Intrinsic function.

smonth

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

86
M

General Functions

smonth (<date>)

Returns the name of the month of <date> using the installed
language library.

Adate.
A string.
smonth (date) -> "August"
; date "08/09/95" (engl. format)
smonth (edt1)
; edt1 contains a date

day, weekday, month, year, date, strdate, datestr, sweekday

Intrinsic function

str

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

str (<num>)

Translates a number <num> into a string.

The <num> parameter contains a number value.

A string representation of <num>.

str (edt1) -> "123"

;where edt1 contains the integer 123.

str(123) -> "123"
str (-123.45) -> "-123.45"

val, strdate, datestr, strpos, substr, strrepl

Intrinsic function

strpos

Syntax:
Description:
Parameter(s):

Return Value(s):

Example:

See Also:

Category:

strpos (<text1>, <text2>)

Searches for the first occurrence of <text2> in <text1>.

<text1> and <text2> contain strings.

An integer value with the beginning position (1-based). The value 0
means that nothing was found.

strpos (edt1, edt2) -> 2

;where edt1 contains "abcdef" and edt2 contains "bc".

str, substr, upper, lower, strdate, datestr, strrepl

Intrinsic function.

l'._.'l
I~
& J

General Functions

substr or substring

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

substr (<text>, <num1>, [<num2>])
substring (<text>, <num1>, [<num2>])

Extracts from <text> a substring starting at position <num17> and
with a length of <num2> (1-based).

<text> contains a string, <num1> designates the starting position,
<num?2> the desired length of the substring to be extracted. The
parameter <num2> is optional; without this value the returned string
is from the position to the end of <text>.

A string

substr (edt1,2,2) -> "bc"
substr (edt1,2) -> "bcdef"

;where edt1 contains "abcdef".
substr (edt2,1,2) + " " + date -> "Fr 08/04/95"

;where edt2 contains "Friday" and date is
"08/04/95"

substr (sweekday (date),1,2) -> "Fr"
;where date is "08/04/95"
str, strpos, upper, lower, strdate, datestr, strrepl

Intrinsic function.

sweekday

Syntax: sweekday (<date>)

Description: Returns the name of the weekday of <date> using the installed
language library.

Parameter(s): Adate
Return Value(s): A string
Example: sweekday (date) -> "Wednesday"
; date "08/09/95" (engl. format)
sweekday (edt1)
; edt1 contains a date
See Also: day, weekday, month, year, date, strdate, datestr
Category: Intrinsic function

86
M

General Functions

strdate

Syntax:

Description:

Parameter(s):
Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

strdate (<text>)

Converts <text> into a valid date if possible. You may use this
function force a conversion where other functions require an
argument of type date. Keep in mind that MindMap will attempt to
automatically convert strings to date values where dates are
required.

The parameter <text> contains date.

A valid date.

strdate (edt1) -> 07/12/1997

;where edt1 contains "07/12/1997".

date, datestr, str, substr, strpos, strrepl

Intrinsic function.

strrepl

Syntax: strrepl (<text1>, <text2>, <text3>)

Description: Replaces all occurrences of <text2> with <text3> in <text1>.
Parameter(s): All parameters contain strings

Return Value(s): An integer; the number of replacements.

Example: strrepl (edt1, edt2, edt3) ->

;:where edt1 contains "John Miller", edt2
contains "John", and edt3 contains "Pete". After
the replacement, edt1 contains "Pete Miller" and
the return value is 1 (for 1 replacement).

See Also: str, strpos, substr, upper, lower, strdate, datestr

Category: Intrinsic function.

N
M

General Functions

ShowWindow

Syntax:
Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

M

General Functions

ShowWindow (<num1>, <num2>)
The ShowWindow function sets the given windows visibility state.
<num1> is the windows handle

<numZ2> is an integer; the window visibility flag, defined as follows

0 hide the window

1 show the window

2 minimize the window (show as icon)

3 maximize the window

9 restore the window to its original size and position

Returns zero, if the window was previously hidden;
returns nonzero, if the window was previously visible.
The operation:

ShowWindow (GetParent (MMWindow),2)

iconizes the currently active MindMap application.

GetParent, MMWindow

Declared MS-Windows(TM) function.

SetWindowText

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

SetWindowText (<num>, <text>)

This function sets the title (caption bar) of the currently active
window to be <text>

<num> is the window handle

<text> is a string

This Function does not return a value.

The function

SetWindowTex t(GetParent (MMWindow),"Print")

changes the text in the caption bar of the MindMap Application
Window to contain the word Print.

GetWindowText, GetParent

Declared MS-Windows(TM) function.

upper

Syntax: upper (<text>)

Description: Returns a string consisting of the uppercase equivalent of the
<text> parameter. Characters that lack an uppercase equivalent in
the ANSI character set are returned unchanged.

Parameter(s): The <text> parameter contains a string.
Return Value(s): A string.
Example: upper (edt1) -> "ABC/+:?="

;where edt1 contains "abc/+:?=".

See Also: lower, val, str, strpos, substr, strrepl

Category: Intrinsic

-
8 .I
£\

General Functions

WriteProfile

Syntax: WriteProfile (<text1>, <text2>, <text3>, <text4>)

Description: This function places a string associated with a given entry into an INI
file. The INI file is assumed to be in the MS-Windows(TM) directory if
a full path name is not supplied.

Parameter(s): text1 section name
text2 key name
text3 desired value for the given key
text4 name of the INI file.

Return Value(s): none

Example: The function:

WriteProfile ("MyApp","UserName",edt1 ,"MYAPP.INI")

writes the contents of the input field with the name edt1 to the file
MYAPP.INI in the MS-Windows(TM) directory. Assuming that edt1
contains the name of the user, his name may later be retrieved by
the operation:

ReadProfile ("MyApp","UserName","","MYAPP.INI")

which is normally used in a value assignment to the input field edt1,

again.
See Also: ReadProfile
Category: Declared function

N
M

General Functions

year

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

Returns the year of the calendar date supplied.

A string containing the date.

A string containing a four-digit number.

year (date) -> "1995"

year (edt1) -> "1995"

;where edt1 contains the current date
12.07.1995 or 12.07.95

Intrinsic function

l'._.'l
I~
& J

General Functions

val

Syntax:

Description:

Parameter(s):
Return Value(s):

Example:

See Also:
Category:

86
M

General Functions

val (<text>)

Returns the numerical equivalent of the supplied <text>, for use with

formulas involving numbers or numeric functions.

The <text> parameter contains a string representing a number

A numerical value.

val (edt1) -> 123

;where edt1 contains the string "123".

val (substr (edt2,4,2)) -> 45

; where edt2 contains the string "1234567890"

=3
=

str, in

rac

3

Intrinsic function.

width

Syntax:
Description:
Parameter(s):
Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

width (<component name>)

It measures in pixels, the width of the specified component.

The <component name> parameter is a valid component name.

An integer.

width (rc1) -> 50

;where the rectangle rc1 is 50 pixels wide.

height

Intrinsic function.

Xpos

Syntax: Xpos (<component name>)

Description: It returns the upper left position of the specified
<component name> measured in pixels from the top of the screen..

Parameter(s): The <component> contains a valid component name.
Return Value(s): An integer.
Example: xpos (edt1) -> 56

;:where edt1 is positioned at the 56th pixel from
the top of the screen.

See Also: ypos
Category: Intrinsic function.

86
M

General Functions

ypos

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

86
M

General Functions

ypos (<component name>)

It returns the upper left position of the specified
<component name> measured in pixels from the left of the screen.

The <component name> contains a valid component name.

An integer.

ypos (edt1) -> 152

;where edt1 is positioned at the 152nd pixel
from the left of the screen.

Intrinsic function

sqrt
Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

M

General Functions

sqrt (<num>)
Returns the square root of <num>.

The <num> parameter is any expression that yields a non-negative
number.

A floating point number. Note that this function returns 0 for a square
root of a negative number. However, an entry in the parser error
window is generated.

sqrt (edt1) -> 12

;where edt1 contains 144.

Intrinsic function.

tan

Syntax: tan (<num>)

Description: Returns the tangent of an angle measured in radians. The formula
for converting degrees to radians is radians=degrees*(pi/180).

Parameter(s): The <num> parameter is any expression that yields a number.

Return Value(s): The returned value is in radians. The formula for converting degrees
to radians is radians=degrees*(pi/180).

Example: tan (edt1) -> 0.57735
;where edt1 contains 30*(pi/180)

See Also: sin, cos, arctan, arcsin, arccos

Category: Intrinsic function.

-
8 .I
£\

General Functions

time

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

N
M

General Functions

time

Supplies the current system time in 24h notation.

none

Atime.

time -> 12:43:12

o
]
=
(0]

Intrinsic function.

Component Specific Functions

Some components register their own functions. These are always available, as long as the corresponding component library
(*.MDL) has been loaded by MindMap.

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

{button ,Jumpld(PARSER.HLP>main,Data_Table_Functions)} Data Table Functions

{button ,Jumpld(PARSER.HLP>main,List_Box_Combo_Box_functions)} List Box/ Combo Box Functions
{button ,Jumpld(PARSER.HLP>main,Output_Page_functions)} Output Page Functions

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

Database Functions

The database functions are declared by MMBASE.MDL, that is part of the MindMap standard installation. If this file is loaded
as specified in the MINDMAP.INI, the following functions are available:

{button ,Jumpld(PARSER.HLP>main,Component_Specific_Functions)} Component Specific Functions
{button ,Jumpld(PARSER.HLP>(w95sec),dbBaseName)} dbBaseName

{button ,Jumpld(PARSER.HLP>(w95sec),dbCurrentRow)} dbCurrentRow

{button ,Jumpld(PARSER.HLP>(w95sec),dbFieldCount)} dbFieldCount

{button ,Jumpld(PARSER.HLP>(w95sec),dbFieldName)} dbFieldName

{button ,Jumpld(PARSER.HLP>(w95sec),dbGetDate)} dbGetDate

{button ,Jumpld(PARSER.HLP>(w95sec),dblsOpen)} dblsOpen

{button ,Jumpld(PARSER.HLP>(w95sec),dbRowCount)} dbRowCount

{button ,Jumpld(PARSER.HLP>(w95sec),dbSQLSearch)} dbSQLSearch

{button ,Jumpld(PARSER.HLP>(w95sec),dbTableName)} dbTableName

dbCurrentRow

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

dbCurrentRow (<database>)

This function calculates the current record number in the
current result set. The first record number is 1.

The <database> parameter corresponds to a database name,
as defined in MindMap.

An integer.
dbCurrentRow (db1)
dbCurrentRow (db1)+"/"+dbRowCount (db1)

;this expression displays the current
position in a result set, e. g. 11/131 would
mean, the 11th record of 131 records

dbRowCount

Declared by MMBASE.MDL

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

dbRowCount

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

dbRowCount (<database>)
This function supplies the number of records in the result set.

Please not that it depends on the database driver how this
function works. In general, most ODBC drivers are not capable
of returning the number of rows in the result set, unless the last
record in the result set has been fetched. This implies that, to
be safe, a "go to last record" command should be executed
before using this function. The function returns -1 if the number
of records in the database is unknown.

The <database> parameter corresponds to a database name,
as defined in MindMap.

An integer.
dbRowCount (db1)
dbCurrentRow (db1)+"/"+dbRowCount (db1)

;this expression displays the current
position in a result set, e. g. 11/131 would
mean, the 11th record of 131 records

dbCurrentRow

Declared by MMBASE.MDL

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

dbSQLSearch

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

dbSQLSearch (<database>)

Retrieves the "WHERE"-part of a SQL SELECT statement,
according to the components to which the database is
connected and for which the "search" option has been set.
Please note that the "WHERE"-part is also dependent on the
"Search Mode"-settings of an input field. This is set by setting
the attribute symbolized by the magnifier glass on the attribute
toolbox of the component.

The <database> parameter corresponds to a database name,
as defined in MindMap.

A string.

dbSQLSearch (db1) ->
((ADDNO = 2 and COMPANY ='MGM') and (LASTNAME like
'R%' or LASTNAME like 'S%"))

In this example there are 3 input fields connected to db1:

e edt1 with contents 2 and Search Mode is
<f>=<ag>
edt2 with contents "MGM" and Search Mode is
<f>=<g>
edt3 with contents "R;S" and Search Mode is
<f> like '<a>%'

Declared by MMBASE.MDL

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

dbFieldCount

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

dbFieldCount (<database>)

Determines the number of columns of the database table
defined by the database object supplied as parameter. It is
equal to the number of lines in the database field dialog.

The <database> parameter corresponds to a database name,
as defined in MindMap.

An integer.

dbFieldCount (db1) -> 13

; if the table db1 consists of 13 columns

Declared by MMBASE.MDL

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

dbBaseName

Syntax: dbBaseName (<database>)

Description: This function determines the name of the database, or in case
of ODBC, the name of the data source to which <database>
belongs.

Parameter(s): The <database> parameter corresponds to a database name,

as defined in MindMap.

Return Value(s): A string.

Example: dbBaseName (db1)

See Also: dbTableName, dbFieldName
Category: Declared by MMBASE.MDL

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

dbTableName

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

dbTableName (<database>)

This function determines the name of the table in the database
which is represented by the component <database> on the
screen.

The <database> parameter corresponds to a database name,
as defined in MindMap.

A string.

dbTableName (db1) -> Address

dbBaseName, dbFieldName

Declared by MMBASE.MDL

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

dbFieldName

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

dbFieldName (<database>, <num>)

This function determines the name of the column in the
database table <database> at position <num> (1-based).

The <database> parameter corresponds to a database name,
as defined in MindMap.

A string.
dbFieldName (db1,2) -> "FirstName"
if the second field in the database object is named FirstName.

dbBaseName, dbTableName

Declared by MMBASE.MDL

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

dblsOpen

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

dblsOpen (<database>)

This function tests if the database <database> is open, in which
case a connect operation to the database has been successful and
a cursor has been established.

The <database> parameter corresponds to a database name as
defined in MindMap.

0 , if database is not open

1 , if database is open

dblsOpen (db1) -> 0

; meaning that the database db1 is not currently
opened.

Declared by MMBASE.MDL

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

dbGetDate

Syntax:

Description:

Parameters):

Return Value(s):

Example:

See Also:

Category:

dbGetDate (<database>, <text>)

This function converts a date into the correct format depending on
the database used. Use this function in database queries issued
through SQL Exec commands, e.g. that are not generated
automatically through the database command Search for Fields.

<database> name of the database component

<text> name of the component containing the date that has to be
converted

A string
dbGetDate (db1,edt1) -> {d'1995-08-08'}
; for an ODBC data source

The following statement may be used in a SQL Select command,
assuming that edtBirth has a value of "01/01/1965":

"where BirthDate > " + dbGetDate (dbEmployees,edtBirth)

The next statement finds all database records where the column
BirthDate lies between two boundaries edtBirthBegin and
edtBirthEnd:

"where BirthDate between (" + dbGetDate
(dbEmployees,edtBirthBegin) + "," + dbGetDate
(dbEmployees,edtBirthEnd) + ")"

Declared by MMBASE.MDL

{button ,Jumpld(PARSER.HLP>main,Database_Functions)} Database Functions

Data Table Functions

The data table functions are declared by MMDATA.MDL and/ or MMTABLE.MDL, that is part of the MindMap standard
installation. If these files are loaded as specified in the MINDMAP.INI, the following functions are available:

{button ,Jumpld(PARSER.HLP>main,Component_Specific_Functions)} Component Specific Functions
{button ,Jumpld(PARSER.HLP>(w95sec),Columns)} Columns

{button ,Jumpld(PARSER.HLP>(w95sec),CurrentCol)} CurrentCol

{button ,Jumpld(PARSER.HLP>(w95sec),CurrentRow)} CurrentRow

{button ,Jumpld(PARSER.HLP>(w95sec),FirstMarkedRow)} FirstMarkedRow

{button ,Jumpld(PARSER.HLP>(w95sec),IsRowMarked)} IsRowMarked

{button ,Jumpld(PARSER.HLP>(w95sec),Rows)} Rows

{button ,Jumpld(PARSER.HLP>(w95sec),SetDataTable)} SetDataTable

CurrentRow

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

CurrentRow (<datatable>)
Determines the number of the current row (1-based).
<datatable> component name
An integer
CurrentRow (tbl1) -> 5
; if the 5th row of tbl1 is selected
str (CurrentRow (tbl1))+" / "+str (Rows (tbl1)) -> "5/501"

; displays the current row in the datatable
tbl1, e. g. 5/501 would mean, the 5th row
of
501 rows.

Rows

Declared by MMDATA.MDL

{button ,Jumpld(PARSER.HLP>main,Data_Table_Functions)} Data Table Functions

FirstMarkedRow

Syntax: FirstMarkedRow (<datatable>)

Description: Retrieves the number of the first marked row in a
multiple selection data table (1-based).

Parameter(s): <datatable> component name

Return Value(s): An integer for the row position or
a negative number if nothing is selected.

Example: FirstMarkedRow (tbl1) -> 5

; the 5th, 7th and 8th row of tbl1
are selected

See Also: IsRowMarked
Category: Declared by MMDATA.MDL

{button ,Jumpld(PARSER.HLP>main,Data_Table_Functions)} Data Table Functions

IsRowMarked

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

IsRowMarked (<datatable>, <row>)

Checks if the row number <row>is highlighted (1-based).
Please not that this is only defined for multiple-selection data
tables. The function returns a negative value if an error has
occurred.

<datatable> component name

<row> An integer (number of the row)
0 ; not highlighted

1 ; highlighted

IsRowMarked (tbl1,3)

; checks if the 3rd row of data table tbl1
is highlighted

FirstMarkedRow

Declared by MMDATA.MDL

{button ,Jumpld(PARSER.HLP>main,Data_Table_Functions)} Data Table Functions

Rows

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

Rows (<datatable>)

Determines the number of rows in the Datatable <datatable>

<datatable> component name

An integer; number of rows

Rows (tbl1) -> 124

; the Datatable tbl1 consists of 124 rows.

str (CurrentRow (tbl1))+" / "+str (Rows (tbl1)) -> "3 /124"

; displays the current row, 3, in the data table
tbl1, which contains 124 rows.

CurrentRow

Declared by MMDATA.MDL

{button ,Jumpld(PARSER.HLP>main,Data_Table_Functions)} Data Table Functions

SetDataTable

Syntax: SetDataTable (<datatable>, <row>, <column>, <text>)

Description: Sets the value <text> into the data table at
position[<row>,<column>].

Parameter(s): <datatable> component name

<row> An integer

<column> An integer

<text> A string

Return Value(s): none

Example: SetDataTable (tbl1,3,2,"Hello world!")
; The string "Hello world!" is set into the
data table tbl1 at position [3,2] which
means the 3rd row, 2nd column

See Also:

Category: Declared by MMDATA.MDL

{button ,Jumpld(PARSER.HLP>main,Data_Table_Functions)} Data Table Functions

List Box / Combo Box Functions

The list box and combo box functions are declared by MMCOMBO.MDL, that is part of the MindMap standard installation. If
this file is loaded as specified by the MINDMAP.INI, the following functions are available:

{button ,Jumpld(PARSER.HLP>main,Component_Specific_Functions)} Component Specific Functions
{button ,Jumpld(PARSER.HLP>(w95sec),CursorPos)} CursorPos
{button ,Jumpld(PARSER.HLP>(w95sec),LineCount)} LineCount

{button ,Jumpld(PARSER.HLP>(w95sec),SelCount)} SelCount

CursorPos

Syntax: CursorPos (<list box/combo box>)

Description: Determines the number of the current row (1-based)
Parameter(s): <list box/combo box> component name

Return Value(s): An integer.

Example: CursorPos (Ist1) -> 3

; the 3rd row is selected in list box Ist1

str (CursorPos (Ist1))+" / "+str (LineCount (Ist1)) -> "5/104"

;this expression displays the navigation in the list Ist1, e. g. 5/104
would mean that the cursor is positioned at the 5th entry of 104

entries
See Also: LineCount, SelCount
Category: Declared by MMCOMBO.MDL

{button ,Jumpld(PARSER.HLP>main,List_ Box_Combo_Box_functions)} List Box/Combo Box Functions

LineCount

Syntax:
Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

LineCount (<list box/combo box>)

Determines the number of all entries in the list box.

The <list box/combo box> component name.

An integer.

LineCount (Ist1) -> 382

; list box Ist1 has 382 entries

str (CursorPos (Ist1))+" / "+str (LineCount (Ist1)) -> "5/104"

;this expression displays the navigation in the
list box Ist1, e. g. 5/104 would mean that the
cursor is positioned at the 5th entry of 104
entries

CursorPos, SelCount

Declared by MMCOMBO.MDL

{button ,Jumpld(PARSER.HLP>main,List_Box_Combo_Box_functions)} List Box/ Combo Box Functions

SelCount

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

SelCount (<list box/combo box>)

Determines the number of selected rows in a list box if the list box
has either the multiple selection or the extended selection style.

<list box/combo box> component name

An integer

SelCount (Ist1) -> 3

; 3 entries are selected

CursorPos, LineCount

Declared by MMCOMBO.MDL

{button ,Jumpld(PARSER.HLP>main,List_Box_Combo_Box_functions)}

List Box / Combo Box Functions

Output Page Functions

The report functions are declared by MMREPORT.MDL, which is part of the MindMap standard installation. If this file is
loaded as specified in the MINDMAP.INI, the following functions are available:

{button ,Jumpld(PARSER.HLP>main,Component_Specific_Functions)} Component Specific Functions
{button ,Jumpld(PARSER.HLP>(w95sec),ReportPage)} ReportPage

{button ,Jumpld(PARSER.HLP>(w95sec),ReportPageCount)} ReportPageCount

ReportPage

Syntax: ReportPage (<component name>)

Description: Retrieves the currently active page number of a report.
Parameter(s): <component name> name of the report

Return Value(s): An integer.

Example: ReportPage (rep1) -> 4

See Also: ReportPageCount, PageNum

Category: Declared by MMREPORT.MDL

{button ,Jumpld(PARSER.HLP>main,Output_Page_functions)} Output Page Functions

ReportPageCount

Syntax: ReportPageCount (<component name>)
Description: Retrieves the number of pages in a report.
Parameter(s): <component name> name of the report
Return Value(s): An integer.

Example: ReportPageCount (rep1) -> 14

See Also: ReportPage, PageCount

Category: Declared by MMREPORT.MDL

{button ,Jumpld(PARSER.HLP>main,Output_Page_functions)} Output Page Functions

Registering External Functions
Following is an example of how MindMap can read and write strings to and from INI files.

Please verify that your MMPARSE.MNC file includes the following two lines and that the fle MMPSTOOL.DLL is in your
MindMap home directory, or at least in a path pointed to by the PATH environment variable.

declare WriteProfile lib "mmpstool.dll" alias "WriteProfile" (string, string, string, string) as integer
declare ReadProfile lib "mmpstool.dll" alias "ReadProfile" (string, string, string, string) as string
declare GetHomeDir lib "mmpstool.dll" (string) as string

The parameters are interpreted as follows:

ReadProfile

1st string section name in the INI file.

2nd string key name in the section.

3rd string default return value if the section or the key are missing.

4th string name of the INI file. If you omit the path in this string, the
MS-Windows(TM) directory is assumed.

WriteProfile

1st string section name in the INI file.

2nd string key name in the section.

3rd string value to write into the INI file.

4th string name of the INI file. If you omit the path in this string, the
MS-Windows(TM) directory is assumed.

GetHomeDir

1st string file name without path specification.

Now create a value assignment and select as the target, an input field or a text field to contain the name of the actual entry.
Enter the following line into the value editor of the assignment message:

ReadProfile ("System","Test","C:\AUTOEXEC.BAT","DEMO.INI")
WriteProfile ("System","Test","C\TEST.BAT","DEMO.INI")

If you want to place the INI file into the MindMap home directory, you may replace the specifier "MINDMAP.INI" with
GetHomeDir ("MINDMAP.INI").

ReadProfile ("System","Test","C:\AUTOEXEC.BAT",GetHomeDir ("DEMO.INI"))
WriteProfile ("System","Test","C:\TEST.BAT",GetHomeDir ("DEMO.INI"))

During load-time, MindMap reads the file MMPARSE.MNC which allows the registration of functions from user-supplied DLLs
into the parser. Subsequently, such functions may be used in value assignment messages, conditions, and all other places
where strings are parsed.

Please note that there are some restrictions related to the registration of external functions:

All external functions must follow the FAR PASCAL calling scheme. (This convention implies that parameters are pushed on the
stack from left to right. This also means that variable length parameter lists are not available. The called function is responsible
for cleaning up the stack. FAR implies that the function is called via a 32-bit address.)

Only four types of parameters are supported: ASCIIZ-String (string), 16-bit integer (integer) , 32-bit integer (long), and 8 byte
floating point (double).

Integer, long and double are passed as "call by value" if not otherwise declared. Numeric data types can be forced to follow the
"call by name" scheme by adding the byname modifier.

Strings are passed as "call by name" as FAR. If a DLL function passes a string back to the caller, the buffer pointed to by the
string is defined to hold al least 4096 characters, including the terminating null. If the component (e.g. an input field) already
contains a larger string this string is passed in its complete length. Remember that the called function cannot reallocate this

pointer.

An external function may return either a 16-bit integer, a 32-bit integer or a FAR pointer to a string. In the latter case, the buffer
pointed to by the return value must either exist in the default data segment of the called function or be allocated in local or
global memory. It must not be allocated on the stack

(automatic variable).

The following sample shows how to register the WinHelp function from the MS-Windows(TM) Kernel:
declare WinHelp lib "user" (integer, string, integer, long) as integer

The next example shows how a floating-point parameter can be passed back to MindMap:

declare SampFunc lib "sample.dll" (integer, integer, double byname) as integer

The corresponding declaration in the C-source for sample.dll would then look like:

short __far __pascal __export SampFunc (short x, short y,
double __far* pReturn);

Additionally, the system allows constants to be defined through the following syntax:
const SW_HIDE =0

Please note that syntax errors in the MNC file are reported through entries in the MMERROR.LOG file, which may be examined
by using the MMINFO utility in the Options/Preferences menu.

Also note that if MindMap detects an error in an MNC file the interpretation is abandoned.

Columns

Syntax: Columns (<datatable>)

Description: Determines the number of columns in a data table.
Parameter(s): Name of a data table.

Return Value(s): Number of columns as an integer value.

Example: Columns (edt1) -> 12

; where the data table edt1 contains 12 columns

See Also: Rows

Category: MMDATA.MDL

{button ,Jumpld(PARSER.HLP>main,Data_Table_Functions)} Data Table Functions

CurrentCol

Syntax: CurrentCol (<datatable>)

Description: Returns the number (1-based) of the column of a data table which
has the input focus.

Parameter(s): Name of a data table.
Return Value(s): Number of the selected column as an integer.
Example: CurrentCol (tbl1) -> 4

; where the cursor has been used to select the
4th column

See Also:
Category: MMDATA.MDL

{button ,Jumpld(PARSER.HLP>main,Data_Table_Functions)} Data Table Functions

GetMouseX, GetMouseY

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

N
M

General Functions

GetMouseX (<window handle>)
GetMouseY (<window handle>)

This function returns the x-coordinate of the current mouse position
relative to the window defined by the window handle passed as
parameter. Returns the current mouse position relative to the
window defined by the parameter.

The <window handle> parameter is a number which represents a
specific window. You may use the function MMWindow to determine
the currently active MindMap window.

These functions return the X- and Y-coordinate of the current mouse
position in pixels.

GetMouseX (mmWindow) -> 20

; where 20 represents the x-coordinate of the
current mouse position.

PointInObject

Imported function.

GetParam

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

GetParam (<vbx component>, <index>)

This function is valid only during the response to events generated
by a VBX component. It retrieves a parameter which has been
provided by the VBX component.

The <vbx component> parameter references the VBX component
which generated the event.

The <index> parameter specifies which of the list of parameters has
to be retrieved (1-based).

The function returns the appropriate parameter as a string
regardless of what type the VBX component has assigned to it.

This function can be used in cases where a VBX event supplies
parameters that a Visual Basic program would normally be able to
interpret.

If the documentation for a VBX control (placed as vbx1 in MindMap)
defines an event through

Sub Sample_Change ([Index As Integer])

the function GetParam (vbx1,1) will return the value of Index as a
string.

GetProp, SetProp

MMVBX.MDL

GetProp

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

GetProp (<vbx component>,<text>)

This function returns the value of a property of the given VBX
component. The property is defined by the second parameter.

The <vbx component> name as it has been declared in the
application.

A <text> parameter specifying the name of the property as the VBX
has declared it.

A value corresponding to the property value.
GetProp (vbx1, "Height") -> 37

;where the height of the placed VBX instances
equals 37 pixels.

SetProp, GetParam

Declared in MMVBX.MDL

hwndChild

Syntax:

Description:

Parameter(s):

Return Value(s):
Example:
See Also:

Category:

86
M

General Functions

hwndChild (<component name>)

If a MindMap component has an associated child window, this
function will return its window handle. This function is applicable for
objects like input fields, data tables, list boxes but not for buttons or
text objects sinces they do not use child windows. Please note that
the parent of this window is always the value of MMWindow.

The <component name> parameter is a valid component hame.

Numeric value representing the handle of the components child
window.

This function is generally useful in (imported) functions which
require the window handle of the window the component is
associated with.

GetParent, hwnd

Intrinsic function.

JulianDate

Syntax: JulianDate (<num>, <num>, <num>)

Description: This function computes the Julian Date from three numerical values
of year, month and date. This function is useful to perform date
calculations (e.g. number of days between dates, calculation of the
day of week).

Parameter(s): The first parameter is the year (if this value is less than 100 it is
assumed to be the year of 1900+y).

The second parameter is the month.

The third parameter is the day.

Return Value(s): returns the Julian Date.

Example: JulianDate (44,10,12) -> 2431376
See Also: YMDFromJulian

Category: MMLIB

N
M

General Functions

Istrspn

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

'

General Functions

Istrspn (<string1>, <string2>)

This function returns the index of the first character in string1 not
belonging to string2. This function is useful to remove trailing spaces
(or other characters) from strings. Please note that the returned
index is zero-based since this is an imported kernel function.

1. Parameter: string to be searched.
2. Parameter: characters to be ignored.
returns a zero-based index into string1.
The statement
substr (edt1, Istrspn (edt1," ")+1)

will eliminate all trailing spaces from the string in the input field
edt1.

MMLIB

MakeDir
Syntax:

Description:

Parameter(s):

Return Value(s):

Example:
See Also:
Category:

M

General Functions

MakeDir (<text>)

This function creates the directory specified by the string given in the
parameter.

Name of the directory to be created. This name should not contain a
terminating backslash character. The name may contain a drive
specifier.

This function returns one of the following numerical values:

0 : directory already exists

1 : directory has been created

2 : cannot create directory (disk may be write protected or
specified directory is invalid).

MakeDir ("c:\\example")

MMCTRL

PointInObject

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

M

General Functions

PointInObject (<component name>, <x-coordinate>, <y-coordinate>)

This function determines if a point defined by its x- and y-coordinate
lies within a given object.

The <component name> parameter is a valid component nhame.

The <x-coordinate> is a horizontal coordinate.

The <y-coordinate> is a vertical coordinate.

This function returns 1 if the point lies within the given component,
otherwise 0.

Use this function together with the functions GetMouseX and
GetMouseY to determine if (and where) the mouse is positioned
with respect to a given component.

GetMouseX, GetMouseY

Intrinsic function.

SetProp

Syntax: SetProp (<vbx component>, <text>, <text>)
Description: This function directly manipulates the property of a VBX component.
Parameter(s): The first parameter is the name of the VBX component.

The second parameter is the name of the property to be changed.
The third parameter is the property value as string. Please convert
numeric values to a string even if the specified property requires a
numeric value.

Return Value(s): Nothing.
Example:
See Also: GetProp

Category: MMVBX.MDL

trim

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

trim (<text>)

This function removes trailing spaces from the given string.

String to be transformed.

This function returns the transformed string.

trim ("abcdef ") -> "abcdef".

l'._.'l
I~
& J

General Functions

weekday

Syntax: weekday (<date>)
Description: This function determines the day-of-week from a given date.
Parameter(s): The function expects a date value. Use the strdate function to

convert a string into a date value.

Return Value(s): 1 = Monday

2 = Tuesday

3 = Wednesday

4 = Thursday

5 = Friday

6 = Saturday

7 = Sunday
Example: The function

weekday (date)

will return the weekday index for today.
The function

weekday (strdate ("12/25/97"))

will return the weekday index for christmas 1997.

See Also: sweekday
Category: MMLIB

86
M

General Functions

WinHelp

Syntax:
Description:

Parameter(s):

Return Value(s):

Example:
See Also:
Category:

N
M

General Functions

WinHelp (<num>, <text>, <num>, <text>)

This function directly invokes the MS-Windows(TM) Help System.

The first parameter is the window handle of the parent window
calling the help system. Please always use the result of the function
mmwindow.

The second parameter is the name of the help file.

The third parameter is one of the following constants:
2 = Close the MS-Windows(TM) Help System for the specified
help file.
3 = Display the contents page of the specified help file.
261 = Show a help screen for the keyword specified in
parameter 4.
Please note that this keyword must be defined in the help file for this
function to be successful.

The fourth parameter is the keyword if the third parameter is 261.
Otherwise this parameter should be an empty string.

The return value is non-zero if the function was successful.
Otherwise zero.

WinHelp (mmwindow,"EXAMPLE.HLP",261,"Options")

MMPARSE.MNC

YMDFromdJulia

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

'

General Functions

n

YMDFromJulian (<num>)

This function converts a Julian Date into a MindMap date value. This
function is useful to reconvert the result of date calculations (e.g.
number of days between dates, calculation of the day of week).

The parameter is a numeric value representing a Julian date.

The return value is a MindMap date. Use the datestr function to
convert this date into a string.

datestr (YMDFromJulian (JulianDate (44,10,12)+14)) ->
24.10.1944

JulianDate, datestr

MMLIB

calc

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:
Category:

M

General Functions

calc (<text>)

This function evaluates the statement contained in the text string
that is supplied as parameter.

The <text> parameter is a string representing a valid parser
statement.

The outcome of this function depends on the statement. It has the
same type that the statement evaluates to.

If the input field edt1 contains the value of 5 and the input field edt2
contains the text "edt1", then the function

calc ("7 * " + edt2)

will return 35.

Intrinsic function.

edtGetCol

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

edtGetCol (<input field >)

This function determines the column position of the caret in an input
field.

You may want to use this function to extract a portion of the contents
of an input field corresponding to the currently selected text.

Please note that this function is valid only if the input field is visible.
It is not applicable for input fields that are not on the active page.

The <input field> parameter is the name of an input field.

This function returns the 1-based column number which identifies
the caret position or 0 if the input field is invalid or does not exist.

edtGetCol (edt1) -> 4

; where the cursor has been used to select the 4th
cloumn in the input field edt1

edtGetRow, edtSetPos

MMEDIT.MDL

edtGetRow

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

edtGetRow (<input field >)

This function determines the row number of the caret in a multiline
input field. For a single line input field this function will always return
1.

You may want to use this function to extract a portion of the contents
of an input field corresponding to the currently selected text.

Please note that this function is valid only if the input field is visible.
It is not applicable for input fields that are not on the active page.

The <input field> parameter is the name of an input field.

This function returns the 1-based row number which identifies the
caret position or 0 if the input field is invalid or does not exist.

edtGetRow (edt1) -> 3

; where the cursor has been put into the 3rd row of
the multiline input field edt1

edtGetCol, edtSetPos

MMEDIT.MDL

edtSetPos

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

edtSetPos (<input field >, <row number>, <column number>)

This function sets the caret to the position specified by the given row
and column number.

Please note that this function is valid only if the input field is visible.
It is not applicable for input fields that are not on the active page.

The <input field> parameter is the name of an input field.

The <row number> defines the row to which the caret is to be
placed. This value must always be 1 for single line input fields.

The <column number> defines the column to which the caret is to be
placed.

This function does not return a value.

edtSetPos (edt1, 2, edt2) ->
caret set to row 2, column 5

; where edt1 is a multiline input field and edt2
contains the number 5.

edtGetCol, edtGetRow

MMEDIT.MDL

FormatString

Syntax: FormatString (<text>, <text>)

Description: This function converts a string. You may select from a variety of
format specifiers to control the output.

Parameter(s): The first parameter specifies the format. It has the following form:
%[-][width][.precision]s

Each field of the format specification is a single character or
number signifying a particular format option. The simplest format
specification contains only the percent sign and the character s (for
example, %s). The optional fields (in brackets) control other aspects
of the formatting. Following are the optional and required fields and
their meanings:

Field Meaning

- Pad the output value with blanks to the right to fill the
field width, aligning the output value to the left. If this
field is omitted, the output value is padded to the left,
aligning it to the right.

Width Convert the specified minimum number of characters.
The width field is a nonnegative integer. The width
specification never causes a value to be truncated; if
the number of characters in the output value is
greater than the specified width, or if the width field is
not present, all characters of the value are printed,
subject to the value of the precision field.

Precision Convert the specified maximum number of
characters.

The second parameter is the string to be converted.
Return Value(s): The function returns the converted string.
Example: If edt1 contains the string "Hello", the function
FormatString ("%10s",edt1)
will return the string
".....Hello"
where . represents a space character.

Assuming that we want to convert the string "MindMap" using
multiple formats:

"%10s" ...MindMap
"%-10s" MindMap...
"04-5.55" MindM

See Also: Format

Category: Imported function.

f._.1
I~
& e J

General Functions

Format

Syntax: Format (<text>, <number>)

Description: This function converts a number into a string. You may select from a
variety of format specifiers to control the output.

Parameter(s): The first parameter specifies the format. It has the following form:

%[-1[#][0][width][.precision]type

Each field of the format specification is a single character or
number signifying a particular format option. The simplest format
specification contains only the percent sign and a type character
(for example, %i). The optional fields (in brackets) control other
aspects of the formatting. Following are the optional and required
fields and their meanings:

Field

Width

Precision

Type
Sequence
d, |

Id, li

u

Lu

X, X

Ix, IX

Meaning

Pad the output value with blanks or zeros to the
right to fill the field width, aligning the output

value to the left. If this field is omitted, the output
value is padded to the left, aligning it to the right.

Prefix hexadecimal values with Ox (lowercase) or
0X (uppercase).

Pad the output value with zeros to fill the field
width. If this field is omitted, the output value is
padded with blank spaces.

Convert the specified minimum number of
characters. The width field is a nonnegative
integer. The width specification never causes a
value to be truncated; if the number of characters
in the output value is greater than the specified
width, or if the width field is not present, all
characters of the value are printed, subject to the
value of the precision field.

Convert the specified minimum number of digits.
If there are fewer digits in the argument than the
specified value, the output value is padded on
the left with zeros. The value is not truncated
when the number of digits exceeds the specified
precision. If the specified precision is zero or
omitted entirely, or if the period (.) appears
without a number following it, the precision is set
to 1.

This field may be any of the following character
sequences:

Meaning

Insert a signed decimal integer argument
(16-bit).

Insert a long signed decimal integer argument
(32-bit).

Insert an unsigned integer argument
(16-bit).

Insert a long unsigned integer argument
(32-bit).

Insert an unsigned hexadecimal integer
argument in lowercase or uppercase
(16-bit).

Insert a long unsigned hexadecimal integer

argument in lowercase or uppercase
(32-bit).

The second parameter is the number to be converted.

Return Value(s): The function returns the converted string.

Example: If edt1 contains the value 123, the function will convert the following
strings
Format ("%10I",edt1) -> "....... 123"

Format ("%05I".edt1) -> "00123"

Format("%-101",edt1) -> "123....... "

Format ("%#x",edt1) -> "Ox7b"

Format ("%04x",edt1) -> "007b"

where . represents a space character.

See Also: FormatString
Category: Imported function.

gl
8 .I
7\

General Functions

GetEnv

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

GetEnv (<text>)

This function returns the value of a DOS environment variable.

The parameter is the name of an environment variable.

If the environment variable specified through the given parameter
exists, this function returns its value.

A call to the function

GetEnv ("COMSPEC")

will return the active command processor.
(e.g. CA\COMMAND.COM)

MMPSTOOL

l'._.'l
I~
& J

General Functions

rand

Syntax:
Description:
Parameter(s):
Return Value(s):

Example:

See Also:
Category:

'

General Functions

rand

This function returns a pseudo random value between 0 and 32767.

None

The value returned is a pseudo random number.

Use the following conversions if applicable

r=rand/32768 -> 0<=r<1

r=10"rand/32768 -> 0<=r<10

Intrinsic function.

MCI Functions

These functions are available if (i) an MCI driver is installed for MS-Windows(TM) and (ii) the MCI MindMap library
(MMVFW.MDL) has been loaded.

{button ,Jumpld(PARSER.HLP>main,Component_Specific_Functions)} Component Specific Functions
{button ,Jumpld(PARSER.HLP>(w95sec),mciGetAlias)} mciGetAlias

{button ,Jumpld(PARSER.HLP>(w95sec),mciGetFileName)} mciGetFileName

{button ,Jumpld(PARSER.HLP>(w95sec),mciGetLength)} mciGetLength

{button ,Jumpld(PARSER.HLP>(w95sec),mciGetMediaName)} mciGetMediaName
{button ,Jumpld(PARSER.HLP>(w95sec),mciGetMode)} mciGetMode

{button ,Jumpld(PARSER.HLP>(w95sec),mciGetPosition)} mciGetPosition

{button ,Jumpld(PARSER.HLP>(w95sec),mciGetPositionString)} mciGetPositionString
{button ,Jumpld(PARSER.HLP>(w95sec),mciGetRepeat)} mciGetRepeat

{button ,Jumpld(PARSER.HLP>(w95sec),mciGetSpeed)} mciGetSpeed

{button ,Jumpld(PARSER.HLP>(w95sec),mciGetStart)} mciGetStart

{button ,Jumpld(PARSER.HLP>(w95sec),mciGetVolume)} mciGetVolume

{button ,Jumpld(PARSER.HLP>(w95sec),mciSendString)} mciSendString

mciGetAlias

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

mciGetAlias (<multimedia component name>)

This function returns the currently used alias name for the given
multimedia component. This name may be required by certain MCI
driver specific functions.

Name of a multimedia component.
This function returns a string containing the MCI alias name.
mciGetAlias (mci1) -> 3061

; where 3061 represents some (arbitrary) internal
identifier, pointing to the component mci1.

mciSendString

MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetFileName

Syntax: mciGetFileName (<multimedia component name>)

Description: This function returns the name of the file that has been opened by
the given multimedia component.

Parameter(s): Name of a multimedia component.

Return Value(s): This function returns a string containing the name of a multimedia
file.

Example: mciGetFileName (mci1) -> C:\VFWAMINDMAP.AVI

See Also:

Category: MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetLength

Syntax: mciGetLength (<multimedia component name>)

Description: This function returns the length of a multimedia component. The unit
of this value depends on the currently selected multimedia device.
(A Video For Windows file (*.AVI) returns the length in Frames).

Parameter(s): Name of a multimedia component.

Return Value(s): Numerical value specifying the length of the file in device specific
units.

Example: The multimedia command "Seek" with a value as of

mciGetLength (mci1) / 2

will play the mci component named mci1 from its middle position.

See Also:

Category: MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetMediaName

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

mciGetMediaName (<multimedia component name>)

This function returns the media name of the currently selected
media, if you load a new mci file at run time, i.e. via drag & drop.
The value of the return parameter is dependent on the type of media
device which is loaded.

Name of a multimedia component.

Generally a file name, but this depends on the media device type.

MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetMode

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

mciGetMode (<multimedia component name>)

This function returns a string which describes the current state of the
multimedia component. Please note that this string depends on the
type of MCI driver.

Name of a multimedia component.

A string describing the state of the component. For a Video For
Windows component (*.AV/) this function may return

"stopped"
"playing"

mciGetMode (mci1) -> "stopped"

; where the playing of the file has been stopped.

MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetPosition

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

mciGetPosition (<multimedia component name>)

This function returns the current position of a multimedia
component. The unit of this value depends on the currently selected
multimedia device. (A Video For Windows file (*.AVI) returns the
position in Frames).

Name of a multimedia component.

Numerical value specifying the current position of the file in device
specific units.

mciGetPosition (mci1) -> 124

; where the AVI file is currently positioned to frame
number 124.

You may want to use this function to continuously display the
position of a playing multimedia device by assigning the result of
this function to a text component through a link on the multimedia
event "Position Changed".

mciGetPositionString

MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetPositionString

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

mciGetPositionString (<multimedia component name>)

This function returns a string describing the current position of a
multimedia component. The contents of this string depends on the
currently selected multimedia device.

Name of a multimedia component.

A string describing the current position of the file in device specific
format.

You may want to use this function to continuously display the
position of a playing multimedia device by assigning the result of
this function to a text component through a link on the multimedia
event "Position Changed".

mciGetPosition

MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetRepeat

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:
See Also:

Category:

mciGetRepeat (<multimedia component name>)

This function determines if the given multimedia component is in
repeat mode. Repeat mode means that the multimedia component
is played repeatedly. Repeat mode is set through a multimedia link
command.

Name of a multimedia component.

0 if not in repeat mode,
1 if in repeat mode.

mciGetRepeat (mci1) -> 0 (not in repeat mode)

MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetSpeed

Syntax:

Description:

Parameter(s):
Return Value(s):
Example:

See Also:

Category:

mciGetSpeed (<multimedia component name>)

This function returns the currently selected output speed of a
multimedia component. The value is returned in percent of the
normal output speed. Therefore 1000 means normal speed, 500
means half speed.

Name of a multimedia component.
Numerical value specifying the percentage of normal speed.

mciGetSpeed (mci1) -> 1000

MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetStart

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

mciGetStart (<multimedia component name>)

This function returns the start position of a multimedia component.
The unit of this value depends on the currently selected multimedia
device. (A Video For Windows file (*.AVI) usually returns zero).

Name of a multimedia component.

Numerical value specifying the start position.

mciGetStart (mci1) -> 0

; where mci1 is an .AVI file.

mciGetl ength

MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciGetVolume

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

mciGetVolume (<multimedia component name>)

This function returns the sound volume of a multimedia component,
if applicable. A value of 1000 specifies the normal output volume.
Specify lower values to decrease the volume and higher values to
increase the volume.

Name of a multimedia component.

Numerical value specifying the volume level.

mciGetVolume (mci2) -> 1000

; where mci2 points to a WAV file.

MMVFW.MDL

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

mciSendString

Syntax:

Description:

Parameter(s):

Return Value(s):

Example:

See Also:

Category:

mciSendString (<text>, <text>, <num>, <num>)

This function is imported directly from the MS-Windows(TM)
Multimedia support DLL. It sends commands immediately to a
multimedia device and returns the result string.

You may want to use this functions to control media devices not
supported by the multimedia component.

The first string is the command to be sent to the multimedia device.
The second parameter should be the name of an input field which
will receive the response to the command.

The third parameter actually specifies the maximum length of the
response. It should be set to 255.

The fourth parameter must be 0.

This function returns zero if it was successful. Otherwise, a device
specific error code is returned. Please refer to the documentation of
the multimedia device.

mciSendString ("play "+mciGetAlias (mci1), edt4, 255, 0) -> will
start to play the .AVI file referenced in mci1.

mciGetAlias

MMPARSE.MNC

{button ,Jumpld(PARSER.HLP>main,MCI_Functions)} MCI Functions

integer or floating point

string (enclosed in "...")

name of an existing MindMap component

valid date corresponding to national setting

MindMap name of database component

name of datatable component

starting with 1

row number in data table

column number in data table

name of list box/combo box component

name of list box

number representing a window

MindMap name of VBX

number of VBX parameter

horizontal coordinate

vertical coordinate

name of input field

name of mci component

Component reference

Numeric operator

Numeric constant

parameter

function name

line number in multiline input field

character position in input field

